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Stability of autonomous systems in the plane

Mattias Frisendahl

Abstract

We present techniques for determining stability of autonomous sys-

tems. Lyapunov's two methods are emphasized as well as physical

applications. LaSalle's theorem, an extension of Lyapunov's second

method, is also featured.
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1 Introduction

The study of dynamical systems has found applications in many scienti�c
�elds. Ranging from applied mathematics and physics to biology, medicine
and sociology. Stability is a central concept in all of these studies. Our
model (i.e. dynamical system) of a certain phenomena will always be in-
�uenced by external disturbances and uncertainties. What happens if the
system is perturbed ever so slightly? Will it change behavior drastically or
will it settle down again and behave 'nice' despite being meddled with? If
an aircraft is suddenly hit by a gust of wind we don't want major di�erences
from the route the plane had yesterday when it cruised the same trajectory
in no wind. This would signify stability. A less dramatic example would be
the motions of a pendulum. If we let it start near its vertical down position it
will eventually reach this point and stay there. We could also release it near
the vertical up position which would result in the pendulum quickly leaving
that unstable point and instead start narrowing in on the stable point un-
derneath. Although it could be argued that it was Newton who �rst touched
on the subject dynamical stability theory in his Principia Mathematica when
analyzing the motion of the moon; a more formal analysis was made by La-
grange in his famous treatise on analytical mechanics. Here Lagrange states
that if a conservative system has an isolated minimum point of its poten-
tial energy then that point is 'stable'. A precise de�nition of stability is not
given however. Lagrange's work was further developed by Dirichlet, Poisson
and Poincaré. All these mathematicians have di�erent stability de�nitions
named after them in the modern literature1. The most complete (and most
used nowadays) framework concerning stability theory is the work by the
russian mathematician Aleksandr Lyapunov. We will describe his two meth-
ods for determining stability. The �rst, Linearization, is an approximation
of solutions to di�erential equations while the second, Lyapunov functions,
is more novel. This method lets us draw conclusions about the solutions
without actually solving the di�erential equations. A natural continuation
to the latter is LaSalle's theorem which extends Lyapunov's second method.
The present study also highlights the subject's close ties with real physical
systems.

1See [2] for an extensive treatment of stability analysis.
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2 Linearization

Virtually all interesting phenomena that one can study using dynamical sys-
tems are nonlinear. However, with nonlinearity follows complexity and these
systems can be very di�cult to solve. We start this section with a brief
discussion about the linear case. We then show that information can be
obtained about the nonlinear system by approximating it with a linear one.

2.1 The general solution of linear autonomous plane

systems

A linear autonomous system in the plane has the form

x′(t) = a11x+ a12y + b1 (1)

y′(t) = a21x+ a22y + b2 (2)

The main goal is to determine the critical points where both right-hand
sides are zero. If (x0, y0) is a critical point, then the constant functions
x(t) ≡ x0, y(t) ≡ y0 form a solution to (1) and (2).

By a simple translation (where the critical point is moved to the origin)
and by writing the above system in matrix form we have the following system

ẋ = Ax with A =

(
a b
c d

)
.

To �nd the solution to this system of di�erential equations we solve the
characteristic equation ∣∣∣∣a− λ b

c d− λ

∣∣∣∣ = 0

which gives us the eigenvalues λ1 and λ2. These will then give us the eigen-
vectors. If we plot the points (x(t), y(t)) of the solutions, for di�erent initial
values, in the xy−plane as t varies we get various types of trajectory con�g-
urations in the phase plane. The type of stability depends on the roots of
the caracteristic equation. For example if λ1 and λ2 are real, distinct and
negative we get the phase plane in �gure 1 (a).
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(a) Asymptotically stable (b) Asymptotically stable (c) Stable center
node spiral

Figure 1: Stable equilibrium points

Figure 1 shows two types of stability for a critical point. Asymptotically
stable critical point when the trajectories move towards the origin and stable
critical point when the trajectories move clockwise or anti-clockwise around
the origin. Loosely speaking, the critical point is stable if all trajectories that
get su�ciently close to the point stay close. It is asymptotically stable if the
trajectories approach the origin as t→∞. Figure 2 shows unstable behavior
i.e. the trajectories move away from the critical point. The de�nitions of
stability presented next are due to Lyapunov.
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(a) Unstable node (b) Unstable spiral (c) Unstable saddle

Figure 2: Unstable critical points
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De�nition 1. Stability of a critical point Consider the nonlinear au-
tonomous system

dx

dt
= f(x, y) (3)

dy

dt
= g(x, y) (4)

A critical point (x0, y0) is stable if, given any ε > 0, there exists a δ > 0 such
that every solution x = φ(t), y = ψ(t) of the system that satis�es√

(φ(0)− x0)2 + (ψ(0)− y0)2 < δ

at t = 0 also satis�es √
(φ(t)− x0)2 + (ψ(t)− y0)2 < ε

for all t ≥ 0. If (x0, y0) is stable and there exists an η > 0 such that every
solution x = φ(t), y = ψ(t) that satis�es√

(φ(0)− x0)2 + (ψ(0)− y0)2 < η

at t = 0 also satis�es

lim
t→∞

φ(t) = x0 and lim
t→∞

ψ(t) = y0

then the critical point is asymptotically stable. A critical point that is not
stable is unstable.

One might think that the property limt→∞ φ(t) = x0 and limt→∞ ψ(t) =
y0 is su�cient for stability of (3) and (4). There are however odd systems
that show trajectories starting close to the critical point then travel away
before turning back again. We see examples of these in the phase plane for
the nonlinear system

dx

dt
= x3 − 2xy2

dy

dt
= 2x2y − y3

Such critical points are therefore unstable.
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Figure 3: Unstable critical point

2.2 Linearization near critical points

We return to the nonlinear autonomous system with slightly di�erent nota-
tion

ẋ1 = f1(x1, x2) (5)

ẋ2 = f2(x1, x2) (6)

Let p = (p1, p2) be an equilibrium point of this system and suppose that the
functions f1 and f2 are continuously di�erentiable. We can the expand these
into their Taylor series about the point p = (p1, p2). This results in

ẋ1 = f1(p1, p2) + a11(x1 − p1) + a12(x2 − p2) +H.O.T.

