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Abstract

In this paper, we present the theory for Fenchel-Lagrange duality and then use this to look

at some nonconvex optimization problems. Specifically, we consider an optimization problem

with DC objective functions and DC inequality constraints, a few fractional programming

problems and a DC programming problem containing a composition with a linear continuous

operator. The various primal problems considered are convexified and given Fenchel-Lagrange

type dual problems as well as constraint qualifications for strong duality. Later, these results

are reformulated into Farkas-type theorems to give a concise presentation of the relationship

of each primal problem to its dual problem.
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1 Introduction

In recent years, many new optimization methods and techniques have arisen from the need to
consider various real-world problems that cannot be solved through convex programming alone.
As a part of this trend, many authors have begun expanding beyond convex optimization problems
to DC programming. These problems, which will be elaborated on in Section 5, have functions
which are written as difference of convex, or DC, functions. The many advantages of DC functions
allow for a wider range of application. Being nonconvex, DC optimization problems cover many
types of real-world problems. In fact, the set of DC functions defined on a compact convex set X
of Rn is dense in the set of continuous functions on X. So in theory, every continuous function can
be closely approximated by a DC function. Furthermore, the special structure of having a positive
and a negative convex function allows us to use many tools of convex analysis when studying DC
programming.

The focus of this paper is the use of Fenchel-Lagrange duality to find dual problems to some
DC programming problems and, through the results for the DC optimization problems, fractional
programming problems as well. The framework for Fenchel-Lagrange duality is given in Section 4,
in the context of convex optimization. Fenchel-Lagrange duality, a theory combining the Lagrange
dual with the Fenchel dual, was developed by Boț, Grad and Wanka in [7] as a response to
Geometric Duality. Using less convoluted methods, they generalized the results of Geometric
duality in convex optimization. When applied to DC programming in [6], they look at the problem

(PDC) inf

gi(x)�hi(x)0
i=1,...,m, x2X

{g(x)� h(x)}

where g, h : Rn ! R, gi, hi : Rn ! R, i = 1, . . . ,m are proper and convex functions, and X is a
nonempty convex subset of Rn. By convexifying this primal problem, they are able to take the
Fenchel-Lagrange dual of a sub problem, leading to a dual problem for (PDC). This method will
be described in Section 6.

Other DC programming and fractional programming problems we are interested in will also be
discussed in Section 6. These include problems done by various author as well as my own work.
Specifically, my addition to the body of literature is an evaluation of the fractional programming
problem

(P 0
FP0

) inf

gi(x)�hi(x)0
i=1,...,m, x2X

⇢
g(x)

h(x)

�

where X ✓ Rn is nonempty and convex, g : Rn ! R is proper and convex, h : Rn ! R is
concave such that �h is proper and lower semicontinuous over the feasible set of the problem, and
gi, hi : Rn ! R for i = 1, . . . ,m, are proper and convex functions. This is an extension of the work
done in [5]. Furthermore, the problems of part 6.4 are independently developed in this paper via
the methods of [6]. To the primal problem

(PA) inf

�i(x)� i0
i=1,...,m, x2X

{g1(x)� g2(x) + h1(Ax)� h2(Ax)}

where g1, g2, h1, h2,�i, i : Rn ! R, for i = 1, . . . ,m, are proper convex functions and A 2 Rn⇥n

is a linear continuous operator we find the dual problem

(DA) inf

x⇤2dom(g⇤
2 )

y⇤2dom(h⇤
2)

z⇤2
mQ

i=1
dom( ⇤

i )

sup

p2Rn

q�0

{�(g1+h1 �A)

⇤
(p+ x⇤

+AT y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
+

mX

i=1

qi 
⇤
i (z

⇤
i )}
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and also give conditions for strong duality. The case where  i ⌘ 0 is also considered.
As mentioned, we will evaluate these problems using the theory of Fenchel-Lagrange duality.

After finding duals to the problems, the remainder of the paper will look at some Farkas-type
results in regards to Fenchel-Lagrange duality in general and how this may be applied to the
problems of Section 6.

Before diving into the DC programming problems, we must present some preliminary infor-
mation. Here we give some basic definitions, notation and concepts well known in the field of
optimization and convex analysis. They are given out of necessity in order to develop the work in
this text clearly. Beginning with some notation, throughout this paper the interior and relative
interior of a set X will be denoted by int(X) and ri(X) respectively. Given two vectors in Rn,
x = (x1, . . . , xn)

T and y = (y1, . . . , yn)
T , the usual inner product is denoted by

xT y =

nX

i=1

xiyi

For a function f , the epigraph of f is denoted epi(f). Let f : Rn ! R be a given function, where
R = R [ {±1} is called the extended real line. Supposing a function f is convex, the effective
domain of f will be denoted dom(f) = {x 2 Rn | f(x) < +1}. Furthermore, a convex function
f is called proper if the effective domain is nonempty and if for all x 2 Rn, f(x) > �1. If f is
concave, then the effective domain is dom(f) = {x 2 Rn | f(x) > �1} and it is called proper if
�f is proper as a convex function.

Some more basic optimization theory must be given before working directly with the main
problems. The next two sections will therefore deal with two well know optimization dual theories:
Lagrange duality and Fenchel duality. With these dual problems, we can define the Fenchel-
Lagrange dual which will be used to tackle various DC programming problems in Section 6. We
begin with Lagrange duality.
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2 Lagrange Duality

A well known method in optimization is to analyze a given problem, called the primal problem, via
an associated dual problem. One such dual is the Lagrange dual problem, for which the framework
is briefly discussed in this section. To this end, consider a convex optimization problem,

(PC) inf

gi(x)0
i=1,...,m

Ax=b, x2X

{f(x)}

where A is an l⇥n matrix, b 2 Rl, X is convex, f : Rn ! R is convex, and gi : Rn ! R are convex
functions for i = 1, . . . ,m. From (PC) we can define the following equation, with ✓ : Rm⇥Rl ! R,

✓(q, p) = inf

x2X
{f(x) +

mX

i=1

qigi(x) +
lX

i=1

pihi(x)}

called the Lagrangian dual function, where q 2 Rm, p 2 Rl, and hi(x) is the ith component of
Ax� b. The Lagrange dual problem is defined as

(DCL) sup

q�0
inf

x2X
{f(x) +

mX

i=1

qigi(x) +

lX

i=1

pihi(x)}

or simply by
(DCL) sup

q�0
{✓(q, p)}

where by q � 0 we mean q = (q1, . . . , qm) and qi � 0 for i = 1, . . . ,m. This notation will be used
throughout the paper.

It is natural at this point to wonder at the nature of the relationship between (PC) and (DCL).
First, for a problem (P ), the optimal value is denoted by v(P ). Therefore, v(PC) and v(DCL) are
the optimal values for (PC) and (DCL) respectively. That is,

v(PC) = inf

gi(x)0
i=1...,m

Ax=b,x2X

{f(x)} and v(DCL) = sup

q�0
{✓(q, p)}

Returning to the relationship between the dual and primal problems, it is always true that
v(PC) � v(DCL). This is know as weak duality. A weak duality theorem for Lagrange duality can
be found in most (if not all) optimization books, such as [1], [2], and [8].

While this information is useful, the next step is to determine when this inequality becomes
an equality, i.e. when v(PC) = v(DCL). This is know as strong duality. To attain strong duality
between the primal problem v(PC) and its Lagrange dual problem v(DCL), we define a constraint
qualification (CQ) known as Slater’s condition: there exists an x0 2 ri(D), where

D =

m
\
i=1

(dom(gi)) \ dom(f) \X

such that gi(x
0
) < 0, for i = 1, . . . ,m, and Ax0

= b.
Slater’s condition can be refined by distinguishing the constraint functions gi which are affine.

Define sets L := {i 2 {1, . . . ,m} | gi : Rn ! R is an affine function} and N := {1, . . . ,m} \ L.
Then the refined Slater’s condition is that 9x0 2 ri(D) such that Ax0

= b, gi(x0
)  0 for i 2 L, and

gi(x
0
) < 0 for i 2 N . Notice that the only difference is that the affine functions gi are no longer

strictly less than 0 at x0.
Theorem 2.2 states that both Slater’s condition and the refined CQ imply strong duality

between the primal optimization problem and its Lagrange dual. Before this can be proven,
however, we need what is known as the separating hyperplane theorem:
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Theorem 2.1. Let A and B be two nonempty convex sets in Rn such that A \ B = ;. Then
there exist ↵ 2 R and u 6= 0 in Rn such that

uTx  ↵, 8x 2 A and uTx � ↵, 8x 2 B

In other words, there exists a hyperplane H = {x |uTx = ↵} that separates sets A and B.

Now we present a strong duality theorem for the Lagrange dual problem. The proof will be
for the refinement, as that is what will be used later in the paper. For the original version of the
proof, which only proves strong duality under the unrefined Slater’s condition, see [8].

Theorem 2.2. Suppose Slater’s condition (or its refinement) holds. Then there is strong duality
between (PC) and its Lagrange dual problem (DCL). Furthermore, the dual optimal value is
attained when v(DCL) > �1.

Proof. Suppose, by Slater’s condition, that there exists x0 2 ri(D) such that gi(x0
) < 0, for i = N ,

gi(x
0
)  0 for i 2 L, and Ax0

= b, where D, L and N are defined above. Consider the functions
gi(x) for i = 1, . . . ,m. We order these, so that we create two categories, one group where the
function is zero at x0 and the rest in the other group. Thus, we have gi(x

0
) = 0 for i = 1, . . . , k

where k  m, which are only affine functions, and gi(x
0
) < 0 for i = k + 1, . . . ,m, which may

include some affine functions. Since gi(x), i = 1, . . . , k are affine, we can lump them into the
matrix A without changing the set of feasible points. Thus the equality constraints look like this:

2

66666664

A

a11 . . . an1
...

. . .
...

a1k . . . ank

3

77777775

x =

2

666666664

b1
...
bl
a01
...

a0k

3

777777775

Call this new matrix ˆA and the vector on the right hand side ˆb. For simplicity, we also assume
that the matrix ˆA has rank l + k and that D has a nonempty interior so that int(D) = ri(D).
By Slater’s condition, v(PC) < 1, since there is a feasible point in dom(f). Furthermore, if
v(PC) = �1, then by weak duality v(DCL) = �1 and hence strong duality holds. Therefore, we
consider the case where v(PC) is finite.

Define two disjoint sets, S1 and S2. First,

S1 = {(u, v, t) 2 Rm�k ⇥ Rl+k ⇥ R | 9x 2 D for which ĝ(x)  u, ˆh(x) = v, f(x)  t}

where by ĝ(x)  u we mean that gi(x), i = k + 1, . . . ,m, is less than or equal to the components
of u = (u1, . . . , um�k), and ˆh(x) = v means that the ith component on ˆA is equal to vi of
v = (v1, . . . , vl+k). Second,

S2 = {(0, 0, s) 2 Rm�k ⇥ Rl+k ⇥ R | s < v(PC)}

To use the separating hyperplane theorem we must show that S1 and S2 are convex and do
not intersect. Starting with convexity, consider two points (u1, v1, t1), (u2, v2, t2) 2 S1. We want
to show that the line segment �(u1, v1, t1) + (1� �)(u2, v2, t2) is contained in S1 for � 2 [0, 1]. It
follows from how the set is defined, that for the two points in S1, there exist x1, x2 2 D such that
ĝ(x1)  u1, ˆh(x1) = v1, f(x1)  t1 and ĝ(x2)  u2, ˆh(x2) = v2, f(x2)  t2. By the convexity of gi
for i = k + 1, . . . ,m,

ĝ(�x1 + (1� �)x2)  �ĝ(x1) + (1� �)ĝ(x2)  �u1 + (1� �)u2

for � 2 [0, 1]. Likewise, since f is convex,

f(�x1 + (1� �)x2)  �t1 + (1� �)t2

4



Finally,

ˆA(�x1 + (1� �)x2)� ˆb = �( ˆAx1) + (1� �)( ˆAx2)� ˆb = �v1 + (1� �)v2 � ˆb

and ˆh(�x1 + (1 � �)x2) = �v1 + (1 � �)v2. Hence, S1 is convex. Similarly, for S2, suppose
that (0, 0, s1), (0, 0, s2) 2 S2. Then s1 < v(PC) and s2 < v(PC). We want to show that for
� 2 [0, 1], �s1 + (1 � �)s2 < v(PC). This is obviously true at the endpoints since for � = 0 we
have �s1 + (1� �)s2 = s2 and for � = 1, �s1 + (1� �)s2 = s1. So we consider � 2 (0, 1). Then,

�s1 < �v(PC) and (1� �)s2 < (1� �)v(PC)

which implies,
�s1 + (1� �)s2 < �v(PC) + (1� �)v(PC) = v(PC)

proving that S2 is convex.
Next we must show that S1\S2 = ;. For a contradiction, suppose there is a (u, v, t) 2 S1\S2.

Since (u, v, t) 2 S2, u = v = 0 and t < v(PC). Moreover, since (u, v, t) = (0, 0, t) 2 S1, there
must exist an x 2 D such that ĝ(x)  0, ˆh(x) = 0, f(x)  t < v(PC), and hence that gi(x) 
0, i = 1, . . . ,m,Ax = b, f(x)  t < v(PC). This is impossible since v(PC) is the optimal value of
the primal problem. Hence S1 and S2 do not intersect. By Theorem 2.1, there exist ↵ 2 R and
(µ, ⌫, ⌧) 6= 0 such that

µTu+ ⌫T v + ⌧ t � ↵, 8(u, v, t) 2 S1 (1)
and

µTu+ ⌫T v + ⌧ t  ↵, 8(u, v, t) 2 S2 (2)
Equation (1) implies that µ � 0 and ⌧ � 0, since otherwise µTu + ⌧ t would be unbounded from
below, contradicting (1). Equation (2) states that ⌧ t  ↵ for all t < v(PC) which implies that
⌧v(PC)  ↵. Thus from (1) and (2), we have that for any x 2 D,

µT ĝ(x) + ⌫T ( ˆAx� ˆb) + ⌧f(x) � ↵ � ⌧v(PC) (3)

Now we consider two cases; ⌧ > 0 and ⌧ = 0. First, consider the case where ⌧ = 0. Then (3)
becomes,

µT ĝ(x) + ⌫T ( ˆAx� ˆb) � 0

for all x 2 D. From Slater’s condition,

µT ĝ(x0
) � 0

However, since µ � 0 and ĝ(x0
) < 0, we find that µ = 0. Furthermore, the fact that (µ, ⌫, ⌧) 6= 0

and µ = ⌧ = 0 implies that ⌫ 6= 0. From (3) we now have

⌫T ( ˆAx� ˆb) � 0

for all x 2 D. However, from Slater’s condition, there exists x0 2 int(D) such that ⌫T ( ˆAx0�ˆb) = 0

which implies that there are points in D satisfying ⌫T ( ˆAx�ˆb) < 0 unless ˆAT ⌫ = 0. This contradicts
the assumption that the rank of ˆA is l + k. By contradiction, we have shown that ⌧ 6= 0.

Let ⌧ > 0. Dividing (3) by ⌧ gives,

1

⌧
µT ĝ(x) +

1

⌧
⌫T ( ˆAx� ˆb) + f(x) � v(PC)

for all x 2 D. We can rewrite this by redistributing the affine functions which we added to the
equality constraints. If µ = (µ1, . . . , µm�k), ⌫ = (⌫1, . . . , ⌫l, ⌫l+1, . . . , ⌫l+k), then define vectors
q :=

1
⌧ (µ1, . . . , µm�k, ⌫l+1, . . . , ⌫l+k) and p :=

1
⌧ (⌫1, . . . , ⌫l). The equation above becomes

qT g(x) + pT (Ax� b) + f(x) � v(PC)

By taking the infimum over x it follows that v(DC) � v(PCL). From weak equality then we have
that v(DC) = v(PCL), so that strong duality holds and the optimal value of the dual problem is
attained at (p, q).

