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Abstract

Given s non-empty sets G1, . . . ,Gs of graphs, the generalised Ram-

sey number R(G1, . . . ,Gs) is defined as the least positive integer n,

such that whenever each edge of the complete graph Kn on n vertices

is coloured with one of the colours c1, . . . , cs, Kn contains a ci-coloured

Gi, for some i ∈ {1, . . . , s} and some Gi ∈ Gi.

In this thesis, we first prove some basic, general properties of gene-

ralised Ramsey numbers, among others that they always exist. We

then compute a number of (in fact, uncountably many) two colour

generalised Ramsey numbers, such that G1 and G2 are sets of cycles.

This generalises previous results of Erdős, Faudree, Rosta, Rousseau,

and Schelp from the 1970s.

Above all, we determine all generalised Ramsey numbers R(G1,G2)

such that G1∪G2 contains a cycle of length 3, 4, or 5. Furthermore, we

give a conjecture for the general case. We also prove some results on

graphs that contain no cycle of odd length, except possibly a number

of 3-cycles.

Sammanfattning

För s icke-tomma mängder G1, . . . ,Gs av grafer definieras det gene-

raliserade Ramseytalet R(G1, . . . ,Gs) som det minsta positiva heltalet

n, s̊adant att om varje kant i den kompletta grafen Kn p̊a n hörn

färgas med n̊agon av färgerna c1, . . . , cs, s̊a inneh̊aller Kn garanterat

en ci-färgad Gi, för n̊agot i ∈ {1, . . . , s} och n̊agot Gi ∈ Gi.

I det här arbetet bevisar vi först n̊agra grundläggande, allmänna

egenskaper hos generaliserade Ramseytal, bland andra att de alltid

existerar. Därefter beräknar vi ett antal generaliserade Ramseytal för

tv̊a färger, s̊adana att G1 och G2 är mängder av cykler, vilket genera-

liserar tidigare resultat av Erdős, Faudree, Rosta, Rousseau och Schelp

fr̊an 1970-talet.

Framför allt bestämmer vi alla generaliserade Ramseytal R(G1,G2)

s̊adana att G1 ∪ G2 inneh̊aller en cykel av längd 3, 4 eller 5. Vidare ger

vi en förmodan för det allmänna fallet. Vi bevisar ocks̊a n̊agra resultat

om grafer som inte inneh̊aller n̊agon cykel av udda längd, förutom

möjligen ett antal 3-cykler.
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Preface

Much of Sections 1.1, 1.2, and 1.3 previously appeared as part of my bachelor

thesis [9].

Section 1.3: The results on ordinary (that is, non-generalised) Ramsey

numbers are previously known, but the proofs are my own, except the proof

of Ramsey’s theorem (Theorem 1.3.4). The results on generalised Ramsey

numbers are almost certainly previously known, but I have not been able to

find them in the literature.

Section 1.4: The alternative view of generalised Ramsey numbers stems

from [1] and personal communication with its author.

Chapter 2: All results in this chapter are, to the best of my knowledge,

new, except when the opposite is explicitly stated.
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1 Introduction

1.1 Introductory example

The following example is often used to introduce Ramsey theory (named

after the English mathematician Frank Ramsey (1903-1930)): Suppose that

at a party, any two people either know each other or do not know each other.

What is the least number of people that must be present at the party in

order to guarantee the existence of three people who mutually know each

other or three people who mutually do not know each other? This may be

modeled with graphs: Let the vertices represent the people at the party and

draw an edge between two vertices if and only if these two people know each

other. Equivalently, one may draw a red edge between two vertices if the two

people know each other and a blue edge otherwise. The above question may

now be rephrased thus: What is the least number of vertices that a graph

must contain in order to guarantee the existence of a 3-clique (three vertices

with an edge between any two of them) or three independent vertices (three

vertices with no edge between any two of them)? and What is the least

number of vertices that a complete red-blue graph (a number of vertices

with an edge, red or blue, between any two of them) must contain in order

to guarantee the existence of a red 3-clique or a blue 3-clique? respectively.

Let R(3, 3) denote the requested number of people/vertices. We now show

that R(3, 3) = 6.

Proposition 1.1.1. R(3, 3) = 6.

Proof. R(3, 3) ≥ 6: We have to show that there is a complete red-blue graph

on 5 vertices with no monochromatic 3-clique. Such a graph exists:

•

• •

• •

Figure 1: R(3, 3) ≥ 6.

R(3, 3) ≤ 6: We have to show that each complete red-blue graph on 6

vertices contains a monochromatic 3-clique. Let the vertices be v, a, b, c,

d, and e. At least three of the edges va, vb, vc, vd, and ve are the same

colour; say that (at least) va, vb, and vc are red. If ab, ac, or bc is red, then

we have a red 3-clique (vab, vac, or vbc, respectively). On the other hand,

if ab, ac, and bc are all blue, then we have a blue 3-clique (abc).
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It is natural to proceed by trying to answer the following, more general

question: What is the least number of vertices that a complete red-blue

graph must contain in order to guarantee the existence of a given red sub-

graph or a given blue subgraph (the two subgraphs need not be the same)?

In general, this is a very hard problem; for instance, even the number R(5, 5),

where the red and the blue subgraph are both 5-cliques, is unknown (one

only knows that it lies between 43 and 49). Nevertheless, many of these

so called (ordinary) Ramsey numbers are known, for instance R(Cn, Ck),

where the red and the blue subgraph are an n- and a k-cycle, respectively.

For more known values of (ordinary) Ramsey numbers, see [12].

One may generalise these Ramsey numbers by means of the following,

still more general question: What is the least number of vertices that a

complete red-blue graph must contain in order to guarantee the existence

of a red subgraph belonging to a given set of graphs or a blue subgraph

belonging to a given set of graphs (the two sets need not be the same)?

This is the question to which this thesis is devoted.

In Section 1.3 we prove some basic, general properties of generalised

Ramsey numbers, among others that they always exist, for any number of

colours. In Section 1.4 we give an alternative view of generalised Ramsey

numbers. In Chapter 2, finally, we compute a number of (in fact, uncount-

ably many) generalised Ramsey numbers for two sets Γ1 and Γ2 of cycles.

Above all, we determine all generalised Ramsey numbers R(Γ1,Γ2) such that

Γ1 ∪ Γ2 contains a cycle of length 3, 4, or 5. Furthermore, we give a conjec-

ture for the general case. We also prove some results on “almost bipartite

graphs,” by which we shall mean graphs that contain no cycle of odd length,

except possibly a number of 3-cycles.

1.2 Definitions and notation

In this section we define, above all, the graph theoretical notions used in this

thesis. Throughout the thesis, G1, . . . , Gs and G1, . . . ,Gs denote non-empty

(uncoloured) graphs and non-empty sets of non-empty (uncoloured) graphs,

respectively.

Definition 1.2.1. If X is a set, let |X| be the number of elements of X if

X is finite, and ∞ otherwise, let 2X = {A ⊆ X}, and let
(

X
k

)

= {A ⊆ X |

|A| = k}. If A and B are two sets, let A − B = {x ∈ A | x /∈ B} and let

(as usual) A × B = {(a, b) | a ∈ A and b ∈ B} (the latter with the obvious

generalisation for more than two sets). Also, if n is a positive integer, let

An = A× · · · ×A (n times).

Definition 1.2.2. Let R be the real numbers, let Z be the integers and let

N be the non-negative integers. If x ∈ R, let ⌊x⌋ = max{n ∈ Z | n ≤ x}

10



and let ⌈x⌉ = min{n ∈ Z | n ≥ x}. If a ∈ Z, let a mod n be the least non-

negative integer congruent to a modulo n. If n ∈ N, let [n] = {1, 2, . . . , n}

(thus [0] = ∅). If a ≤ b are integers, let [a, b] = {a, a+1, . . . , b}, and if a > b

are integers, let [a, b] = ∅. x ≡ a means that x ≡ a (mod 2).

Definition 1.2.3. A graph G is an ordered pair (V,E), where V is a finite

set and E ⊆
(

V
2

)

; the elements of V are called vertices and the elements of

E are called edges. (Thus all graphs in this thesis are finite, simple, and

undirected.) If G is a graph, let VG = V (G) and EG = E(G) denote its

vertex set and its edge set, respectively. Note that we often write v ∈ G and

|G| instead of v ∈ V (G) and |V (G)|, respectively. Also note that we often

write uv or vu for the edge {u, v} = {v, u}.

Let G = (VG, EG) be a graph. Two vertices u and v of G are said to be

adjacent to one another, or neighbours, if uv ∈ EG. A vertex v and an edge

xy are said to be incident if v ∈ {x, y}. Two edges are called independent

if they have no vertex in common. A graph H = (VH , EH) is said to be a

subgraph of G, written H ⊆ G, if VH ⊆ VG and EH ⊆ EG; H is said to be

an induced subgraph of G if, moreover, EH =
(

VH

2

)

∩ EG. The complement

of G is the graph (VG,
(

VG

2

)

− EG).

A graph G = (V,E) is said to be bipartite if V is the disjoint union of

two subsets V1 and V2, such that all edges e ∈ E are of the form e = v1v2,

where v1 ∈ V1 and v2 ∈ V2; G is said to be complete bipartite if, moreover,

v1v2 ∈ E, for all v1 ∈ V1 and all v2 ∈ V2. The graph Kp,q is complete

bipartite with |V1| = p and |V2| = q. G is said to be m-regular if each vertex

of G has precisely m neighbours. The graph Kn consists of n vertices and

all
(

n
2

)

possible edges; it is called the complete graph on n vertices, or the

n-clique (note that Kn is (n− 1)-regular).

Definition 1.2.4. Two graphs G1 and G2 are said to be isomorphic if

there is a bijection V (G1)
ϕ
→ V (G2), such that uv ∈ E(G1) if and only if

ϕ(u)ϕ(v) ∈ E(G2), for all u, v ∈ V (G1). Let the isomorphism class [G] of

a given graph G consist of all graphs isomorphic to G, and let P denote

the set of all isomorphism classes of graphs. We usually do not distinguish

between isomorphic graphs (in other words, we often identify G with [G]).

Thus for instance, we talk about the complete graph on n vertices.

Definition 1.2.5. Let

V = {x1, x2, . . . , xn} and E = {x1x2, x2x3, . . . , xn−1xn},

where n is a positive integer and xi 6= xj for all i 6= j. Then (V,E) is called

a path of length n − 1, denoted Pn = x1x2 · · ·xn, and if n ≥ 3, then

(V,E ∪ {xnx1}) is called a cycle of length n, or an n-cycle, denoted Cn =

x1x2 · · ·xnx1.
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If P = x1x2 · · ·xn, let P
′ = xnxn−1 · · ·x1. Formally, P = P ′, but this is

still a useful definition. If P = x1x2 · · ·xn and n ≥ 3, let P ◦ = x2x3 · · ·xn−1;

x2, x3, . . . , xn−1 are the inner vertices of P .

A j-chord of a cycle C = x1x2 · · ·xnx1 is an edge of the form xixi+j ,

where j mod n /∈ {1, n − 1}. Vertex indices are always interpreted modulo

the length of the cycle that we are considering at the moment. For instance,

x11 = x3 in a cycle of length 8.

Finally, let

V = {x1, x2, y1, y2, . . . , yn} and E = {x1x2} ∪ {xiyj | (i, j) ∈ [2]× [n]},

where n is a positive integer and yi 6= yj for all i 6= j. Then (V,E) is called

a tower of height n, denoted Tn = x1x2|y1y2 · · · yn. A tower T in a graph G

is called maximal if the height of T , denoted ht(T ), is maximal among the

heights of the towers in G.

Definition 1.2.6. A graph G is said to be almost bipartite if it contains

no cycle of odd length, except possibly a number of 3-cycles. A graph G on

n ≥ 3 vertices is called Hamiltonian if it contains a cycle of length n, and

pancyclic if it contains cycles of all lengths between 3 and n.

Definition 1.2.7. Let s be a positive integer. An s-colouring ρ of a set X

is a function X
ρ
→ {c1, . . . , cs}; ρ(x) is called the colour of x (x ∈ X). An

s-edge colouring of a graph (V,E) is an s-colouring of E; the edge coloured

graph is denoted (V,E, ρ) and is said to be a colour graph.

Let G = (VG, EG, ρG) be a colour graph. Two vertices u and v of G

are said to be ci adjacent to one another, or ci neighbours, if uv ∈ EG and

ρG(uv) = ci. The ci-coloured subgraph Gci of G is the (uncoloured) graph

(VG, {e ∈ EG | ρG(e) = ci}). A subgraph H = (VH , EH , ρH) of G is said to

have the induced colouring if ρH(e) = ρG(e) for all e ∈ EH .

