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Abstract

This essay is aimed to be an introduction to homological algebra and Hochschild
complexes for those who are familiar with only basic abstract algebra.

The first part deals with the fundamentals in homological algebra, which
is a branch with lot of applications in algebraic geometry, algebraic topol-
ogy, mathematical physics and many other branches.

The second part introduces Hochschild complexes and Hochschild (co)homology,
named after Gerhard Paul Hochschild, who invented Hochschild cohomol-
ogy in 1945. This part deals with homology theory for associative algebras
over rings, and ends up with computing the Hochschild (co)homology of
R[x]/hx2i.
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1 Introduction to Homological Algebra

1.1 Definitions

Definition 1.1.1. - Modules. Let R be a unital ring and V an abelian
group. If there exists a map

R⇥ V ! V

(�, v) 7! �v

satisfying
(i) �(µv) = (�µ)v, 8 �, µ 2R and 8 v 2 V
(ii) (�+ µ)v = �v+ µv, 8 �, µ 2R and 8 v 2 V
(iii) �(v+w) = �v+ �w, 8 � 2R and 8 v,w 2 V
(iv) 1v = v, 8 v 2 V (where 1 denotes the multiplicative identity in R)

then V is called a R-module.

In the special case when R is a field and V admits a basis, we say that
V is a vector space over R.

Definition 1.1.2. - Direct product of modules. Let {Vi}i2I be a
family of R-modules. The direct product of these R-modules is the set all
sequences (xi)i2I where xi 2 Vi, equipped with an addition operation

(xi)i2I + (yi)i2I = (xi + yi)i2I ,
and a mulitplication operation

�(xi)i2I = (�xi)i2I , where � 2 R.

The direct product of {Vi}i2I is denoted by
Q
i2I

Vi.

Definition 1.1.3. - Direct sum of modules. The direct sum of a family
of R-modules {Vi}i2I , denoted by

L
i2I

Vi, is the subset of
Q
i2I

Vi consisting of

all sequences (xi)i2I with only a finite number of non-zero elements. Notice
that when I is finite,

L
i2I

Vi and
Q
i2I

Vi coincides.

Definition 1.1.4. - Homomorphisms of modules. Homomorphisms
of R-modules, f : V !W , has to satisfy all conditions for homomorphisms
of groups with following extra condition:

f(�v) = �f(v) 8� 2 R and 8v 2 V.

The set of all homomorphisms from V to W is denoted by Hom(V,W ).

Definition 1.1.5. - Z-graded modules. A direct sum of a family of
modules {Vi}i2I is called Z-graded if the modules are indexed by the ele-
ments of Z (i.e. I = Z) and is denoted by

L
i2Z

Vi.
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Definition 1.1.6. - Homogenous homomorphism. A homomorphism
f : V ! W , where V and W are Z-graded modules, is called homogenous
of degree n if f(Vi) ⇢Wi+n, 8i 2 Z.
For a given homogenous homomorphism f , |f | denotes the degree of homo-
genety of f .

Definition 1.1.7. - Chain and cochain complexes. A chain complex
(V, d) is a Z-graded module, V , equipped with a homogeneous endomor-
phism d of degree -1 (i.e. d(Vi) ✓ Vi�1

), such that d2(Vi) = 0, 8i 2 Z.

· · · � Vi
d � Vi+1

d � Vi+2

 � · · ·
An illustrative diagram of a chain complex

A cochain complex (V, d) is defined analogously with the di↵erence that
d is of degree 1.

· · · �! Vi
d�! Vi+1

d�! Vi+2

�! · · ·

The endomorphism d described above is called the di↵erential of the com-
plex (whether it is a chain or cochain complex).

Definition 1.1.8. - Homology and cohomology. Let (V, d) be a chain
complex. Then the sets

Ker d := {v 2 V | dv = 0}
Im d := {v 2 V | v = dv0, for some v0 2 V }

are two submodules of V .

Both Ker d and Im d can be regarded as Z-graded modules with:
Keri d := Ker d \ Vi (= Ker(d : Vi ! Vi�1

))
Imi d := Im d \ Vi (= Im(d : Vi+1

! Vi))

It is obvious that Im d ✓ Ker d since for any v 2 Im d we have according to
definition that v = dv0 for some v0 2 V . Hence dv = ddv0 = 0) v 2 Ker d.

Now since we have shown that Im d is a submodule of Ker d we can de-
fine the following quotient:

H(V ) :=
Ker d

Im d

which also can be viewed as a Z-graded module with

Hi(V ) :=
Keri d

Imi d
.
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H(V ) is called the homology of the chain complex (V, d).
Elements of Ker d is called cycles, and elements of Im d is called boundaries.
Observe that every boundary is a cycle, but the reverse is not necesserly true.

In an analogously way, we define cohomologies, cocyles and coboundaries
for cochain complexes.

Definition 1.1.9. - Exact sequences. A complex (V, d) is called an
exact sequence if Ker d = Im d, i.e. that every (co)cycle is a (co)boundary.

Observe that V is exact is equivalent with that the homology H(V ) is the
set of the trivial complex (..., 0, 0, 0, ...).

A short exact sequence is an exact sequence (V, d) with at most three non-
trivial modules (i.e. not sets consisting of just 0).

0 �! P �! Q �! R �! 0
An illustrative diagram of a short exact sequence

Definition 1.1.10. - Homomorphism of complexes. Let (V, d) and
(W,d0) be two complexes. Then f : V ! W is a homomorphism of com-
plexes if it satisfy all conditions of homomorphisms of modules with the
additional property that f commutes the di↵erentials, i.e. f � d = d0 � f.

1.2 Exact Triangles

Propostion 1.2.1. For any homomorphism of complexes f : (V, d) !
(W,d0), we have that f induces canonically a homomorphism H(f) of the
associated (co)homology groups H(f) : H(V )! H(W ).

Proof. We start with proving following two implications:

v 2 Ker d) f(v) 2 Ker d0,

v 2 Im d) f(v) 2 Im d0.
(1)

This follows from the commutative diagram below (commutativity follows
from the Definition 1.1.10.):

V
f! W

#d #d0

dV
f! d0W

From the diagram we get that if v 2 Ker d, then f(v) 2 Ker d0 since
d0f(v) = f(dv) = f(0) = 0.
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We have also that if v 2 Im d = dV then f(v) 2 d0W = Im d0. Hence the
implications in (1) is proven.

Now we define H(f) : H(V )! H(W ) to be the map that takes the equiva-
lence class [v] 2 H(V ) to the equivalence class [f(v)] 2 H(W ) (the equiva-
lence class [f(v)] exists since we have shown that f(v) 2 Ker d0 if v 2 Ker d).
Now we have to show that this map is well defined map. We take another
representative of the equivalence class [v], say v0 = v + z where z 2 Im d
and check that H(f) maps [v0] and [v] to the same element in H(W ).

[v0] 7! [f(v0)] = [f(v + z)] = [f(v) + f(z)|{z}
2Im d0

] = [f(v)] [ [v].

⇤

Lemma 1.2.2. Let

0
b�! A

f�! B
g�! C

h�! 0

be a short exact sequence. Then f is injective and g is surjective.

