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1 Introduction

Ergodic theory is the study of long-term behaviour of transformations. It can help us answer questions
such as:

Is the set {sinn | n ∈ N} dense in the interval [−1,1]?

The answer is yes, since sin(x) is continuous and n mod 2π is dense in [0,2π). This question would
not be possible to answer unless we had some knowledge of the distribution of n mod 2π.

Let us try adding a twist to our example by asking:

Is the set {nsinn | n ∈ N} dense on the real line R?

I don’t have a ready answer to this question, and it may very possibly be an open question. The
problem is related to determining good bounds for how well π can be approximated by rational numbers
p
q (that is: how large does q have to be in order to make |p

q −π|< ǫ?).

A very interesting example in diophantine approximation is the Littlewood conjecture, stating that

liminf
n→∞

n‖na‖‖nb‖ = 0,

for every a,b ∈ R, where ‖na‖ is equal to the distance to the integer closest to na. This is still an open
question, but it has been proved (by Einseidler, Katok, and Lindenstrauss, see [Taoa]) that the set of
exceptions has Hausdorff dimension 0 (that is, the exceptions are basically isolated points).

An answered question of similar flavour is the famous Oppenheim conjecture, solved in 1989 by
Margulis (see [Taob] for a more detailed discussion). It was conjectured in 1929 by Oppenheim, that:

Let Q be a real quadratic form1 in n ≥ 3 variables (he initially considered only ones in five or
more variables), that is indefinite2, non-degenerate3, and not a scalar multiple of a quadratic form with
rational coefficients. Then Q(Zn) is dense on the real line R. That is, to get any real value, it suffices
to evaluate Q at integer points!

To prove this, Margulis settled a special case of Raghunathan’s conjecture. Raghunathan’s conjecture
is a deep observation made in the 1960’s by Raghunathan, which has been generalized in subsequent
steps by many different mathematicians. In one of its many manifestations, Raghunathan’s conjecture
reads:

Let G be a connected Lie group and Γ a lattice in G (Γ\G has finite volume). If φt is a unipotent
flow on Γ\G, then the closure of every φt-orbit is homogeneous (φR(x) = xS, for some closed subgroup
S ⊆G).

The conjecture was resolved in the early 1990’s by Marina Ratner in a series of articles [Rat90b],
[Rat90a] and [Rat91] (all together totalling more than 150 pages). It has since, by among others Ratner,
Shah, and Margulis, been proved for more general Lie groups, and there are different versions of the
conjecture. The one receiving focus in this thesis is Ratner’s measure classification theorem:

Theorem 1.1 Ratner’s Measure Classification Theorem

Let G be a Lie group, Γ a discrete subgroup in G and U a unipotent subgroup of G. Then every ergodic

U -invariant probability measure on Γ\G is homogeneous.

The above theorem will be restated in section 4, and the proof for the case of G= SL(2,R) will be
given, following her article [Rat92]. The proof follows that in the article, but has been expounded on, in
an attempt to make her ideas more transparent and easy to follow. The reader interested in the more
technical details may consult her article.

1A quadratic form is a polynomial in which (possibly) mixed monomials occur, and the total degrees of each monomial
is exactly 2

2Q attains both positive and negative values
3Q can not be written as a quadratic form in fewer variables
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2 Motivation

Consider the circle group S1 = {z ∈ C : |z| = 1} as a differentiable manifold (S1 with complex multipli-
cation and the usual analytical structure), making it into a Lie group.

There is an obvious smooth epimorphism4 from R onto S1 given by R → S1 : r 7→ e2πir. It is
obvious that the map is surjective and that its kernel is Z. This means that we get an induced smooth
isomorphism

R/Z → S1 : r mod 1 7→ e2πir.

In formal language, we say that R is a universal covering group of S1. This allows us to identify R/Z
with S1 under the isomorphism given above.

This construction generalizes to identifying the n-torus Tn (which is given as a direct product (S1)n

of n circles) with the quotient Rn/Zn ∼= (R/Z)n, by the smooth isomorphism

Rn/Zn → Tn : (r1 mod 1, · · · , rn mod 1) 7→ (e2πir1 , · · · ,e2πirn).

The point of this discussion is that we can forget the group structure of Tn and consider it only as
a differentiable manifold. Of course we can still identify it with the differentiable manifold (R/Z)n. We
may then consider the automorphism group Diff(Tn) of diffeomorphisms of the n-torus. We shall write
Tn for the n-torus considered only as a differentiable manifold, and (R/Z)n for the n-torus with the
group structure defined above.

Now, there is an interesting homomorphism from the group (R/Z)n to the group Diff(Tn) given by
the map Rot : r mod 1 7→ Tr, where

Tr : Tn → Tn : (z1, · · · ,zn) 7→ (z1e
2πir1 , · · · ,zne

2πirn).

The name was chosen to highlight the fact that Tr are just rotations of the points on the n-torus, by the
angle (r mod 1)2π. The map Rot maps elements from (R/Z)n to Diff(Tn) in a smooth fashion, since
angles close to each other are mapped in a smooth way to rotations close to each other.

Perhaps more spectacular is the homomorphism given below, from (R/Z)n into the group of smooth
homomorphisms from R to Diff(Tn) (try not to trip up on the notation, the meaning of this will become
clear in the following discussion)5. Define the homomorphism

RectLin : (R/Z)n → Hom(R,Diff(Tn)) : r mod 1 7→ RectLin(r)

where RectLin(r) corresponds to the smooth flow on Tn defined by

φ[r]t(z1, · · · ,zn) = (z1e
2πitr1 , · · · ,zne

2πitrn).

The r in brackets is only present to signify the dependence of the flow on the chosen r (which is the
speed of rotation). These flows are called rectilinear (hence the suggestive name RectLin).

Example 2.1 Rotation of the circle

For the circle group T = R/Z, there is an obvious measure on this group induced by the Lebesgue

measure on R (µ([a,b]) = |b−a|). Let α be some real number and define the (measurable) transformation

Tα : T → T by

Tα(z) = ze2πiα.

It is clear that Tα(z) = zTα(1) and so we only need to focus on the orbit of the point 1, that is the set

{Tn(1) : n= 1,2,3, ...}. Tα is actually the element Rot(α mod 1) defined in the preamble of this section.

The long-term behaviour of the transformation Tα depends on whether α is rational or irrational.

4Surjective homomorphism.
5The group of smooth homomorphisms from R to Diff(Tn) is just the group of smooth flows on Tn under pointwise

addition.
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When α is rational, the orbit of the transformation is finite; that is, we visit a finite number of points

on the circle, before returning to the point from which we started.

More interesting behaviour appears when α is irrational, since then the orbit of the transformation

is dense in the circle, or in other words: almost every point on the circle is visited at least once. The

qualifier almost is used in the sense that the points that are not visited are negligible when integrating.

Of course, the notion of visiting a point becomes blurred in the limit, but the orbit being dense

means that for any given point, the orbit visits points that come closer and closer to the given point as

time increases.

Rational α

When α is rational, we can express it as α= p/q for p,q relatively prime integers. Now it is obvious

that T q
α(1) = (e2πip/q)q = e2πiqp/q = e2πip = e0 = 1 so that T q

α = IdT and hence Tα is periodic (with

smallest period q). The orbit contains exactly q points, since p and q are relatively prime (kp/q = n ∈
Z ⇒ kp= qn⇒ k =mq).

We can construct a set L that is invariant under rotations by this α (that is, rotating the set by α

gives us back the same set - Tα(L) = L), by dividing the circle into small, evenly spaced out, segments

and taking their union. Notice that rotating the segment [e2πi k
q ,e2πi( k

q + 1
2q )] by α= p

q yields the segment

[e2πi( k
q + p

q ),e2πi( k
q + 1

2q + p
q )] = [e2πi k+p

q ,e2πi( k+p
q + 1

2q )]

By taking the union L=
q−1
⋃

k=0

[e2πi k
q ,e2πi( k

q + 1
2q )] (we need q of these segments since the smallest period of

Tα is q), we see that the set is invariant under Tα. The set L has measure µ(L) = q 1
2q = 1

2 (the intervals

are disjoint) but is invariant under Tα and so µ is not ergodic with respect to Tα (see 3.13 for a definition

of ergodicity).

Irrational α

Whenever α is irrational, Tn
α 6= Tm

α for n 6= m, and Tα will be an ergodic action on the circle with

respect to the Lebesgue measure.

To prove that the orbit of Tα is dense on the circle, we need to show that every open set on the circle

is visited by the orbit, or that we can find points on the circle that lie arbitrarily close to any given

point. Let ǫ > 0 be given and consider the (non-periodic) orbit

{Tn
α (1) = e2πinα : n= 0,1,2, ...}.