If V ⊆ V (G), let G[V ] denote the induced subgraph on V with the

induced colouring. In case G is an uncoloured graph, then we use the same

notation for the induced subgraph on V . Also, if H ⊆ G, let H + V =

G[V (H) ∪ V ] and let H − V = G[V (H) − V ]; moreover, if v ∈ G, let

H ± v = H ± {v}.

A colour graph (V,E, ρ) is said to be red-blue if s = 2 and {c1, c2} =

{red, blue}. Throughout the thesis, we shall assume this to be the case when

s = 2; furthermore, red will always be the first colour and blue will always

be the second. In order to simplify notation, we shall often also assume that

{c1, . . . , cs} = [s] for arbitrary s.

Definition 1.2.8. Let n and s be positive integers. We write

n→ (G1, . . . , Gs)
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if, for each s-edge colouring ρ of Kn, there is an i ∈ [s], such that the ci-

coloured subgraph (Kn)ci contains a subgraph isomorphic to Gi; we often

express this as (Kn, ρ) (or just Kn) containing a ci-coloured Gi. n →

(t1, . . . , ts) has the same meaning as n→ (Kt1 , . . . ,Kts).

The ordinary Ramsey number R(G1, . . . , Gs) denotes the least positive

integer n such that n→ (G1, . . . , Gs); here, R(t1, . . . , ts) = R(Kt1 , . . . ,Kts).

Since R(G1, . . . , Gs) only depends on the isomorphism classes of G1, . . . , Gs,

one may define a function, called the ordinary Ramsey function, from Ps

to the set of all positive integers, by ([G1], . . . , [Gs]) 7→ R(G1, . . . , Gs).

It should be noted that it is not obvious that for each positive integer

s and all graphs G1, . . . , Gs, there is a positive integer n such that n →

(G1, . . . , Gs). In the next section, however, we prove this to be the case (see

Theorem 1.3.4), whence the ordinary Ramsey function is well-defined.

Definition 1.2.9. Let n and s be positive integers. We write

n→ (G1, . . . ,Gs)

if, for each s-edge colouring ρ of Kn, there is an i ∈ [s], such that the ci-

coloured subgraph (Kn)ci contains a subgraph isomorphic to some Gi ∈ Gi;

we often express this as (Kn, ρ) (or just Kn) containing a ci-coloured Gi.

The generalised Ramsey number R(G1, . . . ,Gs) denotes the least positive

integer n such that n → (G1, . . . ,Gs). Since R(G1, . . . ,Gs) only depends

on the isomorphism classes of the graphs in G1, . . . ,Gs, one may define a

function, called the generalised Ramsey function, from (2P − {∅})s to the

set of all positive integers, by ([G1], . . . , [Gs]) 7→ R(G1, . . . ,Gs), where by

definition, [Gi] = {[Gi] | Gi ∈ Gi}.

It should be noted that it is not obvious that for each positive integer

s and all non-empty sets of graphs G1, . . . ,Gs, there is a positive integer n

such that n→ (G1, . . . ,Gs). However, this is easily proved to be the case (see

Corollary 1.3.7), whence the generalised Ramsey function is well-defined.

Also note that if Gi = {Gi} for some i ∈ [s], then we often write n →

(G1, . . . , Gi, . . . ,Gs) instead of n → (G1, . . . , {Gi}, . . . ,Gs); similarly, we let

R(G1, . . . , Gi, . . . ,Gs) = R(G1, . . . , {Gi}, . . . ,Gs).

Definition 1.2.10. Recall that G1 and G2 denote non-empty sets of non-

empty (uncoloured) graphs. A complete red-blue graph G is said to be

(G1,G2)-avoiding if G contains neither a red subgraph belonging to G1 nor

a blue subgraph belonging to G2.

Let P be a property such that for each (uncoloured) graph G, G fulfils

P if and only if all graphs isomorphic to G do.1 Then a complete red-blue

1Formally, one may define a graph property as a class of (uncoloured) graphs that is

closed under isomorphism (see [4]).
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graph G is said to be red P -fulfilling (blue P -fulfilling) if its red subgraph

Gred (its blue subgraph Gblue) fulfils P . In order to illustrate this concept,

consider the complete red-blue graphs given in Figure 2. They are both blue

bipartite and red (as well as blue) almost bipartite; the second one is also

blue complete bipartite.

Let C = {Ck | k ≥ 3}, let Co = {odd cycles} = {Ck | k ≡ 1}, and

let Ce = {even cycles} = {Ck | k ≡ 0}. Also, for each integer m ≥ 3, let

C≤m = {Ck | k ≤ m} and C≥m = {Ck | k ≥ m}. Finally, if Γ ⊆ C , let

min(Γ) =

{

min{k | Ck ∈ Γ} if Γ is non-empty

∞ otherwise,

and for each i ∈ [2], let γi = min(Γi) and γ
i
e = min(Γi ∩ Ce).

• • •

• •

• • • •

Figure 2: Two blue bipartite and red almost bipartite graphs.

Definition 1.2.11. A complete red-blue graph G is said to have a Hamil-

tonian r-partition (P(1), . . . , P(r)) if V (G) is the disjoint union of r subsets

V1, . . . , Vr, such that for each i ∈ [r] with |Vi| ≥ 1, G[Vi] contains a red path

P(i) of length |Vi| − 1.

In order to make sense of some of the proofs in this thesis, we need the

following notation: Let G be a complete red-blue graph, let H be a blue K4

or a blue tower in G, and let v ∈ H. Then a vertex x ∈ G is said to be

RA(v) if x is red adjacent to each vertex of H, except possibly v.

1.3 Basic properties of the generalised Ramsey function

Proposition 1.3.1. Let s be a positive integer. Then

n→ (G1, . . . , Gs) if and only if n→ (G1, . . . , Gs,K2).

Proof. (⇒) Fix an arbitrary (s+ 1)-edge colouring of Kn. If it contains an

(s+ 1)-coloured edge, then we have an (s+ 1)-coloured K2. If not, then we

have (by assumption) an i-coloured Gi for some i ∈ [s].

(⇐) Fix an arbitrary s-edge colouring of Kn. Since it contains no (s+1)-

coloured K2, we have (by assumption) an i-coloured Gi for some i ∈ [s].

14



Proposition 1.3.2. Let s be a positive integer and let σ be a permutation

of [s]. Then

n→ (G1, . . . , Gs) if and only if n→ (Gσ(1), . . . , Gσ(s)).

Proof. (⇒) Fix an arbitrary s-edge colouring ρ of Kn. We have to show that

(Kn, ρ) contains an i-coloured Gσ(i) for some i ∈ [s]. Consider the s-edge

colouring ρ′ = σ ◦ ρ of Kn. Since n → (G1, . . . , Gs), (Kn, ρ
′) contains a

j-coloured Gj for some j ∈ [s], and since σ is surjective, (Kn, ρ
′) contains

a σ(i)-coloured Gσ(i) for some i ∈ [s]. Thus (Kn, ρ) must have contained a

Gσ(i) in the colours that σ maps to σ(i), that is an i-coloured Gσ(i) (since σ

is injective).

(⇐) For each i ∈ [s], let Hi = Gσ(i); note that Hσ−1(i) = Gi. Since

n→ (H1, . . . , Hs), the ⇒ part implies that n→ (Hσ−1(1), . . . , Hσ−1(s)), that

is n→ (G1, . . . , Gs).

Proposition 1.3.3. Let s be a positive integer, and for each i ∈ [s], let

Hi be a non-empty subgraph of Gi. Then R(H1, . . . , Hs) ≤ R(G1, . . . , Gs)

(provided the right hand side exists).

Proof. By definition of R(G1, . . . , Gs), R(G1, . . . , Gs) → (G1, . . . , Gs), which

obviously implies that R(G1, . . . , Gs) → (H1, . . . , Hs). Thus and by defini-

tion of R(H1, . . . , Hs), R(H1, . . . , Hs) ≤ R(G1, . . . , Gs).

Let s be a positive integer. Note that in case E(Gi) = ∅ for some i ∈ [s],

then

R(G1, . . . , Gs) = min
i∈[s]

{|V (Gi)| | E(Gi) = ∅} ≥ 1.

Thus for arbitrary graphs G1, . . . , Gs,

R(G1, . . . , Gs) ≥ min
i∈[s]

{|V (Gi)|} ≥ 1

(provided the left hand side exists).

Theorem 1.3.4 (Ramsey’s theorem).

(a) R(t) = t, for all t ≥ 2.

(b) If s ≥ 2, ti ≥ 2 for all i ∈ [s], and tj = 2 for some j ∈ [s], then

R(t1, . . . , ts) = R(t1, . . . , tj−1, tj+1, . . . , ts).

(c) If s ≥ 1 and ti ≥ 3 for all i ∈ [s], then

R(t1, . . . , ts) ≤

( s
∑

i=1

R(t1, . . . , ti − 1, . . . , ts)

)

− s+ 2.
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(d) For each positive integer s and all integers t1, . . . , ts ≥ 2, there is an

integer n ≥ 2 such that n → (t1, . . . , ts); thus R(t1, . . . , ts) always

exists.

(e) For each positive integer s and all graphs G1, . . . , Gs, there is a posi-

tive integer n such that n → (G1, . . . , Gs); thus R(G1, . . . , Gs) always

exists.

Remark. In parts (b) and (c), the right hand sides are assumed to exist. In

part (d), we prove this to be the case.

Proof. (a) This is an obvious result.

(b) Use Propositions 1.3.1 and 1.3.2.

(c) The result follows directly from part (a) in case s = 1. Thus, from

now on, assume that s ≥ 2. Let

n =

( s
∑

i=1

R(t1, . . . , ti − 1, . . . , ts)

)

− s+ 2

and fix an arbitrary s-edge colouring ρ of Kn. Take a vertex x ∈ Kn,

and for each i ∈ [s], define Γx
i = {y ∈ Kn | ρ(xy) = i}. Then for some

j ∈ [s], |Γx
j | ≥ R(t1, . . . , tj − 1, . . . , ts). (Suppose not, that is suppose that

|Γx
i | ≤ R(t1, . . . , ti − 1, . . . , ts)− 1, for all i ∈ [s]. Then

s
∑

i=1

|Γx
i | ≤

( s
∑

i=1

R(t1, . . . , ti − 1, . . . , ts)

)

− s = n− 2,

which contradicts the fact that
∑s

i=1 |Γ
x
i | = n−1, the number of neighbours

of x.) By definition of R(G1, . . . , Gs), Kn[Γ
x
j ] contains either an i-coloured

Kti for some i ∈ [s]−{j}, or a j-coloured Ktj−1. In the former case, we are

done, and in the latter case, Kn[Γ
x
j ∪ {x}] contains a j-coloured Ktj .

(d) Use parts (a) through (c) and induction.

(e) Use part (d) and Proposition 1.3.3.

Proposition 1.3.5. Let s be a positive integer and let σ be a permutation

of [s]. Then

n→ (G1, . . . ,Gs) if and only if n→ (Gσ(1), . . . ,Gσ(s)).

Proof. This is proved in the same way as Proposition 1.3.2.

Proposition 1.3.6. Let s be a positive integer, and for each i ∈ [s], let Hi

be a non-empty subset of Gi. Then R(G1, . . . ,Gs) ≤ R(H1, . . . ,Hs) (provided

the right hand side exists).
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Proof. By definition of R(H1, . . . ,Hs), R(H1, . . . ,Hs) → (H1, . . . ,Hs),

which obviously implies that R(H1, . . . ,Hs) → (G1, . . . ,Gs). Thus and by

definition of R(G1, . . . ,Gs), R(G1, . . . ,Gs) ≤ R(H1, . . . ,Hs).

Corollary 1.3.7. Let s be a positive integer, and for each i ∈ [s], let Gi ∈ Gi.

Then R(G1, . . . ,Gs) ≤ R(G1, . . . , Gs); in particular, R(G1, . . . ,Gs) always

exists.

Since we now know that R(G1, . . . ,Gs) always exists, the following result

is an immediate consequence of Proposition 1.3.5.

Proposition 1.3.8. Let s be a positive integer and let σ be a permutation

of [s]. Then

R(G1, . . . ,Gs) = R(Gσ(1), . . . ,Gσ(s)).

1.4 An alternative view of generalised Ramsey numbers

In this section, we give an alternative, equivalent definition of generalised

Ramsey numbers, which perhaps makes this generalisation of the ordinary

Ramsey numbers appear more natural. The idea stems from [1] and personal

communication with its author. We begin by recalling the notion of a poset,

and some related concepts.

