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Abstract

The purpose of this thesis is to provide an introduction to the theory of
operads with a focus on homological algebra and to analyze the homologi-
cal properties of the operad of 2-Gerstenhaber algebras. With this view we
present among other things the fundamentals of category theory, monoidal
categories and operads with a focus on topological and algebraic operads.
We define the cobar construction of an operad and the concept of Koszul
operad. Koszulity of an operad provides a straightforward method of con-
structing a minimal resolution via the cobar construction. We analyze the
operad 2-Gerst of 2-Gerstenhaber algebras that was introduced by Etingof
et al. in [EHKR] as the cohomology of the moduli space of stable genus zero
real algebraic curves. Our main new result is a proof that this operad is a
Koszul operad. This is done via the use of a distributive law as introduced
by Markl in [Mar].
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1 Introduction

Informally, operads consist of collections of ”spaces of operations”. These spaces
can have extra structure; they are objects in some monoidal category, such as the
category of sets, topological spaces, vector spaces or complexes of vector spaces.
We speak about an operad O in a monoidal category C. Operads were first defined
by May in the monoidal category of compactly generated Haussdor↵ spaces in
[May]. This was easily generalized to operads in an arbitrary monoidal category.
An algebra over an operad consists of a map of operads a : O ! Hom

C

(V ⌦n, V )
where V is an object of C (we assume here that the category C has appropriate
Hom-objects). This can be thought of as a space V together with operations
V ⌦n ! V corresponding to elements of the operad. Furthermore, we can consider
actions of the symmetric groups on operads; these correspond to permutations of
inputs in the associated algebra structures. To support this extra structure we need
to consider operads in a symmetric monoidal category. Elementary examples of
algebras are topological monoids in the monoidal category of topological spaces, Lie
algebras in the monoidal category of vector spaces and supercommutative algebras
in the monoidal category of chain complexes of vector spaces. The philosophy is
that every type of algebra has its own operad. In the symmetric monoidal category
of di↵erentially graded vector spaces we are interested in the homological algebra
of our operads. We consider a generalization of the concept of a Koszul associative
algebra to the operadic framework. Knowing that an operad is Koszul allows us
to construct a minimal resolution in a straightforward manner. This is obtained
by using a generalization of the cobar construction for associative algebras.

A monoidal functor between a monoidal category C and a monoidal category
D allows us to transfer operadic structures. An operad in C yields an operad in
D under the application of such a functor. The singular chains functor and the
singular (co)homology functor are typical examples of monoidal functors used in
this way. The singular chains functor allows us to obtain operads in the category
of di↵erentially graded vector spaces from operads in the category of topological
spaces. Application of the singular (co)homology functor yields an operad in the
category of graded vector spaces. The operad of little discs is an example of a
topological operad. The objects are configuration spaces of disjoint discs in the
plane. The homology of this operad is the operad of Gerstenhaber algebras. The
operad of little discs is one of the most studied operads. It was invented by May
for use in his recognition principle for loop spaces. Gerstenhaber algebras have
two binary operations, one symmetric of degree 0 and a Lie bracket of degree 1
where the bracket is a derivation with respect to the other operation. If we instead
consider the topological operad where the objects are moduli spaces of pointed sta-
ble real algebraic curves of genus zero and apply the singular cohomology functor
we obtain the operad of 2-Gerstenhaber algebras. 2-Gerstenhaber algebras have
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two operations, one symmetric of degree 0 and a trinary antisymmetric ”bracket”
of degree �1 satisfying a generalized Jacobi identity. The trinary operation is a
derivation with respect to the other operation. This operad was introduced in
[EHKR] in this way.

In this thesis we provide in the first chapters an introduction to category theory,
monoidal categories, operads and operadic homological algebra. These sections are
to be viewed as an introduction of the concepts and to fix the notation and as such
we do not provide proofs for all theorems, instead choosing to provide only proof
sketches and/or appropriate references. In section 7 we define the operad 2-Gerst
of 2-Gerstenhaber algebras. Then we go on to prove that this operad is a Koszul
operad. To the author’s knowledge such a proof does not exist in the literature yet.
The proof is using the concept of distributive law of [Mar] which is an application
of the general concept for a monad introduced by Beck in [Bec].

8



2 Category Theory

Categories are fundamental to the description of modern algebra. This section
presents the basic concepts with examples.

2.1 Categories

A category formalizes the notion of a collection of objects and a certain type of
maps between them where the important concept is that of composition.

Definition 2.1.1. A category C consists of a class of objects Ob(C), a class of
morphisms hom(C) and a notion of composition in hom(C). Every f in hom(C)
has a unique source and target among Ob(C) and we write f : X ! Y for a
morphism f with source X and target Y . We denote the class of such morphisms
by hom

C

(X, Y ) (omitting the C if it is clear from the context). Given objects X,
Y and Z, there is a binary operation called composition (denoted by a circle in
infix notation)

hom
C

(X, Y )⇥ hom
C

(Y, Z)! hom
C

(X,Z),

satisfying two axioms. Firstly, for any X, hom(X,X) has a unique identity Id
X

such that for f in hom(X, Y ) we have

f � Id
X

= f = Id
Y

� f.

Secondly, for objects X, Y , Z and W , morphisms f in hom(X, Y ), g in hom(Y, Z)
and h in hom(Z,W ), we have

h � (g � f) = (h � g) � f.

Definition 2.1.2. Given a category C, define the opposite category Cop as the
category with the same objects as C, but for every f in hom

C

(X, Y ) there is
a unique f op in hom

C

op(Y,X). The composition law is also reversed so that if
g � f = h in C we have f op � gop = hop in Cop.

It is readily seen that this is a category and that (Cop)op = C.

2.2 Functors

A functor can be thought of as a function between categories which preserves the
structure of the morphisms.
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Definition 2.2.1. A (covariant) functor between a category C and a category D
consists of an association F : Ob(C)! Ob(D), and an association of

F : hom
C

(X, Y )! hom
D

(F (X), F (Y ))

such that for f in hom
C

(X, Y ) and g in hom
C

(Y, Z) we have

F (g � f) = F (g) � F (f).

By abuse of notation we use the same symbol F for the function on the objects
and the morphisms.

Definition 2.2.2. A contravariant functor between C and D is a covariant functor
between Cop and D.

2.3 Diagrams

A commutative diagram in a category C is intuitively a collection of objects and
a collection of morphisms written such that any two paths you take with the same
source and the same target yields the same result. We could write an example
to conway most of the point, but if we want to be rigorous we need to be more
careful.

Definition 2.3.1. A diagram of type J in C is a functor from a category J to C.

Example 2.3.1. Diagram 1 shows a diagram of type J where J is category with
four objects and four generating non-identity morphisms. If we want to just write
a diagram type we would in this case write as follows.

• •

• •

//

✏✏ ✏✏
//

This is also a notation for the corresponding category J .

2.4 Natural Transformations

A natural transformation is the appropriate notion of function between functors.

Definition 2.4.1. Suppose F and G are functors between categories C and D.
A natural transformation ⌘ from F to G is an association for every object X in
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C with a morphism ⌘
X

: F (X) ! G(X) such that the for every f the following
diagram commutes.

F (X) F (Y )

G(X) G(Y )

//
F (f)

✏✏

⌘
X

✏✏

⌘
Y

//
G(f)

(1)

2.5 Examples of Categories

The power of the categoric language is the abundance of examples of categories.
Here we present some of the more common ones.

Example 2.5.1. Denote by Set the category whose objects consists of sets and
the collection of morphisms from the set A to the set B is the class of functions
from A to B. Composition of morphisms is given by composition of functions.
The first axiom for being a category is satisfied since every object A has a unique
identity morphism to itself; the identity function. The associativity axiom follows
from the associativity of function composition.

Example 2.5.2. Denote by Cat the category where the objects consist of small
categories (i.e., where the objects and Hom(•, ?) are sets) and the Hom(A,B) are
the functors between A and B with composition by composition of functors.

Example 2.5.3. The category Ab consists of abelian groups and morphisms that
are group homomorphisms.

Example 2.5.4. The category Vect
K

consists of vector spaces over a fixed field
K. The morphisms are K-linear maps. If nothing else is explicitly stated we will
assume that the characteristic of K is zero.

Example 2.5.5. The category gVect
K

has as objects graded vector spaces. That
is, a collection of vector spaces over {K

i

}
i2Z. A morphism f : V ! W of degree n

is a family of K-linear maps f
n

: V
m

! W
m+n

. The morphisms of the category is
the collection of morphisms of all degrees.

Example 2.5.6. The category dgVect
K

has as objects di↵erentially graded vector
spaces. That is, graded vector spaces equipped with a distinguished degree �1
morphism @ such that @2 = 0. A morphism f : V ! W of degree n is a family of
K-linear maps f

n

: V
m

! W
m+n

such that @ � f = �(1)nf � @. The morphisms of
the category is the collection of morphisms of all degrees. A morphism is called a
quasi-isomorphism if the induced map on homology is an isomorphism.
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Example 2.5.7. Denote the category of rings (unital but not necessarily commu-
tative) by Ring. The morphisms consists of linear maps preserving products and
identity.

Example 2.5.8. Denote the category of rings (not necessarily unital or commu-
tative) by Rng (without i). The morphisms consists of linear maps preserving
products.

Example 2.5.9. Denote the category of topological spaces by Top. The mor-
phisms are the continuous maps.

Example 2.5.10. Functor categories are categories where the objects consists of
the functors between a fixed source category C and a fixed target category D.
The morphisms consists of the natural transformation of functors. We denote this
category by Fun(C,D).

Example 2.5.11. Denote by FinSet the category where the objects are the finite
sets and the morphisms are all the bijections.

2.6 Limits and Colimits

A lot of constructions can be formulated by a universal element that maps in or
out of a diagram. This called a limit respectively a colimit of a diagram.

Definition 2.6.1. A limit of a diagram F : J ! C consists of an object L 2 C
and a morphism �

X

: L ! F (X) for every X 2 Ob(J) such that for any F (f) :
F (X)! F (Y ) we have F (f) � �

X

= �
Y

. Moreover, it has to satisfy the following
universal property; for every object N 2 C with a collection of morphisms  

X

satisfying the same conditions as for L there exists a morphism u : N ! L such
that the following diagram commutes.

N

L

F (X) F (Y )

✏✏
u

⌅⌅

 
X

##�
Y{{ �

X

//
F (f)

⇢⇢

 
Y

Definition 2.6.2. A colimit of a diagram F : J ! C consists of an object L 2 C
and a morphism �

X

: F (X) ! L for every X 2 Ob(J) such that for any F (f) :
F (X)! F (Y ) we have �

Y

� F (f) = �
X

. Moreover, it has to satisfy the following
universal property; for every object N 2 C with a collection of morphism  

X
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satisfying the same conditions as for L there exists a morphism u : L ! N such
that the following diagram commutes.