Let N = N(ǫ) = ⌈1/ǫ⌉6 and divide the circle into N connected parts of equal length. Since {Tn
α (1) =

e2πinα : n= 0,1,2, ...} has infinitely many points, we may use the pigeonhole principle7 to conclude that

there are positive integers n,m, both less than N +1, such that

0< arg(Tn
α (1)T−m

α (1)) = arg(Tn−m
α (1))< ǫ,

where arg(z) stands for the argument of the complex number z. The above inequality expresses the fact

that we can find two points on the circle, Tn
α (1) and Tm

α (1), that lie arbitrarily close to each other.

Now we see that the there is a point in the orbit, Tn−m
α (1), that can be chosen as close to 0 as we

want, so by rotating this point we can get as close to any point on the circle we want. This is expressed

by the fact that T
k(n−m)
α (1) = e2πikδ, for some 0< δ < ǫ, and so any point z ∈ T is at most at a distance

ǫ from a point in the orbit {Tn
α (1) : n= 0,1,2, ...} ⊃ {T

k(n−m)
α (1) : k = 0,1,2, ...}. Since ǫ can be chosen

arbitrarily small, this concludes the proof that the orbit is dense.

6The smallest integer greater than or equal to 1/ǫ.
7The pigeonhole principle says that, if we divide a set into N parts, and choose N + 1 elements from the set, then at

least 2 of the chosen elements will belong to the same part.
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The next example concerns the distribution of a line on the torus.

Example 2.2 Rectilinear flow on the 2-dimensional torus

The (2-dimensional) torus can be expressed as the quotient space T2 = R2/Z2. Given a vector v =

(α1,α2) ∈ R2, we will consider the flow starting from z = (z1,z2)

φt((z1,z2)) = (z1e
2πitα1 ,z2e

2πitα2) = (z1,z2)φt((1,1)).

Since φt(z) = zφt(1) we may, without loss of generality, restrict our discussion to the flow starting from

the point 1 = (1,1).

There are three possible cases to consider, and they are as follows:

1. (The trivial case) α1 = α2 = 0.

The closure of the orbit of the point z is z{φt(1) : t≥ 0} = z{1} = {z} (a single point or T0).

2. At least one of α1 and α2 is not equal to zero, and there exist integers m and n, not

both equal to zero, such that nα1 +mα2 = 0.

Without loss of generality, we may assume that α1 6= 0.

Let nα1 +mα2 = 0 for some integers m and n, not both equal to zero, then we have that n= −mα2

α1
.

There is a unique choice of a such integers m and n having the property that gcd(m,n) = 1, ensuring

that m is non-zero. Having chosen m as such, it is clear that the (smallest) period of the orbit will

be m
α1

:

φ m
α1

(1) = (e
2πi m

α1
α1 ,e

2πi m
α1

α2) = (e2πim,e−2πin) = (1,1) = φ0(1).

This gives us a way to construct a diffeomorphism from T1 to φ[0, m
α1

) = φ[0, m
α1

) (and since the orbit

is periodic, this means that the whole orbit is the 1-torus). Define

π : φ[0, m
α1

) → T1 : (e2πitα1 ,e2πitα2) 7→ e2πi
α1
m t,

which is a diffeomorphism. We have thus proved that the closure of the orbit of the point z, φR(z),

is the 1-torus.

3. nα1 +mα2 = 0 implies that n=m= 0 (implying that both α1 and α2 are non-zero, and

that they are linearly independent over Q). We see that at least one of α1 and α2 is irrational

(otherwise choose m = p2q1,n = p1q2, where αi = pi
qi

). Looking back at the example of rotations

of the circle, we see that the closure of the orbit φR(1) contains every point (1,a), where a ∈ T 1.

Since the orbit is just a straight line, every point will lie in the closure of φR(1).

More generally, for any (α1, ...,αn) ∈ Rn, the orbits of the flow

φt((z1, ...,zn)) = (z1e
2πitα1 , ...,zne

2πitαn)

are subtori Td of Tn for some d ∈ {0,1, ...,n}, where d actually is the rank of α1, ...,αn over Q (the
dimension of their span over Q).

One of the points of this thesis is exploring the generalization of the above result to unipotent flows
on homogeneous spaces (these notions will be explained in section 4 and in the appendix on Lie groups).
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3 Mathematical preliminaries

All measure spaces in this and the following sections are assumed to be Borel probability spaces, unless
otherwise stated.

3.1 Ergodic theory

Two very good (and perhaps the only) introductions to ergodic theory on homogeneous spaces are the
books [BM00] and [EW11]. Everything covered in this section can be found in any of these books.

The aim of this section is not to give a thorough treatment of ergodic theory, but to provide the
ergodic theory needed in the proof of Ratner’s theorem. Anyone interested in the proof of the general
case should also read the account given by Ratner herself in [Rat90b].

Definition 3.1 Measure preserving transformation

A map T : (X,A ,µ) → (Y,B,ν) is called a measure-preserving transformation (m.p.t. for short) if it is

measurable and µ(T−1B) = ν(B) for every B ∈ B. If T−1 is an a.e. defined measurable map, then T is

called an invertible measure preserving transformation. It follows that T−1 is also measure-preserving,

since ν(TA) = µ(T−1TA) = µ(A) for every A ∈ A .

Remark. For a measure preserving transformations T :X →X, the definition becomes that µ(T−1A) =

µ(A), and we will instead say that µ is T -invariant (invariant with respect to T ). This basically means

that volume is invariant under the transformation (moving a set does not change its volume).

Proposition 3.2

A probability measure µ on X is T -invariant if and only if for every f ∈ L1

∫

X
f dµ=

∫

X
f ◦T dµ. (1)

Proof. Suppose that (1) holds for every f ∈ L1. Since µ is finite, the characteristic functions are in L1.

We then have for any measurable A, that

µ(A) =

∫

χA dµ=

∫

χT −1A dµ=

∫

χA ◦T dµ= µ(T−1A).

To show the converse, suppose that µ is T -invariant, then for any characteristic function χA:

∫

χA dµ= µ(A) = µ(T−1A) =

∫

χT −1A dµ=

∫

χA ◦T dµ.

By linearity (1) holds for all simple functions. We just need to show that it holds for every f ∈ L1 by

approximating them with simple functions. To any positive f ∈ L1 there is associated a sequence of

simple functions {fn} as the one in A.10. This may be chosen monotone increasing by A.11.

Let such a monotone increasing sequence be given, then {fn ◦ T} is also a monotone increasing

sequence of simple functions that is a.e. pointwise convergent to f ◦T . Lebesgue’s monotone convergence

gives us that
∫

f ◦T dµ= lim
n→∞

∫

fn ◦T dµ= lim
n→∞

∫

fn dµ=

∫

f dµ.

Since any measurable function f can be decomposed into the sum f+ −f−, where both f+ and f− are

positive measurable functions, the claim follows.

Definition 3.3 Associated operator

Let T be a measure-preserving transformation on (X,A ,µ). Then we have an operator UT : L2
µ → L2

µ

defined by

UT f = f ◦T.
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By 3.2, image(UT ) ⊆ L2
µ. The operator is an isometry since

〈UT f,UT g〉 =

∫

f(Tx)g(Tx)dµ=

∫

f(x)g(x)dµ= 〈f,g〉 .

If T is an invertible measure-preserving transformation UT is a unitary operator and called the associated

unitary operator of T . It is unitary, since if f ∈ L2(µ), then f ◦T−1 ∈ L2(µ), and UT (f ◦T−1) = f , so

UT is surjective.

Theorem 3.4 Mean ergodic theorem

Let T be measure-preserving and I = {f ∈ L2
µ : UT f = f}. Then I is closed and as N → ∞

1

N

N−1
∑

n=0

Un
T f −−→

L2
µ

PT f,

where PT is the orthogonal projection onto I.

Proof. Let B = {UT g− g : g ∈ L2
µ}, then the orthogonal complement to B is I; that is B⊥ = I. It can

be seen that I is closed since if fn(x) ∈ I converges pointwise everywhere to f(x), then UT f(x) also

converges pointwise everywhere to UT f . Since fn = UT fn, it follows that UT f = f . Of course if f ∈ I,

then

〈f,UT g−g〉 = 〈UT f,UT g〉−〈f,g〉 = 0

for every g ∈ L2
µ, since UT is an isometry. Suppose instead that

〈f,UT g−g〉 = 0

for every g ∈ L2
µ, that is

〈UT g,f〉 = 〈g,f〉

for every g ∈ L2
µ. Since the adjoint operator U∗

T of UT is the unique operator such that for for every

g ∈ L2
µ, and any f ∈ L2(µ)

〈UT g,f〉 = 〈g,U∗
T f〉 ,

it follows that U∗
T f = f , since

0 = 〈g,f〉−〈g,U∗
T f〉+ 〈f,g〉−〈U∗

T f,g〉 = 〈f −U∗
T f,f −U∗

T f〉

implies f = U∗
T f . That f is indeed in I can be shown by noting that

‖UT f −f‖2 = 〈UT f −f,UT f −f〉 =

= ‖UT f‖2
2 −〈UT f,f〉−〈f,UT f〉+‖f‖2

2 =

= 2‖f‖2
2 −〈f,U∗

T f〉−〈U∗
T f,f〉 =

= 2‖f‖2
2 −〈f,f〉−〈f,f〉 =

= 0.

