SJALVSTANDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Introduction to Differential Manifolds and their Cohomology

av

Jorina Marlena Schiitt

2012 - No 20

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM






Introduction to Differential Manifolds and their Cohomology

Jorina Marlena Schiitt

Sjéalvstandigt arbete i matematik 30 hogskolepoéng, avancerad niva
Handledare: Boris Shapiro

2012






Abstract

This exposition starts with basic algebraic definitions such as
module, tensor product, tensor algebra, as well as symmetric and
skew-symmetric algebras. Next, we define n-dimensional manifolds
as topological spaces locally homeomorphic to balls in R". In the
smooth case we define differential forms of arbitrary orders. Then
we will prove the fundamental Stokes theorem for differential forms,
which, in particular, explain how a surface integral of a vector field
over an oriented surface is related to the volume integral of its
divergence over the body bounded by the surface. We will
investigate Stokes theorem for cuboids, simplices and general
manifolds. Finally, we define the notion of de Rham cohomology of a
smooth manifold using the famous Poincaré lemma. De Rham
cohomology is a analytical way of approaching the algebraic topology
of a manifold. De Rham theorem claims that de Rham cohomology
group of a manifold is isomorphic with its singular homology group.
For purposes of illustration, we provide a connection between the
vector analytic notions such as gradient, divergence and curl in R?
and the singular homology of the corresponding objects. At the end
we will take a look at Morse inequalities. Morse theory gives a direct
way of analyzing the topology of a manifold by studying smooth
real-valued functions on it.



Sammanfattning

Detta examensarbete utgar ifran grundldggande definitioner sasom
modul, tensorprodukt, tensoralgebra, bade symmetriska och
asymmetriska algebra. Déarefter definierar vi n-dimensionella
mangfalder som topologiska rum lokal homeomorfa till bollar i R™.
Sedan bevisar vi den fundamentala satsen, Stokes sats, for
differentialformer, som framfor allt forklarar hur en ytintegral av ett
vektorfalt 6ver en orienterad yta hianger ihop med volymintegralen
over dess divergens over kroppen avgransas av ytan. Vi betraktar
satsen for bade block, simplex och generella mangfalder. Vi
definierar begreppet de Rham kohomologin under anviandandet av
den valkanda Poincaré lemma. De Rham kohomologin &r ett
analytiskt sitt att ndrma sig algebraiska topologin av en mangfald.
De Rham teorem pastar att de Rham kohomologi gruppen av en
mangfald dr isomorfisk med dess singuldr homologi grupp. Vi
etablerar, for illustrationsdndamal, sambandet mellan vektor
analytiska begrepp sasom gradient, divergens och rotation i R® och
den singuldra homologin med motsvarande objekter. Mot slutet av
arbetet betraktar vi Morse olikheter. Morse teorin ger ett direkt
sitt for att analysera topologin av mangfalder genom att studera
differentialfunktioner pa dem.



Contents

1

Elements of Linear Algebra

with focus on Tensor products 5
1.1 Modules . . . . . .. .. 5
1.1.1 Left and Right modules . . . . ... ... ... 5
1.1.2 Examples of R-modules . . ... ........ 6
1.1.3 R-module homomorphisms . . . ... ... .. 6
1.2 Tensor product . . .. ... ... ... .. ... .. 6
1.2.1  Universality of tensor product . . . . . . .. .. 7
1.3 Tensor algebra . . .. ... .. ... ... ..., .. 10
1.3.1 Symmetric algebra . . . . .. ... ... 11
1.3.2 Skew-symmetric algebra . . . . . .. ... .. 12
Differentiable Manifolds 13
2.1 Topological n- dimensional manifolds . . . . . . .. .. 13
2.2 Local coordinates on topological manifolds . . . . . . . 14
2.2.1 Differentiable Manifolds . . . . . ... ... .. 15
23 Atlas . . . .. 16

Tangent and Cotangent vectors and Differential forms 19

3.1 Smoothmaps . . . ... ... ... .. ... ... 19
3.2 Tangent vector . . . .. .. ... ... ... . ..., 21
3.3 Tangent bundle . . . . . ... ... ... L. 22
3.4 Vector field . ... ... ... ... ... ..., 22
3.5 Cotangent spaceto M atp . .. ... ... ... ... 24
3.6 Differential forms . . . . . .. .. .. ... ... ... . 25
3.6.1 1forms . .. ... .. ... ... ... ..., 25
3.6.2 Differential g-formson M . . . .. .. ... .. 27
3.6.3 Differential n — 1I-formson M . . . . . . . ... 29
3.7 x-operation . . . . .. ... .. 31
3.7.1 Pullback of Differential forms . . . .. ... .. 31
Integration of Differential forms and Stokes Theorem 34
4.1 Orientation of submanifolds . . . . ... ... .. ... 34
4.2 Integration of a ¢-form . . . . .. .. ... ... ... 37
4.3 Stokes theorem . . . . . . ... ... .. ... ... 40
4.3.1 Stokes Theorem . .. ... ........... 40
4.3.2 Using holomorphic functions . . ... ... .. 42
De Rham Cohomology and its relation to vector cal-
culus 46
5.1 De Rham cohomology complex and
cohomology groups . . . . . . . . ... 50
5.2 Properties of de Rham cohomology . . . . . .. .. .. 52
5.3 Simplicial homology . . . ... ... ... ... .... 59



5.4 Main result - de Rham Theorem . ... ... ... .. 67

Introduction to Morse theory 69
6.1 Basicconcept . . . . ... .. ... oL 69
6.2 Formal preparation . . . . . . .. .. ..., 71
6.3 Basics of Morse theory . . . . . .. ... ... 73

6.4 Morse inequalities . . . . . . .. ... ..o, 74



1 Elements of Linear Algebra
with focus on Tensor products

1.1 Modules

The notion of a vector space can easily be generalized by permitting
instead of a field a ring R as the set of scalars. Doing so we introduce a
so called R-module. For example, every abelian group is a Z-module.
Besides modules we will define in this section the tensor product of
modules and finally the tensor algebra.

I refer mainly to [KER], [STU] and [BOS] in this section.

1.1.1 Left and Right modules

Let R be a commutative ring.

Definition 1. 1. We call an operation R x M — M, (r,m) — rm
where R acts on an abelian group M by scalar multiplication
a R-module or left R-module (notation R — mod) if for all
r1,72, 7 € R and myi,ma,m € M the following holds:

r-(my +mg) =rmy +rmy

(T1 —+ r2)m =rim-+rom (*)
r1 - (rom) = (r1ire) - m
1-m=m

2. We call an operation M x R — M, (m,r) — mr where the
abelian group M acts on R by scalar multiplication a right R-
module (notation mod — R) if properties analogous to () hold.



1.1.2 Examples of R-modules
1. R itself is an R-module (with multiplication in R);
2. Every K-vector space, where R = K is a field;

3. Every abelian group G is a Z-module: all n terms of nx =
2+ ...+ x lie in G and therefore (—n)xr = —(nz) lies in G for
every x € G and n € N,

1.1.3 R-module homomorphisms

Definition 2. A mapping ¢ : M — M’ with an R-module M, M’ is
called R-module homomorphism or R-linear, if for m,m’ € M,r € R
the following holds:
p(m+m') = p(m) + o(m),
p(rm) = ro(m).
In the same way we can generalize the notion of a K-algebra and
obtain a R-algebra. For example, the set of all endomorphisms of a
R-module EndrM := {p : M — M]y is R-linear} is an R-algebra
with the properties:

(p+4)(m) :=

forallme M,r € R,p,v¢ € EndrM.

Definition 3. An additive subgroup N of an R-module is called its
submodule, if rn € N for all n € N,r € R.

1.2 Tensor product

Let R be a ring, M be a right- R-module, and N be a left- R-module.
Let U be the submodule of ZM*N: ie. U is generated by the elements
of the following form:

(m+m',n) — (m,n) — (m',n),
(m,n+n") — (m,n) — (m,n'),
(mr,n) — (m,rn),

where r € R,m,m' € M and n,n’ € N.



Definition 4. Define the tensor product of M and N over R by
ZM*N /U7 = M ®g N. In other words, for some elements m € M and
n € N we define m ® n as the residue class (m,n) + U in M @ N.

For all r € R,m,m’ € M,n,n’ € N the following properties hold:

(m+m)en = m@n+m' @n,
men+n) = man+men,

mr@@n=mQrn;

e every element z € M ®p N has a representation of the form

J
Z:Zmi®ni where m; € M,n; € N,j € N.
i=1

This decomposition is, in general, non-unique.
e If R is commutative, then M ®p N has the property:

r(m®n)=mr®n=m®ern.

Ezxample 1. For M = R? and N = R? the tensor product T = M ® N
is given by 2 x 3 real valued matrices. Take x = (x1,22) and y =
(y1,y2,y3) in R? and R? respectively. The tensor product combines
and y in the rank 1 matrix zy”:

x
@y =azy’ (é) ® (1 y2 y3) =
T1Y1 T1y2 T1Y 2 3
Y1 T1Y2 T1Y3
= = 2y By i,
<x2y1 x2y2 x2y3> ;]z:; Zyj "

where E; ; is the 2 X 3 matrix with 1 at the (¢, j)th entry and 0 else.
The combinations of rank 1 matrices give all 2 times 3 matrices and
thus the dimension of 7= R? ® R? is 6.

1.2.1 Universality of tensor product

Theorem 1. Let V be a Z—module. Then every bilinear mapping
v : M x N =V induces a unique homomorphism

g: M ®rN —V satisfying g(m @ n) = v(m,n).



In other words, the following diagram is commutative:

MxN-—L—vy

o| 4

M &g N
Proof. By bilinearity of v we have
vy(mr,n) =~(m,rn) for alm € M,n € N,r € R. (1)
Define
g: (M@ N =2"N/uy 5 v
(m®n)=U+ (m,n)) — (m,n),
where U is the submodule of ZM*" with U C ker(g) defined as above.

e well-definedness: indeed, consider U + (m,n) = U + (m/,n’)
for (m,n),(m’,n') € M x N, then there exists v € U with
(m,n) = u+ (m',n'). It follows g((m,n)) = v(u+ (m',n')) =
Y(u) + y((m/,n')). Since u € U C ker(g) we get g((m,n)) =
g((m’,n")).

e g is a homomorphism:
(i) for (m,n),(m’,n') € M x N we have:

((U+( ;n)) + (U + (m/,n))
( ) (mm’))):

(ii) for (m,n) € M x

e commutativity: go ® = v holds because by construction we
have for all (m,n) € M x N:

go ®@(m,n)=g(men)=gU+ (m,n)) =~y(m,n).



e uniqueness: let h be a homomorphism with ho ® = -, then for
each (m,n) € M x N we have:

MU + (m,n)) = ho ®@(m,n) =
= 5(m,m) = go @(m,n) =
=g(U + (m,n))

=h=g.

Theorem 2. Tensor product induces two canonical Z-isomorphisms:

M®rR— M, m&®r— mr,
R®r N — N,r®n+ rn.

Proof. Take the bilinear mapping v : M x R — M, (m,r) — mr,
which satisfies equation (1). By Theorem 1 (universality of tensor
product) there exists exactly one Z-linear mapping g : M @ g R — M
with g(m ® r) = mr for all m € M,r € R. This mapping is bijective
and its invertion is given by M - M ®r R,m — m ® 1. OJ

Lemma 1. (Tensor product of vector spaces)
Let K be a field and M =V and N = W be vector spaces over
K. Then V ®g W is a K-vector space with elements of the form
VROW =3 e iey Aikj(ei ® f;) where E = {e;|i € I} a basis to V' (i.e.
v =73 Niei), F={fjlj € J} abasis to W (i.e. w=73",c;up;fi)
Furthermore, dim(V @ W) = dimV - dim W.

Proof. We can interprete tensor product of finite-dimensional vector
spaces as the space of matrices, where we determine the rows with
index I = {1,...,n} and the columns with index J = {1,...,m}. Then
the entries of the columns are the multiplicities of v = ZZ—E 1 Aie; and
the rows multiplicities of w =3 jeg M fj. Tensor multiplication v ® w
has the following properties:

W+vY@w=1ow+1" @w,
v (W +w")=vew +vew’,
W) @w=Avew)=v& (A\w),

where v,v',v" € V,w,w’,w" € W,\ € K.



In general, commutativity does not hold, because for v € V,w € W
the vectors v@w € VW and w®v € W ® V lie in the same space
only in case V = W. Even then the equality v ® w = w ® v is not
necessarily true. Constructing unique ordered pairs

E x F ={(e;, fj)|i € I,j € J} from the initial two bases

E ={eli € I} and F = {f;|j € J} as cartesian products we get that
the dimension of V' ® W equals the product of the dimensions of V'
and W.

O

1.3 Tensor algebra

Definition 5. Let R be a commutative ring with an unit element and

let M, N be R-modules. By definition M ®r N is a R-module.

We define the i-fold tensor product by M® = M @p M g ... ®r M.
i times

Note: for i = 0 we get M®° = R and for i = 1M®! = M.

Now we are able to define the tensor algebra

T(M) =@ M¥=RoMoMoM)o(MoMe M) ..,

where @ denotes the direct sum.

