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Abstract 

This thesis aims to provide an overview of the life and ideas of the German philosopher and 
mathematician Gottfried Wilhelm Leibniz (1646-1716), with focus on his mathematics and the 
development of calculus. 

Leibniz has played a very important role in the history of philosophy as well as in the history of 
mathematics, and he is known as one of the greatest thinkers of the 17th Century. In addition to his 
work on mathematics and philosophy, Leibniz also made rigorous contributions to physics, 
metaphysics, logic, epistemology, jurisprudence, history and geology. 

Leibniz’s  philosophical  view  is mostly known for its optimism, including the idea that our Universe is 
the best of what God could possibly create. It was of great concern for Leibniz to investigate and give 
structure to the fundamental nature of being. He formulated his metaphysical view in terms of what 
he called simple substances, monads and a pre-established harmony. 

During the 17th Century, mathematicians worked on advancing techniques for finding areas enclosed 
by curved lines (quadratures) and volumes enclosed by figures (cubatures). Leibniz argued that it is 
possible to transform figures whose equations include irrational numbers, so that the properties of 
those figures could be understood with infinite series of rational numbers. He found series to be 
useful for numerical approximations of areas, and as an example, he demonstrated that the area of a 
quarter of a circle with radius 1 can be expressed as 

𝜋
4 = 1

1 −
1
3 + 1

5 −
1
7 + ⋯ 

Leibniz spent 1672-1676 in Paris and during these years he developed the infinitesimal calculus and 
its notation. He invented the notation  signifying a sum and 𝑑 signifying a difference as well as rules 

for how to use these. He described differentiation as finding the difference between elements within 
a series, and summation as finding sums of such differences between elements.  

After Leibniz had published his first results on calculus in 1684 he received some criticism, especially 
regarding the concept of infinitely small quantities. He also got accused of having taken the ideas 
from Newton who had formulated similar theories years before which were just not yet published. 

Today, calculus is commonly applied within many fields including; physical science, computer science, 
statistics, engineering, economics, business and medicine. The notation Leibniz developed for 
calculus might be his greatest contribution to mathematics, and it is taught in schools and used all 
around the world more than 300 years after its invention.  
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1 Introduction 

This essay is the final thesis of a Bachelor degree in Mathematics and Philosophy at Stockholm 
University, written within the field of history of mathematics and philosophy. It aims to provide an 
overview of the life and ideas of Gottfried Wilhelm Leibniz, focusing on his mathematics and the 
development of calculus. The work is divided into seven chapters and a chapter overview is provided 
below. 

Chapter 2 gives a summary of Leibniz life from when he was born until he died.  

Chapter 3 explains the fundamental principles of his philosophy. 

Chapter 4 briefly describes his metaphysical ideas. 

Chapter 5 describes the background to, the invention of, and criticism against calculus. 

Chapter 6 exemplifies what  influence  Leibniz’s  ideas  have  had  after  his  death. 

Chapter 7 provides my own thoughts about Leibniz and his ideas. 

These interesting topics could evidently be described and discussed on a much deeper level than has 
been done here, and one of the biggest challenges with this work has been to limit it to a ten weeks 
project. 
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2 Biography 

Gottfried Wilhelm Leibniz was born the 1st of July 1646 in Leipzig, Germany. His father, Friedrich 
Leibnütz, was a professor of moral philosophy at the University of Leipzig. Friedrich died at the age of 
48 when Leibniz was six years old and from there on he got raised only by his mother, Catharina 
Schmuck. Leibniz also had a two years younger sister, Anna Catharina, who died at the age of 24.  

Leibniz started his education in the Nicolai School, but was largely self-taught by all the reading he 
did in his father’s  library.  At the age of 14, Leibniz started studying mathematics and philosophy at 
the University of Leipzig where he also got introduced to revolutionary men like Galileo Galilei, 
Francis Bacon, Thomas Hobbes, and René Descartes. When he was 20 years old, he applied for a 
doctor’s degree in law at the University of Leipzig but got refused. He moved to Nürnberg where he 
at once got his doctor’s  degree from the University of Altdorfat, who also offered him a professorship 
which he declined. Instead, he took his first job as a secretary to a society of alchemists at Nürnberg. 
Shortly after, he got a job as a legal adviser to the Elector of Mainz. 

Leibniz spent 1672-1676 in Paris, which was the main city of philosophical activity in Europe at that 
time. During these years he developed the infinitesimal calculus and its notation, which is taught and 
used all around the world today. In Paris, he also worked on physics and a number of technological 
ideas, among those a calculating machine. In 1673, he traveled to London for the first time to present 
his calculation machine for the Royal Society. This machine was far ahead for its time and was in use 
until the electronic calculators came about 300 years later. 

In 1676, Leibniz returned to Germany and started working as a court councilor at Hanover. He was 
full-time employed there, but travelled a lot and continuously did part-time jobs in other cities too, 
among those; London, Vienna, Paris, Berlin, St. Petersburg. It is worth noticing that Leibniz, unlike 
many other great philosophers of his time, needed to work to make a living.  

Leibniz did not just develop things in theory, but also in practice. As an example, he created a water 
pump run by windmills which improved the exploration of the mines of the Harz Mountain. In 1680-
1685, he frequently worked in these mines as an engineer. Leibniz came up with the idea of that the 
Earth at first was molten, which is a hypothesis contributing to the fact that Leibniz is considered to 
be one of the creators of geology. During this time, Leibniz also developed a metaphysical system 
through research about the notion of a universal cause of all being, trying to reduce reasoning to 
algebra of thought. Furthermore, he worked on his mathematics and focused on the problem of 
finding the square having the same area as a given circle.  

In 1686, he first described his ideas about that the predicate in a proposition is contained in the 
subject. This was to be the foundation and definition of his philosophy of Monadology, which was 
further developed later. 

In 1687-1690, Leibniz was travelling around Germany, Austria and Italy. Wherever he went, he met 
scientists and continued to develop his scientific work and published essays on the duration of things 
as well as on the movement of celestial bodies.  

Leibniz returned to Hanover in 1690. He kept on working on his theories of motion and in 1695 he 
published his dynamic theory of motion, which treated the relationship of substances and the pre-
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established harmony between the body and the soul. In 1697, he explained that the ultimate origin 
of things needs to be God.  

In 1710, Leibniz published a work on his ideas about divine justice. The next year he moved to Vienna 
where he worked as an adviser  of  the  empire  and  achieved  the  title  Freiherr  (“baron”).  In  1714,  he  
wrote Monadologia, which synthesized the philosophy of the Monadology.  

The 14th of November in 1716, when Leibniz was 70 years old, he died in Hanover as a result of gout 
and colic. He was buried in the Neustädter Kirche in Germany. Figure 1 shows a portrait of Leibniz. 
[1][2] 

 
 

Figure 1 Portrait of Gottfried Leibniz. [3] 
 

Leibniz was one of the greatest thinkers of the 17th and 18th Centuries and he is known as the last 
“universal   genius”.   He made a rigorous contribution to the field of physics, metaphysics, logic, 
epistemology, jurisprudence, history, geology, philosophy of religion as well as mathematics.  

