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Abstract

This bachelor thesis investigates the interesting relation between theo-
rems from algebraic topology and discrete geometry. The theorems that
are covered are some versions of the Borsuk-Ulam theorem, Tucker’s lemma,
Sperner’s lemma, Brouwer’s fixed point theorem, as well as the discrete and
continuous Ham Sandwich theorem together with some interesting extensions
and the polynomial Ham Sandwich theorem.

Emphasis is put on easy and intuitive proofs using discrete geometry and
algebra. The thesis also contains a brief introduction to some basic concepts
from discrete geometry.
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Chapter 1

Introduction

An interesting phenomena in algebraic topology is that every theorem seems
to have a combinatorial interpretation. This means that there for every
topological theorem exists an equivalent theorem concerning combinatorial
properties of similar combinatorial structures.

Two of the most useful theorems from algebraic topology is the Borsuk-
Ulam theorem and Brouwer’s fixed point theorem. They both have many
interesting applications and corollaries, some of which will be investigated
here.

The relation between combinatorial and topological theorems is not a new
discovery. In the beginning of the 20th century the Albert W. Tucker was
attempting to prove the equivalences between two theorems from different
branches of mathematics, Sperner’s lemma and the Borsuk-Ulams theorem.
Sperner’s lemma is a widely known result from discrete geometry about la-
beling of simplices while the Borsuk-Ulam theorem is a continuous theorem
from algebraic topology. One reason for finding such relations is that while
theorems in algebraic topology tend have advanced proofs and uses specific
concepts from topology, discrete geometry geometry uses more fundamental
ideas. By proving theorems from algebraic topology using discrete geometry
the results become more accessible to non-topologists, something important
as there are many useful results in algebraic topology.

In this thesis some topics from discrete geometry together with their con-
tinuous analogs in topology will be discussed together with some interesting
corollaries, the Ham Sandwich thorems. The proofs in the thesis mainly
follows others results and all sources can be found in the bibliography.

We will start with an introduction to the notation and concepts used in
the thesis before moving on to the theorems.
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Chapter 2

Concepts and notation

2.1 Important concepts and notation

The proofs and theorems in this thesis use concepts from mainly discrete
geometry together with some algebraic topology. Concepts that are of use
in specific contexts are introduced where they are being used while more
fundamental ideas are introduced here together with some notation.

Notation. A boldface character, i.e. x denotes a point in Rn, while a
normal character, i.e. x, denotes a real number. We usually write x =
(x1, x2, x3, ..., xn) where xi is the ith component of x. If f : Rn 7→ Rm, f(x)j

denotes the j:th component of f(x).

Notation. A centered dot, x ·a denotes the standard scalar product of x and
a where x and a are vectors in Rn. The scalar product is defined as follows.

x · a = (x1, x2, ..., xn) · (a1, a2, ..., an) = (x1a1, x2a2, ..., xnan)

The same notation will sometimes be used for normal multiplication.

Definition. Two geometrical objects are said to be homeomorphic if there
exists a continuous bijection between them with a continuous inverse.

A more intuitive description of homeomorphism might be to say that
two geometric objects are homeomorphic if they can be deformed into each
other using continuous deformation where the objects are allowed to pass
through themselves. For example, a sphere is homeomorphic to a cube, a
circle is homeomorphic to a simple knot, but a plane and a sphere are not
homeomorphic to each other.

The idea to regard many different shapes as the same with respect to some
rule, for example homeomorphism, is used in all branches of mathematics.
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For a more complete definition of homeomorphism, please see [1] or an-
other book on algebraic topology.

Definition. A hyperplane H is a (n-1)-dimensional subspace of Rn defined
as

H = {x ∈ Rn|x · a = b, a ∈ Rn},

where we choose an a such that b > 0. For n = 3 , a hyperplane is a normal
two dimensional plane in R3.

Definition. A half-space H+ or H− is a subset of Rn defined using a
hyperplane H. Let H be as above, then

H+ = {x ∈ Rn|x · a > b, a ∈ Rn}

H− = {x ∈ Rn|x · a < b, a ∈ Rn}

H+ is called the upper halfspace defined by H, and H− is called the lower
half space defined by H.

Definition. A function f : A 7→ B where A and B are metric spaces (a
space with a distance function) and dA and dB are their distance functions
respectively, is uniformly continuous if for every ε > 0 there exists a
δ > 0 such that

dA(x, y) ≤ δ, x, y ∈ A ⇒ dB(f(x), f(y)) ≤ ε.

This means that there for every ε, exists a δ such that if two points in A

are within δ of each other, their images under f are at most a distance of ε

apart.
Note that every continuous function defined on bounded sets are uniformly

continuous.

2.1.1 Something about proofs

Note. Many of the proofs in the thesis make use of the following fact: if
A ⇒ B we also have that ¬B ⇒ ¬A, meaning that if you prove that A

implies B you have also proven that if B is false, so must A be. This is
very useful in proving theorems declaring the nonexistence of different kinds
of functions.
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Definition. A constructive proof of a theorem is a proof that also supplies
an algorithm for finding the objects in the proof.
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2.2 Introduction to discrete geometry

Discrete geometry is the mathematical study of discrete geometrical objects
and their combinatorial properties. Most commonly, discrete geometry stud-
ies finite sets of points, lines and simplices. A typical question in discrete
geometry could be "how many lines are required to form three bounded re-
gions in a plane?" or "is it always possible to bisect two point sets in R2 using
a line?".

Discrete geometry focuses on combinatorial properties such as number
of objects or dimensions while ideas such as distance, volume, angle, and
curvature usually are left out. It has big overlaps with fields such as graph
theory, combinatorial topology, and combinatorics.

Discrete geometry is not only useful for answering typical geometrical
questions, but can be used to prove theorems from many different fields
of mathematics. Proofs making use of discrete geometry often have the
properties that they are intuitive and easy to understand as they usually
make use of only fundamental mathematical concepts.

In this section some of the basic concepts of discrete geometry as well
as some of the techniques that will be used later on will be discussed. All
geometric objects are assumed to be placed in Rn if not stated otherwise.

2.2.1 Basic concepts in discrete geometry

The fundamental building block of discrete geometry is the simplex. An
n-dimensional simplex, called an n-simplex, can be said to be the simplest
shape in n dimensions that still has a volume (or the dimension equivalent).
They are defined as follows.

Definition. A n-simplex is a set of n + 1 affinely independent points and
the smallest convex hull that contains them. The points are called the vertices
of the simplex.

For example, a 1-simplex is a line, a 2-simplex is a triangel, and a 3-
simplex is a tetrahedron. They are illustrated in figure 2.1 below.
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Figure 2.1: A 1-simplex, a 2-simplex, and a 3-simplex.

Every simplex is built up by a number of smaller simplices. As seen in
the illustration above, a 2-simplex consists of 3 1-simplices and a 3-simplex
consists of 4 2-simplices. More generally, a n-simplex consists of n+1 (n−1)-
simplices. This is used to define the notion of faces.

Definition. A face of a simplex is the convex hull of a subset of the vertices.
Since each such subset also will be affinely independent, each face is a simplex.
Every n-simplex contains exactly n + 1 (n − 1)-simplices.