Proof. We have
Ker f = Im b = {0}

which yields that f is injective (f is injective i↵ its kernel contains only the
zero element). We have also that

Im g = Ker h = C

implying that g is surjective. ⇤

Theorem 1.2.3. (Exact triangle)

Let
0 �! A

f�! B
g�! C �! 0

be a short exact sequence of complexes, i.e. A, B and C are cochain com-
plexes, and f and g be homomorphisms homogeneous of degree 0. The as-
sociated sequence of cohomology groups

· · · �! Hn(A)
Hn(f)�! Hn(B)

Hn(g)�! Hn(C)
�n�! Hn+1

(A) �! · · ·

is an exact sequence, where �n is the induced map from Hn(C) to Hn+1

(A)
(i.e � is a homomorphism H(C)! H(A) homogeneous of degree 1).
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Before proving this theorem we have to prove that the induced map � exists.

Proposition 1.2.4. Let A,B,C, f, g be as in Theorem 1, then there ex-
ists a degree 1 homomorphism, � : H(C)! H(A).

Proof. (i) For any [cn] 2 Hn(C) we have that dCcn = 0, since cn is a
cocycle. (ii) Since g is surjective (according to Lemma 1) there exists an
element bn 2 Bn such that g(bn) = cn.

(i) and (ii) with the commutative property in Definition 1.1.10. we get
the following diagram

bn
g7�! cn

 
�

[

dB  
�

[

dC

bn+1

g7�! 0

We see that bn+1

2 Ker g, implying bn+1

2 Im f (due to the exactness), i.e.
there exists an element an+1

2 An+1

such that f(an+1

) = bn+1

.

bn
g7�! cn

 
�

[

dB  
�

[

dC

an+1

f7�! bn+1

g7�! 0

We have that dBbn+1

= d2Bbn = 0 yielding following diagram

bn
g7�! cn

 
�

[

dB  
�

[

dC

an+1

f7�! bn+1

g7�! 0

 
�

[

dA  
�

[

dB  
�

[

dC

an+2

f7�! 0
g7�! 0

Since f is injective according to Lemma 1 we have that an+2

= 0, implying
an+1

is a cocycle. Hence the equivalence class [an+1

] 2 Hn+1

(A) exists.

We define � to be the map that maps [cn] to [an+1

]. We show that this
map is well defined by choosing another representant of [cn], say cn + c̃n,
where c̃n 2 Im dC and look where it is mapped under �.

Since c̃n 2 Im dC , 9 c̃n�1

2 Cn�1

such that dC c̃n�1

= c̃n, and since g
is surjective 9 b̃n�1

such that g(b̃n�1

) = c̃n�1
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This yields following diagram

b̃n�1

g7�! c̃n�1

 
�

[

dB  
�

[

dC

b̃n
g7�! c̃n

 
�

[

dB  
�

[

dC

ãn+1

f7�! 0
g7�! 0

Since f is injective, ãn+1

= 0. This yields that [c̃n] is mapped to [ãn+1

= 0]
under �.

It is obvious that � preserves addition, since it depends on homomorphisms
that do preserve addition.
Hence �n[cn + c̃n] = �n[cn] + �n[c̃n] = [an+1

] + [0] = [an+1

] = �n[cn].

Hence � is well defined, and the proposition is proven. ⇤

Proof of main theorem (Exact Triangle). We have to prove three
equalities to obtain a proof.

Equality 1: Im Hn(f) = Ker Hn(g).
Since g � f = 0, it follows that Hn(g) �Hn(f) = 0, implying

Im Hn(f) ✓ Ker Hn(g). (2)

For any [bn] 2 Ker Hn(g) we have that [g(bn)] = [0], i.e. g(bn) 2 Im dC .
Hence 9 c̃n�1

2 Cn�1

such that dC c̃n�1

= g(bn).
The surjectivity of g and the commutativity described in Definition

1.1.10. yields following diagram.

ebn�1

g7�! ecn�1

 
�

[

dB  
�

[

dC

ebn
g7�! g(bn)

bn 7�!g

Obviously bn �ebn 2 Ker g
exactness() bn �ebn 2 Im f ()

() 9 an 2 An such that f(an) = bn �ebn.

Hence Hn(f)([an]) = [f(an)] = [bn � ebn|{z}
2Im dB

] = [bn] 2 Im Hn(f).

We have shown that [bn] 2 Ker Hn(g) =) [bn] 2 Im Hn(f), implying
that Ker Hn(g) ✓ Im Hn(f). This together with (2) yields a proof of Equal-
ity 1.
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Equality 2: Im Hn(g) = Ker �n.
For any [cn] 2 Im Hn(g) there exists an equivalence class [bn] 2 Hn(B)
such that Hn(g)([bn]) = [cn]. Now according to Proposition 1.2.4 , �n is the
function taking [cn] to [an+1

] 2 Hn+1

(A) where f(an+1

) = dBbn = 0 (bn is
a cocycle). Since f is injective, an+1

= 0, so �n([cn]) = [an+1

] = [0]. Hence
[cn] 2 Ker �n, implying Im Hn(g) ✓ Ker �n.

For any [cn] 2 Ker �n we have following diagram of elements (non-
unique):

an bn
g7�! cn

 
�

[

dA  
�

[
dB  

�
[

dC

an+1

f7�! bn+1

g7�! 0

The existence of an follows from that [an+1

] = �([cn]). But [cn] is assumed
to be in Ker �n, which means that an+1

is a coboundary.
Obviously bn � f(an) is a cocycle of dB (follows from the commutativity of
f with the di↵erentials). Hence

Hn(g)[bn � f(a)] = [g(bn)� g(f(an))| {z }
=0

] = [g(bn)] = [cn].

Hence [cn] 2 Im Hn(g), implying that Ker �n ✓ Im Hn(g). Since we have
shown that Ker �n and Im Hn(g) are subsets of each other, Equality 2 is
proven.

Equality 3: Im �n = Ker Hn+1

(f).

For any [an+1

] 2 Im �n, there exists a [cn] 2 Hn(C) such that
�n([cn]) = [an+1

]. We have according to Proposition 2 that f(an+1

) = dBbn,
for some bn 2 Bn where g(bn) = cn.

Hence Hn+1

(f)([an+1

]) = [f(an+1

)] = [ dBbn| {z }
coboundary

] = [0]. This shows that

[an+1

] 2 Ker Hn+1

(f), implying that Im �n ✓ Ker Hn+1

(f).

For any [an+1

] 2 Ker Hn(f) we have that f(an+1

) = dBbn for some bn 2 Bn.
Let cn := g(bn). Obviously cn is a cocycle since

dCcn = dCg(bn) = g(dBbn) = g(f(an+1

)) = 0.

Hence [cn] 2 Hn(C) exists and is mapped to [an+1

] by �n, so [an+1

] 2 Im �n.
This proves that Ker Hn+1

(f) ✓ Im �n.

Since we have shown that the two sets are subsets of each other, Equal-
ity 3 is proven. ⇤
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Remark 1. The theorem is named Exact triangle since the triangular
diagram below illustrates the theorem:

H(A)
H(f)�! H(B)

� - . H(g)

H(C)

Remark 2. Corresponding theorems where A, B and C are chain com-
plexes, or when f and g are homogeneous of degree other than 1, can be
proven in a similar way.

1.3 Homotopy

Definition 1.3.1. - Homotopic maps. Two homomorphisms of chain
(respectively cochain) complexes f, g : V ! W is said to be homotopic
if there exists a homomorphism s : W ! V homogeneous of degree �1
(respectively 1) such that

f � g = dW � s+ s � dV .