N

L

F (X) F (Y )

✏✏
u
⇢⇢

 
X

{{

�
Y

##

�
X

//
F (f)

⌅⌅

 
Y

2.7 Special Cases of Limits

2.7.1 Initial and Terminal Objects

Definition 2.7.1. A terminal object in a category C is a colimit of the diagram
consisting of one object and no nontrivial morphisms.

Definition 2.7.2. An initial object in a category C is a limit of the diagram
consisting of one object and no nontrivial morphisms.

Example 2.7.1. In the category Set there is a unique initial object; the empty
set. A terminal object is given by a one-element set.

Example 2.7.2. In the category Cat the initial object is given by the empty
category; the objects consist of the empty set. The category with one object and
one morphism is a terminal object.

Example 2.7.3. In the categories Ab and Vect
K

any trivial object is both an
initial and a terminal object.

2.7.2 Products and Coproducts

Definition 2.7.3. A product in a category C is a limit of the diagram consisting
of two objects and no nontrivial morphisms.

Definition 2.7.4. A coproduct in a category C is a colimit of the diagram con-
sisting of two objects and no nontrivial morphisms.

Example 2.7.4. In the category Set the product of two sets A and B is given by
the usual cartesian product A ⇥ B. The coproduct of two sets A and B is given
by the disjoint union A tB.
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Example 2.7.5. In Ab and Vect
K

the product is given by the cartesian product
and the coproduct by the direct sum. Thus they coincide here; this is however not
true for the generalization to infinite products and coproducts.

Example 2.7.6. In gVect
K

and dgVect
K

the products and coproducts are ob-
tained by taking the product and coproduct at each degree.

Example 2.7.7. In the category Top the product is given by the ordinary product
topology. The coproduct is given by the disjoint union.

2.7.3 Equalizers and Coequalizers

Definition 2.7.5. A limit of a diagram of the following type is called an equalizer.

• •**44

Definition 2.7.6. A colimit of a diagram of the following type is called a coequal-
izer.

• •**44

Example 2.7.8. In the category Set the equalizer of a diagram A B
**

f
44

g
is given by the set {a 2 A : f(a) = g(a)}. The coequalizer of the same diagram
can be constructed as follows. Put an equivalence relation ⇠ on B by putting
f(a) ⇠ g(a) for all a in A. The coequalizer is the set of equivalence classes.

Example 2.7.9. In the categories Ab and Vect
K

the coequalizers is the ordinary
quotient construction.

2.7.4 Pushouts

Definition 2.7.7. A pushout in a category C is a colimit of the diagram of type

• •! •.

Example 2.7.10. Suppose we are given the diagram following diagram in the
category Set where the arrows are inclusion.

A A \ B Boo //

The pushout is the union A [B.
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Example 2.7.11. Suppose we have the following diagram in Ab.

A C Boo
f

//
g

The pushout can be described explicitly as (A � B)/R, where R is the subgroup
generated by (f(c),�g(c)) for all c 2 C.

Example 2.7.12. In Top the pushout can be seen as disjoint union followed by
gluing. This is called an adjunction space.

2.7.5 Pullbacks

Definition 2.7.8. A pullback in a category C is a limit of the diagram of type
(•! • •).
Example 2.7.13. Suppose that we have the following diagram in Set.

A C B//
f

oo
g

The pullback is given by {(a, b) 2 A� B : f(a) = g(b)}
Example 2.7.14. In geometry there exists a notion named pullback; this is a
precomposition with of a map between spaces. This is related to the categorical
concept as follows. Suppose we have a fiber bundle (E,B, ⇡, F ) and a map between
spaces C ! B. We obtain the following diagram where s is a section, f ⇤s is the
usual geometric pullback and f ⇤E is the pullback in the category of topological
spaces.

f ⇤E E

C B

//



TT

f ⇤s

//
f 

⇡

TT

s

2.7.6 Inverse and Direct Limits

Definition 2.7.9. A category C is called a preorder if there is at most one mor-
phism for every pair of objects. In addition, if the existence of arrows A � B
implies A = B we call the category a partial order.

Definition 2.7.10. An inverse limit is a limit of diagram of type J , where J is a
partial order.
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Definition 2.7.11. A direct limit is a colimit of diagram of type J , where J is a
partial order.

Example 2.7.15. Consider the partial order on sets given by inclusion. The
inverse limit is given by intersection and the direct limit as union.

Example 2.7.16. Consider the collection of rings Z
p

n (p prime) where there are
morphisms from Z

p

n to Z
p

m if n � m by reducing modulo pm. This is a diagram
of type J , where J is a total order. The inverse limit is called the p-adic integers.

Example 2.7.17. Stalks of a presheaf is formulated as an inverse limit. Given a
topological space X, define a partial ordering on open sets by U ✓ V ! U  V .
This defines a category X

inclusion

. The functor category Fun((X
inclusion

)op, C) is
called a C-valued presheaf on X. The subcategory of open sets containing a point
x yields a diagram. The limit of this diagram, i.e., the inverse limit, is called the
stalk at x. Take for example the sheaf of holomorphic functions on a Riemann
surface, then the stalks are the germs of holomorphic functions.

2.8 Adjoints

Definition 2.8.1. Let A and B be categories with functors F : A ! B and
G : B ! A. Furthermore let {�

a,b

} be a family of set-bijections

�
a,b

: Hom
B

(Fa, b)! Hom
A

(a,Gb)

such that the following diagrams commute, where the vertical arrows are the ones
induced by morphisms a 7! a0 and b 7! b0.

Hom
B

(Fa, b) Hom
A

(a,Gb)

Hom
B

(Fa, b0) Hom
A

(a,Gb0)

Hom
B

(Fa, b) Hom
A

(a,Gb)

Hom
B

(Fa0, b) Hom
A

(a0, Gb)

//
�

✏✏ ✏✏
//

�

//
�

✏✏ ✏✏
//

�

A triple {F,G,�} is called an adjunction and F left adjoint to G.

2.8.1 Free Objects

The main example of adjoint functors is in the construction of free objects.

Definition 2.8.2. If C is a category that has extra structure compared to D there
is a functor U : C ! D that ”forgets” the extra structure. This is called a forgetful
functor.
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Definition 2.8.3. A left adjoint of a forgetful functor is called a free functor.

Example 2.8.1. Consider the functor G : Vect! Set which assigns the under-
lying set to a vector space. The left adjoint to this functor is the ordinary free
vector space construction.
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3 Monoidal Categories

The notion of monoidal category is central to us since the definition of an operad
involves a monoidal category. A monoidal category can loosely be thought of as
category where we can define monoids in a generalized sense. Such a category is
equipped with a ”tensor” product. The category Set is the prototypical example
with cartesian product as tensor product and ordinary monoids as monoids.

3.1 Semigroup Category

Definition 3.1.1. A semigroup category consists of a category C together with a
functor (the product)

N
: C⇥C ! C from the product category into the category

together with a natural transformation (the associator)

↵ : (�
O

(�
O
�))! ((�

O
)�

O
�)

such that the following diagram (the pentagon) commutes, where the morphisms
are the appropriate combination of ↵ and identities.

((A
N

B)
N

(C
N

D))

(A
N

(B
N

(C
N

D)))

(A
N

((B
N

C)
N

D)) ((A
N

(B
N

C))
N

D)

((A
N

B)
N

C)
N

D)

::

$$

✏✏
//

OO

3.2 Identity

Definition 3.2.1. A semigroup category (M,
N

,↵) together with an object e
(two-sided unit) and natural isomorphisms � : e⌦A! A and ⇢ : A⌦ e! A such
that the following diagram commutes is called a monoidal category.

A⌦ (e⌦ B) (A⌦ e)⌦ B

A⌦ B

//
↵

&&Id⌦ � ✏✏

⇢⌦ Id
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3.3 Symmetric Monoidal Categories

Definition 3.3.1. Let (M,
N

,↵, e) be a monoidal category. Suppose we have
a natural isomorphism ⌧ : A

N
B ! B

N
A such that the following diagrams

commutes.

(A
N

B)
N

C A
N

(B
N

C)

(B
N

A)
N

C (B
N

C)
N

A

B
N

(A
N

C) B
N

(C
N

A)

//
↵

✏✏

⌧ ⌦ Id

✏✏

↵

//Id⌦ ⌧

✏✏

⌧

✏✏

↵

(2)

e⌦ A B ⌦ e

A

//
⌧

&&
�

✏✏

⇢

(3)

A⌦ B B ⌦ A
--

⌧
mm

⌧ (4)

This is then called a symmetric monoidal category with twist map ⌧ .

3.3.1 Braided Monoidal Categories

There is a weaker notion than symmetric monoidal category that is more natural
in some instances.

Definition 3.3.2. The definition of a braided monoidal category is similar to the
definition of symmetric monoidal category. If we omit diagram 4 and substitute di-
agram 2 with the following diagram we obtain the definition of a braided monoidal
category.
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(A
N

B)
N

C A
N

(B
N

C)

(B
N

A)
N

C (B
N

C)
N

A

B
N

(A
N

C) B
N

(C
N

A)

A
N

(B
N

C) (A
N

B)
N

C

A
N

(C
N

B) C
N

(A
N

B)

(A
N

C)
N

B (C
N

A)
N

B

//
↵

✏✏

⌧ ⌦ Id

✏✏

↵

//Id⌦ ⌧

✏✏

⌧

✏✏

↵

//↵�1

✏✏

Id⌦ ⌧

✏✏

↵�1

//⌧ ⌦ Id

✏✏

⌧

✏✏

↵�1

3.4 Monoidal Functors

Definition 3.4.1. A functor F : M ! N between monoidal categories (M,
N

,↵, e)
and (N,

N
, �, f) together with natural transformations

�
AB

: FA
O

FB ! F (A
O

B)

and a morphism  : f ! F (e) is called monoidal if the following diagrams com-
mute.

(FA
N

FB)
N

FC FA
N

(FB
N

FC)

F (A
N

B)
N

FC FA
N

F (B
N

C)

F ((A
N

B)
N

C) F (A
N

(B
N

C))

//
�

✏✏

�⌦ Id

✏✏

�

//F↵

✏✏

Id⌦ �

✏✏

�

FA
N

f FA
N

Fe

FA F (A
N

e)

f
N

FA Fe
N

FA

FA F (e
N

A)

//
Id⌦  

✏✏

⇢

✏✏

�

oo
F⇢

//
 ⌦ Id

✏✏

�
✏✏

�

oo F�

Definition 3.4.2. A monoidal functor F : M ! N between symmetric monoidal
categories is called a symmetric monoidal functor if also the following diagram
commutes.
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FA
N

FB FB
N

FA

F (A
N

B) F (B
N

A)

//
⌧
B

✏✏

�

✏✏

�

//F ⌧
A

3.5 Closed Monoidal Categories

Definition 3.5.1. A monoidal category is called closed if the tensor product func-
tor A

N� has a right adjoint A) �. That is, there are isomorphisms

�
B,C

: Hom(A
O

B,C)! Hom(B,A) C),

that are natural in B and C.