This means that we get the decomposition L2
µ = I⊕B, where B denotes the closure of B, so that every

L2
µ ∋ f = PT f +h for a unique h ∈B. It is clear that if UT g−g = h ∈B and f = PT f +h, then

‖
1

N

N−1
∑

j=0

U j
T f −PT f‖2 = ‖

1

N





N−1
∑

j=0

PT f +

N−1
∑

j=0

U j
Th



−PT f‖2 =

= ‖
1

N

N−1
∑

j=0

U j
T (UT g−g)‖2 =

1

N
‖UN

T g−g‖2 ≤

≤
1

N

(

‖UN
T g‖2 +‖g‖2

)

=
2

N
‖g‖2 −−−−→

N→∞
0.
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To show that the convergence holds even if h∈B, consider some sequence hi =UT gi −gi in B converging

to h, then

‖
1

N

N−1
∑

j=0

U j
Th‖2 ≤

1

N



‖
N−1
∑

j=0

U j
T (h−hi)‖2 +‖

N−1
∑

j=0

U j
Thi‖2



≤

≤ ‖h−hi‖2 +
2

N
‖gi‖2 ≤ ǫ+

2

N
‖gi‖2 −−−−→

N→∞
ǫ

where the last inequality holds for any ǫ > 0 and sufficiently large i (depending on ǫ) since hi converge

to h in L2
µ. Since ǫ is arbitrary, we get the desired conclusion.

Remark. The above theorem gives us a (non-unique) decomposition of any f ∈ L1 into components

f = PT f +UT g−g+h,

where UT g− g is an element in {UT g− g} and h is the difference between UT g− g and the component

of f in the closure of {UT g− g}. Given any δ > 0, we may choose this decomposition in such a way as

to ensure ‖h‖2 < δ.

Definition 3.5 Positive linear operator

A linear operator U : L1 → L1 is said to be positive if whenever f ≥ 0, then Uf ≥ 0.

Proposition 3.6 Maximal inequality

Let U : L1 → L1 be a positive linear operator with ‖U‖ ≤ 1. For a real-valued function f ∈ L1, we define

inductively the functions
f0 = 0

f1 = f

f2 = f +Uf
...

fn = f +Uf + · · ·+Un−1f

for n≥ 1, and FN = max{fn | 0 ≤ n≤N} (all of the functions are defined pointwise). Then
∫

{x|FN (x)>0}
f dµ≥ 0

for all N ≥ 1.

Proof. See Proposition 2.26 in [EW11].

Theorem 3.7 Maximal ergodic theorem

Consider a measure-preserving transformation T and a real-valued function g ∈ L1. Define

Eα =

{

x ∈X

∣

∣

∣

∣

∣

sup
n≥1

1

n

n−1
∑

i=0

g(T ix)> α

}

for any α ∈ R. Then

αµ(Eα) ≤

∫

Eα

gdµ≤ ‖g‖1.

Proof. We begin by noting that UT is positive and ‖UT ‖ = 1 (UT is isometric). This allows us to use

3.6.

For any α ∈ R we define the function f = g−α. We then see that

Eα =

{

x ∈X

∣

∣

∣

∣

∣

sup
n≥1

1

n

n−1
∑

i=0

U i
T g(x)> α

}

=

{

x ∈X

∣

∣

∣

∣

∣

sup
n≥1

1

n

n−1
∑

i=0

U i
T f(x)> 0

}
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For any n≥ 1, define the sets

En
α =

{

x ∈X

∣

∣

∣

∣

∣

sup
1≤k≤n

1

k

k−1
∑

i=0

U i
T f(x)> 0

}

It is clear that En
α ⊆ En+1

α and so Eα =
∞
⋃

n=1
En

α. By the maximal inequality 3.6, we get the inequality

0 ≤

∫

Eα

f dµ=

∫

Eα

gdµ−αµ(Eα)

which simplifies to αµ(Eα) ≤
∫

Eα
gdµ.

We will write SN for the operator

SN =
1

N

N−1
∑

n=0

Un
T .

Theorem 3.8 Birkhoff’s Pointwise Ergodic Theorem

Let µ be probability measure (on X), T a measure-preserving transformation, and f ∈ L1(X,µ). Then

there is a T -invariant function f in L1 such that

lim
N→∞

1

N

N−1
∑

n=0

Un
T f = lim

N→∞
SNf = f

for a.e. x ∈X, where
∫

X f dµ=
∫

X f dµ. If T is in addition ergodic then f =
∫

X f dµ.

Proof. Since µ is positive by assumption (we are working exclusively with positive measures) we only

need to show that for any ǫ > 0

µ({x | limsup
N→∞

|SNf −PT f |> ǫ}) = 0.

We note that since L2 is dense in L1 (Prop. A.15), for any δ > 0 we can find a function f0 ∈ L2 such

that ‖f −f0‖1 < δ. Since L2 is even contained in L1, I = {f ∈ L2
µ : UT f = f} is a closed subspace of L1.

This means that PT is also well-defined on L1.

Let δ > 0 be arbitrary, and remember the decomposition we gave in the remark following Theorem

3.4. This allows us to write f0 = PT f0 +(UT g0 −g0)+h0 for some ‖h0‖2 < δ, and so by letting

h1 = h0 +(f −f0)− (PT f −PT f0) ∈ L1

we get that

f = PT f +(UT g0 −g0)+h1

where ‖h1‖1 ≤ ‖h0‖1 +‖f −f0‖1 +‖PT f −PT f0‖1 < 3δ.

Since L∞ is dense in L2 (Prop. A.15) we may find a g ∈ L∞ such that ‖g−g0‖2 < δ. Letting

h= h1 − ((UT g−g)− (UT g0 −g0)) = h1 +UT (g0 −g)+(g−g0)

we get the decomposition f = PT f +(UT g−g)+h. Recalling that UT is an isometry, we get the bound

‖h‖1 ≤ ‖h1‖1 +2‖g−g0‖1 ≤ ‖h1‖1 +2‖g−g0‖2 < 5δ,

Since δ > 0 is arbitrary we may instead assume that ‖h‖1 < δ. Since PT is a projection operator (P k
T =P ,

for k ≥ 1), it follows that SN (PT f) = PT f , and we get the inequality

|SNf −PT f | = |SN (PT f)+SN (UT g−g)+SN (h)−PT f | =

= |PT f +SN (UT g−g)+SN (h)−PT f | ≤

≤ |SN (UT g−g)|+ |SN (h)|
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As in the proof of the Mean Ergodic Theorem, SN (UT g− g) telescopes, giving us |SN (UT g− g)| =
1
N |UN

T g−g| ≤ 2
N ‖g‖∞ except on a set of measure 0, since the maximum variance between |UN

T g(x)−g(x)|
is at most equal to 2‖g‖∞ for a.e. x. That is,

µ({x | limsup
N→∞

|SNf −PT f |> ǫ}) ≤ µ({x | limsup
N→∞

|SN (UT g−g)|+ |SN (h)|> ǫ}) =

= µ({x | limsup
N→∞

|SN (h)|> ǫ}) ≤

≤ µ({x | sup
N≥1

|SN (h)|> ǫ}) ≤
‖h‖1

ǫ
<
δ

ǫ

where the last inequality follows from the Maximal Ergodic Theorem, since

ǫµ({x | sup
N≥1

SN (|h|)> ǫ}) ≤ ‖h‖1.

Since ǫ is fixed, and δ can be chosen arbitrarily small, this gives us convergence a.e. of SNf to PT f .

Now, since
∫

X
SNf dµ=

∫

X
f dµ,

we see that, by Lebesgue monotone convergence,
∫

X
f dµ=

∫

X
lim

N→∞
SNf dµ=

∫

X
PT f dµ.

If T is ergodic, then any T -invariant function is constant a.e. (see Proposition 2.14 in [EW11]), and so

∫

X
PT f dµ= PT f ·µ(X) = PT f.

Definition 3.9 Smooth flow

A flow on a smooth manifold X is an action of R on X. We say that φt(x) = Φ(t,x) : R×X −→X is a

flow on X if:

• φ0(x) = x, and

• φs ◦φt(x) = φs+t(x),

for every s, t ∈ R and every x ∈X.

If in addition the map Φ(t,x) is smooth w.r.t. both variables, we say that φt is a smooth flow. Since

we will only consider smooth flows in this text, we will drop the qualifier "smooth" and simply say flow,

unless otherwise stated.