5



We will use Theorem 2.2 later in the paper to prove strong duality between a primal problem
and its Fenchel-Lagrange dual. This paper will deals with optimization problems that have only
inequality constraints, such as,

(P ) inf

gi(x)0
i=1,...,m

x2X

{f(x)}

where the functions, f , gi, i = 1, . . . ,m are convex as usual. In this case, the Lagrange dual
problem of (P ) is

(DL) sup

q�0
inf

x2X
{f(x) +

mX

i=1

qigi(x)}

where q 2 Rm. Indeed, weak duality still holds, as does strong duality under both Slater’s condition
and its refinement.

Next, we present another optimization theory known as Fenchel duality, sometimes called
conjugate duality.
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3 Conjugate Duality

In order to discuss the theory of Fenchel Duality, we must first define the convex conjugate function.
Therefore the following section will give a brief introduction to conjugate and biconjugate functions
before introducing the Fenchel dual problem.

3.1 Conjugate Functions

Definition 3.1. Let X ✓ Rn be nonempty. The conjugate relative to the set X of a function
f : Rn ! R, denoted f⇤

X : Rn ! R, is defined by

f⇤
X(x⇤

) = sup

x2X
{x⇤Tx� f(x)} = � inf

x2X
{f(x)� x⇤Tx}

If X = Rn, then this becomes the classical conjugate of f , f⇤
: Rn ! R,

f⇤
(x⇤

) = sup{x⇤Tx� f(x)} = � inf{f(x)� x⇤Tx}

The definition is illustrated in the following figure:

Given a function f , for each value x⇤ 2 Rn, the conjugate function of f , f⇤
(x⇤

) is the (signed)
point where the hyperplane, that has normal (�x⇤, 1) and supports the epigraph of f , intercepts
the vertical axis. In other words, it is the maximum gap between the linear function x⇤Tx and
f(x). To further understand conjugates, consider the following examples. First, take an easy
example where f : R ! R is an affine function, f(x) = ↵x + �, where ↵,� are real scalars. The
conjugate is

f⇤
(x⇤

) = sup{x⇤x� ↵x� �} = sup{(x⇤ � ↵)x}� �

The supremum is unbounded except at x⇤
= ↵. Hence

f⇤
(x⇤

) =

(
�� x⇤

= ↵

+1 otherwise

The next example will help in evaluating problems from 6.4. Let h be a convex function on
Rn and define f(x) = h(A(x�↵))+xT↵⇤

+ � where A is a one-to-one linear transformation from
Rn to Rn, ↵,↵⇤ 2 Rn, and � 2 R. Then, letting y = A(x� ↵), the conjugate is

f⇤
(x⇤

) = sup

x
{xTx⇤ � h(A(x� ↵))� xT↵⇤ � �}

= sup

y
{(A�1y + ↵)Tx⇤ � h(y)� (A�1y + ↵)T↵⇤ � �}

= sup

y
{(A�1y)T (x⇤ � ↵⇤

)� h(y)}+ ↵T
(x⇤ � ↵⇤

)� �

= sup

y
{yTA⇤�1

(x⇤ � ↵⇤
)� h(y)}+ ↵T

(x⇤ � ↵⇤
)� �

= h⇤
(A⇤�1

(x⇤ � ↵⇤
)) + ↵T

(x⇤ � ↵⇤
)� �

7



where A⇤ is the adjoint of A.
For the last example, consider the following definition:

Definition 3.2. Given X ✓ Rn, its indicator function, denoted �X : Rn ! R is defined by,

�X(x) =

(
0 x 2 X

+1 otherwise

The conjugate is easily calculated to be the function �X : Rn ! R,

�X(u) = sup

x2X
uTx

This is known as the support function of the set X.
Note: The indicator function is a very important tool in optimization and will be used through-

out the paper. For instance, when used with conjugates, it becomes possible to switch between a
classical conjugate and a conjugate relative to a set. Let f : Rn ! R be a function and let X be
a nonempty subset of Rn:

f⇤
X(x⇤

) = sup

x2X
{x⇤Tx� f(x)} = sup

x2R
{x⇤Tx� f(x)� �X(x)} = (f + �X)

⇤
(x⇤

)

A notable property of the conjugate is that it is always convex, whether or not the original
function itself is convex. This is due to f⇤ being the pointwise supremum of a family of convex
functions. Because of this property, we sometimes distinguish between two conjugates, the convex
conjugate and the concave conjugate, denoted f⇤ for a concave function f . The convex conjugate
is what we defined in Definition 3.1. The distinction then is simply that if f⇤ is the concave
conjugate of f , �f⇤ is the convex conjugate.

Another property of conjugate functions is known as the Young-Fenchel Inequality. For all
x, x⇤ 2 Rn, it holds that

f(x) + f⇤
(x⇤

) � x⇤Tx

This inequality has many important consequences in optimization. A chief concern is how to
attain equality. To achieve this, we present an important definition that will be used later in the
paper.

Definition 3.3. Let f be a convex function. For an arbitrary x 2 Rn such that f(x) 2 R, the
subdifferential of the function f at x is the set

@f(x) = {x⇤ 2 Rn | f(y)� f(x) � (y � x)Tx⇤, 8y 2 Rn}

Furthermore, the function f is subdifferentiable at x 2 Rn with f(x) 2 R if @f(x) 6= ;.

Applying Definition 3.3 to the Young-Fenchel Inequality gives an if and only if statement for
equality which will be referred to later in the paper (see Section 6). That is, if f(x) 2 R, then

f(x) + f⇤
(x⇤

) = x⇤Tx , x⇤ 2 @f(x) (4)

One final property of conjugate functions is presented in the following lemma:

Lemma 3.1. Let f1, . . . , fm : Rn ! R be proper and convex functions such that
m
\
i=1

ri(dom(fi))

is not empty. Then,

(

mX

i=1

fi)
⇤
(x⇤

) = inf{
mX

i=1

f⇤
i (x

⇤
i );x

⇤
=

mX

i=1

x⇤
i }

and for each x⇤ 2 Rn the infimum is attained.

8



This is a very useful lemma and will be needed later in the paper.
When discussing conjugate functions, a natural next step is to consider the conjugate of a

conjugate function, (f⇤
)

⇤. This is know as the biconjugate and is denoted simply by f⇤⇤. Questions
arise regarding what it looks like in comparison to the original function, whether it is ever equal
to f . The remainder of this section gives a brief introduction to the biconjugate, starting with the
definition:

Definition 3.4. Given a function f : Rn ! R, the biconjugate of f is

f⇤⇤
(x⇤⇤

) = sup{x⇤⇤Tx⇤ � f⇤
(x⇤

)} = � inf{f⇤
(x⇤

)� x⇤⇤Tx⇤}

In general the biconjugate does not equal f . Instead it is always true that f⇤⇤
(x)  f(x)

for any function f . Equality can hold given certain circumstances, seen in Lemma 3.2. Before
presenting this lemma, however, we need the following definition:

Definition 3.5. Let X be a topological space and consider the function f : X ! R. If the set

f�1
((↵,1]) = {x 2 X | f(x) > ↵}

is open in X for all ↵ 2 R, then f is said to be lower semicontinuous.

Using this definition, we have the following lemma:

Lemma 3.2. Let f : Rn ! R be a proper function. Assume that f is also lower semicontinuous
and convex. Then f⇤⇤

(x) = f(x).

In fact, by the Fenchel Moreau theorem, f = f⇤⇤ if and only if the above assumptions hold,
or if either f ⌘ +1 or f ⌘ �1. However, we will only be concerned with the case presented in
Lemma 3.2.

3.2 Fenchel Duality

As with Lagrange duality, Fenchel duality is about assigning a dual problem, called the Fenchel or
conjugate dual problem, to a primal problem. In this case we work in the context of the particular
problem:

(PF ) inf

x2Rn
{f(x)� g(x)}

where f : Rn ! R is a proper and convex function and g : Rn ! R is a proper and concave
function (so that �g is convex). Notice that this is still a convex optimization problem, since the
sum of two convex functions is itself convex. The Fenchel dual problem to (PF ) is

(DF ) sup

x⇤2Rn
{g⇤(x⇤

)� f⇤
(x⇤

)}

where g⇤ is the concave conjugate of g and f⇤ is the convex conjugate of f . Thus the objective
function of (DF ) is

g⇤(x
⇤
)� f⇤

(x⇤
) = inf{x⇤Tx� g(x)}� sup{x⇤Tx� f(x)}

Given these two problems, do weak and strong duality hold? Weak duality is, in fact, always
true, i.e. v(PF ) � v(DF ). It follows directly from the Young-Fenchel Inequality. That is, since

f(x) + f⇤
(x⇤

) � x⇤Tx � g(x) + g⇤(x
⇤
)

we get that for all x, x⇤ 2 Rn,

f(x)� g(x) � g⇤(x
⇤
)� f⇤

(x⇤
)

The main theorem of this section, called Fenchel’s Duality Theorem, gives conditions for strong
duality between (PF ) and (DF ). It is presented in this paper as it is found in [12, p. 47]. To prove
it, however, requires to following results, found in [12]:
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Lemma 3.3. For every convex function f , ri(epi(f)) = {(x, µ) |x 2 ri(dom(f)), f(x) < µ < 1}.

Theorem 3.1. Let A and B be non-empty convex sets in Rn. There exists a hyperplane H
separating A and B properly, i.e. not both A and B are contained in the hyperplane H, if and
only if ri(A) \ ri(B) = ;.

Now we are ready to present the theorem for strong duality. It will be needed in the next
section for proving strong duality between the primal problem (P ) and the dual problem (DFL),
called the Fenchel-Lagrange dual.

Theorem 3.2 (Fenchel’s Duality Theorem). Let f be a proper and convex function on Rn and g
be a proper and concave function on Rn. Then

inf

x
{f(x)� g(x)} = sup

x⇤
{g⇤(x⇤

)� f⇤
(x⇤

)}

if one of the following conditions holds:
(a) ri(domf) \ ri(domg) 6= ;
(b) f and g are closed and ri(domg⇤) \ ri(domf⇤

) 6= ;
Under (a) the supremum is attained at some x⇤. Under (b) the infimum is attained at some

x. If both conditions are satisfied, then the infimum and supremum are necessarily finite.

Proof. We saw above that weak duality holds, that is v(PF ) � v(DF ).
If the infimum is �1, then by weak duality the supremum is also �1. Thus suppose v(PF )

is not �1. Assume (a) holds. This implies that v(PF ) is finite. To show that v(PF ) = v(DF )

and the supremum is attained, we only need to show that there exists a vector x⇤ such that
g⇤(x

⇤
)� f⇤

(x⇤
) � v(PF ). To this end, let v(PF ) = ↵ and consider the epigraphs

C = {(x, µ) |x 2 Rn, µ 2 R, µ � f(x)} and D = {(x, µ) |x 2 Rn, µ 2 R, µ  g(x) + ↵}

These are convex sets in Rn+1. By Lemma 3.3,

ri(C) = {(x, µ) |x 2 ri(dom(f)), f(x) < µ < 1}

Since f(x) � g(x) � v(PF ) implies that f(x) � g(x) + ↵, we know that ri(C) \D = ;. Thus, by
Theorem 3.1, there exists a hyperplane H in Rn+1 which separates C and D properly.

Suppose that H is vertical. Then its projection on Rn would be a hyperplane separating the
projections of C and D properly. The projections of C and D are dom(f) and dom(g) respectively.
By the assumption (a), however, these cannot be separated properly. Thus by contradiction H is
not vertical. This implies that H is the graph of an affine function h(x) = xTx⇤ � �. From this
we have that

f(x) � xTx⇤ � � � g(x) + ↵

for all x 2 Rn. The left hand side implies that � � xTx⇤ � f(x). Taking the supremum over x
gives

� � sup{xTx⇤ � f(x)} = f⇤
(x⇤

)

Likewise, the right hand side gives us

� + ↵  inf{xTx⇤ � g(x)} = g⇤(x
⇤
)

It follows that g⇤(x
⇤
) � f⇤

(x⇤
) � ↵ = v(PF ). Thus, under assumption (a), strong duality holds

and the supremum is attained at x⇤.
Assume, now, that (b) holds. Then f and g are closed which implies that they are lower

semicontinuous. Thus, by Lemma 3.2, f = f⇤⇤ and g = g⇤⇤ and the same argument given for (a)
can be used for strong duality.

With the two duality theories explained, we move on to the main duality theory of the paper,
Fenchel-Lagrange duality.
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4 Fenchel-Lagrange Duality

4.1 Framework

Assume that X is a nonempty subset of Rn, f : Rn ! R is a convex and proper function, and that
g = (g1, . . . , gm)

T
: Rn ! Rm is a vector-valued function such that gi is convex for i = 1, . . . ,m.

We consider the convex optimization problem,

(P ) inf

g(x)0
x2X

{f(x)}

Note that by g(x)  0 we mean that gi(x)  0 for i = 1, . . . ,m.
In [3], Boț uses perturbation functions to derive dual problems to a given primal problem. Using

this method he computes two well-known dual problems, the Lagrange dual and the Fenchel dual.
Moreover, he uses a third perturbation function to determine the Fenchel-Lagrange dual problem.
The theory of duality regarding the Fenchel-Lagrange dual is thoroughly discussed in [3], [4], [6],[7]
. To start, we introduce the perturbation function � : Rn ⇥ Rn ⇥ Rm ! R,

�(x, y, z) =

(
f(x+ y) x 2 X, g(x)  z

+1 otherwise

The next step is to calculate its conjugate, �⇤
: Rn ⇥ Rn ⇥ Rm ! R,

�

⇤
(x⇤, p, q) = sup

x,y2Rn,
z2Rm

{x⇤Tx+ pT y + qT z � �(x, y, z)}

= sup

x2X,y2Rn,
g(x)z

{x⇤Tx+ pT y + qT z � f(x+ y)}

To make further calculations, we introduce two new variables, r := x+ y and s := z � g(x) to
get rid of y and z. Inserting this into the above function gives the following,

�

⇤
(x⇤, p, q) = sup

x2X
r2Rn

s�0

{x⇤Tx+ pT (r � x) + qT (s+ g(x))� f(r)}

= sup

s�0
{qT s}+ sup

r2Rn
{pT r � f(r)}+ sup

x2X
{(x⇤ � p)Tx+ qT g(x)}

=

(
f⇤

(p)� inf

x2X
{(p� x⇤

)

Tx� qT g(x)} q  0, q 2 Rm

+1 otherwise

All the information needed for the dual problem is now available. According to [3], given a
perturbation function, the dual problem is defined as,

(D) sup

p2Rn

q2Rm

{��⇤
(0, p, q)}

which in the case of Fenchel-Lagrange duality becomes

(DFL) sup

p2Rn

q�0

{�f⇤
(p) + inf

x2X
{pTx+ qT g(x)}}

Note that the sign of q was changed. Also, infx2X{pTx+ qT g(x)} = infx2X{qT g(x)� (�p)Tx} =

�(qT g)⇤X(�p) so that the dual problem can be equivalently written as,

(DFL) sup

p2Rn

q�0

{�f⇤
(p)� (qT g)⇤X(�p)}
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4.2 Weak and Strong Duality

As in the above sections on duality, this section will elaborate on weak and strong duality for the
Fenchel-Lagrange dual problem.

Theorem 4.1. Weak duality holds between the primal problem (P ) and the Fenchel-Lagrange
dual problem (DFL), i.e. v(P ) � v(DFL).

Unlike weak duality, strong duality does not always hold. That is, v(P ) = v(DFL) is not true
in general. In order for there to be no duality gap, we need an optimality condition. First, define
sets L := {i 2 {1, . . . ,m} | gi : Rn ! R is an affine function} and N := {1, . . . ,m} \ L. Then we
have the following constraint qualification:

(CQ) 9x0 2
m
\
i=1

ri(dom(gi)) \ ri(dom(f)) \ ri(X) :

(
gi(x

0
)  0 i 2 L

gi(x
0
) < 0 i 2 N

Recall the refinement of Slater’s condition from Section 2,

9x0 2 ri(
m
\
i=1

(dom(gi)) \ dom(f) \X)

such that gi(x0
)  0 for i 2 L and gi(x

0
) < 0 for i 2 N . It is easy to see how similar this condition

is to (CQ). In fact, to take advantage of the similarity in the proof for strong duality, we first
need the following theorem.