3.6 Examples of Monoidal Categories and Functors

Example 3.6.1. The category Set form a monoidal category together with the
ordinary cartesian product and the identity given by a one-element set. If given
a map ⌧ : A ⇥ B ! B ⇥ A which changes the order of the elements, this is a
symmetric monoidal category.

Example 3.6.2. The functor category Fun(C,C) = End(C) can be made into a
monoidal category by taking composition of functors as product. The identity is
given by the identity functor.

Example 3.6.3. We can put a product structure on the category Ab in the
following way. To any two objects A and B, denote by F the free abelian group
generated by the set A⇥B. Denote the group generated by (a, b+b0)�(a, b)�(a, b0),
(a + a0, b) � (a, b) � (a0, b) and (an, b) � (a, nb) by R, where n 2 Z. Now let
A
N

B = F/R. This is called the tensor product of A and B. This turns Ab into
a monoidal category.

Example 3.6.4. We can define a tensor product in Vect
K

in almost the same
way as in Ab. The construction is as above if we replace free abelian group with
free vector space and Z with K. The category Vect

K

is closed since

Hom(A
O

B,C) ⇠= Hom(B,Hom(A,C))

in a natural way.
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Example 3.6.5. We can take the tensor product of objects in gVect
K

and
dgVect

K

by defining

(V
O

gVect

K

W )
i

=
M
j+k=i

V
j

O
Vect

K

W
k

.

The di↵erential in the category dgVect
K

of the product V
N

dgVect

K

W is chosen

such that it acts as @(v⌦w) = (@v)⌦w+(�1)degvv⌦@w and extended by linearity.
We let the twisting map be given by ⌧(↵⌦�) = (�1)deg(a)⇤deg(b)�⌦↵. We can take
tensor products of morphisms as well; acting on tensor products of complexes they
obey the Koszul sign rule

(f ⌦ g)(a⌦ b) = (�1)deg(g)⇤deg(a)f(a)⌦ g(b).

Example 3.6.6. Consider the free vector space functor, i.e., the functor which
takes a set to a vector space given by taking the elements of the set as a basis.
This is a monoidal functor Set! Vect

K

.

Example 3.6.7. We are going to define a monoidal functor from the category
Top to the category dgVect

K

called the cubical singular chains functor. Then we
are going to consider the functor obtained after taking homology. This turns out
to be equal to the ordinary singular homology functor (as defined using singular
simplices instead of cubes).

Define a singular n-cube on a topological space X as a continuous map � :
In ! X where In is the unit n-dimensional cube. We say that a singular cube
is degenerate if it is independent of one of the variables. Consider the free vector
space generated by the singular n-cubes where we consider elements equal if they
only di↵er by degenerate n-cubes; call this space C

n

(X), the cubical singular
n-chains. Now let C•(X) be the corresponding graded vector space. Define a
di↵erential @

n

: C
n

(X)! C
n�1

(X) by the formula

@
n

(�) =
X
i

(�1)i�(t
1

, . . . , t
i�1

, 0, t
i

, . . . , t
n�1

)

�
X
i

(�1)i�(t
1

, . . . , t
i�1

, 1, t
i

, . . . , t
n�1

).

With this di↵erential the we obtain a functor Sing : Top ! dgVect
K

. To see
that this is monoidal functor we need to construct a natural transformation ⌘ :
C•(X)

N
C•(Y )! C•(X⇥Y ). We construct it on individual singular n-cubes and

extend by linearity. Suppose we have � : In ! X and ⌧ : Im ! Y. This forms a
singular n+m-cube �⌦ ⌧ : In+m ! X⇥Y by letting � act on the first n variables
and ⌧ on the rest. This construction is natural and therefore Sing is a monoidal
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functor. If we compose the functor Sing with the functor given by taking the
homology we obtain another monoidal functor H• � Sing : Top! dgVect

K

. The
Künneth theorem states that this functor actually induces natural isomorphisms

H•(X)⌦H•(Y ) ' H•(X ⇥ Y ).

A weaker notion does however hold for general coe�cient rings. For a statement
and proof of the Künneth theorem we refer the reader to [Mas].

3.7 Monoids

Definition 3.7.1. A monoid (M,m, i) in a monoidal category (C,
N

, e) is an
object M together with morphisms m : M ⌦M ! M and i : e ! M such that
the following diagrams commute.

M ⌦M

M ⌦ (M ⌦M)

(M ⌦M)⌦M M ⌦M

M

::
Id⌦m

$$

m

✏✏

↵

//m⌦ Id

OO

m

e⌦M M ⌦M

M

M ⌦ e//i⌦ Id

&&
�

✏✏

m

oo Id⌦ i

xx

⇢

Example 3.7.1. The monoids in the monoidal category Set is exactly the classical
notion of monoids.

Example 3.7.2. A monoid in the category Ab is exactly a ring.

Example 3.7.3. A monoid in Vect
K

is an associative K-algebra.

Example 3.7.4. A monoid in the category End(C) is called a monad over C.
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3.8 Remark about Coherence Theorems

The definition of monoidal category may seem a little strange. The truth is that the
pentagon axiom implies commutativity of ”all” diagrams built with the morphisms
given in the definition. Thus the ”real” definition of monoidal categories should be
that all diagrams of morphisms from the definition of monoidal category commute.
A similar theorem holds for symmetric monoidal categories. Such a theorem is
called a coherence theorem.

In the case of a braided monoidal category it is a bit more complicated. The
coherence theorem for symmetric monoidal categories can be reformulated as fol-
lows. If we have two permutations of a single ”tensor product word” there is a
canonical map from one to the other satisfying some naturality conditions. The
result for braided monoidal categories is analogous, with the braid group action
replacing the symmetric group action. For a symmetric monoidal category every
morphism built from the ones given in the definition has an underlying permuta-
tion and every permutation corresponds to a morphism. For a braided monoidal
category there are underlying braids instead.

For details about the formal statements and proofs we refer the reader to [Mac];
sections VII.2, XI.1 and XI.5.
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4 Operads

4.1 S-modules

Definition 4.1.1. A (symmetric) S-module is a functor O : FinSet ! C where
C is a symmetric monoidal category.

Remark 4.1.1. An S-module can be seen as a C-valued presheaf on FinSetop.

4.2 Operads

Our definition of an operad is what in some texts would be called a symmetric
pseudo-operad. A discussion of the alternative definitions of an operad will be
included in the end of the chapter.

Definition 4.2.1. An operad consists of an S-module together with maps for all
finite sets X, Y and i 2 X(called composition maps):

�X,Y

i

: O(X)
O

O(Y )! O((X \ {i}) t Y ),

that is natural in X, Y and i (note that i 2 X). These morphisms has to satisfy
the following axioms.

For finite sets X, Y, Z and distinct i, j 2 X the following diagram commutes.

O(X)
NO(Y )

NO(Z) O(X)
NO(Z)

NO(X)

O((X \ {i}) t Y )
NO(Z) O((X \ {j}) t Z)

NO(Y )

O((X \ {i, j}) t Y t Z) O((X \ {i, j}) t Z t Y )

//Id⌦ ⌧

✏✏

�X,Y

i

⌦ Id

✏✏

�X\{i}tY,Z
j

//Id

✏✏

�X,Z

j

⌦ Id

✏✏

�X\{j}tZ,Y
i

(5)

For finite sets X, Y, Z and elements i 2 X, j 2 Y the following diagram
commutes.

O(X)
NO(Y )

NO(Z) O(X)
NO((Y \ {j}) t Z)

O((X \ {i}) t Y )
NO(Z) O((X \ {i}) t (Y \ {j}) t Z)

//
Id⌦ �Y,Z

j

✏✏

�X,Y

i

⌦ Id

✏✏

�X,(Y \{j})tZ
i

//
�(X\{i})tY,Z
j

(6)
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Remark 4.2.1. The definition of an operad can be a mouthful. To help the intuition
one may think of O(X) as the space of operations with inputs labelled by elements
of X. The morphism �X,Y

i

can in this context be thought of as taking functions
with inputs Y and composing with a function of inputs X, where we insert the first
function in the spot labeled i of the second function. The naturality conditions
corresponds to exchanging labels. Diagram 5 can be interpreted as if we take a
two functions as two di↵erent inputs of a third function the order of composition
does not matter. Diagram 6 says that composition of operations is associative.

Remark 4.2.2. If the category C admits small colimits we can reformulate the
definition of an S-module as a family of S

n

-modules O(n). The definition of an
operad can then be formulated with composition morphisms

�[n],[m]

i

: O(n)
O

O(m)! O(n+m� 1).

We will sometimes use this formulation when it is suitable. We will also use the
concept of S

n

-invariant morphism as a morphism of S
n

-modules. For details and
proof of equivalence we refer the reader to, for example, [MSS]. Some authors call
these objects ⌃-modules; we will however not make the distinction and call these
S-modules as well. See also section 4.9.

Remark 4.2.3. We will from this point on assume that the monoidal category has
small colimits; this is not a severe restriction since this is true for the categories
we are interested in, such as Vect, dgVect and Top.

Definition 4.2.2. A unital operad is an operad together with a morphism

u : 1
C

! O(•)
that is natural in • where {•} is any one-element set. It has to make the following
compositions into identity maps for any set X, i 2 X and the unique isomorphism
� : O(•)! O(i).

O(X) O(X)
N

1
C

O(X)
NO(i) O(X)// //Id⌦ �u //

�X,i

i

(7)

O(X) 1
C

NO(X) O(i)
NO(X) O(X)// //�u⌦ Id //

�i,X
i

(8)

4.3 Elementary Examples of Operads

Example 4.3.1. Consider the S-module in the category Set such thatO(•) = {1}
for any one-element set {•} and O(X) = ; otherwise. This has an operadic
structure by the unique map

O(•)
O

O(•)! O(•).
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This operad is denoted by 1.

Remark 4.3.1. It is called 1 since it is the initial object in the category of operads
to be defined.

Example 4.3.2. Consider the S-module such that O(X) = {1} for any set X.
This forms an operad with the unique maps

�X,Y

i

: O(X)
O

O(Y )! O(X \ {i} t Y ).

This operad is called the commutative operad Com.

Remark 4.3.2. It is called Com since the algebras over it (defined in section 4.5) are
the commutative semigroups. It is the terminal object in the category of operads.