ẋ2 = f2(p1, p2) + a21(x1 − p1) + a22(x2 − p2) +H.O.T.

where H.O.T. denotes higher order terms of the expansion. Since our concern
is trajectories near the point p = (p1, p2) we de�ne

y1 = x1 − p1 and y2 = x2 − p2
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and rewrite the equations in vector form as

ẏ = Ay

where

A =

(
a11 a12

a21 a22

)
=

(
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

)
is the Jacobian matrix of f(x) evaluated at the equilibrium point. This
procedure is known as the linearization of the system (5) - (6) and is the
principle for Lyapunov's �rst method. It is moreover true that if the origin
of the linearized system is a stable/unstable node, a stable/unstable spirale
or a saddle point; then the same behavior will be found in the trajectories
for the nonlinear system.

Hartman-Grobman theorem Provided that no eigenvalues of the lin-
earization has real part equal to zero, the conclusions drawn as to the type of
critical point will be the same as for the corresponding nonlinear system.2

Example 1 Find and classify the equilibrium points of the system

ẋ1 = x2
1 − x2

2 + 1

ẋ2 = x2 − x2
1 + 5

The top equation equals zero if x2
1 = x2

2 − 1. This inserted in the second
makes x2

2 − x2 − 6 = 0. We have two solutions for x2 which generates four
equilibrium points: (2

√
2, 3), (−2

√
2, 3), (

√
3,−2) and (−

√
3,−2).

The Jacobian matrix to be evaluated at each of these points in turn is

J(x1, x2) =

(
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

)
=

(
2x −2y
−2x 1

)
At (2

√
2, 3) equations (5) - (6) becomes(

ẏ1

ẏ2

)
=

(
4
√

2 −6

−4
√

2 1

)(
y1

y2

)
2The proof is beyond the scope of this paper but a discussion regarding this theorem

can be found in [7].
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with y1 = x1−2
√

2 and y2 = x2−3. The eigenvalues of the coe�cient matrix
(the evaluated Jacobian) are found by solving∣∣∣∣4√2− λ −6

−4
√

2 1− λ

∣∣∣∣ = 0

where the roots are λ = 3.328± 6, 274. That is, we have distinct roots of op-
posite sign which indicates a saddle point at (2

√
2, 3). This procedure is then

repeated for every equilibrium point and we �nd that we have another saddle
at (−

√
3,−2) and two spirals, one stable at (−2

√
2, 3) and one unstable at

(
√

3,−2). The phase plane is shown in �gure 4.
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Figure 4: Phase plane of example 1

The reasoning above did not mention the case when the linearized system
predicts a centre. If the Jacobian evaluated at a speci�c equilibrium point
has pure imaginary eigenvalues we cannot be sure what kind of equilibrium
point we have as the next example shows.
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Example 2 Find and classify the equilibrium points of the system

ẋ = −y − x
√
x2 + y2 (7)

ẏ = x− y
√
x2 + y2 (8)

This system has only one equilibrium point, at the origin. The Jacobian we
end up with looks a bit more intimidating now

J(x, y) =

−√x2 + y2 − x2√
x2+y2

−1

1 −
√
x2 + y2 − y2√

x2+y2


However, there will be no singularities as we approach the origin because

x2√
x2 + y2

≤ x2 + y2√
x2 + y2

=
√
x2 + y2 → (0, 0), as (x, y) → (0, 0)

precisely because the functions (7) - (8) are continuously di�erentiable so the
nonlinear terms can be discarded. The linearized system is

ẋ = −y
ẏ = x

That makes the Jacobian evaluated at the origin

J(0, 0) =

(
0 −1
1 0

)
and the eigenvalues are λ = ±i. Hence, the linearized system has a center at
the origin. This is unfortunately not true for the original nonlinear system.
We can see that this is so by switching to polar coordinates (r, θ) given by
x = r cos θ and y = r sin θ. The system (7) - (8) now becomes, in terms of r
and θ

ṙ cos θ − θ̇r sin θ = −r sin θ − r2 cos θ

ṙ sin θ + θ̇r cos θ = r cos θ − r2 sin θ

By multiplying these lines with cos θ and sin θ respectively followed by the
reverse multiplication we can solve for ṙ and θ̇ and obtain

ṙ = −r2, θ̇ = 1

9



The radius vector is shrinking as time progresses. The origin is in fact a
stable spiral. We can also see that the rotation is counterclockwise.
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Figure 5: The linearized system and the nonlinear system from example 2

Example 2 shows us that linearization can fail. There are cases when
this approach provides no information about the stability of an equilibrium
point. In the preceding example we were able to solve the system by chang-
ing coordinates, but in general an explicit solution may prove impossible to
�nd. However, using other methods will occasionally help us determine the
behavior of the trajectories without actually solving the equations. This is
the topic of the next section.

3 Energy Function Methods

Several di�erential equations arise from problems in mechanics. Therefore
it is natural to consider the energy and the e�ect this quantity has on the
solutions to the system. Indeed, the stability of a critical point can often be
determined by analyzing the system as if it was a physical problem. This
energy-method will, as we shall see, shed some light on the case when the
corresponding linear equation predicts a center. These ideas can then be
generalized to systems that are completely unrelated to mechanics. We start
this section with Newton's second law where the force is conservative i.e. the
work done on a particle is independent of the path taken. If the acceleration
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is written as vdv/dx, then F = ma becomes

F (x) = mv
dv

dx
.

Separating variables and integrating from a given point x0 where the velocity
is v0 to an arbitrary point x where the velocity is v gives us the following∫ x

x0

F (s)ds =

∫ v

v0

mudu⇒
∫ x

x0

F (s)ds =
1

2
mv2 − 1

2
mv2

0.

The initial velocity v0 corresponding to the initial position x0 is a reference
point that we are free to pick, generating a constant. We de�ne E ≡ 1

2
mv2

0

and get

E =
1

2
mv2 −

∫ x

x0

F (s)ds.

The �rst term on the right is the familiar kinetic energy and it is customary
to refer to V (x) as the potential energy where

V (x) ≡ −
∫ x

x0

F (s)ds.

In a system with a conservative force the mechanical energy is conserved and
this is just what we will �nd by writing the total energy as

E =
1

2
mv2 + V (x).

Newton's second law is the condition that makes the total energy constant
during the motion of the particle, because

dE

dt
= mv

dv

dt
+
dV

dx

dx

dt
= v(m

dv

dt
− F (x)) = 0.