Simplices can be combined together to simplical complexes to form more
advanced shapes. When we replace a shape with a simplical complexes we
say that we have triangulated it. We make the following definitions.

Definition. A simplicial complex is a union of simplices such that every
two simplices meet in a simplex.

Definition. A triangulation of a geometric object A ⊂ Rn is a set of
simplices T = {σi} such that:

• ∪iσi = A

• For any σj, σk ∈ A, σj ∩ σk is either empty or a face of both σj och σk.

The notation f : T 7→ A where T is a triangulation and A is any set, will
mean that f is a function from the vertices of the simplices in T, not from
the simplices themselves.

In two dimensions the triangulation of an area is the division of the area
in to a number of triangles. It has been shown that all shapes with a con-
tinuous boundary can be triangulated, but some requires an infinite amount
of triangles. Triangulation is generalized to higher dimensions by replacing
triangles with the corresponding simplex. A triangulation of a set is thus a
simplical complex.

For a more complete discussion and definition of triangulation, please see
[1] or another book on discrete geometry or topology.

We also make the following definition.
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Definition. A triangulation T is called symmetric if for every vertex a ∈
T , −a is also a vertex in T.

A common method in discrete geometry is to use labelings of simplices
or simplical complexes. This means that a value is assigned to every vertex
and will be described as a function from the vertices to some set of values.
As simplical complexes can be interpreted as discrete versions of continuous
objects, a labeling of the complex can thus be seen as a discrete counterpart
to a function from points on the continuous object to some set.

Definition. A simplex is said to have a complementary edge under a
labeling function if it contains two adjacent vertices whose labels sum to zero,
meaning that they have the same value but opposite sign. A triangulation has
a complementary edge if it contains a simplex with at least one.

Many of the theorems that will be discussed later concerns the n-sphere,
usually denoted by Sn, and the triangulation of it. It is though not possi-
ble triangulate an ordinary sphere using a finite number of simplices which
makes many of the later proofs much more complicated. Due to that, only
the combinatorial n-sphere, Σn, will be discussed. We make the following
definition.

Definition. Σn denotes the combinatorial sphere which is defined as

Σn = {x ∈ Rn+1 :
n+1
∑

i=1

|xi| = 1}

We also define the combinatorial ball Ωn as

Ωn = {x ∈ Rn :
n
∑

i=0

|xi| ≤ 1}.

Σn can be viewed as a n-dimentional octahedron and is illustrated for
n = 1 and n = 2 below.
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Figure 2.2: Illustration of Σ1 and Σ2.

As Σn is homeomorphic Sn, and Ωn is homeomorphic to Bn, every result
we will find in this thesis regarding Σn and Ωn also applies for Sn and Bn

respectively. For a more complete discussion of this please see [1].
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Chapter 3

Tucker’s lemma, the

Borsuk-Ulam theorem and

Fan’s N+1 theorem

The first theorem that will be introduced is the Borsuk-Ulam theorem, a
famous result from algebraic topology. A short sketch of the proof of the
theorem will also be given. We will then look at Tucker’s lemma and Fan’s
N+1 theorem which are two combinatrial theorems equivalent to the Borsuk-
Ulam theorem. After the theorems are introduced the equivalence of the
theorems will be proved.

3.1 The Borsuk-Ulam theorem

The Borsuk-Ulam theorem is one of the most useful theorems from algebraic
topology with interesting applications in many different fields of mathemat-
ics. The theorem is named after Stanislaw Ulam, who conjectured it, and
Karol Borsuk, who proved it in 1933. The Borsuk-Ulam theorem is inter-
esting for many reasons. It can, first of all, be stated in many different but
equivalent ways, and it has many interesting corollaries. For example the
Ham Sandwich theorems which concerns measure theory, discrete geome-
try, and theory of polynomial. The Borsuk-Ulam theorem will later be used
to prove those theorems, but first we will look at four of its many versions.
These versions are chosen since they are easy to understand, even for an high
school student, and have direct consequences for the later theorems that will
be investigated.

Theorem 1. The Borsuk-Ulam Theorem (BU1).
For every continuous mapping f : Σn 7→ Rn there exists a point a ∈ Σn such
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that f(a) = f(−a).

This is usually popularized by saying that there always are two antipodal
places on earth with the same temperature and air pressure. In this case
n = 2, and we have assumed that the function from every place on earth to
the temperature and air pressure is continuous. Another way of exemplifying
it for 2-spheres is to say that if you take a ball and deflate it, and lay it flat
on the floor, there will always be two points lying on top of each other that
were antipodal before the deflation.

Many of the theorems and the coming proofs uses what is called antipodal
functions, which are continuous functions that maps antopodal points to
antipodal points. Formally they are defined as follows.

Definition. A function f : A 7→ B is called an antipodal function if it is
continuous and maps antipodal points in A to antipodal points in B, meaning
that f(x) = −f(−x) for all x ∈ A.

Antipodal functions are sometimes called odd functions when defined
from Rn, but looking at spheres the notion of antipodality makes more sense.

Using antipodal functions, some of the equivalent versions to (BU1) can
now be given.

Theorem 2. The Borsuk-Ulam Theorem (BU2).
For every antipodal mapping f : Σn 7→ R

n there exists a point a ∈ Σn such
that f(a) = 0.

Theorem 3. The Borsuk-Ulam Theorem (BU3).
There exists no antipodal mapping f : Σn 7→ Σn−1.

Theorem 4. The Borsuk-Ulam Theorem (BU4).
There exists no continuous mapping f : Ωn 7→ Σn−1 satisfying f(x) =
−f(−x) for all x ∈ Σn−1. Note that Σn−1 = ∂Ωn ⊂ Rn.

These different theorems may appear quite dissimilar from each other,
but as we soon will see the proofs for their equivalences are very short,
and sometimes close to trivial. Most continuous functions from Rn to itself
may not have the required properties for the theorems to apply, but it is
often possible to construct new functions with these properties using other
functions. I.e. let f : Σn 7→ R

n be a continuous function and consider the
functions h(x) = f(x) − f(−x) and g(x) = f(x)

|f(x)|
with (g(x) , 0). It is easy

to verify that h is an antipodal mapping and must thus have a zero, which
gives us some insight about f , and that g : Σn 7→ Σn−1. We will now use
such constructions to see why all these statements are equivalent.
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3.1.1 Proof of the equivalence of the different versions

The equivalence of the different statements will be shown in the following
order by showing implications in both directions.