Ezample 2. Considering for R = R and M = R? we get: T(R?) =
B T (R?) = P ,(R)® =ReR? @ (R?®R?) & ... Expansion of
the first three summands we can obtain bases: R = (z), R? = (z,v),

R2 @ R? = (zz, zy, yx, , since (m) ® (m) = (mc xy)
(vz, 2y, yz, YY) y y vr

Lemma 2. 1. Let R be a commutative ring and My, My be R-
modules. Then

T(My & Mz) — T(My) @ T(My)
defines an isomorphism, which we call canonical.

2. Let V be a vector space and let V* = Hom(V, K), the set of
homomorphisms from V' to K, be its dual space. Then there is
an isomorphism:

TWV) e T(V*) = (@ V) e @VH)®)

r>0 5>0
= P V)
r,s>0

10



In other words, an arbitrary element x in T(V) @ T(V*) is rep-
resented by

T = Z Tys ; where T, € VO @ (V*)®5,

r,s>0

Note: 2190 € V ® K is a vector and 91 € K ® V* is a linear
form.

Proof. 1. Follows similiarly as in theorem 2 in section 1.2.1.

2. Consider the commutative diagram:

V——=A

f /
37

(V)

foa=f: fti®w®.)=f(v1)- flvs)-..

where f is a linear map, a the direct sum of the i-fold tensor
product and A is a K-algebra.
O

1.3.1 Symmetric algebra

Definition 6. Let M®™ be a n-fold tensor product of a R-module
M and let T(M) be the corresponding tensor algebra. Consider the
ideal X in T (M) generated by

[m1, ma] = m1 ® ma —ma ® my,
where my, mo € M. We define the symmetric algebra of M as

S(M)=T(M)/X =P S"(M)=RoM o S*M)® ...,
n>0

where S"(M) =T"(M)/X.

Ezample 3. Considering for R = R and M = R? we get: S(R?) =
D, S{(R?) = P! (R)® =ReR?@® (R?®R?) & .... Expansion of
the first three summands we can obtain bases: R = (z), R? = (z,v),

R? ® R? = (xx, 2y, yy), since (QC) ® (m) = (xm ch) and xy = yx.
(v, xy, yy) y ; v y=y

11



1.3.2 Skew-symmetric algebra

Definition 7. Let again M®" be a n-fold tensor product of a R-
module M and let T'(M) be the corresponding tensor algebra. Con-
sider the ideal Y in T'(M) generated by

[m,m] = m ®m,

where m € M. We define the skew-symmmetric (or Grassmann alge-
bra) of M as

AM)=T(M))Y =PA"(M)=Re Mo A*(M)o ...,
n>0

where A"(M) =T"(M)/Y is the so called n-th exterior power of M.

Definition 8. In the above notations the exterior product A of two
elements my, mo € A(M) is defined as

mi Amg =my ® ma(modY).

Properties of the exterior power, m; € M for ¢ = 1,...,n:

L.miAmoA. . Amy=(m Q@ma® ... R my,) =
=M OMa®...R0mE) ® (Mit1 ® Miro @ ... @ My,),

2. m; =m; = mi/\mjzo,

3. my Amy = —mj Am,.

Ezxample 4. Skew-symmetric algebra on vector spaces.

In particular, we can define the skew-symmetric algebra of a vector
space V over a field K. Consider the index set I = {i1,12,...,1,]i1 <
... <in} and the generating system, ey = e;; A ej, A ... Ae;,. Then:

AV)= P Ker

Ie{l,...,n}

For two vectors v = (v1,v2)” = wie; + vees and w = (wy, wr)T =
wiey + weeg in A(V') the exterior product is given as follows:

v Aw = (vie] + vee2) A (wieg + waes)
= vjwier N ey + viwaer N es+
+ vowiea A e1 + vowaeg N €2

= (viwg — vowi ey A es.

12



2 Differentiable Manifolds

Differentiable manifolds are higher dimensional analogues of surfaces.
We should, nevertheless, not think of a manifold as an object, which
always sits inside an Euclidian space, but rather as an abstract object.
After the definition of a differentiable manifold we want to describe
points locally by n real numbers, local coordinates.

I refer mainly to [STU], [WAR] and [HOF] in this section.

2.1 Topological n- dimensional manifolds

We begin with some notions of topology. For our considerations it is
enough to refer to [HIS].

Definition 9. Let X be a set and P(X) its power set. A topology T
is a family of sets, open subset of P(X), with the following properties:

e (), X are open sets,
e the intersection of finitely many open sets is open,
e any union of open sets is open.

Then one calls the pair (X, T) a topological space.

Definition 10. A system B of subsets of (X,T) is called basis of
topology, if

e every open set of B is open with respect to T,

e every open set of (X, T') is representable as a union of sets of B.
Here one understands the empty union as the empty set (.

Definition 11. A topological space (X, T') satisfies the second aziom
of countability, if and only if X has a countable basis consisting of
open sets.

13



Now we can define the term of topological n-dimensional manifold.

Definition 12. We call a set M a topological n-dimensional manifold,
if M is a topological space such that for each point x € M there exists
an open neighborhood U(z) and a locally bijective and continuous
map @:

U->VCR"

Remark 1. A connected 1-dimensional topological manifold is home-
omorphic to a segment of a straight line.

PICTURE 1: TOPOLOGICAL N-DIMENSIONAL MANIFOLD

Remark 2. Submanifolds are subsets of manifolds, which are self man-
ifolds. Generally speaking, a submanifold of a manifold is what a
subspace is of a vector space; only that submanifolds and manifolds
are of the same dimension. Suppose, for example, the Earth’s surface
as a manifold, then a meridian is a submanifold.

2.2 Local coordinates on topological manifolds

Let M be a manifold.

Definition 13. Given an open covering M = |J;c; U; and open sets
Vi € R™, we call the homeomorphisms ¢; : U; — V; local charts on
M. The ¢; determine the change of local coordinates on U; to local
coordinates on V.

14



To be able to describe properties of a manifold M, which is as
mentioned earlier, somehow a object without reference system, we
want to transfer M to coordinates we can work better with, namely
coordintes in R™. Not to distort everything this change of local
coordinates has to happen smooth with help of local charts.

Definition 14. We call the following smooth composition of two
maps change of local coordinates:

wi 0wyt Vii(= 9i(Us NU;)) = Vig(= ¢i(U; N U;))

where both maps act on the subset U; N U; C M.

PICTURE 2: CHANGE OF LOCAL COORDINATES

2.2.1 Differentiable Manifolds

Definition 15. A topological manifold is said to be C*-differentiable,
respectively C®-differentiable or smooth, if and only if

(1) M satisfies the 2" axiom of countability and

(ii) the local change of coordinates on M is C*¥, C°°, respectively.

15



2.3 Atlas

As for world atlases, we need several charts to depict the world and
the more charts we take, the better is the representation of reality.
Nevertheless, we need to assure that the charts are compatible with
each other; that we can smoothly stick the charts together to one big
atlas.

Definition 16. An atlas is the set of U; C M with the local charts
i :U; — V;and i € I an index set: A = {(Uy; ¢;)|i € I}.

Definition 17. Let U, U;, U/ C M and V, V;, V/ C R"™ be open subsets.

e A map p:U — V is called compatible with a given atlas 2 on
a smooth manifold M if and only if the operation ¢ o <p;1 :
ei(UNU;) = o(UN;) is a diffeomorphism (i.e. o ;! and
its inverse are smooth).

e Two atlases A = (Uj;¢; : Uy — Vi), A = (Ul ¢, : Ul — V) are
called compatible on M if and only if

(i) every chart of (U, ¢;) is compatible with 2 and
ii) every chart of (U!,¢") is compatible with 2.
irPi

Definition 18. We call the union of all maps which are compatible
with a given atlas 2 the maximal Atlas A = U%@[ 2.

Remark 3. Tt follows from the defintion that every atlas 2l is contained
in the unique maximal atlas A.

Remark 4. (Refinement of open covers)

Take an open cover U = (U;|i € I) of a manifold M. Let the open sets
V = (V;]j € I) be a refinement of &/. This means, V is a new cover
of M such that every set in V is contained in some set in /. We can
select the indices by the function a: J — I 5 j — iz then V; C Uyy).

This is motivated by the Heine-Borel Theorem claiming that: if the
set M is covered by the union of open covers (J;.; U; 2 M then there
exists a subindex set J C I, so is M even representable by the union
over the new indexed covers U]-e sU;j 2 M. In other words, every
open cover of a compact subset of R™ has a finite subcover. See for
further considerations [RUD].

16



Theorem 3. (Heine - Borel)
For a subset S of R™ the following statements are equivalent:

(a) S is closed and bounded;
(b) every open cover of S has a finite subcover (i.e. S is compact).

Proof. (a) = (b) (closed and bounded implies compact): Assume
that S is bounded. We can cover S C R™ by the Cartesian product
of n intervals [a;,b;], a; < b;, a;,b; € R ;i =1,...,n § C Ty =
[a1,b1] % [as, ba] X ... X [an, by]. We can divide each side of Tj into halves.
Doing so we get 2™ smaller cells. To get a contradiction we assume
that Ty is not compact, i.e. Ty is covered by open sets {G,} which
have no finite subcover. Now take the 2™ smaller cells into account: at
least one of those cannot be covered by a open subcellection of {G,}.
Otherwise the whole Ty would be covered in this way. Call this small
cell T1. Considering 77 we divide its sides in halves again and pick
out the next cell Ty, which is not covered by a open subcollection of
{Gqo}. Continuing this process we construct a sequence of cells with
the following properties:

i) Too2Th DT D ...DT D ..
(ii) Ty is not covered by any finite subcollection of {G};

(iii) the length of all sides T}, tends to zero when k goes to oo, i.e.:

. br—a,
limy, o0 ka b =0

By Cantor’s lemma we get (\;—; T # 0, which means that there is a
point p in the intersection of all enclosed cells, p € T} for all k € N.
Because G, is open there exists an open ball B(p) around p. Since
p sits in all T}, this ball B(p) works as the finite subcover. Since we
covered S by the n-cell Ty we can make a selection of open balls cov-
ering S and we get a contradiction.

(b) = (a) (compact implies closed and bounded): (1) Compact
implies closed: Taken a point ¥ in the complement to S: y € S€.
For all x € S there exist nonintersecting neighborhoods B,
containing = and By containing y. The union of all B, builds an
open cover of S, S C |J,cgBe. Since S is assumed to be compact,
there exists a open, finite subcover By, ..., By, of S. Consider the
neighborhood of y, which lies outside S: (,_; Byk. This means that
y (any point outside S) can’t be a limit point of S and therefore all
limit points must already lie inside S.

(2) Compact implies bounded: Consider an open ball centered at a
common point of S of any desired radius. Because all points have the

17



same distance to the ball“s boundary, it can cover any set. Since all
balls in the subcover are contained in the largest open ball entirely
lying in that subcover, they must be bounded. Therefore the set S
which is covered now by the bounded smaller balls, must be bounded
as well. O

18



3 Tangent and Cotangent vectors and Differ-
ential forms

In this section M is a differentiable manifold and let A = {(Uy; ¢;)|i €
I} be a smooth atlas on M with local charts ¢; : U; — V;, where
U; C M and V; C R™.

I refer mainly to [FRI],[FOR],[GSI] and [HIT] in this section.
3.1 Smooth maps

e Let U C M be an open subset and let p be a point in U. We
say that the map f : U — R" is smooth at p if and only if for
any chart ¢; the composition f o go{l is smooth at ¢;(p), i.e.

f:U —R"is smooth at p e U
& for each chart ¢; the composition f o cp;l is p(U; NU) = R"
is smooth in ¢;(p).

e Let My and Ms be manifolds, U; C M; and V; C R™ be open
subsets for i« = 1,2. We say that the map f : My — Ms is
smooth at p if and only if the composition of f and two charts
wi U = V;, f(Up) C Us, gpgof|Ulo<p1_1 : V1 — V4 is smooth; i.e.

f: My — M is smooth
& for each two charts o; : Uy — Vi, U C M;, 1 = 1,2,
f(U1) C Uy, the restriction ¢g o fy, o gofl : V1 — V5 is smooth.

Tl
M13U1£>U2CM2

vIlT lw

Vi-——-—- Vs
w20 f|uy op]
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Definition 19. We call f : M; — My a diffeomorphism, if

(i) f is a homeomorphism: f is bijective, f, f~! are continuous,

(i) f, f~! are C°°-differentiable.

Even if we define manifolds with the help of local charts, there is no
chart marked as 'more preferably’ than another. According to this,
the choice of charts chould later be rather unimportant. We define a
smooth function, which maps every point p on a manifold M to a
real number. Then we get, collecting all these functions, a set of all
smooth functions from M to R.

Definition 20. We define the ring of smooth functions by
C®U)={f: M — R|f is smooth for all p € M}.

This definition is given without local charts and this is meaningsfull,
because it is possible to define a map from any set to the real
numbers. This means, in other words, that the value of a function is
independent of the choice of local coordinates.

Remark 5. e For any p € U consider the set M, = {f € C>(U)|f(p) =
0}. This is a maximal ideal in C*°(U).

e C*®(U) is a R-vector space.

Proof. e By definition a maximal ideal of a ring R is an ideal 9
satisfying:

for each ideal a €¢ Rwith 9t Ca C R: eithera=9ora=R

Denote by evg the mapping which evaluates every function at
the origin. The image under evy is R and its kernel, the set of
all f(p) =0, is a maximal ideal.

e The axioms of a vector space are easily verified.