The constant m is slightly annoying so we'll get rid of it by dividing through-
out, setting g(x) ≡ 1

m
dV
dx

and use a = d2x
dt2

to obtain the standard form of the
di�erential equation for a conservative system

d2x

dt2
+ g(x) = 0;

and the equivalent phase plane system

ẋ = v,

v̇ = −g(x);

11



the potential function

G(x) ≡
∫
g(x)dx+ C;

and energy function

E(x, v) =
1

2
v2 +G(x). (9)

As the total energy is constant the phase plane trajectories of the system can
be viewed as the level curves

E(x, v) = k, k a constant. (10)

Inspecting the potential function G(x) will yield much information since
G

′
(a) = g(a) = 0 actually implies that the point (a, 0) is a critical point.

Furthermore, if we place the graph of G(x) directly above the phase plane
the relative extrema for the potential function will end up over the corre-
sponding critical points. To see how these graphs relate, look at the level
curves for the energy function. Solving for v gives

v = ±
√

2(k −G(x))

The ± sign tells us that the phase plane has to be symmetric with respect to
the horizontal axis and that the velocity only exists if the quantity under the
radical is ≥ 0. If G(x) has a strict local maximum at x = x0, the trajectories
in the phase plane will touch the x-axis at x0 but for k > G(x0) they will
not. If k < G(x0) there is an intervall about x0 where there are no points
of the curve E(x, v) = k as the velocity becomes imaginary. Thus we have a
saddle point at x0. The level curves near (x0, 0) in the phase plane resembling
hyperbolas.

If G(x) has a strict local minimum at x1, a level curve k1 > G(x1) results
in two curves that join up to produce a closed curve. This occurs for any
k satisfying G(x1) < k ≤ k1 so the critical point is encircled by closed
trajectories. Hence, this is a center! This is a conclusion drawn without any
approximations. We are therefore free to trust the linearization if it predicts
a center at a certain point (x, 0) for a conservative dynamical system

ẋ = y, ẏ = −g(x)
provided that the same point is a local minimum of the potential function

G(x) ≡
∫
g(x)dx+ C

12



Example 3 Use the energy method to determine the critical points for the
equation

d2x

dtt
+ x− x4 = 0.

This equation can be rewritten as a conservative system (as if it described a
physical problem originating from Newtons second law)

ẋ = y,

ẏ = −g(x) = −(x− x4).

The potential function is

G(x) =
1

2
x2 − 1

5
x5.

We get the extreme values for G(x) by solving G
′
(x) = g(x) = x − x4 = 0.

Here G(x) has a minimum at x = 0 and a maximum at x = 1. The critical
point (0, 0) is a center and the critical point (1, 0) is a saddle point. We place
the graphs in the way described above and get �gure 6:
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Figure 6: Phase plane for d2x
dtt

+ x− x4 = 0

Linearization in this example gives us the Jacobian matrix

J(x1, x2) =

(
0 1

−1 + 4x2 0

)
which, when evaluated at (0, 0) and (1, 0), gives us the eigenvalues λ = ±i
and λ = ±

√
3 respectively. That is, a center at the origin and a saddle at

(1, 0).
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Example 4 Use the energy method to determine the critical points for the
equation

d2x

dt2
+ x− x3 = 0.

This is also a conservative system

ẋ = y,

ẏ = −g(x) = −(x− x3);

with the potential function

G(x) =
1

2
x2 − 1

4
x4.

The local maxima and minima of G(x) are where G
′
(x) = g(x) = x−x3 = 0,

that is at x = 0,−1, 1. The phase plane has critical points at (0, 0), (−1, 0),
and (1, 0). The �rst one is a center because the potential function has a local
minimum for x = 0 while the last two constitutes saddle points as G(x) has
local maxima at x = ±1. The graphs are shown in �gure 7. Once again we
can show that linearization gives the same result. The Jacobian matrix

J(x1, x2) =

(
0 1

−1 + 3x2 0

)
evaluated at the three critical points (0, 0), (−1, 0), and (1, 0) yields the
eigenvalues

λ = ±i (center)

λ = ±
√

2 (saddle)

λ = ±
√

2 (saddle)
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Figure 7: Phase plane for d2x
dtt

+ x− x3 = 0

Example 5 Determine the critical points for the equation

d2x

dt2
+ x2 − x4 = 0.

Rewritten as a conservative system this looks like

ẋ = y,

ẏ = x4 − x2

16



The potential function is

G(x) =

∫
(x2 − x4)dx =

1

3
x3 − 1

5
x5.

Now we get an in�ection point at the origin for G(x) as shown below in �gure
8. Having dealt with both maxima and minima this is the third and �nal
possibility we need to worry about.
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Figure 8: Phase plane for d2x
dtt

+ x2 − x4 = 0
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If we try to determine the stability at (0, 0) by linearization we get the
Jacobian matrix

J(0, 0) =

(
0 1
0 0

)
which has λ = ±0. This would give us a line in the phase plane made up of
critical points and that is not what we see. The phase plane at the bottom
surely indicates that the origin is an unstable critical point. To convince our-
selves, notice that G

′
(x) = g(x) is strictly increasing on the interval [−1, 0].

Now, if x(t) satis�es −1 < x(t0) < 0 then the acceleration d2x
dtt

= −g(x) must
be negativ. If dx

dt
(t0) = y(t0) < 0 then x(t) will decrease to −1, no matter

how close the point (x(t0, y(t0)) is to (0, 0). Therefore the origin must be
unstable as there are trajectories leaving it. The same reasoning could be
made concerning a situation where G

′
(x) = g(x) is strictly decreasing in a

closed interval to the right of a critical point. As a simple analogy we can
think of a ball rolling along the potential energy graph. In�ection points
and local maximums are obviously unstable points for the ball while local
minimums are stable. This is sometimes presented as Lagrange's stability
theorem, stated in his Méchanique Analytique and proved later by Dirichlet.

