
SJÄLVSTÄNDIGA ARBETEN I MATEMATIKMATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET
The Buhberger-Möller Algorithm

avJonas Klang2012 - No 24

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

The Buhberger-Möller Algorithm
Jonas Klang

Självständigt arbete i matematik 15 högskolepoäng, grundnivåHandledare: Samuel Lundqvist2012

Abstract

In this thesis we will describe the Buchberger-Möller-algorithm and
also implement it using the computer programming language C++. The
algorithm is used to calculate a vector space basis for a certain type of
quotient ring. We will also go through all the mathematical theory behind
the implementation.

1

Acknowledgements

I would like to thank my supervisor Samuel Lundqvist who’s given me excellent
help and support through all the stages of this thesis.

2

1 Introduction

This thesis is about the the Buchberger-Möller-algorithm and also about imple-
menting it with support for ordering described by matrices, using the program-
ming language C++. An implementation of the algorithm in C++ has not been
done before. The Buchberger-Möller-algorithm is of interest in many science
areas such as coding theory, interpolation problems, statistics and molecular bi-
ology [5]. In order to understand how the algorithm works we need a foundation
of theory which is what we start this paper describing.

We go through definitions of fields, rings, monomials, ideals, linear inde-
pendence, vector space basis, order ideal of monomials and we specify three
types of sorting orders for monomials that we’ll be using when implementing
the Buchberger-Möller-algorithm. We also list three matrices with which we
can always order monomials by multiplying these matrices with the monomials
exponent vectors. We also prove that these matrices always work for this pur-
pose. We also include a few proofs and examples of the different theory pieces
we are describing.

In Section 2 we describe the actual Buchberger-Möller-algorithm and show
two examples of it being used. We finish the section with some more theory and
describe how the algorithm can be used for finding a Gröbner basis.

The final Section talks about the actual program written to implement the
Buchberger-Möller-algorithm. We go through a few of the functions that make
up the program and we also run the program using different data and list the
results in a table showing the efficiency of the program.

The paper ends with a bibliography of the literature being used as inspiration
for this paper.

3

2 Theory

This section will serve as an introduction to the theory needed to understand
the contents of this paper. Here we will go through mathematical terms such as
monomials, polynomials, fields, ideals, vanishing ideals, vector basis and matrix
rank.

We begin with defining a field.

Definition 1. Let F be a set on which the two binary operations; addition and
multiplication, are defined and denoted by + and · respectively. Then F is called
a field if for all elements in F the following properties hold:

(i) Closure of F under addition and multiplication: For all elements a, b ∈ F ,
the sum a + b and the product a · b are both well-defined elements of F.

(ii) Associativity: For all a, b and c ∈ F ,

a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c. (1)

(iii) Commutativity: For all a, b ∈ F ,

a+ b = b+ a and a · b = b · a. (2)

(iv)Distributivity: For all a, b and c ∈ F ,

a · (b+ c) = a · b+ a · c. (3)

(v) Additive and multiplicative identity elements: There exists an additive
identity element called 0, such that for all a ∈ F ,

a+ 0 = a. (4)

And there exists a multiplicative identity element called 1, such that for all
a ∈ F ,

a · 1 = a. (5)

(vi)Additive and multiplicative inverses: There exists an additive inverse
element called -a, such that for all a ∈ F ,

a+ (−a) = 0. (6)

And for a 6= 0 there exists a multiplicative inverse element called a−1, such that
for all a ∈ F ,

a · a−1 = 1. (7)

Definition 2. A commutative ring is defined the same way as a field but it
lacks the multiplicative inverse.

Example 1. Zp, where p is a prime number, is a field. See [1] for proof.

4

Let k be a field. The polynomial ring k[x1, ..., xn] consists of all polynomials
with coefficients in k. A monomial is defined as an element xα1

1 · · ·xαn
n and a

polynomial can then be regarded as a finite linear combination of monomials.

Example 2. The polynomial 3x1 + 2x1x2 + 2x2 ∈ Q[x1, x2] is a linear combi-
nation of the monomials x1, x1x2 and x2.

It should also be noted that 1 is a monomial of the form x01 · · ·x0n.

Theorem 1. Lek k be a field. Then k[x1, ..., xn] is a ring.

Proof. An easy check of all the ring axioms shows that they are satisfied.

Definition 3. Let R be commutative ring. A nonempty subset I of R is called
an ideal of R if the following holds:
(i) a± b ∈ I for all a,b ∈ I.
(ii) ra ∈ I for all a ∈ I and r ∈ R.

An ideal in k[x1, ..., xn] is finitely generated, which means that there exists a
finite numbers of polynomials (f1, ..., fr), such that for any a ∈ I ⊆ k[x1, ..., xn],
a = h1f1 + ...+ hrfr for hi ∈ k[x1, ..., xn] and fi ∈ I.

A point in kn in an n-tuple of n elements with coefficients in k. If we have
n = 3 and k = Z2, then p1 = (1, 1, 0) and p2 = (1, 0, 1) are examples of points.

