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Abstract

This thesis describes the Sato-Tate conjecture of the number of points on an
elliptic curve over finite fields. I will show how this result can be derived using
heuristics and numerical experiments. Some theory about elliptic curves will
be provided to give a context for the conjecture. Furthermore I will describe
applications of some of the methods used in this thesis.
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1 The Sato-Tate conjecture

The problem is to determine the number of solutions N, to equations of the

type: )
vy =2+ Az + B (1)

4A3 —2TB% #0

over a finite field F with p elements , where p is a prime number.

The restriction on A and B is a necessary technical condition which will be dis-
cussed more thoroughly later. We mention that in the case where 44% —27B2% =
0, the curves take a more simple form and the counterpart to the Sato-Tate con-
jecture is easy to prove for these curves, see [1].

By a theorem of the German mathematician Helmut Hasse we know that NV,
lies in the interval. This is proved in [1]

p+1-2yp,p+1+2p| (2)

Hasse’s theorem only gives a lower and an upper bound to N,. It gives no
details about the distribution over the interval so we cannot answer questions
about how frequently IV, attains a value close to the upper limit or close to p ,
etc.

Around the year 1960 the American mathematician John Tate and the Japa-
neese mathematician Mikio Sato independently formulated a hypothesis about
the distribution over Hasse’s interval, which later came to be known as the Sato-
Tate conjecture.

The conjecture was made after both heuristical reasoning and numerical ex-
periments. At the time the performance of even the fastest computers in the
world was vastly inferior to todays standard computers, so the process of mak-
ing numerical experiments took a lot of time and had to be done with severe
constraints on the size of the fields used in the calculations. See [5] for more
details.

This thesis will describe a method of how to derive the Sato-Tate conjecture us-
ing both heuristics and an experimental part. The result will be a formulation
of the Sato-Tate conjecture with an explicit function describing the distribution
of solutions over the interval (2).



1.1 Examples

(2]
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Figure 1: The solutions to y* = 2° + 2 + 3 (mod 11)

The figure shows the 17 solutions to the elliptic curve 3? = 2% + = + 3 when
taking « and y as integers modulo 11 '. Putting p = 11 in (2) the interval for
possible numbers of solutions is [6, 18]. In this case the number of solutions is in
the upper end of the allowed interval. If we instead do the arithmetics modulo
19 we will get 20 solutions , a number close to the middle of the interval (2),
i.e. with p =19 we get the interval [11, 27].

The distribution conjectured by Sato and Tate would allow us to understand
how the number of solutions varies over the interval (2) for fixed values of A
and B as p varies over all the primes.

2 Algebra
2.1 Definitions

Definition 1. A group (G, x) is a set G equipped with a binary operation x
on G such that the following holds:

(i) Closure: For all a,b € G a b is a uniquely defined element in G
(i) Associativity: (a*b)*c=ax (bx*c) for all a,b,c € G

(iii) Identity: There exists an element e € G called the identity with the
property exa =axe for all a € G

(iv) Inverses: For each element a € G there exists an element a~' called the

inverse of a such that: axa ' =a 'xa=¢e

1See section 2.2 why this is a field



If axb=>bxa for all a,b € G the group is called abelian

If the set G has a finite number of elements the group is called a finite group.
In this case, the number of elements in G is called the order of GG, denoted by
Gl

Definition 1.1. Let (G, *) be a group , and let H be a subset of G. Then H is
called a subgroup of G if H itself is a group under the same group operation
asin G.

Definition 2. A field is a set F' on which two binary operations + and - are
defined such that:

(i) (F,+) is an abelian group with the identity element 0
(ii) (F\{0},-) is an abelian group with identity element 1 # 0
(iii) The distributive law a- (b+¢) =a-b+ a- ¢ holds for all a,b,c € F

Note that each element a € F' has an inverse with regards to the 4 operation
and an inverse with regards to the - operator. We separate these by letting (—a)
denote the first one and the other by a .

A field makes it possible to define the four arithmetic operators 4, —, %, / where
the operators — and / have the meanings a — b = a 4 (—b) and a/b=a * b~ ",

2.2 Basic theorems

To assist the reasoning in future sections we state without proofs some very
basic theorems about groups , fields and polynomials.

Proposition 1. In a group (G, *) with a,b, ¢ € G the following holds:
(a) Cancellation: axc=bxc = a=0»b
(b) Unique identity: axb=a = b=e
(c) Unique inverses: axb=c¢ = b=a"'

Proposition 2. Let F be a field with the operations + and -
(a) For all a € F we have: a-0=0
(b) a-b=0 = a=00rb=0

Theorem 3. Let f(z) be a nonzero polynomial over the field F of degree n
and ¢ € F. Then f(c) = 0 if and only if  — ¢ is a factor of f(z). That is
f(e)=0 < f(z) = (z—c)g(z) for some polynomial g(z) over F of degree n—1.

With the definitions in the previous section and these theorems we can prove:

Theorem 4. A polynomial f(z) of degree n with coefficients in a field F has
at most n unique roots in F.