Lagrange's stability theorem If in a certain rest position x0, where
G

′
(x0) = 0, a conservative mechanical system has minimum potential en-

ergy, then this position corresponds to stable equilibrium; if the rest position
does not correspond to minimum potential energy, then the equilibrium is
unstable.3

3.1 Pendulums

Ever since Galileo started using a pendulum for time keeping it has been
at the heart of many areas in science. It has helped us making sense of
navigation, allowing measuring the earths gravity, even exploring vibrating
atoms and building robots. The pendulum is a nonlinear system that does
not have an explicit analytic solution (although this is usually glossed over
by the small-angle approximation sinφ ≈ φ) but the phase plane approach
and energy method will prove helpful here.

Example 6 The nonlinear pendulum has the equation θ̈ + g
l
sin θ where g

is the gravitational constant and l is the length of the pendulum. We rewrite
this as

3A proof is given in [1].
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ẍ+ ω2 sin x = 0. (11)

This is an undamped pendulum so there is no loss of energy in the system.
The phase plane system is

ẋ = y,

ẏ = −g(x) = −ω2 sin x.

The potential function is

G(x) = −ω2 cosx+ C

where the constant C = ω2 as the potential energy equals zero at (0, 0). The
phase plane is shown in �gure 9, setting ω2 = 1 for simplicity.
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Figure 9: Phase plane for d2x
dtt

+ sinx = 0
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The wiggly trajectories at the top and bottom of the phase plane represent
the pendulum swinging over the top counter clockwise and clockwise respec-
tively. The inner circles are the usual pendulum movements, back and forth
around the equilibrium, not having enough energy to swirl. Separating these
two types of pendulum motions are the separatrices. These represent the
pendulum starting in the inverted position and making a full swirl in either
direction to �nish in the same unstable upside down position. The time to
make this revolution is actually in�nite and this is the special case when
the total energy E exactly equals the maximum of the potential function.
This example shows once again that where the potential function has a local
minimum or local maximum we get a center and saddle point respectively.

Example 7 A more realistic pendulum is the nonlinear one, given by the
equation

ẍ+ bẋ+ ω2 sin x = 0 (12)

and the phase plane equations

ẋ = y,

ẏ = −ω2 sin x− by.

This is a non-conservative system so we can no longer use the fact that the
energy remains constant along the trajectories in the phase plane. However, if
we use the energy function E(x, y) = 1

2
y2 +G(x) from the preceding example

and write

dE

dt
= yẏ + g(x)ẋ =

dx

dt

(
d2x

dt2
+ g(x)

)
= −bẋ.

The energy is obviously decreasing if b > 0 and increasing if b < 0. The
energy-method is not applicable here but linearization will work as we don't
expect any centers where the motion is perpetual. The critical points are
y = 0 and x = ±nπ where n ∈ Z. The Jacobian matrix is

J(x, y) =

(
0 1

−ω2 cosx −b

)
If n is an even number we get

J(x, y) =

(
0 1
−ω2 −b

)

20



which generates the eigenvalues

λ = − b
2
±
√
b2

4
− ω2

This is two complex eigenvalues with negative real part which tells us that
we have an asymptotically stable spiral at these points. The corresponding
Jacobian if n is an odd number is

J(x, y) =

(
0 1
ω2 −b

)
with eigenvalues

λ = − b
2
±
√
b2

4
+ ω2.

This consequently represents unstable saddle points. This is con�rmed when
we look at the phase plane which looks a little di�erent from the nonlinear
pendulum without a friction constant b. If we take b = 0.1 the phase plane
from the last example starts tilting as the trajectories now zoom in on the
equilibrium points. There are no endless motion anymore (no separatrices)
as energy is constantly being lost.
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Figure 10: Phase plane for ẍ+ 0.1ẋ+ ω2 sin x = 0
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As b increases so does the tilting. Figure 11 shows the system with b = 0.6.
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Figure 11: Phase plane for ẍ+ 0.6ẋ+ ω2 sin x = 0

4 The Lipschitz condition

In order for the di�erential equation ẋ = f(t, x) to be a tool for describing a
physical system it has to ful�ll some fundamental properties. These include
existence and uniqueness of solutions for the initial-value problem

ẋ = f(t, x) x(t0) = x0 (13)

This can be accomplished by imposing the so-called Lipschitz condition,
where the function satis�es the inequality

|f(t, x)− f(t, y)| ≤ L |x− y| (14)
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These functions are said to be Lipschitz in x (or just Lipschitz ) and the
constant L is called a Lipschitz constant.

Example 8 The function f(x) =
√
x is Lipschitz on [1,∞) but not on the

intervall [0, 1]

|f(x1)− f(x2)| = |
√
x1 −

√
x2| =

∣∣∣∣(√x1 −
√
x2)(

√
x1 +

√
x2)√

x1 +
√
x2

∣∣∣∣
=

1
√
x1 +

√
x2

|x1 − x2| ≤
1

2
|x1 − x2|

for all x1, x2 ∈ [1,∞). We say that f(x) =
√
x is locally Lipschitz on the

domain D = (1,∞) (open and connected set) because each point in D has
a neighborhood where f satis�es (14). On the second interval, [0, 1], the
Lipschitz condition cannot be satis�ed however as the expression 1√

x1+
√

x2
is

unbounded. Hence there does not exist a Lipschitz constant in this case. We
say that f is not globally Lipschitz on R.

The Lipschitz condition is sometimes introduced via Picard's existence
theorem. This theorem shows existence and uniqueness by constructing a
sequence of functions that converges to a solution. Some versions of the
proof4 uses the fact that f(t, x) and ∂f

∂x
(t, x) are continuous functions on a

compact domain. The compactness results in the latter being bounded i.e.
there exists a constant K such that

∣∣∂f
∂x

(t, x)
∣∣ ≤ K. This fact can be used to

strengthen Picard's theorem by assuming that ∂f
∂x

(t, x) satis�es the Lipschitz
condition while relaxing the continuity condition. The main point here being
that a continuously di�erentiable function is Lipschitz.

Proof 5

By the fundamental theorem of calculus we have for all (t, x), (t, y) ∈ R,
where R is a compact domain

f(t, x)− f(t, y) =

∫ x

y

∂f

∂s
(t, s)ds

hence we get

4See [8]
5This proof actually deals with the more simple rectangle-domain for the variable x

rather than the general convex domain although the result is still the same. A general
proof is given in [4].
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|f(t, x)− f(t, y)| =
∣∣∣∣∫ x

y

∂f

∂s
(t, s)ds

∣∣∣∣
≤
∣∣∣∣∫ x

y

∣∣∣∣∂f∂s (t, s)

∣∣∣∣ ds∣∣∣∣
≤
∣∣∣∣∫ x

y

Kds

∣∣∣∣
= K |x− y|

The premise that ∂f
∂x

(t, x) is only assumed to be bounded makes existence
proofs using Lipschitz conditions stronger than Picard's theorem because
the partial derivative doesn't have to be continuous anymore. In fact, a
Lipschitz function doesn't have to be (continuously) di�erentiable.