These functions have many applications, for example, the electrical
potential can be understood as such a scalar field. But since the
electrical and the magnetic fields are attracting each other, we need
to introduce a reference system, which respects both forces and
specifies both, a scalar and a direction at a point p on a manifold M.
We need later on a vector field.
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3.2 Tangent vector

Because we are not longer in a Euclidean space but in a curved space,
we can 't define vectors globally. Each point p of a manifold M has
its own vector space.

Definition 21. Let M be a differentiable manifold and p € M be a
point on M. Define the vector X on M at p as the map from Cﬁp
to R", mapping every smooth function f € C77  on a differentiable
manifold M to a real number, which satisfies the following properties:

e X is a R-linear mapping: (AX7 + vXo)f = M X1 f) + v(Xaf)

e X respects the Leibnitz rule:

X(f1+ fo) = X(f1)f2(p) + fr(p) X (f2)

We can consider vectors as directional derivatives. They specify the
rate of change of a scalar field in the direction they point.

Definition 22. For a function f : M — R” and the on M in local
coordinates represented points p = (p1,pa, ..., Pn), b = (h1, ha, ..., hy)
the directional derivative is defined as:

i=1 ¢

t—0 t

In the special case: h; = e; the unit vectors: D, (f) = 6%1_|p(f);
1 =1,...,n, we get the usual partial derivative.

The direction a vector points can be determined by calculating the
derivative in direction of a curve: let k£ : R — M be a smooth curve
and let p € Mbe a point on M with p = k(t,) for ¢, € R. The map
which at a given point p assigns to each function f € Cf7 , the real

number
df (k(1)) |
=t
is called tangent vector. We note that this coincides due to the

above defintion 21 of a vector with the general derivative and we
define finally

X: Cﬁ’p — R
df (k(t))
dt

as the tangent vector at p = k(t,) of a smooth curve k: R — M,
t, € R.

f— lt=t,,
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Given a tangent vector X at p, we define the set of tangent vectors
to M at p as Thrp = {X|X tangent vector in p}.

Note:
o Tanp =R, + R, + ... + Ry |,
o Tsn1p={2i0 )‘ia%J 2ic Aipi = 0} € Tienp
Here we denote the (n — 1)-dimensional unit sphere:
S ={z e R"||Jz| =1}
For f(z) =2+ ..+ 22 —11is
§"7 = {z e R"|f(2) = 0}

and further is gradf(z) = (221, ..., 22,) implying that gradf(z) # 0
for all z € S"~1.

3.3 Tangent bundle

Definition 23. Given a smooth manifold M we define its tangent
bundle T(M) as the union of tangential vectors over all points p on
the manifold M:
T(M) = U Tarp
peEM

Although we need later charts with local coordinates on manifolds
M to define differentiablility of functions, which are acting on M, we
have defined the term of vector independent of coordinates. Further,
our notion of a vector got the vivid idea of a direction, which might
be defined by a curve.

3.4 Vector field

Until now we have no possibility to compare elements of the tangent
space at one point with the tangent space at another point. Before
we get rid of this problem we first define a vector field.
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Definition 24. We define a vector field for each point p on a smooth
manifold M as the mapping from M to the tangent bundle T'(M). A
point p € M is mapped to its vector V(p) € Thsp:

ViU — T(M)
i 0
P ;/\i(p)%‘p

Note: We call V smooth if and only if the generating functions )\;
are smooth fori =1,....,n

Theorem 4. Consider a k-dimensional manifold M and a point p €
M, then:

(a) Thrp is a k-dimensional subspace in R™.

(b) Consider a map ¢ : M — V, where V. C R* open and a point

p € U. The vectors g—;‘i(p), ey g—i(p) form a basis for Thrp.

(¢c) Let N C R™ be an open neighborhood of p and fi, ..., fn—g : N —
R smooth functions with

MNN={xeN: fi(z)=..= foi(z) =0} and

M(p):n—k

rank
8(1‘1, ,xn)

Then:

Timpy = {v € R"| < v, gradf;j(p) >=0 for j=1,...,n -k}

PICTURE 3: TANGENT VECTOR TO M AT p

Proof. Consider T} as a vector space spanned by g—i(p), ey g—tf(p) and
Ty = {v € R"| < v,gradf;(p) >=0for j = 1,...,n — k}. We want
to show: Ty C Tap C To. Since 77 and 75 are both k-dimensional
subspaces of R we have shown then, that necessarily T1 = T, = 1o
and therefore the theorem holds.
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(1) (Inclusion Ty C Tarp) Set

8tk( p)
to denote any vector of T7. We define a curve
Y] —e e[ = M CR" by (1) : o(p1 + M7, .o, Pk + AiT)

We have 9(0) = ¢(p) and by chain rule ¢'(0) = Alg—tf(p) + ...+
9 .
Ak g (p) = v; this means v € Ty
(ii) (Inclusion Ths, C T) Consider v € Thyp, ie. v € ¢/(0) for a
smooth curve ¥ : | — ¢, e[ = M C R™ with ¢(0) = p. Since this
curve proceeds in M it is for j =1,....n — k:

fiw(r))=0for |7| <er, (0<e <)

After differentiation we get

0 diy
O_Zaf, ¢():

=< gradf;(p ), (0) >=< v, grad f;(p) >

which means v € T5.

Definition 25. Let M be a k-dimensional manifold with scalar prod-
uct (.,.) of R™ and p € M. We call a vector v € R™ a normal vector
on M in p, if v is perpendicular to Ty p:

(v,w) =0 for all w e T,

Normal vectors to M at p build the (n—k)- dimensional normal bundle
Nup C R™. By the above theorem gradfi(p), ..., grad fr,—x(p) form a
basis of Ny p.

3.5 Cotangent space to M at p

In the linear algebra there is the concept of dual vector space. Given
a vector space V the dual space V* consists of all linear maps from
V to R. We apply this concept on our tangent spaces at every point
p on a manifold M and get the corresponding cotangent spaces.
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Definition 26. We call T}, = Hom (T p, R), i.e. the dual space to
T p, cotangent space to M at p. The map

* * *
o Tyg = Tary

from the cotangent space to N at ¢ to the cotangent space to M at p
is called cotangent vector.

Remark 6. Let ¢* be as above ¢* : Ty, . — T, , and let ¢ the map
between the set of tangent vectors given by ¢ : Ty, — Tv,g. Then

¢ (W) (p) = wle)(p)

holds for p € T,y and w € TR .

3.6 Differential forms

We want to investigate the elements of the just defined spaces. For
example, the elements of cotangent space are called 1-forms. After
we have considered this most basical case we go on with higher order
differential forms.

3.6.1 1-forms

Definition 27. (a) A differential form of order 1 (or a pfaffian
form) on an open set U € R™ is given by the mapping:

w:U— |JT3(U)

peU

where w(p) € T,;(U) for all p € U. In other words, this dif-
ferential form maps every point p € U to a cotangent vector
w(p) € T, (U). We write the value of w(p) on the tangent vector
v € Tyyas <w(p),v>.

(b) Given a smooth function f : U — R we define its total dif-
ferential df as the differential 1-form given by: for p € U and
v E TU,p:

-~ Of

< df(p),v >:=< gradf(p),v >= B,

(p)vi-
i=1
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The definition works even for a smooth manifold M. Then:
w:M— UpeM Ty ,- Then we just need to use instead of the
standard coordinates in R™ the local coordinates of the manifold M.

Representation of 1-forms in coordinates

Oxn
tangent space we want to construct a dual basis for the cotangent
space. For this we use the standard coordinate system (z1, ..., ;) of
R™. The process gets the same, if one understands this system to be
the local coordinate system of a manifold M.

Likewise we constructed by (8%1) s ( 0 ) a basis for the
P P

Consider the differentials dx1, dxs, ..., dz, of a coordinate system
(1,2, ...,x,) of R™. The i-th coordinate function is given by

z; : R" = Ry (p1,p2, s pn) = pi
Let e; = (0,...0,1,0,...0) be the j-th basis vector in R", where the 1
stands at the j-th place. By definition we have:
d _d 5 _5
i %i(p +tej)le=0 = = (pi + 0 ) =0 = 0
where d;; is the Kronecker delta. Therefore we see that the cotan-
gent vectors dx1(p), ..., dvy(p) form a basis of T, ,, which is dual to
€1,€2, ..., en. Every cotangent vector ¢ € Ty, , can be written as

< dzi(p),e; >=

n
¢ = Z cidzi(p)
=0

with uniquely determined coefficients ¢; € R. We can conclude that
every 1-form w of an open set U C R™ can be uniquely written as

n n
w = Zfidxi resp. for all p € U : w(p) = Z fi(p)dz;(p)
i=0 1=0

with functions f; : U — R.

Lemma 3. Let f : U — R be a smooth function on open set U C R™.

Then:
df = dx;

Proof. We have to show that at every point p € U the right-hand side
and the left-hand side give the same value on every tangent vector
v € Tyyp. Since < dx;(p),v >= v; we have:

<X Lo =Y 5L —<arw)v>
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3.6.2 Differential ¢-forms on M

Definition 28. We call the mapping w on a manifold M given by
w:M— | AYT5,)
peEM
a skew-symmetric g-form. The set of all skew-symmetric g-forms at

p on M forms a vector space AqTJ’\‘/[p. Note: AOTJ’(4P = R,AlTX/[p =

*
Ty

Representation of a ¢g-form in local coordinates

Again we consider the coordinate system (21, ..., 2,) of R™ and again
one can understand those as local coordinates of the manifold M. In
canonical coordinate functions z1, zs, ..., x, of R™ a basis of AqT&p is
given by the elements:

dziy (p) A ... Ndxi, (p), for 1 <y <ig <. <ig < m.
Every differential g-form is representable as:

w:U = | A(T5,),
peU

w=wi Awz A ... AN\wg = Z ar(x1, T2, ..., Tg)dxiy, Adxgy, A ... Adz,,
I

where each wy, (k=1,...,q) is a 1-form, I is an index set and aj are
unique smooth functions. For all p € U this means:

w(p) = wi(p) Aw2(p) A ... Awy(p)
=" ar(p)(@1(p), 22(p), s 2q(p))dai, (p) A iy (p) A ... A i, (p).
I

In the following we will derive the theorems and defintions on an
open subset U C R™ with the standard coordinate system

(1, ..., Zpn). On a smooth manifold M with local coordinates

(21, ..., 2p) all this looks similar, because we provide local charts
sending each point of M to R™ and which can be glued smoothly
together.
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Exterior derivative of a differential form

For U C R™ and the ¢-form w =)
define the (¢ + 1)-form dw by

Z dfil...iq A dwil JARAN dxiq.

i1<...<iq

11<...<ig firigdziy N oo Adag,

Ezample 5. Take the smooth 1-form w = Y7 | fidz;. Since df; =
> gf’ dz; we have:

Z

i A\ dx;j.

Further, dz; A dx; = 0 and dx; A dx; = —dx; A dx; and finally:

-~ (0f; 0fi _ _
dw—Z(azz —a$j>dml/\dxj.

1<7

Theorem 5. Let U C R™ be an open set and w,wi,ws be smooth
q-forms in U and o be a smooth r-form, A\, u € R:

(i) d(Awi + pws2) = Adw; + pdws
(ii) dw A o) = (dw) Ao+ (=1)%w A (do)
(11i) d(dw) = 0.
Proof. (i) Follows directly from general rules of differentiation.

(ii) Consider first the case ¢ = r = 0, i.e. two smooth functions
f,9 : U — R. By the chain rule, %(fg) = 8%1- g+ f- %7 we
get

d(fg) = gdf + fdg=df Ng+ [ Ndg.

Now in the general case we have

w = Z frdz;, o = Z gjdry: wAo= Zf[g,]d:cj ANdzy.

171=q |J|=r IJ
We get:
OJ/\O' Z gdfr + frdgy) ANdxy Adxy
1]

Z (gsdfr Ndxy Ndx g+ (— )qf[deAng/\dmj)
1,J

= (dw) Ao+ (=1)%w A (do).
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(iii) Consider first the case ¢ = 0. For a smooth function f: U — R
we have: df =3 7" ngdxl By the above example we have:

9= o (o) =y ()} =

1<J

Consider now a twice continuous differentiable ¢-form

w= Y frder: dw=">" dfi Ndx;.
|T|=q l1=q
Since d(dxj) = d(1 A dxy) = 0 follows together with (ii):

d(dw) =" {d(dfr) A dxy — dfy Ad(dar)} = 0.
I

Definition 29. Let U € R" be an open set.
(i) A smooth g-form w in U is called closed, if dw = 0.

(ii) For ¢ > 1 we call a smooth g-form w in U ezact, if there exists
a smooth (¢ — 1)-form »n in U such that w = dn.

Note: Every exact form is closed, since dod = 0.

3.6.3 Differential n — 1-forms on M

We can define differential forms of order n—1 on the open n-dimensional
manifold M. We use the following elements as basis

ei(p) = (1) Hdxy Ao A dzi A .. A dxy)(p) for 1 <i <n.