Denis Diderot (1713-1784), who was a contemporary atheist and materialist, acclaimed Leibniz for 
his outstanding achievements and wrote in his Encyclopedia that “Perhaps  never has a man read as 
much,   studied   as  much,  meditated  more,   and  written  more   than   Leibniz…”. Diderot further wrote 
that “When  one  compares  the  talents  one  has  with  those  of  a  Leibniz,  one  is  tempted  to  throw  away  
one's books and go die quietly in the dark of some  forgotten  corner.” 

Leibniz published two books during his life, the Theodicy (1710) and the New Essays Concerning 
Human Understanding (1765), but none of them contained a complete description of his 
philosophical core. Those trying to grasp Leibniz’s thoughts and ideas need to put pieces together 
from journals, unpublished work and his many letters. [4] 

In fact, during his life he sent around 15000 letters to more than 1000 different recipients. It is not an 
easy task to summarize his ideas since Leibniz seems to have changed his views and refined his 
formulations on a number of issues along his career. [4][5] 
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3 Philosophy 

Leibniz philosophy was inspired by ancients as Aristotle but also by the modern philosophers 
Descartes, Hobbes and Spinoza. His philosophical view is mostly known for its optimism, including 
the idea that our Universe is the best of what God could possibly create. He expressed that “In  my  
opinion, the greatest thing that a man can do naturally for himself is perfect his mind, which unifies 
him  with  God  insofar  as  is  possible  by  natural  forces.” [6] 

3.1 Fundamental Principles 
In Leibniz work The Monadology (1714), he stated 90 short passages describing his later 
philosophical views. He formulated six principles which constitute the basis of his philosophical ideas 
and each one of them is shortly explained below.  

The Principle of the Best, also known as the Principle of Optimism, means that God always acts for 
the best. Leibniz wrote that “God   is   an   absolutely   perfect   being, …   power   and knowledge are 
perfections,  and,  insofar  as  they  belong  to  God,  they  do  not  have  limits”. [4] 

Furthermore, Leibniz meant that human beings are limited to having only one view of a thing at the 
time, but that this view is not altogether different from one of God’s  views.“  For  God  understands  
things as we do but with this difference: that he understands them at the very same time in infinitely 
many  ways,  whereas  we  understand  them  in  one  way  only.” [6] 

The Predicate in Notation Principle explains Leibniz specific ideas about the truth. He wrote that “in 
every true affirmative proposition, whether necessary or contingent, universal or particular, the 
notion of the predicate is in some way included in that of the subject. Praedicatum inest subjecto; 
otherwise  I  do  not  know  what  truth  is.” [4] 

As an example, saying   that   Caesar   was   a   commander   is   to   say   that   the   concept   ‘commander’   is  
contained  in  the  individual  concept  ‘Caesar’.  [5] 

The Principle of Contradiction describes Leibniz’s logical view on the language and he simply put it 
as; “a  proposition  cannot  be  true  and  false  at  the  same  time,  and  that  therefore  A is A and cannot be 
not A”. This  constitutes  the  basis  for  Leibniz’s  logic.   

The Principle of Sufficient Reason explains Leibniz’s  view  on cause and effect; that there is no effect 
without a cause, and that nothing is without a reason. Leibniz wrote that “most of the time these 
reasons cannot be known to us”. He meant that the reason is always known to God, which relates 
this principle to the principle of the best.  

The Principle of the Identity of Indiscernibles Leibniz described as “it  is  not  true  that  two  substances  
can resemble each other completely and differ only  in  number”. This means that if two things share 
all properties they must be identical, or (∀𝐹)(𝐹𝑥 ↔  𝐹𝑦)  →  𝑥 =  𝑦. Leibniz meant though, that 
certain kinds of properties are excluded from the list of possible properties for which this principle 
holds. 

A related principle is the Principle of the Indiscernibility of Identicals, which says that if two things are 
identical, then they share all properties, or 𝑥 =  𝑦 →  (∀𝐹)(𝐹𝑥 ↔  𝐹𝑦).  
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When combining this principle with the original one, the so called “Leibniz’s Law” is obtained: two 
things are identical if and only if they share all properties, or 𝑥 =  𝑦 ↔  (∀𝐹)(𝐹𝑥 ↔  𝐹𝑦). 

The Principle of Continuity Leibniz described as “Nothing  takes  place  suddenly,  and   it   is  one  of  my  
great and best confirmed maxims that nature never makes leaps”. He believed that any change 
passes through an intermediate change and that there is an actual infinity in things. Furthermore, he 
used this principle to demonstrate that no motion can arise from a state of complete rest. [4] 

This principle provided great value for Leibniz when he developed his calculus. [7] 
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4 Metaphysics 

For Leibniz, it was of great concern to investigate and give structure to the fundamental nature of 
being. In order to understand his metaphysical ideas, three essential concepts will be explained; 
simple substances, monads and the pre-established harmony. 

4.1 Simple Substances 
Leibniz was concerned about understanding what the fundamental components of reality actually 
were and how reality was constituted. His viewpoint on this matter was that everything is composed 
of so called simple substances which are individual unities having perception and will. He described 
that each substance has a “complete   individual   concept” in which the past, present and future is 
contained. Because of this, the entire history of the universe could be read (possibly only by God) in 
the essence of any individual substance. 

This is how Leibniz describes the nature of the simple substances: 

1) No two substances can resemble each other completely and be distinct. 
2) A substance can only begin in creation and end in annihilation. 
3) A substance is not divisible. 
4) One substance cannot be constructed from two. 
5) The number of substances does not naturally increase and decrease. 
6) Every substance is like a complete world and like a mirror of God or of the whole 

universe, which each expresses in its own way. 

Furthermore, Leibniz meant that the substances could not causally interact with each other and this 
idea forms a premise of his argument for a pre-established harmony. [4] 

4.2 Monads 
The word monad has its origin in the Greek word monas which means unit or one. Leibniz described 
the  monads   to   consist   without   parts   and   without   extent   in   space.   A  monad   can   neither   be   “put  
together”  nor  “broken  apart”,  since  it  is  not  constituted  of  parts.  Monads  can  only  be  created  from  
nothing and destroyed by disappearing completely. A monad does not exist in time or space since it 
is not material but spiritual. Each monad has its own set of qualities, different from all the others. A 
monad contains everything that will ever happen to it and it develops through its own energy and by 
its own laws. The monads are related to each other only in one way; namely though the state in with 
they occur at the same moment. Each monad reflects the whole universe in every moment. The 
reflection from one monad in a certain moment corresponds to the reflection from every other 
monad at the same moment. Leibniz meant that this correspondence is what relates the monads to 
each other and together they explain the real world – the world of phenomenon. This perception of 
the world is what he called the pre-established harmony. He meant that the monads will follow each 
other as synchronized watches, which shows the same time without being connected to each other.  

Monads are bound together in aggregates so that some aggregates contain a big number of material-
monads as well as one soul-monad. Leibniz meant that these aggregates are what constitute the 
phenomenon called human beings. Animals are constituted similarly but with a limited 
consciousness. According to Leibniz, body and mind are somewhat not two separate substances. 
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Everything is non-material and bodies in the world of phenomenon are just a way for the mind to 
appear. [5] 

Leibniz said that “I  don't  really  eliminate  body,  but  reduce  it  to  what  it   is.  For  I  show  that  corporeal  
mass, which is thought to have something over and above simple substances, is not a substance, but 
a  phenomenon  resulting  from  simple  substances,  which  alone  have  unity  and  absolute  reality.” [4] 

4.3 Pre-established Harmony 
The mind-body problem was of great concern for Leibniz. The problem is basically the following: If 
mind is thought and body is extension, then how do they interact and form a unity as in all human 
beings? In other words, how do thinking substance and extended substance unite? As Leibniz denied 
the possibility of causal interaction between the substances, he came to argue for a pre-established 
harmony which meant that each substance has a unique series of perceptions which makes it play in 
harmony with all other substances, and that these perceptions are set by God. 