Example 4.3.3. Consider an S-module in a closed symmetric monoidal category
C, where O(X) = hom

C

(A⌦|X|, A) (the |X| copies of A are indexed by the set X)
for a fixed A 2 Ob(C). The hom-sets can be considered as objects in C since C
is closed. The morphisms �X,Y

i

are constructed by composition of morphisms as
follows.

hom
C

(A⌦|X|, A)
N

C

hom
C

(A⌦|Y |, A) hom
C

(A⌦|X+Y�1|, A)

f(x
1

, . . . , x
i

, . . . , x|X|)⌦ g(y
1

, . . . , y|Y |) f(x
1

, . . . , g(y
1

, . . . , y|Y |), . . . , x|X|)

//

� //

This is called the endomorphism operad and is denoted by End
X

.

4.4 Morphisms of Operads

Definition 4.4.1. A morphism of S-modules in a category C is a natural trans-
formation of functors.

Remark 4.4.1. This is not a surprising definition since an S-module is an element
of the functor category Fun(FinSet, C) whose morphisms are the natural trans-
formations.

Definition 4.4.2. A morphism of operads is a morphism of S-modules such that
it is compatible with the composition maps �X,Y

i

and bijections of FinSet.
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4.5 Algebras over Operads

Definition 4.5.1. An algebra over an operad O (also called an O-algebra) consists
of an object X 2 Ob(C) together with a morphism ↵

X

: O ! End
X

, where End
X

was defined in Example 4.3.3. If the underlying category has finite colimits we can
form the following product.

O(n)
O
S
n

X⌦n = coequalizer
�2S

n

n
��1 ⌦ � : O(n)

O
X⌦n ! O(n)

O
X⌦n

o
.

Then an algebra over an operad can equivalently be described as a family of
morphisms ↵

X

(n) : O(n)
N

S
n

X⌦n ! X.

Definition 4.5.2. A morphism of O-algebras consist of a map � : X ! Y such
that the following diagram commutes.

O(n)
N

S
n

X⌦n X

O(n)
N

S
n

Y ⌦n Y

//
↵
X

(n)

✏✏

Id⌦ �⌦n

✏✏

�

//
↵
Y

(n)

Definition 4.5.3. The collection of O-algebras together with the morphisms of
O-algebras is called the category of O-algebras.

Example 4.5.1. An algebra over the Set-operad Com is a commutative semi-
group; any permutation of inputs yields the same output.

Definition 4.5.4. Suppose C is a symmetric monoidal category such that
N

is
distributive over coproducts, that is A

N
(
`

i

B
i

) =
`

i

(A
N

B
i

) , and likewise
from the other side. Define the Schur functor associated to an operad O as

SO =
a
n�1

O(n)
O
S
n

X⌦
n .

Definition 4.5.5. Given a Schur functor, define operations ↵ as follows.

↵(n;m
1

, . . . ,m
n

) = O(n)
O

((O(m
1

)
O
S
m1

X⌦m1)
O

· · ·
O

, (O(m
n

)
O
S
m

n

X⌦m

n)) ⇠=

O(n)
O

(O
m1

O
· · ·
O

O
m

n

)
O

S
m1⇥···⇥S

m

n

X⌦(m1+···+m

n

) �!

O(m
1

+ · · ·+m
n

)
O

S
m1⇥···⇥S

m

n

X⌦(m1+···+m

n

),

where we have used the operadic composition in all n inputs simultaneously.
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Theorem 4.5.1. The operations ↵ gives SO(X) the structure of an O-algebra.

Proof. By careful consideration and by using the equivariance axiom of the operad
structure.

Theorem 4.5.2. The Schur functor is isomorphic to the free O-algebra functor,
i.e., the left adjoint functor to the forgetful functor taking an O-algebra to its
underlying space.

Proof. We sketch the proof; for full details we refer the reader to [MSS]. Let UO
denote the forgetful functor taking a O-algebra to its underlying space. There is
a natural transformation Id! UOSO given on an object X by

X ⇠= Id⌦X ! O(1)⌦X !
a
n�1

O(n)
O
S
n

X⌦
n .

There is also a natural transformation SOUO ! Id given on an object X by using
the O-algebra structure.

Remark 4.5.1. In the category Vect
K

(also dgVect
K

and similar categories) we
can obtain the operad up to isomorphism if we are only given the Schur functor (see
for example [MSS]). Thus if we are only interested about operads in this category
we could use Schur functors from the beginning and build the same theory. This
approach is emphasized in [LV]. See section 6 for details.

4.6 Operads and Monoidal Functors

A monoidal functor F : C ! D can be used to construct an operad in a category
D from an operad in a category C. The S-module is given by composition F �O.
An operadic morphism �X,Y

i

: O(X)
NO(Y ) ! O(X \ {i} t Y ) in the category

C is taken to a morphism in the category D and since F is monoidal we obtain a
morphism

�X,Y

i

F (O(X))
O

F (O(Y ))! F (O(X \ {i} t Y )),

which induces an operadic structure in the category D.

Example 4.6.1. By applying the free vector space functor (see example 3.6.6)
to the operad Com of example 4.3.2 we obtain an operad in the category of vec-
tor spaces. The category of algebras over this operad is exactly the category of
commutative algebras.
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4.7 Graphs and Trees

Definition 4.7.1. A graph G consists of a triple (Flag(G), V, e), where Flag(G)
is a finite set, V is a function V : Flag(G) ! V (G) onto some set V (G) and e is
an involutive bijection of Flag(G) with itself. The set V (G) is called the set of
vertices. The fiber V �1(v) of an element v 2 V (G) is called the set of legs attached
to v, denoted Leg(v). Consider the orbits of Flag(G) under e; the two-element
orbits are called the internal edges E(G) and the remaining form the legs of the
graph, Legs(G).

Remark 4.7.1. Our definition of graph does not coincide with the classical one
since we allow free legs of the graph. However if we only consider graphs where
Legs(G) = ; we obtain the classical finite graphs (without edges with both ends
attached to a single vertex).

Definition 4.7.2. The geometrical realization of G is a topological space con-
structed as follows. For every element of Flag(G) take a closed unit interval
labelled by that element and consider the disjoint union of these intervals. Glue
intervals whose labels are contained in a common set Leg(v) for some v at the
point 0. Furthermore, if two flags are contained in the same orbit under e we glue
them at the point 1. The space obtained with the gluing topology is called the
geometric realization of G.

Definition 4.7.3. Consider a graph G. If its geometrical realization is connected
we call G connected and likewise with simply connected and other topological
properties.

Definition 4.7.4. A tree is a graph that is connected and simply connected.

Definition 4.7.5. An isomorphism of graphs consists of a bijection b : Flag(G)!
Flag(H) such that the partitions of flags are preserved and such that it commutes
with the involutions. The category of graphs together with isomorphisms is de-
noted IsoGraph.

Remark 4.7.2. An isomorphism of graphs induces bijections V (G) $ V (H) and
Leg(G)$ Leg(H).

Definition 4.7.6. A tree T with one leg distinguished as the root is called a rooted
tree. The legs are then partitioned as Leg(T ) = Leaf(T )tRoot(T ). Every vertex
v has a leg such that it is closest to the root (since every point of the geometrical
realization is connected to the root by a unique path). Denote this leg Root(v).
This partitions Leg(v) as Leg(v) = Root(v) t In(v). An isomorphism of rooted
trees is a graph isomorphism that takes the root of the first tree to the root of the
second tree. The corresponding category is denoted by IsoTree.
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Definition 4.7.7. An I-labelled tree T (I) is a rooted tree T together with a
bijection b

T

: I ! Leaf(T ). An isomorphism of I-labelled trees is an isomorphism
f of trees such that it respects the labelling, that is b

T

= b
S

� f . Denote the
corresponding category with IsoTree(I).

Definition 4.7.8. Given an I-labelled tree T and a J-labelled tree S we can define
the grafting of S to the leaf i 2 I and produce a tree T �

i

S with labelling (I \ i)tJ
as follows. First, let Flag(T �

i

S) = Flag(T ) t Flag(S). Let the vertices be the
disjoint union. However, the involution is modified a bit. For all flags except the
one labelled by i and the root of S it will be the same. Finally let e(i) = Root(S)
and e(Root(S)) = i (by abuse of notation we denote the flag labelled by i also by
i).

4.8 Free Operads

The construction of a free operad in a symmetric monoidal category C from an S-
module A is done in several steps. First we associate to every isomorphism class of
trees an object of C, thought of as the space of operations obtained by composing
elements of A as indicated by the tree. Technically this is the space of decorations
of vertices in the tree. Secondly we form the colimit over all trees to obtain our
S-module. Thirdly we use graftings of trees to give this an operad structure. We
will assume that the underlying category have finite colimits.

Definition 4.8.1. Consider a set X together with a bijection f : X ! {1, . . . , n}
and an object A

x

in a symmetric monoidal category C for every x 2 X. DefineO
f

A
f

= A
f

�1
(1)

⌦ A
f

�1
(2)

⌦ · · ·⌦ A
f

�1
(n)

.

Furthermore, for every � 2 S
n

we have a morphism

�̄ :
O

A
f

!
O

A
��f ,

given by permuting the factors. Now define the unordered tensor product as
follows.

O
X

A
x

= coequalizer
�2S

n

8<:�̄ :
a

f2bijections X!{1,...,n}

O
f

A
f

!
a

f2bijections X!{1,...,n}

O
f

A
f

9=; ,

where
`

denotes the coproduct.
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Definition 4.8.2. Let A be an S-module in a category C and let T (I) be a labelled
tree. Define using the unordered tensor product:

A(T (I)) =
O

v2V (T )

A(V �1(v)).

Theorem 4.8.1. The above construction gives for a fixed S-module A a covariant
functor IsoTree! C.

Proof. By checking the induced maps carefully to see that the construct is indeed
functorial. For more details we refer the reader to [MSS].

Definition 4.8.3. Define an S-module Free(A) as

Free(A)(I) := colim
T (I)2IsoTree(I)

A(T (I)).

There is a natural operad structure on Free(A) given as follows. Suppose we have
decorated labelled trees T (I) and S(J). By grafting the root of S to the leaf i of
T we obtain a decorated tree with labeling (I \ {i}) t J. This induces a structure
on the colimit. Call this operad the free operad generated by A and denote it by
 (A).

Theorem 4.8.2. The free operad construction is a covariant functor that is left
adjoint to the forgetful functor taking an operad to its underlying S-module.

Proof. There are quite many axioms to check. As such the proof is rather long
and technical and we omit it. We refer the reader to [MSS].

4.9 Related Definitions of Operads

As we have indicated there are several definitions of operads that are not equivalent
to ours but almost are.