Example 9 The function f(x) = |x| is Lipschitz as

|f(x)− f(y)| = ||x| − |y|| ≤ |x− y|
so the condition is met for any (x, y) with Lipschitz constant L = 1. The
function is not di�erentiable at x = 0.

If one should drop the Lipschitz condition and just stress that the function
f(t, x) be continuous then the uniqueness part of (13) su�ers.

Example 10 The initial-value problem

ẋ = 3x2/3, x(0) = 0

has both x(t) = t3 and x(t) ≡ 0 as solutions. As the function 3x2/3 is
continuous in x continuity is not su�cient to guarantee uniqueness of the
solution.

Example 11 Every function that is Lipschitz is uniformly continuous.
Since |f(x)− f(y)| ≤ L |x− y|, we can choose for any ε a corresponding
δ(ε) = ε

2L
. This makes

|x− y| < δ ⇒ |f(x)− f(y)| ≤ ε

2
< ε

If we write the Lipschitz condition

|f(x)− f(y)|
|x− y|

≤ L
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and interpret this geometrically it says that any line segment that joins two
arbitrary points on the graph of f cannot have a slope greater than ±L.
So any function that displays an in�nite slope at any point is not Lipschitz.
This of course excludes all discontinuous functions from being Lipschitz.

What this has been leading up to is the following important theorem:6

Theorem 1 Let f(t, x) be piecewise continuous in t and7 locally Lipschitz
in x for all t ≥ t0 and all x in a domain D ⊂ Rn. Let W be a compact subset
of D, x0 ∈ W , and suppose it is known that every solution of

ẋ = f(t, x), x(t0) = x0

lies entirely in W . Then there is a unique solution that is de�ned for all
t ≥ t0.

5 Lyapunov stability

Aleksandr Lyapunov's doctoral thesis The General Problem of the Stability
of Motion marks the beginning of modern stability theory. His methods
provide a powerful framework for analyzing nonlinear dynamical systems.
Lyapunov functions lets us draw conclusions about the behavior of the dy-
namical system without actually solving it explicitly. The method presented
here is called Lyapunov's second method or Lyapunov's direct method be-
cause it allows us to directly apply it to the di�erential equation without any
knowledge about the solutions. In the following theorem we state without
loss of generality that the equilibrium point is at the origin. As we have seen;
any equilibrium can always be shifted to (0, 0) via a change of variables.

To establish stability the main idea is to �nd a new function V (x, y)
whose level curves encircle the equilibrium point and whose values decrease
along the trajectories of the system. The bowls in Figure 12 is the function V
and in the two examples we plot V (x(t), y(t)) versus the solution trajectory
(x(t), y(t)) which lie in the horizontal plane.

6For a proof see [4].
7The function is only piecewise continuous in t to allow for abrupt step changes with

time e.g. electrical signals.
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Figure 12: Stable and asymptotically stable equilibrium point

We start with the autonomous system

ẋ = f(x) (15)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into
Rn.

Lyapunov's stability theorem Let x = 0 be an equilibrium point for
(15) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a
continuously di�erentiable function such that

V (0) = 0 and V (x) > 0 in D − {0} (16)

V̇ (x) ≤ 0 in D (17)

Then x = 0 is stable. Furthermore, if

V̇ (x) < 0 in D − {0} (18)

then x = 0 is asymptotically stable.

Proof Given ε > 0, choose r ∈ (0, ε] such that

Br = {x ∈ Rn : |x| ≤ r} ⊂ D

Let α = min|x|=r V (x). Then, α > 0 by (16). Take β ∈ (0, α) and let

Ωβ = {x ∈ Br |V (x) ≤ β}
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Then Ωβ is the interior of Br. Any trajectory starting at t = 0 inside Ωβ

stays in Ωβ as the derivative V̇ (x(t)) is negative semide�nite, so

V̇ (x(t)) ≤ 0 ⇒ V (x(t)) ≤ V (x(0)) ≤ β, ∀t ≥ 0

Because Ωβ is a compact set, we conclude from Theorem 1 that (15) has
a unique solution de�ned for all t ≥ 0 whenever x(0) ∈ Ωβ. As V (x) is
continuous and V (0) = 0, there is δ > 0 such that

|x| ≤ δ ⇒ V (x) < β

Then,

Bδ ⊂ Ωβ ⊂ Br

and

x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br

Therefore,

|x(0)| < δ ⇒ |x(t)| < r ≤ ε, ∀t ≥ 0.

This shows that the equilibrium point x = 0 is stable.
If V̇ < 0, i.e. negative de�nite, we know that the origin is stable from

the previous arguments. If it can be proven that V (x(t)) → 0 (implying
that x(t) → 0 because V is positive de�nite everywhere, except at the origin
where V (0) = 0) as t → ∞, this will be su�cient to prove asymptotic
stability. Suppose to the contrary that there exists a solution x(t) to (15)
that does not approach the origin as t→∞. Since V (x(t)) is monotonically
decreasing and apparently bounded from below by some constant L and
as V : D → R is continuous there exists an h > 0 such that V (x) < L
for all x ∈ Bh. Hence the trajectory x(t) is trapped inside the annulus
Ā ≡ {x : h ≤ |x| ≤ r}. Since this is a compact set the continuous function
V̇ (x) has a maximum value γ(< 0) over this set. For this trajectory, forever
moving inside Ā, we have

V̇ (x(t)) ≤ γ.

Integrating ∫ t

0

V̇ (x(s))ds ≤
∫ t

0

γds

and it follows that
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V (x(t)) ≤ V (x(0)) + γ(t− 0).

Since γ < 0, the right-hand side must eventually become negative for t
su�ciently large. This contradicts the fact that V is positive de�nite. The
assumption that there exists a solution that doesn't approach the origin is
false. Hence, we have V (x(t)) → 0 as t→∞.