2.3 Examples

Proposition 3. Let ¢t be a positive integer and p > 2 be a prime number
and let Z; and Z, be the set of possible remainders under division by ¢ and p
respectively.

(a) (Z,+) is a group under addition of residues with identity element 0.

(b) Z, is a field under addition and multiplication of residues respectively with
identities 0 and 1.

We will show this with some simple examples aided by a simple theorem.
See [2] for full proofs in a more general context.

Theorem 5. For any integers a and b > 0,there exist unique integers ¢, r such
that a = bg+r, 0 <r <b. qis called the quotient and r is called the remainder
of a under division by b.

Consider integer division by ¢. When we divide any integer by ¢ the remain-

der will always be a an integer in the set Z; = {0,1,...,t — 1}. If we add any
two numbers a, b in this set we will get a unique integer ¢ = a +b. By Theorem
5 above this number ¢ will have a unique representation on the form: ¢ = tq+r
where 0 < r < t and thus r € Z;. We can then naturally define a group opera-
tion * on this set by letting a x b be the remainder of a + b under division by t.
This shows that * has the property of closure in Definition 1.
Associativity follows easily because (a + b) + ¢ = a + (b + ¢) so that the re-
mainder under divison by ¢ will be the same. For the element 0 we have
ax0=0%xa=a+ 0 = a for all elements in Z; by definition of * so that 0
is an identity. 0 is clearly also its own inverse. For the other elements we can
order them in pairs (1,¢ — 1), (2, — 2), ... so that for every pair (a,b) it holds
that a + b=t and a *b = b*a = 0 meaning that b = ™! and @ = b~! This
completes the checklist in Definition 1 and shows that this is a group (Zi, )
which we will denote (Z;, +) with some slight abuse of notation.

When performing integer division by a prime p we have to show that we have
an operation x that makes the set Z,\{0} an abelian group with 1 as identity
to prove that Z, is a field. We define a x b to be the remainder of the integer
product a - b under division with p. This establishes the properties (i)-(iii) in
Definition 1 for the same reason as above. For each element a € Z,\{0} we
have that the greatest common divisor ged(a,p) between a and p is 1 since p is
a prime.

Proposition 4. Let a,b be non-zero integers. Then gcd(a,b) =1 if and only if
there exists integers m, n such that ma +nb =1

Because of this we can match any a € Z,\{0} with an integer m such that
ma+np = 1. By the uniquness of the numbers ¢, by Theorem 5 we have that
if a =bg + r then a — kq = b(q — k) + r when k € Z so that the numbers a and
a — kq have the same reminder under division by b. Under division by p we can
then see that ma = ma + np — np has reminder 1. Furthermore, for an integer
0o =m + lp for some | € Z we can write oa = ma + mip = ma + (ml)p. The
number oa must then also have the remainder 1 under division by p. We can
choose [ so that 0 < 0o = m+1Ip < p = o € Z,\{0} by Theorem 5. We have



now found that the pair of elements ¢! = 0 and a are each others inverses with
respect to the operation X because a ! x ¢ = a x a~! = 1 by definition.

3 Elliptic curves

This section will give a very brief introduction to some basic properties of elliptic
curves. For more information and details, see [1], [3] and [4].

As a general explanation to why equations on the form (1) are interesting to
study we begin by asserting that every third degree equation in two variables
az® 4+ bxy + cxy® + dy® + ex® + foy + gy? + ha + iy + j = 0 can be rewritten
on the form 3? = 2 + az? + bz + ¢ through a series of transformations and
variable changes. This form is called the Weierstrass form. This means that it
is sufficient to study curves in Weierstrass form because the understanding of
their properties can be transfered back to the original curve.

If we restrict ourselves to equations over finite fields Z, with p > 3 , we can go
even further and rewrite the general third degree equation to y? = 2® + Az + B
We can now see that the study of these equations is the next logical step after
studying first and second degree equations in the forms: ab + by + ¢ = 0 and
ax® + bry 4+ cy? +dx +ey+ f =0.

3.1 Definition

Definition 4. An elliptic curve C(F) defined over a field F' is the set of
solutions (z,y) to the equation

=2+ ax? + bz +c
4A3 —2TB% #0
where a,b,c € F

Note that F' does not have to be finite. We will use elliptic curves over
the field of real numbers R in the next section. For this field the property
4A% — 27B? +# 0 ensures that the curve is differentiable for all € R.

For a finite field we cannot make the same connection, but in this case 44% —
27B% # 0 ensures that > + Az + B does not have a double root.

3.2 Group structure of elliptic curves

An interesting property of elliptic curves is that it is possible to turn the set
of points on an elliptic curve C into an abelian group E(C). This requires an
additional special point O, called the point at infinity, that will serve as the
identity element.

The most simple way to describe the group operation on this set is with a
geometrical figure where A, B, x € R:
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Figure 2: The group operation

In the most simple case, the addition of two points P and @ is simply done
by connecting the points with a line and then finding the third point R where
the line crosses the curve. The sum P + @ is then the mirror of R about the
x-axis. Le. if R = (x,y) then P+ Q = —(x,y) = (z,—y). This point is also
the inverse? of R with regards to the new operation. It is easy to see that this
operation is commutative by definition because the point R will be the same
irrespective of the order of P and Q.