Perhaps the most common approach is to define compositions

O(I)
O O

i2I
O(X

i

)

!
! O(

G
X

i

)

satisfying similar axioms as in definition 4.2.1. This can be seen as compositions
where we insert operations in every input, in contrast with our definition where
we compose at one input at a time. This definition is often accompanied by the
requirement that there exists a unit. In that case it is equivalent to our definition
of unital operad. This can be easily seen since a composition where all but one of
the inputs are identities corresponds to a composition of definition 4.2.1.
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Another variant is to use ⌃-modules instead of S-modules. A ⌃-module is
defined as a functor from the category FinOrd (finite ordinals with automorphisms
as morphisms) into a symmetric monoidal category C. Under the assumption
that C has small colimits and that the functor X

N� preserves colimits these
approaches are equivalent; see theorem 1.60 in [MSS]. The categories we are
interested in this text all satisfy this, thus we will not distinguish between these
approaches.
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5 Topological Operads

A topological operad is an operad in the symmetric monoidal category Top.

5.1 Little Discs

The operad of little discs appear in a lot of places. It is without doubt one of the
most important operads.

Definition 5.1.1. The S-module underlying the little disc operad D
2

can be de-
scribed as follows. For a one-element set {•} let D

2

(•) = •. Composition with
this is taken to be the identity. For a set X with |X| � 2 we define D

2

(X) as
the configuration space of disjoint discs labelled by elements of X contained in the
unit disc in the complex plane. An isomorphism X ⇠= Y induces an isomorphism
D

2

(X) ⇠= D
2

(Y ) by changing the labels. The operadic composition consists of
a�ne scaling of a configuration and substituting it into a circle of another config-
uration. This is indicated in the following diagram.

a

b

c

�a d e

f

=
b

c

d e

f

Remark 5.1.1. The spaces D
2

(X) are homotopy equivalent to the configuration
space of |X| points in R2 labelled by elements of the set X. Monoidal functors
into a monoidal category D that are homotopy invariant yield the same operads
in D. This can be used to obtain an operadic structure on the (co)homology of
configuration spaces of points. Since the fundamental group of a configuration
space of distinct labelled points corresponds to the braid groups we can make a
similar analysis there.

Remark 5.1.2. We can of course consider spaces of higher dimension and define
operads D

n

where the objects are configurations of disjoint n-dimensional balls
with operadic composition defined similarly.

5.2 Pointed Stable Real Algebraic Curves of Genus Zero

The operad of pointed stable real algebraic curves of genus zero where introduced
in [EHKR]. The cohomology of this operad is the main operad of study in this
thesis and is treated in section 7.
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Definition 5.2.1. A real stable curve of genus 0 consists of a finite union of real
projective lines {RP1

i

}
i

with labelled points z
j

such that the following axioms are
satisfied.

i) Each z
i

belongs to one and only one of the RP1

i

.

ii) Every pairwise intersection of projective lines are either empty or consist

of a single point. Intersections has to be transversal.

iii) The component graph is a tree, i.e., it is simply connected.

iv) The number of special points of each component has to be at least 3.

A special point is either an intersection point or a point z
j

.

Two curves are equivalent if there exists an isomorphism of algebraic curves such
that it takes each marked point to the corresponding marked point.

Definition 5.2.2. The real locus of the Deligne-Mumford compactification of the
moduli space of genus 0 curves with n marked points is denoted by M

n

.

Remark 5.2.1. M
n

as a set is the equivalence classes of stable n-pointed real genus
0 algebraic curves as in definition 5.2.1. The topology of the moduli space is given
such that two curves are close if the points marked points and the intersection
points are close. Moreover, when marked points approach each other they ”blow
up” and a new copy of RP1 is inserted where the points collide and the marked
points move on the newly inserted copy instead. This is indicated in figure 9. With
this topology M

n

has a manifold structure for n � 3. For more details and rigor
we refer the reader to [DM] and [Dev].

1

2

3

4

5

6
[[
��

//

1

2

3
4

5

6
(9)

Definition 5.2.3. The spaces M
n

provides an S-module structure M as follows.
Let M(1) be a one point space. Let M(n) = M

n+1

for n � 2. The S
n

-actions
are given by permuting the points (2, . . . , n+ 1). Furthermore we have an operad
structure on M by thinking of the first labelled point as the output and the other
as inputs and thereby gluing the surfaces accordingly.
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6 Algebraic Operads

An algebraic operad is an operad in the category Vect
K

or related operads such as
di↵erentially graded operads ( these are operads in dgVect

K

with extra assump-
tions of commutativity with the di↵erential; this is defined in section 6.2).

6.1 Schur Functors

Recall the definition of a Schur functor (definition 4.5.4).

SO =
a
n�1

O(n)
O
S
n

X⌦
n

For an algebraic operad we can recover the operad from its Schur functor. This is
accomplished as follows.

Theorem 6.1.1. Suppose SO is a Schur functor for some operad O. Let X
n

be the
free vector space on generators {x

1

, . . . , x
n

}. Let SO(n) be the subspace of SO(Xn

)
spanned by all elements with x

i

appearing once. This space has a natural action of
the symmetric group by permuting the x

i

. The morphisms O(n) ! SO(n) taking
↵ to ↵⌦ x

1

⌦ · · ·⌦ x
n

are equivariant isomorphisms of vector spaces.
Furthermore, the operadic composition of O is related to the O-algebra compo-

sition as follows.

(↵�
i

�)(x
1

⌦· · ·⌦x
m+n�1

) = ↵(x
1

⌦. . . ,⌦x
i�1

⌦�(x
i

⌦x
m+i�1

)⌦x
m+i

⌦· · ·⌦x
m+n�1

)

Proof. The idea is that SO(n) consists of all words written by operations of O
and placeholder variables. It is clear that it is onto since every element can be
written ↵ ⌦ x

1

⌦ · · · ⌦ x
n

by using the symmetric action. It is injective since
↵ ⌦ x

1

⌦ · · · ⌦ x
n

= 0 implies that ↵ = 0. The rest of the proof is just an
application of the equivariance and composition axioms. For slightly more details
we refer the reader to [MSS].

Remark 6.1.1. This proposition shows a correspondence between operads and
Schur functors. In fact, for algebraic operads we could have started by defin-
ing Schur functors and then defined an operad associated to a Schur functor (for
example the book [LV] emphasizes Schur functors). Schur functors also constitutes
a monad. Algebras over this monad are exactly the operad algebras.

6.2 Di↵erentially Graded Operads

We would like to consider the homological algebra of our operads. That is, we
would like to work with operads in the category dgVect

K

. However, if we just de-
fine operads in dgVect

K

there is no a priori compatibility between the di↵erential
and the operadic maps and symmetries.
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Definition 6.2.1. A di↵erentially graded S-module (also called a dg S-module)
is a functor FinSet ! dgVect

K

such that the di↵erentials commute with the
isomorphisms induced by isomorphisms in FinSet.

Definition 6.2.2. A di↵erentially graded operad (also called a dg operad) is
a dg S-module with operadic structure. The structure maps are morphisms in
dgVect

K

. A dg operad morphism is an operad morphism that respect the di↵er-
entials. Denote this category by dgOp.

6.3 Ideals and Quotient Operads

Definition 6.3.1. A left module M over an operad O is an S-module together
with maps

�X,Y

i

: M(X)
O

O(Y )!M((X \ {i}) t Y ).

A right module M over an operad O is an S-module together with maps

�X,Y

i

: O(X)
O

M(Y )!M((X \ {i}) t Y ).

These has to satisfy commutative diagrams analogous to the ones in definition
4.2.1.

Definition 6.3.2. An O-module is an S-module that is both a left and a right O-
module. The left and right structures has to be compatible in the sense analogous
to a bimodule in the case of an R-module where R is a ring.

Definition 6.3.3. An S-submodule of an S-module A is given by an S-module B
and natural inclusions B(X)! A(X).

Definition 6.3.4. An operadic ideal is an S-submodule that is also an O-module.

Definition 6.3.5. Given an operad O and an S-submodule A we can define the
ideal generated by A in the obvious way.

Definition 6.3.6. Given an algebraic operad O and an ideal I we can define
the quotient operad O/I as follows by taking the quotients O(X)/I(X) for every
labeling set X. This clearly yields an S-module. The operadic structure is induced
from the one in O; the maps are well defined since I is closed under compositions.

6.4 Lie

Using the machinery in section 6.3 we can define the operad Lie. The algebras
over this operad are the ordinary Lie algebras.
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Definition 6.4.1. Consider the S-module A defined as follows.

A(n) =

(
k[µ] if n = 2

0 otherwise

The functorial behavior is given such that a transposition of the elements in {1, 2}
induces multiplication by �1. This is also called the sign representation. Con-
sider the free operad  (A). Now  (A)(3) is a 3-dimensional representation of S

3

spanned by the following elements.8>><>>:
1 2

3

•
• ,

3 1

2

•
• ,

2 3

1

•
•

9>>=>>;
Since we only have one type of label at the vertices we do not write it out and just
indicate with a dot. The action of S

3

interchanges the labels on the leaves. There
is an S-submodule R spanned by the following element.

1 2

3

•
• +

3 1

2

•
• +

2 3

1

•
•

Let I be the ideal generated by R. Finally let Lie =  (A)/I.
Remark 6.4.1. The element µ corresponds to the Lie bracket. The sign representa-
tion codes the anti-symmetry. That we quote out by R corresponds to the Jacobi
identity.

Remark 6.4.2. We could also define this operad by use of theorem 6.1.1 and the
free Lie algebra functor. The machinery of quotient operads is however very useful,
especially to define quadratic operads; see section 6.6.

6.5 The Cobar Complex

There are di↵erent approaches to constructing the cobar complex of an operad.
We follow [GK] and [MSS] with the exception of allowing higher arities than two
in the definition of the quadratic dual.

Definition 6.5.1. Suppose that O is a dg operad. Assume furthermore that O(X)
is finite-dimensional for all X. Define the dual dg S-module O⇤ as the dual vector
spaces O⇤(X) with the S

n

-actions induced by the actions on O(X). The dual
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di↵erential is given by d⇤(↵) = (�1)deg(↵)↵(d) where d is the di↵erential of O. The
operadic compositions

�X,Y

i

: O(X)
O

O(Y )! O(X \ {i} t Y )

dualizes to give maps

�X,Y

i

: O⇤(X \ {i} t Y )! O⇤(X)
O

O⇤(Y )

by setting
�X,Y

i

(�)(↵⌦ �) = �(↵ �X,Y

i

�).

Remark 6.5.1. The maps �X,Y

i

satisfies axioms dual to those of definition 4.2.1
(turn all arrows around). Such a structure is called a cooperad. Note also that
the tree construction in section 4.8 extends to the case of dg operads (since the
di↵erential commutes with reorderings) giving us a construction of a free dg operad
from a dg S-module.

Definition 6.5.2. Suppose A 2 dgVect
K

and define sA such that (sA)i = Ai�1.
Likewise, define s�1 such that (s�1A)i = Ai+1.

Definition 6.5.3. Given a finite set X, let Det(X) 2 dgVect
K

as
V|X|(sKX),

where
V

is the exterior product. Given a labelled rooted tree T define Det(T ) as
Det(E(T )). Recall that E(T ) is the set of internal edges.