Definition 3.10 Invariant measure

A measure µ on a space X is said to be invariant under the action of the group G if µ(g−1A) = µ(A) for

every measurable subset A of X and g ∈ H. We sometimes express this by saying that H is measure-

preserving (with respect to the measure µ).

Definition 3.11 Unipotent flow

Let {ut}t∈R = U be a unipotent one-parameter subgroup of a Lie group G. A flow defined on Γ\G by

φt(Γx) = Γxut, is called a unipotent flow.

Remark. We say that the measure µ on the space X is invariant under the flow φt if µ(φ−1
t (A)) = µ(A),

for every measurable subset A of X, and every t ∈ R. We sometimes say that φt is measure-preserving

instead of µ being φt-invariant.
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Example 3.12 Examples of Smooth flows

Define the one-parameter subgroups u,a : R −→ SL(2,R) by

ut =

[

1 0

t 1

]

,

at =

[

et 0

0 e−t

]

.

It is clear that usut = us+t and asat = as+t. Let Γ be a subgroup of G and define the flows ηt and

γt on Γ\G by

ηt(Γx) = Γxut,

γt(Γx) = Γxat.

They are seen to be flows since

ηs(ηt(Γx)) = ηs(Γxut) = Γxutus = Γxut+s = ηt+s(Γx)

(analogously for γt) and they act smoothly.

Remark. The two flows in the above example are so important that they have been named the horocycle

flow (ηt) on Γ\G and the geodesic flow (γt) on Γ\G.

Definition 3.13 Ergodic flow

A measure-preserving flow φt on a probability space (X,µ) is said to be ergodic if, for each φt-invariant

subset A of X (φt(A) =A for all t ∈ R), we have either µ(A) = 0 or µ(A) = 1.

This means that there is only one distinct φt-orbit in X on which µ is non-zero. Why? Let x ∈ X
and let {φt(x)}t∈R = φR(x) be the orbit of x, then φR(x) is φt-invariant:

Let y ∈ φR(x), then y = φs(x) for some s ∈ R, and we have that φt(y) = φt(φs(x)) = φt+s(x) ∈ φR(x)
for all t ∈ R, and given a t ∈ R we have that φt(φs−t(x)) = φs(x) = y, so that φt(φR(x)) = φR(x). Since
orbits are either equal or disjoint, the conclusion follows.

Definition 3.14 Mixing

A measure-preserving transformation T :X →X is called mixing w.r.t. a T -invariant probability measure

µ if lim
n→∞

µ(T−n(A)∩B) = µ(A)µ(B) for all measurable sets A and B.

Remark. Note that it makes sense to say that a flow φt is mixing according to the above definition, since

taking T = φ1, we see that for an integer n and a real number 0 ≤ r < 1,

µ(φ−n+r(A)∩B) = µ(T−n(φr(A))∩B) −−−−→
n→∞

µ(φr(A))µ(B) = µ(A)µ(B).

A flow (or transformation) being mixing means that it distributes any measurable set randomly in
the limit (asymptotically). The term "mixing" comes from the analogy to an ordinary mixer.

We will give an equivalent definition of mixing that is easier to check against. We say that a set of
functions Φ is complete if the linear span of the set L(Φ) is dense in L2.

Proposition 3.15

A m.p.t. T :X →X is mixing if and only if for any given complete system of functions Φ in L2(X) and

any φ,ψ ∈ Φ:

〈Un
T φ,ψ〉 =

∫

X

φ(Tnx)ψ(x)dµ−→

∫

X

φ(x)dµ

∫

X

ψ(x)dµ= 〈φ,1〉〈1,ψ〉 as n→ ∞ (2)
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We note that both sides of (2) are linear w.r.t. φ and antilinear w.r.t. ψ. Hence, if (2) holds for
φ,ψ ∈ Φ, then it holds for any φ,ψ ∈L(Φ). We proceed by showing that if it holds for L(Φ), then it holds
for its closure L2. This then allows us to prove the theorem by only proving it for the characteristic
functions.

Proof. Suppose that (2) holds for a complete system of functions Φ (and hence for L(Φ), and let f,g ∈L2.

Since L(Φ) is dense in L2, for any ǫ > 0, we can find functions f ′,g′ ∈ L(Φ) such that

‖f −f ′‖2 < ǫ,‖g−g′‖2 < ǫ.

Now

|〈Un
T f,g〉−〈f,1〉〈1,g〉| =

= |
〈

Un
T f,g−g′

〉

+
〈

Un
T (f −f ′),g′

〉

+
〈

Un
T f

′,g′
〉

−

−〈f,1〉
〈

1,g−g′
〉

−
〈

f −f ′,1
〉〈

1,g′
〉

−
〈

f ′,1
〉〈

1,g′
〉

| ≤

≤ ‖f‖2 · ‖g−g′‖2 +‖f −f ′‖2 · ‖g′‖2+

+‖f‖2 · ‖g−g′‖2 · ‖1‖2
2 +‖f −f ′‖2 · ‖g′‖2 · ‖1‖2

2 + |
〈

Un
T f

′,g′
〉

−
〈

f ′,1
〉〈

1,g′
〉

|<

< ǫ
(

‖f‖2 +‖g′‖2 +‖f‖2 +‖g′‖2

)

+ |
〈

Un
T f

′,g′
〉

−
〈

f ′,1
〉〈

1,g′
〉

|.

Since ǫ > 0 is arbitrary and | 〈Un
T f

′,g′〉−〈f ′,1〉〈1,g′〉 | = 0 by assumption, the conclusion follows.

If a m.p.t. T is mixing, then clearly for any measurable sets A and B:

∫

X

χA ◦TnχB dµ=

∫

X

χT −nAχB dµ= µ(T−n(A)∩B) −−−−→
n→∞

µ(A)µ(B) =

∫

X

χA dµ

∫

X

χB dµ

Since the set of characteristic functions is complete, (2) must hold for all functions in L2, and hence

for any complete system of functions Φ. Clearly, by reversing the argument above, we see that (2) implies

mixing.

Theorem 3.16 Birkhoff’s Pointwise Ergodic Theorem for flows

Let µ be probability measure (on X), φt an ergodic measure-preserving flow, and f ∈ L1(X,µ). Then

lim
T →∞

1

T

T
∫

0

f(φt(x))dt=

∫

X

f dµ,

for a.e. x ∈X.

Proof. We may assume that f ≥ 0. For the general case, consider the composition of f = f+ − f− in

Prop. 3.2. Set

F (x) =

1
∫

0

f(φt(x))dt,

then F (x) is in L1, by using Theorem 2.16.4 in [Fri82] (a version of Fubini’s theorem asserting integrability

where only one of the double integrals is absolutely integrable) and the fact that Prop. 3.2 implies

1
∫

0

(∫

X
f(φt(x))dµ

)

dt=

1
∫

0

(∫

X
f(x)dµ

)

dt= 1 ·

(∫

X
f(x)dµ

)

<∞.
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Using the notation [T ] to mean the integer part of T , rewrite the limit as

lim
T →∞

1

T

T
∫

0

f(φt(x))dt= lim
T →∞

1

[T ]
·
[T ]

T





[T ]−1
∑

n=0

F (φn(x))



+
1

[T ]

T
∫

[T ]

f(φt(x))dt=

=

∫

X
F (x)dµ,

where, in the last step, we have used the discrete version of Birkhoff’s pointwise ergodic theorem, and

the fact that

lim
T →∞

T
∫

[T ]

f(φt(x))dt= 0

(which also follows from that same theorem).

The following theorem tells us that we may study any invariant measure by considering only the
ergodic invariant measures. This is done by breaking up the invariant measures into smaller parts that
are ergodic as well.

Theorem 3.17 Ergodic Decomposition Theorem

Let G be a Lie group acting smoothly on the space X = Γ\G and let µ be a G-invariant Borel measure

on X. Then there is a measure space (Y,ν) and a partition of X into measurable G-invariant subsets

Xy,y ∈ Y , and measures µy on Xy such that:

• For any measurable subset A ⊆ X, we have that A∩Xy is measurable w.r.t. µy for almost all

y ∈ Y (w.r.t. to the measure ν) and µ(A) =
∫

Y

µy(A∩Xy)dν(y)

• For almost all y ∈ Y , the action of G on Xy is ergodic w.r.t. the measure µy.

Proof. See the proof of Theorem 8.20 in [EW11, p. 271].

4 Ratner’s Theorems

In a series of articles of 3 articles, [Rat90b], [Rat90a] and [Rat91] (together totalling more than 150 pages),
Ratner proved a long-standing conjecture of Raghunathan regarding certain orbits on homogeneous
spaces. For historical remarks, read our introductory section.

The theorems concern some arbitrary (real) Lie group G, any discrete subgroup Γ of G, and any
unipotent subgroup U of G. The quotient manifold Γ\G= {Γg : g ∈G} is a homogeneous space, and the
theorems tell us what the closure of xU , for some arbitrary x ∈G, looks like when we map it to Γ\G by
the natural projection, π :G→ Γ\G : g 7→ Γg.