If no such point R exists we define the point at infinity O as the third intersection
point. We can think of O as a point on the y-axis infinitely far away. By saying
this we mean that a line between any point on C' and O is parallel to the y-axis.
The mirror point of O is O itself. This allows us to make sense of the case
P + (—P) = O in Figure 2.b

The case of P + O can also be explained by the same figure; if we extend
the line between P and O we get —P as the third intersection point so that
P+0=—(—P)=P.

3.2.1 The technical details

The reason for defining the operation like this becomes clearer when making the
observation that a straight line seems to intersect an elliptic curve at three points
with the exception of a few corner cases. If two points P = (z1,y1), @ = (22,¥2)
on an elliptic curve have 1 = x5 then the straight line through P and @ is ver-
tical and obviously only crosses the curve at two points. This motivates the
introduction of the point at infinity O which is taken as the third point of in-
tersection and allows us to define inverse elements by y-axis mirroring. This
means that we can set P+ @ + R = O when z; # x5 because by definition of
the inverse, the sum of the point R and the point we defined as P+ Q is O. In
fact, for any three points of intersection between an elliptic curve and a straight
line we can define their sum as O. We have covered the cases of P+Q+ R =0
in Figure 2.a and P + (—P) + O = 0. The remaining case is the special case of
Figure 2.a when P = Q). We can set P + P + @ = O if we take the tangent of
the elliptic curve at P and letting @ be the point where the tangent intersects

2Note that we denote the inverse of R as —R instead of R™!



the curve again. Then we have P+ P = —Q, or P+ P+ @Q = O. So far, the
examples we have used to show how the group operation for points on an elliptic
curve works have been motivated with geometrical reasoning. The figures 2.a
and 2.b are drawn for an elliptic curve over the field of real numbers R. Because
of this, and the assertion that the line connecting two points on the curve always
intersects the curve at a third point, we can easily see that the closure property
in Definition 1 holds. From the way we went about defining the point O we
have an element that works as an identity according to Definition 1. We also
note that if P = (x,y) is a point on the curve C, the point —P = (z,—y) also
has to be on the curve C because y*> = 2 + Az 4+ B & (—y)? = 2® + Az + B.
This explains why the definition of inverses in this group makes sense.

If we have an elliptic curve over a finite field IF, we lose the geometrical inter-
pretation. It is no longer clear that we can connect two points P = (z1,y2), @ =
(z2,y2) on C with a line to get a third point R that is also on C. Now, the condi-
tion 443 —27B? # 0 is equivalent to the polynomial 2®+ Az+ B having 3 distinct
roots 1,2, 3. By Theorem 3 we have: 34 Az+b = (z—x1)-(x—x3)- (x—23).
We can construct a linear equation: y = kx+[ with the property that y; = kx1+

and ys = kxo + [ which means that k = % and [ = —kx1 + y1. In the case
of an elliptic curve over R, this is obviously the straight line connecting P and
Q. If we put this equation as y in the equation defining an elliptic curve we get:
(kz+1)> =2+ Az + B (3)
expanding the left hand side gives:
23— k22 (A= 2kl)z + (B-k%) =0

We know that x; and x5 are roots to this equation. If we call the third root x3
and apply theorem 3 we get:

23— k2 + (A=2kl)x 4+ (B—k) = (x —z1) - (x — 22) - (x — x3)
expanding the right hand side
23— k22?4 (A—2kl) x4+ (B—k?) = 23— (z14+To+23) 2%+ (21 204+ 21 T3+ To23)T— 21 T3

in particular we have that the coefficients of the 2% term must be the same on
both sides of the equality:

1‘1+l‘2+l‘3=k2:>l'3=k2*l‘1*l‘2 (4)

If we now put 2 = z3 in (3) we see that the point (z3, kz3+1) = (v3, ks — ka1 +
y1) is located on the curve C. Since we have closure in any field F it follows that
the group operation on points of elliptic curves also has the closure property if we
define P+@Q = R where P = (z1,41), @ = (22, 92), R = (23, —(kas —kz1+y1))
and z3 is calculated as in (4).

We have yet to show that the operation is associative. We have also not shown
how to derive an explicit formula for P + P.

This formula is just written out in the definition below. We will not derive it in
this thesis. See [4] for a complete proof.

Definition 5. Let C be an elliptic curve over a field F defined by 3> = 23 +
Az + B. Let P = (x1,y2) and @ = (x2,y2) be points on C separate from the
point at infinity O and with P 4+ @ # O. The sum S = P + @ is defined as:

10



Put S = (z3,y3) , then
T3 = k* — 1 — X2,
s =kl — )

where

%}% if P+£Q
k= 3z + A

2y

if P=0Q

Note that & is the slope of a line between P and @ in the first case and the
slope of the tangent at P in the second case.

3.3 An example

Below is an example where we show the group operation table for the elliptic
curve y2 =12% + 3z + 7 over Zq1.