Definition 6.5.4. Given a dg operad O, define the cobar bicomplex as follows.
Its component in degree i, j is given by

(C(O))i,j := colim
T2IsoTree , |E(T )|=i+1

(O⇤(T ))j ⌦Det(T ).

The i-grading is over the positive integers and the j-grading over all integers. All
objects are considered given some labeling of leaves. However, we choose not to
write it out. The di↵erential raising the j-degree by one is called the internal
di↵erential dO and is given by the operad structure as defined in definition 6.5.1.
The di↵erential raising the i-degree by one is called the tree di↵erential d

Tree

. The
ith component di

T ree

: (C(O))i,j ! (C(O))i+1,j is the colimit of the components
d
T,T

0 which are defined as

d
T,T

0 =

(
�X,Y

e

⌦ e ^ � if T 0 = T t e

0 otherwise

where e is an internal edge inserted to give a tree T 0 with one extra internal edge.
�X,Y

e

is the cooperad map (since adding an extra internal edge corresponds to
splitting an operation into a composition of two operations).
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Remark 6.5.2. The tree di↵erential can be seen as a sum over all ways of inserting
an extra edge. The associativity of the cooperad structure and the fact that the
exterior algebra is anti-symmetric ensures that d2

Tree

= 0.

We would like to reduce this to a complex with one grading, therefore we use
the total complex construction as follows.

Definition 6.5.5. Given a dg operad O, define the cobar complex C(O)• (in
contrast to bicomplex) as follows. Start with the cobar bicomplex defined above
and give it the grading i + j. Let the di↵erential be given by d

Tree

+ (�1)i�1dO.
Since the cobar construction is made with colimits over trees as in the case of the
free operad we can give it the operad structure of the free operad, namely the one
given by grafting of trees.

Theorem 6.5.1. The cobar complex construction is a contravariant functor

C : dgOp! dgOp.

This functor preserves quasi-isomorphisms.

Proof. The proof is quite elaborate and we refer the reader to [MSS].

Definition 6.5.6. Given an operad O, define the operadic suspension sO as the
operad with dg S-module given in arity n by

sn�1O(n)⌦ sgn
n

,

where sgn
n

is the sign representation of the symmetric group, that is, we multiply
by �1 if the permutation is odd. The operad structure is inherited from the operad
structure of O. The desuspension s�1O is given by

s1�nO(n)⌦ sgn
n

.

Definition 6.5.7. Define the dual dg operad as

D(O) := s�1C(O).

Remark 6.5.3. Note that the dual dg operad di↵ers from the quadratic dual operad
defined in section 6.6. They are related though.

Definition 6.5.8. Given an operad O, define the S-module O+ as follows.

O+(n) =

(
O(n) if n � 2

0 otherwise.

This inherits an operad structure from O.
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Theorem 6.5.2. There is a canonical quasi-isomorphism

D(D(O))! O+.

Proof. The proof is quite long; we refer the reader to [MSS].

Remark 6.5.4. This theorem provides us with a canonical free resolution of the
operad O. However, the resulting operad is often large. We would prefer a
smaller resolution. This is one of the motivations behind introducing the con-
cept of quadratic operads and duals in section 6.6. More precisely we would like
the resolution to be a minimal operad (see definition 6.7.2).

6.6 Quadratic Operads and Duals

A quadratic operad is an operad that is the quotient of a free operad such that
the generators of the quotient ideal consists of sums of trees decorated with 2
operations. More precisely it is formulated like this.

Definition 6.6.1. Suppose that E is an S-module. Suppose that R is an S-
submodule of  (E) such that it is concentrated in tree-degree 2, that is, rooted
trees with 1 internal edge. Then let I be the ideal generated by R and let

O(E,R) :=  (E)/I.

An operad admitting a presentation like this is called a quadratic operad.

Example 6.6.1. It is clear from the construction in section 6.4 that the operad
Lie is quadratic.

Example 6.6.2. The operad Com which we defined earlier admits a quadratic
presentation. Let E(2) be the one-dimensional vector space generated by one
element, the representation is taken to be the trivial representation, i.e., the S

n

action changes nothing. Let R(3) be the subspace generated by the following
elements. 8><>:

1 2

3

•
• �

32

1

•
• ,

3 1

2

•
• �

21

3

•
•

9>=>;
The resulting quadratic operad is exactly the operad Com.

41



Example 6.6.3. The operad Ass coding associative algebras is also quadratic;
its presentation can be given as follows. Consider the S-module A given by

A(n) =

(
k[S

2

] if n = 2

0 otherwise,

where k[S
2

] is the regular representation, i.e., it is a two-dimensional vector space
where the permutation (12) permutes the basis elements. Now  (A)(3) is a 12-
dimensional space spanned by all the possible compositions. There is a unique
basis spanned by trees with two vertices where every vertex is labelled by the first
of the two basis elements of k[S

2

]. Consider the subspace R which is spanned by
elements of the form 8>><>>:

�(1) �(2)

�(3)

•
• �

�(3)�(2)

�(1)

•
•

9>>=>>; ,

for every � 2 S
3

. The resulting quadratic operad obtained by taking the quotient
by the ideal generated by R is the operad Ass.

Definition 6.6.2. Given a quadratic operad O(E,R) we define the quadratic dual
data as follows. First consider  (E_) where E_ is defined as

E_(n) = s�1(Hom(k[s�1]⌦n, k[s�1])⌦ E⇤(n)).

Consider the subspace of trees decorated with 2 elements of E_. These act on
the subspace of  (E) consisting of trees decorated with 2 elements of E by the
following pairing. By applying the induced permuting action to the trees we can
transform them such that a tree of  (E) looks the same as a tree from  (E_).
Then we can apply the functionals one by one to the corresponding elements of
the other tree and then multiply together. Extending this linearly we see that the
subspace of trees decorated with 2 elements of E_ acts on on the subspace of  (E)
consisting of trees decorated with 2 elements of E. Let R? be the annihilator of
R ✓  (E) under the pairing just described. Define the dual operad O! as

O!(n) := O!(E_, R?).

Remark 6.6.1. In the case where E is concentrated on arity 2 there is an alternative
characterization of E_. Namely, we have E_ = E⇤ ⌦ sgn

2

where sgn
2

is the sign
representation. This is seen easily since Hom(k[s�1]⌦2, k[s�1]) is in degree 1 with
the sign representation.

The definition of dual operad may seem arbitrary but the following proposition
shows that it is not.
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Theorem 6.6.1. There is a natural transformation

⇥O : D(O)! O!.

Furthermore this induces an isomorphism

H0(D(O(n)), d
Tree

) ⇠= O!(n).

Proof. The proof is rather long and complicated. See for example [MSS].

Now a natural question to ask is when this natural transformation induces a
quasi-isomorphism of the whole complex. If it does, the transformation given by
first applying the quadratic dual construction and then the dual dg construction
induces a quasi-isomorphism. This question is the seed of the concept of Koszul
operad that is treated in section 6.7.

Example 6.6.4. The quadratic dual gives correspondences between the operads
we have defined. We see that Lie! ⇠= Com and that Com! ⇠= Lie. Furthermore we
have that Ass! ⇠= Ass.

The involutivity seen above is actually a more general theorem, also motivating
the word dual.

Theorem 6.6.2. Suppose O is a quadratic operad where O(n) is finite dimen-
sional. Then

(O!)! = O.

Proof. It is obvious by writing out the definition in full; the finite dimension hy-
pothesis ensures that (E⇤)⇤ ⇠= E.

6.7 Koszul Operads

Definition 6.7.1. A quadratic operad is called Koszul when the natural transfor-
mation of theorem 6.6.1 induces a quasi-isomorphism of the dg operads.

Theorem 6.7.1. A quadratic operad is Koszul if and only if there is a quasi-
isomorphism

D(O!) ⇠= O.

Proof. See for example [MSS].

Remark 6.7.1. Many natural quadratic operads turns out to be Koszul. For ex-
ample Lie, Com, Ass are Koszul. The operad of Gerstenhaber algebras is defined
and proved to be Koszul in section 6.9.1. For a lot more examples we refer the
reader to [LV].
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Definition 6.7.2. Let E be an S-module and let  (E) be the free operad on this
S-module. Suppose that  (E) is di↵erentially graded with di↵erential �. Suppose
furthermore that �(E) consists of decomposables, i.e., generated by trees with
more than one vertex. Then ( (E), �) is called a minimal operad.

Definition 6.7.3. A minimal model of a dg operad O is a minimal operad
( (E), �) together with with a quasi-isomorphism

O ⇠= ( (E), �).

Theorem 6.7.2. If there exists a minimal model it is unique up to isomorphism.
Every di↵erentially graded O operad such that H(O)(1) = K admits a minimal
model.

Proof. The proof is quite long and technical; we refer the reader to [MSS].

Remark 6.7.2. Suppose that the quadratic dg operad O is Koszul, then D(O!) is a
minimal model of O. That D(O!) is minimal is seen directly from the construction
of the di↵erential. By the Koszulity assumption a quasi-isomorphism is given by
the map ⇥O. This means that in the case of Koszul operads we have a concrete
construction of the minimal model.

Definition 6.7.4. Given an operad O with a minimal model MO, a strong ho-
motopy O-algebra is defined as an algebra over MO.

Remark 6.7.3. Any O-algebra is in particular a strong homotopy O-algebra.

6.8 Distributive Laws

Definition 6.8.1. Given two S-modules A and B, define the tensor product as

(A
O

B)(n) =
M
i+j=n

IndSnS
i

⇥S
j

A(i)⌦ B(j) =
M
i+j=n

(A(i)⌦ B(j))⌦
k[S

i

⇥S
j

]

k[S
n

],

where Ind is the induced representation.

Definition 6.8.2. Given two S-modules A and B, define A �B as

A �B =
M
k�0

A(k)⌦S
k

B⌦k.

Remark 6.8.1. We can view A�B in the same way as in the construction of the free
operad. An element of A�B is represented by a formal sum of isomorphism classes
of trees with two ”levels”, where the first level vertex is colored by an element of
A and the others are colored by elements of B.
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Theorem 6.8.1. The category of S-modules form a monoidal category with re-
spect to the product �. A monoid in this category is exactly a unital operad. The
composition morphisms corresponds to the morphism O �O ! O.

Proof. See for example [MSS] or [LV].

We would like to take the composition product of two operads and obtain a
new operad; a priori there is however no canonical way of doing this.

Definition 6.8.3. Suppose A and B are algebraic unital operads. Suppose fur-
thermore that we are given a map ⌧ : A � B ! B � A. If the following diagrams
commute we call ⌧ a distributive law.