Whenever U is a unipotent one-parameter subgroup of G, we will represent U by the family {ut}t∈R,
with the corresponding flow on Γ\G given by φt(Γx) = Γxut.

We begin by making an important definition.

Definition 4.1 Homogeneous measure

A Borel probability measure µ on Γ\G is called a homogeneous measure if there exists an x ∈ Γ\G
and a closed subgroup H ⊆ G such that xH is homogeneous (w.r.t. H) and µ is an H-invariant Borel

probability measure supported on xH.

The main theorem is:

Theorem 4.2 Ratner’s Measure Classification Theorem

Let G be a Lie group, Γ a discrete subgroup in G and U a unipotent subgroup of G. Then every ergodic

U -invariant probability measure on Γ\G is homogeneous.
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The following two theorems can be obtained as corollaries from the first one (see for instance [Mor05]).

Theorem 4.3 Ratner’s Orbit Closure Theorem

Let G be a Lie group and Γ a lattice in G (Γ\G has finite volume). If φt is a unipotent flow on Γ\G,

then the closure of every φt-orbit is homogeneous.

This means that if U = {ut} is the underlying unipotent subgroup of φt, then the closure xU = xS
(and has finite volume), and U ⊆ S, for some connected, closed subgroup S of G. This means that the
φt-orbit of [x] is dense in (or everywhere present in) [xS].

Theorem 4.4 Ratner’s Equidistribution Theorem

Let G be a Lie group and Γ a lattice in G such that Γ\G has finite volume. If φt is a unipotent flow on

Γ\G, then the orbit of φt is equidistributed in the set [xS].

We will sketch the proof of Ratner’s Measure Classification Theorem for the case of G = SL(2,R).
The technical details can be found in her article [Rat92] or Starkov’s book [Sta00]. The proof is very
technical and a lot of details are implicit, so the aim of this section is to add some of these omitted
details and explain the ideas behind the proof.

Since any unipotent flow on G= SL(2,R) is conjugate to the horocyclic flow Ut, there are two possible
ways to prove the theorem for this special case. One way is to use properties of the horocyclic flow,
but that would involve techniques that can not be generalized to general unipotent flows. The proof
given here is essentially an outline of some of the ideas used in her proof for unipotent flows, without
the burdening technicalities that are necessary to handle a general Lie group G.

4.1 Proof of Ratner’s measure classification theorem for G = SL(2,R)

Let the following subgroups of G= SL(2,R) be given

U = {Ut =

[

1 t
0 1

]

: t ∈ R},

A= {At =

[

et 0
0 e−1

]

: t ∈ R} and

H = {Ht =

[

1 0
t 1

]

: t ∈ R}.

Since matrices can be written in upper-triangular form, every unipotent element of SL(2,R) is con-
jugate to Ut for some t. These subgroups satisfy the following important commutation relations

UsAτ =AτUse−2t

HsAτ =AτHse2t

for every s, t ∈ R.

Now we form the subgroups W =AH and B =AU and their respective neighbourhoods

W (δ) = {AτHb : |τ | ≤ δ, |b| ≤ δ} and

B(δ) = {AτUs : |τ | ≤ δ, |s| ≤ δ}.

Let y ∈ xW (δ), that is y = xAτHb for some |τ |< δ, |b|< δ. If δ > 0 is sufficiently small, then for any
y = xAτHb ∈ xW (δ) and any 0 ≤ s≤ 1, there is a unique(!) function α(y,s) that is strictly increasing in
s, continuous in (y,s) and satisfying the condition α(y,0) = 0, such that yUα(y,s) ∈ xUsW (10δ). Solving
some equations, we see that it is given by

α(y,s) =
s

e2τ −sb
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and that yUα(y,s) = xUsAτ(y,s)Hb(y,s), where

τ(y,s) = ln(eτ −sbe2τ )

b(y,s) = b(1− bse−2τ )

are the respective coordinates in the directions of A and H. As can be seen, these functions are defined
only for sb < e2τ . This tells us that the divergence between points close to eachother in some W -leaf
will be very slow in the W -direction, but proportional to time in the U -direction. In particular, it says
that if b= 0, then the two orbits will diverge only in the U -direction.

If however b 6= 0, then there will be a point in time sθ > 0, such that there is a y ∈ xW (δ) where
yUR does not intersect xURW . The important part here is that this ciritcal point in time may be made
arbitrarily large by making δ smaller.

The so-called R-property in [Rat90b] captures this behaviour more exactly, and plays a crucial role
in the proof of Ratner’s measure-classification theorem.

Lemma 4.5 R-property of the horocycle flow

There exist constants 0< η < 1 and C > 1 such that if for some t > 1

|τ(y,t)| = θ and |τ(y,s)| ≤ θ for 0 ≤ s≤ t,

where y ∈ xW (δ), 0< δ < θ/10, then

θ/2 ≤ |τ(y,s)| ≤ θ, |b(y,s)| ≤ Cθ/s

for all s ∈ [(1−η)t, t].

Let λ be the Lebesgue measure on R and φy(s) = α(y,s). The following lemma tells us that s and
α(y,s) will be close to each other.

Lemma 4.6

For any ǫ > 0, there is a θ = θ(ǫ)> 0 such that, given any y ∈ xW (θ) and any Borel set C ⊆ [0,sθ]

∣

∣

∣

∣

λ(C)

λ(φy(C))
−1

∣

∣

∣

∣

< ǫ.

Let µ be an ergodic U -invariant Borel probability measure on X = Γ\G and let Λ = Λ(µ) = {g ∈G :
the action of g on X preserves µ}. It is clear from the definition of µ that U ⊆ Λ(µ).

Proposition 4.7

The set Λ = Λ(µ) as defined above is a closed subgroup of G.

Proof. Suppose that {gn} ⊆ Λ is a sequence converging to g. According to Lusin’s theorem, the space

of continuous functions with compact support is dense in Lp, and so it suffices to prove that
∫

f(gx)dµ=

∫

f(x)dµ

for all bounded continuous functions with compact support, f . This follows easily from the fact that

f(gnx) → f(x) for a.e. x, and Lebesgue’s monotone convergence theorem:

∫

f(x)dµ= lim
n→∞

∫

f(gnx)dµ=

∫

f(gx)dµ.

The proof will basically be split into two cases: the one were µ is also A-invariant and the one were
µ is not A-invariant.
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Lemma 4.8

If A 6⊂ Λ, there is a Y ⊂X such that µ(Y ) = 1 and Y ∩Y q = ∅ for every q ∈B−Λ.

Proof. We begin by showing that for any q ∈B−Λ, there is a set Xq ⊆X, µ(Xq) = 1, and ǫ(q)> 0 such

that

Xq ∩Xqg = ∅

for every g ∈ qBǫ(q)(e) = Bǫ(q)(q), where Bǫ(x) is the ǫ-ball in B around the point x, that is the set of

all points in xB at a distance less than ǫ from x.

We then cover B− Λ by a countable number of such neighbourhoods Bǫ(qi)(qi), for qi ∈ B− Λ, i =

1,2,3, ..., such that

B−Λ ⊆
∞
⋃

i=1

Bǫ(qi)(qi).

Letting Y =
∞
⋂

i=1
Xqi

for the Xqi
corresponding to qi as defined above, we see that

µ(Y ) = 1 and Y ∩Y g = ∅ for every g ∈B−Λ

To find our set Xq for some arbitrary q ∈B−Λ, we begin by noting that the measure

µq(E) = µ(Eq) for each Borel set E ⊆X

is different from µ (since q doesn’t preserve it by assumption) but that the action of U on (X,µq)

ergodic. This implies that µ and µq are mutually singular - there is a set Eq with µ(Eq) = 1 and

µ(Eqq) = µq(Eq) = 0. By taking E′
q = Eq −Eqq we see that µ(E′

q) = 1 and E′
q ∩E′

qq = ∅.

Now, we choose a compact set K ⊆ E′
q such that K has almost full measure, that is µ(K) > 0.99

(say). Since E′
q and E′

qq are disjoint and K contains all its limit points, we see that there is a ǫ(q)> 0

such that

dX(K,Kq) ≥ ǫ(q).

That is, moving any point in K by q, moves it outside of K by some positive distance. Since U acts

ergodically on (X,µ), by Birkhoff’s pointwise ergodic theorem, there is a set Xq ⊆ X, µ(Xq) = 1 such

that every point in Xq spends most of its time inside of K (at least 99 percent of its time).

Now we prove that Xq ∩Xqg = ∅ for every g ∈ Bǫ(q)(q). To prove this, suppose that Xq ∩Xqg 6= ∅,

that is x= yg for some x,y ∈Xq.