Theorem 4.2. Let I is a finite index set and let Ci be a convex set in Rn for i 2 I. Suppose that
the sets ri(Ci) have at least one point in common, then

ri( \
i2I

Ci) = \
i2I

ri(Ci)

Now we a prepared to present the theorem for strong duality between (P ) and (DFL).

Theorem 4.3. Assume that v(P ) < �1. If (CQ) is fulfilled, then there is strong duality between
the primal problem (P ) and the Fenchel-Lagrange dual problem (DFL), i.e. v(P ) = v(DFL) and
there exists an optimal solution to (DFL).

Proof. By Theorem 4.2, the (CQ) gives that

9x0 2
m
\
i=1

ri(dom(gi)) \ ri(X) \ ri(dom(f)) = ri(
m
\
i=1

(dom(gi)) \X \ dom(f))

Thus we can use the refined Slater’s condition and by Theorem 2.2 there exists a q̄ � 0 such that

v(P ) = sup

q�0
inf

x2X
{f(x) + qT g(x)} = inf

x2X
{f(x) + q̄T g(x)}

By defining a function h : Rn ! R as

h(x) =

(
q̄T g(x), if x 2 X

+1, if x 62 X

the last term can be written as

v(P ) = inf

x2Rn
{f(x) + h(x)}
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Since ri(dom(f)) \ ri(dom(h)) = ri(dom(f)) \ ri(X) 6= ;, by Theorem 3.2 there exists a p̄ 2 Rn

such that

v(P ) = inf

x2Rn
{f(x) + h(x)} = sup

p2Rn
{�f⇤

(p)� h⇤
(�p)}

= �f⇤
(p̄)� h⇤

(�p̄)

= �f⇤
(p̄)� sup

x2Rn
{�p̄Tx� h(x)}

= �f⇤
(p̄)� sup

x2X
{�p̄Tx� q̄T g(x)}

= �f⇤
(p̄)� (q̄T g)⇤X(�p̄)

This is the objective function of the Fenchel-Lagrange dual problem at (p̄, q̄). By Theorem 4.1,
the supremum is attained at (p̄, q̄) hence this is the optimal solution of (DFL).

Notice in the proof that we first take the Lagrange dual of the primal problem and then we
take the Fenchel dual of the Lagrange dual problem. Both steps rely on the (CQ) to give strong
duality. Thus it is clear why (DFL) is given its name.
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5 DC Programming

This section will give an overview of DC (difference of convex) functions and DC programming
problems. Parts 1 and 2 below come from [11].

5.1 DC Functions

Definition 5.1. Let X be nonempty and convex subset of Rn. A real-valued function f : X ! R
is called DC on X if there exist two convex functions g, h : X ! R such that f can be written as
f(x) = g(x) � h(x). Each representation of this form is said to be a DC decomposition of f . If
X = Rn then f is just called a DC function.

The following propositions give some insight into the usefulness of DC functions.

Propostion 5.1. Let f and fi for i = 1, . . . , n be DC functions. Then the following are also DC
functions:

(i)

Pn
i=1 �ifi(x) for some �i 2 R, i = 1, . . . , n

(ii) Both maxi=1,...,n{fi(x)} and mini=1,...,n{fi(x)}

(iii) |f(x)|, max{0, f(x)}, and min{0, f(x)}

(iv)

Qn
i=1 fi(x)

Propostion 5.2. Every function f : Rn ! R whose second partial derivatives are continuous
everywhere is DC.

Propostion 5.3. Let f : Rn ! R be a DC function and let g : R ! R be convex. Then their
composition (g � f)(x) = g(f(x)) is DC.

5.2 DC Programming Problems

DC programming problems are optimization problems that involve DC functions. That is the
objective function can be DC, DC functions can be found among the constraints, or a combination
of this. For now, consider the problem

(PDC) min

fi(x)0
i=1,...m,
x2X,

{f(x)}

where f, fi, i = 1, . . . ,m are DC functions and X is a closed convex subset of Rn.
It is worth noting that this problem can be transformed into another well-known form, which

Horst and Thoai do on pages 4 and 5 of [11]:

min

 i(x)0
i=1,...,m

x2X

{c(x)}

where c is a linear function, X is still a closed convex subset of Rn, and  is concave. This is called
a canonical DC program. More generally, if c is convex then this is called a generalized canonical
DC program. Thus we see that the canonical DC program is in a class of reverse convex problems.

Now that the preliminaries have been covered, we come to the main work of the paper. The
next Section will cover different DC and fractional programming problems, finding for each primal
problem its dual problem.
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6 Fenchel Lagrange Duality applied to some DC Programs

As mentioned in the Introduction, the dual problems to each primal problem will be defined via
Fenchel-Lagrange duality, discussed in Section 4. Then we will give a constraint qualification for
each pair of problems, which is need for strong duality. In order to outline the method, we start
with the problem presented originally by Boț, Hodrea, and Wanka. We will use the process and
the results of this first problem in the subsequent problems of the section.

6.1 DC objective function and inequality constraints

Consider the problem from [6],

(PDC) inf

gi(x)�hi(x)0
i=1,...,m, x2X

{g(x)� h(x)}

where g, h : Rn ! R, gi, hi : Rn ! R, i = 1, . . . ,m are proper and convex functions, and X is a
nonempty convex subset of Rn. Also suppose that

m
\
i=1

ri(dom(gi)) \ ri(dom(g)) \ ri(X) 6= ; (5)

Consider the feasible set, denoted F(PDC) = {x 2 X | gi(x) � hi(x)  0, i = 1, . . . ,m}, of
(PDC). We suppose that F(PDC) 6= ;. Furthermore, assume that h is lower semicontinuous on
F(PDC) and that hi is subdifferentiable on F(PDC) for i = 1, . . . ,m. Then we have the following
lemma:

Lemma 6.1. Given the assumptions presented so far, the following is true:

F(PDC) = [
y⇤
i 2dom(h⇤

i )
i=1,...,m

{x 2 X | gi(x)� xT y⇤i + h⇤
i (y

⇤
i )  0, i = 1, . . . ,m}

Proof. Let x 2 F(PDC), then x 2
m
\
i=1

dom(hi). Since hi, i = 1, . . . ,m, is subdifferentiable, there
exists a y⇤i 2 @hi(x) for i = 1, . . . ,m. Thus by equation (4) above, for i = 1, . . . ,m,

hi(x) + h⇤
i (y

⇤
) = y⇤Tx

�y⇤Tx+ h⇤
i (y

⇤
) = �hi(x)

gi(x)� y⇤Tx+ h⇤
i (y

⇤
) = gi(x)� hi(x)  0

Therefore, x is in the union above and we have one inclusion.
Next, we prove the opposite inclusion, ◆. Let x 2 X such that gi(x)� xT y⇤i + h⇤

i (y
⇤
i )  0, i =

1, . . . ,m. Then gi(x) < +1 for i = 1, . . . ,m. Also, let y⇤ = (y⇤1 , . . . , y
⇤
m) 2

mQ
i=1

dom(h⇤
i ). By the

Young-Fenchel inequality we have that hi(x)+h⇤
i (y

⇤
) � y⇤Tx. Since gi(x) < +1 for i = 1, . . . ,m,

we get from the inequality

gi(x)� hi(x)  gi(x)� y⇤Tx+ h⇤
i (y

⇤
)  0

for i = 1, . . . ,m. Thus x 2 F(PDC) and therefore the sets are in fact equal.

We now derive another form of (PDC). First, since h is proper, convex and semicontinuous on
F(PDC), then h(x) = h⇤⇤

(x) = sup

x⇤2dom(h⇤)
{x⇤Tx� h⇤

(x⇤
)}. Hence,

v(PDC) = inf

x2F(PDC)
{g(x)� h(x)} = inf

x2F(PDC)
{g(x)� sup

x⇤2dom(h⇤)
{x⇤Tx� h⇤

(x⇤
)}}

= inf

x2F(PDC)
{g(x) + inf

x⇤2dom(h⇤)
{�x⇤Tx+ h⇤

(x⇤
)}}

= inf

x⇤2dom(h⇤)
inf

x2F(PDC)
{g(x)� x⇤Tx+ h⇤

(x⇤
)}
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Using Lemma 6.1 gives the final form of (PDC):

(PDC) inf

x⇤2dom(h⇤)

y⇤2
mQ

i=1
dom(h⇤

i )

inf

gi(x)�y⇤T x+h⇤
i (y

⇤)0
i=1,...,m, x2X

{g(x)� x⇤Tx+ h⇤
(x⇤

)}

This is the form for which we will find a dual problem. To do so, notice that the inner infimum
is a convex optimization problem. It therefore it will be treated as a separate problem. We will find
a dual to the inner infimum and then "reattach" the outer infimum to this to get (DDC). Hence,

consider for some fixed x⇤ 2 dom(h⇤
) and y⇤ 2

mQ
i=1

dom(h⇤
i ) the following convex optimization

problem,
(Px⇤,y⇤

) inf

gi(x)�y⇤T x+h⇤
i (y

⇤)0
i=1,...,m, x2X

{g(x)� x⇤Tx+ h⇤
(x⇤

)}

To simplify the problem, let f(x) = g(x) � x⇤Tx + h⇤
(x⇤

) and fi(x) = gi(x) � y⇤Tx + h⇤
i (y

⇤
) for

i = 1, . . . ,m. Then the problem becomes

(Px⇤,y⇤
) inf

fi(x)0
i=1,...,m,

x2X

{f(x)}

where f : Rn ! R is convex and proper and fi : Rn ! R are proper and convex for i = 1, . . . ,m.
Taking the Lagrange dual gives,

(Dx⇤,y⇤
) sup

q�0
inf

x2X
{f(x) +

mX

i=1

qifi(x)}

where q = (q1, . . . , qm)

T 2 Rn. By the definition of conjugates,

inf

x2X
{f(x) +

mX

i=1

qifi(x)} = �(� inf

x2X
{f(x) +

mX

i=1

qifi(x)� 0

Tx})

= �
�
f +

mX

i=1

qifi
�⇤
X
(0)

Recall that we assumed (5), which implies that
m
\
i=1

ri(dom(fi))\ri(dom(f)) 6= ;, and that functions
f, fi, i = 1, . . . ,m, are proper and convex. Hence we can apply Lemma 3.1,

�
�
f +

mX

i=1

qifi
�⇤
X
(0) = �

�
f +

mX

i=1

qifi + �X
�⇤
(0)

= � inf

p2Rn
{f⇤

(p) +

 
mX

i=1

qifi + �X

!⇤

(�p)}

= � inf

p2Rn
{f⇤

(p) +

 
mX

i=1

qifi

!⇤

X

(�p)}

= sup

p2Rn
{�f⇤

(p)�
 

mX

i=1

qifi

!⇤

X

(�p)}

Returning to the dual problem, we can use the equation above to write it in the equivalent
form,

(Dx⇤,y⇤
) sup

p2Rn

q�0

{�f⇤
(p)�

 
mX

i=1

qifi

!⇤

X

(�p)}
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It should be noted that this is exactly the Fenchel-Lagrange dual of the convex optimization
problem (Px⇤,y⇤

) with objective and constraint functions f and fi, i = 1, . . . ,m. Note that the
process involves first taking the Lagrange dual and then using conjugates to essentially reformulate
it via the Fenchel dual.

In order to have (Dx⇤,y⇤
) in terms of g, h, gi, and hi, for i = 1, . . . ,m, we must calculate the

conjugates found in the above form of the dual problem. Starting with the simpler of the two,
f(x) = g(x)� x⇤T

+ h⇤
(x⇤

) has the following conjugate,

f⇤
(p) = sup{pTx� (g(x)� x⇤Tx+ h⇤

(x⇤
))}

= sup{(p+ x⇤
)

Tx� g(x)}� h⇤
(x⇤

)

= g⇤(p+ x⇤
)� h⇤

(x⇤
)

Next, given that fi(x) = gi(x)� y⇤Ti x+ h⇤
i (y

⇤
i ),

 
mX

i=1

qifi

!⇤

X

(�p) = sup

x2X

(
�pTx�

 
mX

i=1

qi(gi(x)� y⇤Ti x+ h⇤
i (y

⇤
i ))

!)

= sup

x2X

8
<

:

 
mX

i=1

qiy
⇤
i � p

!T

x�
mX

i=1

qigi(x)

9
=

;�
mX

i=1

qih
⇤
i (y

⇤
i )

=

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
�

mX

i=1

qih
⇤
i (y

⇤
i )

Plugging these conjugates into the dual problem,

(Dx⇤,y⇤
) sup

p2Rn

q�0

(
h⇤

(x⇤
)� g⇤(p+ x⇤

) +

mX

i=1

qih
⇤
i (y

⇤
i )�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!)

Since the dual problem (Dx⇤,y⇤
) is the Fenchel-Lagrange dual of (Px⇤,y⇤

) by Theorem 4.1, weak
duality holds. For strong duality, we must refer back to the constraint qualification in Section 4.2.
In our case this becomes,

(CQy⇤
) 9x0 2

m
\
i=1

ri(dom(gi)) \ ri(dom(g)) \ ri(X) :

(
gi(x

0
)� x0T y⇤i + h⇤

i (y
⇤
i )  0 i 2 L

gi(x
0
)� x0T y⇤i + h⇤

i (y
⇤
i ) < 0 i 2 N

where as before, L = {i 2 {1, . . . ,m} | gi is affine} and N = {1, . . . ,m} \ L. With this constraint
qualification strong duality can be asserted.

Propostion 6.1. Assume v(Px⇤,y⇤
) is finite. If (CQy⇤

) is fulfilled, then strong duality holds
between (Px⇤,y⇤

) and (Dx⇤,y⇤
).

Proof. Evaluating the problem

(Px⇤,y⇤
) inf

fi(x)0
i=1,...,m,

x2X

{f(x)}

led to the Fenchel-Lagrange dual

(Dx⇤,y⇤
) sup

p2Rn

q�0

(
�f⇤

(p)�
 

mX

i=1

qifi

!⇤

X

(�p)

)

17



Notice that, since x⇤ and y⇤ are fixed, dom(f) = dom(g)\dom(�x⇤Tx) = dom(g)\Rn
= dom(g)

and likewise, dom(fi) = dom(gi). Hence the constraint qualification (CQy⇤
) implies that

9x0 2
m
\
i=1

ri(dom(fi)) \ ri(dom(f)) \ ri(X) :

(
fi(x

0
)  0 when fi is affine

fi(x
0
) < 0 otherwise

By Theorem 4.3, strong duality holds. That is, there exists a q̄ = (q̄1, . . . , q̄m) 2 Rn, such that
q̄ � 0, and a p̄ 2 Rn such that

v(Px⇤,y⇤
) = sup

p2Rn

q�0

{�f⇤
(p)�

 
mX

i=1

qifi

!⇤

X

(�p)}

= �f⇤
(p̄)�

 
mX

i=1

q̄ifi

!⇤

X

(�p̄)

= h⇤
(x⇤

)� g⇤(p̄+ x⇤
) +

mX

i=1

q̄ih
⇤
i (y

⇤
i )�

 
mX

i=1

q̄igi

!⇤

X

 
mX

i=1

q̄iy
⇤
i � p̄

!

Hence v(Px⇤,y⇤
) = v(Dx⇤,y⇤

) and an optimal solution for (Dx⇤,y⇤
) is attained at (p̄, q̄).

Given that there is strong duality between (Px⇤,y⇤
) and (Dx⇤,y⇤

), it is natural to use this dual
problem to define a dual to our original problem, (PDC).