In his essay A New System of Nature (1695), he presented his arguments for the pre-established 
harmony: 

1) There is no real influence of one created substance on another. 
2) God originally created the soul (and any other unity) in such a way that everything must arise for 

it from its own depths, though perfect spontaneity relative to itself, and yet with a perfect 
conformity relative to external things. 

3) This is what makes every substance represent the whole universe exactly and in its own way, 
from a certain point of view, and makes the perceptions or expressions of external things occur 
in the soul at a given time, in virtue of its own laws, as if in a world apart, and as if there existed 
only God and itself. 

4) The organized mass, in which the point of view of the soul lies, being expressed more closely by 
the soul, is in turn ready to act by itself, following the laws of the corporeal machine, at the 
moment when the soul wills it to act, without disturbing the laws of the other – the spirits and 
blood then having exactly the motions that they need to respond to the passions and 
perceptions of the soul. 

5) It is this mutual relation, regulated in advance in each substance of the universe, which produces 
what we call their communication, and which alone brings about the union of soul and body. 

The main idea is that the body will follow its own laws, and the mind its own laws, and that they will 
not influence each other. According to Leibniz, the world can be described in terms of either set of 
laws. [4] 
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5 Mathematics 

Leibniz is one of the most important mathematicians of all times. He is credited for inventing the 
infinitesimal calculus, which is a branch of mathematics focused on limits, functions, derivates, 
integrals and infinite series. In order to understand how and why Leibniz developed calculus, it is 
necessary to be familiar with the mathematical discussions of the time, what people and ideas that 
inspired him and what problems he faced which made him identify the need for such theory.  

5.1 Background to Leibniz’s	  Mathematical	  Career 
The following three sections concern the mathematical discussion of the 17th Century, Leibniz’s  strive  
to make complex mathematical computations possible as well as what people who inspired him in his 
mathematical career. 

5.1.1 Controversies about the Concept of Infinity in the 17th Century 
During the 17th Century, philosophers and mathematicians debated largely about how to approach 
the infinite and its constitution. The main discussions led to paradoxes within two different fields; the 
first was the general theory of magnitudes and the composition of continuous quantities, and the 
second was paradoxes related to the theory of space. As an example of the first, two lines of 
different length have infinitely many points and so it seem like one infinity can be greater than 
another. Different ways of approaching the infinite and its constitution were discussed by, among 
others, Evangelista Torricelli, Descartes and Leibniz. [8](Pages 118-119) 

Torricelli came up with a fascinating discovery about a hyperbolic solid which made him one of the 
greatest European researchers in Geometry of his time. He showed how a hyperbolic solid of infinite 
length has a finite volume.  

In   order   to   understand   the   proof   of   Torricelli’s   statement,   it is helpful to be familiar with the 
Archimedean proposition on the measurement of a circle. This states that the area of a circle is equal 
to the area of a right triangle whose legs are equal to the radius and the circumference of the circle, 
see Figure 2. 

 
 

Figure 2 Geometry of curved indivisibles. [8] 

The proof of the Archimedean proposition goes as follows: 

Consider the circle 𝐵𝐷𝐵 with radius 𝐴𝐵 and let 𝐼 be an arbitrarily point on 𝐴𝐵. Let 𝐵𝐶 equal the 
circumference 𝐵𝐷𝐵. Create a second circle with center in 𝐴 and radius 𝐴𝐼. Then the following 
relations hold 

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑟𝑒𝑛𝑐𝑒 𝐵𝐷𝐵:𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐼𝑂𝐼 = 𝐴𝐵:𝐴𝐼 = 𝐵𝐶: 𝐼𝐿 
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From this it follows that 

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐵𝐷𝐵:𝐵𝐶 = 𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐼𝑂𝐼: 𝐼𝐿 

and  

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐼𝑂𝐼 = 𝐼𝐿 

As 𝐼 was chosen as an arbitrarily point, this is true for any point on 𝐴𝐵. Torricelli concluded that “all  
the peripheries taken together are equal to all straight lines taken together, that is, the circle 𝐵𝐷𝐵 
will be equal to the triangle 𝐴𝐵𝐶”.  

This idea constitutes the basis for Torricelli’s  proof  of  the hyperbolic solid of infinite length and finite 
volume. Before the proof will be described, his definition of the figure of concern and his formulation 
of the theorem will be stated. The hyperbolic solid is illustrated in Figure 3.  

Definition: “If  one  rotates  a  hyperbola  around  an  asymptote,  as  around  an  axis,  one  generates  a  solid  
infinite in length [longitudine infinitum] in the direction of the axis, which we call an acute hyperbolic 
solid.”  

Theorem: “An  acute  hyperbolic  solid,   infinitely  long [infinite longum], cut by a plane [perpendicular] 
to the axis, together with a cylinder of the same base, is equal to that right cylinder of which the base 
is the latus transversum of the hyperbola (that is, the diameter of the hyperbola), and of which the 
altitude  is  equal  to  the  radius  of  the  base  of  this  acute  body.” 

 
 

Figure 3 A solid of Infinite length and finite volume. [8] 
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The original proof of   Torricelli’s   theorem   goes as outlined below. It is unfortunately not easy to 
follow as some parts are left unsatisfactorily explained, for example the central concept of 
indivisibles. However, the formulation of the proof illustrates a mathematical argument of the 17th 
Century. 

The idea of the proof is to show that the curved indivisibles of the infinitely long solid are equal to 
the curved indivisibles of the cylinder 𝐴𝐶𝐼𝐻. Imagine that the infinitely long solid is constituted of all 
its cylindrical indivisibles, which means all surfaces of the type 𝑃𝑂𝑀𝑁. Furthermore, imagine that the 
cylinder 𝐴𝐶𝐼𝐻 is constituted of all its circular indivisibles, which means the cross sections of diameter 
𝐴𝐻. Then, some arbitrarily point 𝑁 determines an indivisible in the infinitely long solid and an 
associated indivisible in the cylinder 𝐴𝐶𝐼𝐻. Each cylindrical indivisible of the infinitely long solid is 
also equal in area to the circle whose radius is 𝐴𝑆, which means to an indivisible of 𝐴𝐶𝐼𝐻 (since by 
construction 𝐴𝐻 = 2𝐴𝑆). As the indivisibles of the two figures are equal, the volumes of the two 
figures will also be equal. This means that the infinitely long solid is equal to the finite cylinder whose 
base is the circle with diameter 𝐴𝐻 and height 𝐴𝐶, and the proof is completed. [8](Pages 131-134) 

Torricelli’s  result  concerned three topics which all were widely discussed in the 17th Century, namely 
the knowledge of infinity, the position of geometry in the web of knowledge, and the ontological 
status of mathematical objects. His result was not the only one to highlight the difficulty to grasp the 
infinity, but it got much attention since it was the first discovery of its kind. Not only mathematicians 
were interested in participating in the debate, but also great philosophers of this time. 