But since x and y lie in Xq, we see that for sufficiently large t > 0, the orbits of the two points x

and y will spend almost all their time in K. There is then some 0 ≤ s ≤ t such that yUs = z ∈ K and

yUsg = zg ∈K. However, zg = zqp for some p ∈Bǫ(q)(q), and so

dX(K,KAτ ) ≤ dX(zqp,zq)< ǫ(q),

a contradiction. The conclusion is that Y satisfies the assumptions in the theorem.

Theorem 4.9

If A 6⊂ Λ, then there is an x ∈X such that µ is supported on the closed (periodic) orbit xU .

Proof. Since Λ is a closed subgroup, there will be a 0 < θ < 0.1 (the lsat inequality is just a technical

assumption), such that Aτ 6∈ Λ for every 0 < |τ | ≤ θ. We may further assume that θ < θ(0.1), where

θ(0.1) is as in 4.6.

Let Y ⊂X (µ(Y ) = 1) be as in 4.8. As in the lemma, let K be a compact set of almost full measure,

and δ > 0 (depending on K) such that

dX(K,KAτ ) ≥ δ
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for every sufficiently large |τ | (for technical reasons we choose the bounds θ
2 ≤ |τ | ≤ θ).

Since the action of U is ergodic, there is a set F ⊆X of positive measure (µ(F )> 0), such that, after

some sufficiently long time (t0 ≥ 1 in the article), the U -orbit of every x ∈ F will have spent almost all

its time in K (an amount of time approximately equal to the measure of K).

What we want to show now is that there is a small neighbourhood N(x) ∩F of some point x in F

of positive measure that looks like some small piece of the orbit xU , say xU(ξ). This gives us that the

small piece xU(ξ) has positive measure, and so take a sufficiently large finite union

P = {xUs | − ξ ≤ s≤ (2N +1)ξ+ r} =

(

N
⋃

n=0

xU(ξ)U2nξ

)

⋃

xU(r/2)U(2N+1)ξ+r/2

of those pieces, ensuring that µ(P ) = 1. Now, since PUR doesn’t change the measure, the orbit must be

periodic (with period 2(N +1)ξ+ r).

How do we show that there is a small neighbourhood N(x) ∩F of some point x in F of positive

measure that looks like some small piece of the orbit xU?

We do this by choosing ξ to be some extremely small quantity (several magnitudes smaller than our

θ), and let x,y ∈ F be such that dX(x,y)< ξ. The thing to show now is that

y ∈ xB(ξ).

We do so by assuming that y 6∈ xB(ξ), that is y = xAτHb ∈ xW (ξ), where b 6= 0. Since |τ | is increasing,

there will be some time t, such that

|τ(y,t)| = θ = max{|τ(y,s)| | 0 ≤ s≤ t} .

The value θ will be attained since θ was chosen small. Since x,y ∈ F , they will both spend almost all

their time in K, so there will be some point in time s very close to, but smaller than t (chosen sufficiently

close to t to enable us to use the R-property, which can be made possible by choosing the measure of K

to be sufficiently large), such that the U -orbit of x will be in K at time s, and that of y will be in K at

time α(y,s); that is

xUs ∈K and yUα(y,s) = xUsAτ(y,s)Hb(y,s) ∈K.

This of course means that

xUsAτ(y,s) ∈KAτ(y,s),

so that the distance

dX(K,KAτ(y,s)) ≤ |b(y,s)|.

By the R-property, we must have that for some constant C ≥ 1, that

θ

2
≤ |τ(y,s)| ≤ θ, |b(y,s)| ≤ Cθ/t≤ 0.1δ.

The last inequality follows because ξ was chosen sufficiently small to ensure that bound (see her article

for technical details). Now we see that

dX(K,KAτ(y,s)) ≤ 0.1δ,

in contradiction to our initial assumption that δ be chosen to satisfy

dX(K,KAτ(y,s)) ≥ δ.

We conclude that if x,y ∈ F are such that dX(x,y)< ξ, then y ∈ xB(ξ).

Since G can be covered by countably many neighbourhoods Oǫ(x), there will be some x ∈ F ∩Y (we

take the intersection with Y to simplify our last step), such that

µ(Oǫ(x)∩F )> 0
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for every ǫ > 0. This of course implies that, since for sufficiently small ǫ > 0, Oǫ(x)∩F = xB(ǫ)∩F , that

µ(xB(ξ))> 0. We must then have that

µ(xB(ξ)∩Y )> 0

and

xB(ξ)∩Y = xU(ξ)

since Y and Y Aτ are disjoint for small |τ | ≤ ξ. We conclude that

0< µ(xB(ξ)∩Y ) = µ(xU(ξ)∩Y ) = µ(xU(ξ)),

implying that we can cover the U -orbit of x, xU with a finite number of translated small pieces xU(ξ),

so xU is periodic (and closed by our discussion).

Proposition 4.10

If A⊂ Λ, then A is mixing.

Proof. See [Rat92, p. 26] or [Sta00, p. 107].

Theorem 4.11

Suppose that A⊂ Λ. Then Γ is a lattice and µ is G-invariant, meaning that ν <∞ and µ= ν/ν(X).

Proof. Let f be a continuous function on X with compact support. Since the action of A on (X,µ) is

ergodic, there is a set Cf ⊆X, consisting of points y ∈X for which

Sf,n(y) =
1

n

n−1
∑

i=0

f(yA−i) → fµ =

∫

X
f dµ,

that is of full µ-measure.

Since H-orbits are the contracting horocycles for geodesics in the negative direction, we see that for

any z ∈ yH, dX(yA−n,zA−n) → 0 as n → ∞. Since f is uniformly continuous and Sf,n(y) → fµ, it

follows that Sf,n(z) → fµ, and so CfH = Cf .

Now we need to prove that Cf is of full ν-measure. To do so we consider first the neighbourhood

Oδ(x) = xB(δ/2)H(δ)∩xH(δ/2)B(δ)

for some sufficiently small δ > 0, and the decomposition of µ on this neighbourhood into conditional

measures µy(E) = µ(yB(δ/2) ∩E) on the leaves yB(δ/2), y ∈ xH(δ). Since µ is B-invariant, so will

almost every µy be, hence almost every µy is the Lebesgue measure on yB(δ/2).

Since Cf is of full µ-measure, and Cf ∩xB(δ/2) =Cfh∩xB(δ/2)h=Cf ∩xB(δ/2)h for every h ∈H
it follows that Cf ∩Oδ(x) has the same Lebesgue measure as Oδ(x). Since ν is "the" Lebesgue measure

up to a constant, Cf must be of full ν-measure.

Now, we further assume that f is non-negative and fµ > 0. By Fatou’s lemma

fµν(X) = fµν(Cf ) =

∫

Cf

fµ dν ≤ lim
n→∞

∫

Cf

Sf,n dν =

∫

Cf

f dν =

∫

X
f dν <∞

where we have used that ν is A-invariant in order to evaluate the limit to
∫

X f dν.

We now wish to prove that µ = ν/ν(X). In order to do so we turn to Lebesgue’s Dominated Con-

vergence Theorem to get that

fν =

∫

X
f dν =

∫

Cf

f dν =

∫

Cf

Sf,n dν →

∫

Cf

fµ dν = fµν(X)

for every uniformly continuous function f with compact support, showing that µ= ν/ν(X).
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5 Applications

5.1 The Oppenheim Conjecture

Theorem 5.1 Oppenheim’s Conjecture

Let B be a real non-degenerate indefinite quadratic form in n ≥ 3 variables. Suppose that B is not a

multiple of a form with rational coefficients. Then B(Zn) is dense in R.

The Oppenheim Conjecture was made by Oppenheim in 1929 for the case of n≥ 5, and subsequently
extended to the case n≥ 3 by Davenport in 1946.

In the 1970’s, Raghunathan realized that the case n= 3 can be stated as a problem in homogeneous
dynamics on the space SL(3,R)/SL(3,Z). The other cases follow from n= 3.

We will sketch how one may use Ratner’s orbit closure theorem to prove the Oppenheim conjecture.
For the details and the full proof, which uses the theory of algebraic groups, consult [Mor05].

Sketch of the proof of Oppenheim’s Conjecture. Let G= SL(n,R), Γ = SL(n,Z), and the stabilizer of Q,

H = SO(Q) = {h ∈ SL(n,R) |Q(vh) =Q(v) for all v ∈ Rn}

be given. The subgroup Γ fixes the lattice Zn, that is ΓZn = Zn. The only two closed subgroups of G

containing H, is H itself and G. Applying Ratner’s orbit closure theorem on z = Γe ∈ Γ\G, we see that

either zH = zH, or zH = zG. The first case zH = z implies that Q is a multiple of a rational form, so

the second case zH = zG must be true. We then see that ΓH is dense in G, and so

Q(Zn) =Q(ZnΓ)

=Q(ZnΓH)

=Q(Rn\0) = R.