The ’hat’ above dx; means that this factor has to be left out. This
allows us to write a (n — 1)-dimensional smooth form of the vector
space A”flT]’CI’p, as

n

W= (1) fi(dzy A Adag A Aday) = zn: fip)es
I=1

i=1

with smooth coefficients functions f; : M — R. Since

o0x;

_ 0% dry A . Adxi A ooy A,
[“)xi

(-1 (afi_dxj> ATy A oo AdTg A o A day =
j=1
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we get

n 9 :
dw = <Z adx,»> dzy A ... A dap,.
i=1

We collect the functions f; in a vector field f = (f1, ..., fn) : M — R"
and define the following n—tuple of (n — 1)-forms:

dS := (dSh, ..., dSy), dS; = (—1)""'dzy A .. Ada; A ... A day,.
We will study dS closer when we consider integration on manifolds.

We can now determine the n — 1-form w as the scalar product
between f and dS:

w=f-dS:=>"fi-dS;
i=1
This leads us to the definition:

dw = d(f - dS) = div(f)dz1 A ... A day,

where
, " Ofi

div(f) = Z Oz

i=1

is the divergence of the vector field f.

Ezample 6. (Differential 2-forms on R?)
We parametrize the standard coordinates of R? with the polar coor-
dinates: x = rcosyp, y = rsinp.

[ Ox ox dy dy B
der ANdy = ((%dr + &pd(p> A (8rdT+ a(pd(p) =

= (cos pdr — rsin pdp) A (sin pdr + r cos pdp) =
= cos psin pdr A dr + 7 cos? dr A dp+
— rsin? pdp A dr — 2 sin pde A dp =
= rcos? @dr A dp + rsin® dr A dp =
= r(cos? ¢ + sin? p)dr A dp =
=rdr A dp.
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3.7 x - operation

Problems can often be solved by transition to other coordinates,
which are better adjusted to the problem. Change of coordinates
from the standard coordinates in R™ to polar coordinates (see the
example above) or change of local coordinates from a manifold M to
R™ as we have already seen provide good examples. In particular,
this means that one maps a point x lying in an arbitrary set U with
coordinates (z1, ..., x,) uniquely to another point f(z) =y with the
coordinates (y1, ..., yn). Then the set U has under this
transformation f the form f(U) = V. Functions g on V can then be
pulled back to U, by composition g o f. Now we want to investigate
how differential forms can be pulled back.

3.7.1 Pullback of Differential forms

Let M be a smooth manifold and U C M be a g-dimensional submani-
fold. Let V' C R™ be an open subset with a ¢g-form w = Zi1<...<iq fir.igdzip A
... Adx;,. Furthermore consider a smooth map :

©=(P1, ey om) : U = V.

Constructing the pullback of differential forms we should demand
that it doesn’t matter if we first perfom differentiation and after

that pullback or the other way round. This means, we are looking
for a pull back operation ¢*, which commutes with differentiation.

Definition 30. The pullback p*w of a differential form w is defined
by:
orw = Z (fir.ig 0 @)dpiy A ..o Ndpy,.

11<...<lg

Let tq, ..., t;, denote the canonical coordinate functions in R™. Then

define:
m 8@1
dy; = dt;.
J=1
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Ezample 7. The case ¢ = 1: w =" fidx;. Then

= Z Z fiop) 84,01 dtj, which means

n

m
© w:Zgjdtj with g; :Z(fiow)at.z'
J

j=1 i=1

This can be represented in the matrix form as follows. Let

@L,ﬂ 6801
oty o Otm
Dp=1 : :
don O¢n
oty 7 Otm

be the Jacobian matrix of ¢ and both f = (f1,...,fn) and g =
(g1, -, 9m) abbreviated to row vectors, then: g = (f o ¢)Dep.

Theorem 6. Let M be a smooth manifold, U C M be a submanifold,
V' C R™ be an open subset and ¢ : U — V be a smooth map. Further,
let w,w1,ws be g-forms and o be a r-form in' V and A\, u € R. Then:

(i) " (Awi + pws) = Ap*wi + pp*ws;
(i) ¢* (WA o) = (¢ w) A (g o);
(iit) d(p*w) = @*(dw);
(iv) ¥ : W — U another smooth function on an open set W C RP,
then: *(p*w) = (p o) 'w

Proof. (i) Follows from the linearity of derivatives.

(ii) Set w = >, frdxy, which yields to ¢*w = > ; (fr o ¢)dy; and
o =Y, 9sdxy, which yields to p*oc =" ; (970 ¢)dps. We get
the equalities:

P (wA o) ( Z frdzp) A (Z ngxJ)>
J

Z frgsdzy Ndx g
1.J

(fIQJ o gﬁ)dﬂf[ A dJ?J

1

< (frov) dw) <Z (970 w)dw>
J

*

= (p'w
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(iii) Consider first the case ¢ = 0; i.e. we have a smooth function
f:U — R. Using the chain rule we get:

For any smooth ¢-form w = >, frdx; we get

p'w="> " (frop)der,

I

where we abbreviated dyy 1= dp;, A...Adp;, with I = (i1, ..., ).
Since the function fr is smooth and ¢; is smooth too, follows
that the differential form ¢*f is smooth as well. Using (ii) we
get:

d(p*w) =Y _d(frop) Nder =Y *(dfr) A" (dar) =
=" (Z dfr A dxf) = @™ (dw).

This proves the most important property: commutativity of dif-
ferentiation and pullback.

(iv) Set ¥ := o). For 1 <i <n we get U; = p; 0y; and with (iii)
d¥; = d(p; o) = *(dy;). Further we get:
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4 Integration of Differential forms and Stokes
Theorem

Differential g-forms can be integrated over g-dimensional submani-
folds. Important in this construction is the orientation of the sub-
manifold or at least the possibility to orientate it. Informally, for a
hypersurface in R™ ’to be orientable’ means that it has 'two sides’. An
example of a non-orientable manifold is the Mébius strip, see below.
We can colour the whole strip by just one continued brush stroke,
which gives the clue to what it means to be non-orientable.

PICTURE 4: MOBIUS STRIP

More mathematically, orientability means, that there exists a
continuous normal vector.

I refer mainly to [FOR],[FRI] and [HIT] in this section.

4.1 Orientation of submanifolds

In order to integrate over smooth submanifolds we need to explain
the meaning of orientation of a submanifold. For this we recall the
notions of local charts and atlases: Let A = {(U;;i)|i € I} and
A = {(U];¢))|i" € I'} be two given atlases. In other words, there
exist two homeomorphic maps ¢; : U; — V; and ¢ : U] — V/ acting
on open covers U = (Us|i € I), U’ = (U[|i € I), respectively, of a
submanifold M and two open subsets V;, V/ C R™.
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Definition 31. Let U,V C R? be open sets and ¢ : U — V be a
diffeomorphism, which is called

(i) orientation-preserving, if det (Dyp(z)) > 0 for all z € U,

(ii) orientation-reversing, if det (Dyp(x)) < 0 for all z € U,
where Dy is the Jacobian of .

Definition 32. (i) We call two maps ¢;, ¢} equally oriented, if a
coordinate change between those maps is orientation-preserving;

(ii) An atlas 2 is called oriented, if two maps on 2 are equally
oriented;

(iii) An orientation of a submanifold is determined by the behaviour
of its atlases:
We define the residue-class of oriented atlases on M as:

A~ A < two maps (p; : U; — V;) on A and
(p; : Ul — V) on A" are equally oriented;

(iv) A submanifold M is said to be orientable, if M has an oriented
atlas. A oriented manifold is indicated by the pair (M, o) where
o is an orientation of M,

(v) We call a map (¢ : U — V) positive orientable with respect to
o, if all maps @; : U; — V; of an atlas of the oriented manifold
(M, o) are equally oriented to ¢. In other words, all maps on
an atlas, which belongs to the manifold M with orientation o,
are equally oriented to the map ¢ in question.

Ezample 8. (circle)
Consider S* = {(z1,72) € R?: 22 + 22 = 1}, which is a 1-dimensional
submanifold of R2. Its atlas is formed by two maps:
o1 :T) =] —m [ = S\ (~1,0)
@ : Ty := 10,27 — S?\ (1,0)
where ¢;(t) := (cost,sint) is the standard parametrization of S! for
t € Tj, j = 1,2. To change the parameters we consider a transforma-
tion:
7: T\ {0} = T\ {n}
given by

t+2r for —w<t<0
T(t) =
t forO<t<m

and @1|7\(oy = w2 o 7. Because 7'(t) > 0 for all t € Ty \ {0}, then
{1, p2} is an oriented atlas.
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PICTURE 5: STEREOGRAPHIC PROJECTION OF THE CIRCLE

Let us collect our results corncerning orientation:

Let (x1,...,x,) be a basis in R™. This basis is called positively
oriented, if det(x,...,x,) > 0, where x; are understood as column
vectors for each i =1, ..., n.

Let (M, o) be a k-dimensional submanifold and ¢ : U — V C R* a
positively oriented chart on U C M. Then is (g—g(p), cey g—i(p)) a
basis for tangent space T'(M) = (U, ps Tv,p- Thus we can claim that

det(ng(p), e gTi(p)) > 0 indicates a positively oriented chart .

Especially, for a hypersurface M C R", i.e. n — 1-dimensional
manifold M, its chart ¢ : M — R"™ is positively oriented if

0 0
det (1/(]))7 a—z(p), By <’: (p)> >0,

where v(p) is the normal vector on M at p. This is since

(), 5E(D) -, 522~ (p)) is a basis of R,

Definition 33. The normal vector space on a n— 1-dimensional man-
ifold M is a smooth map

v:M —R"

such that for each p € M the vector v(p) is a normal vector on M at
p. This means v(p) is perpendicular to Ty, and has length 1.
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Ezample 9. (2-sphere)
Consider the orientated 2-sphere S? = {x € R3|||z|| = 1} and the
map ¥ on the rectangle Q := 0, 7[ x |a, a + 27 C R2:

T:0—-UQ)cs?
(9, ) > (sin¥ cos @, sin ¥ sin @, cos )’

Claim: The map WV is positively oriented.
Proof: For x € S? is the outer normal vector v(z) = z. We have to
show that for all (¢, ¢) € Q:

ov ov
det (\11(197 50)’ 87’!9(?97 90)7 8719(197 @)) > 0.

Indeed, we get since ¥ € ]0, 7]

sintcosy cosPcosy —sindsinp
det | sindsingp cosdsingp sindcose | =sind > 0.
cosv —sind 0

PICTURE 6: PROJECTION OF A 2-SPHERE

4.2 Integration of a ¢-form

Let M be a smooth g-dimensional manifold and U C M be a smooth
submanifold. Let w = >, frdz; be a continuous ¢-form.

Definition 34. Let w = fdz1 A dxa A ... A dzg be a g-form on an
open set U C R?. We call w integrable over a subset A C U, if f|4 is
integrable with respect to the usual Lebesgue measure and we write

/Aw::/Af(:r)dx.

The following theorem concerns orientation-preserving,
orientation-reversing respectively of integration of differential forms.
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Theorem 7. Let U,V C R? and ¢ : U — V be smooth. Further let
w be a smooth q-form on'V and A C U be a compact subset. Then

/ w = / ©*w if @ orientation-preserving;

PpA A

/ w = —/ ©*w if p orientation-reversing.
pA A

Proof. Setw = fdxiA...Adzq. Looking at Example 4 and extending it
from the 1-dimensional to ¢-dimensional case, we have instead of the

single-index matrix Dy = (gfl) 1<i<n @ multi-index matrix Dy =
7/ 1<G5<m

(8%,) . Further by definition of the A-product and its skew-
1<v,u<q

oxy
symmetric property we get:

dpiy N ... Ndp;, = detDy - dxy A ... Ndzg.
This leads us to
p'w=(fop)detDy-dxi A..Ndx,.

By coordination change we get the desired result:

/ w= f@)d"(x /f )|detDp(z)|d"x.
pA pA

Now let in addition to the above notations M be an manifold with
orientation 0. We want to define the integral of w over (A, o), where
A Cc U C M is a submanifold with induced orientation o: f(A o) @

(a) Let us first assume that there exists a positively oriented map
p:U—=Von (M,o),such that ACU C M and V C R9. Set

w = cp*w:/ frop)depr =
/(A,a) /—l(A A);
= Z/ (frop)der,

where the last equality holds due to smoothness. We shall
show now, that this definition is independent of the choosen
chart. For this, take another positively oriented map

p1: Uy — Vq with A C Uy. There exists an
orientation-preserving transformation

7:U —= Uy with p = ¢ 07.
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By theorem 7 the independence of choice of coordinates for the
above definition of the integral holds and we get:

[oowo=[  eeme=[ i) =
v~ 1(A) p~1(A) T e (A))
= / Pl
P (A)

(b) We reduce the case, where A is not contained in one of the
preimages of ¢, by using the technique of partition of unity to
the previous case:

Partition of unity:
The partion of unity is a finite family of continuous functions
(fi,i € I) with f; > 0 for all ¢ € I such that:

(i) > er filz) =1 for all x € A;

(i1) {supp(fi)}ier is locally finite (a system of subsets is called
locally finite if a neighborhood of all elements in the set
intersects with finitely many subsets);

(iii) For every i there exists a positively oriented map:
i+ Uy = V; with A; := AN supp(f;) C V.

Now we define

W= (o 0 ;) ofw.
/(A,g) Z /%_I(Ai)

el
Again this formula is independent of the choice of a map and a
partition of unity.