The principal limitation with this method is that there are no general
procedures for constructing a Lyapunov function. There are however several
good approaches for �nding a candidate.

Example 12 For the system

ẋ = −x+ xy3,

ẏ = −3x2y2 − y3

we want to prove that its only equilibrium point (0, 0) is an asymptotically
stable critical point. This can be achieved by constructing a suitable Lya-
punov function of the form V (x, y) = ax2m + by2n, which will guarantee
positive de�niteness. This gives us

V̇ (x, y) = −2max2m + 2max2my3 − 6nbx2y2n+1 − 2nby2n+2.

By choosing m = n = 1 and a = 3 and b = 1 the cross product terms, which
are sign inde�nite, cancels and we get a Lyapunov function

V (x, y) = 3x2 + y2 with V̇ (x, y) = −6x2 − 2y4.

This is a positive de�nite function with a negative de�nite time derivative,
hence (0, 0) is a (globally)8 asymptotically stable critical point for the system.

Example 13 In the section dealing with linearization we had the following
system

ẋ = −y − x
√
x2 + y2, (19)

ẏ = x− y
√
x2 + y2 (20)

where we had to revert to using polar coordinates to prove asymptotic sta-
bility. If we rewrite (19) - (20) as

8For a full description of the region of attraction, see [2], [4] or [7].
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ẋ = −y − xf(x, y),

ẏ = x− yf(x, y)

and use the Lyapunov function candidate V (x, y) = x2 + y2 we get

V̇ = 2x(−y − xf(x, y)) + 2y(x− yf(x, y)) = −2(x2 + y2)f(x, y).

Because f(x, y) =
√
x2 + y2 > 0 for all (x, y) except the origin (the point

we are interested in) it is clear that V̇ is negative de�nite. The conclusion is
that the origin is (globally) asymptotically stable.

5.1 Gradient Systems

This is a particular type of dynamical system where the direct method of
Lyapunov is well suited. Gradient systems all have the form

ẋ = −∇h(x)

for some function h(x). Suppose we are given a system ẋ = f(x) as in (15)
where, without loss of generality, the origin is a critical point. The task is
now to �nd a function h(x) such that

f(x) = −∇h(x), h(0) = 0 and h(x) > 0 ∀x 6= 0.

If that succeeds we choose this function h as a Lyapunov function for the sys-
tem ẋ = f(x), i.e., V (x) = h(x) which gives us a negative de�nite derivative
because

V̇ (x) = ∇V (x) · f(x) = ∇h(x) · (−∇h(x)) = − |∇h(x)|2 < 0, ∀x 6= 0.

The components of h(x) are assumed to be continuously di�erentiable func-
tions. If f(x) = −∇h(x) then

∂fi

∂xj

= − ∂2h

∂xj∂xi

= − ∂2h

∂xi∂xj

=
∂fj

∂xi

.

This is a necessary condition that has to be met for the system to be a
gradient system. We then have to check that the other conditions hold.
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Example 14 The following system is gradient

ẋ1 = −x1 + x2 − x1x
2
2e

x2
1 ,

ẋ2 = x1 − x2 − x2e
x2
1

because

∂f1

∂x2

= 1− 2x1x2e
x2
1 =

∂f2

∂x1

.

The critical points occur when x2 = x1

1+ex2
1
and when this is inserted in f1 we

get 0 = −x1e
x2
1(1+ex2

1 +x2
1) which makes (0, 0) the only critical point for the

system. The next step is to recover the function h(x1, x2) so that f = −∇h.

f2 = − ∂h

∂x2

⇒ ∂h

∂x2

= −x1 + x2 + x2e
x2
1

h(x1, x2) = −x1x2 +
1

2
x2

2 +
1

2
x2

2e
x2
1 + α(x1).

Equating the two expressions for ∂h
∂x1

we get

−x2 + x1x
2
2e

x2
1 + α′(x1) = −(−x1 + x2 − x1x

2
2e

x2
1)

from which we learn that

α′(x1) = x1 ⇒ α(x1) =
1

2
x2

1 + C, where C = 0 as h(0) = 0

We conclude that the function

h(x1, x2) =
1

2
(x1 − x2)

2 +
1

2
x2

2e
x2
1

is a Lyapunov function for the system and that (0, 0) is (globally) asymptot-
ically stable.

5.2 The Variable Gradient Method

If the system in ẋ = f(x) is not gradient (which it usually is not) we can still
work backwards and �nd a Lyapunov function through a procedure known
as the variable gradient method. Since we are searching for a positive de�nite
function V (x) the �rst step is to �nd a function g(x) that is the gradient of
that function i.e.
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g(x) =

( ∂V
∂x1
∂V
∂x2

)
= ∇V.

The derivative V̇ (x) is given by

V̇ (x) =
∂V

∂x
f(x) = gT (x)f(x)

and that has to be negative de�nite. Since g(x) = ∇V we obtain V (x)
through integration taken along the axes;

V (x) =

∫ x1

0

g1(y1, 0)dy1 +

∫ x2

0

g2(x1, y2)dy2

as the integral here is independent of the path joining the origin and x. This
last fact is also used in the proof9 of the important fact that a function g(x)
is a gradient of a scalar function V (x) if and only if the Jacobian matrix

[
∂g
∂x

]
is symmetric.

Example 15 Consider the stability of the system

ẋ1 = −x1,

ẋ2 = −2x2 + x1x
2
2

the origin being an isolated equilibrium point. Assume that g(x) has the
form

g(x) =

(
ax1 + bx2

bx1 + cx2

)
, for some constants a, b, c.

This is where the trial and error begins and we choose b = 0, keeping the
Jacobi matrix symmetric. The derivative V̇ (x) is

V̇ (x) =
(
ax1 cx2

)( −x1

−2x2 + x1x
2
2

)
= −ax2

1 − 2cx2
2 + cx1x

2
2

Take a = c = 1 to get

V̇ (x) = −x2
1 − (2− x1x2)x

2
2 < 0, if x1x2 < 2.

The Lyapunov function is

V (x) =

∫ x1

0

y1dy1 +

∫ x2

0

y2dy2 =
1

2
(x2

1 + x2
2) > 0 for x 6= 0.

This is an example of a function that is locally asymptotically stable in some
domain D ⊂ R2 containing the equilibrium point x = 0.