In the first step, Γ fixes Zn. In the second, Q is invariant under H. In the third, we have used that the

image of v ∈ Rn\0 under G, that is vG, is Rn.
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A Measure theory and functional analysis

Most of this is standard material and is covered, for example, in [Rud], [Fri82] and [AB06].

Definition A.1 Topological space

A topological space is a pair (X,T ) where X is a set and T a collection of subsets of X satisfying the

following axioms:

A1 X ∈ T and ∅ ∈ T .

A2 Given an arbitrary collection of {Xα ∈ T }, the union
⋃

Xα is in T .

A3 Given a finite collection of {Xα ∈ T }, the intersection
⋂

Xα is in T .

The elements of T are called open sets, and we usually refer to X as a topological space when the

topology T is implied. A subset whose complement is an open set, is called a closed set.

Definition A.2 σalgebra

A σ-algebra on a set X is a collection A such that:

A1 X ∈ A .

A2 If A ∈ A , then Ac ∈ A (Ac is the complement of A relative to X).

A3 If A=
∞
⋃

k

Aα, and Ak ∈ A for all k = 1,2,3, . . . , then A ∈ A .

Definition A.3 Measure

A (positive) measure µ on a σ-algebra (X,A ), is a map µ : A → [0,∞], such that:

A1 µ(∅) = 0.

A2 µ(
∞
⋃

k

Ak) =
∞
∑

k

µ(Ak), if {Ak ∈ A | k = 1,2,3, . . .} is a countable collection of pairwise disjoint sets.

Definition A.4 Measurable space

A measurable space is a triple (X,A ,µ), where A is a σ-algebra of X and µ is a measure on A .

Definition A.5 Borel σ-algebra

Let G be a topological space. A subset E of G that can be obtained by a combination of taking countable

unions, countable intersections and relative complements 8 of the open sets of G is a Borel set. The

Borel σ-algebra is the collection of all Borel sets in G (they form a σ-algebra).

Definition A.6 Measurable map

A map f : (X,A ,µ) → (Y,B,ν) between two measurable spaces is called measurable if for every B ∈ B,

T−1B = {x ∈X : Tx ∈B} =A ∈ A .

Definition A.7 Borel probability space

A measurable space (X,B,µ) where X is a topological space, B its Borel σ-algebra and µ a probability

measure (µ(X) = 1) is called a Borel probability space.

Definition A.8 Characteristic function

Let A be a measurable set of X. The function

χA(x) =

{

1 if x ∈A

0 if x /∈A

is called the characteristic function associated with A.
8The relative complement of a set B by a set A is the set B\A
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Definition A.9 Simple function

Let A1, · · · ,An be measurable sets and a1, · · · ,an be real numbers such that ai is non-zero if and only if

µ(Ai)<∞. A function

f(x) =
n
∑

i=1

aiχAi
(x)

is called a simple function.

Simple functions are measurable since for any open set O ⊆ R, f−1(O) is a union of measurable sets
in X.

Let f(x) =
n
∑

i=1
aiχAi

(x) be a simple function. The sum
n
∑

i=1
aiµ(Ai) =

∫

X f dµ is called the integral of

f .

Definition A.10 Integral

Let f be measurable function. If there is a sequence {fn} of simple functions that is Cauchy in the mean

(
∫

|fn −fm|dµ−−−−−−→
m,n→∞

0) and converging a.e. to f , then we define the integral of f to be

∫

X
f dµ= lim

n→∞

∫

X
fn dµ

keeping with the convention that the integral is ∞ if the right-hand side does not converge to a real

number.

We may define the integral over any measurable set A by letting
∫

A f dµ=
∫

X f ·χA dµ.

Proposition A.11 Theorem 1.17 in [Rud]

Given any non-negative measurable function f(x), there exists a monotone increasing sequence of simple

functions {sn} such that

0 ≤ s1(x) ≤ s2(x) ≤ ·· · ≤ f(x),

and sn(x) → f(x) as n→ ∞, for every x.

Definition A.12 Lp space

Let 1 ≤ p <∞ be given, then the measurable functions f such that

‖f‖p =

(∫

X
|f |p dµ

)1/p

<∞,

form a Hilbert space under the equivalence relation f g if f(x) = g(x) for a.e. x, denoted Lp(µ). The

definition can be extended to p = ∞ by considering the measurable functions f such that the essential

supremum9 exists, that is

‖f‖∞ <∞.

Under the same equivalence relation, this is a Hilbert space denoted L∞(µ). The norm of a function

f ∈ Lp(µ) is simply

‖f‖p =

(∫

X
|f |p dµ

)1/p

,

if 1 ≤ p <∞, or the essential supremum

‖f‖∞

if p= ∞.

9The essential supremum ‖f‖∞ of a measurable function f is the smallest constant C such that |f | ≤ C for a.e. x. If
such a constant does not exist we set ‖f‖∞ = ∞.
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Proposition A.13 Hölder’s inequality

If 1
p + 1

q = 1, and f ∈ Lp(µ) and g ∈ Lq(µ), then fg ∈ L1(µ) and

∫

X
|fg|dµ= ‖fg‖1 ≤ ‖f‖p · ‖g‖q.

Proof. See [Fri82] or any other book on functional analysis.

The following proof is from [AB06].

Proposition A.14

Let µ be a finite measure, then for every 1 ≤ p < q ≤ ∞, we have that

Lq(µ) ⊆ Lp(µ)

If moreover µ is a probability measure, then

‖f‖p ≤ ‖f‖q.

Proof. If f is a measurable, essentially bounded function, then

‖f‖p =

(∫

X
|f(x)|p dµ

)1/p

≤

(∫

X
‖f‖p

∞ dµ

)1/p

= ‖f‖∞ (µ(X))1/p ,

hence the theorem follows for q = ∞. Suppose then that 1 ≤ p < q <∞, and set r = q
p > 1,s= q

q−p > 1.

Simple calculations show that
1

r
+

1

s
= 1.

Now let f ∈ Lq(µ), so that (|f |p)r = |f |q ∈ L1(µ). Since

(∫

X
(|f |p)r dµ

)1/r

=

(∫

X
(|f |q dµ

)p/q

= (‖f‖q)p <∞,

we see that f ∈ Lr(µ). Since µ is finite, 1 ∈ Ls(µ), and so using Hölder’s inequality, we get

(‖f‖p)p =

∫

X
|f |p dµ≤

(∫

X
(|f |p)r dµ

)1/r

·

(∫

X
|1|s dµ

)1/s

=

=

(∫

X
|f |q dµ

)p/q

·µ(X)1/s = (‖f‖q)p ·µ(X)1/s,

or

‖f‖p = ‖f‖q ·µ(X)1/ps.

Now both conclusions follow.

Proposition A.15

Let µ be a finite measure, then for every 1 ≤ p < q ≤ ∞, we have that Lq(µ) is dense in Lp(µ).

Proof. By the above theorem (A.14), we only need to prove that L∞(µ) is dense in L1(µ). To accomplish

this, suppose that f ∈ L∞(µ), and consider the measurable functions

fn(x) =











n when n≤ f(x),

f(x) when −n≤ f(x) ≤ n,

−n when f(x) ≤ −n.

They all belong to L∞(µ) and satisfy the assumptions in Lebesgue’s Dominated convergence theorem,

hence they converge to f in the L1-norm.
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Let V be a vector space over some field F that is either R or C. We will use the notation L(Φ) =
{a1φ1 + · · ·+anφn : n ∈ N,ak ∈ F,φk ∈ Φ,1 ≤ k ≤ n} to denote the linear span of a subset Φ of V .

Definition A.16 Complete system of functions

A complete system of functions Φ in Lp(X,µ), 1 ≤ p ≤ ∞, is just a set of functions Φ ⊆ Lp(X,µ) such

that L(Φ) is dense in Lp. This means that given a function f ∈ Lp and an ǫ > 0, there is a function

φ ∈ L(Φ) such that ‖f −φ‖p < ǫ.

The reason for our interest in complete systems of functions is because they greatly reduce the
complexity of proving certain theorems for Lp, especially given the statement below, that says such
theorems need only be proved for characteristic functions. This will prove very handy indeed!

Proposition A.17

Let µ be a Borel probability measure. Then the set of all characteristic functions χA of X, where A is

a measurable subset of X, is complete in L2(µ).

Proof. First, we note that χA is in L2(µ) for any measurable set A, since it is integrable and |χA|2 = χA.

We note that the linear span of the characteristic functions are the simple functions, and they are, by

definition of the integral, dense in L1(µ). Since L2(µ) is contained in L1(µ) by A.14, the conclusion

follows.

B Lie groups and Lie algebras

Two references on the basics of Lie groups are [War83] and [SW73]. A more concrete approach, dealing
with linear Lie groups (Lie groups that are also matrix groups), is given in [Ros02].

Definition B.1 Lie group

Let G be a smooth real manifold G, such that G is also a group for which multiplication µ :G×G−→G

and inversion g 7→ g−1 are both smooth maps. We write gh instead of the more cumbersome µ(g,h).