A �B �B A �B

B � A �B

B �B � A B � A

//
Id � �

B

✏✏

⌧ � Id

✏✏

Id � ⌧
//

�
B

� Id ✏✏

⌧

A � A �B A �B

A �B � A

B � A � A B � A

//
�
A

� Id

✏✏

Id � ⌧

✏✏

⌧ � Id
//

Id � �
A

✏✏

⌧

A A �B

B � A

//Id � i
B

&&
i
B

� Id
✏✏

⌧

B A �B

B � A

//i
A

� Id

&&
Id � i

A ✏✏

⌧

Theorem 6.8.2. If there is a distributive law ⌧ there is an operad structure on
A � B given by the composition of the following maps (composition of morphisms
not operadic composition).
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(A �B) � (A �B) A � A �B �B A �B//Id � ⌧ � Id //
�
A

� �
B

Call this operad (A � B)
⌧

.

Proof. By inspection and drawing all the relevant diagrams. Some more details
appear in [LV].

Theorem 6.8.3. Suppose A and B are operads with a distributive law ⌧. Then
(A � B)

⌧

is Koszul if and only if both A and B are Koszul.

Proof. See [LV].

One way of obtaining a distributive law is by using the notion of rewriting rule.

Definition 6.8.4. Suppose we have two quadratic operads P(E,R) and Q(F, S).
Denote by E�

1

F the S-submodule of  (E�F ) represented by trees with 2 vertices,
where the vertex closest to the root is labelled by elements of E and the other by
elements of F . A morphism � : F �

1

E ! E �
1

F is called a rewriting rule. The
submodule of  (E � F ) spanned by elements of the form x� �(x) is denoted by
D

�

. The quadratic operad O(E � F,R� S �D
�

) is denoted by P _
�

Q.

A rewriting rule does not always imply a distributive law. The following theo-
rem states a su�cient condition.

Theorem 6.8.4. Let the notation be chosen as in definition 6.8.4. There is a
surjective map p

�

: P �Q ! P _
�

Q and a surjective map q
�

: Q � P ! P _
�

Q.
If moreover p

�

is an isomorphism of S-modules it induces a distributive law and
is an isomorphism of operads.

Proof. The map p
�

is induced by the map

 (E) � (F )!  (E � F )!  (E � F )/(R� S �D
�

)

and similarly for q
�

. The distributive law is given by p�1

�

� q
�

. For the rest of the
proof we refer the reader to [LV].

Remark 6.8.2. Note that theorem 6.8.4 together with theorem 6.8.3 yields a method
of proving that quadratic operads is Koszul by decomposing them into simpler
pieces.

The following lemma weakens the assumptions of theorem 6.8.4 such that it is
easier to check.

Lemma 6.8.1. Suppose we have two quadratic operads P(E,R) and Q(F, S).
Suppose moreover that we have a rewriting rule � : F �

1

E ! E �
1

F . If the
induced map p

�

is injective on the restriction to trees with 3 vertices the conclusion
of theorem 6.8.4 holds.

Proof. See [LV].
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6.9 The Gerstenhaber Operad

As an example of an operad given by a distributive law we introduce the operad
Gerst.
Definition 6.9.1. Consider the S-module E which is generated in arity 2 by one
trivial representation in degree 0 (denoted �) and one trivial representation in
degree 1 (denoted •). Consider the S-submodule RCom of  (E) spanned by the
following elements.8><>:

1 2

3

�
� �

32

1

�
� ,

3 1

2

�
� �

21

3

�
�

9>=>;
Consider also the S-submodule R

Jac

generated by the following element.

1 2

3

•
• +

3 1

2

•
• +

2 3

1

•
•

Finally consider the S-submodule R
Der

generated by the following element.

1 2

3

•
� �

1 3

2

�
• �

2 3

1

�
•

The quadratic operad obtained by taking the quotient of  (E) with the ideal
generated by {RCom, RJac

, R
Der

} is called the operad Gerst.
Remark 6.9.1. The topological operad of little disks defined in section 5.1.1 is
fundamentally connected with the operad Gerst. Since the singular chains functor
is symmetric monoidal we can apply it to the little disc operad and then take
the homology. The resulting operad is isomorphic to the operad Gerst. This is
proved in [Coh]. The generators of the operad Gerst can be seen as coming from
explicit chains. Since the S-module of the little disc operad is homotopy equivalent
to the configuration space of centers of discs we can compute the homology of
the configuration space instead. In arity 2 the configuration space is homotopy
equivalent to the circle. The generator of degree 0 of Gerst corresponds to the
single homology generator in dimension 0. The degree 1 generator corresponds
to the homology generator of dimension 1. The actions are determined by the
transformation of cochains when we relabel the points in the configuration space.
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Theorem 6.9.1. The operad Gerst can be obtained by a distributive law. The
first operad in the composition is generated by the operation • together with the
relations generated by RCom. The second operad is generated by the operation �
together with relations generated by R

Jac

. The rewriting rule of definition 6.8.4 is
given by R

Der

.

Proof. The idea is to use lemma 6.8.1. Let P be the quadratic suboperad generated
by the operation • and let Q be the suboperad generated by �. We pick a basis
of P � Q and check that when rewriting the basis elements using the relations
in di↵erent order we obtain equivalent elements of Q � P . Thus p

�

is injective
and induces a distributive law. There are three critical cases corresponding to the
following generators (all other elements are either spanned by those elements or
contain only labels from one operad).

1 2

3

4

•
�

�
1 2 3 4

�
•

�

1 2

3

4

•
•

�

Case 1:

1 2

3

4

•
�

�

There are two di↵erent ways of rewriting this, either we use the rewriting law
first or the associativity.

Rewriting law first:

1 2

3

4

•
�

�
=

1 2

4

3

�
•

�
+

3 4 1 2

�
�

•

=

1 4

2

3

�
�

•
+

2 4

1

3

�
�

•
+

3 4

1

2

�
�

•
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Associativity first:

1 2

3

4

•
�

�
=

2 3

1

4

•
�
�

=

2 3

4

1

�
•

�
+

1 4 2 3

�
�

•

=

2 4

3

1

�
�

•
+

3 4

2

1

�
�

•
+

1 4

2

3

�
�

•

We see that the two expressions are already equivalent in Q � P , thus we do
not introduce any new relations in this case.

Case 2:

1 2 3 4

�
•

�

There are two di↵erent ways of rewriting this, either we apply the rewriting
law directly or we use the symmetry and apply the rewriting law to the second
argument first.

First argument first:

1 2 3 4

�
•

� =

3 4

1

2

�
•
�

+

3 4

2

1

�
•
�

=

3 1

4

2

�
�

•
+

4 1

3

2

�
�

•
+

3 2

4

1

�
�

•
+

4 2

3

1

�
�

•
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Second argument first:

1 2 3 4

�
•

� =

3 4 1 2

�
•

� =

1 2

3

4

�
•
�

+

1 2

4

3

�
•
�

=

1 3

2

4

�
�

•
+

2 3

1

4

�
�

•
+

1 4

2

3

�
�

•
+

2 4

1

3

�
�

•

We see that these are equivalent because of the associativity of �.
Case 3:

1 2

3

4

•
•

�

This tree can be rewritten in two ways as well. Either we use the rewriting
rule first or we use the Jacobi rule first.
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Rewriting rule first:

1 2

3

4

•
•

�
=

1 3

2

4

•
�

•
+

2 3

1

4

•
�

•

=

1 3

4

2

�
•

•
+

1 3 2 4

•
�

• +

1 4 2 3

•
�

• +

2 3

4

1

�
•

•

= �

4 1

3

2

�
•

•
�

3 4

1

2

�
•

•
+

1 3 2 4

•
�

• +

1 4 2 3

•
�

•

�

4 2

3

1

�
•

•
�

3 4

2

1

�
•

•
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Jacobi rule first:

1 2

3

4

•
•

�
=

1 2

4

3

•
•
�

+

3 4 1 2

�
•

•

= �

4 1

3

2

•
�

•
�

4 2

1

3

•
�

•
�

3 4

1

2

�
•

•
�

3 4

2

1

�
•

•

= �

4 1

3

2

�
•

•
�

4 1 2 3

•
�

• �
1 3 4 2

•
�

• �

4 2

3

1

�
•

•

�

3 4

1

2

�
•

•
�

3 4

2

1

�
•

•

We see that these expressions are equivalent since the terms of the form •
�

•

cancel because • has odd degree, causing minus signs from the Koszul sign rule.
Thus p

�

is injective and Gerst satisfy a distributive law.

7 The 2-Gerstenhaber Operad

7.1 The Graded Commutative Operad

Definition 7.1.1. Define the operad of graded commutative algebras by consider-
ing the operad Com (see example 6.6.2 ) to be an operad in gVect

K

concentrated
in degree 0 of a graded vector space. The algebras over this operad are the graded
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commutative ones, that is, the multiplication • satisfies

a • b = (�1)deg(a)⇤deg(b)b • a.
Theorem 7.1.1. The operad Com is Koszul.

Proof. A standard result which is proven in most texts on operadic Koszul duality.
See for example [MSS] or [LV].

7.2 The Operad 2-Lie
Definition 7.2.1. Consider an S-module E which as a vector space is a 1-
dimensional space concentrated in arity 3 and degree �1. Let the representation be
the sign representation, that is, the action of S

3

is given such that if the permuta-
tion is odd the vectors are multiplied by -1. The space  (E)(5) is 10-dimensional.
It has a basis spanned by elements of the form

�(1)�(2) �(3)

�(4) �(5)

•
•

where � runs over a set of even permutations such that there is exactly one per-
mutation for every way of assigning �(4) and �(5) (representative elements of the
cosets of S

3

in S
5

). An example of such a set of permutations is

{12345, 14235, 13425, 43215, 12534, 15324, 52314, 14523, 54213, 34512}.
Consider the subspace R spanned by

X
�

�(1)�(2) �(3)

�(4) �(5)

•
• ,

where � runs over the permutations described above. The quadratic operad
obtained by taking the quotient with the ideal generated by R we call the operad
2-Lie.
Theorem 7.2.1. The operad 2-Lie is Koszul.

Proof. We refer the reader to [DK]. This is also mentioned but not proven explic-
itly in [HW] where 2-Lie algebras where introduced. These references considers a
suspended version of ours. This change does however not change Koszulity. An-
other straight-forward but arduous way to check it is to use the ”rewriting method”
of [LV] to find a PBW basis.
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7.3 The Operad 2-Gerst
Definition 7.3.1. Consider the S-module E such that E(2) is the trivial repre-
sentation in degree 0 and such that E(3) is the sign representation in degree �1.
Let  (E)(2) be the S-submodule given by trees with 2 vertices. Define submodules
of  (E)(2), denoted RCom and R

2-Lie, constructed as in the definition of Com and
2-Lie. Let R

Der

be the submodule spanned by following element.