Theorem 2. Let I be an ideal in the commutative ring R. Then R/I is also a
commutative ring, called a quotient ring, such that for all a, b ∈ R

(a+ I) + (b+ I) = (a+ b) + I

and
(a+ I) · (b+ I) = ab+ I

Proof. The proof can be found in [1]

Definition 4. Let P = {p1, ..., pm} where pi ∈ kn. The set of elements {f}
where f ∈ k[x1, ..., xn] such that f(p1) = ... = f(pm) = 0 is called the vanishing
ideal of P and is denoted by I(P).

Theorem 3. Let P = {p1, ..., pm} where pi ∈ kn. Then I(P) is an ideal in
k[x1, ..., xn].

Proof. We start by proving that criterion (i) holds. For any elements f, g ∈
I(P) we get the following:

(f + g)(pi) = f(pi) + g(pi) = 0 + 0 = 0, (8)

hence f + g ∈ I(P). In the same way we see that criterion (ii) also holds for
any element h ∈ k[x1, ..., xn]:

h · f(pi) = h(pi) · f(pi) = h(pi) · 0 = 0, (9)

5

hence h · f ∈ I(P). And since both criterions hold we have proven that I(P) is
an ideal.

One application of the Buchberger-Möller-algorithm is that it can be used
to compute a set of generators for I(P).

Monomial ordering

Being able to put a list of monomials in order is very useful, and often essential,
when handling monomials in computer algebra. A monomial order respects
multiplication (m1 > m2 =⇒ xm1 > xm2) and 1 is the smallest monomial. We
will use three ways to order monomials that we will now define.

Definition 5. (Lexicographical order)
Let α = (α1, α2, ..., αn) and β = (β1, β2, ...βn) ∈ k[x1, ..., xn]. Then we say α >
β lexicographically if, in the vector difference α − β ∈ k, the left-most nonzero
entry is positive. Meaning xα > xβ lexicographically if α > β lexicographically.
We will sometimes refer to Lexicographical order as Lex.

Definition 6. (Degree Lexicographical Order)
Let α = (α1, α2, ..., αn) and β = (β1, β2, ...βn) ∈ k[x1, ..., xn]. Then we say
α > β in the Degree Lexicographical Order if
|α| =

∑n
i=1 αi >

∑n
i=1 βi = |β| or, |α| = |β| and α > β lexicographically. We

will sometimes refer to Degree Lexicographical order as DegLex.

Definition 7. (Degree Reverse Lexicographical Order)
Let α = (α1, α2, ..., αn) and β = (β1, β2, ...βn) ∈ k[x1, ..., xn]. Then we say
α > β in the Degree Reverse Lexicographical Order if
|α| =

∑n
i=1 αi >

∑n
i=1 βi = |β| or, |α| = |β| and in α−β, the rightmost nonzero

entry is negative. We will sometimes refer to Degree Reverse Lexicographical
order as DegRevLex.

Example 3. Consider the following monomials:

x21, x
2
2, x1x2x3, x

2
1x2, x3, x1x

2
3, x1x3.

The exponent vectors for these monomials are:

(2, 0, 0), (0, 2, 0), (1, 1, 1), (2, 1, 0), (0, 0, 1), (1, 0, 2), (1, 0, 1).

If we order the monomials lexicographically we get:

(2, 1, 0) > (2, 0, 0) > (1, 1, 1) > (1, 0, 2) > (1, 0, 1) > (0, 2, 0) > (0, 0, 1),

or
x21x2 > x21 > x1x2x3 > x1x

2
3 > x1x3 > x22 > x3.

If we order the monomials using DegLex we get:

(2, 1, 0) > (1, 1, 1) > (1, 0, 2) > (2, 0, 0) > (1, 0, 1) > (0, 2, 0) > (0, 0, 1),

6

or
x21x2 > x1x2x3 > x1x

2
3 > x21 > x1x3 > x22 > x3.

And if we order the monomials using DegRevLex we get:

(2, 1, 0) > (1, 1, 1) > (1, 0, 2) > (2, 0, 0) > (0, 2, 0) > (1, 0, 1) > (0, 0, 1),

or
x21x2 > x1x2x3 > x1x

2
3 > x21 > x22 > x1x3 > x3.

The following lemma was proved by Robbiano. [7]

Lemma 1. For a fixed degree of the biggest included monomial in a finite set
every monomial order ≺ can be described using an integer n × n - matrix M.
The order between two monomials xα and xβ can be decided by comparing the
two vectors Mα and Mβ lexicographically.