(DDC) inf

x⇤2dom(h⇤)

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p2Rn

q�0

(
h⇤

(x⇤
)� g⇤(p+ x⇤

) +

mX

i=1

qih
⇤
i (y

⇤
i )�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!)

Because weak duality holds between the subproblem and its dual, weak duality also holds
between (PDC) and (DDC). Furthermore, suppose that (CQy⇤

) is satisfied for all y⇤ 2
mQ
i=1

dom(h⇤
i ).

Then it is clear that v(PDC) = v(DDC).

Propostion 6.2. If (CQy⇤
) is fulfilled for all y⇤ 2

mQ
i=1

dom(h⇤
i ). Then strong duality holds between

(PDC) and (DDC).

Next we consider two possible cases of this problem: the first is when hi ⌘ 0, for i = 1, . . . ,m
and the second is the case where h ⌘ 0. If it is true that hi ⌘ 0 as well as h ⌘ 0 then the primal
problem becomes the standard convex optimization problem and the Fenchel-Lagrange dual can
be applied directly as in Section 4.

Case 1, hi ⌘ 0: The primal problem now has a DC objective function and convex constraints,

(PDC0
) inf

gi(x)0
i=1,...m,

x2X

{g(x)� h(x)}

where g, h : Rn ! R, gi : Rn ! R, i = 1, . . . ,m are proper and convex functions, and X is a
nonempty convex subset of Rn. Suppose the assumptions made above hold. Then h is proper,
convex and lower semicontinuous and hence h(x) = sup

x⇤2dom(h⇤)
{x⇤Tx� h⇤

(x⇤
)}. Therefore,

(PDC0
) inf

x⇤2dom(h⇤)
inf

gi(x)0
i=1,...m,

x2X

{g(x)� x⇤Tx+ h⇤
(x⇤

)}

18



As before, the inner infimum is a convex optimization problem. Fixing x⇤ 2 dom(h⇤
) and

letting f(x) = g(x)� x⇤Tx+ h⇤
(x⇤

), we evaluate the problem,

(Px⇤
) inf

gi(x)0
i=1,...,m,

x2X

{f(x)}

For a p 2 Rn and a q � 0 in Rm, the Fenchel-Lagrange dual of (Px⇤
) is

(Dx⇤
) sup

p2Rn

q�0

{�f⇤
(p)�

 
mX

i=1

qigi

!⇤

X

(�p)}

Since f⇤
(p) = g⇤(p+ x⇤

)� h⇤
(x⇤

), the dual problem becomes

(Dx⇤
) sup

p2Rn

q�0

{h⇤
(x⇤

)� g⇤(p+ x⇤
)�

 
mX

i=1

qigi

!⇤

X

(�p)}

Weak duality holds between (Px⇤
) and (Dx⇤

). For strong duality we must rewrite the constraint
qualification as

(CQ0) 9x0 2
m
\
i=1

ri(dom(gi)) \ ri(dom(g)) \ ri(X) :

(
gi(x

0
)  0 i 2 L

gi(x
0
) < 0 i 2 N

where L and N are defined the same as above.
The dual problem to (PDC0

) is

(DDC0
) inf

x⇤2dom(h⇤)
sup

p2Rn

q�0

{h⇤
(x⇤

)� g⇤(p+ x⇤
)�

 
mX

i=1

qigi

!⇤

X

(�p)}

Weak duality holds and if (CQ0) is satisfied then strong duality holds as well.
Another way to look at the problem is to note that if hi ⌘ 0 for i = 1, . . . ,m then

h⇤
i (y

⇤
i ) =

(
0 y⇤i = 0

+1 y⇤i 6= 0

Thus dom(h⇤
i ) = {0} for i = 1, . . . ,m. Recalling the dual problem derived for the original problem,

(DDC) inf

x⇤2dom(h⇤)

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p2Rn

q�0

(
h⇤

(x⇤
)� g⇤(p+ x⇤

) +

mX

i=1

qih
⇤
i (y

⇤
i )�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!)

it is clear that since y⇤ = (0, . . . , 0),

(DDC) inf

x⇤2dom(h⇤)
sup

p2Rn

q�0

(
h⇤

(x⇤
)� g⇤(p+ x⇤

) +

mX

i=1

qi(0)�
 

mX

i=1

qigi

!⇤

X

 
mX

i=1

qi(0)� p

!)

which is the dual problem we derived above. Next we consider the case where h is zero.
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Case 2, h ⌘ 0: In this case the primal problem has a convex objective function and DC constraint
functions,

(PDC00
) inf

gi(x)�hi(x)0
i=1,...m, x2X

{g(x)}

where g : Rn ! R, gi, hi : Rn ! R, i = 1, . . . ,m are proper and convex functions, and X is a
nonempty convex subset of Rn. Again, the original assumptions hold. By Lemma 6.1, the primal
problem becomes

(PDC00
) inf

y⇤2
mQ

i=1
dom(h⇤

i )

inf

gi(x)�y⇤T x+h⇤
i (y

⇤)0
i=1,...,m, x2X

{g(x)}

Treating the inner infimum as a separate convex optimization problem, we fix y⇤ 2
mQ
i=1

dom(h⇤
i )

and evaluate the problem,
(Py⇤

) inf

gi(x)�y⇤T x+h⇤
i (y

⇤)0
i=1,...,m, x2X

{g(x)}

or equivalently,
(Py⇤

) inf

fi(x)0
i=1,...,m,

x2X

{g(x)}

where fi(x) = gi(x)� y⇤Tx+ h⇤
i (y

⇤
). For a p 2 Rn and a q � 0 in Rm, the Fenchel-Lagrange dual

of (Py⇤
) is

(Dy⇤
) sup

p2Rn

q�0

{�g⇤(p)�
 

mX

i=1

qifi

!⇤

X

(�p)}

Since  
mX

i=1

qifi

!⇤

X

(�p) =

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
�

mX

i=1

qih
⇤
i (y

⇤
i )

the dual problem becomes

(Dy⇤
) sup

p2Rn

q�0

{�g⇤(p)�
 

mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
+

mX

i=1

qih
⇤
i (y

⇤
i )}

Weak duality holds between (Py⇤
) and (Dy⇤

) and strong duality holds under the original constraint
qualification (CQy⇤

). From (Dy⇤
) we get the dual problem to (PDC00

),

(DDC00
) inf

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p2Rn

q�0

{�g⇤(p)�
 

mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
+

mX

i=1

qih
⇤
i (y

⇤
i )}

We can also look at the original dual problem directly. If h ⌘ 0 then dom(h⇤
) = {0}. Thus

the dual problem becomes,

(DDC) inf

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p2Rn

q�0

(
h⇤

(0)� g⇤(p+ 0) +

mX

i=1

qih
⇤
i (y

⇤
i )�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!)

which is (DDC00
) found above. Again, weak duality holds and strong duality holds under (CQy⇤

).
The method developed in this problem will be used to find a dual problem to a few more

optimization problems. The next problem is more complex, but can be rewritten in order to apply
our process of finding a dual problem.
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6.2 DC fractional programming with DC constraints

Consider the following fractional programming problem with DC functions as presented in [13],

(P 0
FP ) inf

�i(x)� i(x)0
i=1,...,m, x2X

⇢
g(x)� h(x)

u(x)� v(x)

�

where X ✓ Rn is convex, g and h are proper and convex, u and v are proper and concave and �i
and  i are proper and convex for i = 1, . . . ,m. Further assume that f � g and �u+ v are proper,
that u� v is positive in the feasible region F(P 0

FP ) = {x 2 X |�i(x)�  i(x)  0, i = 1, . . . ,m, },
that  i are subdifferentiable on F(P 0

FP ) for i = 1, . . . ,m, and that
m
\
i=1

(�i �  )�1
(�R+) \X \ dom(g � h) 6= ;

where (�i �  )�1
(�R+) = {x 2 Rn | (�i �  )(x)  0}, so that F(P 0

FP ) 6= ;.
We need to convert (P 0

FP ) via the well-know Dinkelbach transformation, in [9], and then
derive a form of the problem to which Fenchel-Lagrange duality can be applied. The Dinkelback
transformation leads to the following problem:

(PFP ) inf

�i(x)� i(x)0
i=1,...,m, x2X

{g(x)� h(x)� �u(x) + �v(x)}

for some � 2 R. The connection between these two optimization problems is described in the
following result:

Lemma 6.2. v(P 0
FP ) � �, v(PFP ) � 0

Proof. Suppose v(P 0
FP ) � �. Then

g(x)� h(x)

u(x)� v(x)
� inf

�i(x)� i(x)0
i=1,...,m,x2X

⇢
g(x)� h(x)

u(x)� v(x)

�
� �

which implies that g(x) � h(x) � �u(x) � �v(x). Subtracting the right-hand side and taking the
infimum gives

inf

�i(x)� i(x)0
i=1,...,m, x2X

{g(x)� h(x)� �u(x) + �v(x)} � 0

The other direction is done similarly. Let v(PFP ) � 0. Then,

g(x)� h(x)� �u(x) + �v(x) � inf

�i(x)� i(x)0
i=1,...,m, x2X

{g(x)� h(x)� �u(x) + �v(x)} � 0

and hence g(x)�h(x)
u(x)�v(x) � �. Again, taking the infimum leads to the desired result.

Using Lemma 6.2, we can focus the primal problem (PFP ). We must explore two separate
cases: � < 0 and � � 0. For negative �, (PFP ) can be seen as a DC programming problem by
noticing that g+�v and h+�u are convex. In the other case, g��u and h��v are convex, again
making the objective function DC.

Case 1, � � 0: In this case, we also assume that
m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�u)) \ ri(X) 6= ;

and that h � �v is lower semicontinuous on the feasible set. Define G(x) := g(x) � �u(x) and
H(x) := h(x)� �v(x). Then (PFP ) becomes

(PFP ) inf

�i(x)� i(x)0
i=1,...,m, x2X

{G(x)�H(x)}

21



Note that this is the exact form of the first DC problem above and because of our assumptions,
we can use the results from 6.2. This leads to the dual problem of (PFP ),

(DFP ) inf

x⇤2dom(H⇤)

y⇤2
mQ

i=1
dom( ⇤

i )

sup

p2Rn

q�0

(
H⇤

(x⇤
)�G⇤

(p+ x⇤
) +

mX

i=1

qi 
⇤
i (y

⇤
i )�

 
mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!)

or equivalently,

(DFP ) inf

x⇤2dom((h��v)⇤)

y⇤2
mQ

i=1
dom( ⇤

i )

sup

p2Rn

q�0

(
(h��v)⇤(x⇤

)� (g � �u)⇤(p+ x⇤
) +

mX

i=1

qi 
⇤
i (y

⇤
i )

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!)

By our assumption, ri(dom(g)) \ ri(dom(�u)) 6= ;. Hence by Lemma 3.1 and the fact that for a
function f(x),

(�f)⇤(p⇤) = sup{p⇤Tx� �f(x)} = � sup{ 1
�
p⇤Tx� f(x)} = �(f⇤

)(

1

�
p⇤)

we can rewrite (g � �u)⇤(p+ x⇤
) as

(g � �u)⇤(p+ x⇤
) = inf

p1+p2=p+x⇤
{g⇤(p1) + (��u)⇤(p2)}

= inf

p1+�p2=p+x⇤
{g⇤(p1) + �(�u)⇤(p2)}

Putting this into the dual problem changes it to,

(DFP ) inf

x⇤2dom((h��v)⇤)

y⇤2
mQ

i=1
dom( ⇤

i )

sup

p1,p22Rn

q�0

(
(h��v)⇤(x⇤

)� g⇤(p1)� �(�u)⇤(p2) +

mX

i=1

qi 
⇤
i (y

⇤
i )

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 � �p2 + x⇤

!)

As before, weak duality holds. For strong duality we have the following constraint qualification,

(CQ0
y⇤) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�u)) \ ri(X), such that
(
�i(x

0
)� x0T y⇤i +  ⇤

i (y
⇤
i )  0 i 2 L

�i(x
0
)� x0T y⇤i +  ⇤

i (y
⇤
i ) < 0 i 2 N

where L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L.

Propostion 6.3. Suppose (CQ0
y⇤) is satisfied for all y⇤ 2

mQ
i=1

dom( ⇤
i ). Then strong duality holds

between (PFP ) and (DFP ).

We leave out the proofs for the fractional programming problems, as they are very similar to
the proofs in 6.1. Interested readers may look at [5], [13], and [14] for a proofs and a more detailed
analysis of problems from 6.2 and 6.3.

Next we explore the case where � is negative.
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Case 2, � < 0: Assume for this case that
m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�v)) \ ri(X) 6= ;

and that h + �u is lower semicontinuous on the feasible set. Define ¯G(x) := g(x) + �v(x) and
¯H(x) := h(x) + �u(x). Using the results from the first case the primal problem

(

¯PFP ) inf

�i(x)� i(x)0
i=1,...,m, x2X

�
¯G(x)� ¯H(x)

 

leads to the dual problem

(

¯DFP ) inf

x⇤2dom((h+�u)⇤)

y⇤2
mQ

i=1
dom( ⇤

i )

sup

p1,p22Rn

q�0

(
(h+�u)⇤(x⇤

)� g⇤(p1) + �(�v)⇤(p2) +
mX

i=1

qi 
⇤
i (y

⇤
i )

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 + �p2 + x⇤

!)

Weak duality holds and for strong duality we have the constraint qualification,

(CQ00
y⇤) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�v)) \ ri(X), such that
(
�i(x

0
)� x0T y⇤i +  ⇤

i (y
⇤
i )  0 i 2 L

�i(x
0
)� x0T y⇤i +  ⇤

i (y
⇤
i ) < 0 i 2 N

where L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L.

Propostion 6.4. Suppose (CQ00
y⇤) is satisfied for all y⇤ 2

mQ
i=1

dom( ⇤
i ). Then strong duality holds

between (

¯PFP ) and (

¯DFP ).

There are many problems that are special cases of (P 0
FP ) and the following couple of problems

will discuss these. One such problem is looked at in [14]. Consider a fractional programming
problem with DC objective functions and convex constraints,

(P 0
FP 0) inf

�i(x)0
i=1,...,m,

x2X

⇢
g(x)� h(x)

u(x)� v(x)

�

where X ✓ Rn is convex, g, h, and �i, i = 1, . . . ,m, are proper and convex, and u and v are
proper. Further assume that f � g and �u + v are proper, that u � v is positive in the feasible
region F(P 0

FP 0) = {x 2 X |�i(x)  0, i = 1, . . . ,m, }, and that

m
\
i=1

(�i)
�1

(�R+) \X \ dom(g � h) 6= ;

where ��1
i (�R+) = {x 2 Rn |�i(x)  0}, so that F(P 0

FP ) 6= ;. By the Dinkelbach transformation,
we get the dual problem,

(PFP 0
) inf

�i(x)0
i=1,...,m,

x2X

{g(x)� h(x)� �u(x) + �v(x)}

for some � 2 R. By Lemma 6.2 it follows that,

Lemma 6.3. v(P 0
FP 0) � �, v(PFP 0

) � 0
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As before, there are two cases, � � 0 and � < 0.

Case 1, � � 0: For this case, assume that
m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�u)) \ ri(X) 6= ;

and that h � �v is lower semicontinuous on the feasible set. Defining G(x) := g(x) � �u(x) and
H(x) := h(x)� �v(x) changes the primal problem to

(PFP 0
) inf

�i(x)0
i=1,...,m,

x2X

{G(x)�H(x)}

Now the problem is in the form of one of the subcases of the first DC problem, (PDC0
). Therefore,

with the results of that case, the dual problem to (PFP 0
),

(DFP 0
) inf

x⇤2dom(H⇤)
sup

p2Rn

q�0

{H⇤
(x⇤

)�G⇤
(p+ x⇤

)�
 

mX

i=1

qi�i

!⇤

X

(�p)}

Because ri(dom(g))\ ri(dom(�u)) 6= 0, G⇤
(p+x⇤

) = infp1+�p2=p+x⇤{g⇤(p1)+�(�u)⇤(p2)}. Then
the dual problem becomes,

(DFP 0
) inf

x⇤2dom((h��v)⇤)
sup

p1,p22Rn

q�0

{(h� �v)⇤(x⇤
)� g⇤(p1)� �(�u)⇤(p2)

�
 

mX

i=1

qi�i

!⇤

X

(x⇤ � p1 � �p2)}

Weak duality holds and for strong duality we have the following constraint qualification,

(CQ0
0) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�u)) \ ri(X), such that
(
�i(x

0
)  0 i 2 L

�i(x
0
) < 0 i 2 N

where L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L.