Theorem 1.3.2. Two homotopic homomorphisms f, g : V ! W induce
the same map between the (co)homologies. I.e.

H(f) = H(g) : H(V )! H(W ).

(Definition and proof of existence of H(f), H(g) is found in Proposition
1.2.1.)

Proof. For any [v] 2 H(v) (v has to be a (co)cycle) we have that

H(f)([v])�H(g)([v]) = [dW (s(v))� s(dV (v)| {z }
=0

)] = [ dW (s(v))| {z }
(co)boundary

] = [0]

Hence
H(f)([v]) = H(g)([v])

⇤

1.4 Resolutions

Definition 1.4.1. - Free modules. An R-module M is free if it admits a
basis i.e. there exists a sequence {xi}i2I of elements in M , such that {xi}i2I

12



is a linear independent set which spans M .

Lemma 1.4.2. An R-module M is free i↵ M ⇠=
L

i2I R.

Proof. It is obvious that
L

i2I R is free with basis consisting of the el-
ements {bi}i2I where bi is 1 in position i and 0 in all other positions.

If M admits a basis {mi}i2I then we define a homomorphism M !
L

i2I R
such that

P
�imi 7!

P
�ibi (bi is 1 in position i and 0 in all other positions).

This is obviously an isomorphism, proving that M ⇠=
L

i2I R. ⇤

Lemma 1.4.3 For any R-module M there exists a free R-module F that
surjects on M under some homomorphism F !M .

Proof. According to Lemma 1.4.2. we have that F =
L

m2M
R is a free

module. Define f :
L

m2M
R ! M , where

P
�rm 7!

P
�m, where rm is 1

in position m and zero in all other positions. This is obviously a surjective
homomorphism. ⇤.

Definition 1.4.4. - Projective modules. An R-module M is projec-
tive if for any homomorphism f : M ! N and any surjection g : N 0 ! N ,
there exists a homomorphism ef : M ! N 0 such that the diagram below
commutes

M
ef

 �  
�f

N 0 �!
g

N

Lemma 1.4.5. Free modules are projective.

Proof. Let M be a free R-module with the basis {mi}i2I . Let f : M ! N
be a homomorphism and g : N 0 ! N be a surjection.

Let {n0
i}i2I be a sequence of elements in N 0 such that g(n0

i) = f(mi)

(such n0
i exists due to surjectivity). Define ef : M ! N 0, mi 7! n0

i.
Since M is free, any element m 2 M is on the form m =

P
�imi. This

implies

g
⇣
ef(m)

⌘
= g

⇣
ef
⇣X

�imi

⌘⌘
= g

⇣X
�i ef(mi)

⌘
=

=
X

�ig(n
0
i) =

X
�if(mi) = f

⇣X
�imi

⌘
= f(m),

proving the commutativity. ⇤
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Definition 1.4.6. - Resolutions. Let M be an R-module and (F, d) be a
non-negative complex, i.e. Fn = 0 for n < 0. Assume that the sequence

· · · �! Fn
d�! Fn�1

d�! · · · d�! F
0

d0�!M �! 0

is exact. Then the complex (F, d) is called a resolution of M .

Observe that we make a distinction between d and d
0

. d
0

is not a part
of the data in the resolution (F, d).

Defintion 1.4.7. - Free and Projective Resolutions. A resolution
F is called free (or projective) if Fn is free (or projective) for all n � 0.

Proposition 1.4.8. Any module admits a free resolution.

Proof. Let M be an arbitrary R-module. We have according to Lemma
1.4.3. that there exists a free module F

0

that surjects on M under some
homomorphism d

0

. Using again Lemma 1.4.3. there exists a free module
F
1

that surjects on the kernel K
0

= Ker(F
0

! M) and is restricted to it.
Continuing this way, we’re getting a chain of free modules Fn that obviously
form a free resolution of M .

Proposition 1.4.9. Any module admits a projective resolution.

Proof. It follows from Lemma 1.4.5. that free resolutions are projective
resolutions as well, and hence the assertion follows from Proposition 1.4.8. ⇤

Theorem 1.4.10. For any resolutions P and Q of a module M , with P
projective, there exists a homomorphism of complexes f : P ! Q, homoge-
neous of degree 0.

Proof. We prove the theorem by induction.

Claim 1 (base case): There exists a homomorphism f
0

: P
0

! Q
0

that
commutes with the maps dP

0

: P
0

!M and dQ
0

: Q
0

!M .
Since the map Q

0

! M is surjective (due to exactness) and P
0

is pro-
jective, there exists a map f

0

: P
0

! Q
0

that commutes with dP
0

and dQ
0

.

Claim 2: Let B(Qn) = Imn dQ. Then fn � dP (Pn+1

) ✓ B(Qn).

14



For any element pn+1

2 Pn+1

we have following diagram of elements:

pn+1

dP7�! pn
dP7�! 0

dP7�! · · ·

 
�

[

fn

 
�

[

fn�1

qn
dQ7�! 0

dQ7�! · · ·

We see that any element in Pn+1

is mapped to a cycle under f � dP . But
the exactness implies that this cycle is a boundary as well, proving the claim.

Claim 3 (inductive step): Assume that f restricted to Pk, 0  k  n,
given by the homomorphisms fk : Pk ! Qk, gives rice to a commutative
diagram:

· · · dP�! Pn+1

dP�! Pn
dP�! Pn�1

dP�! · · · dP�! P
0

#fn #fn�1 #f0
&
% M

· · ·
dQ�! Qn+1

dQ�! Qn
dQ�! Qn�1

dQ�! · · ·
dQ�! Q

0

We want to show that we can construct f in a way so that if
fn+1

: Pn+1

! Qn+1

is included in the diagram above, the diagram would
still be commutative.

We have shown in Claim 2 that fn � dP : Pn+1

! B(Qn) and that Qn+1

surjects on B(Qn), so by the projectivity of Pn+1

there is a function
fn+1

: Pn+1

! Qn+1

, that fulfills dQ � fn+1

= fn � dP .

Hence the existence of f has been proven inductively. ⇤

Theorem 1.4.11. Let P and Q be two resolutions of a module M , where
P is projective. Let f, g : P ! Q be two homomorphisms of complexes ho-
mogeneous of degree 0. Then f and g are homotopic.

Proof. Let si denote some homomorphism Pi ! Qi+1

. We prove the
theorem in some steps and by induction.

Claim 1: Im(f
0

�g
0

) ✓ B(Q
0

) where B(Qn) is the image of Qn+1

under dQ.

For any element p
0

2 P
0

we have

dQ
0

[f(p
0

)� g(p
0

)] = dQ
0

[f(p
0

)]� dQ
0

[g(p
0

)]
commutativity

= dP
0

(p
0

)� dP
0

(p
0

) = 0

Hence we have that f(p
0

)�g(p
0

) 2 Ker dQ
0

, implying f(p
0

)�g(p
0

) 2 B(Q
0

)
due to exactness.
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Claim 2 (base case): There exists homomorphisms s
0

, s�1

such that
f
0

� g
0

= dQ � s0 + s�1

� dP .

We have proven in Claim 1 that f
0

� g
0

: P
0

! B(Q
0

). Since Q
1

surjects
on B(Q

0

) and P
0

is projective, there exists a homomorphism s
0

: P
0

! Q
1

that commutes with the di↵erentials, i.e.

f
0

� g
0

= dQ � s0

We have that s�1

is the zero map since it is defined on P�1

= 0 (distinct
between dP and dP

0

since dP maps P
0

to P�1

= 0, while dP
0

maps P
0

to M),
so s�1

� dP = 0, which completes the proof of the claim.