Definition 1.4.1. If P is a set and ≤ is a binary relation on P , then (P,≤)

is said to be a partially ordered set, or a poset, if the following properties

hold, for all elements x, y, z ∈ P :

(i) x ≤ x (reflexivity);

(ii) x = y if x ≤ y and y ≤ x (antisymmetry); and

(iii) x ≤ z if x ≤ y and y ≤ z (transitivity).

Naturally, x ≥ y, x < y, and x > y have the same meaning as y ≤ x, x ≤ y

and x 6= y, and y < x, respectively. Two elements x, y ∈ P are comparable

if x ≤ y or y ≤ x; otherwise they are incomparable.

Let (P,≤) be a poset. A subset Q ⊆ P is a chain if any two elements

of Q are comparable, an antichain if any two distinct elements of Q are

incomparable, an order ideal if y ∈ Q whenever x ∈ Q and y ≤ x, and a

dual order ideal, or a filter, if y ∈ Q whenever x ∈ Q and y ≥ x. An element

x ∈ Q ⊆ P is maximal (minimal) in Q if there is no element y ∈ Q such

that y > x (y < x). Define

(1) ⌊Q⌋ = {y ∈ P | y ≤ x for some x ∈ Q}
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and

(2) ⌈Q⌉ = {y ∈ P | y ≥ x for some x ∈ Q}

By transitivity, (1) is an order ideal and (2) is a filter. The subset Q is said

to generate (1) and (2), respectively. In case Q = {x}, then x is said to

generate the principal order ideal ⌊x⌋ = {y ∈ P | y ≤ x} and the principal

filter ⌈x⌉ = {y ∈ P | y ≥ x}, respectively. (Note that ∅ generates the empty

order ideal and the empty filter, respectively.)

A poset (P,≤) is said to satisfy the ascending chain condition or ACC

(the descending chain condition or DCC) if there is no infinite sequence

(xi)i≥1 in P such that x1 < x2 < · · · (x1 > x2 > · · · ).

Proposition 1.4.2. Given a poset (P,≤) that satisfies ACC, there is a

natural bijection ϕ between the set of antichains A and the set of order

ideals I, given by ϕ(A) = ⌊A⌋ and whose inverse is given by

ϕ−1(I) = {x ∈ I | x is maximal in I}.

Similarly, given a poset (P,≤) that satisfies DCC, there is a natural

bijection ψ between the set of antichains A and the set of filters J , given by

ψ(A) = ⌈A⌉ and whose inverse is given by

ψ−1(J) = {x ∈ J | x is minimal in J}.

Proof. By symmetry, it suffices to prove the second part of the proposition.

We know that ⌈A⌉ is a filter. We thus have to prove that (i) ψ−1(J) is an

antichain, (ii) ψ−1(ψ(A)) = A, and (iii) ψ(ψ−1(J)) = J .

(i): We are done if |ψ−1(J)| ≤ 1. Thus, take x 6= y in ψ−1(J) ⊆ J .

Since x ∈ ψ−1(J) and y ∈ J , y < x does not hold. Similarly, x < y does not

hold. Thus x and y are incomparable.

(ii): ψ−1(ψ(A)) ⊆ A: Take z ∈ ψ−1(ψ(A)). By definition, z is minimal

in ⌈A⌉. In particular, z ∈ ⌈A⌉, whence z ≥ x for some x ∈ A. Since z is

minimal in ⌈A⌉, z = x, whence z ∈ A.

ψ−1(ψ(A)) ⊇ A: Take z ∈ A. We have to show that z is minimal in

⌈A⌉. Suppose not, that is suppose that there is an element y ∈ ⌈A⌉ such

that y < z. Since y ∈ ⌈A⌉, y ≥ x for some x ∈ A. By transitivity, z > x,

which contradicts the fact that A is an antichain.

(iii): ψ(ψ−1(J)) ⊆ J : Take y ∈ ψ(ψ−1(J)). By definition, y ≥ x for

some x ∈ ψ−1(J), that is y ≥ x for some (minimal) element x in J . Since J

is a filter, y ∈ J .

ψ(ψ−1(J)) ⊇ J : Take y ∈ J . We have to show that y ≥ x for some

x ∈ ψ−1(J) or, equivalently, that

(3) y ≥ x for some minimal element x in J.
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If y is minimal in J , then (3) holds for x = y. If not, then there is an element

y1 ∈ J such that y1 < y. If y1 is minimal in J , then (3) holds for x = y1.

If not, then there is an element y2 ∈ J such that y2 < y1, and so forth.

Since (P,≤) satisfies DCC, we eventually reach a minimal element yn in J

such that yn < yn−1 < · · · < y1 < y. Thus and by transitivity, (3) holds for

x = yn.

Now, recall that P is the set of all isomorphism classes of graphs. We

can make the set P into a poset (P,≤) by defining [G1] ≤ [G2] in P

if G1 is isomorphic to a subgraph of G2. Note that if [G1] > [G2], then

|V (G1)|+ |E(G1)| > |V (G2)|+ |E(G2)|. Thus (P,≤) satisfies DCC.

Recall also, that the generalised Ramsey number R(G1, . . . ,Gs) is the

least positive integer n, such that for each s-edge colouring of Kn, there is

an i ∈ [s] such that (Kn)ci contains a subgraph isomorphic to some Gi ∈ Gi.

We are now ready to give the alternative definition:

Definition 1.4.3. The generalised Ramsey number R(G1, . . . ,Gs) is the

least positive integer n, such that for each s-edge colouring of Kn, there is

an i ∈ [s] such that (Kn)ci belongs to the filter ⌈[Gi]⌉.

In particular, the ordinary Ramsey number R(G1, . . . , Gs) is the least

positive integer n, such that for each s-edge colouring of Kn, there is an

i ∈ [s] such that (Kn)ci belongs to the principal filter ⌈[Gi]⌉.

Finally, for each i ∈ [s], let Ai be a set of graphs such that

[Ai] = ψ−1(⌈[Gi]⌉).

Since (P,≤) satisfies DCC, it follows from Proposition 1.4.2 that [Ai] is an

antichain and

⌈[Ai]⌉ = ψ([Ai]) = ψ(ψ−1(⌈[Gi]⌉)) = ⌈[Gi]⌉.

Hence, R(A1, . . . ,As) = R(G1, . . . ,Gs). Thus, when dealing with generalised

Ramsey numbers, one may always take [G1], . . . , [Gs] to be antichains in P

(with each Gi containing no two isomorphic graphs). For instance, since

[K4] ≥ [C3], R(C4, {C3, C6,K4}) = R(C4, {C3, C6}). As to the two sets of

cycles case (see Chapter 2), note that each subset of [C ] is an antichain in

(P,≤).
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2 The two sets of cycles case

In this chapter, we investigate generalised Ramsey numbers for two sets of

cycles, that is generalised Ramsey numbers of the form R(Γ1,Γ2), where

(Γ1,Γ2) is a pair of non-empty sets of cycles.

2.1 Preliminaries and previously known results

In this section, we first define a number of sets and colourings that will

be needed in the proofs to come. We then present some results which, to

the best of the author’s knowledge, include all previously known generalised

Ramsey numbers for two sets of cycles.

2.1.1 Preliminaries

For pairs (n, k) of integers such that n ≥ k ≥ 3, define

∆0 = {(3, 3), (4, 4)},

∆1 = {(n, k) | n ≡ 0 and k ≡ 0} − {(4, 4)},

∆2 = {(n, k) | n ≡ 1, k ≡ 0, and 2n ≥ 3k},

∆3 = {(n, k) | n ≡ 1, k ≡ 0, and 2n ≤ 3k}, and

∆4 = {(n, k) | k ≡ 1} − {(3, 3)}.

Also, for pairs (Γ1,Γ2) of non-empty sets of cycles, define

A
0 = {(Γ1,Γ2) | C3 or C4 ∈ Γ1 ∩ Γ2 and C5 /∈ Γ1 ∪ Γ2},

A
1
red = {(Γ1,Γ2) | 0 ≡ γ2 ≥ γ1e and (γ2, γ1e ) 6= (4, 4)},

A
2
red = {(Γ1,Γ2) | 1 ≡ γ2 ≥ 3γ1e/2},

A
3
red = {(Γ1,Γ2) | 1 ≡ γ1 ≤ 3γ2e/2, 0 ≡ γ2 < γ1, and γ1e ≥ 2γ2},

A
4
red = {(Γ1,Γ2) | γ

2 ≥ 4 and 1 ≡ γ1 ≤ γ2 ≤ γ1e/2},

A
1
blue = {(Γ1,Γ2) | 0 ≡ γ1 ≥ γ2e and (γ1, γ2e ) 6= (4, 4)},

A
2
blue = {(Γ1,Γ2) | 1 ≡ γ1 ≥ 3γ2e/2},

A
3
blue = {(Γ1,Γ2) | 1 ≡ γ2 ≤ 3γ1e/2, 0 ≡ γ1 < γ2, and γ2e ≥ 2γ1}, and

A
4
blue = {(Γ1,Γ2) | γ

1 ≥ 4 and 1 ≡ γ2 ≤ γ1 ≤ γ2e/2}.

Finally, define

B1 =

4
⋃

j=1

A
j
red and B2 =

4
⋃

j=1

A
j
blue,

and for each i ∈ [2], let

B
′
i = Bi ∩ {(Γ1,Γ2) | min(Γ1 ∪ Γ2) ≥ 6}.
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One can show that

B1 =
{

(Γ1,Γ2)
∣

∣ 0 ≡ γ2 ≥ max(6, γ1e ), γ
2 ≥ 3γ1e/2, or

(

γ1 ≡ 1, γ1e ≥ 2γ2, and (0 ≡ γ2 ≥ 2γ1/3 or γ2 ≥ max(4, γ1))
)}

,

B2 =
{

(Γ1,Γ2)
∣

∣ 0 ≡ γ1 ≥ max(6, γ2e ), γ
1 ≥ 3γ2e/2, or

(

γ2 ≡ 1, γ2e ≥ 2γ1, and (0 ≡ γ1 ≥ 2γ2/3 or γ1 ≥ max(4, γ2))
)}

,

B
′
1 =

{

(Γ1,Γ2)
∣

∣ γ1 ≥ 6 and
(

0 ≡ γ2 ≥ γ1e , γ
2 ≥ 3γ1e/2, or

(

γ1 ≡ 1, γ1e ≥ 2γ2, and (0 ≡ γ2 ≥ 2γ1/3 or γ2 ≥ γ1)
)

)}

, and

B
′
2 =

{

(Γ1,Γ2)
∣

∣ γ2 ≥ 6 and
(

0 ≡ γ1 ≥ γ2e , γ
1 ≥ 3γ2e/2, or

(

γ2 ≡ 1, γ2e ≥ 2γ1, and (0 ≡ γ1 ≥ 2γ2/3 or γ1 ≥ γ2)
)

)}

.

We now turn to the colourings. Note that Colourings 3, 4, 5, and 6 were

used to prove the lower bounds in Theorem 2.1.1, when (n, k) belongs to

∆0, ∆1 ∪∆2, ∆3, and ∆4, respectively.

• Colouring 1:

• •

• •

• Colouring 2:

•

• •

• •

• Colouring 3:

•

• •

• •
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• Colouring 4: The complete red-blue graph with vertex set

{x1, . . . , xn−1, y1, . . . , yk/2−1}

and
{

ρ(xixj) = ρ(yiyj) = red

ρ(xiyj) = blue.

• Colouring 5: The complete red-blue graph with vertex set

{x1, . . . , xk−1, y1, . . . , yk−1}

and
{

ρ(xixj) = ρ(yiyj) = blue

ρ(xiyj) = red.

• Colouring 6: The complete red-blue graph with vertex set

{x1, . . . , xn−1, y1, . . . , yn−1}

and
{

ρ(xixj) = ρ(yiyj) = red

ρ(xiyj) = blue.

2.1.2 Previously known results

The |Γ1| = |Γ2| = 1 subcase was proved independently by Rosta [13] and

by Faudree and Schelp [6]. A new, simpler proof was given by Károlyi and

Rosta [11]. The second formula is due to Schwenk (see [10]).

Theorem 2.1.1. Let n ≥ k ≥ 3 be integers. Then

R(Cn, Ck) =























6 if (n, k) ∈ ∆0

n+ k/2− 1 if (n, k) ∈ ∆1 ∪∆2

2k − 1 if (n, k) ∈ ∆3

2n− 1 if (n, k) ∈ ∆4

or, equivalently,

R(Cn, Ck) = max
(

6, n+ k/2− 1,

(2k − 1)(n− 2⌊n/2⌋), (2n− 1)(k − 2⌊k/2⌋)
)

.