Example 4. Let us use the same monomials as in the previous example. We
will use the following matrices to multiply with:

I =

 1 0 0
0 1 0
0 0 1

 , J =

 1 1 1
1 0 0
0 1 0

 and K =

 1 1 1
0 0 −1
0 −1 0

We multiply the monomials with the identity matrix I and we get: 1 0 0

0 1 0
0 0 1

 2
1
0

 =

 2
1
0

 >

 1 0 0
0 1 0
0 0 1

 2
0
0

 =

 2
0
0

 >

 1 0 0
0 1 0
0 0 1

 1
1
1

 =

 1
1
1

 >

 1 0 0
0 1 0
0 0 1

 1
0
2

 =

 1
0
2

 >

 1 0 0
0 1 0
0 0 1

 1
0
1

 =

 1
0
1

 >

 1 0 0
0 1 0
0 0 1

 0
2
0

 =

 0
2
0

 >

 1 0 0
0 1 0
0 0 1

 0
0
1

 =

 0
0
1

And we see that multiplying with I in this example is equivalent to comparing
the monomials lexicographically.
When we multiply the monomials with the J matrix we get: 1 1 1

1 0 0
0 1 0

 2
1
0

 =

 3
2
1

 >

 1 1 1
1 0 0
0 1 0

 1
1
1

 =

 3
1
1

 >

7

 1 1 1
1 0 0
0 1 0

 1
0
2

 =

 3
1
0

 >

 1 1 1
1 0 0
0 1 0

 2
0
0

 =

 2
2
0

 >

 1 1 1
1 0 0
0 1 0

 1
0
1

 =

 2
1
0

 >

 1 1 1
1 0 0
0 1 0

 0
2
0

 =

 2
0
2

 >

 1 1 1
1 0 0
0 1 0

 0
0
1

 =

 1
0
0

And we see that multiplying with J in this example is equivalent to comparing
the monomials using DegLex.
And if we instead multiply the monomials with the K matrix we get: 1 1 1

0 0 −1
0 −1 0

 2
1
0

 =

 3
0
−1

 >

 1 1 1
0 0 −1
0 −1 0

 1
1
1

 =

 3
−1
−1

 >

 1 1 1
0 0 −1
0 −1 0

 1
0
2

 =

 3
−2
0

 >

 1 1 1
0 0 −1
0 −1 0

 2
0
0

 =

 2
0
0

 >

 1 1 1
0 0 −1
0 −1 0

 0
2
0

 =

 2
0
−2

 >

 1 1 1
0 0 −1
0 −1 0

 1
0
1

 =

 2
−1
0

 >

 1 1 1
0 0 −1
0 −1 0

 0
0
1

 =

 1
−1
0

And we see that multiplying with K in this example is equivalent to comparing
the monomials using DegRevLex

We will now prove that multiplying with these matrices does not just work
with these examples but they work with all monomials.

Theorem 4. The lexicographical order can be described using the identity ma-
trix.

Proof. Comparing α and β lexicographically is equivalent to comparing Iα and
Iβ, where I is the identity matrix, lexicographically.

Theorem 5. xα >degLex x
β if and only if Mα >lex Mβ where

M =

1 1 1 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

...
. . .

...
...

0 0 . . . 1 0

8

Proof. We must show that xα >degLex x
β is equivalent to Mα >lex Mβ. Sup-

pose that xα >degLex x
β. Then if

∑n
i=1 αi >

∑n
i=1 βi, then clearly Mα >lex

Mβ. If
∑n
i=1 αi =

∑n
i=1 βi, let j be the least index such that αj > βj (Clearly

such an index exists since we assume that xα >degLex x
β). Then α1 = β1, α2 =

β2, ..., αj−1 = βj−1, αj > βj. Notice that j < n (For if j = n, then, α1 =
β1, α2 = β2, ..., αn−1 = βn−1, αn > βn, which contradicts the assumption

∑n
i=1 αi =∑n

i=1 βi). We set

Mα−Mβ =

∑n
i=1 αi −

∑n
i=1 βi

α1 − β1
...

αj − βj
...

αn−1 − βn−1

=

0
0
...
0

αj − βj
...

αn−1 − βn−1

and since we assume that αj > βj, it follows that Mα >lex Mβ.

Suppose that Mα >lex Mβ. Let j be the first index where (Mα)j > (Mβ)j.
Hence (Mα)1 = (Mβ)1, (Mα)2 = (Mβ)2, ..., (Mα)j−1 = (Mβ)j−1, (Mα)j >
(Mβ)j. If j = 1, then (Mα)1 > (Mβ)1 which is equivalent to

∑n
i=1 αi >∑n

i=1 βi, thus xα >degLex x
β. If j > 1 then

∑n
i=1 αi =

∑n
i=1 βi, α1 = β1, α2 =

β2, ..., αj−1 = βj−1, αj > βj. Hence xα >degLex x
β. The proof is complete.

Theorem 6. xα >degRevLex x
β if and only if Mα >lex Mβ where

M =

1 1 1 . . . 1
0 0 0 . . . −1
0 0 . . . −1 0
...

...
. . .

...
...

0 −1 . . . 0 0

Proof. We must show that xα >degRevLex x

β is equivalent to Mα >lex Mβ.
Suppose that xα >degRevLex xβ. Then if

∑n
i=1 αi >

∑n
i=1 βi, then clearly

Mα >lex Mβ. If
∑n
i=1 αi =

∑n
i=1 βi, let j be the biggest index such that

αj < βj (Clearly such an index exists since we assume that xα >degRevLex x
β).

