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Abstract. To every squarefree monomial ideal one can associate
a hypergraph. In this dissertation we will study some algebraic
properties of monomial ideals via the combinatorial properties of
the associated hypergraphs. In the first part of this thesis, we show
that the Hilbert series of a monomial ideal can be obtained from the
so called edge induced polynomial of the associated hypergraph.
In the second part we focus on the quadratic case and we provide
explicit formulas for some graded Betti numbers of these ideals in
terms of combinatorial data of the associated hypergraphs.
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Introduction

A hypergraphH on a finite set V is a family {"1, . . . , "m} of nonempty
distinct subsets of V with no proper containment relation (i.e., if "i ✓
"j, then i = j). The elements x1, . . . , xn of V are called vertices, and
"1, . . . , "m are the edges of the hypergraph. A graph is a hypergraph
each of whose edges has cardinality 2.
An edge induced sub-hypergraph ofH is a hypergraph L = {"l1 , . . . , "lt}
on the vertex set VL :=

S
j "lj . The edge induced polynomial of a hy-

pergraph H is SH(x, y) =
P

i,j �ijx
i
y

j, where �ij is the number of edge
induced sub-hypergraphs of H with i vertices and j edges.

Suppose that I is a squarefree monomial ideal in R = K[x1, . . . , xn],
where K is a field. One can associate a hypergraph H(I) on the vertex
set {x1, . . . , xn} to I, simply by considering the unique set G(I) of
minimal monomial generators of I as edges of H(I). Note that H(I)
is a graph if and only if I is quadratic. Considering this connection, it
is natural to ask which algebraic properties of I that can be read from
the combinatorial properties of H(I).

If I is a monomial ideal, then the quotient ring R/I can be written
as a direct sum R/I =

L
i�0 Mi of K-vector spaces satisfying Mi.Mj ✓

Mi+j. The Hilbert series of R/I, Hilb(R/I; t) =
P

i�0 dimK(Mi)ti, is
an interesting invariant which contains much information about R/I.

Paul Renteln (2002) proved that if I is quadratic, then the Hilbert
series of R/I can be obtained from the so called edge induced polyno-
mial of H(I). Later in 2005, Ferrarello and Fröberg, by a careful use
of the inclusion–exclusion principle, gave a short and easy proof of this
fact.

In the first part of this thesis by using topological methods from
combinatorics (that can be considered as natural generalizations of the
inclusion–exclusion principle), we generalize this result by showing that
the same result holds for any squarefree monomial ideal.

The second part deals with quadratic monomial ideals. These ideals
has been studied extensively, since the pioneering works by Fröberg
(1988) and by Simis, Vasconcelos, and Villarreal (1994). One of the
most interesting problems in this direction is to provide connections
between the resolution of the ideal and combinatorial properties of the
associated graph.

Recall that, associated to I, there exists a minimal graded free res-
olution of the form

0 I  
M

j

R(�j)b0,j  · · · 
M

j

R(�j)bp,j  0

where p  n and R(�j) is the free R-module obtained by shifting the
degrees of R by j. The number bi,j is called ij-th graded Betti number
of I.
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It is a well-known fact that Hilbert series can be computed by using
the graded Betti numbers, so the minimal free resolution is a finer in-
variant than Hilbert series. On the other hand unlike the case of Hilbert
series, the graded Betti numbers depend on the characteristic of the
ground field K. However, even if we restrict our study to the those
cases that are independent of the characteristic, the subgraph poly-
nomial would not be a good candidate. For instance, the squarefree
monomial ideals with 2-linear resolution (i.e. those monomial ideals I

such that bi,j(I) = 0 if j 6= i + 1) are corresponded to complement of
chordal graphs, by a Theorem of Fröberg (1988). Then the fact that
there is no restriction on the di↵erence between the number of edges
and vertices of a subgraph of those graphs, shows that to find a com-
binatorial picture of graded Betti numbers, the subgraph polynomial
would not be a good candidate.

In the second part of this thesis we will provide connections between
some small graded Betti numbers of a quadratic monomial ideal and
the number of induced subgraphs of its associated graph.