Furthermore, we have the following results of Erdős, Faudree, Rousseau,

and Schelp:
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Theorem 2.1.2 ([5, Theorem 3]). For all n ≥ 2,

R(C≤m,Kn) =

{

2n if n < m < 2n− 1

2n− 1 if m ≥ 2n− 1.

Corollary 2.1.3.

R(C≤m, C3) =

{

6 if m = 4

5 if m ≥ 5.

Remark. Of course, R(C≤3, C3) = R(C3, C3) = 6.

Theorem 2.1.4 ([7, Theorem 2]). For all m ≥ 3 and all n ≥ 2,

R(C≥m,Kn) = (m− 1)(n− 1) + 1.

Corollary 2.1.5. For all m ≥ 3,

R(C≥m, C3) = 2m− 1.

2.2 The red and blue Ramsey numbers

In this section, we define some numbers whose definitions are similar to

that of generalised Ramsey numbers. We then determine all such numbers

for two sets of cycles. They will turn out to be very closely related to

generalised Ramsey numbers for two sets of cycles (see Theorem 2.3.2 and

Conjecture 2.3.1).

Definition 2.2.1. Recall that G1 and G2 denote non-empty sets of non-

empty (uncoloured) graphs. Let the red Ramsey number Rred(G1,G2) (the

red complete Ramsey number Rredcomp(G1,G2)) be the least positive integer

n, such that each red bipartite (red complete bipartite) graph on n vertices

contains a red subgraph belonging to G1 or a blue subgraph belonging to

G2. The blue Ramsey number Rblue(G1,G2) and the blue complete Ramsey

number Rbluecomp(G1,G2) are defined analogously.

Proposition 2.2.2.

Rredcomp(G1,G2) ≤ Rred(G1,G2) = R(G1 ∪ Co,G2) ≤ R(G1,G2)

and

Rbluecomp(G1,G2) ≤ Rblue(G1,G2) = R(G1,G2 ∪ Co) ≤ R(G1,G2).

In particular, the red (complete) and blue (complete) Ramsey numbers al-

ways exist.
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Corollary 2.2.3.

R(G1,G2) ≥ max(Rred(G1,G2), Rblue(G1,G2)).

Lemma 2.2.4. Let (Γ1,Γ2) be a pair of non-empty sets of cycles. Then

(4) Rredcomp(Γ1,Γ2) =

{

γ2 + γ1e/2− 1 if 2γ2 > γ1e

2γ2 − 1 if 2γ2 ≤ γ1e

and

(5) Rbluecomp(Γ1,Γ2) =

{

γ1 + γ2e/2− 1 if 2γ1 > γ2e

2γ1 − 1 if 2γ1 ≤ γ2e

or, equivalently,

Rredcomp(Γ1,Γ2) = min(γ2 + γ1e/2− 1, 2γ2 − 1)

and

Rbluecomp(Γ1,Γ2) = min(γ1 + γ2e/2− 1, 2γ1 − 1).

Remarks. Actually, one may extend the definition of Rredcomp(Γ1,Γ2) to

include the case Γ1 = ∅, and (4) will still hold (note that γ1 = γ1e = ∞).

Similarly, one may extend the definition of Rbluecomp(Γ1,Γ2) to include the

case Γ2 = ∅, and (5) will still hold (now note that γ2 = γ2e = ∞). The

analogous remarks apply to Proposition 2.2.5. Also note that γi+γje/2−1 =

2γi − 1 when 2γi = γje .

Proof. The two statements (4) and (5) are symmetric. Thus we only have

to prove (5). In order to simplify notation, let n = γ1 and k = γ2e .

Assume first that 2n > k. Rbluecomp(Γ1,Γ2) ≥ n+ k/2− 1: Colouring 4

is blue complete bipartite on n+ k/2− 2 vertices, and contains no red cycle

of length at least n, no blue cycle of length at least k, and no odd blue cycle.

Rbluecomp(Γ1,Γ2) ≤ n + k/2 − 1: Let G be an arbitrary blue complete

bipartite graph on n+ k/2− 1 vertices; say that Gblue = Kp,q. Then either

max(p, q) ≥ n or min(p, q) ≥ k/2. In the former case, G contains a red Cn,

and in the latter case, G contains a blue Ck.

Assume now that 2n ≤ k. Rbluecomp(Γ1,Γ2) ≥ 2n−1: Colouring 6 is blue

complete bipartite on 2n− 2 vertices, and contains no red cycle of length at

least n, no blue cycle of length at least k, and no odd blue cycle.

Rbluecomp(Γ1,Γ2) ≤ 2n−1: Let G be an arbitrary blue complete bipartite

graph on 2n−1 vertices; say that Gblue = Kp,q. Then max(p, q) ≥ n, whence

G contains a red Cn.

24



Proposition 2.2.5. Let (Γ1,Γ2) be a pair of non-empty sets of cycles. Then

(6) Rred(Γ1,Γ2) =

{

γ2 + γ1e/2− 1 if 2γ2 > γ1e and (γ2, γ1e ) 6= (3, 4)

2γ2 − 1 if 2γ2 ≤ γ1e or (γ2, γ1e ) = (3, 4)

and

(7) Rblue(Γ1,Γ2) =

{

γ1 + γ2e/2− 1 if 2γ1 > γ2e and (γ1, γ2e ) 6= (3, 4)

2γ1 − 1 if 2γ1 ≤ γ2e or (γ1, γ2e ) = (3, 4)

or, equivalently,

Rred(Γ1,Γ2) =

{

5 if (γ2, γ1e ) = (3, 4)

min(γ2 + γ1e/2− 1, 2γ2 − 1) otherwise

and

Rblue(Γ1,Γ2) =

{

5 if (γ1, γ2e ) = (3, 4)

min(γ1 + γ2e/2− 1, 2γ1 − 1) otherwise.

Remark. Note that Rred(Γ1,Γ2) = Rredcomp(Γ1,Γ2), unless (γ
2, γ1e ) = (3, 4),

in which case Rred(Γ1,Γ2) = Rredcomp(Γ1,Γ2) + 1. Of course, the analogous

remark applies to Rblue(Γ1,Γ2).

Proof. The two statements (6) and (7) are symmetric. Thus we only have

to prove (7). In order to simplify notation, let n = γ1 and k = γ2e .

The lower bounds follow from Proposition 2.2.2 and Colouring 1.

We now turn to the upper bounds. 2n > k and (n, k) 6= (3, 4): Since

2n > k and (n, k) 6= (3, 4), n ≥ 4. Let G be an arbitrary blue bipartite

graph on n+ k/2− 1 vertices; say that Gblue ⊆ Kp,q. W.l.o.g., assume that

p ≥ q. In order to obtain a contradiction, assume G is (Γ1,Γ2)-avoiding.

Either p ≥ n or q ≥ k/2. Were p ≥ n, G would contain a red Cn,

whence q ≥ k/2. Were G blue complete bipartite, G would contain a blue

Ck, whence there is at least one red edge between the red Kp and the red

Kq. Were there two independent red edges between Kp and Kq, G would

contain a red Cn (since n ≥ 4), whence all red edges between Kp and Kq

have a common vertex x. Thus, were q ≥ k/2 + 1, G would contain a blue

Ck, whence q = k/2 and p = n− 1. (Regardless whether x belongs to Kp or

to Kq, G would contain a blue Kk/2+1,k/2.)

Assume first that x ∈ Kk/2. Were there at least two red edges between

Kn−1 and x, G would contain a red Cn, whence there is only one red edge

between Kn−1 and x. Thus and since n ≥ 4, there are at least two blue

edges between Kn−1 and x, say v1x and v2x, and v1xv2 can be extended to

a blue Ck, contrary to the hypothesis.
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Assume now that x ∈ Kn−1. Then all edges between Kn−1−x and Kk/2

are blue, whence G contains a blue Ck, unless n − 1 = k/2, in which case

x ∈ Kk/2 (which we have already treated).

2n ≤ k or (n, k) = (3, 4): Let G be an arbitrary blue bipartite graph

on 2n − 1 vertices; say that Gblue ⊆ Kp,q. Then max(p, q) ≥ n, whence G

contains a red Cn.

Given a pair (Γ1,Γ2) of non-empty sets of cycles, let

m = m(Γ1,Γ2) = max(Rred(Γ1,Γ2), Rblue(Γ1,Γ2)).

We shall see that the generalised Ramsey number R(Γ1,Γ2) often equals m

(Theorem 2.3.2), and we conjecture that there are no exceptions besides the

ones enumerated in the theorem (Conjecture 2.3.1). The following result is

an immediate consequence of Proposition 2.2.5.

Corollary 2.2.6. Let (Γ1,Γ2) be a pair of non-empty sets of cycles. Then

m = max(5,min(γ2 + γ1e/2− 1, 2γ2 − 1),min(γ1 + γ2e/2− 1, 2γ1 − 1)).

2.3 Main theorem and a conjecture

Let us first give the conjecture. We shall then prove that the conjecture

holds for many pairs of non-empty sets of cycles (see Theorem 2.3.2).

Conjecture 2.3.1. Let (Γ1,Γ2) be a pair of non-empty sets of cycles. Then

R(Γ1,Γ2) =

{

m+ 1 if C3 or C4 ∈ Γ1 ∩ Γ2 and C3 or C5 /∈ Γ1 ∪ Γ2

m otherwise
(8)

=

{

6 if C3 or C4 ∈ Γ1 ∩ Γ2 and C3 or C5 /∈ Γ1 ∪ Γ2

m otherwise.

Remark. Note that C3 or C4 ∈ Γ1 ∩ Γ2 is equivalent to min(Γ1 ∩ Γ2) ≤ 4.

The lower bounds follow from Corollary 2.2.3 and Proposition 2.3.4

(see below). For all pairs (Γ1,Γ2) such that (8) holds, note that since m

only depends on γ1, γ1e , γ
2, and γ2e , so does R(Γ1,Γ2), unless (γ1, γ2) ∈

{(3, 3), (4, 3), (3, 4)}. In particular, if the conjecture is true, then this applies

for all pairs (Γ1,Γ2).

We are now ready to state the main result of this thesis:
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Theorem 2.3.2. Let (Γ1,Γ2) be a pair of non-empty sets of cycles such that

either min(Γ1 ∪ Γ2) ≤ 5 or (Γ1,Γ2) ∈ B
′
1 ∪B

′
2. Then

R(Γ1,Γ2) =

{

m+ 1 if C3 or C4 ∈ Γ1 ∩ Γ2 and C3 or C5 /∈ Γ1 ∪ Γ2

m otherwise

=

{

6 if C3 or C4 ∈ Γ1 ∩ Γ2 and C3 or C5 /∈ Γ1 ∪ Γ2

m otherwise.

Theorem 2.3.2 is an immediate consequence of Propositions 2.3.3 through

2.3.10 (see below). We shall devote the rest of this chapter to the proofs of

these propositions.

Proposition 2.3.3. Let (Γ1,Γ2) be a pair of non-empty sets of cycles such

that (Γ1,Γ2) ∈ B1 ∪B2. Then

R(Γ1,Γ2) = m =

{

Rred(Γ1,Γ2) if (Γ1,Γ2) ∈ B1

Rblue(Γ1,Γ2) if (Γ1,Γ2) ∈ B2.

Proposition 2.3.4. Let (Γ1,Γ2) be a pair of non-empty sets of cycles such

that C3 or C4 ∈ Γ1 ∩ Γ2. Then Rred(Γ1,Γ2) = Rblue(Γ1,Γ2) = 5 and

R(Γ1,Γ2) =

{

5 if C3 and C5 ∈ Γ1 ∪ Γ2

6 otherwise.

Proposition 2.3.5. Let (Γ1,Γ2) be a pair of non-empty sets of cycles such

that C4 ∈ Γi 6∋ C3 and C3 ∈ Γj 6∋ C4, where i ∈ [2] and j = 3− i. Then

R(Γ1,Γ2) = m =

{

6 if C6 ∈ Γj

7 otherwise.

Proposition 2.3.6. Let (Γ1,Γ2) be a pair of non-empty sets of cycles such

that γi ≥ 5 and γj = 3, where i ∈ [2] and j = 3− i. Then

R(Γ1,Γ2) = m =

{

Rblue(Γ1,Γ2) if i = 1

Rred(Γ1,Γ2) if i = 2.

Remark. Note the following special case of Proposition 2.3.6: R(Cn, C3) =

2n− 1, for all n ≥ 5.