Descartes meant that “we  call   infinite that thing whose limits we have not perceived and so by that 
word  we  do  not  signify  what  we  understand  about  a  thing,  but  rather  what  we  do  not  understand.” 
Furthermore, he thought that “Since  we  are  finite,   it  would  be  absurd  for  us  to  determine  anything 
concerning the infinite; for this would be to attempt to limit it and grasp it. So we shall not bother to 
reply to those who ask is half an infinite line would itself be infinite, or whether an infinite number is 
odd  or  even,  and  so  on.”   

Leibniz’s reply to this was the following: “Even  though  we  are  finite,  we  can  yet  know  many  things  
about the infinite: for example, about asymptotic lines. . . about spaces which are infinite in length 
but not greater than an area than a given finite space, and about the sums of infinite series. 
Otherwise we should also know nothing with certainty about God. However, it is one thing to know 
something about a matter and another to comprehend the matter, that is, to have within out power 
all  that  is  hidden  in  it.” 

Regarding the figures of infinite length whose areas are finite, Leibniz meant that there is nothing 
more extraordinary about this than about the sums of infinite series, for example:  

1
2 + 1

4 + 1
8 + 1

16 + 1
32 + 𝑒𝑡𝑐. = 1 

Leibniz defined the unlimited and the infinite as: “Thus  I  call  unlimited  that  in  which  no  last  point  can  
be taken, if not on one side. But by infinite I understand a quantity either limited or unlimited greater 
than any quantity that can be assigned by us or that can be designated by numbers.” He meant that 
infinity consists of limited and unlimited quantities, where the limited can be objects of 
measurement but the unlimited not. [8] 
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5.1.2 The Calculating Machine 
Before   Leibniz’s   mathematical   breakthrough   in   1772-1776, he worked on inventing other 
technologies that would advance mathematics. At this time, the idea of using machines for 
mathematics and problem-solving was central. Galileo had invented a compass and Descartes had 
created curve-producing machines. Leibniz created new instruments and machines, with which he 
both aimed to solve mathematical problems exactly as well as producing sufficiently accurate 
approximations. However, one of Leibniz most well known innovations came to be the mechanical 
calculating machine, see Figure 4. This machine made use of the binary system and could perform 
multiplication, division as well as extracting square roots. [3][6] 

 
 

Figure 4 Leibniz’s  calculating  machine. [1] 

Leibniz was optimistic about the power of numerical sequences and he meant that if a method of 
using sequences to handle fractions and root in general were to be developed, “every  figure  could  be  
squared,  …  and  every  median  proportion  could  be  found,  and  geometry  could  be  perfected”. [6] 

5.1.3 Sources of Inspiration 
During the 17th Century, mathematicians worked on advancing techniques for finding areas enclosed 
by curved lines (quadratures) and volumes enclosed by figures (cubatures), as well as for determining 
the centers of gravity of surfaces and bodies.  

Leibniz was very interested in the ideas of Bonaventura Cavalieri as well as those of John Wallis, and 
the criticism they both received from Hobbes. Leibniz studied this closely and at an early stage he 
realized the serious limitations with their respective methods: Cavalieri’s   method   depended   on  
geometrical  figures  and  Walli’s  method  was  based  on  the  use  of  induction  on  a  certain  sequence  of  
numbers. In an article Leibniz published in the Journal de Sçavans, he formulated it as follows: “It is 
this which he calls the Analysis of infinites, which is entirely different from the Geometry of indivisibles 
of Cavalieri and the Arithmetic of infinites of Mr Wallis. For that geometry of Cavalieri, which 
moreover is very restricted, is attached to figures where it seeks the sums of ordinates. And Mr Wallis, 
in order to facilitate this investigation, gives us by means of induction the sums of certain classes of 
numbers, whereas the new analysis of infinites considers neither figures nor numbers, but magnitudes 
in general, as does  algebra.” Leibniz read Hobbes’ writings on law, logic, and mechanical philosophy 
as well as on mathematics carefully and he got very inspired by it. When reading this, Leibniz got 
introduced to the discussion concerning geometrical rigor and the foundation of the method of 
indivisibles. He seemed to have really admired Hobbes, but this has often been rejected by scholars 
because of Hobbes’ bad mathematical reputation. However, Leibniz found two things in Hobbes’ 
mathematics that really caught his interest; the fact that Hobbes doubted the Pythagorean Theorem 
and the fact that he failed in his attempts on squaring the circle. [7](Pages 31-76) 
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5.2 Infinite Series & Squaring the Circle 
Leibniz argued that it is possible to transform figures whose equations include irrational numbers, so 
that the properties of those figures could be understood with infinite series of rational numbers. He 
meant that such transformations had previously been discovered by chance, but that they now could 
be performed with the methodology he had developed. According to himself, too many 
mathematicians had refused to accept the need for the kind of mathematics where drawings are 
made of written expressions.  

Leibniz found series to be useful for numerical approximations of areas and he demonstrated that 
the area of a quarter of a circle with radius 1 can be expressed as 

𝜋
4 = 1

1 −
1
3 + 1

5 −
1
7 + ⋯ 

He meant that the magnitude of a circle “can  most   simply  be  expressed  by   this   series,   that   is,   the  
aggregate of fractions alternately  added  and  subtracted.” He continued, “…but this, as I said, is to be 
considered primarily for the exercising of the intelligence”. 

Unlike many of his contemporaries, Leibniz thought that a symbolic expression could offer a very 
wide range and depth of knowledge. He claimed that in mathematics we reason, not on “the thing 
itself, but on the characters that we have substituted in place of the thing”. [6] 

5.2.1 Proof of Squaring the Circle 
Squaring a circle means to construct a square with equal (or proportional) area to a given circle, just 
by using a compass and a straightedge. Normally, attempts to square the circle had involved dividing 
the circle with parallel lines, but Leibniz divided the circle from a single point of view and produced 
an infinite number of triangles. Figure 5 and Figure 6 illustrate Leibniz method. 

 
 

Figure 5 Perspectival  intuition  behind  Leibniz’s  quadrature. [6] 
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Figure 6 Transmutation of circle (not to scale). 

 
The  rectangles  are  formed  by  copying  the  distances  AX,  AW,  AV,  AU,  …  (formed  by  the  tangents),  onto the segments KF and 
JE,  JE  and  ID,  …,  to  form  KP  and  Jα,  JO  and  Iβ,  …,  (Each  rectangle  has  twice  the  area  of  its corresponding triangle.) Thus, the 

circle is transmuted into a curve defined using the tangents to the circle. [6] 
 

The following proof of how Leibniz squared the circle is taken from [6] and [9]. None of these sources 
provided all steps of the proof explicitly which leave some bits unclear to the reader. However, the 
following is what these sources did provide: 

 Divide the circle into triangles intersecting at a point on the circle (A) 
 For each curvilinear triangle (AFE, AED, ADC,…),   construct   a   rectangular   area   (JKPα, IJOβ, 

HINγ,…) using tangents drawn from the circle. The quarter of the circle has area AFK + (all the 
triangles), which approximately equals AKF + ½ (all the rectangles). The sector of the circle is 
thereby  “transmuted”  (γ,  β,  α,…),  when  the  number  of  triangles  becomes  infinite.  The  area  of  
the quarter circle equals AFK + 1/2 (the area under the curve formed by γβα…). 