The solutions to the equation in Zq; are®:
(1,0),(5,2),(5,9),(8,2),(8,9),(9,2),(9,9), (10,5), (10, 6)

If we use the formulas above and introduce the imaginary point at infinity, O,
we can make a table for the group operation:

Table 1: Addition table for y? = & + 3z + 7 over Fy;

L+ [ 0 1060 [ 6269 6269 [ 02 [ 99 [105 ] 106 |
o O 140 [ G2 | 69 [ (82 [ 89 [ 92 | (99 [ (9,10) ]| (10,6)
L) [0 [ 0 [ 32 [ 89 [ (52 | (59 [ (106) | (105 | 0.9 [ 9.2
52 | 652 [ B2 [0 [ © [ 99 [ 10) | &9 | 0,2 || (10,6) [ (59
59 [ 69 [ @9 [ 0 [[106 [ (1o [ 02 [ 09 | &2 || 6,2 || (10,5
82 [ ®2 [ 62 [ 0.9 [ 1o [0 [ 0 [ (59 | (106 | 9.2) || (89
89 [ @9 [ 9 [ o [[902 [ © [ 106 [ (105 | 62 || 82 [ (9.9
92 [ 02 [[(106) [ 89 [[ 99 [ 59 [ (105 | G2 | 0 || (1,0) [ 82
(9,9) || (9,9) || (10,5) || (9,2) || (8,2) || (10,6) || (5,2) o (5,9) || (89) | (1,0)
(10,5) [ (10,5) [ 0.9 [[(10,6) [ 52) [ 92 [ 82 | 4,0) | B9 [ 5.9 | ©
(10,6) [ (10,6) [ (9.2) | (5,9) [[ (10,5) [ (89) [ (99) | 82) [ (1,0) (5,2)

Note that the size of the group E(C) is the number of solutions to the
equation y? = 2® 4+ Az + B plus the special point at infinity i.e. |E(C)| = N,+1
In this example: |E(C)| =9+ 1 = 10.

In the next section we will show how to calculate |E(C)|.

3See 5.1 for a method to calculate all the solutions

11



4 A first analysis of the distribution over Hasse’s
interval

Definition. Let p > 2 be a prime and let > 0 be an integer.
x is a quadratic residue mod p if there exists y € Z, such that y> = (mod p)
and a quadratic non-residue otherwise.

Definition. Let p > 2 be a prime. For an integer a > 0 we define the Legen-
a

dre symbol (7> as:
p

ifa=0 (mod p)
a
(7) =<1 if aisa quadratic residue mod p (5)
—1 otherwise

1
Lemma 1. There are exactly % distinct quadratic residues in the field Z,

Proof. If 2% = 2 then (z+y)(x —y) = 0 so that & = +y. This tells us that each
element and its additive inverse correspond to exactly one quadratic residue. By
proposition 1 we know that inverses are unique.

-1
The elements in (Z,, +) are the L 5

-1 1
0. In total: pT +1= ‘1% quadratic residues.

pairs x, —z s.t. £ # —z and the element

O

With these definitions we can write:

1B () B (e

=0 x=0 p

because if y solves y? = 2® + Az + B (mod p) we get two solutions (y and —y)
when y # 0 and one solution if y = 0.
So the problem is to calculate

p—1 3
>+ Ax + B
oyt 5 (£n ey .

=0

To make a general prediction about the right hand side of (3) we can view it as
a sum of p random variables over the set {—1,0,1} :

V=3 X (8)

To decribe the probability functions px, () we need to determine how the values
of the Legendre symbol are distributed depending on the parameters A, B, z and

1
p. There are Pt

possible values of a quadratic residue in Z, and we we assume

that the values of f(x) = 2®+ Az + B for x = 0,1...,p— 1 should in some sense
be spread out evenly over Z,, , in particular not be biased towards the quadratic
residues.

12



With these arguments the probability that f(x) is a quadratic residue is:
ptl

PX;=1=-2 =~ 3 for all ¢ when p is large enough.
p

Now we have that:

P[X;=-1]4+P[X;=0/=1-P[X=1]~1-05=05 (9)

By Theorem 4 we know that the equation f(x) = 0 has at most 3 solutions.
This implies that P[X; = 0] < —. When p is large this quantity is of negligible
p

size and thus wont have any impact on the probability function px,(z)

Motivated by this we suggest the following probability density function:

0.5 ifz=1
px(z) =405 ifzx=-1 (10)
0 ifx=0

Note that we have omitted the index 7 simply because we expect the probability
that 2% + Az + B is a quadratic residue to be independent of z.

To test the asumptions made, and the reasoning above, we want to calculate
said probabilities for some polynomials over some fields Z,.

A simple procedure using the ideas above is to make a list of those values
in the interval {0,1,...,p — 1} that are quadratic residues modulo p. Then we
can calculate z = f(x) for all # € Z, and for each value z check in the list if
it is a quadratic residue. After counting the number of residues found, we can
divide this number by p to obtain the experimental probability that f(z) is a
quadratic residue.

We let a computer program do this given parameters A, B, p. Below is the pseu-
docode for a simple implementation of the procedure described above.