Propostion 6.5. Suppose (CQ0
0) is satisfied. Then strong duality holds between (PFP 0

) and
(DFP 0

). That is v(PFP 0
) = v(DFP 0

).

Case 2, � < 0: Assume that
m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�v)) \ ri(X) 6= ;

and that h + �u is lower semicontinuous on the feasible set. Define ˜G(x) := g(x) + �v(x) and
˜H(x) := h(x) + �u(x). Like the last case, the primal problem becomes,

(

˜PFP 0
) inf

�i(x)0
i=1,...,m,

x2X

{ ˜G(x)� ˜H(x)}

By the results from problem (PDC0
), the dual problem to (

˜PFP 0
),

(

˜DFP 0
) inf

x⇤2dom(H̃⇤)
sup

p2Rn

q�0

{ ˜H⇤
(x⇤

)� ˜G⇤
(p+ x⇤

)�
 

mX

i=1

qi�i

!⇤

X

(�p)}
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or more precisely,

(

˜DFP 0
) inf

x⇤2dom((h+�u)⇤)
sup

p1,p22Rn

q�0

{(h+ �u)⇤(x⇤
)� g⇤(p1) + �(�v)⇤(p2)

�
 

mX

i=1

qi�i

!⇤

X

(x⇤ � p1 + �p2)}

Weak duality holds as does strong duality under the following constraint qualification,

(

˜CQ
0
0) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�v)) \ ri(X), such that
(
�i(x

0
)  0 i 2 L

�i(x
0
) < 0 i 2 N

where L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L.

Propostion 6.6. Suppose (

˜CQ
0
0) is satisfied. Then strong duality holds between (

˜PFP 0
) and

(

˜DFP 0
).

6.3 Fractional programming problem

In [5], Boț looks at a fractional programming problem with convex constraints. Via the Dinkelbach
transformation he turns it into a DC programming problem and then applies a similar method as
what has been done so far to find its dual problem. Here, we will first address a similar problem,
but with DC constraint functions and then look at the other primal problem from [5] as a special
case of it. Thus, consider the fractional programming problem,

(P 0
FP0

) inf

gi(x)�hi(x)0
i=1,...,m, x2X

⇢
g(x)

h(x)

�

where X ✓ Rn is nonempty and convex, g : Rn ! R is proper and convex, h : Rn ! R is
concave, proper and lower semicontinuous over F(P 0

FP0
) (the feasible set of the problem), and

gi, hi : Rn ! R for i = 1, . . . ,m, are proper and convex functions such that

m
\
i=1

(gi � hi)(�R+) \ dom(g) \X 6= ;

where (gi � hi)(�R+) = {x 2 Rn | (gi � hi)(x)  0}. Moreover, assume that h(x) > 0 for all
feasible x to the primal problem, that hi is subdifferentiable on F(P 0

FP0
), and that

m
\
i=1

ri(dom(gi)) \ ri(dom(g)) \ ri(dom(�h)) \ ri(X)

As mentioned above, we use the Dinkelbach transformation to get the optimization problem,

(PFP0) inf

gi(x)�hi(x)0
i=1...,m, x2X

{g(x)� �h(x)}

where � is an arbitrary real number. then we have the following lemma.

Lemma 6.4.

v(P 0
FP0

) � �, v(PFP0) � 0

There are two cases to consider. If � � 0, then (PFP0) has a convex objective function with
DC constraint functions. On the other hand, if � is negative, then the objective function is also
DC. We start with � � 0.
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Case 1, � � 0: As mentioned, the constraints of the primal problem are DC functions. Thus by
Lemma 6.1, the primal problem can be written as,

(PFP0) inf

y⇤2
mQ

i=1
dom(h⇤

i )

inf

gi(x)�y⇤T x+h⇤
i (y

⇤)0
i=1,...,m, x2X

{g(x)� �h(x)}

Looking at the inner infimum separately, we have the convex optimization problem,

(Py⇤
) inf

gi(x)�y⇤T x+h⇤
i (y

⇤)0
i=1,...,m,x2X

{g(x)� �h(x)}

for a fixed y⇤ 2
mQ
i=1

dom(h⇤
i ). Let f(x) = g(x) � �h(x) and fi(x) = gi(x) � y⇤Tx + h⇤

i (y
⇤
). Then

the convex optimization problem becomes

(Py⇤
) inf

fi(x)0
i=1,...,m,

x2X

{f(x)}

The Fenchel-Lagrange dual of this is,

(Dy⇤
) sup

p2Rn

q�0

{�f⇤
(p)�

 
mX

i=1

qifi

!⇤

X

(�p)}

where q 2 Rn. Since

�f⇤
(p) = � sup{pT � (g � �h)(x)} = sup{�pTx� (�h� g)(x)} = (�h� g)⇤(�p)

and  
mX

i=1

qifi

!⇤

X

(�p) =

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
�

mX

i=1

qih
⇤
i (y

⇤
i )

which makes the dual problem,

(Dy⇤
) sup

p2Rn

q�0

{(�h� g)⇤(�p)�
 

mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
+

mX

i=1

qih
⇤
i (y

⇤
i )}

Notice that (Dy⇤
) can be slightly altered if we recall that ri(dom(g))\ri(dom(�h))\ri(X) 6= ;.

Then by Lemma 3.1,

f⇤
(p) = inf

p1+p2

{g⇤(p1) + (��h)⇤(p2)}

= inf

p1+�p2

{g⇤(p1) + �(�h)⇤(p2)}

The dual subproblem now becomes,

(Dy⇤
) sup

p1,p22Rn

q�0

{�g⇤(p1)� �(�h)⇤(p2)�
 

mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 � �p2

!
+

mX

i=1

qih
⇤
i (y

⇤
i )}

Reconsidering the fractional programming problem, (PFP0). The outer infimum can be attached
to the dual problem (Dy⇤

) to give,

(DFP0) inf

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p1,p22Rn

q�0

{� g⇤(p1)� �(�h)⇤(p2)

�
 

mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 � �p2

!
+

mX

i=1

qih
⇤
i (y

⇤
i )}
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The constraint qualification needed for strong duality is,

(

ˆCQy⇤) 9x0 2
m
\
i=1

ri(dom(gi)) \ ri(dom(g)) \ ri(dom(�h)) \ ri(X) :

(
gi(x

0
)� x0T y⇤i + h⇤

i (y
⇤
i )  0 i 2 L

gi(x
0
)� x0T y⇤i + h⇤

i (y
⇤
i ) < 0 i 2 N

where L = {i 2 {1, . . . ,m} | gi is affine} and N = {1, . . . ,m} \ L.

Propostion 6.7. Let � � 0 and suppose (

ˆCQy⇤) is satisfied. Then strong duality holds between
(PFP0) and (DFP0), i.e. v(PFP0) = v(DFP0).

Case 2, � < 0: In this case, the problem has DC functions for constraints and for the objective
function. Using the results from problem (PDC), we get that the dual problem to (PFP0) when
� < 0 is,

(

¯DFP0) inf

z⇤2dom((�h)⇤)

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p2Rn

q�0

{(�h)⇤(z⇤)�g⇤(p+z⇤)�
 

mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
+

mX

i=1

qih
⇤
i (y

⇤
i )}

or if we set x⇤
=

1
�z

⇤,

(

¯DFP0) inf

x⇤2dom(h⇤)

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p2Rn

q�0

{�h⇤
(x⇤

)�g⇤(p+�x⇤
)�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
+

mX

i=1

qih
⇤
i (y

⇤
i )}

As for all the problems in this paper, weak duality holds, i.e, v(PFP0) � v( ¯DFP0). For strong
duality, we adjust our constraint qualification,

(CQy⇤
) 9x0 2

m
\
i=1

ri(dom(gi)) \ ri(dom(g)) \ ri(X) :

(
gi(x

0
)� x0T y⇤i + h⇤

i (y
⇤
i )  0 i 2 L

gi(x
0
)� x0T y⇤i + h⇤

i (y
⇤
i ) < 0 i 2 N

where L = {i 2 {1, . . . ,m} | gi is affine} and N = {1, . . . ,m} \ L.

Propostion 6.8. Suppose � < 0 and (CQy⇤
) is satisfied. Then strong duality holds between

(PFP0) and (

¯DFP0), i.e. v(PFP0) = v( ¯DFP0).

In [5], Boț looks at the following fraction programming problem,

(P 0
FP 0

0
) inf

gi(x)0
i=1,...,m

x2X

⇢
g(x)

h(x)

�

where X ✓ Rn is nonempty and convex, g : Rn ! R is proper and convex, h : Rn ! R is concave
such that �h is proper and lower semicontinuous over F(PFP 0

0
) (the feasible set of the problem),

and gi : Rn ! R, i = 1, . . . ,m, are convex functions such that

m
\
i=1

(gi)
�1

(�R+) \X \ dom(g) 6= ;

where (gi)
�1

(�R+) = {x 2 Rn | gi(x)  0}. He further assumes that h(x) > 0 for all feasible
points of (P 0

FP 0
0
).
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This is clearly just the problem (P 0
FP0

) where hi ⌘ 0 for i = 1, . . . ,m. Thus, following the
same method as above, the given problem can be associated with another primal problem using
the Dinkelbach transformation and is justified by Lemma 6.2. Hence define,

(PFP 0
0
) inf

gi(x)0
i=1,...,m,

x2X

{g(x)� �h(x)}

where � is an arbitrary real number.
Unlike before, we will only look at one case, since for � � 0, (PFP 0

0
) is simply a convex

optimization problem. In [5], Boț deals with this case and also what will be presented here, the
case were � < 0 and (PFP 0

0
) is a DC programming problem.

By Lemma 3.2, the problem can be rewritten into

(PFP 0
0
) inf

x⇤2dom((�h)⇤)
inf

gi(x)0
i=1,...,m,

x2X

{g(x)� �x⇤Tx� �(�h)⇤(x⇤
)}

As in previous problems, notice that the inner infimum is a convex optimization problem.
Hence, for a fixed x⇤ 2 dom((�h)⇤), consider

(Px⇤
) inf

g(x)0
x2X

{g(x)� �(�ˆh)(x)}

where ˆh(x) = x⇤Tx� (�h)⇤(x⇤
). If we further assume that ri(dom(g)) \ ri(dom(�h) \ ri(X) then

the Fenchel-Lagrange dual problem of (Px⇤
) is

(Dx⇤
) sup

p1,p22Rn

q�0

{�g⇤(p1) + �(�ˆh)⇤(p2)�
 

mX

i=1

qigi

!⇤

X

(�p1 + �p2)}

for q 2 Rn. Looking at ˆh we get that

(�ˆh)⇤(p2) = sup{pT2 x� (�x⇤Tx+ (�h)⇤(x⇤
))}

= sup{(p2 + x⇤T
)

Tx}� (�h)⇤(x⇤
))

=

(
�(�h)⇤(x⇤

)) p2 = �x⇤

+1 otherwise

Hence, letting p = p1 the dual problem becomes,

(Dx⇤
) sup

p2Rn

q�0

{�g⇤(p)� �(�h)⇤(x⇤
)�

 
mX

i=1

qigi

!⇤

X

(�p� �x⇤
)}

Now the dual problem to the original primal problem can be defined as

(DFP 0
0
) inf

x⇤2dom((�h)⇤)
sup

p2Rn

q�0

{�g⇤(p)� �(�h)⇤(x⇤
)�

 
mX

i=1

qigi

!⇤

X

(�p� �x⇤
)}

As before, weak duality holds. For strong duality we present,

(CQ0
0) 9x0 2 \ ri(dom(g)) \ ri(X) :

(
gi(x

0
)  0 i 2 L

gi(x
0
) < 0 i 2 N

where L = {i 2 {1, . . . ,m} | gi is affine} and N = {1, . . . ,m} \ L.

Propostion 6.9. Suppose (CQ0
0) is satisfied for all x⇤ 2 dom((�h)⇤). Then strong duality holds

between (PFP ) and (DFP ).
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6.4 DC programming problem containing a composition with a linear

continuous operator

In [10], Fang, Li, and Yang look at a DC programming problem that has two DC functions in the
objective function, one of which is composed with a linear continuous operator.

(P 0
A) inf

x2X
{g1(x)� g2(x) + h1(Ax)� h2(Ax)}

where g1, g2, h1, h2 : Rn ! R are proper convex functions and A 2 Rn⇥n is linear continuous
operator such that A(dom(g1 � g2)) \ dom(h1 � h2) 6= ;. They evaluate it using Fenchel duality
(in fact, they use two types of Fenchel dual problems).

Inspired by their work, this section looks at the Fenchel-Lagrange duals of two similar problems.
These two problems will be slightly more complex versions of the above primal problem due to
the addition of constraints. The first of these simply includes convex constraints,

(P 0
A) inf

�i(x)0
i=1,...,m,

x2X

{g1(x)� g2(x) + h1(Ax)� h2(Ax)}

where g1, g2, h1, h2,�i : Rn ! R, for i = 1, . . . ,m, are proper convex functions and A 2 Rn⇥n

is linear continuous operator such that A(dom(g1 � g2)) \ dom(h1 � h2) 6= ;. To reformulate
problem (P 0

A), define G(x) = g1(x) + h1(Ax) and H(x) = g2(x) + h2(Ax). Then we get,

(P 0
A) inf

�i(x)0
i=1,...,m,

x2X

{G(x)�H(x)}

where G,H : Rn ! R are convex and proper functions. At this point, we assume further that
H(x) = g2(x) + h2(Ax) is lower semicontinuous and that

m
\
i=1

ri(dom(�i)) \ ri(dom(g1)) \ ri(A�1
(dom(h1))) \ ri(X) 6= ;

Then we can follow the same method as in the problems from 6.1, i.e., the primal problem can be
written as

(P 0
A) inf

x⇤2dom(H⇤)
inf

�i(x)0
i=1,...,m,

x2X

{G(x)� x⇤Tx+H⇤
(x⇤

)}

For a fixed x⇤ 2 dom(H⇤
), the inner infimum is a convex optimization problem,

(Px⇤
) inf

�i(x)0
i=1,...,m,

x2X

{G(x)� x⇤Tx+H⇤
(x⇤

)}

with Fenchel-Lagrange dual,

(Dx⇤
) sup

p2Rn

q�0

{H⇤
(x⇤

)�G(p+ x⇤
)�

 
mX

i=1

qi�i

!⇤

X

(�p)}

Now, since we assumed that ri(dom(g1)) \ ri(A�1
(dom(h1))) 6= ;, then by Lemma 3.1,

G⇤
(p+ x⇤

) = inf

p1+p2=p+x⇤
{g⇤1(p1) + h⇤

1(A
⇤�1p2)}

= � sup

p1+p2=p+x⇤
{�g⇤1(p1)� h⇤

1(A
⇤�1p2)}
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Then (Dx⇤
) changes to,

(Dx⇤
) sup

p1,p22Rn

q�0

{(g2 + h2 �A)

⇤
(x⇤

)� g⇤1(p1)� h⇤
1(A

⇤�1p2)�
 

mX

i=1

qi�i

!⇤

X

(x⇤ � p1 � p2)}

The dual of the primal problem is,

(D0
A1

) inf

x⇤2dom(g2+h2�A)
sup

p1,p22Rn

q�0

{(g2+h2�A)

⇤
(x⇤

)�g⇤1(p1)�h⇤
1(A

⇤�1p2)�
 

mX

i=1

qi�i

!⇤

X

(x⇤�p1�p2)}

Since weak duality holds between (Px⇤
) and (Dx⇤

), it also holds for (P 0
A) and (D0

A1
). To attain

strong duality, we need the following constraint qualification,

(CQ0) 9x0 2
m
\
i=1

ri(dom(�i)) \ ri(dom(g1)) \ ri(A�1
(dom(h1))) \ ri(X) :

(
�i(x

0
)  0 i 2 L

�i(x
0
) < 0 i 2 N

where as before, L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L.