ON THE HILBERT SERIES OF MONOMIAL IDEALS

AFSHIN GOODARZI

Abstract. To every squarefree monomial ideal one can associate
a hypergraph. In this paper we show that the Hilbert series of a
squarefree monomial ideal, can be obtained from the so called edge
induced polynomial of the associated hypergraph.

1. Introduction

Suppose that I is a squarefree monomial ideal in R = K[x1, . . . , xn],
where K is a field. One can associate a hypergraph H(I) on the vertex
set {x1, . . . , xn} to I, simply by considering the unique set G(I) of
minimal monomial generators of I as edges of H(I).

The edge induced (sub-hypergraph) polynomial of a hypergraph H
is SH(x, y) =

P
i,j �ijx

iyj, where �ij is the number of edge induced
sub-hypergraphs (see Section 2) of H with i vertices and j edges. It
was shown by Renteln [9] (see also [4]) that if I is quadratic, then
the Hilbert series of the quotient R/I can be computed from the edge
induced polynomial of H(I). Note that in this case H(I) will be a
graph.

The aim of this note is to generalize this result by showing that the
same result holds for any squarefree monomial ideal. More precisely
we will prove the following result.

Theorem 1.1. Let I ⇢ R = K[x1, . . . , xn] be a squarefree monomial
ideal and H = H(I) its associated hypergraph. Then

Hilb(R/I, t) =
SH(t,�1)

(1� t)n
.

The structure of the paper is as follows. Section 2 reviews basic
concepts and terminology. In Section 3 we discuss the foundation for
our proof. Finally the main result is proved in Section 4.

2. Basic Concepts

In this section we recall some basic concepts. We refer to the books
by Munkres [8], Berge [1] and Miller and Sturmfels [7] for more details
and unexplained terminology.
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2 AFSHIN GOODARZI

2.1. Topological Preliminaries. Let � be a simplicial complex on
the vertex set V = {x1, . . . , xn} and S a commutative ring with unity.
eH.(�; S) (resp. eH .(�; S)) stands for the reduced simplicial homology
(resp. cohomology) of � over S. Instead of eH.(�; K), we will use the
notation eH.(�). Also e�i(�) = dimK eHi(�) is the i-th reduced Betti
number of � over K.

If fi(�) denotes the number of i-faces (faces of cardinality i + 1) of
�, then the Euler-Poincaré formula says that the reduced Euler char-
acteristics of � is

X

i��1

(�1)ifi(�) =
X

i�0

(�1)ie�i(�).(1)

The combinatorial Alexander dual of a simplicial complex � is the
simplicial complex on the same ground set defined by

�⇤ = {F ⇢ V |V \ F /2 �}.
There exists a close connection between the homology of a simplicial
complex and cohomology of its Alexander dual:

eHi(�) ⇠= eHn�i�3(�⇤).(2)

2.2. Combinatorial Preliminaries. Let V = {x1, . . . , xn} be a finite
set. A hypergraph on V is a family H = {"1, . . . , "m} of nonempty
distinct subsets of V with no proper containment relation (i.e., if "i ✓
"j, then i = j).

The elements x1, . . . , xn of V are called vertices, and "1, . . . , "m are
the edges of the hypergraph. A graph is a hypergraph each of whose
edges has cardinality 2.

Let H = {"1, . . . , "m} be a hypergraph on the vertex set V and
L = {"l1 , . . . , "lt} ⇢ {"1, . . . , "m}. We say that L is an edge induced
sub-hypergraph of H on the vertex set VL :=

S
j "lj . A vertex induced

sub-hypergraph of H induced by W ✓ V is HW = {" 2 H|" ✓ W}.
An independent set in a hypergraph H = {"1, . . . , "m} is a subset W

of vertices of H such that "j * W for all j. The collection �̄(H) of
all independent set of H forms a simplicial complex that is called the
independence complex of H.

2.3. Algebraic Preliminaries. Let K be a field and R = K[x1, . . . , xn]
a polynomial ring. Assume that M = R/I is a monomial quotient.
Then M =

L
i�0 Mi, where Mi is the vector space of the homogeneous

elements of M of degree i. The Hilbert series of M is

Hilb(M ; t) =
X

i�0

dimK(Mi)t
i.
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The Hilbert series of every monomial quotient M = R/I can be ex-
pressed as a rational function

Hilb(M ; t) =
K(M ; t)

(1� t)n
.