(BUA1) ⇔ (BUA2) ⇔ (BUA3) ⇔ (BUA4)

Proof. (BU1) ⇒ (BU2).
(BU1) gives that every continuous mapping f : Σn → Rn has a point a ∈ Σn

such that f(a) = f(−a). But if f also is antipodal, then f(x) = −f(−x)
for all x. This can only be true if f(a) = f(−a) = −f(−a), and f(−a) =
−f(−a) only has the solution f(a) = 0 and we get that (BU1) ⇒ (BU2) �

Proof. (BU2) ⇒ (BU1).
Let g : Σn 7→ R

n be a continuous function and let f(x) = g(x) − g(−x).
It is clear that f(x) is an antipodal mapping. (BU2) states that there is a
point a ∈ Σn such that f(a) = g(a) − g(−a) = 0. But this is only true if
g(a) = g(−a), and thus (BU2) ⇒ (BU1). �

Proof. (BU2) ⇒ (BU3).
We start by noting that an antipodal mapping h : Σn 7→ Σn−1 is also a map
h : Σn 7→ Rn as Σn−1 ⊂ Rn. As Σn−1 does not contain the origin, h can not
have a zero which contradict (BU2) and thus h can not exist, giving that
(BU2) ⇒ (BU3). �

Proof. (BU3) ⇒ (BU2).
Assume to show contradiction that there is an antipodal map f : Σn 7→ R

n

without a zero. As f(x) has no zeroes we can define an antipodal function
g(x) like this:

g(x) =
f(x)

|f(x)|
.

It is clear that g : Σn 7→ Σn−1, composing it with the obvious homeomor-
phism (which may be choosen to be antipodal) it is clear that we get a map
Σn 7→ Σn−1. But such a map can not exist according to (BU3) and thus can
f not exist either, which gives (BU3) ⇒ (BU2). �

For the last two proofs a projection function from Σn to Ωn will be used.
Will call it θ and it is defined as

θ(x) = θ(x1, x2, x3, ..., xn−1, xn) = (x1, x2, x3, ..., xn−1)

Further more, let θN denote the same map, but defined only from the
upper hemisphere of Σn. The upper hemisphere of Σn is defined as
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{x ∈ Rn+1|x1 + x2 + x3 + ... + xn ≤ 1 and xi ≥ 0}.

This makes θN is bijective and thus it has an inverse, θ−1
N .

Proof. (BU3) ⇒ (BU4).
Assume to show contradiction that there is an antipodal mapping h : Ωn 7→
Σn−1. Define q(x) = h(θ(x)). Thus q : Σn 7→ Σn−1, and as h is antipodal, so
must q be. But (BU3) states that there is no such mapping, giving that the
starting assumption is false and we have that (BU3) ⇒ (BU4). �

Proof. (BU4) ⇒ (BU3).
If there is an antipodal continuous map f : Σn 7→ Σn−1 then the map g :
Ωn 7→ Σn−1 defined by g(x) = f(θ−1

N (x)) would be antipodal on Ωn which
contradict (BU4) and we get that (BU4) ⇒ (BU3). �

We have now seen that the different statements are equivalent. There
exists more versions of the theorem, mainly concerning coverings of spheres.

3.1.2 Sketch of the proof of the Borsuk-Ulam theorem

There exists many proofs of the Borsuk-Ulam theorem. In a newer one found
in [10], it is first shown that if there exists an antipodal map f : Σn 7→ Σn−1,
then there must exist an antipodal map from Σn−1 to Σn−2. It is then shown
that there exists no antipodal map from Σ2 to Σ1, which by induction gives
(BU3).

A more well-known proof is by using homotopy to show that any antipodal
function f : Σn 7→ R

n must have a zero. A complete proof together with a
more complete discussion can be found in [1], but we give a short overview
of it here.

We want to show that the antipodal map f : Σn 7→ Rn has a zero. Let θ

be the same projection map as above and define

F (x, t) = t · θ(x) = (1 − t)f(x)

with 0 ≤ t ≤ 1.
For fixed t, F (x, t) thus "interpolates" between θ(x) = F (x, 0) and f(x) =

F (x, 1). The domain of F is Σn × [0, 1], which can be visualized as a n + 2
dimensional cylinder. As both f and θ are antipodal, we see that F (x) must
also be antipodal with respect to x, meaning that F (x, t) = −F (−x, t). This
can be interpreted as opposite points on the cylinder is mapped to opposite
points. It is also clear that F is continuous.
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That two functions can be continuously deformed into each other like
this is called that they are homotopic. Using some homotopy gives us that
F −1(0) must consist of closed paths, or paths starting and ending at the top
or the bottom of the cylinder. θ has two zeroes, and this means that F (x, t)
have two zeroes when t = 0. If we follow the path of the zero set from one
of those zeroes, it must either meet the path of the other zero, or end at the
top of the cylinder. As F is antipodal the two path cannot meet, giving that
both must end at the top, i.e. when t = 1. This gives that F (x, 1) = f(x)
must have a zero. We illustrate this in figure 3.1 below.

Figure 3.1: Illustration of F −1(0) (red) of F (x, t) starting at the two points
a and b.

As F (x, t) is antipodal the two paths cannot meet, since if F (a, t) = 0
we also have that F (−a, t) = −F (a, t) = 0, but (a, t) and −(a, t) are on
different paths.
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3.2 Tucker’s lemma

Tucker’s lemma is a combinatorial analog to the Borsuk-Ulam theorem. In-
stead of functions from Σn to Rn, it considers functions from an triangulation
to a discrete set of real numbers.

The theorem was introduced by Alfred Tucker who tried to prove the
equivalence between Sperner’s lemma and Brouwer’s fixed point theorem, a
theorem that will be covered later. After showing the equivalence of the
Borsuk-Ulam theorem and Tucker’s lemma we will look in to Brouwer’s fixed
point theorem and show that Tucker’s lemma in fact does imply Brouwer’s
theorem indirectly.

Theorem 5. Tucker’s lemma.
Let T be a symmetric triangulation of Σn. Then any antipodal labeling

λ : T 7→ {±1, ±2, ±3, ..., ±n}

must assign opposite values to at least one pair of adjacent vertices. We
call such a labeling a Tucker labeling and say that T has a complementary
edge under λ.

Remember that a function from a triangulation by convention is a func-
tion from the vertices of the simplexes in the triangulation and that a sym-
metric triangulation is a triangulation where if a is a vertex of a simplex in
the triangulation, so is −a.

The easiest way to understand this theorem might be to compare it to the
Borsuk-Ulam theorem. Like (BU2), Tucker’s lemma concerns an antipodal
mapping that easily can be extended continuously to the whole sphere.

Tucker’s lemma states the existence of two adjacent vertices in the tri-
angulation with opposite labels under λ. This means that the two vertices
are mapped to opposite sides of zero, and if we make the triangulation finer
and finer the vertices will come closer and closer to each other. This means
that for every ε we can find two vertices that are withing ε distance from
each other and that are mapped to different sides of zero. If we then extend
λ to the whole sphere we know that λ must be zero somewhere on the edge
connecting those two points.

Later, a similar argument will be used to prove the equivalence of Tucker’s
lemma and the Borsuk-Ulam theorem by constructing Tucker labelings using
arbitrary functions from Σn to Rn, and the other way around.

15



3.3 Fan’s N+1 theorem

Fan’s N+1 theorem is another combinatorial analog to the Borsuk-Ulam
theorem. As can be expected, the theorem is also very similar to Tucker’s
lemma. Fan introduced it in 1958 and it is in many ways a better analogue
to the Borsuk-Ulam theorem than Tucker’s lemma. While Tucker’s lemma
has a long history and is widely known, Fan’s N+1 theorem is more useful
for proving some of the later theorems, and this motivates its introduction.