9See [2].
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5.3 Mechanical systems

Finding a Lyapunov function is a matter of trial and error. However, there are
cases when natural candidates exists. If the system in question is mechanical
(or can be interpreted as one) a possible Lyapunov function is the total energy
of the system. It is obvious that Lyapunov's second method is an extension
of the energy function method but in these cases the two approaches merge.

Example 16 The system for the undamped pendulum is

ẋ1 = x2,

ẋ2 = −ω2 sin x1

and we wish to prove that the origin is stable via Lyapunov's method. The
potential energy for the undamped pendulum is

G(x1) =

∫
ω2 sin x1dx1 + C = −ω2 cosx1 + ω2

because the potential energy at x1 = 0 is zero. The total energy (kinetic plus
potential) for the undamped pendulum is

E(x1, x2) =
x2

2

2
+ ω2(1− cosx1)

Here E(0, 0) = 0 and the function is positive de�nite over the domain −2π <
x1 < 2π and

dE

dt
(x1, x2) = x2

dx2

dt
+ ω2 sin x1

dx1

dt
= x2(−ω2 sin x1) + ω2 sin x1(x2) = 0.

The trajectories of our Lyapunov function circle the origin and we conclude
that (0, 0) is a stable equilibrium point.

Example 17 If we try the same Lyapunov (energy) function applied to the
damped pendulum

ẋ1 = x2,

ẋ2 = −ω2 sin x1 − bx2

we get
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dE

dt
(x1, x2) = x2

dx2

dt
+ω2 sin x1

dx1

dt
= x2(−ω2 sin x1−bx2)+ω

2 sin x1(x2) = −bx2
2.

This is negative semide�nite because at any position along the x1-axis, where
x2 = 0, we will get Ė = 0. From linearization as well as from constructing
the phase portrait we know that the origin is asymptotically stable. The
energy function from the undamped case fails to show this fact. We can once
again use the variable gradient method to �nd a better Lyapunov function.
Try

g(x) =

(
α(x)x1 + β(x)x2

γ(x)x1 + δ(x)x2

)
where the scalar functions have to be determined. The symmetry condition
of the Jacobian matrix is

∂α

∂x2

x1 + β(x) +
∂β

∂x2

x2 = γ(x) +
∂γ

∂x1

x1 +
∂δ

∂x1

x2

and the derivative V̇ (x) = gT (x)f(x) becomes

α(x)x1x2 +β(x)x2
2− γ(x)x1ω

2 sin x1− γ(x)x1bx2− δ(x)x2ω
2 sin x1− δ(x)bx2

2.

As V̇ (x) has to be < 0 the sign inde�nite terms has to cancel, i.e.

x2

[
α(x)x1 − γ(x)bx1 − δ(x)ω2 sin x1

]
= 0

and x2 ≡ 0 is not possible because that would violate Lyapunov's de�nition
so the bracketed terms are zero. We get

V̇ (x) = − [bδ(x)− β(x)]x2
2 − γ(x)x1ω

2 sin x1.

We now simplify and take every scalar function in g(x) to be a constant,
everyone that is, except α(x). Rearranging our bracketed terms above to

α(x)x1 = bγx1 + δω2 sin x1

it is clear, since the right hand side only depends on x1 that α(x) = α(x1).
The function g(x) now looks like this:

g(x) =

(
α(x)x1 + βx2

γx1 + δx2

)
=

(
bγx1 + δω2 sin x1 + γx2

γx1 + δx2

)
.
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The Lyapunov function we get is

V (x) =

∫ x

0

gT (y)dy =

∫ x1

0

(bγy1 + δω2 sin y1 + 0)dy1 +

∫ x2

0

(γx1 + δy2)dy2

=
1

2

[
bγx2

1 + 2γx1x2 + δx2
2

]
+ δω2(1− cosx1).

If we choose δ > 0 the last term will always be positive for −π < x1 < π.
The �rst bracket can be written as

1

2

[
bγ

(
x1 +

1

b
x2

)2

+
(
δ − γ

b

)
x2

2

]
showing us that for V > 0 and V̇ < 0 we should pick 0 < γ < bδ. Take
γ = b

2
δ to arrive at the Lyapunov function

V (x) =
δb2

4
x2

1 +
δb

2
x1x2 +

δ

2
x2

2 + δω2(1− cosx1).

This will be a suitable Lyapunov function for the nonlinear damped pendu-
lum using any positive constant δ.

The last example shows how Lyapunov's direct method occasionally fails
to show asymptotic stability. This is actually the case for every conservative
system of the type

ẍ+ f(x) = 0

with the equivalent system

ẋ1 = x2,

ẋ2 = −f(x1)

where f (which we think of as a restoring force on a spring or a pendulum)
is locally Lipschitz on (−a, a) and satis�es

f(0) = 0; xf(x) > 0, ∀x 6= 0, x ∈ (−a, a).

A Lyapunov candidate

V (x1, x2) =
x2

2

2
+

∫ x1

0

f(s)ds

in the form of the total energy satis�es V (0, 0) = 0 and V > 0 in the region
{(x1, x2) : |x1| < a, |x2| <∞}. The derivative however is

V̇ = x2(−f(x1)) + f(x1)x2 = 0
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as the example for the undamped pendulum shows. This might be acceptable
as we used this equation as an approximation for a pendulum, completely
leaving out external forces in our model. However, any system originating
from the di�erential equation

ẍ+ ẋ+ f(x) = 0

that is, the system

ẋ1 = x2,

ẋ2 = −f(x1)− x2

(e.g. the damped pendulum, the motion of a mass-spring system with air
resistance etc.) where f satis�es the same criteria as above, will also always
give us a non-satisfactory answer; a negative semide�nite time derivative of
the Lyapunov (energy) function candidate above as

V̇ = x2(−f(x1)− x2) + f(x1)x2 = −x2
2.

Lyapunov's direct method does not deliver the result we know to be true.
Namely, that the origin is asymptotically stable for the damped pendulum as
energy is continually lost. However, if we look again at the damped pendulum
where V̇ = −bx2

2 ≤ 0 it is clear that

V̇ = 0 ⇒ ẋ1 = 0 and ẍ1 = ẋ2 = −ω2 sin x1.