Proposition 2.3.7. Let (Γ1,Γ2) be a pair of non-empty sets of cycles such

that γi = 5 and γj = 4, where i ∈ [2] and j = 3− i. Then

R(Γ1,Γ2) = m =

{

6 if C6 ∈ Γi

7 otherwise.
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Proposition 2.3.8. Let (Γ1,Γ2) be a pair of non-empty sets of cycles such

that γi ≥ 6 and γj = 4, where i ∈ [2] and j = 3− i. Then

R(Γ1,Γ2) = m = γi + 1.

Proposition 2.3.9. Let (Γ1,Γ2) be a pair of non-empty sets of cycles such

that γ1 = γ2 = 5. Then

(9) Rred(Γ1,Γ2) =















7 if γ1e = 6

8 if γ1e = 8

9 if γ1e ≥ 10,

(10) Rblue(Γ1,Γ2) =















7 if γ2e = 6

8 if γ2e = 8

9 if γ2e ≥ 10,

and

R(Γ1,Γ2) = m =















7 if max(γ1e , γ
2
e ) = 6

8 if max(γ1e , γ
2
e ) = 8

9 if max(γ1e , γ
2
e ) ≥ 10.

Proposition 2.3.10. Let (Γ1,Γ2) be a pair of non-empty sets of cycles such

that γi ≥ 6 and γj = 5, where i ∈ [2] and j = 3− i. Then

R(Γ1,Γ2) = m =

{

Rblue(Γ1,Γ2) if i = 1

Rred(Γ1,Γ2) if i = 2.

Remark. Note the following special case of Proposition 2.3.10: R(Cn, C5) =

2n− 1, for all n ≥ 6.

We end this section by proving Proposition 2.3.3:

Proof of Proposition 2.3.3. Consider Colourings 4, 5, and 6. Each one of

them is a complete red-blue graph whose red or blue subgraph equals a

complete bipartite (uncoloured) graph Kp,q. Since Kp,q and its complement

contain precisely the cycles of even length at most 2min(p, q) and of length

at most max(p, q), respectively, Colourings 3, 4, 5, and 6 contain precisely

the following red and blue cycles:

• Colouring 3: The red cycle C5 and the blue cycle C5.

• Colouring 4: The red cycles C3, C4, . . . , Cn−1 and the blue cycles

C4, C6, . . . , Ck−2 if k ≥ 6 (no blue cycle exists if k = 4).
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• Colouring 5: The red cycles C4, C6, . . . , C2k−2 and the blue cycles

C3, C4, . . . , Ck−1.

• Colouring 6: The red cycles C3, C4, . . . , Cn−1 and the blue cycles

C4, C6, . . . , C2n−2.

Thus and by Corollary 1.3.7 and the upper bounds in Theorem 2.1.1, the

following statements hold, for each subset Φ ⊆ C≥n, each subset Ψ ⊆ C≥k,

each subset Φ0 ⊆ C≥2k−1, each subset Ψ0 ⊆ C≥2n−1, each subset Ω ⊆ Co,

and all subsets Ω1,Ω2 ⊆ C − {C5}:

R({Cn} ∪ Ω1, {Ck} ∪ Ω2) = 6 if (n, k) ∈ ∆0,

R({Cn} ∪ Φ, {Ck} ∪Ψ ∪ Ω) = n+ k/2− 1 if (n, k) ∈ ∆1 ∪∆2,

R({Cn} ∪ Φ0 ∪ Ω, {Ck} ∪Ψ) = 2k − 1 if (n, k) ∈ ∆3, and

R({Cn} ∪ Φ, {Ck} ∪Ψ0 ∪ Ω) = 2n− 1 if (n, k) ∈ ∆4.

Thus and by symmetry,

(11) R(Γ1,Γ2) =



































6 if (Γ1,Γ2) ∈ A
0

γ2 + γ1e/2− 1 if (Γ1,Γ2) ∈ A
1
red ∪ A

2
red

2γ2 − 1 if (Γ1,Γ2) ∈ A
3
red ∪ A

4
red

γ1 + γ2e/2− 1 if (Γ1,Γ2) ∈ A
1
blue ∪ A

2
blue

2γ1 − 1 if (Γ1,Γ2) ∈ A
3
blue ∪ A

4
blue.

Thus, if (Γ1,Γ2) ∈ B1, then R(Γ1,Γ2) = Rred(Γ1,Γ2), and if (Γ1,Γ2) ∈

B2, then R(Γ1,Γ2) = Rblue(Γ1,Γ2). By Corollary 2.2.3, this completes the

proof.

2.4 Preparatory results

The following two lemmas, due to Károlyi and Rosta, will be used in the

proof of Proposition 2.3.7 (see Section 2.7).

Lemma 2.4.1 ([11, Lemma 3.1]). Let n ≥ k ≥ 4, let n ≥ 5, let k ≡ 0, and

let G be a complete red-blue graph on n+ k/2− 1 vertices. Then G contains

either a monochromatic cycle of length at least n or a blue Ck.

Lemma 2.4.2 ([11, Lemma 3.3]). Let n ≥ k ≥ 3, let k ≥ 4 if 0 ≡ n ≥ 6,

and let G be a complete red-blue graph such that G contains a blue Cn;

moreover, assume that |G| ≥ 2n − 1 if n ≡ 0 and k ≡ 1. Then G contains

either a red Cn or a blue Ck.

We shall now prove four lemmas, the first of which will be used in the

proof of Proposition 2.3.6 (see Section 2.6); the other three will be used in

the proof of Proposition 2.3.10 (see Section 2.8). Note that in Lemmas 2.4.3

and 2.4.5, the conditions n ≥ 6 and n ≥ 7, respectively, are necessary.
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Lemma 2.4.3. Let G be a complete red-blue graph and let n ≥ 6. If G

contains a Cn all of whose chords are red, then the red subgraph Gred is

pancyclic.

Proof. Let C = x1x2 · · ·xnx1 be a Cn all of whose chords are red. If n ≡ 1,

then x1x3 · · ·xnx2x4 · · ·xn−1x1 is a red Cn and x1x3 · · ·xnx2x4 · · ·xn−3x1 is

a red Cn−1, and if n ≡ 0, then x1x3 · · ·xn−1x2xnxn−2 · · ·x4x1 is a red Cn

and x1x3 · · ·xn−1x2xn−2xn−4 · · ·x4x1 is a red Cn−1. Now, define a sequence

(ai)i≥1 such that for all j ≥ 0, a5j+1 = x5j+1, a5j+2 = x5j+3, a5j+3 = x5j+5,

a5j+4 = x5j+2, and a5j+5 = x5j+4. For each k ∈ [3, n − 2], let P(k) be

the path whose vertices are the first k elements of the sequence (ai). Then

P(k)x1 is a red Ck, unless k = n − 2 and n ≡ 0 (mod 5), in which case

P(k−2)xn−1xn−3x1 is a red Ck.

Definition 2.4.4. Two 2-chords e1 and e2 of a cycle C = x1x2 · · ·xnx1
are called crossing if there exists an i ∈ [n] such that e1 = xixi+2 and

e2 = xi+1xi+3. If such an i does not exist, they are called non-crossing.

Lemma 2.4.5. Let G be a complete red-blue graph and let n ≥ 7. If G

contains a Cn all of whose chords are red, except possibly one 2-chord or

two crossing 2-chords, then the red subgraph Gred is pancyclic.

Proof. Let C = x1x2 · · ·xnx1 be a Cn all of whose chords are red, except

possibly xixi+2 and xi+1xi+3 for some i ∈ [n]. W.l.o.g., assume that x1x3
and x2x4 are either red or blue, and that the remaining chords are red.

If n ≡ 1, then x1x5x3x7x9 · · ·xnx2x6x4x8x10 · · ·xn−1x1 is a red Cn and

x1x5x3x7x9 · · ·xnx2x6x8 · · ·xn−1x1 is a red Cn−1 (note that x8 = x1 in case

n = 7), and if n ≡ 0, then x1x5x3x7x9 · · ·xn−1x2xnxn−2 · · ·x4x1 is a red Cn

and x1x5x3x7x9 · · ·xn−1x2xn−2xn−4 · · ·x4x1 is a red Cn−1. Now, define a

sequence (ai)i≥1 such that a1 = x1, a2 = x4, a3 = x6, x4 = x2, a5 = x5,

a6 = x3, and for all j ≥ 1, a5j+2 = x5j+2, a5j+3 = x5j+4, a5j+4 = x5j+6,

a5j+5 = x5j+3, and a5j+6 = x5j+5. For each k ∈ [3, n − 2], let P(k) be

the path whose vertices are the first k elements of the sequence (ai). Then

P(k)x1 is a red Ck, unless k = n − 2 and n ≡ 1 (mod 5), in which case

P(k−2)xn−1xn−3x1 is a red Ck.

Remark. We have recently found the following result by Bondy [2], from

which Lemma 2.4.3, but not Lemma 2.4.5, follows as a (non-immediate)

corollary: Let G be Hamiltonian with n vertices and at least n2/4 edges.

Then G either is pancyclic or equals Kn/2,n/2.

Lemma 2.4.6. Let G be a blue almost bipartite graph, let n ≥ 7, and

assume that there is a vertex x ∈ G such that G − x contains a red Cn−1.

Furthermore, assume that
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(1) |G| = n+ 1, n ≥ 8, and G− x contains a blue K4;

(2) |G| = n+ 1, G contains no blue K4, and G− x contains a blue tower

T which is maximal in G; or

(3) |G| = n+ 2, G contains no blue K4, and G− x contains a blue tower

T which is maximal in G and of height at least 3.

Then G contains a red Cn.

Remark. The complete red-blue graph on 8 vertices such that its red sub-

graph equals K4,4 shows that in Case 1, the condition n ≥ 8 is necessary.

This has made the proof of Proposition 2.3.10, Subcase 1a, somewhat more

complicated than that of Subcase 1b.

Proof. Let C = x1x2 · · ·xn−1 be a red Cn−1 in G− x, and let y be the only

vertex or one of the two vertices of G− x− V (C).

Claim 1. If there is a j ∈ [3, n− 4], such that for some i ∈ [n− 1], xxi and

xxi+j are red, then G contain a red Cn.

Proof. In order to obtain a contradiction, suppose that G does not contain

a red Cn. Since j ∈ [3, n−4], xi−1, xi, xi+1, xi+j−1, xi+j , and xi+j+1 are all

different, and since G contains no red Cn, x is blue adjacent to xi−1, xi+1,

xi+j−1, and xi+j+1. Were xi−1xi+j−1 or xi+1xi+j+1 red,

xi−1xi+j−1xi+j−2 · · ·xixxi+jxi+j+1 · · ·xi−1

or

xi+1xi+j+1xi+j+2 · · ·xixxi+jxi+j−1 · · ·xi+1,

respectively, would be a red Cn, whence xi−1xi+j−1 and xi+1xi+j+1 are blue.

Were xi−1xi+1 blue, xi+1xi+j+1xxi+j−1xi−1 would be a blue C5, whence

xi−1xi+1 is red. Were xixi+j−1 and xixi+j+1 blue,

xi+j−1xixi+j+1xi+1xxi+j−1

would be a blue C5, whence xixi+j−1 or xixi+j+1 is red. Thus

xixi+j−1xi+j−2 · · ·xi+1xi−1xi−2 · · ·xi+jxxi

or

xixi+j+1xi+j+2 · · ·xi−1xi+1xi+2 · · ·xi+jxxi,

respectively, is a red Cn, contrary to the hypothesis.
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Thus, from now on, assume that no such j exists.

Case 1. Let K be a blue K4 in G−x. Since x /∈ K, x is blue adjacent to

at most one vertex of K. Thus and since n ≥ 8, x is red adjacent to exactly

two vertices of C. Thus xy is red, y ∈ K, and x is blue adjacent to some

vertex v ∈ K. Of course, y is blue adjacent to v, but not to some other blue

neighbour z of x, since then xzyuvx would be a blue C5 for some u ∈ K.

In particular, y is red adjacent to two consecutive vertices of C, whence G

contains a red Cn.

Case 2. We consider two similar subcases, depending on ht(T ).

ht(T ) = 1: Since x /∈ T , x is blue adjacent to at most one vertex of T .

Thus x is red adjacent to at least one vertex of C. Thus, w.l.o.g., among the

vertices of C, only x2 is red adjacent to x, only x2 and x4 are red adjacent

to x, or n = 7 and only x2, x4, and x6 are red adjacent to x. In the former

case, we obtain a red Cn in the same way as in Case 1 (replacing K with T ).

In the latter cases, x1x3 or x3x5 is red (otherwise G[{x, x1, x3, x5}] would

be a blue K4 or xx3|x1x5 would be a blue tower of height 2), whence G

contains a red Cn.

ht(T ) ≥ 2: Since x /∈ T , x is blue adjacent to at most one vertex of T .