We start by making the following definition.

Definition. A simplex σ = {s1, s2, s3, ..., sm} is said to be alternating un-
der a labeling λ if the following conditions holds.

• If the vertices are indexed such that |λ(si)| ≤ |λ(si+1)|, then |λ(s1)| <

|λ(s2)| < |λ(s3)| < ... < |λ(sm)|.

• If λ(si) is positive then λ(si+1) is negative, and the other way around.

Fan’s N+1 theorem states the existence of at least one such simplex in
every symmetric triangulation of Sn with a Tucker-like labeling. Formally it
is stated as follows.

Theorem 6. Fan’s N+1 theorem Let T be a symmetric triangulation of
Σn and let λ be any antipodal labeling

λ : T 7→ {±1, ±2, ±3, ..., ±n, ±(n + 1)}

such that T has no complementary edges under λ. Then there exists at
least one alternating simplex in T . We call such a labeling a Fan labeling.

Comparing Tucker’s lemma to Fan’s, some interesting differences reveal
them self. If λ is a antipodal labeling function from a symmetric triangulation
T of Σn such that

λ : T 7→ {±1, ±2, ±3, ..., ±n}

we get that there must be an complementary edge, but if λ maps to

{±1, ±2, ±3, ..., ±n, ±(n + 1)}

we either get an complementary edge and/or an alternating simplex.
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3.4 Equivalence of Tucker’s lemma, the Borsuk-

Ulam theorems and Fan’s N+1 theorem

One of the main points in this thesis is the relationship between Tucker’s
lemma, the Borsuk-Ulam theorems and Fan’s N+1 theorem. Before investi-
gating some of their curious corollaries we will show that they implies each
other.

3.4.1 Tucker’s lemma and the Borsuk-Ulam theorem

It is now time to establish the first relationship between a discrete and a
continuous theorem. The method for doing so might appear strange, but is
very similar to those we will use later. The idea is to use a Tucker labeling,
as defined using the function f from (BU1), to create a sequence {xi}

∞
i=0

such that f(xi) → 0 when i → ∞. When the triangulation with the Tucker
labeling is made finer and finer we will see that the two vertices defining the
complementary edge of the triangulation will define the required sequence.

Proof. Tucker’s lemma ⇒ Borsuk-Ulam theorem (BU2).
We want to show that every continuous function f : Σn 7→ Rn has a zero. If
there exists a sequence of points {x}∞

i=0 in Σn such that |f(xi)| ≤ 1
i

for all i

then f(x) must have a zero as Σn is compact. Here the supremum norm will
be used instead of the quadratic norm to define length of a vector.

For every i let Ti be a new symmetric triangulation of the sphere such
that the image of every vertex is within the distance 1

i
from the image of the

vertices adjacent to it. As f is a continuous function from a compact space
it is uniformly continuous, so this is always possible as is easy verified by the
definition of uniform continuity.

Let g : Rn 7→ R be such that g(x) is the index of the the component of x
with the largest absolute value. For example, g(7, 8, −9) = 3.

Let Φ(x) = g(x) · sgng(x)(x) where sgng(x)(x) denotes the sign of the
g(x):th component of x. This means that Φ maps a vector to the index
of it’s largest component times the sign of the component. For example,
Φ(7, 8, −9) = g(7, 8, −9) · sgn(−9) = 3 · (−1) = −3.

For all i we label every simplex σ in Ti with Φ(σ). This is a Tucker labeling
as antipodal points will have opposite signs and Φ : Σn 7→ {±1, ±2, ±3..., ±n}.

Tucker’s lemma gives that there must be two adjacent vertices with op-
posite label in T . Let ai denote the vertex with a positive label. As the
image of the two points under f must be within the distance 1

i
from each

other and have opposite sign of their largest component, their image must
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also be within the distance 1
i

from the origin. Thus {ai}
∞
i=0 is the required

sequence and we get that f must have a zero. �

The next proof goes the other way around. Using a Tucker labeling
we create a continuous function f : Σn 7→ Ωn. We then show that when
f(x) = 0, two adjacent vertices of the triangulation must have opposite
labels.

Proof. Borsuk-Ulam theorem (BU2) ⇒ Tucker’s lemma.
Let T be a triangulation of Σn and let λ be a Tucker labeling of T . Define
f : T 7→ Rn as follows.

f(x) =

{

the λ(x)th unit vector if λ(x) > 0
−f(−x) if λ(x) < 0

(3.1)

We now extend f linearly to the rest of the sphere in such a way that any
simplex is mapped to the simplex spanned by the image of it’s vertices giving
f : Σn 7→ Rn. As vertices with opposite labels are mapped to opposite points
in Rn the same thing is true for any points in Σn. The function f is thus
an antipodal map. As f is antipodal (BU2) states that it must have a zero,
giving that some of the simplices in Rn must contain the origin. But a simplex
with its vertices at plus/minus unit vectors, meaning that the vertices are
of the form (0, 0, ..., 1, ..., 0, 0) or (0, 0, ...., −1, ..., 0, 0), can only contain the
origin if it has at least two vertices with opposite label. And if two vertices
have opposite labels under f they must also have it under λ, meaning that
there must exist a pair of adjacent vertices with opposite labels in T . Note
that every vertex of a simplex has a common edge with every other vertex
of that simplex. �

The idea that a simplex with its vertices at unit vectors must have oppo-
site labels to contain the origin is very intuitive if given a little thought. One
way to think about it is that if the simplex does not have any vertices with
opposite labels, then the simplex is contained at one side of a hyperplane
through the origin and does not contain it.

With the relation between the Borsuk-Ulam theorems and Tucker’s lemma
established it is now time to look at their relations to Fan’s N+1 theorem.

3.4.2 Fan’s N+1 theorem and the Borsuk-Ulam theo-

rem

This proof is somewhat similar to the previous: to prove that Fan’s N+1
theorem implies the Borsuk-Ulams theorem we create a Fan labeling using

18



any continuous function f : Σn 7→ R
n and show that for finer and finer

triangulations of Σn we get a sequence of alternating simplices that converge
towards a single point. We then show that it implies that f has a zero. To
show the other direction we will use an argument involving the dot product
to show that when a function created from an arbitrary labeling of Σn has a
zero, there must be an alternating simplex.

Proof. The Borsuk-Ulam theorem (BU2) ⇒ Fan’s N+1 theorem.
Let T be a symmetric triangulation of Σn with an arbitrary Fan labeling λ

such that there are no complementary edges (in particular it is symmetric).
Let wi ∈ Rn+1 be the point in Rn+1 with n as its i:th coordinate and −1
everywhere else and define w−i as −wi. Further more, define

W+ = {w1, w2, w3, ..., wn, wn+1}

W− = {−w1, −w2, −w3, ..., −wn, −wn+1}

W = W+ ∪ W−.

From the definition of wi it follows directly that

wi · (1, 1, ..., 1) = 0.

This implies that all wi lies in a hyperplane H in Rn+1, defined as follows.