1 2

3 4

•
• �

1 3 4

2

•
• �

2 3 4

1

•
•

It is clear by the arities which elements decorate which vertices. Remember that
the permutation used to put the numbers in their place before using � will cause
some sign changes in the algebra. The quadratic operad obtained by taking the
quotient by the ideal generated by

R = RCom +R
2-Lie +R

Der

is called the operad 2-Gerst and algebras over this operad are called 2-Gerstenhaber
algebras.

Remark 7.3.1. Algebras over the operad 2-Gerst consist of a graded vector space
V equipped with a symmetric binary operation µ(x, y) of degree 0 and a skew-
symmetric trinary operation ⌧(x, y, z) of degree �1. They satisfy the identities

µ(x, y) = (�1)x̄ȳµ(y, x)
⌧(x, y, z) = �(�1)x̄ȳ⌧(y, x, z) = �(�1)ȳz̄⌧(x, z, y)
µ(µ(x, y), z) = µ(x, µ(y, z))X

�

(�1)sgn(�)⌧(⌧(�(x), �(y), �(z)), �(v), �(w)) = 0

⌧(µ(x, y), z, v) = (�1)ȳ(z̄+w̄)µ(⌧(x, z, w), z) + (�1)x̄(ȳ+z̄+w̄)µ(⌧(y, z, w), x),

where x̄ denotes the degree of x and
P

�

runs over all permutations in the set
specified in the definition of 2-Lie.
Remark 7.3.2. Applying the symmetric monoidal singular chains functor to the
moduli space operad defined in 5.2.3 we obtain a di↵erentially graded operad.
Taking the cohomology of this yields exactly the operad 2-Gerst. The proof is
quite complicated and we refer the reader to [EHKR]. However, we can indicate
where the generators come from. The generator in arity 2 and degree 0 corresponds
simply to the only 0-chain in M

3

since M
3

is just a point. The generator in arity
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3 is represented by a 1-chain in M
4

. M
4

is topologically just a circle and thus the
cohomology is generated by a single element in degree �1. The relabeling action
on the moduli space reverses the orientation of the 1-chain, thus this generator
has the sign representation in the dg operad. The di�cult part of the proof is to
show that these two actually generates the whole cohomology operad.

Theorem 7.3.1. The operad 2-Gerst satisfies a distributive law such that it is
composed of the operads Com and 2-Lie.
Proof. The proof idea is to use lemma 6.8.1 since by definition

2-Gerst ⇠= 2-Lie _
�

Com,

where � is defined by

�

0BB@
1 2

3 4

•
•

1CCA =

1 3 4

2

•
• +

2 3 4

1

•
• .

To prove that the map p
�

is injective on the restriction to trees of 3 vertices
we consider generators of 2-Lie � Com and check that if we rewrite them using the
operadic relations we do not induce any extra relations in Com � 2-Lie. There are
3 critical cases corresponding to the following generators (all other elements are
either spanned by those elements or contain only labels from one operad).

1 2

3 4

5 6

•
•

•
1 2

3

4 5

•
•

•
1 2 3 4

5

•
• •

Case 1:

1 2

3

4 5

•
•

•

There are two ways of rewriting this tree, either we use the rewriting rule first or
the rules coming from RCom. We have to check that the results are equivalent in
Com � 2-Lie.
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Rewriting law first:

1 2

3

4 5

•
•

•
=

1 2

4 5

3

•
•

•
+

1 2 3 4 5

•
•

•

=

1 4 5

2

3

•
•

•
+

2 4 5

1

3

•
•

•
+

3 4 5

2

1

•
•

•

Associativity first:

1 2

3

4 5

•
•

•
=

2 3

1

4 5

•
•

•
=

1 4 5 2 3

•
•

• +

2 3

4 5

1

•
•

•

=

1 4 5

2

3

•
•

•
+

2 4 5

3

1

•
•

•
+

3 4 5

2

1

•
•

•

We see that the two expressions are already equivalent in Com � 2-Lie, thus we
do not introduce any new relations in this case.

Case 2:

1 2 3 4

5

•
• •

There are two ways of rewriting this tree, either we use the rewriting rule on
the first or use the symmetric action and apply the rewriting rule on the second
argument. We have to check that the results are equivalent in Com � 2-Lie.
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First argument first:

1 2 3 4

5

•
•

• =

3 4

1 5

2

•
•
•

+

3 4

2 5

1

•
•
•

= �

3 4

1 5

2

•
•

•
�

3 4

2 5

1

•
•

•

= �

3 1 5

4

2

•
•

•
�

4 1 5

3

2

•
•

•
�

3 2 5

4

1

•
•

•
�

4 2 5

3

1

•
•

•

Second argument first:

1 2 3 4

5

•
•

• =

3 4 1 2

5

•
•

• = �

1 2

3 5

4

•
•
•

�

1 2

4 5

3

•
•
•

=

1 2

3 5

4

•
•

•
+

1 2

4 5

3

•
•

•

+

1 3 5

2

4

•
•

•
+

2 3 5

1

4

•
•

•
+

1 4 5

2

3

•
•

•
+

2 4 5

1

3

•
•

•

We see that the two expressions are already equivalent in Com � 2-Lie, thus we
do not introduce any new relations in this case.

Case 3:

1 2

3 4

5 6

•
•

•
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There are two ways of rewriting this tree, either we use the rewriting rule first
or the rules coming from R

2-Lie. We have to check that the results are equivalent
in Com�2-Lie. We choose a basis for the relation in 2-Lie where the permutations
are as follows:

{12345, 14235, 13425, 43215, 12534, 15324, 52314, 14523, 54213, 34512}.
Rewriting law first:

1 2

3 4

5 6

•
•

•
=

1 3 4

2

5 6

•
•

•
+

2 3 4

1

5 6

•
•

•

=

1 3 4

5 6

2

•
•

•
+

1 3 4 2 5 6

•
•

• +

1 5 6 2 3 4

•
•

• +

2 3 4

5 6

1

•
•

•

= �

1 5 3

4 6

2

•
•

•
�

1 4 5

3 6

2

•
•

•
�

5 4 3

1 6

2

•
•

•
�

1 3 6

4 5

2

•
•

•
�

1 6 4

3 5

2

•
•

•

�

6 3 4

1 5

2

•
•

•
�

1 5 6

3 4

2

•
•

•
�

6 5 3

1 4

2

•
•

•
�

4 5 6

1 3

2

•
•

•
+

1 3 4 2 5 6

•
•

•

+

1 5 6 2 3 4

•
•

• �

2 5 3

4 6

1

•
•

•
�

2 4 5

3 6

1

•
•

•
�

5 4 3

2 6

1

•
•

•
�

2 3 6

4 5

1

•
•

•

�

2 6 4

3 5

1

•
•

•
�

6 3 4

2 5

1

•
•

•
�

2 5 6

3 4

1

•
•

•
�

6 5 3

2 4

1

•
•

•
�

4 5 6

2 3

1

•
•

•
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10 term rule first:

1 2

3 4

5 6

•
•

•
= �

1 2

5 3

4 6

•
•

•
�

1 2

4 5

3 6

•
•

•
�

5 4 3 1 2

6

•
•

• �

1 2

3 6

4 5

•
•

•

�

1 2

6 4

3 5

•
•

•
�

6 4 3 1 2

5

•
•

• �

1 2

5 6

3 4

•
•

•
�

6 5 3 1 2

4

•
•

• �
4 5 6 1 2

3

•
•

•

= �

1 5 3

2

4 6

•
•

•
�

2 5 3

1

4 6

•
•

•
�

1 4 5

2

3 6

•
•

•
�

2 4 5

1

3 6

•
•

•
+

1 2 5 4 3

6

•
•

•

�

1 3 6

2

4 5

•
•

•
�

2 3 6

1

4 5

•
•

•
�

1 6 4

2

3 5

•
•

•
�

2 6 4

1

3 5

•
•

•
+

1 2 6 3 4

5

•
•

•

�

1 5 6

2

3 4

•
•

•
�

2 5 6

1

3 4

•
•

•
+

1 2 6 5 3

4

•
•

• +

1 2 4 5 6

3

•
•

•
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= �

1 5 3

4 6

2

•
•

•
�

1 5 3 2 4 6

•
•

• �
1 4 6 2 5 3

•
•

• �

2 5 3

4 6

1

•
•

•

�

1 4 5

3 6

2

•
•

•
�

1 4 5 2 3 6

•
•

• �
1 3 6 2 4 5

•
•

• �

2 4 5

3 6

1

•
•

•
+

5 4 3

1 6

2

•
•
•

+

5 4 3

2 6

1

•
•
•

�

1 3 6

4 5

2

•
•

•
�

1 3 6 2 4 5

•
•

• �
1 4 5 2 3 6

•
•

• �

2 3 6

4 5

1

•
•

•

�

1 6 4

3 5

2

•
•

•
�

1 6 4 2 3 5

•
•

• �
1 3 5 2 6 4

•
•

• �

2 6 4

3 5

1

•
•

•
+

6 3 4

1 5

2

•
•
•

+

6 3 4

2 5

1

•
•
•

�

1 5 6

3 4

2

•
•

•
�

1 5 6 2 3 4

•
•

• �
1 3 4 2 5 6

•
•

• �

2 5 6

3 4

1

•
•

•

+

6 5 3

1 4

2

•
•
•

+

6 5 3

2 4

1

•
•
•

+

4 5 6

1 3

2

•
•
•

+

4 5 6

2 3

1

•
•
•

We see that the two expressions are already equivalent in Com � 2-Lie since
firstly the trinary operation is alternating causing minus signs. Secondly, all terms

of the form •
•

• cancel because the trinary operation is of odd degree

60



causing a minus sign to appear from the Koszul sign rule. Thus we do not introduce
any new relations in this case either. Since we do not introduce any new relations
p
�

is a monomorphism, thus inducing a distributive law.

Corollary 7.3.1. The operad 2-Gerst is Koszul.

Proof. By above theorem, theorem 7.1.1, theorem 7.2.1 and theorem 6.8.3.

7.4 Further Directions

Knowing that the operad 2-Gerst is Koszul we can consider the cobar construction
on the quadratic dual to obtain the dg operad 2-Gerst1. What structure does it
have? How does the corresponding cohomology theory for 2-Gerstenhaber algebras
look. Is there any direct correspondence between the cochains of the operad M
and 2-Gerst1?

There is a theory of k-Lie algebras following [HW]; how would the correspond-
ing operad k-Gerst look? Are they Koszul? We could also consider combinations
of several di↵erent operations of higher arities. Are any of them self-dual as the
operad of Poisson algebras is?
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the manuscript carefully and for his valuable comments. Thirdly, I would like to
thank my dad for helping me out with numerous questions about LATEX and for
proof-reading.

62



References

[Bec] J. Beck, Distributive laws, Sem. on Triples and Categorical Homology Theory
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