Then αn = βn, αn−1 = βn−1, ..., αj+1 = βj+1, αj < βj. Notice that j ≥ 2 (For
if j = 1, then, αn = βn, αn−1 = βn−1, ..., α2 = β2, α1 < β1, which contradicts
the assumption

∑n
i=1 αi =

∑n
i=1 βi). We set

Mα−Mβ =

∑n
i=1 αi −

∑n
i=1 βi

−αn − (−βn)
−αn−1 − (−βn−1)

...
−αj − (−βj)

...
−α2 − (−β2)

=

0
0
...
0

−αj + βj
...

−α2 + β2

9

and since we assume that αj < βj, it follows that Mα >lex Mβ.
Suppose that Mα >lex Mβ. Let j be the least index where (Mα)j > (Mβ)j.

Hence (Mα)1 = (Mβ)1, (Mα)2 = (Mβ)2, ..., (Mα)j−1 = (Mβ)j−1, (Mα)j >
(Mβ)j. If j = 1, then (Mα)1 > (Mβ)1 which is equivalent to

∑n
i=1 αi =∑n

i=1 βi, thus xα >degRevLex xβ. If j > 1 then
∑n
i=1 αi =

∑n
i=1 βi, αn =

βn, αn−1 = βn−1, ..., αj+1 = βj+1, αj < βj. Hence xα >degRevLex x
β. The proof

is complete.

Linear dependency

A vector is linearly independent from other vectors if it cant be written as
a linear combination of these. In the same way a vector is linearly dependent
of a set of vectors if it can be written as a linear combination of the set of vectors.

A vector basis over a field k is a set of linearly independent vectors that
together can be used in a linear combination to create any other vector in a
given vector space. The produced vector has a linear combination of vectors
that is unique. The number of vectors in a vector basis is called the dimension
of the vector space.

The following theorem is fundamental:

Theorem 7. Let P = {p1, p2, · · · , pm} be a set of m points. Then

k[x1, ..., xn]/I(P), (10)

is of finite dimension as a vector space over k and the dimension is equal to the
number of points m.

Proof. The proof is beyond the scope of this thesis. But it can be found in [4]

We will now examine the consequences of the theorem:
Let {e1, ..., em} be polynomials in k[x1, ..., xn] and suppose that [e1], ..., [en]

is a vector space basis for k[x1, ..., xn]/I(P), where we by [ei] mean the residue
class of I(P) containing ei. This means that if we fix the eis then any polynomial
f ∈ k[x1, ..., xn] can be written uniquely as

[f] = c1[e1] + · · ·+ cm[em], (11)

or
[f]− c1[e1]− · · · − cm[em] = 0, (12)

which is the same as

f − c1e1 − · · · − cmem ∈ I(P), (13)

this in turn means that f − c1e1 − · · · − cmem is zero at every point, that is

(f − c1e1 − · · · − cmem)(p1) = · · · = (f − c1e1 − · · · − cmem)(pm) = 0, (14)

10

An Order ideal of monomials, which we call an OIM, is a set of monomials
that is closed under taking submonomials. By a submonomial we mean that
xα1
1 · · ·xαn

n is a submonomial to xβ1

1 · · ·xβn
n iff αi ≤ βi ∀i

Example 5. {1, x1, x2, x1x2} is an OIM but {1, x1x2, x2} is not since x1 is a
sub monomial of x1x2 which is not part of the set.

Theorem 8. If P is a set of points, then there is always an OIM = e1, e2, ..., em
such that [e1], [e2], ..., [em] forms a vector space basis for k[x1, ..., xm]/I(P).

Proof. This follows from the Buchberger-Möller algorithm in the next chapter.

11

3 The Buchberger-Möller algorithm

The Buchberger-Möller algorithm, originally described in [2], is designed to,
given points P = {p1, ..., pm} in a field k, calculate a Gröbner basis of I(P) and a
vector space basis for k[x1, ..., xn]/I(P), where I(P) is the vanishing ideal for the
given points. We will focus on the vector space basis. The monomials making up
the vector space basis is an OIM. The key of the Buchberger-Möller algorithm,
is the fact that {[e1], . . . , [em]} is a vector space basis for k[x1, . . . , xn]/I(P) if
and only if the vectors e1(P), . . . , em(P) are linearly independent.

We will use the following notations to present the Buchberger-Möller-algorithm:
P = {p1, ..., pm} are the points we will use. L is a list of monomials, sorted
in an increasing fixed monomial order which we denote as ≺. B = e1, e2, ...
is a list of sorted monomials such that [e1], [e2], ... is linearly independent in
k[x1, ..., xn]/I(P). This is at the end of the algorithm going to constitute our
vector space basis. We have one more list of monomials; G, which is also sorted
in an increasing order. G is a subset to the border, see Definition 8.

When we write e(P) we mean the vector (e(p1), ..., e(pm)). When we write
B(P) we mean the matrix (ei(pj))ij .

1. L = {1}, B = (), G = ()

2. If |B| = m, return B. Else, clear the list L from multiples of elements in
G, meaning elements in L that are divisible by G, and let e = First[L], L
= Rest[L].