Propostion 6.10. Suppose (CQ0) is satisfied. Then strong duality holds between (P 0
A) and

(D0
A1

).

Proof. To begin, for a fixed x⇤ 2 dom(H⇤
), the problem

(Px⇤
) inf

�i(x)0
i=1,...,m,

x2X

{G(x)� x⇤Tx+H⇤
(x⇤

)}

has the Fenchel-Lagrange dual,

(Dx⇤
) sup

p2Rn

q�0

{H⇤
(x⇤

)�G(p+ x⇤
)�

 
mX

i=1

qi�i

!⇤

X

(�p)}

The effective domain of the objective function in the primal problem is dom(G) = dom(g1) \
(A�1

(dom(h1)). If we let the objective function of (Px⇤
) be F then the constraint qualification

implies that

9x0 2
m
\
i=1

ri(dom(�i)) \ ri(dom(F )) \ ri(X) :

(
�i(x

0
)  0 i 2 L

�i(x
0
) < 0 i 2 N

By Theorem 4.3, strong duality holds between (Px⇤
) and (Dx⇤

). Furthermore, taking the infimum
of both problems over x⇤ proves that strong duality holds between (P 0

A) and (D0
A1

).

The problem can be approached in another way. Given the problem

(P 0
A) inf

�i(x)0
i=1,...,m,

x2X

{g1(x)� g2(x) + h1(Ax)� h2(Ax)}

with the above assumptions, further suppose that g2 and h2 are lower semicontinuous. Then

g2(x) = x⇤Tx� g⇤2(x
⇤
) and h2(Ax) = (Ax)T y⇤ � h⇤

2(y
⇤
)

for x⇤ 2 dom(g⇤2) and y⇤ 2 dom(h⇤
2). Using this the problem becomes,

(P 0
A) inf

x⇤2dom(g⇤
2 )

y⇤2dom(h⇤
2)

inf

�i(x)0
i=1,...,m,

x2X

{g1(x)� x⇤Tx+ g⇤2(x
⇤
) + h1(Ax)� (Ax)T y⇤ + h⇤

2(y
⇤
)}
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Fix x⇤ 2 dom(g⇤2) and y⇤ 2 dom(h⇤
2). The inner infimum is now convex,

(Px⇤,y⇤
) inf

�i(x)0
i=1,...,m,

x2X

{g1(x)� x⇤Tx+ g⇤2(x
⇤
) + h1(Ax)� (Ax)T y⇤ + h⇤

2(y
⇤
)}

To determine the Fenchel-Lagrange dual of (Px⇤,y⇤
), we must find the (negative) conjugate of

its objective function. Thus we want to look at this conjugate,

sup{pTx� (g1(x)� x⇤Tx+ g⇤2(x
⇤
) + h1(Ax)� (Ax)T y⇤ + h⇤

2(y
⇤
))}

=sup{pTx� g1(x) + x⇤Tx� h1(Ax) + xT
(A⇤y⇤)}� g⇤2(x

⇤
)� h⇤

2(y
⇤
)

= sup{(p+ x⇤
+A⇤y⇤)Tx� g1(x)� h1(Ax)}� g⇤2(x

⇤
)� h⇤

2(y
⇤
)

=(g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤)� g⇤2(x
⇤
)� h⇤

2(y
⇤
)

where A⇤ is the adjoint of A. From this if follows that the Fenchel-Lagrange dual of (Px⇤,y⇤
) is

(Dx⇤,y⇤
) sup

p2Rn

q�0

{�(g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)�

 
mX

i=1

qi�i

!⇤

X

(�p)}

Therefore, the dual problem to (P 0
A) is,

(D0
A) inf

x⇤2dom(g⇤
2 )

y⇤2dom(h⇤
2)

sup

p2Rn

q�0

{�(g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)�

 
mX

i=1

qi�i

!⇤

X

(�p)}

Weak duality holds between (P 0
A) and (D0

A) and for strong duality, we use the following constraint
qualification,

(CQ0) 9x0 2
m
\
i=1

ri(dom(�i)) \ ri(dom(g1)) \ ri(A�1
(dom(h1))) \ ri(X) :

(
�i(x

0
)  0 i 2 L

�i(x
0
) < 0 i 2 N

where as before, L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L.

Propostion 6.11. Suppose (CQ0) is satisfied. Then strong duality holds between (P 0
A) and (D0

A).

Can the problem be further complicated and still yield results? As before, the next problem
adds constraints to the unconstrained problem (P 0

A). This time, however, consider the problem
with DC constraint functions,

(PA) inf

�i(x)� i0
i=1,...,m, x2X

{g1(x)� g2(x) + h1(Ax)� h2(Ax)}

where g1, g2, h1, h2,�i, i : Rn ! R, for i = 1, . . . ,m, are proper convex functions and A 2 Rn⇥n

is linear continuous operator such that A(dom(g1� g2)) \ dom(h1�h2) 6= ;. Again, suppose that
g2 and h2 are lower semicontinuous.

As done above we can reformulate the problem by using biconjugates. Moreover, we can use
the results of Lemma 6.1 and further change the problem to

(PA) inf

x⇤2dom(g⇤
2 )

y⇤2dom(h⇤
2)

z⇤2
mQ

i=1
dom( ⇤

i )

inf

�i(x)�z⇤
i x+ 

⇤
i (z

⇤
i )0

i=1,...,m, x2X

{g1(x)� x⇤Tx+ g⇤2(x
⇤
) + h1(Ax)� (Ax)T y⇤ + h⇤

2(y
⇤
)}

If we fix x⇤ 2 dom(g⇤2), y⇤ 2 dom(h⇤
2) and z⇤ 2

mQ
i=1

dom( ⇤
i ), the inner infimum can be evaluated

separately as a convex optimization problem,

(Px⇤,y⇤,z⇤
) inf

�i(x)�z⇤
i x+ 

⇤
i (z

⇤
i )0

i=1,...,m, x2X

{g1(x)� x⇤Tx+ g⇤2(x
⇤
) + h1(Ax)� (Ax)T y⇤ + h⇤

2(y
⇤
)}
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The Fenchel-Lagrange dual to (Px⇤,y⇤,z⇤
) is,

(Dx⇤,y⇤,z⇤
) sup

p2Rn

q�0

{�(g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
+

mX

i=1

qi 
⇤
i (z

⇤
i )}

So to (PA), we associate the dual problem,

(DA) inf

x⇤2dom(g⇤
2 )

y⇤2dom(h⇤
2)

z⇤2
mQ

i=1
dom( ⇤

i )

sup

p2Rn

q�0

{�(g1+h1 �A)

⇤
(p+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
+

mX

i=1

qi 
⇤
i (z

⇤
i )}

(CQz⇤
) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g1)) \ ri(A�1
(dom(h1))) \ ri(X) :

(
�i(x

0
)� z⇤i x+  ⇤

i (z
⇤
i )  0 i 2 L

�i(x
0
)� z⇤i x+  ⇤

i (z
⇤
i ) < 0 i 2 N

where as before, L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L.

Propostion 6.12. Suppose (CQz⇤
) is satisfied for all z⇤ 2

mQ
i=1

dom( ⇤
i ). Then strong duality

holds between (PA) and (DA).

Proof. For fixed x⇤ 2 dom(g⇤2), y⇤ 2 dom(h⇤
2) and z⇤ 2

mQ
i=1

dom( ⇤
i ), consider the problem,

(Px⇤,y⇤,z⇤
) inf

�i(x)�z⇤
i x+ 

⇤
i (z

⇤
i )0

i=1,...,m, x2X

{g1(x)� x⇤Tx+ g⇤2(x
⇤
) + h1(Ax)� (Ax)T y⇤ + h⇤

2(y
⇤
)}

Its Fenchel-Lagrange dual is,

(Dx⇤,y⇤,z⇤
) sup

p2Rn

q�0

{�(g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
+

mX

i=1

qi 
⇤
i (z

⇤
i )}

Define f(x) = g1(x)�x⇤Tx+g⇤2(x
⇤
)+h1(Ax)�(Ax)T y⇤+h⇤

2(y
⇤
) and fi(x) = �i(x)�z⇤i x+ 

⇤
i (z

⇤
i ).

Notice that dom(f) = dom(g1) \ (A�1dom(h1)) and dom(fi) = dom(�i). Then by the constraint
qualification,

9x0 2
m
\
i=1

ri(dom(fi)) \ ri(dom(f)) \ ri(X) :

(
fi(x

0
)  0 i 2 L

fi(x
0
) < 0 i 2 N

This further implies that strong duality hold between (Px⇤,y⇤,z⇤
) and (Dx⇤,y⇤,z⇤

). That is, there
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exist p̄ and q̄ such that

v(Px⇤,y⇤,z⇤
) = inf

�i(x)�z⇤
i x+ 

⇤
i (z

⇤
i )0

i=1,...,m, x2X

{g1(x)� x⇤Tx+ g⇤2(x
⇤
) + h1(Ax)� (Ax)T y⇤ + h⇤

2(y
⇤
)}

= inf

fi(x)0
i=1,...,m,

x2X

{f(x)} = �(f)⇤(p̄)�
 

mX

i=1

q̄ifi

!⇤

X

(�p̄)

= �(g1 + h1 �A)

⇤
(p̄+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)

�
 

mX

i=1

q̄i�i

!⇤

X

 
mX

i=1

q̄iz
⇤
i � p̄

!
+

mX

i=1

q̄i 
⇤
i (z

⇤
i ) = v(Dx⇤,y⇤,z⇤

)

Taking the infimum over x⇤, y⇤, and z⇤ of (Dx⇤,y⇤,z⇤
) gives (DA). Likewise taking the same

infimum of (Px⇤,y⇤,z⇤
) and recalling that this is equivalent to

(PA) inf

�i(x)� i0
i=1,...,m, x2X

{g1(x)� g2(x) + h1(Ax)� h2(Ax)}

shows that strong duality holds between (PA) and (DA).

Given the work done in this section, we want to sum up the main results in a formal way.
In the spirit of the previous literature published on this topic thus far, we give such a summary
by presenting some Farkas-type results that are based on each pair of primal and dual problems
above. The next section outlines the approach by looking at the results of a convex problem and
its Fenchel-Lagrange dual. The section after will then address the work done here, in Section 6.

33



7 Farkas-Type Results

The following two sections will be dedicated to discussing the Farkas-type results for the convex
optimization problem of Section 4 and how this may be used in the problems presented in Section 6
above. Recall the convex optimization problem with convex inequality constraints,

(P ) inf

gi(x)0
i=1,...,m,

x2X

{f(x)}

and the Fenchel-Lagrange dual to (P ),

(DFL) sup

p2Rn

q�0

{�f⇤
(p)� (qT g)⇤X(�p)}

Furthermore, recall the constraint qualification needed for strong duality,

(CQ) 9x0 2
m
\
i=1

ri(dom(gi)) \ ri(dom(f)) \ ri(X) :

(
gi(x

0
)  0 i 2 L

gi(x
0
) < 0 i 2 N

where L = {i 2 {1, . . . ,m} | gi is affine} and N = {1, . . . ,m} \ L. Using these problems and the
(CQ), we can formulate the following theorem:

Theorem 7.1. Suppose the constraint qualification (CQ) is satisfied. Then the following are
equivalent:

(i) x 2 X, gi(x)  0, i = 1, . . . ,m, ) f(x) � 0

(ii) There exist p 2 Rn and q 2 Rm, q � 0 such that f⇤
(p) + (qT g)⇤X(�p)  0

Proof. ((i) ) (ii)): Let (i) be true, so that the objective function for (P ) is greater than or
equal to 0 for all the feasible points of the problem. Then v(P ) � 0. Furthermore, since the
constraint qualification (CQ) is satisfied, by Theorem 4.3, the dual problem has a solution and
v(P ) = v(DFL). That is, 9p 2 Rn, q 2 Rm, q � 0 such that

v(P ) = v(DFL) = �f⇤
(p)� (qT g)⇤X(�p) � 0

implying that
f⇤

(p) + (qT g)⇤X(�p)  0

Thus (ii) holds.
((ii) ) (i)): Next suppose (ii) holds. Then there exist p 2 Rn and q 2 Rm, q � 0 such that

�f⇤
(p) � (qT g)⇤X(�p) � 0. Now, by weak duality and the fact that v(DFL) is greater than or

equal to �f⇤
(p)� (qT g)⇤X(�p), we get

v(P ) � v(DFL) � �f⇤
(p)� (qT g)⇤X(�p) � 0

v(P ) � 0 implies that for all x 2 X such that gi(x)  0, for i = 1, . . . ,m, we have f(x) � 0. That
is, (i) is true.

It should be noted that (CQ) was not used in proving (ii) ) (i). The next theorem of
alternatives follows directly from Theorem 7.1.

Theorem 7.2. Suppose the constraint qualification (CQ) is satisfied. Then either the inequality
system

(i) x 2 X, gi(x)  0, i = 1, . . . ,m, f(x) < 0

has a solution or the system
(ii) f⇤

(p) + (qT g)⇤X(�p)  0, p 2 Rn, q � 0

has a solution, but never both.

In the next section, the problems from Section 6.1 will be considered in a similar format as
above.

34



8 Results for DC and Fractional Programming problems

This portion of the text illustrates the results from the fractional and DC programming problems
in the form of Farkas-type theorems. We start with the first problem in Section 6.

8.1 DC objective function and inequality constraints

Recall the DC programming problem of 6.1,

(PDC) inf

gi(x)�hi(x)0
i=1,...,m, x2X

{g(x)� h(x)}

where g, h : Rn ! R, gi, hi : Rn ! R, i = 1, . . . ,m are proper and convex functions, and X is a
nonempty convex subset of Rn and its dual problem,

(DDC) inf

x⇤2dom(h⇤)

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p2Rn

q�0

(
h⇤

(x⇤
)� g⇤(p+ x⇤

) +

mX

i=1

qih
⇤
i (y

⇤
i )�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!)

Also, recall the constraint qualification required for strong duality between these two problems,

(CQy⇤
) 9x0 2

m
\
i=1

ri(dom(gi)) \ ri(dom(g)) \ ri(X) :

(
gi(x

0
)� x0T y⇤i + h⇤

i (y
⇤
i )  0 i 2 L

gi(x
0
)� x0T y⇤i + h⇤

i (y
⇤
i ) < 0 i 2 N

where L = {i 2 {1, . . . ,m} | gi is affine} and N = {1, . . . ,m} \L. This information can be used to
develop the following theorem,

Theorem 8.1. Suppose the constraint qualification (CQy⇤
) is satisfied for all y⇤ 2

mQ
i=1

dom(h⇤
i ).