H = {x ∈ Rn+1 : x · (1, 1, ..., 1) = 0}

Now define a function h : T 7→ H in the following way.

h(x) =

{

−wλ(x) if λ(x) is even

wλ(x) if λ(x) is odd
(3.2)

Where w−i = −wi. We extend h linearly to the rest of the sphere by
mapping any simplex to the simplex spanned by the image of its vertices
under h in a continuous way. It follows directly from (3.2) if λ(x) is even
then so is λ(−x) and the converse. Thus is h(x) = wi, then h(−x) = w−i =
−wi, and if h(x) = −wi then h(−x) = −w−i = wi and it is clear that
h(x) = −h(−x) meaning that h is antipodal.

The Borsuk-Ulam theorem (BU2) thus gives that there must be a point
a ∈ H ⊂ Rn+1 such that h(a) = 0. As T does not have any complementary
edges a must be in some n-simplex, σ, and not on an edge. Note that n is
the number of dimensions of the sphere.
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We now prove that σ must be an alternating n-simplex. If we can show
that h(σ) = W− or h(σ) = W+ we are done as definition (3.2) implies that
σ must then be alternating under λ. To see this consider an alternating
simplex ∆ where the even vertices have negative sign. The even vertices will
thus be mapped the set {w1, w3, w5, ...} and the odd vertices are mapped to
the set {w2, w4, w6, ...}. As h is a bijection and ∆ is a n-simplex it is clear
that h(∆) = W+. If the odd vertices of ∆ would have have negatives sign it
follows analogously h(∆) = W−. As a h is a bijection this argument works
the other way around and it is follows that ∆ is alternating if and only if
h(∆) = W+ or W−.

Let K denote the set of the labels of σ under h. We can thus write K =
{wi}i∈A ∪{−wi}i∈B where A and B are disjoint subsets of {1, 2, 3, ..., n, n+1}
as and that K contains n + 1 points or less.

Now define v as the the sum of vectors in K like this:

v =
∑

j∈A

wj −
∑

i∈B

wi

Now consider the standard scalar multiplication of two vectors wi, wj ∈
W . It gives the following.

wi · wj =

{

n(n + 1) if i = j

−n(n + 1) if i , j
(3.3)

Using this we calculate the product of wk and v when k ∈ A and when
k ∈ B. For k ∈ A we get the following.

wk · v = wk ·
∑

j∈A

wj − wk ·
∑

i∈B

wi

=
∑

j∈A

(wk · wj) −
∑

i∈B

(wk · wi)

= n(n + 1) − (|A| − 1)(n + 1) + (|B| + 1)(n + 1)

= (n + 1)(n + 1 − |A| + |B|)

For k ∈ B we get a similar result.

−wk · v =
∑

j∈B

(wk · wj) −
∑

i∈A

(wk · wi)

= n(n + 1) − (|A| − 1)(n + 1) + (|B| + 1)(n + 1)

= (n + 1)(n + 1 − |B| + |A|)
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As K contains the origin there must be a k such that wk · v = 0. This
means that for some k, one of the two expressions above must be equal to
zero. As |A|, |B| ≤ n+1, the only way wk ·v can be equal to or less than zero
is if |A| = n + 1 and |B| = 0 or the converse. This gives that K = W+ or
K = W−, and as stated above, this means that σ must be alternating under
λ. �

Proof. Fan’s N+1 theorem ⇒ the Borsuk-Ulam theorem (BU1)
Let f : Σn 7→ Rn be a antipodal function and assume, to show contradiction,
that there exists no a ∈ Sn such that f(a) = 0. Using f we create a new
function g : Rn 7→ Rn+1 defined as

g(x) = (f(x), −
n
∑

i=0

f(x)i)

Let H be the same hyperplane as earlier.

H = {x ∈ Rn+1 : x · (1, 1, ..., 1) = 0}

This gives that g : Rn 7→ H ⊂ Rn+1. We also note that f(a) = 0 ⇔
g(a) = 0, so by assumption g does not have a zero either.

Define W as in the preceding proof and let λ(x) be a j such that wj is
as close to g(x) as possible. If there exists several wi with the same distance
to g(x) let λ(x) be the index of the wi with the smallest absolute value. We
can also see that λ(x) = −λ(−x) as g(x) = −g(−x), and thus λ induces a
Fan labeling of a symmetric triangulation T of Σn.

By Fan’s N+1 theorem T must have an alternating simplex. We now
make a finer and finer triangulation of Σn so that the alternating simplex
converge to a single point, z. As the vertices of the simplex converges to z
it follows that there for every ε exists a ball of radius ε around z such that
there for any k exists a point in the ball that are of closer to wk than any wj

for all j , k. This means that z are of equal distance of all wi. But the only
point with that property is 0, so

g(z) = 0 ⇒ h(z) = 0.

�

We sum up our findings in the following theorem.

Theorem 7. Fan’s N+1 theorem, Tucker’s lemma and the Borsuk-Ulam
theorems are equivalent.
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Chapter 4

Corollaries

In this chapter two interesting corollaries to the theorems in the earlier chap-
ter are introduced. They are called Sperner’s lemma and Brouwer’s fixed
point theorem. Sperner’s lemma is directly implied by the Fan’s N+1 the-
orem while Brouwer’s fixed point theorem follows from the Borsuk-Ulam
theorem. Both of the theorems have many interesting applications and they
are also equivalent to each other.

4.1 Sperner’s Lemma

Sperner’s lemma is a discrete analogue of Brouwer’s fixed point theorem. Just
as Tucker’s lemma it considers labelings of vertices, but not of triangulations
of Σn, but of n − simplices. We start by making the following definitions.

Definition. Let S = {s1, s2, s3, ..., sn, sn+1} be n-simplex and T a triangula-
tion of it. A labeling function λ is called Sperner labeling if:

• λ : T 7→ {1, 2, 3, ..., n, n + 1}.

• λ(si) , λ(sj) for all i , j, si, sj ∈ S.

• Every t ∈ T located on a face of S has the same label as at least one of
the vertices defining the face.

An n-simplex is said to be completely colored or completely labeled
if every vertex has different labels.

With these definitions in place it is now possible to give the theorem.

Theorem 8. Sperner’s Lemma Every Sperner labeled triangulation of a
n-simplex contains at least one completely colored n-simplex.
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This is easily exemplified in two dimensions. Mark each corner of a tri-
angle with blue, red and yellow respectively. Triangulate the triangle and
give all the vertices on the edges the same color as one of the two vertices
defining the edge, and give every other vertex any of the three colors. The
triangulation will then contain at least one completely colored triangle. The
result could look like figure 4.1 below.

Figure 4.1: Illustration of Sperner’s lemma in 2 dimensions with the com-
pletely labeled triangles marked with green.

Sperner’s lemma can be extended to the statement that every Sperner
labeled triangulation of Σn contains an odd number of completely colored
simplices. The proof can be found in [9].

4.1.1 Implication from Fan’s N+1 theorem

There exists direct proofs of Sperner’s lemma using both Fan’s N+1 theorem
and Tucker’s lemma. Fan’s N+1 theorem will be used here as the proof
is both shorter and uses more fundamental techniques. Some knowledge of
group theory is required though.