3. If e(P) is linearly dependent with respect to the rows in B(P), set G = G
∪ e and go back to step 2.

4. If e(P) is linearly independent with respect to the rows in B(P), set B =
B ∪ e and L = merge(L,(xne, ..., x1e)) and go back to step 2.

Remark: By merge we mean that we take two sorted lists and we merge
them together into one sorted list. And since we in our order assume that
xn < xn−1 < ... < x1 then we get that the lists to be merged have that order
and hence the list L is merged with the list xne < xn−1e < ... < x1e.

Example 6. Let P = ((1, 1, 1), (0, 0, 1), (0, 1, 1)) be our points in Z3
2 and let ≺

be the lexicographical order with x1 � x2 � x3. In step one L = (1) and in step
two G is empty so we get e = 1 and L = (). In step three we get e(P) = (1, 1, 1)
and since B is empty e(P) is linearly independent with respect to the rows of
B(P) and we get B = (1) and L = (x3, x2, x1) in step four. Back in step

12

two we G is empty so we get e = x3 and L = (x2, x1). In step three we get
e(P) = x3(P) = (1, 1, 1) and since clearly this is linearly dependent with respect
to B(P) since they are the same and we get G = (x3). Back in step two non of
the elements in L is a multiple of x3 so e = x2 and L = (x1). In step three we get
e(P) = x2(P) = (1, 0, 1) which is linearly independent with respect to the rows
of B(P) so in step four we get B = (1, x2) and L = (x3x2, x

2
2, x1, x2x1). Back to

step two we see that x3x2 is a multiple of G so we remove that element and we get
get e = x22 and L = (x1, x2x1). In step three we get x22(P) = (1, 0, 1) = x2(P),
so we get G = (x3, x

2
2). Back in step two there are no multiples of G in L so

we get e = x1 and L = (x2x1). In step three we get x1(P) = (1, 0, 0) which
is linearly independent with respect to the rows in B(P) and in step 4 we get
B = (1, x2, x1) and L = (x3x1, x2x1, x

2
1). Back in step 2 we see that |B| = 3

and the algorithm terminates. This means that ([1], [x2], [x1]) is a vector space
basis for Z2[x1, x2, x3]/I(P).

Example 7. Let
P = ((0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (1, 1, 0, 0, 0), (2, 1, 0, 0, 0)) be our

points in Z5
3 and let ≺ be the lexicographical order with x1 � x2 � x3 � x4 �

x5. In step one L = (1) and in step two G is empty so we get e = 1 and
L = (). In step three we get e(P) = (1, 1, 1, 1, 1) and since B is empty e(P) is
linearly independent with respect to the rows of B(P) and we get B = (1) and
L = (x5, x4, x3, x2, x1) in step four. Back in step two there are no multiples of
G so we get e = x5 and L = (x4, x3, x2, x1). In step three e(P) = x5(P) =
(0, 0, 0, 0, 0) and this is linearly dependent with respect to the rows in B(P) since
(1, 1, 1, 1, 1) is in B(P) and 0 · (1, 1, 1, 1, 1) = (0, 0, 0, 0, 0), therefore G = (x5).
Back in step two there are no multiples of G so e = x4 and L = (x3, x2, x1).
In step three we then get e(P) = x4(P) = (0, 0, 0, 0, 0) and is therefore linearly
dependent with respect to the rows in B(P) and we get G = (x5, x4). Since
again in step two there are no multiples of G in L we get e = x3 and L =
(x2, x1). and once again in step three we get e(P) = x3(P) = (0, 0, 0, 0, 0)
which is linearly dependent with respect to the rows in B(P) and we get G =
(x5, x4, x3). In step two there are no multiples of G and we get e = x2 and
L = (x1). In step three we get e(P) = x2(P) = (0, 0, 1, 1, 1) which is linearly
independent with respect to the rows in B(P) and in step four we get B = (1, x2)
and L = (x5x2, x4x2, x3x2, x

2
2, x1, x2x1). In step two we remove the multiples

of G from L and we get e = x22 and L = (x1, x2x1). In step three we then get
e(P) = x22(P) = (0, 0, 1, 1, 1) = x2(P) and is therefore linearly dependent with
respect to the rows in B(P) and we get G = (x5, x4, x3, x

2
2). In step two we

remove x22 from L and we get e = x1 and L = (x1x2). So in step three we get
e(P) = x1(P) = (0, 1, 0, 1, 2) which is is linearly independent with respect to the
rows of B(P) and we get B = (1, x2, x1) and L = (x5x1, x4x1, x3x1, x2x1, x

2
1).