Thus x is red adjacent to at least two vertices of C. Thus, w.l.o.g., among

the vertices of C, only x2 and x4 are red adjacent to x, or n = 7 and only

x2, x4, and x6 are red adjacent to x. In the former case, we obtain a red

Cn in the same way as in Case 1 (replacing K with T ). In the latter case,

x1x3, x3x5, or x5x1 is red (otherwise G[{x, x1, x3, x5}] would be a blue K4),

whence G contains a red Cn.

Case 3. The proof of Case 2, ht(T ) ≥ 2, applies to this case as well.

Lemma 2.4.7. Let G be a blue almost bipartite graph on n vertices. Then

precisely one of the following statements holds:

(i) G has a Hamiltonian 2-partition;

(ii) Gblue is a tower; and

(iii) n ≤ 5 and G contains a blue K4.

Proof. It is easy to see that at most one of the three statements holds. Thus

we have to prove that at least one of them holds.

If G is blue bipartite with parts V1 and V2, let P(1) and P(2) be red paths

on V1 and on V2, respectively. Then (P(1), P(2)) is a Hamiltonian 2-partition

of G. Thus, from now on, assume that G is not blue bipartite. We use

induction on n.

Base cases. n ≤ 4. If n ≤ 2, then (i) holds, and if n = 3, then either (i)

or (ii) holds. n = 4: If G contains at least two red edges, then (i) holds, and

if G contains exactly one red edge, then (ii) holds. Otherwise (iii) holds.
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Induction step. Assume that the statement holds for n = p, for some

p ≥ 4. We have to show that the statement holds for n = p+ 1. In order to

obtain a contradiction, suppose that this is not the case.

Take x ∈ G. By the induction hypothesis, (1) G− x has a Hamiltonian

2-partition, (2) (G − x)blue is a tower, or (3) p ≤ 5 and G − x contains a

blue K4.

Case 1. Let (P(1), P(2)) = (x1x2 · · ·xn1
, y1y2 · · · yn2

) be a Hamiltonian

2-partition of G − x. If possible, choose P(1) and P(2) so that n1, n2 ≥ 2.

Were xx1, xxn1
, xy1, xyn2

, x1y1, x1yn2
, xn1

y1, or xn1
yn2

red, G would have

a Hamiltonian 2-partition, whence they are all blue. Since G contains no

blue C5, x1 = xn1
or y1 = yn2

; say that y1 = yn2
= y.

p = 4: Were x1x3 blue, G[{x, y, x1, x3}] would be a blueK4, whence x1x3
is red. If xx2 or yx2 is red, then (x1x3x2x, y) or (x1x3x2y, x), respectively,

is a Hamiltonian 2-partition of G, and if they are both blue, then Gblue =

xy|x1x2x3 is a blue tower, contrary to the hypothesis.

p ≥ 5: Were y red adjacent to some xi, (x1x2 · · ·xi−1, yxixi+1 · · ·xn1
)

(if i 6= 2) or (x1x2y, x3x4 · · ·xn1
) (if i = 2) would be a Hamiltonian 2-

partition of G−x, whence all yxi are blue. Were x red adjacent to all inner

vertices of P(1), (x1x2xx3x4 · · ·xn1
, y) would be a Hamiltonian 2-partition

of G, whence xxℓ is blue for some xℓ ∈ P ◦
(1). Were x1xn1

blue, xxℓyx1xn1
x

would be a blue C5, whence x1xn1
is red. Were xxi red for some xi ∈ P ◦

(1),

(xxixi+1 · · ·xn1
x1x2 · · ·xi−1, y) would be a Hamiltonian 2-partition of G,

whence all xxi, i ∈ [n1], are blue. Were xixj blue for some i and j, then

for some k, xxixjyxkx would be a blue C5, whence all xixj are red. Thus

Gblue = xy|x1x2 · · ·xn1
is a tower, contrary to the hypothesis.

Case 2. Let (G − x)blue = u1u2|v1v2 · · · vp−2. If both xu1 and xu2
are blue, then Gblue = u1u2|xv1v2 · · · vp−2 is a tower, and if xui is red for

some i ∈ [2], then for some j, (uixvjvj+1 · · · vp−2v1v2 · · · vj−1, u3−i) is a

Hamiltonian 2-partition of G, again contrary to the hypothesis.

Case 3. Note that p = 5. Let K = G[{u1, u2, u3, u4}] be a blue K4

in G − x, and let y be the vertex of G − x − V (K). Then, w.l.o.g., either

both x and y are RA(u1) or x is RA(u1) while y is RA(u2). In either case,

(u1, u2xu3yu4) is a Hamiltonian 2-partition of G, once again contrary to the

hypothesis.

2.5 The max(γ1, γ2) ≤ 4 subcase

Proof of Proposition 2.3.4. It is easy to see that

Rred(Γ1,Γ2) = Rblue(Γ1,Γ2) = 5.

Thus and by Corollary 2.2.3, R(Γ1,Γ2) ≥ 5. By Corollary 1.3.7 and since

R(C3, C3) = R(C4, C4) = 6, R(Γ1,Γ2) ≤ 6.
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If C3 /∈ Γ1 ∪ Γ2, then Colouring 2 shows that R(Γ1,Γ2) ≥ 6, and if

C5 /∈ Γ1 ∪ Γ2, then Colouring 3 shows that R(Γ1,Γ2) ≥ 6. Thus, from now

on, assume that both C3 and C5 ∈ Γ1 ∪ Γ2.

C3 ∈ Γ1 ∩ Γ2: We have to show that R(Γ1,Γ2) ≤ 5. Thus, let G be

an arbitrary complete red-blue graph on 5 vertices. In order to obtain a

contradiction, assumeG is (Γ1,Γ2)-avoiding. Were some vertex ofG incident

with at least three edges of the same colour, G would contain a red C3 or

a blue C3 (see the proof of Proposition 1.1.1), whence each vertex of G is

incident with at most two edges of same colour. Since each vertex is incident

with a total of four edges, each vertex has two red and two blue neighbours.

Thus Gred and Gblue are 2-regular, whence G contains a red C5 and a blue

C5, contrary to the hypothesis.2

C3 /∈ Γ1 ∩ Γ2: Then C4 ∈ Γ1 ∩ Γ2 and, w.l.o.g., either both C3 and

C5 ∈ Γ1 or C3 ∈ Γ1 while C5 ∈ Γ2. In either case, we have to show that

R(Γ1,Γ2) ≤ 5. Thus, let G be an arbitrary complete red-blue graph on 5

vertices. In order to obtain a contradiction, assume G is (Γ1,Γ2)-avoiding.

Were each vertex of G incident with at most two edges of the same colour, we

would obtain, in the same way as above, a red C5 and a blue C5, whence some

vertex of G is incident with at least three edges of the same colour. Thus

and since G contains no red C3, G contains a blue C3, say C = x1x2x3x1;

let v1 and v2 be the vertices of G−V (C). Were v1 or v2 blue adjacent to at

least two vertices of C, G would contain a blue C4, whence both v1 and v2
are red adjacent to at least two vertices of C. Were v1 and v2 red adjacent

to the same two vertices of C, G would contain a red C4 whence, w.l.o.g.,

we have the following figure:

x3

•

x1• •x2

v1• •v2

Now, if v1v2 is red, then v1v2x3v1 is a red C3, and if v1v2 is blue, then

v1v2x1x2v1 is a blue C4, contrary to the hypothesis.

2We have to prove that a 2-regular graph on 5 vertices is a C5: The vertex v has two

neighbours, say v1 and v2. v2 has one neighbour other than v, say v3. Were v3 = v1,

either the remaining two vertices would have at most one neighbour each or v, v1, or v2
would have more than two neighbours, whence v3 6= v1. v3 has one neighbour other than

v2, say v4. Were v4 = v, v would have more than two neighbours, and were v4 = v1, either

the remaining vertex would have no neighbours or v, v1, v2, or v3 would have more than

two neighbours, whence v4 /∈ {v, v1}. v4, finally, has one neighbour other than v3. This

neighbour must be v1, since otherwise v or v2 would have more than two neighbours.
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Proof of Proposition 2.3.5. W.l.o.g., assume that i = 1.

It is easy to see that Rred(Γ1,Γ2) = 5 and

Rblue(Γ1,Γ2) =

{

6 if C6 ∈ Γ2

7 otherwise.

Thus and by Corollary 2.2.3,

R(Γ1,Γ2) ≥

{

6 if C6 ∈ Γ2

7 otherwise.

We now turn to the upper bounds. By Corollary 1.3.7, R(Γ1,Γ2) ≤

R(C4, C3) = 7. Thus, from now on, assume that C6 ∈ Γ2. We have to show

that R(Γ1,Γ2) ≤ 6. Thus, let G be an arbitrary complete red-blue graph on

6 vertices. In order to obtain a contradiction, assume G is (Γ1,Γ2)-avoiding.

Since R(C3, C3) = R(C4, C4) = 6, G contains a red C3 and a blue C4, say

C = x1x2x3x4x1; let v1 and v2 be the vertices of G− V (C). Then x1x3 and

x2x4 are red and, w.l.o.g., either (1) v1v2x4v1 or (2) v2x2x4v2 is a red C3.

Case 1. Since G contains no red C4, x2v1 is blue, since G contains no

blue C3, x3v1 is red, and since G contains no red C4, x3v2 is blue. Now, if

x2v2 is red, then x2v2v1x4x2 is a red C4, and if x2v2 is blue, then x2v2x3x2
is a blue C3, contrary to the hypothesis.

Case 2. Since G contains no red C4, either v1x2 or v1x4 is blue. In

either case, v1x1 and v1x3 are red (since G contains no blue C3). Thus

C(1) = x1v1x3x1 and C(2) = x2v2x4x2 are red 3-cycles. Since G contains no

red C4, at most one of the edges between C(1) and C(2) is red, whence G

contains a blue C6, again contrary to the hypothesis.

2.6 The C3 ∈ Γ1 ∪ Γ2 subcase

Proof of Proposition 2.3.6. W.l.o.g., assume that i = 1 and γ1 = n.

For the lower bound, see Proposition 2.2.2.

R(Γ1,Γ2) ≤ Rblue(Γ1,Γ2): Let G be an arbitrary complete red-blue

graph on Rblue(Γ1,Γ2) vertices, and assume G is (Γ1,Γ2)-avoiding. Were

G blue bipartite, G would contain a red subgraph belonging to Γ1 or a

blue subgraph belonging to Γ2, whence G contains an odd blue cycle. Let

C0 = u1u2 · · ·u2k+1u1 be a shortest odd blue cycle in G; note that k ≥ 2.

Were some chord of C0 blue, G would contain an odd blue cycle shorter

than C0, whence all chords of C0 are red.

We shall show that G contains a red Cn, contradicting the (Γ1,Γ2)-

avoidance of G. We do so by proving the following, stronger result:

Statement 1. For each subset V ⊆ V (G), G[V ] either contains a red C|V |

or is blue bipartite.
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How does Statement 1 imply that G contains a red Cn? Consider the

case |V | = n; note that n ≤ |V (G)|. If 2k + 1 ≤ n, choose V so that G[V ]

contains C0. Then G[V ] is not blue bipartite, whence (by Statement 1)

G[V ] contains a red C|V | = Cn. On the other hand, if 2k + 1 > n, then by

Lemma 2.4.3, G[V (C0)], and thus G, contains a red Cn. We now turn to

the proof of Statement 1, which is by induction on |V |:

Base cases. |V | ≤ 2k. Since G[V ] ⊆ G and 2k + 1 is the length of a

shortest odd blue cycle in G, G[V ] contains no odd blue cycle, whence G[V ]

is blue bipartite.

Induction step. Assume that the statement holds for each subset V ⊆

V (G) with |V | ≤ p, for some p ∈ [2k, |V (G)| − 1]. We have to show that for

each subset V ⊆ V (G) with |V | = p+ 1, G[V ] either contains a red C|V | or

is blue bipartite. Thus, let V ⊆ V (G) with |V | = p+ 1. If G[V ] is not blue

bipartite, then G[V ] contains an odd blue cycle. Let C = x1x2 · · ·x2m+1x1
be a shortest odd blue cycle in G[V ]; note that m ≥ k. As for C0, all chords

of C are red. In particular, the m-chords of C form a red C2m+1, say C
′. If

V (C) = V , then C ′ is a red Cp+1. If not, then we may construct a red Cp+1

by replacing one or two edges of C ′ (that is, one or two m-chords of C) with

one or two red paths, respectively:

Consider the non-empty subgraph H = G[V ] − V (C) of G[V ]. By the

induction hypothesis, H either contains a red Cp−2m or is blue bipartite. In

the former case, let P = v1v2 · · · vp−2m be a red Pp−2m in H. In the latter

case, V −V (C) is the disjoint union of two subsets V1 and V2, which we may

assume to be non-empty, such that G[V1] and G[V2] are red cliques. Then,

let r = |V1| and let P(1) = v1v2 · · · vr and P(2) = vr+1vr+2 · · · vp−2m be a red

P|V1| and a red P|V2|, respectively, in H.