Proof. Fan’s N+1 theorem ⇒ Sperner’s lemma.
Let ∆n be a triangulated n-simplex with a Sperner labelling λ. We extend
the triangulation to the whole Σn by reflecting copies of the triangulation
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the rest of the Σn. We call this triangulation T . Let G denote the group of
symmetries that arise through the reflections of points to different sides of
Σn. What is happening when a point is reflected to any of the other side of Σn

is that some of it’s components shifts signs. Every g can thus be represented
as a vector with ±1 as its entries, where g:s action on a point v is defined
as gv = (g1v1, g2v2, ..., gn+1vn+1). For example, g′ = (−1, −1, ..., −1) reflects
point to its antipodal point. The reflection of the vertices of a triangle in Σ2

is illustrated in figure 4.2.

Figure 4.2: Illustration of the reflection of a simplex under G for n = 2.

For every simplex σ ∈ Σn we define gσ as the simplex spanned by the
vertices that arise when g acts on the vertices of σ. We can now observe that
T = {gσ : σ ∈ Σn, g ∈ G} and thus extend λ to Σn calling it L. It is defined
as follows.

L(gv) = gλ(v) · (−1)λ(v)+1 · λ(v) (4.1)

Where gλ(v) denotes the λ(v)th component of the vector representing the
reflection g. Note that |gλ(v)| = 1. This means that λ(v) and L(gv) have
the same absolute value, but possibly different signs. For ge = (1, 1, 1, ..., 1)
and a completely colored simplex σc we get that L(geσc) gets an alternating
labeling under L, as can verified by equation (4.1). Fan’s N+1 theorem states
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that there always exists such a simplex, and as λ only orders positive number
to vertices the only way to get a alternating simplex under L is for g = ge.
But ge is the unit element of G, so the alternating simplex must be in ∆n.

For this proof to hold we must also show that L induces a Fan labeling of
Σn. As λ : T 7→ {1, 2, 3, ..., n, n + 1} and L assigns the same labels as λ, but
with possibly different signs we get that L : Σn 7→ {±1, ±2, ±3, .., ±n, ±(n +
1)}. By construction we also get that L(v) = L(−v) which is easily verified
via equation (4.1) by acknowledging that −v = (−1, −1, −1, ..., −1)v. Thus
L induce a Fan labeling of Σn and the proof is complete. �
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4.2 Brouwer’s fixed point theorem

Brouwer’s fixed point theorem is somewhat of a mathematical superstar with
many interesting and useful applications. Due to this, much effort has been
put into proving and investigating it. Many of the theorems in this thesis was
found and investigated in the search for a intuitive and constructive proof of
the theorem. Brouwer’s fixed point theorem is also equivalent to Sperner’s
lemma.

Theorem 9. Brouwer’s fixed point theorem (BFP).
Every continuous function f : Ωn 7→ Ωn has a fixed point, meaning that there
exists an a ∈ Ωn such that f(a) = a.

This is also true for all shapes in Rn homeomorphic to Ωn, for example
Bn.

This means that if you shake a bottle of water one point in the liquid will
always return to it’s original position or that if you take a paper laying on a
table, crumple it, and put it back on the same spot, at least one point in the
paper will be right above its original position.

4.2.1 Implication from the Borsuk-Ulam theorem

Due to the earlier shown relations between the different theorems, and the
statement that Brouwer’s fixed point theorem is equivalent to Sperner’s
lemma, we can expect that Brouwer’s fixed point theorem should be implied
by the Borsuk-Ulam theorem. The proof is given below.

Proof. Borsuk-Ulam theorem (BU4) ⇒ Brouwer’s fixed point theorem.
Assume, to show contradiction, that there is a function f : Ωn 7→ Ωn with
no a such that f(a) = a. Define g : Ωn 7→ Σn−1 like this: starting from f(x)
draw a line thorough x and let g(x) be the first point on Σn−1 that is also
on the line. If there is an a such that f(a) = a, then g(a) would not be
well-defined. But by assumption, there is no such a so g is well-defined and
continuous. For points on Σn−1 it is clear that g(x) = x, g is thus antipodal
on Σn−1. But according to (BU4) there exists no such function, so the
assumption must be false and we can conclude that (BU4) ⇒ (BFP ). �

26



4.3 Equivalence of Sperner’s Lemma and

Brouwer’s Fixed Point theorem

Sperner’s lemma and Brouwer’s fixed point theorem is, as mentioned earlier,
equivalent. The proof of that Sperner’s lemma implies Brouwer’s fixed point
theorem is given below, while the implication in the other direction is not
shown as the proofs requires some understanding of algebraic topology. One
proof of this implication can be found in [3].

The proof that Sperner’s lemma ⇒ Brouwer’s fixed point theorem uses a
concept called barycentric coordiantes. We give an short introduction to it.

Barycentric coordinates is a coordinate system in which the location of
points is described as the center of mass in a given simplex when weights
are placed at the vertices of the simplex. The weights are denoted ηi and
we write xη = (η1, η2, ..., ηn, ηn+1). The weights are then normalized so that
η1 + η2 + ... + ηn + ηn+1 = 1. A more complete definition can be found in
[4]. The coordinates of some points written in barycentric coordinates is
illustrated below for two dimensions.

Figure 4.3: Some important points in barycentric coordinates.

Proof. Sperner’s lemma ⇒ Brouwer’s fixed point theorem.
We want to show that every f : Ωn 7→ Ωn has a fixed point. For every ε > 0
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we triangulate Ωn such that every vertex is within distance ε from every
vertex adjacent to it. We start by noting that

η1 + η2 + η3 + ... + ηn + ηn+1 =

f(xη)1 + f(xη)2 + f(xη)3 + ... + f(xη)n + f(xη)n+1 = 1

This means that there exists at least one j ∈ {1, 2, 3, ..., n, n+1} such that
ηj ≤ f(xη)j. We now induce a Sperner labeling of the vertices by labeling
every vertex of the triangulation with one of the j:s that fulfill this in the
given vertex.

Sperner’s lemma now gives us that there always exists a completely col-
ored triangle. In this case it means that there exists a simplex where the
different vertices are larger than different components of their image under
f . As ε → 0 the complete simplex will shrink towards a point, zη. For each
such a simplex we get that

η1 ≤ f(zη)1, η2 ≤ f(zη)2, η3 ≤ f(zη)3, ..., ηn ≤ f(zη)n, ηn+1 ≤ f(zη)n+1

This, combined with

f(xη)1 + f(xη)2 + f(xη)3 + ... + f(xη)n + f(xη)n+1 = 1,

gives that f(zη) = zη. zη is thus the fixed point. �
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4.4 Conclusion

We have now discussed some theorems and their relation. We sum up our
findings in Figure 4.4.

Borsuk-Ulam theoremFan’s N+1 theorem

Brouwer’s fixed point
theorem

Sperner’s lemma

Tucker’s lemma

Figure 4.4: The relation between the theorems.

The proofs of the theorems equivalence have shown a clear connection
between continuous and discrete theorems by extending labelings to continu-
ous functions and the reverse. This is a very neat result that strengthen out
initial claim of the existence of combinatorial interpretations of topological
theorems.