We go back to step two and remove the multiples of G from L and we get
e = x1x2 and L = (x21). In step 3 we get x1x2(P) = (0, 0, 0, 1, 2) which is is
linearly independent with respect to the rows of B(P) and in step four we get
B = (1, x2, x1, x2x1) and L = (x5x2x1, x4x2x1, x3x2x1, x

2
2x1, x

2
1, x2x

2
1). Once

again we go back to step two and remove the multiples of G from L and we get

13

e = x21 and L = (x21x2). In step 3 we get x21(P) = (0, 1, 0, 1, 1) which is is linearly
independent with respect to the rows of B(P) and we get B = (1, x2, x1, x2x1, x

2
1)

and L = (x5x
2
1, x4x

2
1, x3x

2
1, x2x

2
1, x

3
1). Finally back in step 2 we see that |B| =

5 and the algorithm terminates. This means that ([1], [x2], [x1], [x2x1], [x21]) is a
vector space basis for Z3[x1, x2, x3, x4, x5]/I(P).

It is possible to implement the Buchberger-Möller-algorithm such that the
number of arithmetic operations is O(min(m,n) ·m3). [6]

Definition 8. (Border)
Given an OIM, a border monomial is a monomial ei such that all of its sub-
monomials belongs to the OIM, but ei /∈ OIM .

Example 8. In Example 5 where the OIM is: 1, x2, x1, the border monomials
are: x1x2, x

2
2, x

2
1.

Example 9. In Example 6 where the OIM is: 1, x2, x1, x2x1, x
2
1, the border

monomials are: x31, x
2
1x2, x

2
2.

Theorem 9. If we chose a basis with the Buchberger-Möller algorithm and if
fi are border monomials, then (f1 −

∑
j cjiej , ..., fk −

∑
j cjiej) is a Gröbner

basis for I(P).

Proof. The proof is beyond the scope of this thesis, and since we will not define
a Gröbner basis this theorem is an anecdote for people familiar with the theory.

A Gröbner basis for an ideal is always a generator set for I, thus I(P) =
(f1 −

∑
j cjiej , ..., fk −

∑
j cjiej)

Example 10. In the previous example we concluded that the border monomials
for Example 6 are x31, x

2
1x2, x

2
2. We can use these monomials and Theorem 8 to

calculate a Gröbner basis for I(P).
We start with the element x31 and start out to find c1, c2, c3, c4 and c5 such

that x31 = c1[1] + c2[x2] + c3[x1] + c4[x2x1] + c5[x21] ∈ I(P), or (x31 − c11 −
c2x2 − c3x1 − c4x2x1 − c5x

2
1)(P) = 0, and since P = (p1, p2, p3, p4, p5) =

((0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (1, 1, 0, 0, 0), (2, 1, 0, 0, 0)) we have to solve
the following equation systems:

(x31−c11−c2x2−c3x1−c4x2x1−c5x21)(p1) = 0⇒ 0−c1·1−c2·0−c3·0−c4·0−c5·0 = 0

(x31−c11−c2x2−c3x1−c4x2x1−c5x21)(p2) = 0⇒ 1−c1·1−c2·0−c3·1−c4·0−c5·1 = 0

(x31−c11−c2x2−c3x1−c4x2x1−c5x21)(p3) = 0⇒ 0−c1·1−c2·1−c3·0−c4·0−c5·0 = 0

(x31−c11−c2x2−c3x1−c4x2x1−c5x21)(p4) = 0⇒ 1−c1·1−c2·1−c3·1−c4·1−c5·1 = 0

(x31−c11−c2x2−c3x1−c4x2x1−c5x21)(p5) = 0⇒ 2−c1·1−c2·1−c3·2−c4·2−c5·1 = 0

When solving this equations system we get c1 = 0, c2 = 0, c3 = 1, c4 = 0, c5 = 0.
Hence we can express x31 as x31 = x1 (mod I(P)).

14

Now we find the c1, c2, c3, c4 and c5 for x21x2 and we have to solve the fol-
lowing equation systems:

(x21x2−c11−c2x2−c3x1−c4x2x1−c5x21)(p1) = 0⇒ 0−c1·1−c2·0−c3·0−c4·0−c5·0 = 0

(x21x2−c11−c2x2−c3x1−c4x2x1−c5x21)(p2) = 0⇒ 0−c1·1−c2·0−c3·1−c4·0−c5·1 = 0

(x21x2−c11−c2x2−c3x1−c4x2x1−c5x21)(p3) = 0⇒ 0−c1·1−c2·1−c3·0−c4·0−c5·0 = 0

(x21x2−c11−c2x2−c3x1−c4x2x1−c5x21)(p4) = 0⇒ 1−c1·1−c2·1−c3·1−c4·1−c5·1 = 0

(x21x2−c11−c2x2−c3x1−c4x2x1−c5x21)(p5) = 0⇒ 1−c1·1−c2·1−c3·2−c4·2−c5·1 = 0

We get c1 = 0, c2 = 0, c3 = −1, c4 = 1, c5 = 1. Hence we can express x21x2 as
x21x2 = −x1 + x2x1 + x21 (mod I(P)).