Example B.2 Examples of Lie groups

There are several examples of Lie groups:

• The group R with ordinary multiplication. It is trivially a manifold and both the operation and

its inverse are smooth, since (x,y) 7→ xy is a polynomial and x 7→ 1
x is a rational function that is

smooth on R\{0}.

• The group Rn with ordinary vector addition. It is trivially a manifold and both the operation and

its inverse are smooth, since (x,y) 7→ x+y and x 7→ −x are both polynomials and hence smooth.

• The General Linear group GL(n,R), the set of the invertible matrices (det 6= 0) with matrix

multiplication as its operation.

We identify the matrices with vectors in Rn2

by assigning to each matrix the vector with the same

elements (in a pre-determined order), and give it the topology induced by Rn2

, making it into a

real manifold.

Since the operations of multiplication and inversion of matrices are basically polynomial operations,

they are smooth. The group GL(n,R) is a disconnected Lie group (since det : GL(n,R) → R is

continuous and attains both negative and positive values, but not 0).

• The Special Linear group SL(n,R), the subgroup of GL(n,R) consisting of those matrices with

determinant equal to 1, is a connected Lie group.

Definition B.3 Discrete subgroup

A Lie subgroup Γ of a Lie group G is said to be discrete if it has the discrete topology relative to G.
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A discrete subgroup Γ of G can be considered an "evenly spaced" subset of G such that the points of
Γ don’t lie too close to eachother in G.

Definition B.4 Lattice

A discrete subgroup Γ of a Lie group G is said to be a lattice if there is a measurable subset F of G

such that

• ΓF =G,

• γF ∩F has measure 0, for all γ ∈ Γ\{e}, and

• F has finite volume.

A lattice Γ in a Lie group G is a discrete space that in a sense "covers" G; that is: Γ is a collection
of evenly, but not too closely, spaced out points such that no parts of G are distanced too far away from
the points of Γ.

Example B.5

An example of a lattice is Z in R with the corresponding fundamental domain [0,1) (or [0,1] depending

on who you ask). In our examples we have used the fact that Zn is a lattice in Rn with the corresponding

fundamental domain [0,1)n.

An example of a discrete subgroup that is not a lattice is Z× 0 in R2. It is discrete, but the

fundamental domain is the vertical strip [0,1)×R, which does not have finite volume.

Definition B.6 Homogeneous space

Given a Lie group G and a smooth manifold M , we say that M is (G)-homogeneous if there is a transitive

action of G, by diffeomorphisms on M ; that is to say, for every x,y ∈ M , there is a g ∈ G, such that

g acting on x produces y (g(x) = y). Given a point p ∈ M , we may then identify M with the quotient

manifold G/Gp, where Gp = {g ∈G | g(p) = p} is the stabilizer of p.

The point here is that Gp is a closed Lie subgroup of G, and given any closed subgroup Γ, we obtain
a manifold G/Γ. In Ratner’s theorems, Γ is discrete (and hence closed) - this is why we call our space
Γ\G homogeneous!

A space X being homogeneous means that, from a differentiable point of view, neighbourhoods of
different points of X look the same.

Remark. There is a more general notion of homogeneous space, where one requires that G be only a

topological group.

Example B.7 Homogeneous spaces 1. Rn is a homogeneous space in the canonical sense.

2. Given a Lie group G and a closed Lie subgroup D of G, G/D is a homogeneous space (given by

the canonical action of G).

3. The hyperbolic plane is a homogeneous space and can be identified with PSL(2,R)/PSO(2,R).

4. The unit tangent bundle of the hyperbolic plane is homogeneous and can be identified with

PSL(2,R).

Actually, being of interest to our discussion, the last two examples will be expounded on below.

Example B.8 The hyperbolic plane

The group G= SL(2,R) can be considered a double cover of the unit tangent bundle of the hyperbolic

plane. A convenient model of the hyperbolic plane is the upper half-plane H = {x+ iy ∈ C | y > 0}
equipped with the hyperbolic metric induced by the Riemannian metric10 on the tangent bundle11

10This is a smoothly varying family of inner products on the tangent planes. This just means that you give a notion of
length to tangent vectors at any given point, and going to the tangent plane of a nearby point shouldn’t change the notion
of length too much.

11The tangent bundle is the disjoint union of the tangent planes TzH at the point z ∈ H
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TH ∼= H×C

〈u,v〉z =
1

y2
(u,v),

where u,v ∈ TzH and (u,v) is the usual inner product on C. This gives us the norm ‖w‖z at the point

z (w ∈ TzH). The hyperbolic metric is then given by

d(z0,z1) = inf
c

1
∫

0

‖c′(t)‖c(t) dt=

1
∫

0

√

(

dx
dt

)2
+
(

dy
dt

)2

y(t)
dt,

where the infimum is taken over all possible paths12. This metric induces the same topology on H as

the one induced by the Euclidean norm on C ⊇ H.

The group PSL(2,R) acts transitively on H by Möbius transformations, with the stabilizer of i given

by Gi = PSO(2,R). Similarly, the action of g by g(z) = (g(z),g′(z)), gives us the identification of T1H

with PSL(2,R).

If we identify T1H with PSL(2,R), the geodesic flow is given by the action of

at =

[

et 0

0 e−1

]

,

and the horocycle flow by the action of

ut =

[

1 t

0 1

]

.

For an explanation of what the geodesic flow and the horocycle flow are, see [EW11] or [BM00].

The reason for the above discussion is that Ratner’s ideas are generalizations of observations she

made of the horocycle flow on SL(2,R).

Definition B.9 Haar measure

A (left-invariant) Haar measure is a measure µ on a the Borel σ-algebra of a Lie group G such that:

• µ(gE) = µ(E) for any g ∈G and any Borel set E,

• µ(K) is finite for every compact set K,

• µ(E) = inf{µ(U) : E ⊆ U,Uopen}.

• µ(E) = sup{µ(K) :K ⊆ E,Kcompact}.

Remark. There is a more general notion of Haar measure, where one requires that G be only a topological

group.

Proposition B.10 Existence and uniqueness of Haar measure

Every Lie group G has a unique (up to constant) Haar measure ν. That is, if ν̃ is another Haar measure

on G, then there is a constant C such that

ν(E) = Cν̃(E)

for every measurable set E.

Definition B.11 Linear Lie group

A (real) Linear Lie group G is a subgroup of the matrix group GL(n,R) (the set of invertible matrices

with n2 entries from R).

12a path c in H is a continuous piecewise differentiable curve c : [0,1] → H, c(t) = x(t) + iy(t) between the points z0 and
z1
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Definition B.12 Lie Algebra of a Lie Group

The Lie algebra Lie(G) of a Lie group G is the vector space of left-invariant vector fields with the Lie

bracket of vector fields. There is a canonical identification between the tangent space at the identity

and the Lie algebra.

Definition B.13 The exponential map

There is a unique map exp : Lie(G) →G such that exp(tX) = φX(t), where φX is the left-invariant flow

generated by X (the derivative of φX at the point 1 of G is X), and exp(tX)exp(sX) = exp((s+ t)X),

for t ∈ R. This map is called the exponential map.

The exponential map between Lie(G) and G establishes a (local) diffeomorphic correspondence be-
tween a neighbourhood of 0 in Lie(G) and a neighbourhood of 1 in G, by assigning to an element
X ∈ Lie(G) the element exp(X) = φX(1) ∈G.

The exponential map actually assigns to every X ∈ Lie(G) a smooth one-parameter subgroup (a
smooth flow) of G.

For linear Lie groups, the exponential map is given by taking the familiar expression (the matrix
exponent):

exp(X) = 1+
X

1!
+
X2

2!
+
X3

3!
+ · · ·+

Xn

n!
+ . . .

The above sum converges to an element in G for every X ∈ Lie(G).

Definition B.14 The adjoint map

Given a Lie group G and its associated Lie algebra Lie(G), we define, for any g ∈ G, the map Adg :

Lie(G) → Lie(G) by

Adg(v) =
d

dt

(

g−1(exp tv)g
)∣

∣

t=0

Proposition B.15

The adjoint map Adg is a Lie algebra homomorphism for every g ∈G.

Definition B.16 Unipotent subgroup

A Lie subgroup U of a Lie group G is said to be unipotent if for every u ∈ U , Adu is a unipotent

automorphism of the Lie algebra of G, that is (Adu − id)n = 0 for some n > 0.

Remark. For a Linear Lie group G, being unipotent means that every matrix in G has all its eigenvalues

equal to 1.

Example B.17

Upper-triangular matrices with ones (1) on the diagonal are unipotent. Unipotent elements in a Lie

group G are generated by nilpotent elements in Lie(G).

Examples include:
[

1 t

0 1

]

, t ∈ R,

and




1 s t

0 1 u

0 0 1



 ,s, t,u ∈ R.
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