 Find the area of this new curve, described by the equation 

𝑥 = 2𝑎𝑧2

𝑎2 + 𝑧2 

where 𝑎 is the radius of the circle, 𝑥 is a variable corresponding to the sequence of values 
AG, AH, AI,…,  and  𝑧 is a variable corresponding to AU, AV, AW,…  

Leibniz made use of what he had learnt from the German mathematician Nicolaus Mercator’s  
Logarithmotechnia and performed long division and integrated term by term and arrived to the 
expression 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒 𝑠𝑒𝑐𝑡𝑜𝑟 = 𝑎𝑧 − 𝑧3

3𝑎 + 𝑧5

5𝑎3 −
𝑧7

7𝑎5 + ⋯ 



14 
 

 
 

Figure 7 Geometry of circle sector. [9] 

The geometry of 𝑎, 𝑥 and 𝑧 are shown in Figure 7. It can be seen that when 𝑧 = 𝑎, the area of the 
circle sector equals a forth of the area of the whole circle. By letting 𝑧 = 𝑎 and by letting the radius 
be 𝑥 = 1, Leibniz obtained the area of a quarter of the circle as 

𝜋
4 = 1

1 −
1
3 + 1

5 −
1
7 + ⋯ 

Leibniz’s described his result as an expression, one as exact as one desire. He meant that “a  value  can  
be expressed exactly, either by a quantity or a progression of quantities whose nature and way of 
continuing  are  known”.  

To Leibniz, it was more important that he demonstrated how he had discovered the proof than 
demonstrating the proof itself. “I have found a general method of usefully resolving every figure into 
an infinity of little triangles ending at a single point, by means of convergent  ordinates.”, he said. 
Furthermore, he explained this procedure to be among “the  most  general  and  most  useful  that  exists  
in  geometry”. He called the procedure for converting curves transmutation. 

It was of great importance for Leibniz to use tangents to find quadratures, and the implications of 
this approach became apparent when he made the breakthrough in the development of calculus. 
[6](Pages 171-172) [9](Pages 59-60) 

5.3 The Whole & its Parts 
In  Paris,  Leibniz  had  been  studying  the  Euclid’s  axiom:  “The whole is always greater than the part”. 
This was a widely discussed axiom because it seemed to fail when applied to the angle of contact, 
which is the angle between a circle-arc and its tangent. This issue was clarified first when the angle 
was declared to be the measure of rotation and the angle of contact was zero. Leibniz thought he 
found the crucial difficulty with this axiom, namely that the angle of contact lack the quality of being 
a magnitude. He believed there are two types of truths: definitions and identities. This axiom did not 
fit any of these so Leibniz was concerned to find the constituent parts on which the axiom was built.  
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He concluded the following (extracted from page 13-14 in [9]): 

1) If of two objects one is part of another, then the first is called smaller and the second larger, and 
this is a definition 

2) Everything that is affected with magnitudes is equal to itself, and this is a statement of identity. 
3)  A magnitude which is equal to a part of another is smaller than this (by definition). 
4) The part is equal to a part of the whole. 
5) Therefore every part of a magnitude is smaller than the whole. 

These ideas constituted the basis of his study of differences, which was the beginning of his 
development of calculus. [9] 

5.4 Techniques for Finding Sums of Infinite Lengths 
Leibniz developed different techniques for finding sums of infinitely many terms, and three of these 
techniques are demonstrated below. 

5.4.1 Rewrite Sums of Numbers as Sums of their Differences 
To solve problems of infinite or finite summations, Leibniz rewrote sums of numbers as sums of their 
differences. As an example, suppose one wanted to find the sum of 

𝑏1 + 𝑏2 + 𝑏3 + ⋯+ 𝑏𝑛  . 

If there is a 𝑎𝑖  such that  

𝑏𝑖 = 𝑎𝑖 − 𝑎𝑖+1 

then  

𝑏1 + 𝑏2 + 𝑏3 + ⋯+ 𝑏𝑛 = (𝑎1 − 𝑎2) + (𝑎2 − 𝑎3) + (𝑎3 − 𝑎4) + ⋯+ (𝑎𝑛−1 − 𝑎𝑛+1) = 𝑎1 − 𝑎𝑛+1 

[6] 

 

As another example of how Leibniz rewrote sums of numbers as sums of their differences, consider 
the infinite series 

1
1 + 1

3 + 1
6 + 1

10 + 1
15… 

Leibniz realized that each term can be written as 

2
𝑡(𝑡 + 1) 

For 𝑡 > 0, the difference between two terms can be expressed as 

 2𝑡 −
2

𝑡 + 1 
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When the series has n terms, the sum could be written as 

 2
𝑡(𝑡 + 1)

𝑛

𝑡=1
= 2 − 2

𝑛 + 1 

The second term on the right-hand side becomes infinitely small as n grows to infinity, so the sum of 
the series equal to 2.  

These studies led Leibniz to his first major mathematical discovery: he believed it should be possible 
to derive the sum of any series whose terms can be described by some rule, when the sum consists 
of infinitely many terms but the sum approaches a finite limit. [8] 

5.4.2 Geometrical Procedure 
Leibniz continued investigating his discovery and looked more closely into demonstrations of 
geometrical progression, which had already been studied by the mathematician Grégorie de Saint-
Vincent. The idea was to use an intuitive geometrical procedure when finding sums of infinitely many 
terms. In order to find the sum of a geometrical progression of line-segments, the whole line was 
divided into parts as is shown in Figure 8.  

 
 

Figure 8 Intuitive geometry for finding sums of infinitely many terms. [9] 

 

The distances in Figure 8 are related to each other as 

𝐴𝐵:𝐵𝐶 = 𝐵𝐶:𝐶𝐷 = 𝐶𝐷:𝐷𝐸 =  … 

Furthermore, the point K is such as 𝐴𝐵:𝐵𝐶 = 𝐴𝐾:𝐵𝐾 and so 

𝐴𝐵:𝐵𝐾 = 𝐵𝐶:𝐶𝐾 = 𝐶𝐷:𝐷𝐾 = 𝐷𝐸:𝐸𝐾 = ⋯ 

𝐴𝐾 is then larger than any finite number of terms and not less than the sum of the complete infinite 
series. Since 𝐴𝐾 cannot be larger than the sum of the infinite series, it follows that it needs to be 
exactly equal to the sum.  
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Figure 9 is constructed so that the line-segments 𝐵𝐶,𝐶𝐷,𝐷𝐸… are placed end to end from B towards 
A. 

 
 

Figure 9 Intuitive geometry for finding sums of infinitely many terms. [9] 
 

Arguing like this, the following sums can be constructed: 

1
2 + 1

4 + 1
8 + ⋯ = 1 

1
3 + 1

9 + 1
27 + ⋯ = 1

2 

1
4 + 1

16 + 1
64 + ⋯ = 1

3 

When Leibniz studied the work of Grégorie, he grasped the essence of it to be that the line-segments 
were not to be placed end to end, but must all start from one and the same point. The figures above 
visualize the results and it can be concluded that more generally it holds that 

1
𝑡 + 1

𝑡2 + 1
𝑡3 + ⋯ = 1

(𝑡 − 1) 

[8] 
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5.4.3 Additive Process 
The arithmetic triangle is a triangular array consisting of the binomial coefficients. Leibniz 
demonstrated how the terms in it could be generated by summing terms from the row above. The 
“hooks”  in Figure 10 and Figure 11 indicate an additive process.  