Input: A, B,p
vector? y[p]
vector squares|p]
fori=1...pdo
yli] <0
squares[i] < 0
end for
fori=0...p—1do
index + % (mod p) + 1
squares[index] + 1
end for
forx=0...p—1do
index + z° + Az + B (mod p) + 1
ylindex] + ylindex] + 1

4This represents a list with p elements with indices in the range 1,2,...,p

13



end for

Output: S yli] - squares|i]

p
With this algorithm we make the following table:

f@)=a+Az+B  p px(1)

=2 +7 20741 0.50422
x> + 4520 — 22 29741  0.49823
x> + 452 — 22 15809 0.49643
2 — 5z + 19 15809 0.49320
22+ 8z —13 5903  0.50178
2 — 4z +8 5903  0.50737
2>+ 250+ 2 44971  0.49803

4.1 A heuristic argument

From the table it seems that our reasoning is valid. Px (1) does indeed seem to

be close to 0.5 indepenent of the variables.

For fixed values of A and B we can consider p to be a large random odd prime

with a uniform probability distribution and consider the probability density
p—1

function py (z) where Y = Z X

Y is a sum of p numbers :|:21 (\)zvith equal probability and if we assume the indi-

vidual X;’s to be independent Y should have a normal distribution around zero

with variance /p by the central limit theorem.

We have to be very careful here, because a normally distributed variable could

with a certain probability attain a value that is out of the range allowed by

Hasses theorem. Le: P[|Y| > 2,/p|] > 0 if Y has a normal distribution.

This tells us that we must have some kind of dependency structure between

the variables X;, or more explicitly, that the probabilistic model was a bit too

simple.

Arguing in an informal way, we would expect a probability distribution that

behaves like the normal distribution in the sense that we expect it to be cen-

tralized around 0, and show similar variation because of the probabilites above,

but always attain a value in the range [1 — 2,/p, 1 + 2/p].

Based on these results we can calculate an approximation of py (z) by gathering
empirical data for one polynomial over many different fields Z,,.
5 Modelling a probability density function

Definition 4. A cumulative distribution function for a random variable
X is defined as: Fy := Pr[X < z], where —oco < & < 0.
xr
Definition 5. If there exists a function fx(x) such that Fx(z) = / fx(z) dz
—o0

then X is said to be a continuous stochastic variable.
The function fx (z) is called the probability density function for the variable
X.

14



We will use the abbreviated terms cdf and pdf for cumultative distrubtion
functions and probability density functions respectively.

In this section we will calculate the number of solutions to an equation on the
form (1) over 300000 different fields Z, where p are large primes. We will also
decribe a method to do this effectively. The data will be used to calculate a prob-
ability density function by fitting it to a function with the least squares method.

Since we are going to calculate the number of solutions to one equation over
many different fields, we have to clarify the reasoning about the probability
density function. We clearly expect the variance to depend on p, so therefore
we have to normalize the variables in some way.

The result from Hasse’s theorem:

p+1—-2p< N, <p+1+2\p (11)
can be written as:
“2Vp<Np—(p+1) <2yp (12)
or
-1< w < (13)
2yp

ap _ Np— (p+1)
2yp 2yp
This suggests a nice way to normalize the variables. Given a way to calculate
N, we can do so for a range of different primes and for each value calculate cp,.

Motivated by this we define a, := N, — (p+ 1) and ¢, :=

5.1 Counting N, for an equation in Z,

The set: S = {(z,y) | ,y € Z,} contains p? elements , including all possible
solutions to the equation:
=2+ Az + B (14)

A naive algorithm could calculate N, in O(p?) time by testing for each element
in S if it solves the equation.
A faster algorithm would allow us to get a larger dataset in the same amount

of time.
n+1

We can speed things up by calculating the values of 42 in Z,, and for each

value setting the corresponding element in a list to 1, leaving the untouched
values to the initial value 0° . This requires O(p) memory and O(p) time.

We then proceed by evaluating the right hand side of (9) for z = 0,...,2 — 1
to z = 2% + Az + B and checking in the precalculated list if element number z
is 1 or 0. In the first case we know that z is a quadratic residue. If z = 0 then
(z,0) is a solution to (9), if z # 0 then there exists two numbers y and —y so
that 2 = (—y)? = z giving us the two solutions (z,%) and (z, —y).

In the second case that element number z is 0 there is no possible value y that
would make (z,y) a solution to (9).

This suggests the following algorithm with a time complexity of O(p) and

5See the algorithm in section 4
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memory O(p) which is a significant improvement over the naive algorithm:

Input: A,B,p
vector squares|p
N, <0
fori=1...pdo
squares[i] < 0
end for
fory=0...p—1do
index +— y° (mod p)
squares[index + 1] + 1
end for
forx=0...p—1do
2+ 2® + Az + B (mod p)
if squares[z + 1] =1 then
if z=0 then
Ny« N, +1
else
Np < Np+2
end if
end if
end for
Output: IV,

5.2 The number of solutions for 3> = 2° + 22 + 3

We use a program that implements the algorithm above to count the number
of solutions to the equation

v =2+22+3 (mod p) (15)

The program generates a list of 300000 positive integers N, over the fields Z,
where p are the first 300000 primes p > 44773. The numbers are then normal-
ized to a set of values c, according to section 5. We call this set L. We view
the data as 300000 outcomes of a random variable X from the distribution we
want to determine. Call the cumulative distribution function Fx(z) and the
probability density function fx(x).