The numerator of this expression, K(M ; t), is called the K-polynomial
of M .

The K-polynomial of M can be computed from its finite free reso-
lution. Recall that associated to M is a minimal graded free resolution
of the form

0 M  
M

j

R(�j)b0,j  · · · 
M

j

R(�j)bp,j  0

where p  n and R(�j) is the free R-module obtained by shifting the
degrees of R by j. The number bi,j is called ij-th graded Betti number
of M . One can compute the K-polynomial of M using this graded
Betti numbers

K(M ; t) =
nX

i=0

X

j2Z
(�1)ibi,j(M)tj.(3)

The Hochster’s formula (see [7, Corollary 5.12]) expresses the graded
Betti numbers of the Stanley-Reisner ring of a simplicial complex in
terms of the reduced Betti numbers of some subcomplexes. The fol-
lowing equivalent form of this formula shall be more useful for our
purpose

bi,j(R/I) =
X

W=j

e�j�i�1(�̄(H(I)W )).(4)

3. Edge Cover Complex

In this section we discuss the foundation of our proof. Let H =
{"1, . . . , "m} be a hypergraph on the vertex set V . An edge cover of H
is a subset {"l1 , . . . , "lt} of the edges of H such that

S
j "lj = V . An

edge cover of cardinality t will be called a t-cover.
Clearly if E is an edge cover, then every subset F of {"l1 , . . . , "lt}

which contains E is also an edge cover. So, by considering the collection
of complements of edge covers, we have a simplicial complex ⇤(H) on
{"l1 , . . . , "lt}. We will call this complex the edge cover complex of H.
In the case when H is a graph, the edge cover complex has been studied
in [6] and [5].

Denote by �(H) the simplicial complex on the vertex set {"1, . . . , "m}
as those subsets of {"1, . . . , "m} whose union is not all of V . This
complex appeared in [3], where the authors [3, Theorem 2] showed
that

eHi(�̄(H); S) ⇠= eH |V |�3�i(�(H); S).
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It is easy to see that �(H) is the collection of all non-edge covers of
H, hence a subset E of {"1, . . . , "m} is not in �(H) (E is an edge cover)
if and only if the complement of E is in ⇤(H). In other words

�(H) = ⇤(H)⇤.

Now using combinatorial Alexander duality, one can deduce the fol-
lowing result which the special case when H is a graph has been proved
in [5].

Proposition 3.1. Let H = {"1, . . . , "m} be a hypergraph on the vertex
set V = {x1, . . . , xn}. Then

eHi(�̄(H); S) ⇠= eHm�n+i(⇤(H); S).

Remark 3.2. An immediate but useful consequence of Proposition 3.1
is the following formula which relates the reduced Euler characteristics
of independence complex and edge cover complex of a hypergraph with
n vertices and m edges.

e�(⇤(H)) = (�1)m�ne�(�̄(H))(5)

4. proof of Theorem 1.1

In order to prove Theorem 1.1 we will show the validity of the fol-
lowing two claims.

• Claim 1. SH(t,�1) =
P

j2Z
P

|W |=j(�1)|EW |�1e�(⇤(HW ))tj.

• Claim 2. K(R/I; t) =
P

j2Z
P

|W |=j(�1)|EW |�1e�(⇤(HW ))tj.

Proof of Claim 1. If we fix a subset W of V = {x1, . . . , xn} and
consider all edge induced sub-hypergraphs on the vertex set W with
possible edges and then sum over all choices of W ⇢ V , we obtain that

SH(x, y) =
X

j

X

|W |=j

 
X

i

�i(W )yi

!
xj

where �i(W ) is the number of edge induced sub-hypergraphs L of H
with VL = W . Note that �i(W ) equals to the number of i-covers of HW .
Now if we denote by EW the set of edges of HW . The complementation
map c : EW ! EW induces a one-one correspondence between the set
of all k-covers of HW and the set of (|EW |� k� 1)-faces of ⇤(HW ), for
all k. So we have

SH(t,�1) =
X

j

X

|W |=j

 
X

i

(�1)if|EW |�i�1(⇤(HW ))

!
tj

therefore the Euler-Poincaré formula yields that
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SH(t,�1) =
X

j2Z

X

|W |=j

(�1)|EW |�1e�(⇤(HW ))tj.