Finally we find the c1, c2, c3, c4 and c5 for x22 and we have to solve the fol-
lowing equation systems:

(x22−c11−c2x2−c3x1−c4x2x1−c5x21)(p1) = 0⇒ 0−c1·1−c2·0−c3·0−c4·0−c5·0 = 0

(x22−c11−c2x2−c3x1−c4x2x1−c5x21)(p2) = 0⇒ 0−c1·1−c2·0−c3·1−c4·0−c5·1 = 0

(x22−c11−c2x2−c3x1−c4x2x1−c5x21)(p3) = 0⇒ 1−c1·1−c2·1−c3·0−c4·0−c5·0 = 0

(x22−c11−c2x2−c3x1−c4x2x1−c5x21)(p4) = 0⇒ 1−c1·1−c2·1−c3·1−c4·1−c5·1 = 0

(x22−c11−c2x2−c3x1−c4x2x1−c5x21)(p5) = 0⇒ 1−c1·1−c2·1−c3·2−c4·2−c5·1 = 0

We get c1 = 0, c2 = 1, c3 = 0, c4 = 0, c5 = 0. Hence we can express x21x2 as
x22 = x2 (mod I(P)).

And we have now calculated our Gröbner basis:

(x31 − x1, x21x2 + x1 − x1x2 − x21, x22 − x2)

and
I(P) = (x31 − x1, x21x2 + x1 − x1x2 − x21, x22 − x2)

Example 11. In this example we show that our elements in the Gröbner basis
in the last example is in I(P). Again our points are P = (p1, p2, p3, p4, p5) =
((0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (1, 1, 0, 0, 0), (2, 1, 0, 0, 0)) and our Gröbner
basis is (x31 − x1, x21x2 + x1 − x1x2 − x21, x22 − x2). For our first element we get:

(x31 − x1)(p1) = 0− 0 = 0

(x31 − x1)(p2) = 1− 1 = 0

(x31 − x1)(p3) = 0− 0 = 0

(x31 − x1)(p4) = 1− 1 = 0

(x31 − x1)(p5) = 2− 2 = 0

and for the second element we get:

(x21x2 + x1 − x1x2 − x21)(p1) = 0 + 0− 0− 0 = 0

15

(x21x2 + x1 − x1x2 − x21)(p2) = 0 + 1− 0− 1 = 0

(x21x2 + x1 − x1x2 − x21)(p3) = 0 + 0− 0− 0 = 0

(x21x2 + x1 − x1x2 − x21)(p4) = 1 + 1− 1− 1 = 0

(x21x2 + x1 − x1x2 − x21)(p5) = 1 + 2− 2− 1 = 0

And finally for the third:

(x22 − x2)(p1) = 0− 0 = 0

(x22 − x2)(p2) = 0− 0 = 0

(x22 − x2)(p3) = 1− 1 = 0

(x22 − x2)(p4) = 1− 1 = 0

(x22 − x2)(p5) = 1− 1 = 0

And as we can see all the elements in the Gröbner basis is in I(P).

16

4 Implementation

The program consists of a few functions that put together executes the algo-
rithm. The code is about 800 lines including comments. The program uses
the vector class from the c++ standard template library to handle the different
points and vectors. And we have defined two types of containers using this class
in this way:
typedef vector< vector<int> > Matrix;
typedef vector<int> Vector;

Now we take a closer look at some of the programs functions:

Vector pointMultiplyOrder(const Matrix &orderMatrix, const Ma-
trix &pointMatrix, int dimension, int multElement);
This function takes a vector and multiplies it with our given order matrix to
receive a new vector that can be compared with others lexicographically.

int adjustToField(int number, const int field);
This function takes an integer and if needed adjusts it to the field we’re working
in. By this we mean that if we are working in Zp then the function makes sure
that the integer sent in receives a new value between 0 and (p−1). The function
receives two variables; the integer number which is the input we wish to correct
and the constant integer field which is the field we are working in.

Example 12. adjustToField(15,7); means we want the number 15 to be adjusted
to Z7 and we receive the value 1.

void sort(Matrix &matrix, const Matrix orderMatrix, const int
numberOfPoints, const int dimension);
This function takes a set of vectors contained in the variable matrix and sorts
them in the decided order who’s matrix is contained in the variable orderMatrix.

void makeInversTable(Vector &inversTable, const int field);
This function finds the inverse for every element in the field and puts them in
a table, or in this case a Vector.

Example 13. makeInversTable(inverseVector,7) means we send in a Vector
called inverseVector and the field we are working in, Z7. The function will, to
the variable inverseVector, return the following values 0,1,4,5,2,3,6 which are
inverses of 0,1,2,3,4,5 and 6 respectively.

void adjustVectorToField(Vector &row, const Vector inv, const int
field, const int dimension);
This function finds the first nonzero element in a Vector and then uses the in-
verse table to find its inverse. Then it multiplies every element in the vector
with that inverse. The purpose of this is to receive a vector who’s first nonzero
element is 1.