Looking at this figure one is urged to ask whether there exists direct
proofs in other directions as well. Does it for example exist a direct proof of
Tucker’s lemma from Sperner’s lemma?

It is now time to leave these theorems to look at some interesting corol-
laries.
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Chapter 5

The Ham Sandwich theorems

We now leave the subject of relations between combinatorial and continuous
theorems to look at some of the interesting corollaries of the earlier theo-
rems. We will start with the Ham Sandwich theorem for measures which is
implied by the Borsuk-Ulam theorem and then show that the Ham Sandwich
theorems for measures implies a number of interesting results concerning the
bisection of different kinds of measures and discrete sets in Rn.

5.1 The Ham Sandwich theorem for measures

The Ham Sandwich theorem for measures, some times called just the Ham
Sandwich theorem, was introduced for three dimensions by Hugo Steinhaus
in a paper from 1938 [5] and later generalized to all dimensions by Stefan
Banach. The theorem states that given n not necessarily disjoint subsets of
R

n with finite measure, there always exists a hyperplane that bisects them
simultaneously with regard to the given measure. A measure is a function
that assigns a value to a set that fulfill our intuitive perception of size. For
example, for a measure µ of a set A, µ(A) ≥ 0 with equality if A = ∅, and
the measure of a union of disjoint sets is equal to the sum their individual
measures. That a set A has a finite measure means that µ(A) < ∞. A
complete introduction to measure theory can be found in [6].

We make the following formal definition of bisection.

Definition. Let A+ = A ∩ H+, where H+ is a halfspace defined by the
hyperplane H. Then H is said to bisect A with regard to the measure µ if
µ(A+) = 1

2
µ(A).

The Ham Sandwich theorem for measures is stated as follows.
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Theorem 10. The Ham Sandwich Theorem for measures (HSTM).
Let A1, A2, A3, ..., Am be sets in Rn that have finite measures with m ≤ n.
Then there exists a hyperplane that bisects all of the sets with regard to the
given measure.

The theorem got its name from a common popularization of the theorem
stating that a sandwich with bread, ham and cheese can be bisected with a
strait cut such that both halves contains equal amounts of bread, cheese and
ham.

The proof of the theorem follows form a clever use of the Borsuk-Ulam
theorem (BUT1) by introducing a function from Σn−1 to Rn−1. The function
relates every point on the sphere to the measure of each set on a given side
of a hyperplane uniquely defined for every set of antipodal points in Σn.

Proof. Let A1, A2, ..., Am be sets in Rn with m ≤ n such that µ(Ap) ≤ ∞,
where µ(Ap) denotes the measure of Ap. Now place a (n − 1)-dimensional
sphere in Rn. For every point s in Σn−1 let ~s denote the vector from the
center of the sphere to s.

Now define h : Σn−1 → R
n−1 in the following way. For every s there

exists exactly one hyperplane Hs that bisects A1 and is orthogonal to ~s. Let
h(s) = (µ(As

2), µ(As
3), ..., µ(As

n)) where µ(As
p) is the measure of the part of

Ap on the side of the Hs from which ~s points out.
As the same hyperplanes are orthogonal to ~s and −~s, but they point in

opposite directions, we get that h(s) + h(−s) is the same thing as adding
together the measure of each set from both side of the hyperplane giving that

h(s) + h(−s) = (µ(A2), µ(A3), µ(A4), ..., µ(Am))

We also note that h is continuous and can thus apply the Borsuk-Ulam
theorem stating that there exists a point a such that h(a) = h(−a) giving

2h(a) = (µ(A2), µ(A3), µ(A4), ..., µ(Am)).

This implies that

h(a) =
(µ(A2), µ(A3), µ(A4), ..., µ(Am))

2
= (

µ(A2)

2
,
µ(A3)

2
,
µ(A4)

2
, ...,

µ(Am)

2
).

This shows that the hyperplane paired with a is bisecting all the sets
with regard to the given measure. �

It is important to note that neither the theorem nor the proof gives us
any idea of how to find such a hyperplane.
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5.2 The Discrete Ham Sandwich theorem

The discrete Ham Sandwich theorem covers finite point sets Rn. For point
sets we will use a somewhat strange definition of bisection where we say that
a hyperplane bisects a point set Ai when each of the half spaces defined by
the hyperplane contains at most ⌊1

2
|Ai|⌋ of the points from Ai. ⌊x⌋ denotes

the integer part of x, i.e. ⌊3.5⌋ = 3 or ⌊−7.35⌋ = −7, and |Ai| denotes the
number of elements of Ai.

This definition has many useful and interesting aspects. For example, we
will only need to prove our theorem for sets of odd cardinality as adding a
point to any of the sets will not affect whether a hyperplane bisects the set
or not. It also means that if a set has odd cardinality, a hyperplane must
contain at least one point from it in order to bisect it.

Theorem 11. The Discrete Ham Sandwich Theorem.
Let A1, A2, A3, ..., Am be finite point sets in Rn with m ≤ n. Then there exists
a hyperplane that bisects all of the sets simultaneously.

We make the following definition.

Definition. A point set in Rn is said to be in general position if every
hyperplane in Rn contains at most n points from it.

We introduce a lemma.

Lemma.

Let A1, A2, A3, ..., Am be finite point sets in Rn with m ≤ n and A1 ∪ A2 ∪
A3 ∪ ... ∪ Am in general position. Then there exists a hyperplane that bisects
all of the sets simultaneously.

Proof. Let A1, A2, A3, ..., Am be the finite point sets in Rn given in the lemma
above, but assume that m = n. Start by removing an arbitrary point from
every set of even cardinality so that all sets contains an odd number of points.
For every ε > 0 let Aε

i arise from every point set Ai by placing a ball of n

dimensions with radius ε around every point in Ai. We can then apply the
Ham Sandwich theorem for measures giving that there must be a hyperplane
that bisects all of the A′

i. We call that hyperplane H. As all of the sets have
odd cardinality H must intersect at least one point from each of the sets.
As the sets are in general position, for sufficient small ε every hyperplane
intersects at most n balls, meaning that H intersects exactly one point from
each set. In order of H to bisect each Aε

i , H must pass through the center
of the balls. Thus H bisects every Ai.

As this is true for m = n, it is also true for m ≤ n sets as removing some
sets will not affect whether the hyperplane bisect the other sets or not. �
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The lemma can now be used to prove the Discrete Ham Sandwich theo-
rem.

Proof. Now let A1, A2, A3, ..., Am be the finite point sets in Rn from the the-
orem above. For every γ > 0 let Ai,γ arise from Ai by moving every point by
a distance of at most γ such that the union of the sets is in general position.
For every γ the lemma above gives that there exists a hyperplane that bisect
each Ai. Let denote that hyperplane by Hγ.

We can write Hγ = {x ∈ Rn|x ·aγ = bγ}. Due to compactness there must
exist a point (a, b) such that when γ → 0, (aγ, bγ) → (a, b). Let H be the
hyperplane such that Hγ → H when (aγ, bγ) → (a, b).