Remark 7. 1. We have to be carefull with the orientation of the
manifold M when we integrate over a subset A C M:

[ a=f
(A77‘7) (A7U)

2. For a 1-dimensional oriented submanifold M C U we can asso-
ciate the above defined integration formula to the fundamental
theorem of calculus: Namely, let w = )" | f;dx; a continuous 1-
form (differential form of order 1) on U and ¢ : I — V a positive
oriented map of M with an open interval I C R, i.e. a smooth
curve. Let [a,b] C I a compact subinterval and A := ¢([a, b, ]).
For w we have the pullback p*w = >"" | (f; o p)¢ldt. Then

noop
/ w= / P = Z/ (fi o p)pjdt,
#l[a,b] [a,b] i=17a
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which coincides with the earlier defined integral

b
/w=/ prw.
A a

4.3 Stokes theorem

In the following we use the expressions as introduced in section 3.6.3
differential n — 1-forms on M.

Let M be a smooth g-dimensional manifold and w be a smooth
(¢ — 1)-form in U C M. For a smooth vector field
f="{(fi,., fq) : U—R?and

—

dS = (dSy, ..., dS,), dS; = (—1)""'day A ... Aday A ... Adzg

the differential form can be represented as the scalar product
between f and d.S:

q
w=f-dS=>"f-ds;

i=1

4.3.1 Stokes Theorem

Stokes theorem, which is generalizing the Gauss theorem of classical
calculus, relates a surface integral over a oriented surface and the
volume integral of a scalar field. We will return to the classical Stokes
theorem in the next section when looking closer on homology and
integration over cuboids and simplices. Below we present it in a more
general form.

Theorem 8. (Stokes) Let M be a q-dimensional manifold and w be
a smooth (¢ — 1)-form in U C M. For a compact set A C U with a
smooth boundary OA which is oriented by an outer mormal field one

has:
/dw:/ w.
A 9A
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Remark 8. For one dimension (¢ = 1) Theorem 8 coincides with the
Fundamental theorem of calculus in one variable:

b
/ f'(@)dz = f(b) - [(a).

Proof. Set w =Y (=1)""1fidxi A ... A dzi A .. A dzg. Thenw = f - ds
as above with the smooth vector field f = (f1,..., f) : U — R9. Let
v :0A — RY be the unit outer normal field. Then:

/(,)Aw = /EM < f(x),v(z) > dS(x).

Moreover, w is given by:
dw = div fdxi A ... Ndxy.

Therefore (by the Gauss theorem):

/Adwz/Adivf(m)dqx:/8A<f(x),u(a:)>dS(x).

Remark 9. (Gauss theorem) In the same notation as above:

/ divf(z)dlz = / < f(z),v(z) > dS(z).
A A

This theorem is a special case of the Stokes Theorem and explains
the relation between the volume integral over a body (with its normal
vectors) and the surface integral over the surface area element.

PICTURE 7: NORMAL VECTORS TO A 2-SPHERE IN R3

Ezxample 10. Consider a differential form

n
w=Y (-1 agday A Adzi A N day,
i=1
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in R™ and its exterior derivate dw = ndxri A ... A dx,,. For this ex-
ample we need to look first at the map f : R* — R, f(z) = =z.
The divergence of f is then given by divf(z) = > )_, gii = n. The
n-dimensional volume is defined as the volume integral over the n-
dimensional element: Vol,,(4) = [, 2div f(z)d"z, where A is a com-
pact subset of R with smooth boundary. Using this and Stokes The-

orem we get:

Voln(A)zl/dw:l/ w=
nJa n JoA

In case of R? with coordinates (z,y) we get the classical formula for the
area of a compact subset A C R? with a smooth boundary. Namely:

1

Areay(A) = 3 /8A (xdy — ydx).

Using this to express the oriented area of a triangle with vertices

(0,0), (z,v), (x + 0z, y + dy), where dz,dy > 0, we get

(zdy — yox)

Areas(N) = %det <$ Tt 5x) _ 1

y y—+dy 2

The whole A can be approximatively composed of such small triangles.

24 (x+ dmy + &y)

PICTURE 8: APPROXIMATING AN AREA BY SMALL TRIANGLES

4.3.2 Using holomorphic functions

Definition 35. A complex-valued function f : U — C defined on an
open subset U C C = R? with z = x + iy € C is called holomorphic,
if f has continuous partial derivatives and

O o vhene &L (210
BZ_OWhereaz_2<8x+Z8y)'
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6g_1

1
9z — 2 (_(:Jc+iy—a)2 o (z+iy—a)2
U\{a}. If f:U — C is another holomorphic function, then is even
h(z) = 1) 4 holomorphic function in U\{a}:

H(ah( 2 .8h<z))

) = 0 then is g holomorphic in

Oh(z)
0z

or o

1
2
1
2
! ORI (C NS S (O
2

(%)
<

1
2
\—,_/

_2 82 r—a
~——

=0 holomorphic

The corresponding differential form is given by w = ! (Z)dz

Theorem 9. (Cauchy integral formula)

Consider an open subset U C C, a holomorphic function f : U — C
and a compact subset A C U with smooth boundary. Then for every
point a inside A one gets:

1S,

2mt Joa 2 —a

f(a) =

Proof. To prove the integral formula we assume that Depgiion C Ais a
disk around any point a € A having a sufficiently small radius € > 0:

|z —a| = e. Using (2 —a)(z — a) = |z — a|? = €2 we get:
/ Mdz = / 1) dz = 12 (z —a)f(z)d=.
aDepsilon Z—a \z—a|:e z—a € |Z—a|:€

Since the form w = %dz = 512 (z—a)f(z)dz is closed (i.e. dw =0,

f()

because <= is holomophic), we can compute:

d((z—a)f(z)dz) =d(z —a) A (f(2)dz) = f(z)dz N dz.
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Further, we have
dz N dz = (dz — idy) A (dz + idy) = 2idz A dy.
Thus we get:

1 1
RN O
2mi Jop, 2 — a €™ J|2al<e

1
- /qz1 f(a+ eC)de A dn,

f(z)dz ANdy =

™

where we use the substitution: ¢ = £ + in = Since f is a
holomorphic function the right-hand side converges to f(a) as e — 0.
The left-hand side is independent of ¢ which means that we get the
equality:

z—a
e ¢

fla) = L Md,z.

- 2mi oD, 2 — @
To complete the proof we claim [y, w = [,pw for A, B=D,CU C
R"™ open sets and w a smooth (n — 1)-form on U\{a} for a € AN B.

Choose § > 0 arbitrary such that
Ks:={z e R"| ||z —al <8} c ANB.

Define Aj := A\Io(,g and Bs := B\ID((;. Both, A5 and Bg, are compact
sets in U\{a}. Since dw = 0 we get

/ w:/ w = 0.
0Ag 0Bs

The boundary 0As consists of A and the negativly oriented 0Ks;
likewise OBg consists of 0B and the negativly oriented 0Ks. Thus

/wf/ w:O:/ wf/ w.
A K aB K

This general case provides the case we need above and we get finally:

1 1
fla) = — (2) dz = — ﬁd,z.
2mt Jgp 2 —a 27 Jop; Z — @

Ezample 11. Choosing: f =1 and a = 0 in the above setting we get:

1 dz
= 1 = —_— _—
f(O) 2mi 9A R
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T—1y
z2+y?

the integrand is given by:

_zdr+ydy . zdy—ydz

i =M+ iN.
x2+y2 CCQ—'—yQ

Comparing the imaginary and the real part with the above integral

1= — | Zdz=
2m aAzz /A27TZ A27T /A27T A27T

we get:

d d
R Ty
A oA T°+Yy A oa T2 +y?
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5 De Rham Cohomology and its relation to
vector calculus

In this section we present a short introduction of the so-called De

Rham cohomology of manifolds. Its construction uses sequences of

vector spaces of differential forms and their exterior derivatives. Bound-
ary operators on cuboids and simplices define simplicial homology.

The De Rham theorem provides an isomorphism between those two

concepts. First we need the Poincaré lemma, which shows that closed

forms represent classes in de Rham cohomology groups.

I refer mainly to [FOR], [FRI] and [UTO] in this section.

Before we begin with the new ideas, we revise the property ’closed’
especially for 1-forms to draw consequences on the existence of
primitives. A necessary condition for the existence of a primitive of
a 1-form is given by the following property.

Definition 36. Let M be a n-dimensional manifold and w = Y7 | fidz;
be a smooth 1-form. Then w is called closed, if

Ofi _ 0
8xj 8:51

foralli,j=1,....n.

This definition of closedness coincides with our earlier definition
(dw = 0).

dw = Z gfi dr; Ndxj =

ij=1 %%
" (Of; Of;
= ( 1 _ ! ) dz; N d{Ej =
i<y dzi  97j ) _o by defintion 33
=0
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If w has a primitive F', w is necessarily closed. Since dF = w and
fi = OF/0x; we have

ofi 0 (F\_ 0 (F\ _0f
8l‘j a 8.%‘j 8%2‘ N 8l‘l al‘j - 81‘1‘.
This is, however, not yet sufficient for the opposite direction as the
following example shows.

Ezample 12. Define w = Ydr + —Z—dy on U = R?\{0}. This

e 2 a?4y? .-
1-form has no primitive but satisfies the above condition:

O(__y \_y-= _0( &
8y x2+y2 - (x2+y2)2 - or $2+y2 '

we need thus an additional definition, which assures the existence of
a primitve.

Definition 37. A subset U C RY is called contractible with respect
to a point p € U, if for any other point x € U the connecting segments
{(1 =t)p+tz]0 <t < 1} lie totally in U.

PICTURE 9: CONTRACTIBLE SET

Now we return to general k-forms and establish a connection
between closed and exact forms.

Lemma 4. Let U C R"™ be a contractible set with respect top € U and
w be a smooth closed 1-form on U. Then w has a primitive F : U — R.
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Proof. We can assume that U is contractible with respect to the ori-
gin. Define the primitive F for w =Y ;" fidz; by

1 n
F(x):= Z filtz)x; | dt
0 \i=1

for x € U. The integral is defined, because the whole line tz lies

in U for 0 < ¢t < 1 by contractibility. Using gg{? = % we get:
J i

8F/8xl =0. O

Ezxample 13. We return to the counterexample and modify the set
U = R%\{0} such that we get a contractible set. Namely, define
V = R:\{(z,0)|z < 0}. Especially V is contractible with respect to
the point (1,0) € V. Since the form w = — %5 dz+ dy is closed

T
. L ro a?+y?
it has a primitive F'. We can calculate the integral by

(%,y)
F(x,y) = / w,
(

1,0)

where we integrate over an arbitrary piecewise smooth curve in V

from (1,0) to (z,y). Set r := /22 + y2, then:

(r0) (zy)
F(z,y) :/ oJJr/ w.
(1,0) (r,0)

Choose the curve as shown in picture 10.

xy)
g

(0,0) (r,0} (1,0)

PICTURE 10: EXAMPLE 13

(r,0) (z,y)
/ w =0 and / w = .
(1,0) (r,0)

where ¢ is given by the conditions x = rcosp, y = rsing for —7 <
@ < m. Thus

Then

tan~! %, forz >0
p=F(z,y)) = 7/2 —tan~! g, fory>0

—7/2 —tan~! 5, fory <0
One varifies dF' = w.
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To prove the Poincaré lemma we need the following statement.

Lemma 5. Let U C R,V C R x R" be two open subsets such as
[0,1] x U C V. Define two mappings

Uo, U1 : U =V by Yy(z) := (0,2), Uy (x) := (1, 2).

For a smooth closed k-form o on V. (k > 1), there exists a smooth
(k—1)-form n on U with

Ulo — Vo = dn.

Proof. We denote coordinates on V' C R x R" by (¢, z1, x2, ..., 5) and
we represent o as

o Z frdxr + Z gjdt Ndx .

= |J|=k—1
The pullbacks of ¥y and ¥ are given by
Uio = Zf[((),x)dac[ and Ujo = Zf[(l,x)dmj.
I I

Calculating the exterior derivative of o, we get:

do = aJ;Idt/\d 1+Zzaf1da:l/\daq Zg

I =1

i ANdxy.

Since do = 0 (o is closed), the middle term vanishes and factoring
out dt we have:

8f1 Z Z 99. dxl ANdzg.
I

Integrating both sides with respect to ¢ from 0 to 1 we get:

Lofr
o Ot

1 agJ o 1
[ty = 5 /0 g7 (t,2)dt.

Substituting this in Yo — ¥jo we get:

\Illa—\IJOG—ijlxde—ZfIOxde

—=(t,x)dt = fr(1,z) — f1(0,2),

= Z f[ 1 3;‘ f](O,Q?))d.T] =
_Z(

for an n =37, ;s (fol gJ(t,ac)dt> dxy. O

/ gy(t x)dt) dry Adxy = dn.
0
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Theorem 10. (The Poincaré lemma)
Let U C R™ be a contractible set and w be a smooth closed k-form
(k>1)in U. Then w is exact.

Proof. We can assume that U is contractible with respect to the ori-
gin. Set

p:RxR" - R" (¢t z) — tx,
where V := ¢~ 1(U) is the preimage, then: ]0,1[ x U C V. Define

U, and ¥, as in the additional lemma above. By Theorem 6(iii) of
section 3.8 0 = p*w is closed (do = d(p*w) = ¢* (dw) = 0). We can
~——

=0
use the above lemma to obtain a (k — 1)-form 7 on U satisfying
Ulo — Vo = dn.