Then the following are equivalent:
(i) x 2 X, gi(x)� hi(x)  0, i = 1, . . . ,m, ) g(x)� h(x) � 0

(ii) for all x⇤ 2 dom(h⇤
) and for all y⇤ 2

mQ
i=1

dom(h⇤
i ), there exist p 2 Rn and q 2 Rm, q � 0

such that

�h⇤
(x⇤

) + g⇤(p+ x⇤
)�

mX

i=1

qih
⇤
i (y

⇤
i ) +

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
 0

Proof. ((i) ) (ii)): Let (i) be true and let x⇤ 2 dom(h⇤
) and y⇤ 2

mQ
i=1

dom(h⇤
i ). From (i) we get

that v(PDC) � 0. Now recall the alternative form of (PDC),

(PDC) inf

x⇤2dom(h⇤)

y⇤2
mQ

i=1
dom(h⇤

i )

inf

gi(x)�y⇤T x+h⇤
i (y

⇤)0
i=1,...,m, x2X

{g(x)� x⇤Tx+ h⇤
(x⇤

)}

Having fixed x⇤ and y⇤, we also defined the inner infimum as the subproblem (Px⇤,y⇤
). Then

v(PDC) � 0 implies that v(Px⇤,y⇤
) � 0. Now, since the constraint qualification is satisfied, by

Proposition 6.1, the dual problem has a solution and v(Px⇤,y⇤
) = v(Dx⇤,y⇤

). Hence there exist
p 2 Rn and q 2 Rm, q � 0 such that

h⇤
(x⇤

)� g⇤(p+ x⇤
) +

mX

i=1

qih
⇤
i (y

⇤
i )�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
� 0

Thus since (CQy⇤
) holds for all y⇤ 2

mQ
i=1

dom(h⇤
i ), (ii) is proven to be true.
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((ii) ) (i)): Next suppose (ii) is true and fix x⇤ 2 dom(h⇤
) and y⇤ 2

mQ
i=1

dom(h⇤
i ). Then there

exist p 2 Rn, q 2 Rm, q � 0 such that the equation in (ii) is true and thus that

sup

p2Rn

q2Rm

(
h⇤

(x⇤
)� g⇤(p+ x⇤

) +

mX

i=1

qih
⇤
i (y

⇤
i )�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!)
� 0

Now, since this argument holds for all x⇤ and y⇤, we know that v(DDC) is greater than or equal
to 0. By weak duality, v(P ) � v(DFL) � 0 and (i) must be true.

An immediate consequence of Theorem 8.1 is the following theorem of alternatives.

Theorem 8.2. Suppose the constraint qualification (CQy⇤
) holds true for all y⇤ 2

mQ
i=1

dom(h⇤
i ).

Then either the inequality system
(i) x 2 X, gi(x)� hi(x)  0, i = 1, . . . ,m, g(x)� h(x) < 0

has a solution or the following systems

(ii x⇤,y⇤
)h⇤

(x⇤
)� g⇤(p+ x⇤

) +

mX

i=1

qih
⇤
i (y

⇤
i )�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
� 0, p 2 Rn, q � 0

where x⇤ 2 dom(h⇤
) and y⇤ 2

mQ
i=1

dom(h⇤
i ), has a solution, but never both.

Next we briefly present the cases of (PDC), h ⌘ 0 and hi ⌘ 0 for i = 1, . . . ,m and give theorems
for each case.

Case 1, hi ⌘ 0: In this case the primal problem was

(PDC0
) inf

gi(x)0
i=1,...,m,

x2X

{g(x)� h(x)}

where g, h : Rn ! R, gi : Rn ! R, i = 1, . . . ,m are proper and convex functions and X is a
nonempty convex subset of Rn, with dual problem,

(DDC0
) inf

x⇤2dom(h⇤)
sup

p2Rn

q�0

{h⇤
(x⇤

)� g⇤(p+ x⇤
)�

 
mX

i=1

qigi

!⇤

X

(�p)}

For strong duality, we used the constraint qualification,

(CQ0) 9x0 2
m
\
i=1

ri(dom(gi)) \ ri(dom(g)) \ ri(X) :

(
gi(x

0
)  0 i 2 L

gi(x
0
) < 0 i 2 N

where as before, L = {i 2 {1, . . . ,m} | gi is affine} and N = {1, . . . ,m} \ L. These results lead to
our next theorem,

Theorem 8.3. Suppose the constraint qualification (CQ0) is satisfied. Then the following are
equivalent:

(i) x 2 X, gi(x)  0, i = 1, . . . ,m, ) g(x)� h(x) � 0

(ii) for all x⇤ 2 dom(h⇤
), there exist p 2 Rn and q 2 Rm, q � 0 such that

h⇤
(x⇤

)� g⇤(p+ x⇤
)�

 
mX

i=1

qigi

!⇤

X

(�p) � 0
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The proof for Theorem 8.3 is omitted as it follows directly from Theorem 8.1. As before,
Theorem 8.3 can be expressed as a theorem of alternatives.

Theorem 8.4. Suppose the constraint qualification (CQ0) holds true. Then either the inequality
system

(i) x 2 X, gi(x)  0, i = 1, . . . ,m, g(x)� h(x) < 0

has a solution or the following systems

(ii x⇤
)h⇤

(x⇤
)� g⇤(p+ x⇤

)�
 

mX

i=1

qigi

!⇤

X

(�p) � 0, p 2 Rn, q � 0

for x⇤ 2 dom(h⇤
), has a solution, but never both.

Case 2, h ⌘ 0: Consider the case where the primal problem is

(PDC00
) inf

gi(x)�hi(x)0
i=1,...,m, x2X

{g(x)}

where g : Rn ! R, gi, hi : Rn ! R, i = 1, . . . ,m are proper and convex functions, and X is a
nonempty convex subset of Rn and its dual problem,

(DDC00
) inf

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p2Rn

q�0

(
�g⇤(p) +

mX

i=1

qih
⇤
i (y

⇤
i )�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!)

In this case, the constraint qualification (CQy⇤
) used for the original primal and dual problems,

(PDC) and (DDC) gives strong duality. With this, we present the following theorem,

Theorem 8.5. Suppose the constraint qualification (CQy⇤
) is satisfied for all y⇤ 2

mQ
i=1

dom(h⇤
i ).

Then the following are equivalent:
(i) x 2 X, gi(x)� hi(x)  0, i = 1, . . . ,m, ) g(x) � 0

(ii) 8y⇤ 2
mQ
i=1

dom(h⇤
i ), there exist p 2 Rn and q 2 Rm, q � 0 such that

g⇤(p)�
mX

i=1

qih
⇤
i (y

⇤
i ) +

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
 0

Once again, the proof is omitted as it follows immediately from Theorem 8.1. As a consequence
of Theorem 8.5, we present the following.

Theorem 8.6. Suppose the constraint qualification (CQy⇤
) holds true for all y⇤ 2

mQ
i=1

dom(h⇤
i ).

Then either the inequality system
(i) x 2 X, gi(x)� hi(x)  0, i = 1, . . . ,m, g(x) < 0

has a solution or the follwing systems

(ii y⇤
) g⇤(p)�

mX

i=1

qih
⇤
i (y

⇤
i ) +

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
 0, p 2 Rn, q � 0

where y⇤ 2
mQ
i=1

dom(h⇤
i ), has a solution, but never both.
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8.2 DC fractional programming with DC constraints

In this part of the text we look at the second problem from Section 6. Recall that the main primal
problem was,

(P 0
FP ) inf

�i(x)� i(x)0
i=1,...,m, x2X

⇢
g(x)� h(x)

u(x)� v(x)

�

where X ✓ Rn is convex, g and h are proper and convex, u and v are proper and concave, �i
and  i are proper and convex for i = 1, . . . ,m. There were two cases to consider, � < 0 and
� � 0, each with its own set of assumptions. For each case, we will present two theorems and
suppose that the assumptions from earlier still hold. Proofs in the section will be left out as they
are similar to the proofs of the above subsection. Interested readers can refer to [13] and [14] for
further information.

Case 1, � � 0: In this case the dual problem to (P 0
FP ) was

(DFP ) inf

x⇤2dom((h��v)⇤)

y⇤2
mQ

i=1
dom( ⇤

i )

sup

p1,p22Rn

q�0

(
(h��v)⇤(x⇤

)� g⇤(p1)� �(�u)⇤(p2) +
mX

i=1

qi 
⇤
i (y

⇤
i )

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 � �p2 + x⇤

!)

For strong duality we used the following constraint qualification,

(CQ0
y⇤) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�u)) \ ri(X), such that
(
�i(x

0
)� x0T y⇤i +  ⇤

i (y
⇤
i )  0 i 2 L

�i(x
0
)� x0T y⇤i +  ⇤

i (y
⇤
i ) < 0 i 2 N

where L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \L. Now we have everything needed
for the Farkas-type theorems:

Theorem 8.7. Suppose the constraint qualification (CQ0
y⇤) is satisfied for all y⇤ 2

mQ
i=1

dom( ⇤
i )

and that � � 0. Then the following are equivalent:
(i) x 2 X,�i(x)�  i(x)  0, i = 1, . . . ,m, ) g(x)�h(x)

u(x)�v(x) � �

(ii) 8x⇤ 2 dom((h� �v)⇤) and 8y⇤ 2
mQ
i=1

dom( ⇤
i ) , 9p1, p2 2 Rn, q 2 Rm, q � 0 such that

(h��v)⇤(x⇤
)�g⇤(p1)��(�u)⇤(p2)+

mX

i=1

qi 
⇤
i (y

⇤
i )�

 
mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 � �p2 + x⇤

!
� 0

Theorem 8.8. Suppose the constraint qualification (CQ0
y⇤) holds true for all y⇤ 2

mQ
i=1

dom( ⇤
i )

and that � � 0. Then either the inequality system
(i) x 2 X, such that �i(x)�  i(x)  0, i = 1, . . . ,m, g(x)�h(x)

u(x)�v(x) < �

has a solution or the following systems

(ii x⇤,y⇤
) (h� �v)⇤(x⇤

)� g⇤(p1)� �(�u)⇤(p2) +
mX

i=1

qi 
⇤
i (y

⇤
i )

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 � �p2 + x⇤

!
� 0, p1, p2 2 Rn, q 2 Rm, q � 0

where x⇤ 2 dom((h� �v)⇤) and y⇤ 2
mQ
i=1

dom( ⇤
i ), has a solution, but never both.
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Case 2, � < 0: For the second case, the dual problem to (P 0
FP ) was

(

¯DFP ) inf

x⇤2dom((h+�u)⇤)

y⇤2
mQ

i=1
dom( ⇤

i )

sup

p1,p22Rn

q�0

(
(h+�u)⇤(x⇤

)� g⇤(p1) + �(�v)⇤(p2) +
mX

i=1

qi 
⇤
i (y

⇤
i )

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 + �p2 + x⇤

!)

and the constraint qualification for strong duality was,

(CQ00
y⇤) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�v)) \ ri(X), such that
(
�i(x

0
)� x0T y⇤i +  ⇤

i (y
⇤
i )  0 i 2 L

�i(x
0
)� x0T y⇤i +  ⇤

i (y
⇤
i ) < 0 i 2 N

where L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L.
Next we present two Farkas-type theorems based on this pair of problems, (P 0

FP ) and (

¯DFP ),
and the constraint qualification.

Theorem 8.9. Suppose the constraint qualification (CQ00
y⇤) is satisfied for all y⇤ 2

mQ
i=1

dom( ⇤
i )

and that � < 0. Then the following are equivalent:
(i) x 2 X,�i(x)�  i(x)  0, i = 1, . . . ,m, ) g(x)�h(x)

u(x)�v(x) � �

(ii) 8x⇤ 2 dom((h+ �u)⇤) and 8y⇤ 2
mQ
i=1

dom( ⇤
i ) , there exist p1, p2 2 Rn and q 2 Rm, q � 0

such that

(h+�u)⇤(x⇤
)�g⇤(p1)+�(�v)⇤(p2)+

mX

i=1

qi 
⇤
i (y

⇤
i )�

 
mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 + �p2 + x⇤

!
� 0

As a consequence of Theorem 8.9, we have the following theorem of alternatives.

Theorem 8.10. Suppose the constraint qualification (CQ00
y⇤) holds true for all y⇤ 2

mQ
i=1

dom( ⇤
i )

and that � < 0. Then either the inequality system
(i) x 2 X,�i(x)�  i(x)  0, i = 1, . . . ,m, g(x)�h(x)

u(x)�v(x) < �

has a solution or the following systems

(ii x⇤,y⇤
) (h+ �u)⇤(x⇤

)� g⇤(p1) + �(�v)⇤(p2) +

mX

i=1

qi 
⇤
i (y

⇤
i )

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 + �p2 + x⇤

!
� 0, p1, p2 2 Rn, q 2 Rm, q � 0

where x⇤ 2 dom((h� �v)⇤) and y⇤ 2
mQ
i=1

dom( ⇤
i ), has a solution, but never both.
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Earlier, we also looked at the fractional programming problem where  i was zero,

(P 0
FP 0) inf

�i(x)0
i=1,...,m

x2X

⇢
g(x)� h(x)

u(x)� v(x)

�

which also had the two cases.

Case 1, � � 0: In this case the dual problem to (P 0
FP 0) was

(DFP ) inf

x⇤2dom((h��v)⇤)
sup

p1,p22Rn

q�0

(
(h��v)⇤(x⇤

)� g⇤(p1)� �(�u)⇤(p2)

�
 

mX

i=1

qi�i

!⇤

X

(x⇤ � p1 � �p2)

)

For strong duality we used the following constraint qualification,

(CQ0
0) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�u)) \ ri(X), such that
(
�i(x

0
)  0 i 2 L

�i(x
0
) < 0 i 2 N

where L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m}\L. Next we present the Farkas-type
theorems:

Theorem 8.11. Suppose the constraint qualification (CQ0
0) is satisfied and that � � 0. Then the

following are equivalent:
(i) x 2 X,�i(x)  0, i = 1, . . . ,m, ) g(x)�h(x)

u(x)�v(x) � �

(ii) 8x⇤ 2 dom((h� �v)⇤), there exist p1, p2 2 Rn, q 2 Rm, q � 0 such that

(h� �v)⇤(x⇤
)� g⇤(p1)� �(�u)⇤(p2)�

 
mX

i=1

qi�i

!⇤

X

(x⇤ � p1 � �p2) � 0

Theorem 8.12. Suppose the constraint qualification (CQ0
0) holds true and that � � 0. Then

either the inequality system
(i) x 2 X, such that �i(x)  0, i = 1, . . . ,m, g(x)�h(x)

u(x)�v(x) < �

has a solution or the following systems

(ii x⇤
) (h� �v)⇤(x⇤

)� g⇤(p1)� �(�u)⇤(p2)�
 

mX

i=1

qi�i

!⇤

X

(x⇤ � p1 � �p2) � 0,

p1, p2 2 Rn, q 2 Rm, q � 0

where x⇤ 2 dom((h� �v)⇤), has a solution, but never both.

Case 2, � < 0: For this case, the dual problem to (P 0
FP 0) was

(

˜DFP 0
) inf

x⇤2dom((h+�u)⇤)
sup

p1,p22Rn

q�0

{(h+�u)⇤(x⇤
)� g⇤(p1) + �(�v)⇤(p2)

�
 

mX

i=1

qi�i

!⇤

X

(x⇤ � p1 + �p2)}
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and the constraint qualification for strong duality was,

(

˜CQ
0
0) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g)) \ ri(dom(�v)) \ ri(X), such that
(
�i(x

0
)  0 i 2 L

�i(x
0
) < 0 i 2 N

where L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L. Using this gives the following
two Farkas-type theorems:

Theorem 8.13. Suppose the constraint qualification (

˜CQ
0
0) is satisfied and that � < 0. Then the

following are equivalent:
(i) x 2 X,�i(x)  0, i = 1, . . . ,m, ) g(x)�h(x)

u(x)�v(x) � �

(ii) 8x⇤ 2 dom((h+ �u)⇤), there exist p1, p2 2 Rn and q 2 Rm, q � 0 such that

(h+ �u)⇤(x⇤
)� g⇤(p1) + �(�v)⇤(p2)�

 
mX

i=1

qi�i

!⇤

X

(x⇤ � p1 + �p2) � 0

Theorem 8.14. Suppose the constraint qualification (

˜CQ
0
0) holds true and that � < 0. Then

either the inequality system
(i) x 2 X,�i(x)  0, i = 1, . . . ,m, g(x)�h(x)

u(x)�v(x) < �

has a solution or the following systems

(ii x⇤
) (h+ �u)⇤(x⇤

)� g⇤(p1) + �(�v)⇤(p2)�
 

mX

i=1

qi�i

!⇤

X

(x⇤ � p1 + �p2) � 0,

p1, p2 2 Rn, q 2 Rm, q � 0

where x⇤ 2 dom((h+ �u)⇤), has a solution, but never both.