For every γ small enough, if a point is at distance δ > 0 from H, it must
also be at least 1

2
δ from Hγ. Thus if the half-space determined by H contains

t points from Ai, the corresponding half-space from Hγ must contains at least
t points from Ai,γ. It follows that H bisects each Ai. �
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5.3 The general Position Ham Sandwich The-

orem

For sufficiently separated point sets it is possible make a stronger statement
than the discrete Ham Sandwich theorem. The theorem is stated as follows.

Theorem 12. The General position Ham Sandwich theorem.
Let A1, A2, A3, ..., Am be finite point sets in Rn with m ≤ n and A1 ∪ A2 ∪
A3 ∪ ... ∪ Am in general position. Then there exists a hyperplane that bisects
all of the sets and contains at most one point from each set.

Proof. Let H0 be the hyperplane that bisect all the sets according to (HSTD).
Either this hyperplane fulfills the requirements from the theorem and we are
done, or it contains too many points from some of the sets. We also note
that the hyperplane can contain at most n points from any set, as the sets
are still in general position. As the points in H0 are affinely independent we
can adjust H0 so that any point in it is no longer in it, but in any of the two
halfspaces defined by H0. We give a short motivation for this.

Add a number of points to the hyperplane H0 such that it contains exactly
n points. In Rn, n points defines a hyperplane. For any point ai ∈ H0 that
we do not want to have in the hyperplane, let aε

i arise from ai by moving it
at most a distance of ε > 0 away from ai into any of the halfspaces. For every
other point let ai = aε

i . Let Hε be the hyperplane that is defined from all
of the aε

i . For a small enough ε the points will still be affinely independent,
and Hε will not have moved to contain any new point.

This shows that it is always possible to move H0 so that it does not contain
more than one point from any Ai, and decide into which halfspace every point
should be added, without adding any new points to the hyperplane. �

This reasoning can be extended further to make a number of different
statement about different cuts of point sets in general position. For example
it is possible to find a cut with a hyperplane that does not contain any points
if we allow sets with odd cardinality to have up to one more point in one of
the half-spaces.
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5.4 The Polynomial Ham Sandwich Theorem

We will conclude the thesis with the polynomial Ham Sandwich theorem.
The polynomial Ham Sandwich theorem is in many ways more advanced
than the earlier theorems and is mainly used in algebraic geometry. There
are mainly two reasons for presenting it in this context. First of all it can be
formulated in a way similar to the other Ham Sandwich theorems and, even
more important, we will use the discrete Ham Sandwich theorem to prove
it. One big difference from the earlier theorems is that the Polynomial Ham
Sandwich theorem can be applied for any number of sets in any dimension.
The theorem is stated as follows.

Theorem 13. The Polynomial Ham Sandwich Theorem.
Let A1, A2, A3, ..., Am be finite point sets in Rn, and let d be the smallest
integer such that m ≤

(

n+d−1
d

)

and let k =
(

n+d−1
d

)

. Then there exists a

non-zero polynomial p(x) = R[x1, x2, x3, ..., xn] of at most degree k such that
p(x) bisects all of the sets.

That a polynomial bisects a point set means that p(x) > 0 in at most
⌊1

2
|Ai|⌋ points in each Ai and p(x) < 0 in at most ⌊1

2
|Ai|⌋ points in each Ai.

The proof of the theorem uses a function called the Veronese map. Using
it, all sets will be mapped to a space of appropriate dimension where the
discrete Ham Sandwich theorem states that there must be a hyperplane that
bisects all of them. The hyperplane will then be used to construct the desired
polynomial. The Veronese map is defined as follows.

Definition. The Veronese map Φd of degree d is the map that send x =
(x0, x1, x2, ..., xn) to the vector whoose coordinates are the values of all distinct
monomials of degree d that can be formed with the varibles x0, x1, x2, ..., xn.
Formally,

Φd : Rn 7→ Rk with k =

(

n + d − 1

d

)

.

We give some examples.

• For d = 2 and n = 2 we get k = 3 and

Φ2 : (x0, x1) 7→ (x2
0, x0x1, x2

1)

• For d = 3 and n = 2 we get k = 4 and

Φ3 : (x0, x1) 7→ (x3
0, x2

0x1, x0x
2
1, x3

1)
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• For d = 3 and n = 3 we get k = 10 and

Φ2 : (x0, x1, x2) 7→ (x3
0, x3

1, x3
2, x2

0x1, x2
0x2, x0x

2
1, x2

1x2, x0x
2
2, x1x

2
2, x0x1x2)

And now the proof.

Proof. Let A1, A2, A3, ..., Am be point sets in Rn and let Φd : Rn 7→ R
k be

the Veronese map of degree d, with d chosen such that m ≤
(

n+d−1
d

)

= k.

Define A′
i = Φd(Ai) for all i. Since each A′

i is contained in Rk and as m ≤ k

the discrete Ham Sandwich theorem gives that there must be a hyperplane
H ⊂ Rk such that H bisects each every A′

i. We write H on the form:

H = {x ∈ Rk|x · υ = b, υ ∈ Rk}

Let H+ and H− be the half-space defined by H. Now consider the poly-
nomial p(x) = Φd(x) · υ − b for a given point x = a in any Ai. We observe
the following:

Φd(a) ∈ H ⇔ Φd(a) · υ = b ⇔ p(a) = 0

Φd(a) ∈ H+ ⇔ Φd(a) · υ > b ⇔ p(a) > 0

Φd(a) ∈ H− ⇔ Φd(a) · υ < b ⇔ p(a) < 0

This means that p(x) > 0 exactly when Φd(x) > 0 and that p(x) < 0
exactly when Φd(x) < 0. As at most ⌊1

2
|Ai|⌋ points are mapped to H+ and

H− respectively we see that p(x) < 0 in at most ⌊1
2
|Ai|⌋ points from each Ai

and that p(x) > 0 in at most ⌊1
2
|Ai|⌋ points from each Ai. By the definition

of bisection it is clear that p(x) bisects every Ai. �
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Chapter 6

Conclusions

In the first chapters some basic discrete geometry was introduced together
with some concepts and notation. We then investigated the relation between
some continuous and discrete theorems, most notably the Borsuk-Ulam the-
orem and its discrete analogues.

One of the main questions concerning the discrete theorems is how to
construct efficient algorithms for finding the points sought in the theorem,
and how the algorithms then can be used to find stationary point for contin-
uous functions. Looking at the proofs in the earlier chapters it is clear that
many of them is actually creating algorithms for finding specific points.

In the later chapters the Ham Sandwich theorems was introduced and we
saw that the Borsuk-Ulam theorem implied all of them in a very neat chain
of implications.

The polynomial Ham Sandwich theorem showed that the earlier results
do not only have a wide range of applications in discrete geometry and in
algebraic topology, but also in the theory of polynomials. This raises the
question whether there exists bisection-theorems in other branches of math-
ematics that can be proved using the Ham Sandwich theorem.

Some other open questions are if there exists equivalences where we have
proven implications, and if there exists a strictly combinatorial proof that
Brouwer’s fixed point theorem implies Sperner’s lemma.
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