 

 

 
Figure 10 Generation of the arithmetic triangle. [9] 

 
Figure 11 Leibniz original drawing of the generation of the 
arithmetic triangle, found in a letter written to Oldenburg 
the 3rd of February 1672 or 1673. [My own photo] 

Leibniz knew that the arithmetic triangle had been studied for centuries, but he didn’t  know  that the 
additive process of generating the terms also had been studied before. When he first wrote about his 
results, in a letter to the secretary Henry Oldenburg of The Royal Society, Leibniz was neither aware 
of that Pascal accurately had explained the same thing. [9] 

5.5 The Invention of Calculus 

When Leibniz developed calculus, he invented the notations ∫  signifying a sum and 𝑑 signifying a 
difference. He described differentiation as finding the difference between elements within a series, 
and summation as finding sums of such differences between elements.  

For Leibniz, differentiation and summation were operations that operate on a sequence of variables 
and produce another sequence of variables. In order to solve problems with tangents and 
quadratures, Leibniz created a set of operations upon series of differences which made it possible to 
easily move among different expressions of the same series. Differentiation and summation are 
inverse operations and to illustrate the procedure he constructed a table of sequences connected by 
addition and subtraction, see Table 1. 

Table 1 Illustration of how differentiation and summation are inverse operations. 

Diffs.  1  2  3  4  5   … 𝑑𝑥 
Series 0  1  3  6  10  15  … 𝑥 
Sums  0  1  4  10  20  35 … න𝑥 

The terms of the series are the sums of the differences, or ∫𝑑𝑥 , so 3=1+2 and 6=1+2+3 etc. The 
differences of the sums of the series are terms of the series, or ∫𝑥 = 𝑥 , so 3=4-1 and 6=10-4 etc. [6] 
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Figure 12 Visualization of the segments dx and dy. [8] 
 

Figure 12 visualizes Leibniz idea of how the area between the graph and the axis can be found. The 
distance 𝑥𝑖+1 − 𝑥𝑖 = 𝑑𝑥  is a constant variable, and the distance 𝑦𝑖+1 − 𝑦𝑖 = 𝑑𝑦  is a non-constant 
variable. The variable 𝑑𝑦 approximates the slope of the tangent to the curve between 𝑦𝑖  and 𝑦𝑖+1. 
The smaller 𝑑𝑥 is, the more accurate the approximated area 𝑑𝑥 ∑𝑦𝑖(0 < 𝑖 ≤ 𝑛 + 1) becomes. 
Leibniz argued that by letting the distance 𝑑𝑥 be infinitely small, the determination of the areas and 
tangents of the curve could be obtained without error. [8] 

For quadratures, Leibniz expressed that “Finding the areas of figures is reduced to this: given a series, 
to find sums, or (to explain this better) given a series, to find another one whose differences coincide 
with  the  terms  and  the  given  series.” Letting 𝑑𝑥 be infinitely small segments, the integral expression 
∫𝑦𝑑𝑥 would for be expressed as 

න𝑦𝑑𝑥 = 𝑦𝑛(𝑥𝑛+1 − 𝑥𝑛) + 𝑦𝑛−1(𝑥𝑛 − 𝑥𝑛−1) + ⋯+ 𝑦0(𝑥1 − 𝑥0) 

For tangents, he meant that “Finding  the  tangents  to  curves  is  reduced  to  the  following  problem:  to  
find   the  differences  of   series”. The segment 𝑑𝑠 of an infinitely sided polygon can be extended and 
then constitute a line tangent to the curve with the slope 𝑑𝑥/𝑑𝑦. He formulated rules for how to 
compute 𝑑𝑥 and 𝑑𝑦 which are provided in the next section. [6] 

5.5.1 Rules for Differentiation 
Leibniz’s first publication on calculus was a short essay in 1684, called Nova methodus pro maximis et 
minimis, itemque tangentibus, quae nec fractas nec irrationales quantitates moratur et singulare pro 
illis calculi genus. In this essay, he states the rules for differential of constants, sums, differences, 
products and quotients as well as for powers and roots. However, he did not explain how he had 
come up with these results or gave any proofs for them.  
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Leibniz’s rules for differentiation were described as follows: 

 If 𝑎 constant, then 𝑑𝑎 = 0 and 𝑑(𝑎𝑥) = 𝑎 𝑑𝑥. 

 If 𝑣 = 𝑦, then 𝑑𝑣 = 𝑑𝑦. 

 If 𝑣 = 𝑧 − 𝑦 + 𝑤 + 𝑥, then 𝑑𝑣 = 𝑑(𝑧 − 𝑦 + 𝑤 + 𝑥) = 𝑑𝑧 − 𝑑𝑦 + 𝑑𝑤 + 𝑑𝑥. 

 If 𝑧 = 𝑣/𝑦, then 𝑑𝑧 = 𝑑(𝑣/𝑦) = [−𝑣𝑑𝑦 + 𝑦𝑑𝑣]/𝑦𝑦. 

 If 𝑧 = 𝑥𝑎 , then 𝑑𝑧 = 𝑑(𝑥𝑎) = 𝑎𝑥𝑎−1𝑑𝑥. 

 If 𝑧 = √𝑥𝑎𝑏 , then 𝑑𝑧 = 𝑑൫√𝑥𝑎𝑏 ൯ = 𝑎
𝑏 ∙ 𝑑𝑥√𝑥𝑎−𝑏

𝑏 . 

Leibniz introduced the differential 𝑑𝑥 as a fixed finite segment and seems to have, on purpose, 
avoided referring to it as in infinitely small quantity since that could lead to foundational objections. 
It is important to realize that 𝑑𝑥 also is a variable, a variable ranging over differences. It is therefore 
possible to use the operator 𝑑 on 𝑑𝑥 and obtain 𝑑𝑑𝑥, which is a variable too ranging over differences 
of differences. This can be generalized as a variable 𝑑𝑛𝑥 on which operator 𝑑 repeatedly can be 
applied to obtain the 𝑛𝑡ℎ  order of differentials as 𝑑𝑛+1 = 𝑑𝑑𝑛𝑥. As for all constant variables, when 
𝑑𝑥 is constant (not saying 𝑑𝑥 needs to be constant), the differential 𝑑(𝑑𝑥) equals zero. [8] 

5.6 Criticism against Calculus 
After Leibniz had published his first results on calculus in 1684, other mathematician became familiar 
with its techniques and applications. This led to Leibniz receiving criticism on his new invention, 
especially regarding the concept of infinitely small quantities. He also got accused of having taken the 
ideas from Newton who had formulated similar theories years before which were just not published 
yet. Both these topics are briefly discussed below. 