Consider first the case in which H contains a red Pp−2m. Since G, and

thus G[V ], contains no blue C3, v1 is red adjacent to some xi, say x1, and

vp−2m is red adjacent either to xm+1 or to xm+2, say xm+2. We thus obtain

a red Cp+1 by replacing the edge x1xm+2 with the red path P .

Consider now the case in which H contains a red P|V1| and a red P|V2|.

Since G[V ] contains no blue C3, v1 is red adjacent to some xi, say x1, vr is

red adjacent either to xm+1 or to xm+2, say xm+2, and vr+1 is red adjacent

either to x2 or to x3.

vr+1x2 red: vp−2mxm+2 or vp−2mxm+3 is red, whence we obtain a red

Cp+1 by replacing the edges x1xm+2 and xm+2x2 or the edges x1xm+2 and

x2xm+3, respectively, with the red paths P(1) and P
′
(2) or with the red paths

P(1) and P(2), respectively.

vr+1x3 red: vp−2mxm+3 or vp−2mxm+4 is red, whence we obtain a red

Cp+1 by replacing the edges x1xm+2 and xm+3x3 or the edges x1xm+2 and

x3xm+4, respectively, with the red paths P(1) and P
′
(2) or with the red paths
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P(1) and P(2), respectively.

2.7 The C4 ∈ Γ1 ∪ Γ2 subcase

Proof of Proposition 2.3.7. W.l.o.g., assume that i = 1.

It is easy to see that Rblue(Γ1,Γ2) = 6 and

Rred(Γ1,Γ2) =

{

6 if C6 ∈ Γ1

7 otherwise.

Thus and by Corollary 2.2.3,

R(Γ1,Γ2) ≥

{

6 if C6 ∈ Γ1

7 otherwise.

We now turn to the upper bounds. By Corollary 1.3.7, R(Γ1,Γ2) ≤

R(C5, C4) = 7. Thus, from now on, assume that C6 ∈ Γ1. We have to show

that R(Γ1,Γ2) ≤ 6. Thus, let G be an arbitrary complete red-blue graph on

6 vertices. In order to obtain a contradiction, assume G is (Γ1,Γ2)-avoiding.

By Lemma 2.4.1 (with (n, k) = (5, 4)), G contains a monochromatic C5, a

monochromatic C6, or a blue C4. Since G is (Γ1,Γ2)-avoiding, we have a

blue C5 or a blue C6. In the former case, Lemma 2.4.2, with (n, k) = (5, 4),

yields a red C5 or a blue C4, and in the latter case, Lemma 2.4.2, now with

(n, k) = (6, 4), yields a red C6 or a blue C4, contrary to the hypothesis.

Proof of Proposition 2.3.8. W.l.o.g., assume that i = 1.

Note that (Γ1,Γ2) ∈ A
1
blue ∪ A

2
blue ⊆ B2. Thus the result follows from

Proposition 2.3.3 and (11).

2.8 The C5 ∈ Γ1 ∪ Γ2 subcase

Proof of Proposition 2.3.9. The two statements (9) and (10) follow directly

from Proposition 2.2.5. Thus and by Corollary 2.2.3,

R(Γ1,Γ2) ≥















7 if max(γ1e , γ
2
e ) = 6

8 if max(γ1e , γ
2
e ) = 8

9 if max(γ1e , γ
2
e ) ≥ 10.

We now turn to the upper bounds. By Corollary 1.3.7, R(Γ1,Γ2) ≤

R(C5, C5) = 9.

R(Γ1,Γ2) ≤ 7 if max(γ1e , γ
2
e ) = 6: Let G be an arbitrary complete

red-blue graph on 7 vertices, and assume G is (Γ1,Γ2)-avoiding. Since

R(C4, C4) = 6, G contains a monochromatic C4; say that C = x1x2x3x4x1
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is a blue C4 in G, and let v1, v2, and v3 be the vertices of G− V (C). Since

G contains no blue C5, each vi is red adjacent to two opposite vertices of C.

W.l.o.g., assume that v1 and v2 are red adjacent to x1 and x3.

Since G contains no red C5, v3 is blue adjacent to two opposite vertices

of the red C4 v1x1v2x3v1. Thus, (1) v3x1 and v3x3 are red, in which case

v3v1 and v3v2 are blue, (2) v3x2 and v3x4 are red, and v3x1 and v3x3 are

blue, or (3) v3x2 and v3x4 are red, and v3v1 and v3v2 are blue. Note that

Cases 1 and 2 are symmetric. Thus we only have to consider Cases 1 and

3. In either case, note that if v1x2 and v2x4 were blue, then v1x2x1x4v2v3v1
would be a blue C6, whence at least one of them is red, say v1x2.

Case 1. Were x2v2 red, x2v2x1v3x3v1x2 would be a red C6, whence x2v2
is blue. Were x4v3 blue, x4v3v2x2x1x4 would be a blue C5, whence x4v3 is

red. Now, if x4v1 is red, then x4v1x1v2x3v3x4 is a red C6, and if x4v1 is

blue, then x4v1v3v2x2x1x4 is a blue C6, contrary to the hypothesis.

Case 3. Were x4v2 red, x4v2x1v1x2v3x4 would be a red C6, whence x4v2
is blue. Now, if x1v3 is red, then x1v3x2v1x3v2x1 is a red C6, and if x1v3 is

blue, then x1v3v2x4x3x2x1 is a blue C6, again contrary to the hypothesis.

R(Γ1,Γ2) ≤ 8 if max(γ1e , γ
2
e ) ≤ 8: Let G be an arbitrary complete

red-blue graph on 8 vertices, and assume G is (Γ1,Γ2)-avoiding. Since

R(C4, C4) = 6, G contains a monochromatic C4; say that C = x1x2x3x4x1 is

a blue C4 in G, and let v1, v2, v3, and v4 be the vertices of G−V (C). Also,

let V = {v1, v2, v3, v4}. As before, each vi is red adjacent to two opposite

vertices of C. Thus, w.l.o.g., (1) v1, v2, v3, and v4 are red adjacent to x1
and x3, (2) only v1, v2, and v3 are red adjacent to x1 and x3, while v4 is red

adjacent to x2 and x4, or (3) only v1 and v2 are red adjacent to x1 and x3,

while only v3 and v4 are red adjacent to x2 and x4.

Case 1. Consider the red C4 vix1vjx3vi. Since G contains no red C5,

vkvi and vkvj are blue. This is true for all i, j, and k, whence each vivj is

blue. Since G contains no blue C5, x2, as well as x4, has at most one blue

edge to V . Also, if both x2 and x4 have a blue edge to V , then it must be to

the same vertex vi; w.l.o.g., assume that i = 1. Then x1v1x3v2x2v3x1 and

x1v1x3v2x2v3x4v4x1 are a red C6 and a red C8, respectively, contrary to the

hypothesis.

Case 2. Note that v4x1 or v4x3 is blue, say v4x3. Consider the red

C4 vix1vjx3vi. Since G contains no red C5, vkvi and vkvj are blue. This is

true for all i, j, and k in [3], whence v1v2, v1v3, and v2v3 are blue. We now

consider two subcases: (a) v4x1 red and (b) v4x1 blue.

Subcase 2a. Since G contains no red C5, v1v4, v2v4, and v3v4 are blue.

Then, since G contains no blue C5, neither x2 nor x4 has a blue edge to V .

Thus x1v4x2v1x3v2x1 and x1v4x2v1x3v2x4v3x1 are a red C6 and a red C8,

respectively, contrary to the hypothesis.
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Subcase 2b. Were x2x4 blue, x2x4x3v4x1x2 would be a blue C5, whence

x2x4 is red. Were v1x2 and v2x4 red, v1x2x4v2x1v1 would be a red C5,

whence at least one of them is blue, say v1x2. Were v2v4 blue, v2v4x1x2v1v2
would be a blue C5, whence v2v4 is red. Now, note that if x4v3 is red, then

x4v3x1v2v4x4 is a red C5, and if x4v3 is blue, then x4v3v1x2x1x4 is a blue

C5, again contrary to the hypothesis.

Case 3. Consider the red C4 v1x1v2x3v1 = C ′. Since G contains no red

C5, v3 and v4 are blue adjacent to two opposite vertices of C ′. Were v3 or

v4 blue adjacent to x1 and x3, we would be in a case symmetric to Case 1 or

to Case 2 (with C ′ instead of C), whence both v3 and v4 are blue adjacent

to v1 and v2:

x1

•
x2

•
x3

•
x4

•

v1
•

v3
•

v2
•

v4
•

Now, v1x2 or v1x4 is blue, say v1x2, and v3x1 or v3x3 is blue, say v3x1.

Thus v1x2x3x4x1v3v1 and v1x2x3x4x1v3v2v4v1 are a blue C6 and a blue C8,

respectively, once again contrary to the hypothesis.

Proof of Proposition 2.3.10. W.l.o.g., assume that i = 1 and γ1 = n.

For the lower bound, see Proposition 2.2.2.

R(Γ1,Γ2) ≤ Rblue(Γ1,Γ2): Let G be an arbitrary complete red-blue

graph on Rblue(Γ1,Γ2) vertices, and assume G is (Γ1,Γ2)-avoiding. Were

G blue bipartite, G would contain a red subgraph belonging to Γ1 or a blue

subgraph belonging to Γ2, whence G contains an odd blue cycle. We shall

consider two cases: (1) G is blue almost bipartite and (2) G is not blue

almost bipartite.

Case 1. We shall consider two subcases: (a) G contains a blue K4 and

(b) G does not contain a blue K4. Note that |G| ≥ n+ 2.

Subcase 1a. Let H ′ ⊆ G with |H ′| = n + 1, such that H ′ contains a

blue K4, say K = G[{u1, u2, u3, u4}]. If n = 7, let H = H ′ + v for some

v ∈ G− V (H ′), and if n 6= 7, let H = H ′. We shall show that H, and thus

G, contains a red Cn.

n = 6: Let v1, v2, and v3 be the vertices of H − V (K). Since G, and

thus H, contains no blue C5, each vj is blue adjacent to at most one ui.

Thus, w.l.o.g., v1, v2, and v3 are RA(u1), v1 and v2 are RA(u1) while v3 is

RA(u3), or each vj is RA(uj). In each case, v1u2v3u4v2u3v1 is a red C6.

n = 7: In order to obtain a contradiction, suppose that H does not

contain a red C7. Take x, y ∈ H − V (K). By the n = 6 case, H − {x, y}
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contains a red C6, say C = x1x2 · · ·x6x1; let z be the vertex of H −{x, y}−

V (C). Then, w.l.o.g., K = H[{z, x2, x4, x6}], and xx2 and xx4 are red.

Thus xx1, xx3, xx5, x1x3, and x3x5 are blue. Since H contains no blue C5,

y is blue adjacent to at most one xi with i ≡ 1 and at most one xi with

i ≡ 0. Thus y is red adjacent to two consecutive vertices of C, which yields

a red C7, contrary to the hypothesis.

n ≥ 8: We use induction on n.

Base case. n = 8. Since R(C3, C5) = 9 and H contains no blue C5, H

contains a red C3, say C. Take x ∈ H − V (K) − V (C), and let v1, v2, v3,

and v4 be the vertices of H − x− V (K). Regardless whether K and C have

one vertex or zero vertices in common, H − x− V (K) contains a red edge,

say v2v3. Consider K and v1, v2, and v3. By the n = 6 case and w.l.o.g., we

may assume that v1u2v3u4v2u3v1 is a red C6 in H − x. Now, consider the

four cases v4u3 and v4u4 red, v4u3 blue, v4u4 blue and v4v2 red, and v4u4
and v4v2 blue. In the last case, v2u1 is red (otherwise v2v4u4u2u1v2 would

be a blue C5), whence v1u2v3v2u1v4u3v1 is a red C7. In the other cases, it is

even easier to find a red C7 in H − x. Thus and by Case 1 of Lemma 2.4.6,

H contains a red C8.

Induction step. Assume that the statement holds for n = p, for some

p ≥ 8. We have to show that if n = p+ 1, then H contains a red Cp+1.

Take x ∈ H − V (K). By the induction hypothesis, H − x contains a red

Cp. Thus and by Case 1 of Lemma 2.4.6, H contains a red Cp+1.