The data is then plotted as a histogram with 100 bins:
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Figure 3
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The histogram is constructed so that Zm(z) = 300000 where m(z) = |b;|

i=1
is the number of elements in the i:th bin defined as:

bi={eeLl—1+(i—Dh<ax<—1+ih} (16)
C1-(-1) 2
Whereh—w—roo

We can also make a cumulative histogram. Consider the function:
i
M(i) = m(j) (17)
j=1

Plotting for ¢ = 1,...,100 gives us:
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To relate these figures to the functions fx and Fx we begin with noticing
that the probability for a value ¢, to be placed in a bin to the left of or in the
izth bin is :

. M (i)
= 1
P = 355000 (18)
Now , for all z; on the form x; = —1+4h , i =1,...,100 we find that
. M(i)
Fx(z;)=Pr(X <ux;) = 1
x(wa) = PriX < @) = 555000 (19)

is an estimation of Fx (x;) at a discrete set of points.
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x
x
L x 4
x
x
x
0.2 < |
»
x
x
x
L . |
o
x
x
x
0 f I . I . I . I .
- 0.5 0 05 1
X

Figure 4: Empirical cdf
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The functions fx and Fx are closely related in the sense that:

() = & F(@) = i XL = Fx ()

(20)

Since we have an approximation F x (z) we can use it to approximate the deriva-

tive of Fix(x) at the points z1, ..., 100
Fx(x; +a) — Fx(z;) NFX(:Ei—l—a)—FX(wi) (21)
a a

2
By assigning a = h = — we have that

100
iF (I) - Fx(l'z + h) - Fx(lil) _ Fx(l'H_l) — Fx(zl) _
dz X h - h -
M(i+1) _  M(i) M(i+1)=M(@i)  m(i+1) . .
300000 _ 300000 _ 300000 _ _ 300000 _ m(i+1) 100 _ m(i+1) (22)
h h h 300000 2 6000

The next figure shows a plot of this function:

0.8

VS JOW

-1 -05 0 0.5 1
X

Figure 5

5.3 Modelling a density function

To conclude the previous section we can say that the numbers ¢, indeed seem to
converge towards a distribution. To fit the data to a function we need to make
an analysis of what the distribution looks like, to be able to choose a suitable
model function.

Since all the values ¢, are in the range [—1,1] we can associate each ¢, with an
angle 0, € [0, 7] such that cosf, = ¢, and instead try to fit a function to the
set of the values 0,.

By doing so we make the restrictions on ¢, implicit in our model.

In figure 3 we have an approximation of the function fx(z) we want to deter-
mine. Apart from the choppiness in the graph it looks like a quite well behaved
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function. Given that we constructed the graph by a numerical approximation
of the derivative of the graph in figure 2, we expect that the choppiness in the
graph is caused by numerical issues. To motivate this further, we expect the
graph in figure 2 to have a smoother derivative than this.

If we disregard the choppiness (by refering to Figure 3 ) , the function appears
to be an even function. We integrate this observation into our model.

Motivated by all this we try to fit the data to a Fourier series. Assuming the
function is even we can directly try with a cosine series:

N
fo(0) = Z ap, cosnb (23)
n=0

Because of the fact that there were some issues with determining the approx-
imation of fx(z) we can expect them to cause further problems with the nu-
merical accuracy when we try to fit the data to the cosine series. However
, if we instead try to fit the curve in figure 2 to a function we can expect
a more accurate result. This means that we will try to fit the datapoints

0
{z1, F(21)), ..., (z100, F(2100))} to the primitive function Fg(0) = / fo(6) do
0

We integrate (23) to get the cdf:

8 - 16 N [sinnd ’
F@(G):/O ;ancosnedﬁz[aOO}oJranZ[ - ] =

n=1 0

A
:a09+§ — sinnf
n
n=1

We must have that

1
Fo(m)=1 = ar+0+...=1 = ao = —

so that the general form of the series we want to fit our function to is:

m

N
Fo(f) = vy > by sinnd (24)
n=1

5.4 Fitting the data to our model

The set {1, F(z1)), ..., (100, F(2100))} cannot directly be used with the model
(24). For each value x; we need to calculate its corresponding angle 6; € [0, 7].
The correct way to do this is with the bijection §; = 7 — cos™*(z;) because
we want Fg to be an increasing function. We use N = 12 to only include 12
coefficients by, ..., b2 in the model.