Since ẍ1 6= 0 if x1 6= kπ, for any integer k, that is, if the pendulum is not
hanging straight down with zero velocity or standing straight up with zero
velocity, we will have a nonzero acceleration. This will cause the velocity,
ẋ1 = x2, to not remain at zero and V̇ will again be strictly negative, making
the Lyapunov function V to start decreasing once more. The system can only
end up in one unique position if we choose −π < x1 < π; hanging straight
down with ẋ1 = 0. This is intuitively correct for a pendulum loosing energy.

6 LaSalle's Theorem

The last section shows that although the variable gradient method can help us
to prove asymptotic stability in di�cult cases, we can adapt other arguments
and still prove this fact and rid ourselves of much algebraic manipulation in
the process. The strategy is to �nd a Lyapunov function with V̇ ≤ 0 and then
establish that no system trajectories can stay inde�nitely at points where
the functions derivative vanishes. Then the origin (the equilibrium point)
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is asymptotically stable. This is Lasalle's invariance principle for nonlinear
dynamical systems. A few de�nitions are necessary. We start with the same
prerequisites as in section 5. Let x(t) be a solution to

ẋ = f(x) (21)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into
Rn. A point p is said to be a positive limit point of x(t) if there is a sequence
{tn}, with tn → ∞ as n → ∞, such that x(tn) → p as n → ∞. The set of
all positive limit points of x(t) is called the positive limit set of x(t). A set
M is said to be an invariant set with respect to (21) if

x(0) ∈M ⇒ x(t) ∈M, ∀t ∈ R

That is, if a solution, at some time instant, belongs to M , then it belongs to
M for all time, past or future. A set M is said to be a positively invariant
set if

x(0) ∈M ⇒ x(t) ∈M, ∀t ≥ 0

We say that x(t) approaches a set M as t → ∞, if for each ε > 0 there is a
T > 0 such that

dist(x(t),M) < ε, ∀t > T

where dist(x(t),M) denotes the smallest distance from a point p to any point
in M . The following lemma10 is a fundamental property of limit sets.

Lemma If a solution x(t) of (21) is bounded and belongs to D for t ≥ 0,
then its positive limit set L+ is a nonempty, compact, invariant set and x(t)
approaches L+ as t→∞.

Lasalle's theorem Let Ω ⊂ D be a compact set that is positively invariant
with respect to (21). Let V : D → R be a continuously di�erentiable function
such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ (x) = 0.
Let M be the largest invariant set in E. Then every solution starting in Ω
approaches M as t→∞.

Proof Let x(t) be a solution of (21) starting in Ω. Since V̇ (x) ≤ 0 in Ω

V (x(t))− V (x(0)) =

∫ t

0

V̇ (x(s))ds ≤ 0, t ≥ 0

10Proven in [4].
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so V (x(t)) ≤ V (x(0)) for t ≥ 0 implying that V (x(t)) is a nonincreasing
function of t. Since V (x) is continuous on the compact set Ω, it is bounded
from below on Ω. Therefore, V (x(t)) has a limit a as t → ∞. The positive
limit set L+ has to be in Ω because Ω is a closed set. For any p ∈ L+, there
is by de�nition a sequence tn with tn → ∞ and x(tn) → p as n → ∞. By
continuity of V (x),

V (p) = V ( lim
n→∞

x(tn)) = lim
n→∞

V (x(tn)) = lim
t→∞

V (x(t)) = a

on L+, i.e. a constant function. By the lemma L+ is an invariant set,
V̇ (x) = 0 on L+. Therefore L+ ⊂ E. Because L+ is invariant and M is the
largest invariant set in E the conclusion is that M must contain L+. Thus

L+ ⊂M ⊂ E ⊂ Ω.

Since x(t) is bounded, the lemma guarantees that x(t) approaches L+ as
t→∞. Hence, x(t) approaches M as t→∞.

The important fact to appreciate here is that V̇ (x) doesn't have to be
negative de�nite as in Lyapunov's theorem. We also note that this theorem
can cope with systems having an equilibrium set (as opposed to an isolated
equilibrium point). To show that x(t) → 0 as t → ∞ we have to ascertain
that the largest invariant set in E is the origin.

Barbashin's theorem Let x = 0 be an equilibrium point for (21). Let
V : D → R be a continuously di�erentiable positive de�nite function on
a domain D containing the origin x = 0, such that V̇ (x) ≤ 0 in D. Let

S =
{
x ∈ D

∣∣∣V̇ (x) = 0
}
and suppose that no solution can stay identically in

S, other than the trivial solution x(t) ≡ 0. Then, the origin is asymptotically
stable.

Proof Lyapunov stability follows from the positive de�niteness of V and
V̇ (x) ≤ 0. To prove asymptotic stability consider a compact and invariant
set

Ωc = {x ∈ D |V (x) ≤ c}

for some positive constant c. Let x(t) be a solution starting in this set,
x(0) ∈ Ωc. Lasalle's theorem implies that L+ ⊆ M but M is the largest
invariant set contained in S so M = {0}. Therefore, x(t) → M = {0} as
t→∞ establishing asymptotic stability of the zero solution x(t) ≡ 0 to (21).
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Example 18 Consider again the nonlinear system for the damped pendu-
lum.

ẋ1 = x2,

ẋ2 = −ω2 sin x1 − bx2.

The total energy V (x1, x2) =
x2
2

2
+ ω2(1 − cosx1) as a Lyapunov function

candidate gave us the derivative

dV

dt
(x1, x2) = −bx2

2 ≤ 0.

Choose c > 0 such that D = {(x1, x2) |V (x1, x2) ≤ c} is compact. Therefore
D is a positively invariant set. Let R be the set where the derivative vanishes.
That is, R = {(x1, x2) |x2 = 0} . It is clear that V̇ (x1, x2) < 0 everywhere
except on the line x2 = 0 where it is zero. Let M be the largest invariant
set contained in R. Because the origin is an equilibrium point we have
(0, 0) ∈ M ⊂ R. If the system is to guarantee V̇ (x1, x2) = 0, the trajectory
of the system must lie on the line x2 = 0. We have the implication

x2(t) ≡ 0 ⇒ ẋ2(t) ≡ 0 ⇒ sin x1(t) ≡ 0.

In the interval x1 ∈ (−π, π), the largest invariant set contained in R is
M = {(0, 0)}. This proves that the origin is asymptotically stable.
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