Since ¢ o Uy = idy [p(V1(x)) = ¢p(l,z) =12 =2z] and po ¥y =0
[(To(x)) = ¢(0,2) = 0-2 = 0] is the constant mapping to the origin,
we get:

Uio = Ui (p*w) = (po ¥1)*'w = idjyw = w and

Ugo = Ui(p*w) = (po ¥g)'w=00w = 0.
This implies that w =dn by ¥jo —V¥jo=w—-0=w=dn . O

5.1 De Rham cohomology complex and
cohomology groups

We can now reformulate the Poincaré lemma to introduce the concept
of De Rham cohomology for a contractible set U C R™ and the vector
space QF(U) of smooth k—forms in U. Namely, if w € Q¥(U), then
dw is smooth, i.e. dw € Q¥ 1(U) and it is closed, i.e. d(dw) = 0. If
dw = 0, then by the Poincaré lemma we can find a (k — 1)-form 7,
such as dn = w. One can check that the constructed form 7 is smooth
as well. This allows us to define a sequence:

0-R— Q@) 3% .. Lo U)Sanw) Lo, (2

of vector spaces and maps which is ezxact for a contractible U. The
latter notion means that for any k d(QF~1(U)) coincides with the
kernel of d : QF — QF L je.:

Im(QF1(U) % QF(U)) = ker(QF(U)

R = ker(Q°(U)

Qk+1(U))
Qi U)).

d
-
d
—
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If U is any arbitrary open set then the sequence (2) is not necessarily
exact. But since the image of d?> = dod at least belongs to the kernel
Im C ker we can build the quotient spaces:

_ ker(QF(U) S QFH(U))
Im(QE-1(U) % QrU))

Hy, p(U) : (k= 0);

where we set Q7 1(U) = 0. We call H5, ,(U) the k-th de Rham coho-
mology of U. For U contractible the Poincaré lemma says that:

0, fork>1
H(];e r(U) = { R, for k=0.

Definition 38. Given an arbitrary smooth manifold M we define the
k-th de Rham cohomology of M as the quotient space of the space of
closed k-forms modulo the subspace of exact k-forms:

H% o(M) = { closed k-forms}/{ exact k-forms}.

The main purpose of the de Rham cohomology is to compare closed
and ezact differential forms on a manifold, namely: we say that two
closed forms o and 8 in the set of k-forms Q¥(M) on a manifold M
are cohomologous, if their difference @ — 3 is an exact form:

a ~ 8 where da = df = 0 for k — forms a, 8
< (a— ) = dn for some (k — 1)-form 7.

Ezxample 14. Consider M = R. We get the sequence

0 — Q°(R) -% QY(R) — 0.
Then HY, 5(R) = ker(d) ~ R, the constant functions on R. Further
H} R(R) = QYR)/im(d) = {0}, the 2-forms on R are 0. Overall,
HY o(R) =0 for k> 1.

Example 15. Consider M = S the circle. There are no non-zero k-
forms on S' except possibly for k = 0,1. The cohomology Hl’fe R(Sl)
is zero for k > 1. There are no exact 0-forms (i.e. dw # 0) and the
closed 0-form is a constant function, so that we have

ng R(Sl) =R
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Further, the angle 6 is not everywhere well-defined, because the polar
coordinates functions are 27- periodic. But its differential df is a well-
defined and nonvanishing 1-form on S*. Nevertheless df is not exact,
because if it were, then integrating it over S' we would get 0, since
df = 0, but the integral has value 27. We claim now that all closed
1—forms on S* are proportional to df, i.e. for any closed w then there
is a constant ¢, such that w — edf is exact. Set w = f(6)df and

1
_271' S1

and

0
a(6) = /0 ((6) — c)do.

Since 6 is 2m-periodic then g(0+27mn) = g(0) for every n € N. Further,
g is a well-defined C*°-function in S'. Furthermore is dg = (f(6) —
¢)df = w — cdf and this means that every 1-form in S* differs from a
real multiple of df by an exact form and therefore:

Hée R(Sl) =R

Later we will calculate the de Rham cohomology in other cases, such
as R™ and the n-sphere S™. Now we study some general properties
of de Rham cohomology on a n-dimensional smooth manifold M.

5.2 Properties of de Rham cohomology

Lemma 6. The de Rham cohomology of a n-dimensional manifold
M, has the following properties:
o Hy o(M)=0ifp>n;

o for a € HY o(M),b € H} o(M) there is a bilinear product
ab € HYT9 (M) which satisfies

ab = (—1)Pba;
e for any smooth mapping f : M — N the pullback
f* : szi)e R(N> - ng R(M>
commutes with the N-product.

Proof. e Clear since APT* = 0 for p > n.
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e Recall the skew-symmetric property of A-product. Consider two
elements a and b, which define a cohomology class [«], [5], re-
spectivley, by the above defined quotient space. If ¢ = a and
b = 3, then define a representative of the A-product of a and b
as:

ab = [a A ).

We need to check that by this we really define a cohomology
class (the difference of two closed forms should be exact):

dlaNB)=daN B+ (—1)PaAdB =0 since «, 5 are closed.

Now choose a different representative o/ = « + dry for a. This
gives:
o' NB=(at+dy)AB=anB+dyAPp).
Since df = 0 the last summand is d(y A 8) = dy A 5. Then:
dANB—aANB=dyAB,

which means that two elements o/ A 3 and o A 8 differ by an
exact form. Therefore they define the same cohomology class.
Similarly for the element f.

e Consider the pull-back operation on forms. Since:
df*a = f*da

f* defines a map of de Rham cohomology. The product is pre-
served by linearity of pullback operation, i.e.

frlanp)=fanfp
and one verifies:
(i) dw =0= d(f*w) =0 for w € HY L(N),
(ii) [w1] = [w2] = we—w1 =da = ffwe— ffw; = fH(we—wr) =
[rdo = df*a = [f*wa] = [f*wi] for w1 € HY L(N).
O

The latter property of de Rham cohomology is independent of the
chosen map f. Thus we can show that for a smooth family of
smooth maps f; the result of their action on the de Rham
cohomology is independent of t. Consider now a smooth map

f:M x[a,b] = N.

We say that f is smooth if it is the restriction of a smooth map
defined on a slightly bigger open interval M x (a — €,b+ €).
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This is the so called homotopy invariance of de Rham cohomology.
We define:

Definition 39. Let M and N be two topological spaces and f,g :
M — N two smooth maps. We say f and g are homotope, if there
exists a smooth map

F:Mx[0,1]—N

such that F(z,0) = f(z) and F(z,1) = g(x) for some x € M.

Ezxample 16. It might be most vivid to think of the second parameter
as the time. Then F describes the continuous deformation of f into
g: We start at time 0 with map f and end at time 1 with map g.
Let M be an arbitrary set and N = R". Define f,g : M — R™ by
F(xz,t)=(1—1t)- f(x) +t-g(x), then f and g are homotope.

Theorem 11. Take the smooth map f : M x [0,1] and set fi(x) =
f(z,t). Consider the induced map f; : Hy, n(N) — HY, (M) on de
Rham comomology. Then:

=1

Proof. Let a € HY, p(N) be represented by a closed p-form o and
the pullback form f*a on M x [0,1]. Recall that for a p—form a =
> ;grdzr its pullback is given by f*a = > ;(gro f)df;. We can
decompose the pullback in the form

ffa=8+dt Ny,

where 8 is a p-form on M, depending on ¢, and v is a (p — 1)-form
an M depending on ¢. In other words, S is f;a. We can think of ~
as the mapping (x, s) — (x,s + t) in the group of diffeomorphisms of
M x (a,b) generated by a vector field X = 9/9t. Then v = ix f*a,
where ix means the interior product, see remark below. We know
that « is closed, so for the exterior derivative on M we get:

9B

dy ffa= f*(dMOz) =0=dypB+dtA T dt A dasy.
We get
9B _y
o M-

Using
0. _0B+dtny) 9B

at’t ot ot
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we get by integration over ¢

1 9 1
ffa—fga:/ aft*adt:d/ ~dt.
0 0

The latter formula means that the difference of the closed forms fa
and fjo is an exact form and

foa = fia.

Remark 10. Given a vector field X on a manifold M we define the
interior product ix as a linear map

ix : QP(M) — QP~1(M)
such that
o ixdf = X(f);
o ix(aAB)=ixaAB+ (-1)Panixpif a € QP(M).

If the vector field is given by
0
Yo,
and o = dz1 Adza A ... Adxy is a p-form, then

ixo = ardra A ... Ndxp — asdry Adrg Ao Adx, + ...

In particular

ix(ixa) = aragdxs A ... A dz, — asardz3z A ... Ndxp + ... = 0.
Ezample 17.
a=drNd X = xé + 2
= Y, =T y@y’
then
ixa = zdy — ydz.
Lemma 7.

HEY p(R™) =0 for all p > 0.
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Proof. We want to use again homotopy invariance and define therefore
similiarly to the above situation: f:R"™ x [0,1] — R™ by

fz,t) = ta.
Denote the identity map by f1, i.e. fi(z) = z. It induces the pullback:
fi Hy, g(R") — Hj, p(R"),

which itself is the identity. On the other hand, for ¢t = 0 we get
fo(xz) = 0 is the constant mapping to zero. In particular, the deriva-
tive vanishes, which means that the pullback of any p-form of degree
greater than zero is the zero map. So:

fo HY, o(R") — HY o(R™), for p >0

vanishes. Since we have shown that de Rham cohomology is inde-
pendent of the paramenter ¢ is f§ = fi which means that HY ,(R")
vanishes for p > 0. [

We can now apply the Poincaré lemma again. First we show that for
p>0
HY. p(U) =0 for any contractible set U C R".

Lemma 8. For any open, contractible set U C R"™ the de Rham
cohomology vanishes for all p > 0.

Proof. Denoting by a € U the point such as for any x € U the straight
segment ax lies entirely in U we can use the same argument as above
by using the map: f; : M x R™ — M x R"™ given by f(a,tx) = (a,tx)
to show that HY (M x R") = HY ,(M). Consider R/Z (which is
isomorphic to S1). Define the two sets Uy = p(0,1),U; = p(—1/2,1/2)
where p : R — R/Z the quotient homomorphism. Since any two
elements in the subset p~!(a) differ by an integer, p restricted to
(0,1) or (—1/2,1/2) is injective and so we have coordinate charts

wo=p ':Uy— (0,1) and o1 =p 1 : U — (—1/2,1/2).
Then Uy and U; cover R/Z because 0 € U;. We verify:
wo(UoNU1) = (0,1/2)U(1/2,1), @1(UoNU1) = (-1/2,0)U(0,1/2)

are open sets. If 2 € (0,1/2) then @1y (z) = = and if = € (1/2,1)
the atlas map is p1¢; ' (z) = 2 — 1. We got a smooth altas. Thus the

1-form dx = d(xz — 1) is well-defined and nowhere vanishing. Further,
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since R/Z is compact and every function attains its minimum where
df =0, we see that
Hde R R/Z)

(
Take any closed 1-form « = g(z)dz, where the function g(x) is a pe-
riodic function with period 1 (g(x) = g(z+1)). To solve the equation
df = « is the same as solving f’(z) = g(z) which we can do in R:

@)= [ ats)as.

We can attain f(z + 1) = f(z) if and only if

/01 g(x)dx = 0.

This means that:

a = g(z)de = </01 g(s)ds) da + df

and thus Hée r(R/Z) = R. O

We can now formulate a more general result about de Rham
cohomology of the spheres.

Theorem 12. For n-sphere S™ (n > 0) the de Rham cohomology is:

HP

L JR ifp=0orp=n
deR(R)_{

0 otherwise.

Proof. We have settled the case n = 1, so assume n > 1.

If p > n, the group vanishes. If p = 0, we have ng r(S™) =R for all
n.

Consider now n > 1 and first assume 1 < p: Decompose S™ into two
open sets U and V', where those are supposed to be the complements
of the closed balls around the north and the south pole respectively.
Stereographic projection gives a diffeomorphic mapping to open
balls in R™. If « is a closed p- form for 1 < p < n, then by the
Poincaré lemma there exist (p — 1)-forms u, v such that o = du and
a = dv. On the intersection U NV we have

dlu—v)=a—a=0,
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which means that (u — v) is closed. But by construction
Unv=s"!xR.

Thus
HY L(UNV) =2 HY (S™7Y),

which vanishes by induction. Therefore u — v =dw on UNV.

Consider U NV as a product of S"~! with an open interval, e.g.
UNV =8""1x(-2,2). Let ¢(s) be a continuous piecewise defined
function equal to 1 for s € (—1,1) and supported in (—2,2). Take
arbitrary smaller sets U’ C U and V/ C V such that
U'NV'=8""1x(~1,1). Then define a form on S™ by extending
pw by zero. We have u on U’ and v + d(¢pw) on V’ with

u =+ d(pw) on U’ NV’'. This defines a (p — 1)-form 5 on S™ such
that 8 =wu on U’ and v 4+ d(¢pw) on V' and a = dp on U’ and V.
Therefore o = df globally, which means that the cohomology of « is
zero and thus HY, p(S™) =0 for 1 <p <n.

Take now the case p = 1. The difference u — v is a function on U NV
and since d(u — v) = 0, the function itself must be a constant, say
¢=u—v. Then d(v + ¢) = a and the pair of function v on U and
v+ c¢=wu on V coincide on the untersection U N V. Therefore we
can define a function f such that df = a. Again the cohomology
vanishes.