5.6.1 Infinitely Small Quantities 
Leibniz mentioned Nieuwentijt & Clüver as being the first ones to criticize his calculus. Clüver put his 
critique as follows: “I   think   that   your  method   in   the   differential   calculus   is   not   sufficient   to   obtain  
ultimate precision in Geometry. The source of every imperfection is that you take the ratio between 
the unit and an infinite number to be equal to   nothing,   i.e.   1/N=0,   which   is…   an impossible 
supposition.” Clüver was just one out of many mathematicians and philosophers who criticized 
Leibniz for his use of infinitely small quantities. [8] 

However, Leibniz described his position regarding infinitely small quantities as follows: “The  things  
we have said up to now about infinite and infinitely small quantities will appear obscure to some, as 
does anything new; nevertheless, with a little reflection they will be easily comprehended by 
everyone, and whoever comprehends them will recognize their fruitfulness. Nor does it matter 
whether there are such quantities in the nature of things, for it suffice that they be introduced by 
fiction,  since  they  allow  economies  of  speech  and  though  in  discovery  as  well  as   in  demonstration.” 
[7] 
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In 1701, Leibniz stated that the calculus should be granted only as an approximation method and not 
as a rigorous science. In 1702, he summarized his point of view as follows (extracted from page 172 
in [8]): 

 There is no need to base mathematical analysis on metaphysical assumptions. 
 We can nonetheless admit infinitesimal quantities, if not as real, as well-founded fictitious 

entities, as one does in algebra with square roots of negative numbers. Arguments for this 
position depended on a form of the metaphysical principle of continuity. 

 One could organize the proofs so that the error will be always less than any assigned error.  

Leibniz was not concerned by the fact whether infinitesimal quantities exists or not, but whether the 
use of infinitesimal small quantities in calculus were reliable. He also pointed out that debates and 
criticism are important factors in helping science acquire better foundations. [8] 

5.6.2 The Publicity War between Leibniz & Newton 
Leibniz and Isaac Newton (1642-1727) independently formulated the infinitesimal calculus around 
the same time, but Leibniz published his results first in 1684 in his short essay Nova methodus pro 
maximis et minimis, itemque tangentibus, quae nec fractas nec irrationales quantitates moratur et 
singulare pro illis calculi genus. As mentioned above, Leibniz here invented the notation 𝑑 for 
differentiation as well as stated the ruled for differentiation. He also exemplified the use of the 
calculus as finding maxima and minima, finding tangents and solving inverse tangent problem. 
However, he did not explain how he had come up with these results and did not give any proofs for 
them. Two years later, n 1686, Leibniz publishes his first article on the foundation of the integral 
calculus called De geometria recondita et analysi indivisibilium atque infinitorium. [8] 

It was not until 1687 Newton published his first results on calculus in the Principia Mathematica. In 
the same book, Newton also described his discoveries in physics. Once Leibniz had read about the 
results Newton had published, he printed his own three essays in Acta Eruditorum, one on optics (De 
lineis otics), one on motion in a resisting medium (Schediasma) and one on the causes of planetary 
motion (Tentamen). Leibniz claimed that he had, at this stage, never  seen  Newton’s  Principia in its 
original version consisting of hundreds of pages but only read a review about it published in Acta 
Eruditorum. He meant that he had seen Principia for the first time in Rome in late 1689, when his 
own work Tentamen was already published. Furthermore, he also meant that the review he had read 
about Principia earlier had not change his theories even slightly. However, Leibniz did receive several 
objections since it seemed unlikely that his own twelve pages in Tentamen would not have had 
anything taken from the hundreds Newton had published on the same topic earlier. [10] 

The main differences between  Leibniz’s  and  Newton’s  views are about the conceptions of proof, the 
utility of symbolism and about how mathematics is related to the physical world. Leibniz never 
treated mathematics as an isolated subject, he rather viewed it a part of the development of his 
symbolic language leading to a better understanding of the universe as a whole. Newton on the 
other hand, meant his calculus was to be used mainly for problems of velocity and acceleration in 
physics. [7](Page 7) [13] 
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Newton expressed strong criticism towards Leibniz’s calculus, meaning it was an unrigorous symbolic 
method of discovery that did not meet the standard of rigorous proofs required in geometry. He 
claimed Leibniz had plagiarized his own work, just covering it in new fancy symbols. Newton meant 
his own method of  fluxions  was  deeply  true  since  it  originated  in  “real  genesis  of  things”  and  did  not  
depend on the superposition of infinitesimals as Leibniz’s method did. Leibniz himself accepted many 
of  Newton’s  ideas  but  questioned  Newton’s  understanding  of  orders  of the infinitely small. [7] 

The Royal Society decided to credit Newton for first discovering calculus and to credit Leibniz for the 
first publication. Later on though, when Newton was the president of the Royal Society, their point of 
view changed and Leibniz got accused of plagiarism which damaged his reputation. However, it was 
Leibniz’s  mathematics   that   triumphed   in   the  end  and   it   is  his  notation,  not  Newton’s,  which   is  still  
used in mathematics today. [3] 

5.6.2.1 Leibniz’s	  &	  Newton’s Notation 

Leibniz and Newton used different notations for differentiation and integration, see Table 2.  

Leibniz used 𝑑𝑥 and 𝑑𝑦 to indicate infinitesimal increments in the independent and dependent 
variables.   Newton’s   notation   to indicate derivative was dot over the variable, and two dots to 
indicate second derivative, etc.  

Leibniz notation for integration is an extension of the letter 𝑆, signifying the sum of infinitely many 
infinitely small quantities 𝑓(𝑥) for each infinitesimal increment 𝑑𝑥, between the limits 𝑎 and 𝑏. 
Newton did not use a consistent notation for integration, but sometimes he used a bar above the 
variable. [3] 

Table 2 Leibniz’  and  Newton’s  notation  for  differentiation  and  integration. 

 Leibniz 
 

Newton 

Differentiation 

 

𝑑(𝑓(𝑥))
𝑑𝑡  𝑜𝑟  𝑑𝑦𝑑𝑥 �̇� = 𝑑𝑦

𝑑𝑡  

Integration 
න𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

 

�̅� 

Continental  mathematicians  preferred  Leibniz  version  of  calculus  before  Newton’s  already  when  it  
was  first  published,  and  today  Leibniz’s  notation  has  become  the  standard  notation for calculus 
world-wide. [12]  

Newton’s  notation  is  also  still  in  use,  but  mainly  within  physics. 
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6 Leibniz’s Influence after His Death 

Leibniz has played a very important role in the history of philosophy as well as in the history of 
mathematics, and he is known as one of the greatest thinkers of the 17th Century. It is not an easy 
task to quantify the full scope of influence Leibniz's ideas have had since it has been so expansive, 
but some examples are presented below. 