Claim 3 (inductive step): Assume that fn�gn = dQ�sn+sn�1

�dP , then
there exists a homomorphism sn+1

such that fn+1

�gn+1

= dQ�sn+1

+sn�dP .

Obviously fn+1

� gn+1

� sn � dP : Pn+1

! Qn+1

. We want to show that
the image of this function is restricted to B(Qn+1

) (which coincides with
the kernel of dQ : Qn+1

! Qn), by applying dQ on it. For any element
pn+1

2 Pn+1

we have that

dQ[(fn+1

� gn+1

� sn � dP )(pn+1

)] =

= dQ[fn+1

(pn+1

)]� dQ[gn+1

(pn+1

)]� dQ[sn(dP (pn+1

))] =

=
⇥
We can add (�sn�1

(dP (dP (pn+1

)))) = 0
⇤
=

= dQ[fn+1

(pn+1

)]�dQ[gn+1

(pn+1

)]�dQ[sn(dP (pn+1

))]� sn�1

[dP (dP (pn+1

))]
| {z }

=�(dQ�sn+sn�1�dP )(dP (pn+1))

= dQ[fn+1

(pn+1

)]� dQ[gn+1

(pn+1

)]
| {z }

=fn[dP (pn+1)�gn[dP (pn+1)]

acc. to commutativity property

� (dQ � sn + sn�1

� dP )(dP (pn+1

))
| {z }

=fn[dP (pn+1)]�gn[dP (pn+1)]

acc. to assumption

= 0

Hence Im(fn+1

� gn+1

� sn � dP ) ✓ Kern+1

dQ = B(Qn+1

). We see that
we can restrict the range of fn+1

� gn+1

� sn � dP to B(Qn+1

). Obviously
Qn+2

surjects on B(Qn+1

) under dQ, so there exists sn+1

: Pn+1

! Qn+2

such that dQ � sn+1

= fn+1

� gn+1

� sn � dP (since Pn+1

is projective). This
is equivalent to have fn+1

� gn+1

= dQ � sn+1

+ sn � dP .

Now we define s to be sn when s is restricted to Pn. Then we have that

f � g = dQ � s+ s � dP .

⇤
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1.5 Tensor Products and Algebras

Definition 1.5.1. - Tensor product. Let V and W be two R-modules
and define

T [V ⇥W ] :=

(
nX

k=1

�k(v, w) | �k 2 R, (v, w) 2 V ⇥W

)
.

Let S ✓ T [V⇥W ] be a subset containing all possible combination of elements
of the form

(v + v0, w)� (v, w)� (v0, w), (v, w + w0)� (v, w)� (v, w0)

�(v, w)� (�v, w), �(v, w)� (v,�w)

where v, v0 2 V, w,w0 2W, � 2 R

The tensor product of V and W is defined as the quotient space T [V ⇥W ]/S
and denoted by V ⌦RW or V ⌦W if it is clear from the context that V and
W are R-modules.
The image of an element of (v, w) 2 T [V ⇥W ] under the projection from
T [V ⇥W ] to V ⌦W , is denoted by v ⌦ w.

Definition 1.5.2. If M and N are two R-modules and f : M ! M 0 and
g : N ! N 0 are homomorphisms of modules, then f ⌦g : M ⌦N !M 0⌦N 0

is defined by the map m ⌦ n 7! f(m) ⌦ g(n). It is easy to check that this
map is a well-defined homomorphism.

Definition 1.5.3. - Associative algebras. A module, A, equipped with
homomorphism µ, with following properties

µ : A⌦A! A

a
1

⌦ a
2

7! a
1

a
2

where (a
1

a
2

)a
3

= a
1

(a
2

a
3

),

is called an associative algebra.

Remark. If we let µ define a multiplication on A then A becomes a ring.

Definition 1.5.4. - Tor. Let P be a projective resolution of an R-module
M. Then for any R-module N we define following associated complex

· · · idN⌦dP�! N ⌦R Pn
idN⌦dP�! · · · idN⌦dP�! N ⌦R P

0

�! 0

which we denote by N ⌦R P .
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TorR(M,N) is defined to be the homology of the complex above, i.e.
TorRn (M,N) = Hn(N ⌦R P ).

Remark. Observe that the resolution P is not specified in the definition of
Tor, but it is still well defined due to next proposition.

Proposition 1.5.5. TorRn (M,N) is independent of the choice of projec-
tive resolution of M .

Proof. Let P and Q be two di↵erent projective resolutions of M . We have
according to Theorem 1.4.10. that there exists homomorphisms f : P ! Q
and g : Q! P with |f | = |g| = 0.

According to Theorem 1.4.11. g � f : P ! P is homotopic to idP (the
identity function on P ).

This means that there exists a homomorphism sP : Pn ! Pn+1

(i.e.
|s| = 1) such that

idp � g � f = dP � sP + sP � dP (3)

Obviously idN ⌦ idP and idN ⌦ (g � f) are homomorphisms homogeneous of
degree 0 on N ⌦ P . Now tensoring equation (3) with idN from left yields

idN⌦P � idN ⌦ (g � f) = dN⌦P � (idN ⌦ sP ) + (idN ⌦ sP ) � dN⌦P (4)

where dN⌦P is the the di↵erential idN ⌦ dP of N ⌦ P .
From (4) we get that idN⌦P and idN ⌦ (g � f) are homotopic.

This means that
H(idN ⌦ (g � f)) ⇠= H(idN⌦P ) (5)

according to Theorem 1.3.2..

The equalities below (which follows easily from defintion of tensor product
and Proposition 1.2.1.)

H(idN ⌦ (g � f)) = H(idN ⌦ g) �H(idN ⌦ f)

and

H(idN⌦P ) = idH(N⌦P )

implies together with (5) that

H(idN ⌦ g) �H(idN ⌦ f) ⇠= idH(N⌦P )

. (6)

Now since f � g : Q ! Q (distinct between g � f and f � g) we can in an
analogous way as above derive

H(idN ⌦ f) �H(idN ⌦ g) ⇠= idH(N⌦Q)

. (7)
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From (6) and (7) we can conclude that H(idN ⌦f) and H(idN ⌦g) are each
others inverses, meaning that H(idN ⌦ f) (and H(idN ⌦ g)) is injective and
surjective. Hence H(f ⌦ idN ) is an ismomorphism H(P ⌦N)! H(Q⌦N)
implying H(P ⌦N) ⇠= H(Q⌦N). ⇤

1.6 Ext

Lemma 1.6.1. For any R-modules M and N , Hom(M,N) is also an R-
module (Hom(M,N) defined in Definition 1.1.4.)

Proof. It is obvious that (Hom(M,N),+) satisfies all group axioms (clo-
sure, associativity, existence of an (additive) identity, existence of (additive)
inverses). The R-module structure of Hom(M,N) is given by the map

R⇥Hom(M,N)! Hom(M,N)

(�,�) 7! ��.

Obviously this structure satisfies all module axioms. ⇤

Definition 1.6.2. For any R-module N and any homomorphism of R-
modules f : M ! M 0 induces a homomorphism f⇤ : Hom(M 0, N) !
Hom(M,N) given by the map � 7! � � f .