Finally consider the last case p = n: The form u — v defines a class

in H}  m(UNV) 2 HY B(S"™1) 2 R. Let w be an (n — 1)-form an

S~ We pull this form back to S"~1 x (—2,2) by projection on the

first factor. Then HJ, p(S"~! x (—2,2)) is spanned by w and we get
U—v =+ dw

for some A € R. H}, ,(S™) is at most 1-dimensional.

We now need to find a cohomology class for H}, (S™) for which
A#Z0. If A=0u—v=dw, ie uand v differ by an exact form.
Then we can apply the above case p = 1. Consider

pdt A w,

which is extended by zero outside the intersection U N V. Then

( / ; go(s)ds) w

vanishes for t < —2 and extended by zero, it defines a form u in U
such that du = «. For t > 2 the integral is not vanishing but we can
change the integral into

([ ) (o)
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The expression extends by zero to V and satisfies dv = a. This
means, that the above A\ equals

2
A= / w(s)ds > 0.
-2

The latter is equivalent to the statement that H}, ,(S™) = R.

5.3 Simplicial homology

An obvious disadvantage of de Rham cohomology is that H% (M)
is defined for smooth manifolds M only. We now define first n-
dimensional cuboids and simplices. Then we develop the concept of
simplicial homology of a smooth manifold in order to formulate the de
Rham Theorem. We will mainly concentrate on R®, because in this
case we are able to relate our result to the vector-analytical concepts
such as gradient, divergence and curl. The de Rham theorem claims
that there is a duality between de Rham cohomology and simplicial
homology. This gives us a method to avoid the restriction of de Rham
cohomology.

Definition 40. Let @ = [a1,b1] X ... X [an,by] C R™ be a compact
cuboid, U = U(Q) C R™ an open neighborhood and ¢ : U — R™ a
smooth map. Then one calls 0(Q) a n-dimensional singular cuboid in
R™ and |o| := o(Q) the support of o.

If it is possible to decompose a manifold into such pieces, one hopes
to get information on the properties of the space by investigating the
decomposition. If we demand the differentiability of the map from
simplices onto the manifold, those are the perfect objects for the
integration of differential forms.

We investigate first the behavior of cuboids and develop the analogue
properties for simplicies. We will reformulate the already in section
4 stated Stokes theorem again - this time for cuboids and simplices.

Definition 41. A n-dimensional chain in R™ is a linear combination,
denoted by I', which maps every n-dimensional cuboid ¢ in R™ to an
integer n, for all o. If I'(0;) = ny for kK = 1,...,k and T'(c) = 0 for
all other simplices, then one writes

I'=ni01+ ... + ngoy.

The set |I'| :=|o1]| U ... U oy is called the support of T'.
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If T'(o) = 0 for all o, then on writes I' = 0 and |T'| = 0.

Let I' = Zﬁzl N0, be a chain and w be a n-form on an
neighborhood of |T'|, then we can write the integral

/w:nl/ w—i—...—l—nk/ w.
T o1 Ok

If I' = 0, we define [ w := 0 for every n-form w.

We now recall the boundary operators. Let
Q = [a1,b1] X ... X [an, by] C R™ be a compact cubiod, then we define

Q= {(x1,...,n) € Q: x; = a;},
XKQ :={(x1,....,xn) € Q : x; = b;}.

Obviously .
0Q = |J (8'Qu Q).
i=1

We define by

O X1y ooy Ty ey Ty) 7= (T ooy Ti1y Ay Ty ooy Ty

OX(Xy ey Ty ooy Ty) 2= (L1 ooy Tim1, Dy Ty ooy T
(n — 1)- dimensional cuboids

o o) [ar,by] X ... X m X oo X [ap, by] = R™;

this corresponds the ith lower side and the ith upper side of Q).

This parametrization also specifies the orientation. For n = 2 the
bottom and top will be passed from left to right, the sides from the
bottom up.

1771

LR —_— e

oy a

P1cTURE 11: ORIENTATION,PARAMETRIZATION OF THE BOUNDARY
(n=2)
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For the integration of an (n — 1)-form over the boundary of @ we
want to orientate the boundary such that the normal vector always
points outward.

The parametrization o : [a,b] — R? of a boundary piece of @ should
always be chosen such that {n,,o’(¢)} forms at o(t) = z a positive
oriented basis of the tangent space T, (R?), where n, is the outer
normal vector at x. For o and of is this automatically satisfied,
whereas the orientation of ¢§ and o} must be transversed.
Therefore, the chain 04Q = 0§ + 0f — 0§ — o} describes a positive
oriented boundary of @), which has ¢ always on its left side.
Analogously we call an orthonormal basis {a1, ..., a,—1} of a tangent
space positive oriented, if {n,a1,...,a,—1} is a positive basis of R",
where n the normal vector.

Thus, in the n-dimensional case one calls the chain
n .
0:Q =) (-1)"!(of — o})
i=1
the (positively) oriented boundary of Q. Clearly: |04+Q| = 0Q.

We can now formulate the Stokes theorem for cuboids.

Theorem 13. (Stokes theorem for cuboids)
Let Q C R™ be a compact cuboid and w be a (n — 1)-form on an open

neighborhood of Q. Then:
/dw:/ w.
Q 0+Q

w=fdzy A ... Adx; A ... Ady,.

Proof. Let w be given by

Then
of

- ail'j

Denote the parametrizations of the sides of () again by o}* and o7.

dw (=1)7"Ydzy A ... A day,.
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Then it follows:
9 .
/ dw = / 81{;(:51, oy ) (=1 Ny dy, =

by, by

J 1 / / / gli wl’""xjv"'7xn)dx1-ud$j...dxn:
b1
1)i-1! / / /

[foof(x1, ... 5, .y an) — foof(a, ..., Aj,...,xn)]dxl...gx\j...dxn =
RAIRIRE
—;(_1)1'—1[/(;#_/0#] =

w7
0+Q

since (o}")*w = 0 and (of)*w = 0 for 7 # j. O

Analogously for simplices

Now we perform the analogous considerations for simplices.

A simplex is the simplest polytope. Each of its vertices expands a
simplex into the next dimension, i.e. a n-dimensional simplex is
created by adding a vertex to a n — 1-dimensional simplex in the next
higher dimension. Thus, a n-dimensional simplex has n + 1 vertices.
For example, a point, an interval, a triangle and the tetrahedron are
simplices in dimensions 0 to 3.

PICTURE 12: TETRAHEDRON

Let the image of ¢ : Q — R™ be a p- dimensional singular simplex.
Q is the Cartesian product of p intervals [a, b], a,b € R; e.g. for
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p=1: Q =[0,1], the image of ¢ : [0,1] — R™ the 1-dimensional
singular simplex. Then one calls the (p — 1)-dimensional chain

n

drpi=) (1) Hpoa! —poa)
i=1

the posivitely oriented boundary of ¢. For S := ¢(Q) so denote
bS :=101¢|. If p=n, then is bS = 95, the topological boundary of
S. This is no longer true for p < n.

For ' = Zﬁzl N0y, one writes 94T := Zi:l Nk0y0,. One can
prove, that 40,0 = 0 for every simplex o.

Theorem 14. (Stokes Theorem for p-dimensional simplices)
Let B C R"™ be an open subset, the image of ¢ : Q@ — B a p-
dimensional simplex and let w be a (p — 1)-form on B, then:

/ w= / dw.
Ot »(Q)

Proof.

4

=Y (-1 / oo [ o=
i=1 o7 o
p .

=3¢ 1)%*1[/ w— [ W=
pa wooy Jpont

= w.
Ot

Let us now consider the special cases n = 2 and n = 3 to establish
connections to the classical vector calculus. For this, we need to
recall the notions of gradient, divergence and curl on the
differentiable vector field A C R? and a differentiable function
f:R3 =R,
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Definition 42. For a differentiable vector field A € R? and a differ-
entiable function f :R3 — R:

oz’ 9y’ 9z
Gradient: Ve f := (‘;CJ;, ?Tz’ gjzc) ,
aAm T 3Ay + aAz
a.’I; ay (92 )

Nabla operator: V := ( 0.0 9 ) ;

Divergence: Ve A := (

Curl: V x A = <3AzaAy,5Az3Az %f’Az),

Laplace operator: A := — + — + —.

Case n = 2:

Every 1-form is representable by w = wp = fdx + gdy with
F:=(f,g) and it is

dw = (9o — fy)dx N dy = (rotF)dx A dy.
For (z,y) = ¥(u,v) = (V1 (u,v),2(u,v)), then is
U*w = (fol)d¥14(goW)d¥s = ((F o V) e U,,) du+((F o ¥) e U,) du.

Since U*(hdx A dy) = (ho W) - det(Jg)du A dv, the equation
U*(dw) = d(T*w) we get

((rotF) o W) -det(Jyg)du A dv =rot (FoW)-Jg)duA dv.

Case n = 3:

Denote by ds := (dx1, dxe, dzs) a 1-form, by

dS := (dxo A dxs,dxs A dxy,dry A dzg) a 2-form and further, we
write dV := dx; A dxo A dxg for a 3-form in R3. Let A and B be
smooth vector fields. Then we can write the differential forms of
orders 0,1,2,3 on A and for a differentiable function f as follows:

wo = f,

w1 = w4 = Aidz) + Aodze + Azdxs) = A - ds,

wo := N4 = Ardxo Ndxs + Asdrs A dxy + Agdry Adro = A-dS,
w3 := BdV.
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Lemma 9. The following relations hold for a smooth function f and
smooth vector fields A, B:

df = Wgyradf
d(wA) = QrotA>
d(Qp) = (divB)dV.

Proof. The first relation follows from the identity df = > g—{idxi. The
second can be derived as:
d(wa) = dAy Ndzy + dAs A dxe + dAs A dag =
= (A1)g,dza Adxy + (A1) zgdaes A dzy+
+ (A2)z,dxy A drg + (A2)zsdas A drot
+ (A3)z,dz1 A dxg + (A3)gydra Adxs =
= ((A2)z, — (A1)z,) dz1 A dzo+
+ ((A1)zs — (A3)y,) dzg A dai+
+ ((A3)zy — (A2)gs) dxa A dxg =
= Qrota-
where we apply the definitions of rotA and Q¢ (set C' = rotA) from
above. The third relation is verified as:
d(Qp) = dB1 ANdxze Adxg 4+ dBy A dxs Adxy + dBs Adxy Adzg =
= ((B1)z, + (B2)gs + (B3)zy) dz1 Adaa Ndxs =
= (divB)dV.

It is possible now to deduce relations we know from vector calculus
to the Stokes theorem. We will consider two most important
equations and additionally two relations between 1- and 2- forms.

Theorem 15. Let f be a smooth function and let A be a smooth
vector field. Then:

(i) rot gradf =0,
(i) div rotA = 0.
Proof. We use that d od = 0 for 0- and 1- forms:
(i) 0=ddf = d(wgrad §) = Qrot grads, Wwhich means rot gradf =0,
(ii) 0 =ddws = d(Qrot 4) = (div rotA)dV, which means
div rotA = 0.
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Theorem 16. Let A, B be smooth vector fields, let wa,wp be 1- forms
and Qp,Vaxp be 2-forms. Then:

(i) wa Nwp = QaxB,
(ii) wa AQp = (A BV,
Proof. (i)

wA N\Nwp =
= (A1d.1‘1 + Aodxzo + Agdl‘{;) N (Bld331 + Bodxo + B3d.r3) =
= (A2B3 — AgBQ)d.’L‘Q A dxsg + (A3Bl - AlB3)d£C3 A dxq+
+ (AlBQ — AQBl)dl‘l ANdxg =
= QA><B-

(ii) We denote with < 4,5,k > the triple (1,2,3) or its cyclic per-
mutation. Then is:

3
wa AQp = <Z Audxu> A DD Bidaj Aday | =
v=1

<i,j,k>

= Y ABidx; Adxj Adzy, =
<i,j,k>

= <Z AVBV> dy A\ day N dzs =
v=1

= (A B)av.

Collecting the previous facts together we get the following diagram
for 0,1, 2, 3- forms.

{0-forms} —4 5 {1-forms} —d 5 {2-forms} —4 5 {3-forms}

] |

{functions} —= {vector fields} — %> {vector fields} i {functions}

Generalization of this diagram to arbitrary dimensions is the so
called de Rham Chain complex, see below.
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5.4 Main result - de Rham Theorem
Definition 43. The de Rham Chain complex is defined as follows:

dp— dy— d
. *’;QQMI(M) Dl Qk (M) e QF+L(M) LR
Intk’ll Intkl Intk+1l
Ok—2 N Ok—1 Ok Ok+1
(Pk 1 on SDk—i-l

where (Int*(w))(Q) = [, w. By Stokes theorem this diagram is com-
mutative. Define the de Rham cohomology and homology groups as

HE o(M) = kerdy/ imdy,_1 and H* (@) = kerdy,/imdy_;.
We get the homomorphism:

Int® . HY (M) — H*(y).

To formulate de Rham theorem we need:

e the image of ¢ : Q@ — B C R™ a n-simplex for ) C R™ | where
B an open subset in R”. Now we specify ¢*(Q¥) the set of
k-dimensional simplices for the k-dimensional subset Q.

e The positive oriented boundary of a k-simplex:
Orp k=20 () poo? —poot).

e The set of k-forms wy, on a smooth submanifold M C R* is
denoted by QF(M).

o IntF(wy) = f@k dwy, = faw W

Theorem 17. (de Rham theorem) In the above notation, the mapping
Int* : HY, (M) — HY(p)
s an isomorphism.