Subcase 1b. Let H ′ ⊆ G with |H ′| = n + 1, such that H ′ contains a

blue C3, and thus a maximal blue tower T ′. If ht(T ′) ≥ 3, let H = H ′ + v

for some v ∈ G − V (H ′), and if ht(T ′) ≤ 2, let H = H ′. In either case, let

T = a1a2|b1b2 · · · bht(T ) be a maximal blue tower in H. Using induction on

n, we shall show that H, and thus G, contains a red Cn.

Base case. n = 6.

ht(T ) = 1: Let v1, v2, v3, and v4 be the vertices of H − V (T ). Then,

w.l.o.g., (α) v1, v2, v3, and v4 are RA(b1), (β) v1, v2, and v3 are RA(b1)

while v4 is RA(a1), (γ) v1 and v2 are RA(b1) while v3 and v4 are RA(a1),

or (δ) v1 and v2 are RA(b1), v3 is RA(a1), and v4 is RA(a2).

(α): Since H contains neither a blue K4 nor a blue tower of height 2,

H − V (T ) contains at least two red edges. Thus, w.l.o.g., either v1v2 and

v2v3 or v1v2 and v3v4 are red. In the former case, v1v2v3a1v4a2v1 is a red

C6, and in the latter case, v1v2a1v3v4a2v1 is a red C6.

(β): If v4a1 is red, then H may be treated in (α). Thus, suppose that

v4a1 is blue. Similarly, if v1b1 or v2b1 is red, then H may be treated in (δ).

Thus, suppose that they are both blue. Then, since H contains no blue C5,

v1v4 and v2v4 are red. Thus v1v4v2a1v3a2v1 is a red C6.

(γ): If v1b1, v2b1, v3a1, or v4a1 is red, then H may be treated in (δ).
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Thus, suppose that they are all blue. Then, since H contains no blue C5,

v1v4 and v2v3 are red. Thus v1v4a2v3v2a1v1 is a red C6.

(δ): Then v1a1v4b1v3a2v1 is a red C6.

ht(T ) = 2: Let v1, v2, and v3 be the vertices of H − V (T ). Then, since

H contains no blue C5, no blue K4, and no blue tower of height 3, each vj
is blue adjacent to at most one vertex of T . Thus we obtain a red C6 in the

same way as in Subcase 1a (think of the vertices of T as vertices of a blue

K4).

ht(T ) = 3: The proof of the ht(T ) = 2 case applies to this case as well,

mutatis mutandis.

ht(T ) = 4: Let v1 and v2 be the vertices of H −V (T ). Then, w.l.o.g., v1
and v2 are RA(a1), v1 and v2 are RA(b1), v1 is RA(a1) while v2 is RA(a2),

v1 is RA(b1) while v2 is RA(b2), or v1 is RA(a1) while v2 is RA(b1). In each

case, v1b2b1b3v2b4v1 is a red C6.

ht(T ) = 5: Let v be the vertex of H − V (T ). Then, w.l.o.g., v is either

RA(a1) or RA(b1). In either case, vb2b1b3b4b5v is a red C6.

ht(T ) = 6: Then b1b2 · · · b6b1 is a red C6.

Induction step. Assume that the statement holds for n = p, for some

p ≥ 6. We have to show that if n = p+ 1, then H contains a red Cp+1.

If Hblue = T , then b1b2 · · · bp+1b1 is a red Cp+1. Thus, from now on,

assume that H−V (T ) is non-empty. Take x ∈ H−V (T ). By the induction

hypothesis, H − x contains a red Cp. Thus, if ht(T ) ≤ 2, then by Case 2 of

Lemma 2.4.6, H contains a red Cp+1, and if ht(T ) ≥ 3, then by Case 3 of

Lemma 2.4.6, H contains a red Cp+1.

Case 2. G is not blue almost bipartite. Let C0 = u1u2 · · ·u2k+1u1
be a shortest odd blue cycle in G longer than C3; note that k ≥ 3. Were

some j-chord of C0 blue, with j /∈ {2, 2k − 1}, G would contain an odd

blue cycle shorter than C0 but longer than C3, whence all such j-chords of

C0 are red. Furthermore, were two non-crossing 2-chords (or, equivalently,

(2k−1)-chords) of C0 blue, G again would contain an odd blue cycle shorter

than C0 but longer than C3. Thus all chords of C0 are red, except possibly

one 2-chord or two crossing 2-chords.

We shall show that G contains a red Cn, contradicting the (Γ1,Γ2)-

avoidance of G. We do so by proving the following, stronger result:

Statement 1. For each subset V ⊆ V (G), G[V ] either contains a red C|V |

or is blue almost bipartite.

How does Statement 1 imply thatG contains a red Cn? Consider the case

|V | = n; note that n ≤ |V (G)|. If 2k+1 ≤ n, choose V so that G[V ] contains

C0. Then G[V ] is not blue almost bipartite, whence (by Statement 1) G[V ]

contains a red C|V | = Cn. On the other hand, if 2k + 1 > n, then by
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Lemma 2.4.5, G[V (C0)], and thus G, contains a red Cn. We now turn to

the proof of Statement 1, which is by induction on |V |:

Base cases. |V | ≤ 2k. Since G[V ] ⊆ G and 2k + 1 is the length of a

shortest odd blue cycle in G longer than C3, G[V ] is blue almost bipartite.

Induction step. Assume that the statement holds for each subset V ⊆

V (G) with |V | ≤ p, for some p ∈ [2k, |V (G)| − 1]. We have to show that for

each subset V ⊆ V (G) with |V | = p+1, G[V ] either contains a red C|V | or is

blue almost bipartite. Thus, let V ⊆ V (G) with |V | = p+ 1. If G[V ] is not

blue almost bipartite, then G[V ] contains an odd blue cycle longer than C3.

Let C = x1x2 · · ·x2m+1x1 be a shortest odd blue cycle in G[V ] longer than

C3; note that m ≥ k. As for C0, all chords of C are red, except possibly one

2-chord or two crossing 2-chords. In particular, the m-chords of C form a

red C2m+1, say C
′. If V (C) = V , then C ′ is a red Cp+1. If not, then we may

construct a red Cp+1 by replacing one, two, three, or four edges of C ′ (that

is, one, two, three, or four m-chords of C) with one, two, three, or four red

paths, respectively:

Consider the non-empty subgraph H = G[V ] − V (C) of G[V ]. By the

induction hypothesis, H either contains a red Cp−2m or is blue almost bi-

partite. In the former case, H has a Hamiltonian 1-partition, and in the

latter case, it follows from Lemma 2.4.7 that H either has a Hamiltonian

3-partition or is a blue K4.

Claim 1. If some vertex v ∈ H is blue adjacent to xi and to xi+j, then

j mod (2m+1) ∈ {1, 2, 2m−1, 2m}. In particular, xixi+j cannot be an edge

of C ′.

Proof. Were 3 ≤ j mod (2m+1) ≤ 2m− 2, vxixi+1 · · ·xi+jv (in case j mod

(2m + 1) ≡ 1) or vxixi−1 · · ·xi+jv (in case j mod (2m + 1) ≡ 0) would be

an odd blue cycle of length between 5 and 2m− 1.

Thus, if some vertex v ∈ H has more than two blue neighbours in C,

then they have to be three and of the form xk−1, xk, and xk+1 for some

k ∈ [2m + 1]. Hence, if H = {v}, then there is an edge xℓxℓ+m of C ′ such

that vxℓ and vxℓ+m are both red. We thus obtain a red Cp+1 by replacing

xℓxℓ+m with xℓvxℓ+m. Thus, from now on, assume that |H| ≥ 2.

Claim 2. Let v1 6= v2 belong to H. Then they have at most two common

blue neighbours in C.

Proof. As we just saw, if v1 has more than two blue neighbours in C, then

they have to be three and of the form xk−1, xk, and xk+1 for some k ∈

[2m+ 1]. Thus, v1 and v2 cannot have more than two common blue neigh-

bours in C, since then v1xk−1v2xkxk+1v1 would be a blue C5.
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Let v1 6= v2 belong to H. If they have two common blue neighbours in

C, then at most four of the 2m+ 1 edges of C ′ have a vertex which is blue

adjacent to both v1 and v2. Thus and by Claim 1, at least 2m−3 ≥ 3 of the

2m+1 edges of C ′ are good, that is one of the edge’s vertices is red adjacent

to v1, and the other one is red adjacent to v2. Similarly, if v1 and v2 have

at most one common blue neighbour in C, then at least 2m − 1 ≥ 5 of the

2m+ 1 edges of C ′ are good.

Claim 3.

(a) Let K ⊆ H be a blue K3 and let its vertices be v1, v2, and v3. If v1xi
is blue, then all edges between K− v1 and C−{xi, xi+3, xi−3} are red.

(b) Let K ⊆ H be a blue K4 and let its vertices be v1, v2, v3, and v4.

If v1xi is blue, then all edges between K − v1 and C are red, except

possibly vℓxi+3 or vℓxi−3 for at most one vℓ ∈ K − v1; if, moreover,

m ≥ 4, then all edges between K − v1 and C are red.

Proof. W.l.o.g., assume that v2xi+j is blue. Then v1xixi+jv2v3v1 is a blue

C5 if j mod (2m + 1) ∈ {1, 2m}, v1xixi+1 · · ·xi+jv2v1 is an odd blue cycle

of length between 5 and 2m − 1 if 0 ≡ j mod (2m + 1) ∈ [2, 2m − 4], and

v1xixi−1 · · ·xi+jv2v1 is an odd blue cycle of length between 5 and 2m− 1 if

1 ≡ j mod (2m+1) ∈ [5, 2m−1]. This proves part (a). In part (b), also note

that v1xiv2v3v4v1 is a blue C5 if j mod (2m+1) = 0. Thus, if vℓxi+3 or vℓxi−3

is blue for some vℓ ∈ K − v1, then all edges between K −{v1, vℓ} and C are

red. Finally, if j mod (2m+ 1) ∈ {3, 2m− 2}, then v1xixi±1xi±2xi±3v2v3v1
is a blue C7, which contradicts the hypothesis if m ≥ 4.

Now, we know that there is an r ∈ [4] such that H has a Hamiltonian

r-partition but not a Hamiltonian (r − 1)-partition, and if r = 4, then H is

a blue K4. We consider two subcases: (a) r ≤ 3 and (b) r = 4.

Subcase 2a. Let (P(1), . . . , P(r)) = (v11 · · · v
1
n1
, . . . , vr1 · · · v

r
nr
) be a Hamil-

tonian r-partition of H. For each i ∈ [r], choose ki ∈ [2m+1] with ki1 6= ki2
for all i1 6= i2, such that all vi1xj are red, except possibly v

i
1xki−1, v

i
1xki , and

vi1xki+1. By part (a) of Claim 3 and since each vi11 v
i2
1 is blue (otherwise H

would have a Hamiltonian (r− 1)-partition), this is always possible if r = 3.

Since H contains no blue C5 and v11v
2
1 is blue, this is also always possible if

r = 2.

Now, for each i ∈ [r] such that vi1 = vini
, replace xki+2xki+2+m with

xki+2v
i
1xki+2+m, and for each i ∈ [r] such that vi1 6= vini

, note that at least

one of the at least three good edges of C ′, say xℓixℓi+m, has not (yet) been

replaced, and replace it with xℓiv
i
1 · · · v

i
ni
xℓi+m.

Subcase 2b. Let the vertices of H be v1, v2, v3, and v4. If all edges

between H and C are red, then we obtain a red Cp+1 by replacing xixi+m
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with the red path xivixi+m, for each i ∈ [4]. Thus, from now on, assume

that some vertex of H, say v1, is blue adjacent to some vertex of C. As we

have seen, there is a k ∈ [2m+1] such that all v1xi are red, except possibly

v1xk−1, v1xk, and v1xk+1. In case there is only one xi such that v1xi is blue,

let k = i. Then by part (b) of Claim 3, there is a vertex vℓ ∈ H− v1, say v2,

such that all edges between H − v1 and C are red, except possibly v2xk+3

or v2xk−3 if m = 3.

Now, replace xk+2xk+2+m, xk+2+mxk+1, xk+3+mxk+2, and xk+4+mxk+3

with xk+2v1xk+2+m, xk+2+mv2xk+1, xk+3+mv3xk+2, and xk+4+mv4xk+3, re-

spectively. This concludes the proof of Proposition 2.3.10.
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i matematik; 2 (2012); Matematiska institutionen; Stockholms univer-

sitet.

[10] Harary, F.; A Survey of Generalized Ramsey Theory ; Lecture Notes in

Mathematics; 406 (1974), 10-17.
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