Propotion 1.6.3 If (C, d) is a chain complex with R-module structure, and
M is any R-module, then

· · · d⇤�! Hom(Cn�1

, N)
d⇤�! Hom(Cn, N)

d⇤�! Hom(Cn+1

, N)
d⇤�! · · ·

is a cochain complex.

Proof. We want to prove that (d⇤)2 = 0. Pick � 2 Hom(C,N) arbitrary.
Then

(d⇤)2(�) = (d⇤ � d⇤)(�) = (� � d) � d = � � (d � d) = 0.

⇤

Definition 1.6.4. - Ext. Let M be an R-module and (P, d) be a pro-
jective resolution of M . For any R-module N we have following associated
complex

0 �! Hom(P
0

, N)
d⇤�! Hom(P

1

, N)
d⇤�! · · ·

with Hom(P
0

, N) in position 0. This complex is denoted by Hom(P,N).
ExtR(M,N) is defined to be the homology of the complex above, i.e.
ExtRn (M,N) = Hn(Hom(P,N)).
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Proposition 1.6.5. Ext(M,N) is independent of choice of projective res-
olution of M .

Proof. The proof is almost identical to the proof of Proposition 1.5.4.
The main di↵erence is that instead of tensoring

idp � g � f = dP � sP + sP � dP

with idN , we take their induced maps defined in Definition 1.6.2 and get

id⇤p � f⇤ � g⇤ = s⇤P � d⇤P + d⇤P � s⇤P

(observe that (g � f)⇤ is given by f⇤ � g⇤). Continuing as in the proof of
Proposition 1.5.4. we get that H(f⇤) and H(g⇤) are each others inverses
implying that

H(f⇤) : H(Hom(Q,N))! H(Hom(P,N))

is an isomorphism, proving that H(Hom(Q,N)) ⇠= H(Hom(P,N)). ⇤

20



2 Hochschild Homology and Cohomology

In this section we will study Hochschild (co)chain complexes and their
(co)homology. To distincit between Hochschild homolohy and cohomology,
the Hochschild chain complexes and homology is denoted by C• respective
H• and are indexed in the lower right side, while the Hochschild cochain
complexes and cohomology is denoted by C• respective H• and are indexed
in the upper right side.

We will during all this section consider non-negative complexes, i.e. com-
plexes with the trivial module, denoted by 0, in all negative positions.

2.1 Hochschild Homology

Definition 2.1.1. - Aop, the opposite algebra of A. If A is an algebra
with µ defining its multiplication, then Aop contains the same elements as
A but equipped with a multiplication given by a

1

⇤
op

a
2

= µop(a
1

, a
2

) =
µ(a

2

, a
1

) = a
2

a
1

.

Definition 2.1.2 - Bimodules over algebras. If A is an algebra and
M is an A-module from both right and left side, satisfying a(ma0) = (am)a0

where a, a0 2 A, m 2M , then M is called a bimodule over A.

A bimodule over A can also be considered as a right module over
Ae = A⌦Aop, via m(a⌦ a0) = a0ma (where a⌦ a0 2 Ae, m 2M).

Definition 2.1.3 - C•(A,M) and the Hochschild Boundary. Let
A be an algebra and M a bimodule over A. Consider the non-negatively

Z-graded module C•(A,M) =
1L
n=0

(M ⌦ A⌦n), where M ⌦ A⌦0 is defined

to be M . The Hochschild boundary b : C•(A,M) ! C•(A,M) is a ho-
momorphism homogeneous of degree �1, with bn, the Hochschild boundary
restricted to Cn(A, b), defined as follows:

bn : Cn(A,M)! Cn�1

(A,M), 8 n � 1

m⌦a
1

⌦· · ·⌦an 7! (ma
1

⌦a
2

⌦ · · ·⌦an)+
n�1X

i=1

(�1)i(m⌦a
1

⌦· · ·⌦aiai+1

⌦· · ·⌦an)

+(�1)n(anm⌦ a
1

⌦ · · ·⌦ an�1

).

We can express bn in a more compressed way if we define the maps
dni : Cn(A,M)! Cn�1

(A,M), i = 0, 1, 2, ..., n, where

dn0(m⌦ a
1

⌦ · · ·⌦ an) := ma
1

⌦ a
2

⌦ · · ·⌦ an
dni(m⌦a1⌦ · · ·⌦an) := m⌦a

1

⌦ · · ·⌦aiai+1

⌦ · · ·⌦an for 1  i  n�1
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dnn(m⌦ a
1

⌦ · · ·⌦ an) := anm⌦ a
1

⌦ · · ·⌦ an�1

If we let b0n =
n�1P
i=0

(�1)idni (the sum goes only up to n � 1), obviously

bn = b0n + (�1)ndnn .

Proposition 2.1.4. The maps b0 and b defined in Definition 2.1.3. are
di↵erentials, i.e. b0 � b0 = b � b = 0.

Proof. For b we have that

bn�1

� bn =
X

0in
0jn�1

(�1)i+jd
(n�1)j

� dni

We divide this sum into two sums, S
1

+ S
2

where

S
1

:=
X

0j<in

d
(n�1)j

� dni

S
2

:=
X

0ijn�1

d
(n�1)i�1

� dnj

Now for any summand (�1)i+jd
(n�1)j

� dni in S
1

cancels out with the sum-

mand (�1)i+j�1d
(n�1)i�1

� dnj in S
2

. The correspondence between the sum-
mands in S

1

and their outcancelling summands in S
2

is 1�1, and since both
sums have the same number of elements (1+2+...+n = (n+1)n/2 elements),
every summand in S

2

has also a corresponding outcancelling summand in
S
1

. This proves that bn�1

� bn = 0 or more generally b � b = 0 (since n was
choosen arbitrary).

The proof of b0 � b0 = 0 can be constructed in a similar way. ⇤

Corollary/Definition 2.1.5. - Hochschild Chain Complex and Ho-
mology. (C•(A,M), b) is a chain complex (corollary of Proposition 2.1.4.),
called the Hochschild chain complex of A with coe�cients in M .

· · · b�!M ⌦A⌦n b�!M ⌦A⌦n�1

b�! · · · b�!M ⌦A
b�!M �! 0

An illustrative diagram of C•(A,M).

The homology of a Hoschschild chain complex is called Hochschild homology
denoted by H•(A,M).

Definition 2.1.6. - The bar complex Cbar. Let A be an algebra and b0

is defined as in Definition 2.1.3. Then the bar complex Cbar(A) is given by

Cbar(A) : · · · b0�! A⌦n b0�! · · · b0�! A⌦2
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Proposition 2.1.7. Let C be an arbitrary complex with the di↵erential
d. If there exists a homomorphism s : C ! C such that

d � s+ s � d = idC (8)

then the C is exact.

Proof. It is obvious that Im d ✓ Ker d since d�d = 0 (one of the conditions
of the di↵erential). We want to show that (8) implies Ker d ✓ Im d .

Pick c 2 Ker d arbitrary. Then

d(s(c)) + s(d(c)|{z}
=0

) = idC(c) = c () d(s(c)) = c

=) c 2 Im d.

⇤

Proposition 2.1.8. If A is unital, then Cbar(A) is a resolution of A (the
map from A⌦2 to A is also given by b0).