⇤
Proof of Claim 2.

K(R/I; t) =
nX

i=0

X

j2Z
(�1)ibi,jt

j (by 3)

=
nX

i=0

X

j2Z
(�1)i

 
X

W=j

e�j�i�1(�̄(HW ))

!
tj (by 4)

=
X

j2Z

X

|W |=j

 
nX

i=0

(�1)ie�j�i�1(�̄(HW ))

!
tj

=
X

j2Z

X

|W |=j

(�1)j�1e�(�̄(HW ))tj

=
X

j2Z

X

|W |=j

(�1)|EW |�1e�(⇤(HW ))tj. (by 5)

⇤
Acknowledgements. I am very grateful to Ralf Fröberg and Siamak
Yassemi for helpful discussions and comments.
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A STUDY OF GRADED BETTI NUMBERS OF
QUADRATIC MONOMIAL IDEALS

AFSHIN GOODARZI

Abstract. To every squarefree quadratic monomial ideal one can
associate a simple graph. In this note we provide explicit formu-
las for some graded Betti numbers of these ideals in terms of the
combinatorial data of the associated graph.

1. Introduction

Let K be a field and let G = (V, E) be a simple graph (i.e. a graph
without loops or multiple edges) on the vertex set V = {x1, . . . , xn}.
The edge ideal of G, I(G), is the ideal of R := K[x1, . . . , xn] gener-
ated by the set of monomials xixj for all {xi, xj} 2 E. The quotient
ring M(G) = R/I(G) is called the edge ring of G. Every squarefree
quadratic monomial ideal I ⇢ R is indeed an edge ideal I = I(G), for
some graph G.

In recent years there have been a flurry of work investigating connec-
tions between properties of an edge ideal and its associated graph. We
refer the reader to the survey articles [5] and [6] and references there,
for more details and information.

The aim of this note is to provide connections between some small
graded Betti numbers of the edge ring of a graph and the number of
its induced subgraphs (see Theorem 4.1).

The structure of this note is as follows. First in Section 2, we will
brifely recall some basic concepts and terminology. In Section 3 we will
set up our foundation for the proof. Finally the main result is proved
in Section 4.

2. Basic Concepts

In this section we will recall some basic notions. We refer to the books
by Bruns and Herzog [1] and Diestel [2] for undefined terminology and
more details.

2.1. Hilbert Series and K-Polynomial. Let K be a field and R =
K[x1, . . . , xn] a polynomial ring. Assume that M = R/I is a monomial

1



2 AFSHIN GOODARZI

quotient. Then M =
L

i�0 Mi, where Mi is the vector space of the
homogeneous elements of M of degree i. The Hilbert series of M is

Hilb(M ; t) =
X

i�0

dimK(Mi)t
i.

The Hilbert series of every monomial quotient M = R/I can be ex-
pressed as a rational function

Hilb(M ; t) =
K(M ; t)

(1� t)n
.

The numerator of this expression, K(M ; t), is called the K-polynomial
of M .

2.2. Minimal Graded Resolution. Associated to M , there exists a
minimal graded free resolution of the form

0 M  
M

j

R(�j)b0,j  · · · 
M

j

R(�j)bp,j  0

where p  n and R(�j) is the free R-module obtained by shifting the
degrees of R by j. The number bi,j is called ij-th graded Betti number
of M .

From the fact that Hilbert Series is additive relatively to exact se-
quences, one can compute the K-polynomial of M using this graded
Betti numbers

K(M ; t) =
nX

i=0

X

j2Z
(�1)ibi,j(M)tj.(1)

2.3. Hochster’s Formula. The Hochster’s formula expresses the graded
Betti numbers of the Stanley-Reisner ring of a simplicial complex in
terms of the reduced Betti numbers of some subcomplexes. The fol-
lowing form of this formula shall be more useful for our purpose

bi,j(R/I(G)) =
X

|W |=j

e�j�i�1(�̄(GW )),(2)

where GW is the induced subgraph of G on the vertex set W . Recall
that edges of GW are those edges of G which have both endpoints in
W .
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3. K-Polynomial of the Edge Ring

In this section we provide a combinatorial formula to compute the co-
e�cients of the K-polynomial of an edge ring. A more general connec-
tion between K-polynomial of monomial quotient rings and associated
combinatorial objects can be found in [4].