Proof. We show that Int* is an isomorphims by proving its surjectiv-
ity and injectivity.

e surjectivity: we need to assure, that for every k-simplex in ¥
there exists a k-form wy such that Intk(wk) = QF: Let Q) €
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H*(o%) be given. Then Qi = Int*(wg). And applying the
boundary operator we get:

hQr = 5‘kIntk(wk) = 3k/ dwy = 3k/ Wk =
Pk Ok

:/ dkwk :/ WE =
Aok O © O *
~——

=0

=0.
Thus, wi € kerdy, which implies wy, € ng r(M).

e injectivity: let wy and 1 be k-forms: wy,ny € ker(Int*). Then
is Intf(wy) = Int*(ny) = 0 and further

0 = Int*(wy) :/ dwy, :/ Wk
@k ek

This implies wr = 0. As it is

0= Int*(n) =/ dn =/ M-
Pk ek

This implies n = 0. Which shows that if the function attains
the same image at two points, these preimages are the same.

O
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6 Introduction to Morse theory

We will finally introduce the Morse theory (named after the US- math-
ematician Marston Morse), which gives a direct way to analyse the
topology of a manifold by studying smooth functions on it. After
explaining the basic concept we develop the theory formally. We will
state and prove Morse lemma, the headstone in Morse theory. The
last step is then to investigate the morse inequalities, which gives a
upper bound for the number of critical points on manifolds.

I refer to mainly to [MIL] and [RBO)] in this section.

6.1 Basic concept

Consider a hilly landscape M, which will later turns out to be a
manifold. We define a function f : M — R, mapping to each point its
elevation. The inverse is thus the contour line. Thus, f~1(a) for a € R
represents all points on M, which have the same elevation. Such a
contour line is either a point, a closed curve or a closed curve with
double points (saddel points). Even triple points or points of higher
orders are possible, however, those are unstable. Now we flood this
imaginary landscape with water. Our interest is focused on how the
topology changes with increasing water level. Reaching a arbitrary
elevation a the water covers all points below, i.e. the covered surface
equals f~!(—oc,a]. The topology only changes if the continuously
rising water lever reaches a critical point, e.g. a saddle or a valley
point (maximum/ minimum). As we define later such points are those
with gradient equal to zero. Each of these critical points one allocates
a so called morse index (roughly speaking the number of independent
directions around a critical point in which the function is decreasing:
for minima 0, for saddles 1 and for maxima 2.

Example 18. We consider a torus M, which is standing tangentially
on a horizontal plane E, with its 4 critical points p, ¢, 7, s. Let p and
s be the south-, respectively northpole of the torus and let ¢ and r be
the south-, respectively northpole af the hole.
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» PicTUurE 13: TORUS

Further, let f: M — R be the projection onto the vertical axis,
mapping to each point of M its elevation above E. Then M?® is a
subset of M given by f~!(a):

M= fY(—o0,a] = {z € M|f(z) <a} C M,
representing all points with an elevation less or equal to a. Now
consider a coming from the negative infinity and running through the

real numbers. During this process M attains exactly five types of
topological equivalent objects:

(H1) ifa € (—o0, f(p) =0), then M* =0,

(H2) ifa€ (f(p),f(q)), then M* is a disk,
(H3) ifae€ (f(q),f(r)), then M* is a cylinder,
(H4) ifa € (f(r), f(s)), then M?* is a torus,

where one has removed a disk,
(H5) if a € (f(s),00), then M® is a equal to M.

As we notice, at the critical points p, ¢, 7, s the type changes. We
investigate the trasitions between these types:

(H1)—(H2) add a 0-cell to the empty set:

putting a point into the void results

in a one-point space,

which is topologically equivalent to a disk

(a disk is contractible to a point),
(H2)—(H3) add a 1-cell to the disk: we get a cylinder,
(H3)—(H4) add again a 1-cell to the cylinder:

we get a torus with removed disk,
(H4)—(H5) add a disk (2-cell) to complete the torus.

Unformally, we get the idea of how the topology changes: is a
passing a critical point of index v one adds a y-cell to M.
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6.2 Formal preparation

Now we want wo make this considerations formally correct. Let M
be a n dimensional manifold and f : M — R be a smooth map.

Definition 44. A point p € M is called critical point of f, if the map
Tof : Tarp — R of tangent spaces is the zero-mapping. We denote
the set of all critical points of f with C'y C M. The images of critical
points p € M under f are called critical values: f(p) = c.

In other words, is p € M a critical point, so
of .. _  _ of
3761(27) = 8zz:n( p) =

holds with respect to a local coordinates (21, ..., z,) of a chart (Up, ¢p)
on M.

0 (3)

We prove now the independence of coordinates of this defintion.

Lemma 10. The above defintion of critical points is independent of
the choice of local coordinates.

Proof. Let (x1,...,x,) and (y1,...,yn) be two different local coordi-
nate systems. Further, let p be a critical point of f with respect to
(z1,...,25). Changing coordinates we get

of axl
8@/1 Z 83:] (9yZ
With equation (3) we get that even

of
oy

_of

P == g

5-(p) =

holds. This means that p is also a critical point with respect to
(Y1, Yn)- O

We demand another property: a critical point should be
nondegenerate to be somehow stable.
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Definition 45. Let p € Cy be a critical point of f and let (Up, ;) be
a local chart with local coordinates (x1, ..., ;). The Hessian H(p) of
f at p is thus given by

92 52
(azlf)2 (p) T azla];n (p)

f > f
Ozn 011 (p) T (921)2 (p)
A critical point p is called nondegenerate if Hy(p) is nonsingular. In
the singular case det(H¢(p)) = 0 we call p generate.

Also this defintion is independent of the choice of coordinates:

Lemma 11. The nongeneracy of critical points is independent of the
choice of the local coordinate system.

Proof. Let (z1,...,x,) and (y1, ..., yn) be two local coordinate systems
of a nondegenerate critical point p € Cy. Further, let Hj(cxi)(p) and

H}yi)(p) be the Hessian of f at p with respect to these coordinates.
Then

H;Ii) (p) — (Jq> (p))tHJ(cyi) (p)Jé (p),

Jo(p) = (gzz(p))

the Jacobian of the coordinate change ® : (21,...,25n) = (Y1,.--sYn),
evaluated at p. Then

det (H{™) (p)) = det ((Ja(p))") det (H") (p) ) det (Jo(p))

Since the Jacobian Jg(p) is nonsingular, is det (H}z’)(p)> # 0 if and
only if det (H](cyi)(p)) £ 0. O

with

Now we define the index of a critical point p € Cy.

Definition 46. Let p € C; be a nondegenerate critical point and
H¢(p) the Hessian of f at p. The index A(p) of p is the number of
negative eigenvalues of Hy(p).

Note: 0 < A(p) < dim(Thwp) = dim(M) = n.
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6.3 Basics of Morse theory

Now we go into the Morse theory and begin with the defintion of a
Morse function.

Definition 47. If the funtion f : M — R has only nondegenerate
critical points, we call it Morse function. The Morse polynomial of f
expresses the behavior of its critical points p:

My(f) =Y £}

Ezample 19. (Torus, revisited) As we have seen the torus has four crit-
ical point of index 0, 1, 1, 2 respectively. Thus, the Morse polynomial
for the torus is given by:

My(f) =1+2t+ %

It now follows the Morse lemma, which describes the local
appearance of the function f : M — R nearby a nondegenerate
critial point p € C'y. We will just give an idea of the proof, the whole
proof can be found at [MIL]. The same with two immediatly
following conclusions.

Lemma 12. Let p be nondegenerate critical point of f : M — R and
let X(p) the index of p. Then there exists a local coordinate system
(Y1, .-y Yn) in a neighborhood U of p with y;(p) =0 for alli=1,...,n,
such that f has the form

F=1fm) = 1) == W)+ (ag1)® + o+ ()’

on U with respect to (Y1, ..., Yn)-

Proof. (Idea) Show first, that if such a presentation of f with respect
to local coordinates of a local chart (U, ¢,) exists for a nongenerate
critical point p, the A indeed coincides with the index of f at p. Then,
one need to show that such suitable coordinates exist. O

Lemma 13. Nondegenerate critical points of f are isolated in Cf.
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Proof. (Idea) If p € Cy is nongenerate, says the Morse lemma, that f
is locally in a neighborhood U, of the form

F=1fm) — W) — .= () + Was1)® + oo+ (yn)*

Partial differentiation of f with respect to the local coordinates y;
(¢ = 1,..,n) we can conclude that U, has only p as critical point.
Thus, the critical points are isolated. O

The Morse-lemma thus implies, that there exists a neighborhood

U C M of p (being a open subset of a smooth manifold M, U self is
a smooth manifold), such that the restriction fj;; : U — R is a Morse
function.

Lemma 14. Let M be a compact manifold and f be a Morse function
on M. Then Cy is finite.

Proof. First, a manifold M is called compact, if M as topological
space is compact. We prove the lemma by contradiction: assume
there is a Morse function f : M — R on a compact manifold M with
a infinite number of critical points p,,, m € N. We understand these
critical points as a sequence (pm)men. Since M is compact (Pm,, )ken
is a converging subsequence. Denote the limit with p € M: p :=
limg s 00 P, Let (21, ...,2,) be a local coordinate system of a local
chart (Up,¢p). We can by convergence assume that (pm, )ken C Up.

Then of of
0= lim —(pm,) = e

implies that also p is a critical point of f (change differentiation and
taking the limit is allowed due to smoothness). But f was a Morse
function and thus all critical points p are isolated, which is a contra-
diction to the converging sequence of critical points. OJ

(p) ,i=1,...n

6.4 Morse inequalities

Finally we state the weak Morse inequalities, principally saying that
the number of critical numbers of index ¢ is greater or equal to the
dimension of the ith Betti number. The ith Betti number b; of topo-
logical space X is the dimension of the ¢th singular homology group
of X. In our case we only need to consider the Betti numbers by, b;
and by, because only indices 0, 1,2 appear.
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Definition 48. Let X be a topological space. The ith Betti number
of X is given by

bi(X) = dimgH;(X,Q), for I =0,1,2, ...

where H;(X,Q) denotes the ith singular homology group with coeffi-
cients in Q.

Informally one can think of the ith Betti number as the number of
i-dimensional unconnected surfaces on X. Thus

e by gives the number of connected components
e b gives the number of 2-dimensional holes

e by gives the number of 3-dimensional holes, resp. voids.

Ezample 20. (Torus, revisited) The torus has one connected compo-
nent, the ’skin’ (bg = 1), it has two 2-dimensional holes, one in the
middle and one inside the torus (by = 2) and further, it has one 3-
dimensional void, the interior (by = 1).

Lemma 15. The number of critical points of index i is greater or
equal to the ith Betti number.

Before we proof the lemma we look a last time back at our torus.

Ezample 21. (Torus, revisited) The torus has one critical point of
index 0: 1 > by = 1; two critical points of index 1: 2 > b; = 2; and
one critical point of index 2: 1 > by = 1.

Proof. Let M be a compact manifold and f a differentiable function
on M with isolated, nongenerate critical points, i.e. f is a Morse
function. Let p; < ... < p, be such points on M that MPk contains
exactly k critical points and MP» = M. Denote with H,(M, M') the
homology chain complex: the set of chains is the Z-module generated
by the critical points of f. The differential d of a complex sends a
critical point p of index 4 to a sum of critical points p’ with index i —1,
whose coefficients correspond to the number of unparametrized lines
from p to p’. Then:

H,(MPF, MPr—1) = (MPr=1 v€Ak7 MPr-1)
(e)"“, e//\k)

H,
H,
{ coefficient group in dimension A

0 otherwise
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where \;, the index of the critical point p; and “ e means to attach
the A\g-cell = {z € R* : ||z|| < 1}. One property (we will not show
here) of Betti numbers is the subadditivity. Apply this to § = MP°0 C
MPr C ... C MP» = M and R, the kth Betti number we have:

Ry(M) < Ry(MP*, MPi=1) = k;

where k denotes the number of critical points of index A. O

This was the final step in this thesis. Of course, there is a plenty of
theorems and applications left to enlarge upon both differential
topology and algebraic topology. This thesis had as it s goal giving
an overview over the basically concepts, such that one gets an
impression and is curious to immerse oneself in one or the other
subject.

76



Symbols

R

mod- R

R -mod

QR

T(M)

©®

S(M)

A(M)

(i : Ui = Vy)

A= {(Uspi)|i € I}

ring

right - R - module

left - R - module

tensor product over R

tensor algebra

direct sum

symmetric algebra

skew- symmetric algebra

local coordinate change

atlas

class of k-times differentiable (smooth) mappings
set of tanget vectors X in p on M
cotangent vector

cotangent space

differential form, k-form

derviative of k-form

set of k-forms wy, on a smooth submanifold M C R*
k-dimensional simplex

positive oriented boundary of ¥

i-th de Rham cohomology group of M
i-th homology group

Hessian of function f evaluated at p
Jacobian evaluated at p

Morse polynomial of Morse function f
set of critical points of f

index of point p

A-cell
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