Proof. We want to prove that

· · · b0�! A⌦n b0�! · · · b0�! A⌦2

b0�! A �! 0

is an exact sequence.
In order to do that we have to prove that A⌦2 surjects on A under b0 (since
all of A is mapped to 0), and then prove that Im b0 = Ker b0.

b0 restricted to A⌦2 is obviosly given by the map a ⌦ a0 7! aa0. For any
element a 2 A we have that b0(1 ⌦ a) = 1a = a proving the that A⌦2 sur-
jects on A under b0.

Consider sn : Cbar

n (A)! Cbar

n+1

(A), where sn(a1⌦ ...⌦an) = 1⌦a
1

⌦ · · ·⌦an.

Now consider s � b0 + b0 � s restricted to Cbar

n (A). This is

sn�1

� b0n + b0n+1

� sn =
n�1X

i=0

(�1)isn�1

� dni +
nX

i=0

(�1)id
(n+1)i

� sn.

It is easy to check that the k’th summand in the first sum cancels out with
the (k + 1)’th summand in the second sum. The only summand that does
not cancels out is d

(n+1)0
� sn in the second sum.
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Obviously d
(n+1)0

� sn = idCbar
n (A)

. Hence s � b + b � s = idCbar
(A)

implying
that Im b0 = Ker b0 according to Proposition 2.1.7. ⇤

Proposition 2.1.9. Let M be a bimodule over a unital algebra A (or equiv-
alently, M is a right Ae-module) and consider A⌦n as a left-side Ae-module,
given by (a⌦a0)(a

1

⌦ · · ·⌦an) = aa
1

⌦a
2

⌦ · · ·⌦an�1

⌦ana
0. Then we have

follwing isomorphism:

M ⌦Ae A⌦n+2 ⇠= M ⌦R A⌦n

Proof. Every nonzero element m⌦Ae (a
1

⌦ · · ·⌦ an+1

) 2M ⌦Ae A⌦n+2 can
be decomposed in following way:

m⌦Ae (a
1

⌦ · · ·⌦ an+1

) = m⌦Ae [(a
1

⌦ an+2

)(1⌦ a
2

⌦ · · ·⌦ an+1

⌦ 1)] =

= m(a
1

⌦ an+2

)⌦Ae [1⌦ a
2

⌦ · · ·⌦ an+1

⌦ 1] =

= an+2

ma
1

⌦Ae [1⌦ a
2

⌦ · · ·⌦ an+1

⌦ 1]

Now we define the map f : M ⌦Ae A⌦n+2 !M ⌦R A⌦n by

an+2

ma
1

⌦Ae [1⌦ a
2

⌦ · · ·⌦ an+1

⌦ 1] 7! an+2

ma
1

⌦ a
2

⌦ · · ·⌦ an+1

This map is an isomorphism since it is obviously surjective (m⌦b
1

⌦ · · ·⌦bn
is the image of m⌦Ae (1⌦b

1

⌦ · · ·⌦bn⌦1)) and injective (the kernel contains
just the zero). ⇤

Theorem 2.1.10. If A is a unital algebra and projective as an R-module,
then for any Ae-module M we have that

H(A,M) = TorA
e
(A,M)

where H(A,M) is the homology of the Hochschild complex C(A,M), called
the Hochschild homology.

Proof. If A is R-projective then A⌦n is R-projective. From that it follows
that A⌦n+2 is Ae-projective, since for any homomorphism of Ae-modules
� : A⌦n+2 !M , we have that

�(a
1

⌦ · · ·⌦ an+2

) = a
1

· �(1⌦ a
2

⌦ · · ·⌦ an+1

⌦ 1) · an+2

.

But �(1 ⌦ b
1

⌦ · · · ⌦ bn ⌦ 1) where the bi:s run over all possible values is
given by a homomorphism of R-modules f : A⌦n ! M , and from this the
projectivity follows.

So from above we conclude that Cbar(A) is a projective resolution of A
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as an Ae-module since A is assumed to be R-projective. Tensoring this
projective resolution with M results in following complex:

· · · idM⌦b0�! M ⌦Ae A⌦n idM⌦b0�! · · · idM⌦b0�! M ⌦Ae A⌦2 �! 0 (9)

According to Proposition 2.1.9. we have that M ⌦Ae A⌦n+2 ⇠= M ⌦R A⌦n.
Hence, due to isomorphism, the map

idM ⌦ b0n+2

: M ⌦Ae A⌦n+2 !M ⌦Ae A⌦n+1

induces a map M⌦RA⌦n !M⌦RA⌦n�1, given by fn+1

�(idM⌦b0n+2

)�f�1

n

where f is the isomorphism defined in Proposition 2.1.9. (the diagram below
may explain how to derive this map).

M ⌦Ae A⌦n+2

idM⌦b0�! M ⌦Ae A⌦n+1

�!f
�1
n  

�fn+1

M ⌦R A⌦n M ⌦R A⌦n�1

We have

f�1

n

�
m⌦ a

1

⌦ · · ·⌦ an
�
= m⌦Ae (1⌦ a

1

⌦ · · ·⌦ an ⌦ 1).

Hence

(idM⌦b0n+2

)�f�1

n

�
m⌦a

1

⌦· · ·⌦an
�
= (idM⌦b0n+2

)
�
m⌦Ae(1⌦a

1

⌦· · ·⌦an⌦1)
�
=

= m⌦Ae

�
a
1

⌦· · ·⌦an⌦1
�
+

n�1X

i=1

(�1)im⌦Ae (1⌦a
1

· · ·⌦aiai+1

⌦· · ·⌦an⌦1)+

+(�1)nm⌦Ae (1⌦ a
1

· · ·⌦ an).

Hence

fn+1

� (idM ⌦ b0n+2

) � f�1

n

�
m⌦ a

1

⌦ · · ·⌦ an
�
= (ma

1

⌦ a
2

⌦ · · ·⌦ an)+

+
n�1X

i=1

(�1)i(m⌦ a
1

⌦ · · ·⌦ aiai+1

⌦ · · ·⌦ an)+ (�1)n(anm⌦ a
1

⌦ · · ·⌦ an�1

)

= bn
�
m⌦ a

1

⌦ · · ·⌦ an
�
.

From the calculations above we see that idM ⌦ b0 induces the Hochschild
boundary b. Thus the complex in (9) and the Hochschild complex (see
Corollary/Definition 2.1.5.) are isomorphic, and hence also their homology.
But the homology of the complex in (9) is exactly TorA

e
(A,M), and the

theorem follows. ⇤
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2.2 Hochschild Cochain Cohomology

Definition 2.2.1. - Hochschild Coboundary. For any R-algebra A and
any A-bimodule M , consider the Z-graded module

C•(A,B) =
1L
n=0

Hom(A⌦n,M),

where C0(A,M) = Hom(A⌦0,M) is defined to be M . The Hochschild
coboundary � : C•(A,M)! C•(A,M) is a homomorphism of degree 1 with
�n, the Hochschild coboundary restricted to C•

n(A,M), defined as follows:

�n : Hom(A⌦n,M)! Hom(A⌦n+1,M)

� 7! �n�

with

(�n�)(a1⌦· · ·⌦an+1

) := a
1

�(a
2

⌦· · ·⌦an+1

)+
nX

i=1

(�1)i�(a
1

⌦· · ·⌦aiai+1

⌦· · ·⌦an+1

)

+(�1)n+1�(a
1

⌦ · · ·⌦ an)an+1

Proposition 2.2.2. � is a di↵erential.