The philosopher and enlightenment writer Voltaire (1694-1778) wrote a satire called Candide which 
was based on Leibniz work Théodicée, which mocked the Leibnizian optimism. Voltaire was a big fan 
of Newton and did not mind to smear Leibniz for his   eventual   plagiarism   of   Newton’s   calculus.  
Voltaire’s  description  of  Leibniz‘s  philosophical  ideas  in  the  written  satire  influenced  many  and  made  
people believe that all the ideas described were the original ideas of Leibniz, which harmed his 
reputation. [11] 

For 13 years, Leibniz had a letter correspondence with Johann Christian Wolff (1679-1754), a 
Rationalist philosopher whose philosophy was dominant in Germany during the 18th Century. The 
correspondence involved detailed mathematical discussions, and Wolff was the first to formally 
teach calculus in Germany. Wolff adopted some of Leibniz’s  fundamental  ideas,  namely; the view of 
metaphysics as a demonstrative a piori science and the extensive use of the Principle of Sufficient 
Reason. Later on, Wolff got credited for linking the philosophical systems of Leibniz and the German 
philosopher Immanuel Kant. [12][15] 

The mathematicians and brothers Jacob (1654-1705) and Johann (1667-1748) Bernoulli from 
Switzerland generalized calculus and formulated the so   called   “calculus   of   variations”.   This 
generalized calculus is used to find the path, curve, surface etc., for which a given function has a 
stationary value. This theory got further developed by the mathematicians Leonhard Euler (1707-
1783) and Joseph Louis Lagrange (1736-1813). Lagrange also formulated the Mean Value Theorem 
which states that for a given section of a smooth differentiable curve, there is at least one point on 
that section at which the derivative of the curve is equal to the mean derivate of the section. [16] 

Both Leibniz and Newton made use of the concept of infinitesimals when developing their calculus, 
which bothered many mathematicians as these did not exist in nature. The Irish philosopher Bishop 
Berkley (1685-1753) strongly criticized calculus and expressed his views in his work The Analyst 
(1734). This work represented a direct attack on the foundations and principals of the infinitesimal 
calculus and he referred to infinitesimals as “the  ghosts  of  departed  quantities”. However, Berkeley’s  
criticism highlighted some important aspects and contributed to mathematicians focusing on a 
logical clarification of the calculus. About 100 years later, calculus got reformulated by the French 
mathematician Augustin-Louis Cauchy (1789-1857), the German mathematician Bernhard Riemann 
(1826-1866) and the German mathematician Karl Weierstrass (1815-1897). This version of calculus 
was based on finite but small distances 𝜀 and 𝛿, and did no longer involve infinitesimals. [17] 

Today, calculus is commonly applied within many fields including; physical science, computer science, 
statistics, engineering, economics, business and medicine. In fact, it is useful for any problem which is 
mathematically modeled where it is desired to compute an optimal solution. The notation Leibniz 
developed for calculus might be his greatest contribution to mathematics, and it is taught in schools 
and used all around the world more than 300 years after its invention.  
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In addition to calculus, Leibniz also contributed to the development of liner algebra. He re-discovered 
a thousand year old Chinese method of arranging linear equations into a matrix, which could be 
manipulated to find the solution. This constituted the foundation for later works on matrices by Carl 
Friedrich Gauss (1777-1855) in the 18th and 19th Century. [3] 

Furthermore, Leibniz is credited for being one of the early developers of the binary number systems 
and the calculating machine he invented could be seen as a simple computer. In some working 
drafts, Leibniz explained the basic logical principals of what is now called conjunction, disjunction, 
negation, identity, set inclusion and the empty set. Even though he never published anything on this, 
he is known as one of the most important logicians between Aristotle in Ancient Greece and George 
Boole (1815-1864) in the 19th Century. Boole continued to develop Leibniz’s  binary system, where 1 
and 0 represented   “true   and   false”   or   ”on   and   off”.   Boolean   algebra   was   the   start   of   modern  
mathematical logic and it led to the development of computer science. [3][17] 

In the late 19th Century, the British philosopher and mathematician Bertrand Russell (1872-1970) 
read Leibniz work on metaphysics. He published a study of it in 1900 called A Critical Exposition of the 
Philosophy of Leibniz, which contributed to a re-discovery of Leibniz ideas and made Leibniz more 
respectable among other philosophers of the 20th Century. [12][18] 
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7 Afterword 

When I had decided to let the topic for this thesis be Leibniz, I thought I should try and find some of 
his original writings in order to get to know him and his style better. At the Royal Society in London 
there is an archive where writings from 350 years back are kept and preserved. I went there and got 
to see a number of original letters Leibniz had written, in particular to the first secretary of the Royal 
Society; Henry Oldenburg. I also got to have a look at the original manuscript of  Newton’s  Principia, 
shown in Figure 13 and Figure 14. 

  
 

Figure 13 Newton’s  Principia  at  the  Royal  Society.  
[My own photo] 

 
Figure 14 Me  and  Newton’s  Principia at the Royal Society. 

[My own photo] 

Leibniz’s   letters   as   well   as   Newton’s   Principia were written in Latin so I could unfortunately not 
understand much, but they were still fascinating to see. Being there, having items in my hands which 
have been held by Leibniz and Newton felt surreal.  

Leibniz has amazed me in many ways. I think it is fascinating how someone knowing so much within 
so many fields, still could come up with things as revolutionary as he did. Perhaps his broad base of 
knowledge was a necessity for him to reach all those unique ideas. In fact, his studies within the 
different topics were often related to each other. By studying geometry, he ended up with the 
philosophical infinity problem which also became essential in his calculus. If I would have had more 
time to work on this thesis, it would have been interesting to look deeper into how Leibniz utilized 
his broad base of knowledge and how this knowledge was interconnected between the different 
fields. However, it is an interesting thought to imagine what he would have come up with if he had 
spent all his life focusing only on mathematics.  

Today it  seems  like  we  don’t  have  any such  “experts  in  everything”  similar to what Leibniz was of his 
time. The easy access to huge amounts of knowledge we have today makes the competition harder. 
We might also be learning in a different way now than then, since we do not need to remember 
details as much anymore as we can easily retrieve them when needed. However, the lack of 
availability  to  knowledge  and  other’s  thought  might  have  affected  the  developed  of  ideas  in  the  17th 
Century. Maybe it was easier to develop individual and unique ideas when not getting influences by 
other’s  thoughts  on  the  same  topic. 

Along the development of this thesis, I have been giving a lot of thought to why Leibniz was 
concerned about things he was at this time, and what triggers scientific revolutions in general. 
Discovery is a process that takes time and competition is essential for progress. Different scientists 
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can come up with parts of a final solution, so determining who will get the honor for it is not always 
easy. Furthermore, it is of great importance for scientist to be questioned. Leibniz seemed to have 
been open for criticism and willing to be questioned whilst that seems to not have been the case for 
Newton. Some scientific facts get discovered by accident and that could partly have been the case 
with calculus. What if Leibniz, who needed to work for living, would not have gotten the opportunity 
to focus on mathematics for four years in Paris?  

No apparatus were needed for the development of calculus so in that sense it was not limited by the 
technology of the time. Math is different from normal science and does not depend on physical 
experiments, so maybe calculus should be seen as an invention rather than a discovery. Calculus 
provides an approach to view curves, areas and volumes as being constituted of infinitely small 
segments, as well as rules for how to analyze these. New approaches can be formulated and existing 
approaches can be improved, but calculus as it is cannot really be falsified.  

Philosophy is a subject with no really right or wrong and it involves issues which can neither be 
proven nor disproven. It seems like the philosophical issues of concern today, to a great extent, are 
the same as in the 17th Century. Some examples are the relationship between mind and body, 
between cause and effect as well as the role of, and relationship to, God. Though, when it comes to 
the concept of infinity, I think a difference in attitude can be observed. The concept of infinity is of 
great importance in calculus but it gets very little attention when calculus is taught in school today. It 
seems to have become more accepted and is nowadays widely used as an imaginary concept. With 
today’s   computers   we can, for example, easily let 𝑑𝑥 become   “as   small   as   one   desires”.   Hence, 
Leibniz was right when he claimed that infinitely small quantities might appear ungraspable to some, 
but will after a bit of reflection appear very fruitful.  
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