8.3 Fractional programming problem

Continuing the work with fractional programming, we now look at the fractional programming
problem from the third part of Section 6. Recall the fractional programming problem with DC
constraints,

(P 0
FP0

) inf

gi(x)�hi(x)0
i=1,...,m, x2X

⇢
g(x)

h(x)

�

where X ✓ Rn is nonempty and convex, g : Rn ! R is proper and convex, h : Rn ! R is concave
such that �h is proper and lower semicontinuous over F(P 0

FP0
) (the feasible set of the problem),

and gi, hi : Rn ! R for i = 1, . . . ,m, are proper and convex functions. As done above, two cases
must be considered, � < 0 and � � 0. For each case, the same assumptions hold about the problem
as in Section 6. Two theorems will be presented for each case but proofs will be omitted.

Case 1, � � 0: When � was nonnegative, the dual problem was

(DFP0) inf

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p1,p22Rn

q�0

{� g⇤(p1)� �(�h)⇤(p2)

�
 

mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 � �p2

!
+

mX

i=1

qih
⇤
i (y

⇤
i )}
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For strong duality we used the constraint qualification,

(

ˆCQy⇤) 9x0 2
m
\
i=1

ri(dom(gi)) \ ri(dom(g)) \ ri(dom(�h)) \ ri(X) :

(
gi(x

0
)� x0T y⇤i + h⇤

i (y
⇤
i )  0 i 2 L

gi(x
0
)� x0T y⇤i + h⇤

i (y
⇤
i ) < 0 i 2 N

where L = {i 2 {1, . . . ,m} | gi is affine} and N = {1, . . . ,m} \ L. Using this we come up with the
following Farkas-type theorems:

Theorem 8.15. Suppose the constraint qualification (

ˆCQy⇤) is satisfied for all y⇤ 2
mQ
i=1

dom(h⇤
i )

and that � � 0. Then the following are equivalent:
(i) x 2 X, gi(x)� hi(x)  0, i = 1, . . . ,m, ) g(x)

h(x) � �

(ii) 8y⇤ 2
mQ
i=1

dom(h⇤
i ) , there exist p 2 Rn and q 2 Rm, q � 0 such that

g⇤(p1) + �(�h)⇤(p2) +

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 � �p2

!
�

mX

i=1

qih
⇤
i (y

⇤
i )  0

The next theorem follows immediately from Theorem 8.15.

Theorem 8.16. Suppose the constraint qualification (

ˆCQy⇤) holds true for all y⇤ 2
mQ
i=1

dom( ⇤
i )

and that � � 0. Then either the inequality system
(i) x 2 X, gi(x)� hi(x)  0, i = 1, . . . ,m, g(x)

h(x) < �

has a solution or the following systems

(ii y⇤
) g⇤(p1) + �(�h)⇤(p2) +

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p1 � �p2

!
�

mX

i=1

qih
⇤
i (y

⇤
i )  0,

p 2 Rn, q 2 Rm, q � 0

where y⇤ 2
mQ
i=1

dom(h⇤
i ), has a solution, but never both.

Case 2, � < 0: For this case, the dual problem to (P 0
FP0

) was

(

¯DFP0) inf

x⇤2dom(h⇤)

y⇤2
mQ

i=1
dom(h⇤

i )

sup

p2Rn

q�0

{�h⇤
(x⇤

)�g⇤(p+�x⇤
)�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
+

mX

i=1

qih
⇤
i (y

⇤
i )}

and the constraint qualification for strong duality was (CQy⇤
), the same as the constraint quali-

fication for the first DC programming problem of 8.1. From this we get the next two theorems.

Theorem 8.17. Suppose the constraint qualification (CQy⇤
) is satisfied for all y⇤ 2

mQ
i=1

dom(h⇤
i )

and that � < 0. Then the following are equivalent:
(i) x 2 X, gi(x)� hi(x)  0, i = 1, . . . ,m, ) g(x)

h(x) � �

(ii) 8x⇤ 2 dom(h⇤
) and 8y⇤ 2

mQ
i=1

dom(h⇤
i ), there exist p 2 Rn and q 2 Rm, q � 0 such that

�h⇤
(x⇤

)� g⇤(p+ �x⇤
)�

 
mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
+

mX

i=1

qih
⇤
i (y

⇤
i ) � 0
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Theorem 8.18. Suppose the constraint qualification (CQy⇤
) holds true for all y⇤ 2

mQ
i=1

dom(h⇤
i )

and that � < 0. Then either the inequality system
(i) x 2 X, gi(x)� hi(x)  0, i = 1, . . . ,m, g(x)

h(x) < �

has a solution or the following systems

(ii x⇤,y⇤
) �h⇤

(x⇤
)� g⇤(p+ �x⇤

)�
 

mX

i=1

qigi

!⇤

X

 
mX

i=1

qiy
⇤
i � p

!
+

mX

i=1

qih
⇤
i (y

⇤
i ) � 0,

p 2 Rn, q 2 Rm, q � 0

where x⇤ 2 dom(h⇤
) and y⇤ 2

mQ
i=1

dom(h⇤
i ), has a solution, but never both.

The last fractional programming problem we looked at was one with convex constraints,

(P 0
FP 0

0
) inf

gi(x)0
i=1,...,m,

x2X

⇢
g(x)

h(x)

�

We only considered the case where � < 0, since the problem became a convex optimization problem
when � � 0. The dual problem to (P 0

FP 0
0
) when � < 0 was

(DFP 0
0
) inf

x⇤2dom((�h)⇤)
sup

p2Rn

q�0

{�g⇤(p)� �(�h)⇤(�x⇤
)�

 
mX

i=1

qigi

!⇤

X

(�p� �x⇤
)}

with constraint qualification,

(CQ0
0) 9x0 2 \ ri(dom(g)) \ ri(X) :

(
gi(x

0
)  0 i 2 L

gi(x
0
) < 0 i 2 N

where L = {i 2 {1, . . . ,m} | gi is affine} and N = {1, . . . ,m} \ L, for strong duality. The Farkas-
type theorems associated with this set of problems are,

Theorem 8.19. Suppose the constraint qualification (CQ0
0) holds and that � < 0. Then the

following are equivalent:
(i) x 2 X, gi(x)  0, ) g(x)

h(x) � �

(ii) 8x⇤ 2 dom((�h)⇤), there exist p 2 Rn and q 2 Rm, q � 0 such that

g⇤(p) + �(�h)⇤(�x⇤
) +

 
mX

i=1

qigi

!⇤

X

(�p� �x⇤
)  0

Theorem 8.20. Suppose the constraint qualification (CQ0
0) holds and that � < 0. Then either

the inequality system
(i) x 2 X, gi(x)  0, g(x)

h(x) < �

has a solution or the following systems

(ii x⇤
) g⇤(p) + �(�h)⇤(�x⇤

) +

 
mX

i=1

qigi

!⇤

X

(�p� �x⇤
)  0, p 2 Rn, q 2 Rm, q � 0

where x⇤ 2 dom((�h)⇤), has a solution, but never both.
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8.4 DC programming problem containing a composition with a linear

continuous operator

The fourth and last problem type discussed in Section 6 was a DC programming problem with a
linear operator. We looked at two similar problems, one with convex constraints and the other
with DC constraint functions. Here we will first consider the more complex of the two and then
present the theorems for the other based on the results of the more complicated case. Recall that
the primal problem was,

(PA) inf

�i(x)� i0
i=1,...,m, x2X

{g1(x)� g2(x) + h1(Ax)� h2(Ax)}

where g1, g2, h1, h2,�i, i : Rn ! R, for i = 1, . . . ,m, are proper convex functions and A 2 Rn⇥n

is linear continuous operator. Its dual problem was

(DA) inf

x⇤2dom(g⇤
2 )

y⇤2dom(h⇤
2)

z⇤2
mQ

i=1
dom( ⇤

i )

sup

p2Rn

q�0

{�(g1+h1 �A)

⇤
(p+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
+

mX

i=1

qi 
⇤
i (z

⇤
i )}

For strong duality, we had

(CQz⇤
) 9x0 2

m
\
i=1

ri(dom(�i)) \ ri(dom(g1)) \ ri(A�1
(dom(h1))) \ ri(X) :

(
�i(x

0
)� z⇤i x+  ⇤

i (z
⇤
i )  0 i 2 L

�i(x
0
)� z⇤i x+  ⇤

i (z
⇤
i ) < 0 i 2 N

where as before, L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L. Then we have the
following theorem:

Theorem 8.21. Suppose the constraint qualification (CQz⇤
) holds for all z⇤ 2

mQ
i=1

dom( ⇤
i ). Then

the following are equivalent:
(i) x 2 X,�i(x)�  i  0, i = 1, . . . ,m, ) g1(x)� g2(x) + h1(Ax)� h2(Ax) � 0

(ii) 8x⇤ 2 dom(g⇤2), 8y⇤ 2 dom(h⇤
2), and 8z⇤ 2

mQ
i=1

dom( ⇤
i ), 9p 2 Rn, q 2 Rm, q � 0 such that

(g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤)� g⇤2(x
⇤
)� h⇤

2(y
⇤
) +

 
mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
�

mX

i=1

qi 
⇤
i (z

⇤
i )  0

Proof. ((i) ) (ii)): Let (i) be true and let x⇤ 2 dom(g⇤2), y⇤ 2 dom(h⇤
2), and z⇤ 2

mQ
i=1

dom( ⇤
i ).

From (i) we get that v(PA) � 0. Now in Section 6 we derived an equivalent form of (PA),

(PA) inf

x⇤2dom(g⇤
2 )

y⇤2dom(h⇤
2)

z⇤2
mQ

i=1
dom( ⇤

i )

inf

�i(x)�z⇤
i x+ 

⇤
i (z

⇤
i )0

i=1,...,m, x2X

{g1(x)� x⇤Tx+ g⇤2(x
⇤
) + h1(Ax)� (Ax)T y⇤ + h⇤

2(y
⇤
)}

where the inner infimum was a separate convex optimization problem, (Px⇤,y⇤,z⇤
). Since v(PA) � 0,

we know that v(Px⇤,y⇤,z⇤
) � 0. The dual problem of (Px⇤,y⇤,z⇤

) was

(Dx⇤,y⇤,z⇤
) sup

p2Rn

q�0

{�(g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)

�
 

mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
+

mX

i=1

qi 
⇤
i (z

⇤
i )}
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In the proof of Proposition 6.12, we showed that strong duality held under (CQz⇤
) between

(Px⇤,y⇤,z⇤
) and (Dx⇤,y⇤,z⇤

). Thus by Proposition 6.12, the dual problem, (Dx⇤,y⇤,z⇤
), has a solution

and v(Px⇤,y⇤,z⇤
) = v(Dx⇤,y⇤,z⇤

). So there exist p 2 Rn and q 2 Rm, q � 0 such that

� (g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)�

 
mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
+

mX

i=1

qi 
⇤
i (z

⇤
i )

= v(Dx⇤,y⇤,z⇤
) = v(Px⇤,y⇤,z⇤

) � 0

This, of course, implies that (ii) is true.
((ii) ) (i)): Next suppose (ii) holds. For arbitrary x⇤ 2 dom(g⇤2), y⇤ 2 dom(h⇤

2), and z⇤ 2
mQ
i=1

dom( ⇤
i ), there exist p 2 Rn and q 2 Rm, q � 0 such that the relation in (ii) is true. This

implies that

�(g1+h1 �A)

⇤
(p+x⇤

+A⇤y⇤)+g⇤2(x
⇤
)+h⇤

2(y
⇤
)�

 
mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
+

mX

i=1

qi 
⇤
i (z

⇤
i ) � 0

This and weak duality imply that v(PA) � v(DA) � 0. Now, since x⇤, y⇤, and z⇤ are arbitrary,
(i) must be true.

An immediate consequence of Theorem 8.23 is the next theorem of alternatives.

Theorem 8.22. Suppose the constraint qualification (CQz⇤
) holds for all z⇤ 2

mQ
i=1

dom( ⇤
i ). Then

either the inequality system
(i) x 2 X, �i(x)�  i  0, i = 1, . . . ,m, g1(x)� g2(x) + h1(Ax)� h2(Ax) < 0

has a solution or the following systems

(ii x⇤,y⇤,z⇤
) (g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤)� g⇤2(x
⇤
)� h⇤

2(y
⇤
)

+

 
mX

i=1

qi�i

!⇤

X

 
mX

i=1

qiz
⇤
i � p

!
�

mX

i=1

qi 
⇤
i (z

⇤
i )  0, p 2 Rn, q 2 Rm, q � 0

where x⇤ 2 dom(g⇤2), y⇤ 2 dom(h⇤
2), and z⇤ 2

mQ
i=1

dom( ⇤
i ), has a solution, but never both.

The final problem we consider is a special case of (PA) where  i is zero. This primal problem,

(P 0
A) inf

�i(x)0
i=1,...,m,

x2X

{g1(x)� g2(x) + h1(Ax)� h2(Ax)}

where g1, g2, h1, h2,�i : Rn ! R, for i = 1, . . . ,m, are proper convex functions and A 2 Rn⇥n is
linear continuous operator, has two dual problems but here we only consider one of them.

(D0
A) inf

x⇤2dom(g⇤
2 )

y⇤2dom(h⇤
2)

sup

p2Rn

q�0

{�(g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤) + g⇤2(x
⇤
) + h⇤

2(y
⇤
)�

 
mX

i=1

qi�i

!⇤

X

(�p)}

The constraint qualification used for strong duality was

(CQ0) 9x0 2
m
\
i=1

ri(dom(�i)) \ ri(dom(g1)) \ ri(A�1
(dom(h1))) \ ri(X) :

(
�i(x

0
)  0 i 2 L

�i(x
0
) < 0 i 2 N

where as before, L = {i 2 {1, . . . ,m} |�i is affine} and N = {1, . . . ,m} \ L. The next two
Farkas-type theorems are a result of these problems and (CQ0).
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Theorem 8.23. Suppose the constraint qualification (CQ0) is satisfied. Then the following are
equivalent:

(i) x 2 X,�i(x)  0, i = 1, . . . ,m, ) g1(x)� g2(x) + h1(Ax)� h2(Ax) � 0

(ii) 8x⇤ 2 dom(g⇤2) and 8y⇤ 2 dom(h⇤
2), there exist p 2 Rn and q 2 Rm, q � 0 such that

(g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤)� g⇤2(x
⇤
)� h⇤

2(y
⇤
) +

 
mX

i=1

qi�i

!⇤

X

(�p)  0

Theorem 8.24. Suppose the constraint qualification (CQ0) is satisfied. Then either the inequality
system

(i) x 2 X, �i(x)  0, i = 1, . . . ,m, g1(x)� g2(x) + h1(Ax)� h2(Ax) < 0

has a solution or the following systems

(ii x⇤,y⇤
) (g1 + h1 �A)

⇤
(p+ x⇤

+A⇤y⇤)� g⇤2(x
⇤
)� h⇤

2(y
⇤
) +

 
mX

i=1

qi�i

!⇤

X

(�p)  0,

p 2 Rn, q 2 Rm, q � 0

where x⇤ 2 dom(g⇤2) and y⇤ 2 dom(h⇤
2), has a solution, but never both.
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9 Conclusion

Using Fenchel-Lagrange duality, we presented dual problems to some DC programming problems
and fractional programming problems. The method used to find the dual problem (DDC) to (PDC)

was applied to these various problems, including

(PA) inf

�i(x)� i0
i=1,...,m, x2X

{g1(x)� g2(x) + h1(Ax)� h2(Ax)}

Then we presented constraint qualifications to each pair of problems which guaranteed strong
duality.

The results of Section 6 led to some Farkas-type theorems for each set of problems, presented
in Section 8. Thus a summary of the main results from this paper are given in the form of
Theorem 8.23 and Theorem 8.24. Here we can see the relationship of the nonconvex optimizations
problems to their associated Fenchel-Lagrange dual problems.
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