Proof. The proof is very similar to the proof of Proposition 2.1.4. ⇤

Definition 2.2.3. - Hochschild Cochain Complex and Cohomology.
Since the Hochschild coboundary � is a di↵erential (Proposition 2.2.2.), we
have that (C•(A,M),�) is a cochain complex called the Hochschild cochain
complex of A with coe�cients in M , and its cohomology is called Hochschild
cohomology denoted by H•(A,M).

0 �!M
��! Hom(A,M)

��! Hom(A⌦2,M)
��! · · ·

An illustrative diagram of C•
(A,M).

Example 2.2.4 We have that

H0(A,M)) =
Ker

0

�

Im�1

�
=

{m 2M | am�ma = 0, 8a 2 A}
{0} =

= {m 2M | am�ma = 0, 8a 2 A}.

We see that H0(C•(A,M)) is the set of all elements in M that commutes
with all elements in A.
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We have also

H1(A,M)) =
Ker

1

�

Im
0

�
=

=
{� 2 Hom(A,M) | a

1

�(a
2

)� �(a
1

a
2

) + �(a
1

)a
2

= 0, 8a
1

, a
2

2 A}
{am�ma | a 2 A,m 2M} .

Theorem 2.2.5 If A is a unital and projective algebra then

H•(A,M) = ExtA
e
(A,M).

Proof. Every Ae-homomorphism � : A⌦n+2 ! M is uniquely determined
by an R-homomorphism f : A⌦n ! M where f is given by the equality
�(a

1

⌦ · · ·⌦an+2

) = a
1

f(a
2

⌦ · · ·⌦an+1

)an+2

. By the same equality we can
also show the converse, namely that every R-homomorphism f : A⌦n !M
is uniquely determined by some Ae-homomorphism � : A⌦n+2 ! M . This
proves an isomorphism

HomAe(A⌦n+2,M) ⇠= HomR(A
⌦n,M) (10)

Moreover, if A is unital, we have that f(b
1

⌦...⌦bn) = �(1⌦b
1

⌦· · ·⌦bn⌦1),
implying that R-homomorphisms can always be expressed in terms of Ae-
homomorphisms and vice versa.

The Hochschild coboundary � induces due to (10) a corresponding map
� : HomAe(A⌦n+2,M)! HomAe(A⌦n+3,M).

Now pick � 2 HomAe(A⌦n+2,M) arbitrary and let  := �(�). Accord-
ing to above � and  are given by R-homomorphisms f and g respectively,
where g = �(f). Hence

 (a
1

⌦ ...⌦ an+3

) = a
1

g(a
2

⌦ ...⌦ an+2

)an+3

= a
1

[�(f)(a
2

⌦ ...⌦ an+2

)]an+3

= a
1

h
a
2

f(a
3

⌦ · · ·⌦ an+2

) +
n+2X

i=2

(�1)i�1(a
2

⌦ · · ·⌦ aiai+1

⌦ · · ·⌦ an+2

)+

+(�1)n+1f(a
2

⌦ · · ·⌦ an+1

)an+2

i
an+3

=

= �

 
a
1

a
2

⌦ a
3

⌦ · · ·⌦ an+3

+
n+2X

i=2

(�1)i�1(a
1

⌦ · · ·⌦ aiai+1

⌦ · · ·⌦ an+3

)

+f(a
1

⌦· · ·⌦an+1

⌦an+2

an+3

)

!
= ��b0(a

1

⌦· · ·⌦an+3

) = b0⇤(�)(a
1

⌦· · ·⌦an+3

).
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We see that the induced map � is the map b0⇤ where b0 is the map defined
in Definition 2.1.3. and b0⇤ is the induced map between Hom-groups defined
in Definition 1.6.2..
Hence C•(A,M) ⇠= Hom(Cbar(A),M). If, moreover, A is projective Cbar(A)
is projective resolution, implying

H•(A,M) = H(Hom(Cbar(A),M)) ⇠= ExtA
e
(A,M).

⇤

2.3 Hochschild (co)homology of R[x]/hx2i.

Let A := R[x]/hx2i be an algebra over R with multiplication defined in the
natural way. We want to find the Hochschild homology H•(A,A), and co-
homology H•(A,A).
To do that we want to find a projective Ae-resolution of A so we can apply
Theorem 2.1.10. and Theorem 2.2.5. on it.

We start with considering the diagram

· · · g3�! P
2

g2�! P
1

g1�! P
0

f�! A �! 0 (11)

where all Pi = A⌦A and

f [(a+ bx)⌦ (c+ dx)] := (a+ bx)(c+ dx) = ac+ (ad+ bc)x

and

gi[(a+bx)⌦(c+dx)] :=

⇢
ax⌦ cx if i odd
ax⌦ cx+ (a+ bx)⌦ cx+ ax⌦ (c+ dx) if i even

It is obvious that f is surjective. It is also clear that Ker f = Im g
1

and
that Ker gi = Im gi+1

for all i � 1.
Hence the diagram in (11) is exact, so (P, g) is a resolution of A as an

Ae-module. To show that this resolution is projective we have to show that
Pi = A ⌦ A is a projective Ae-module. We have that A ⌦ Aop = Ae is
a free Ae-module according to Lemma 1.4.2.. Since multiplication in A is
commutative, A⌦A = A⌦Ae, so A⌦A is also a free Ae-module and hence
also a projective Ae-module (according to Lemma 1.4.5.).

· · · g3�! P
2

g2�! P
1

g1�! P
0

(12)

An illustrative diagram of the projective resolution of A.
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H•(A,A).
According to Theorem 2.1.10. we can compute H•(A,A) by computing
TorA

e
(A,A). In order to that, we’re considering the associated chain com-

plex of the projective resolution in (12):

· · · idA⌦g3�! A⌦Ae P
2

idA⌦g2�! A⌦Ae P
1

idA⌦g1�! A⌦Ae P
0

�! 0

We have according to Proposition 2.1.9. that A⌦Ae Pi = A⌦Ae (A⌦A) as
an Ae-module is isomorphic to A as an R-module.
Hence the associated chain complex above is isomorphic to

· · · eg3�! A
eg2�! A

eg1�! A �! 0 (13)

where egi : A! A is the map induced by idA ⌦ gi, given by
f � (idA⌦ gi) � f�1 where f is the function defined in Proposition 2.1.9. (for
motivation see proof of Theorem 2.1.10.).
Hence

egi(a+ bx) = f � (idA ⌦ gi) � f�1(a+ bx) =

⇢
0 if i odd
2ax if i even.

This results in following equalities

Ker eg
2n�1

= A and Im eg
2n�1

= 0, 8n 2 Z�1

Ker eg
2n = {bx 2 A} and Im eg

2n = {2ax 2 A}, 8n 2 Z�1

.
(14)

Now we are ready to calculate H•(A,A) by calculating the homology of (13).

H
0

(A,A) =
A

Im eg
1

(14)

=
A

{0} = A

H
2n�1

=
Ker eg

2n�1

Im eg
2n�2

(14)

=
A

{2ax 2 A} = {a 2 R} = R, for all n � 1

H
2n =

Ker eg
2n

Im eg
2n�1

(14)

=
{bx 2 A}

{0} = {bx 2 A} ⇠= {b 2 R} = R, for all n � 1

Hence we have found H•(A,A) completely.