17

Example 14. adjustVectorToField(vector,inverseTable,7,5); means that if we
send in the vector (4,1,2,3,5) the function will multiply all the elements with the
first elements inverse, so since the first element is 4 the inverse in Z7 is 2 and
vector receives the new values (1,2,4,6,3).

void adjustMatrixToField(Matrix &matrix, const Matrix order-
Matrix, const Vector inv, const int field, const int numberOfPoints,
const int dimension);
This function takes every Vector in a Matrix and runs them through the func-
tion adjustVectorToField.

void Gauss(Matrix &matrix, const Matrix orderMatrix, Vector
&inv, const int field, const int numberOfPoints, const int dimension);
This function uses Gauss-Jordan elimination to get a Matrix into reduced row
echelon form.

bool isLinearlyIndependent(Matrix matrix, Vector testPoint, Vec-
tor inv, const int field, const int numberOfPoints, const int dimen-
sion);
This function compares a Vector to all the Vectors in a Matrix to see if the
Vector is linearly independent or dependent to the Matrix.

void restOfL(Matrix &matrixL);
This function removes the first Vector from a Matrix.

Vector calculatePoint(Matrix pointMatrix, Vector exponentVec-
tor, const int field, const int numberOfPoints, const int dimension);
This function calculates the e(P) Vector that is used in the algorithm by multi-
plying the monomial e’s exponent vector with the points given to the program.

Example 15. calculatePoint(matrix,e,7,5,5) means if we send in a Matrix ma-
trix with the points ((1, 0, 0), (0, 1, 0), (1, 1, 0)) and the monomial e = x2 then we
get the output Vector (0,1,1).

Matrix unionMatrixG(Matrix matrixG, Vector exponentVector);
This function takes a Matrix and a Vector and unites them into a new Matrix.

void deleteGfromL(Matrix &matrixL, Matrix matrixG, const int
dimension);
This function deletes all multiples of monomials in one Matrix from another
Matrix.

Matrix mergeL(Matrix matrixL, Matrix orderMatrix, Vector ex-
ponentVector, const int dimension);
This function merge two lists of monomials together.

18

Here is how the algorithm looks with the functions put together:
//Step 1
Matrix matrixL, matrixG, matrixB, baseMatrix;
Vector vectorE,vectorBase, temp(dimension);
int vectorsInBase=0;
matrixL.push back(temp);
//step 2
while(vectorsInBase != numberOfPoints)
{
deleteGfromL(matrixL, matrixG, dimension);
vectorE = matrixL[matrixL.size()-1];
restOfL(matrixL);
//step 3 and 4
vectorBase = calculatePoint(points, vectorE, field, numberOfPoints, dimen-
sion);
bool independent = isLinearlyIndependent(matrixB, vectorBase, inv, field, vec-
torsInBase, vectorBase.size());
if(independent)
{
matrixB.push back(vectorBase);
Gauss(matrixB, standardOrderMatrix2,inv,field,matrixB.size(),vectorBase.size());
baseMatrix.push back(vectorE);
vectorsInBase++;
sort(matrixL, orderMatrix, matrixL.size(), dimension);
matrixL = mergeL(matrixL, orderMatrix, vectorE, dimension);
}
else
{
matrixG = unionMatrixG(matrixG, vectorE);
sort(matrixG, orderMatrix, matrixG.size(), dimension);
}
}

19

Table 1: Program efficiency results

Variables Points Seconds

5 10 1.4
5 15 22
5 20 170
5 25 836
10 10 1.6
10 15 22
10 20 174
10 25 821
20 10 7
20 15 28
20 20 182
20 25 830
30 10 30
30 15 61
30 20 209
30 25 878
40 10 110
40 15 161
40 20 334
40 25 1007

Running the program using different points and variables we get the results
shown in the table. The results are from a laptop from 2010 with a Intel Atom
1.66 GHz processor. The points were chosen letting all variables except for the
first two being zero and the first two variables being either the same or with
one numbers difference going from zero and up. In all examples we worked in
Z11. The order used was the lexicographical order but DegLex and DegRevLex
were also tested and both gave similar but slightly faster test results.
When comparing our programs efficiency with the efficiency of the program
Macaulay 2 our program turns out to be a lot slower. The main reason for this
is probably that in our program our order is defined by a matrix and therefore
there are more calculations taking place than in Macaulay 2. Macaulay 2 can
be downloaded for free from http://www.math.uiuc.edu/Macaulay2.

20

References

[1] J.A. Beachy, W. D. Blair, Abstact Algebra, third edition, Waveland Press,
2006.

[2] B. Buchberger and M. Möller, The construction of multivariate polynomials
with preassigned zeroes. Computer algebra, Marseille, 1982.

[3] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, An intro-
duction to computational Algebraic Geometry and Commutative Algebra,
Springer, Second Edition, 1997.

[4] M.Kreuzer and L.Robbiano, Computational Commutative Algebra 1,
Springer, 2008.

[5] R. Laubenbacher, B. Stigler, A computational algebra approach to the
reverse engineering of gene regulatory networks. J. Theor 2004.

[6] S.Lundqvist, Complexity of Comparing Monomials and Two Improvements
of the Buchberger-Möller Algorithm. MMICS 2008, Lecture Notes in Com-
puter Science 5393 (2008) 105-125.

[7] L. Robbiano, Term orderings on the polynomial ring, EUROCAL’85, pages
513-517, 1985.

21