N . T
We view the data as a vector x = [0y, ... ,6100]" and avectory = |F(z1),..., F(xlgo)]
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and the matrix:

sin(1-60y) sin(2-60;) ... sin(12-6y)
X — | sin(1-62) sin(2-62) ... sin(12-63)
sin (1 . 0100) sin (2 . 0100) ... sin (12 . 6100)

Our model can now be written in matrix form:
1
—x+Xb=y (25)
T

1
Form the new vector: z=y — —x

w
The problem is now to calculate the vector b that satisfies:
Xb=2z (26)

Since the system is overdetermined we know that there is no solution but that
the vector b that minimizes the norm

Iz — XDb]* (27)
is given by the normal equations:
(XTX)b=XTz (28)

Solving (28) gives:
0.00019087087]
—0.1594348064
0.00015471255
0.00013657114
0.00011571785
—0.0000360403
—0.0002155770
0.00005559181
—0.0000210021
0.00007706562
—0.0001150259
| —0.0000778209 |

All the coefficients are very small except be. If we ignore the other numbers we
get:

0 1
Fo(0) = — — 0.1594348064sin (20) = —(6 — 0.5008792165sin (20)) ~ (29)

As the final step we guess that the function we are looking for is:

Fa(t) =+ (- 2) (30)

We plot this function together with the data from figure 2 marked as red circles:
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This would give a probability density function:

dFe 1 1 5 coan 2 o
0 = (1 —cos20) = 7T(l (cos® 0 —sin“0)) = —sin 0 (31)
To get the cumulative density function fx(x) we have to differentiate:
dFe  dFe df
de ~ df dx (32)
where
9(z) = m — cos ! (x) (33)
with @0 )
A - 4
TR — (34)
so that 5 "
fx(z) = - sin? 9(1‘)% (35)

now using the trigonometric angle subtraction formula for sine gives:

sin@(z) = sin (7 — cos ™' (x)) = sin 7 - cos (cos ™' (z)) — sin (cos ™! (x)) - cos T =
=0-x —sin(cos () - (=1) = sin (cos " (z))

using the Pythagorean trigonometric identity we can write:

sin? f(x) = sin? (cos 1(z)) = 1 — cos? (cos~1(z)) = 1 — 2? (36)
and finally:
2@ 22y L 2 e
fx(a:)—ﬂsm O(I)dﬁ_ﬁ(l z?) N 1—z (37)
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5.5 Testing the model

As we can see the function f,(x) seems to model the data quite well. Plotting
the difference between f,(z) and the empirical density function from figure (5)
at the discrete set of points gives a measure of how good an approximation our
model is.
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6 The conjectured result

If we repeated the process described in the previous chapter for another equa-
tion on the form (1) we would get very similar results. This insight backed by
heurestic reasoning made the mathematicians in question conjecture the follow-
ing result.

The Sato-Tate conjecture. Let C' be an elliptic curve over a finite field

N, — 1) .
Z,, As p varies over the range of primes, the number a, = % will
p
be randomly distributed over the interval [—1, 1] with the probability density

2
function fx(z) ==V 1 — 2?2
77

The conjecture is sometimes defined for the angles 8, with the pdf (29) in-
stead. The conjecture can be made more general to also apply to so called
modular curves in addition to the elliptic curves. This is beyond the scope of
this thesis though. See [7] for more information.

2
The distribution function fx(z) = —+v/1 —z? is sometimes also refered to as
m

the Wigner semicircle distribution. It appears among other things as the dis-
tribution of eigenvalues for random N x N matrices with entries chosen from a
standard normal distribution. In this context this distribution has a relation to
the natural measure on the 2-dimensional unitary group through “the action of
Frobenius”, see [9].

6.1 Proving the Sato-Tate conjecture

In March 2006, a major breakthrough in the process of proving the Sato-Tate
conjecture was presented by Richard Taylor at Harvard University together with
Laurent Clotzel,Nicholas Shepherd-Barron and Michael Harris. The proof apply
to wide classes of elliptic curves satisfying some technical conditions. A general
proof for elliptic curves over all fields is still missing, see [6] for an overview of
this result.

7 Related topics

Elliptic curves are a very important field of interest in cryptography. Elliptic
curves over finite fields F,, can be used to implement a cryptographic system.
Cryptographers use theory of mathematics to find so called one way functions.
These functions have the property that it is easy to calculate y = F(xz) for a
value 2 but hard to invert the function in order to calculate 2 = F~*(y) unless
you know a (secret) key value. Such a function can be used to encrypt a value
z as y = F(x). The encryption is safe if it is hard to get back z from y.
One way to implement this is by using the group of points on an elliptic curve
C, a point P on this curve and a secret positive integer n. We use n to calculate
a point

Q=P"'=nP=P+P+...+P (38)

n additions
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For this calculation to be fast even for very large values of n a technique called
double and add can be employed. This is done by writing n in base 2

nP = (dy+2dy+4ds+ ... +2"d,)P = doP + 2d1 P + 4dyP + ... + 2™d,,, P

The calculation of nP can then be done in m = loga(n) steps by starting with
Q = O and i = 0 and for each binary digit d; calculate 2!P = 2=1P 4 2i-1p if
i > 0 and then add this number to the cumulative sum @ if d; = 1.