The number of induced subgraphs of G, isomorphic to a given graph
H will be denoted by #G(H). We will also denote by Gj, the set of all
non-isomorphic graphs on j vertices and without any isolated vertex.

Proposition 3.1. Let G be a graph and M be its edge ring, then the
coe�cient of tj in K(M ; t) is

[K(M ; t)]tj = (�1)j�1
X

H2Gj

�
#(H).e�(�̄(H))

�
.

Proof. Combining Hochster’s formula and 1 yield

K(M ; t) =
nX

i=0

X

j2Z
(�1)i

0

@
X

|W |=j

e�j�i�1(�̄(GW ))

1

A tj

changing the order of summation, we get

K(M ; t) =
X

j2Z

X

|W |=j

(�1)j�1e�(�̄(GW ))tj

so
[K(M ; t)]tj = (�1)j�1

X

|W |=j

e�(�̄(GW )).

Now gathering all isomorphic cases, we obtain the desirable result. ⇤
The following running example, will be needed in the next section.

Example 3.2. If we denote by K4�e the graph obtained by removing
an edge from the complete graph K4 and denote by S4 + e the graph
obtained by connecting two non-adjacent vertices of the star graph S4,
then it is easy to check that

G4 = {K4, K4 � e, S4, S4 + e, C4, P4, K2 ]K2}
where C4, P4, and K2 ] K2 denote the cycle on 4 vertices, the path
on 4 vertices, and disjoint union of two copies of complete graph on 2
vertices, respectively.

Furthermore, using Proposition 3.1 we have

[K(M ; t)]t4 = �3#(K4)� 2#(K4 � e)�#(S4 + e)

�#(S4)�#(C4) + #(K2 ]K2).
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4. Main Result

In this section, by using the tool provided in the previous section,
we will prove our main result, which is the following theorem.

Theorem 4.1. Let M be the edge ring of a graph G. Then

(i) b2,4(M) = #(K2 ]K2),

(ii) b3,4(M) =
P

v2G

�
deg v

3

�
�#(K4) + #(C4).

Proof. Part (i): Using Hochster’s formula, we have

b2,4(M) =
X

|W |=4

e�1(�̄(GW )),

on the other hand, it is easy to see that e�1(�̄(GW )) = 1 if �̄(GW ) = C4

and otherwise e�1(�̄(GW )) = 0. Therefore b2,4(M) counts the number
of induced 4-cycles in the complement of G, or equivalently the number
of induced K2 ]K2’s in G.
Part (ii): If we fix a vertex v in G and choose 3 neighbours of v, the
induced subgraph of G on these four vertices will be isomorphic to one
of the following graphs

K4, K4 � e, S4 + e, S4,

since at least one of the vertices has degree 3. Now if we sum over all
possible choices of v and its neighbours (i.e.

P
v2G

�
deg v

3

�
), we count the

number of K4’s 4 times (for every vertex once), the number of K4� e’s
twice (K4� e has two vertices of degree 3) and the others once. So we
have

X

v2G

✓
deg v

3

◆
= 4#(K4) + 2#(K4 � e) + #(S4 + e) + #(S4).

Now Example 3.2 and part (i) imply that

X

v2G

✓
deg v

3

◆
�#(K4) + #(C4) = b2,4(M)� [K(M ; t)]t4

so the result follows, since the right hand side of the above equality is
b3,4(M) (by 1).

⇤
Remark 4.2. The part (ii) of Theorem 4.1 was conjectured by Eliahou
and Villarreal [3, Conjecture 2.4] and has been proved in a di↵erent way
by Roth and Van Tuyl [7, Proposition 2.8].

Acknowledgements. I am very grateful to Ralf Fröberg for helpful
discussions and comments.
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