H•(A,A).
According to Theorem 2.2.5. we can compute H•(A,A) by computing
ExtA

e
(A,A). In order to that, we’re considering the associated cochain

complex of the projective resolution in (12):

0 �! HomAe(P
0

, A)
g⇤1�! HomAe(P

1

, A)
g⇤2�! HomAe(P

2

, A)
g⇤3�! · · ·
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We have according to (10) (in proof of Theorem 2.2.5 ) that

HomAe(Pi, A) = HomAe(A⌦A,A) ⇠= HomR(A
⌦0, A) = A.

Hence the associated cochain complex above is isomorphic to

0 �! A
eg⇤1�! A

eg⇤2�! A
eg⇤3�! · · · (15)

where eg⇤i is the map induced by g⇤i .

Now due to the isomorphism in (10), any element a + bx 2 A has a cor-
responding element � 2 HomAe(A⌦2, A) where �(1 ⌦ 1) = a + bx. Ob-
viously g⇤i (�) = � � gi 2 HomAe(A⌦2, A) is the corresponding element of
eg⇤i (a+ bx) 2 A. Hence for all n 2 Z�1

we have

eg⇤
2n�1

(a+ bx) = (��g
2n�1

)(1⌦1) = �(x⌦x) = x�(1⌦1)x = x(a+ bx)x = 0

and

eg⇤
2n(a+ bx) = (� � g

2n)(1⌦ 1) = x(a+ bx)x+ (a+ bx)x+ x(a+ bx) = 2ax.

This results in

Ker eg⇤
2n�1

= A and Im eg⇤
2n�1

= 0, 8n 2 Z�1

Ker eg⇤
2n = {bx 2 A} and Im eg⇤

2n = {2ax 2 A}, 8n 2 Z�1

.
(16)

Now we are ready to calculate H•(A,A) by calculating the homology of (15).

H0(A,A) =
Ker eg⇤

1

{0}
(16)

=
A

{0} = A

H2n�1 =
Ker eg⇤

2n

Im eg⇤
2n�1

(16)

=
{bx 2 A}

{0} = {b 2 R} = R, for all n � 1

H2n =
Ker eg⇤

2n+1

Im eg⇤
2n

(16)

=
A

{2ax 2 A} = {bx 2 A} ⇠= {b 2 R} = R, for all n � 1.

Hence we have found H•(A,A) completely and also derived H•(A,A) =
H•(A,A).

Another attempt to calculate H•(A,A).

Theorem 2.3.1. For any unital R-algebra A, let Ā := A/(R · 1)
(R · 1 is the set of all elements in A which can be expressed as �1 for some
� 2 R). Then we have following equivalence of Hochschild homologies:

H•(A,M) = H•(Ā,M).
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The proof of this theorem requires knowledge over the level of this essay,
so we’re omitting the proof. Yet, we will use it to find H•(A,A) where
A = R[x]/hx2i by calculating H•(Ā, A), i.e. the homology of

· · · b�! A⌦ Ā⌦3

b�! A⌦ Ā⌦2

b�! A⌦ Ā
b�! A �! 0

where Ā = A/(R · 1) = {kx 2 A | k 2 R}.

Now for any element in A⌦ Ā⌦n we have the following equality:

(m+ kx)⌦ k
1

x⌦ k
2

x⌦ · · ·⌦ knx =
�
k
1

k
2

· · · kn(m+ kx)
�
⌦ x⌦ · · ·⌦ x.

Hence any element in A⌦ Ā⌦n can be expressed as (m+ kx)⌦ x⌦ · · ·⌦ x.

Now consider

bn
⇥
(m+ kx)⌦ x⌦ x⌦ · · ·⌦ x

⇤
= ((m+ kx)x)⌦ x⌦ · · ·⌦ x+

+
n�1X

i=1

(�1)i(m+ kx)⌦ x⌦ · · ·⌦ x · x⌦ · · ·⌦ x+

+(�1)n(x(m+ kx))⌦ x⌦ · · ·⌦ x.

It is obvious that it is only possible for the first and the last term to be
non-zero in the expression above (the rest of terms are tensor products of
elements including x · x = x2 = 0, making the whole element zero).
Hence

bn
⇥
(m+ kx)⌦ x⌦ x⌦ · · ·⌦ x

⇤
= mx⌦ x⌦ · · ·⌦ x+ (�1)nmx⌦ x⌦ · · ·⌦ x.

From this we can see that

Im b
2n�1

= 0 and Ker b
2n�1

= A⌦ Ā⌦2n�1, 8n 2 Z�1

Im b
2n = Ā⌦2n and Ker b

2n = Ā⌦2n+1 (i.e. m = 0), 8n 2 Z�1

Hence

H
0

(Ā, A) =
A

Im b
1

=
A

{0} = A

H
2n�1

(Ā, A) =
Ker b

2n�1

Im b
2n�2

=
A⌦ Ā⌦2n�1

Ā⌦2n

For any equivalence class [(m+ kx)⌦ x⌦ · · ·⌦ x] 2 A⌦ ¯A⌦2n�1

¯A⌦2n we have that

[(m+kx)⌦x⌦· · ·⌦x] = [m⌦x⌦· · ·⌦x]+[kx⌦ x⌦ · · ·⌦ x]| {z }
2 ¯A⌦2n, so =0

= [m⌦x⌦· · ·⌦x]
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Hence every equivalence class in H
2n�1

(Ā, A) is given by a unique real num-
ber m, and vice versa. Thus H

2n�1

(Ā, A) = R, for all positive integers n.

Now consider

H
2n(Ā, A) =

Ker b
2n

Im b
2n�1

=
Ā⌦2n+1

{0} = Ā⌦2n+1.

Any element in Ā⌦2n+1 is on the form

k
1

x⌦ · · ·⌦ k
2n+1

x = k
1

· · · k
2n+1

x⌦ x⌦ · · ·⌦ x = mx⌦ x⌦ · · ·⌦ x.

Hence every element in Ā⌦2n+1 is given by a unique real number m and vice
versa. Hence H

2n(Ā, A) = R, for all positive integers n.

We have thus determined H•(Ā, A) completely which equals H•(A,A) ac-
cording to Theorem 2.3.1..

Remark. Note that if we would calculate the Hochschild (co)homology
out of its definition, without using Theorem 2.1.10 (or Theorem 2.3.1.) and
Theorem 2.2.5., the task would be much harder. Take for example

H
1

(A,A) =
Ker(b : A⌦A! A)

Im(b : A⌦A⌦2 ! A⌦A)

where

Im(b : A⌦A⌦2 ! A⌦A) = {(ac+(ad+bc)x)⌦(e+fx)�(a+bx)⌦(ce+(de+cf)x)+

+(ea+ (fa+ eb)x)⌦ (c+ dx) | a, b, c, d, e, f 2 R}.

This set is very hard to interpret, which make it hard to calculate H
1

(A,A).

32



References

[1] Merkulov, S.A. Notes on The Theory of Spectral Sequences,
http://www2.math.su.se/~sm/Geometry/Speksviter.pdf

[2] Chach

´

olski, W. and Skjelnes, R. Homological Algebra and
Algebraic Topology,
http://www.math.kth.se/math/GRU/2011.2012/SF2735/

Notesforsf2735.pdf

[3] Loday, J.L., Cyclic Homology, second edition, Springer 1998.

[4] http://people.maths.ox.ac.uk/erdmann/HA-12-slide4P.pdf

33