The security of this system relies on the fact that it is hard to calculate the
integer n given the two points P and @. This is called the Discrete logarithm
problem. The number n is defined as the discrete logarithm of @) with respect
to P. We could of course use another group than the group of points on an
elliptic curve, but the reason for this choice is that there is no known algorithm
for calculating n fast enough. The best known algorithm is of time complexity
O(y/n) for a general elliptic curve. This quickly becomes infeasible to do as the
size of the group C is in the order of a few hundred decimal digits.

One can show that the set of points (P) = {O, P,2P,3P,...} is a subgroup of
E(C). We say that P is a generator of the subgroup (P). The relevant measure
of security, i.e. how hard it is to solve the discrete logarithm problem in F(C),
is the size of the subgroup (P). The following theorem by Lagrange relates the
size of the subgroup to the order of E(C).

Theorem 6. Let H be a subgroup of the finite group G, then |H| is a divisor
of |G|.

Proof. See [2] O

For a group E(C) of points on an elliptic curve C' and a point P € E(C) we

define the cofactor
L 1B©)
[(P)]

For cryptographic purposes a small cofactor h < 4 is required. This means that
we have to find a group E(C) of order |E(C)| prime or near prime. In particular,
a fast method for counting the number of points on an elliptic curve is needed to
certify that an elliptic curve is safe for cryptographic use. The method we used
in section 6.1 is far too slow for this purpose since the minimal recommended
field F), for use has p > 2724,

7.1 Counting points on elliptic curves

The method for counting points |E(C)| devised in 6.1 is of time complexity
O(p) for a finite field I, since calculations had to be done for each z € F,.

If we assume that each of the p required calculations can be done in
050

1
3-109
seconds we would require about 1 years to calculate the number of points
on an elliptic curve over a field F, if p ~ 22?1, Given that a fast computer
works at a frequency ~ 3 -10° Hz , the expected time is more than likely an
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underestimation.

By using the group FE(C) and some theory we can construct a method that
is much faster. By Hasse’s theorem we know that |E(C)| is a number in the
interval [p+1—2./p,p+1+2./p| so that |E(C)| is one of 4,/p possible numbers.
For a subgroup (P) one can show that for any element a € (P) it holds that
a¥ = O where N = |(P)|. By Theorem 6 we know that N divides |E(C)| so

that for any a € E(C) we have o™ = (aN)% = O~ = O with M = |E(C)].

If we can find a point R € E(C) and a unique integer m € [p — 21/p,p + 2/}
so that R™ = O, it must then hold that m = |E(C)|.

A concrete way to find such a unique number m in Hasse’s interval is to pick
a point P € E(C) and then calculate mP for p — 2\/p < m < p+ 2,/p. If we
only find one number m with the property a” = O we are done. If we find
several numbers we choose another point on the curve and try again. We are
only interested in calculating mP for m >= [p — 2/p] and m < |p+2,/p|. To
do this we let | = [p —2,/p] and calculate { P with the double and add method.
We then proceed to calculate (I+1)P, (14+2)P, ..., (|p+2/p])P by starting with
[P and then in each step adding P. This requires 4,/p additions. Calculating
[P requires O(logy 1) = O(log, p) < O(y/p) additions so that the time needed
to perform the 4,/p additions will dominate over calculating /P. This method
requires O(,/p) operations which is a huge improvement over the algorithm in
6.1.

We can give an example of this procedure by working with the curve C: y? =
22 +32+7 over Fy;. The group operation for C is listed in Table 1. The interval
for |[E(C)] is [6, 18].

If we pick P = (5,2) as the starting point for the algorithm above we get:
6P = 2P + 4P = 2(P + 2P) now we calculate 2P = (10,5) , P + 2P = (10, 6)
and finally 6P = (10,6) + (10,6) = (5,2). When we calculate 7P,8P, ..., 18P
we find that 10P = 15P = O so the algorithm failed for this choice of P.

With P = (8,2) we find that the only m € [6, 12] such that P™ = O is m = 10
which is the correct size of E(C).

The time complexity can be improved to O(+/p) with some optimization. This
is called the Baby-step Giant-step algorithm. See [4] for a full description.

7.2 A conjecture about the primality of |E(C)|

A question of great interest in the study of Elliptic Curve Cryptography is how
hard it is to find parameters A, B, p so that the elliptic curve C' : y? = 2+ Az+B
over I}, has a group of points E(C') of prime order, i.e. N,+1 is a prime number.
Such a group would have a cofactor h = 1 by Lagrage’s theorem since the only
possible sizes for a subgroup on the form (P) is 1 or |E(C)]|.

For the security of elliptic curves to scale well with p it must be possible to find
curves with groups of prime order reasonably fast.

There is no proof that this will always be possible, but there is a conjectured
result from 1988 by Neil Koblitz [8]:
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Conjecture (Koblitz). Let C': y?> = 2% + Az + B be an elliptic curve over a
finite field F,, with V = 44% — 27B%. Then

KpeP, p<n,ptV [ |[E(C) modp|eP}

is asymptotic to
n
D

1og2 n
where D is a positive constant depending on C.

The article [8] uses heuristic arguments backed by numerical results to come
up with this result similar to the methods used in this thesis.
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