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Abstract

Given s non-empty sets ¢4, ..., % of graphs, the generalised Ram-
sey number R(9,...,¥;) is defined as the least positive integer n,
such that whenever each edge of the complete graph K,, on n vertices
is coloured with one of the colours ¢y, ..., cs, K, contains a ¢;-coloured
G;, for some i € {1,...,s} and some G; € %;.

In this thesis, we first prove some basic, general properties of gene-
ralised Ramsey numbers, among others that they always exist. We
then compute a number of (in fact, uncountably many) two colour
generalised Ramsey numbers, such that ¢ and % are sets of cycles.
This generalises previous results of Erdés, Faudree, Rosta, Rousseau,
and Schelp from the 1970s.

Above all, we determine all generalised Ramsey numbers R(¥;,%)
such that ¢ U%, contains a cycle of length 3, 4, or 5. Furthermore, we
give a conjecture for the general case. We also prove some results on
graphs that contain no cycle of odd length, except possibly a number
of 3-cycles.

Sammanfattning

For s icke-tomma méangder ¢, ..., % av grafer definieras det gene-
raliserade Ramseytalet R(%,...,%,) som det minsta positiva heltalet
n, sadant att om varje kant i den kompletta grafen K, pa n horn
fargas med nagon av fiargerna ci,...,cs, sa innehaller K, garanterat
en ¢;-firgad Gy, for nagot ¢ € {1,...,s} och nagot G; € ;.

I det hér arbetet bevisar vi forst nagra grundldggande, allménna
egenskaper hos generaliserade Ramseytal, bland andra att de alltid
existerar. Dérefter beréiknar vi ett antal generaliserade Ramseytal for
tva firger, sadana att 4 och % &r méingder av cykler, vilket genera-
liserar tidigare resultat av Erdés, Faudree, Rosta, Rousseau och Schelp
fran 1970-talet.

Framfor allt bestdmmer vi alla generaliserade Ramseytal R(¥4;, %)
sadana att 4 U%, innehéller en cykel av lingd 3, 4 eller 5. Vidare ger
vi en formodan for det allménna fallet. Vi bevisar ocksa nagra resultat
om grafer som inte innehaller nagon cykel av udda lingd, férutom
mojligen ett antal 3-cykler.
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Preface

Much of Sections 1.1, 1.2, and 1.3 previously appeared as part of my bachelor
thesis [9].

Section 1.3: The results on ordinary (that is, non-generalised) Ramsey
numbers are previously known, but the proofs are my own, except the proof
of Ramsey’s theorem (Theorem 1.3.4). The results on generalised Ramsey
numbers are almost certainly previously known, but I have not been able to
find them in the literature.

Section 1.4: The alternative view of generalised Ramsey numbers stems
from [1] and personal communication with its author.

Chapter 2: All results in this chapter are, to the best of my knowledge,
new, except when the opposite is explicitly stated.






1 Introduction

1.1 Introductory example

The following example is often used to introduce Ramsey theory (named
after the English mathematician Frank Ramsey (1903-1930)): Suppose that
at a party, any two people either know each other or do not know each other.
What is the least number of people that must be present at the party in
order to guarantee the existence of three people who mutually know each
other or three people who mutually do not know each other? This may be
modeled with graphs: Let the vertices represent the people at the party and
draw an edge between two vertices if and only if these two people know each
other. Equivalently, one may draw a red edge between two vertices if the two
people know each other and a blue edge otherwise. The above question may
now be rephrased thus: What is the least number of vertices that a graph
must contain in order to guarantee the existence of a 3-clique (three vertices
with an edge between any two of them) or three independent vertices (three
vertices with no edge between any two of them)? and What is the least
number of vertices that a complete red-blue graph (a number of vertices
with an edge, red or blue, between any two of them) must contain in order
to guarantee the existence of a red 3-clique or a blue 3-clique? respectively.
Let R(3,3) denote the requested number of people/vertices. We now show
that R(3,3) = 6.

Proposition 1.1.1. R(3,3) = 6.

Proof. R(3,3) > 6: We have to show that there is a complete red-blue graph
on 5 vertices with no monochromatic 3-clique. Such a graph exists:
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Figure 1: R(3,3) > 6.
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R(3,3) < 6: We have to show that each complete red-blue graph on 6
vertices contains a monochromatic 3-clique. Let the vertices be v, a, b, c,
d, and e. At least three of the edges va, vb, vc, vd, and ve are the same
colour; say that (at least) va, vb, and vc are red. If ab, ac, or be is red, then

we have a red 3-clique (vab, vac, or vbe, respectively). On the other hand,
if ab, ac, and bc are all blue, then we have a blue 3-clique (abc). O



It is natural to proceed by trying to answer the following, more general
question: What is the least number of vertices that a complete red-blue
graph must contain in order to guarantee the existence of a given red sub-
graph or a given blue subgraph (the two subgraphs need not be the same)?
In general, this is a very hard problem; for instance, even the number R(5,5),
where the red and the blue subgraph are both 5-cliques, is unknown (one
only knows that it lies between 43 and 49). Nevertheless, many of these
so called (ordinary) Ramsey numbers are known, for instance R(C,, Cj),
where the red and the blue subgraph are an n- and a k-cycle, respectively.
For more known values of (ordinary) Ramsey numbers, see [12].

One may generalise these Ramsey numbers by means of the following,
still more general question: What is the least number of vertices that a
complete red-blue graph must contain in order to guarantee the existence
of a red subgraph belonging to a given set of graphs or a blue subgraph
belonging to a given set of graphs (the two sets need not be the same)?
This is the question to which this thesis is devoted.

In Section 1.3 we prove some basic, general properties of generalised
Ramsey numbers, among others that they always exist, for any number of
colours. In Section 1.4 we give an alternative view of generalised Ramsey
numbers. In Chapter 2, finally, we compute a number of (in fact, uncount-
ably many) generalised Ramsey numbers for two sets I'; and I'y of cycles.
Above all, we determine all generalised Ramsey numbers R(I';,I'2) such that
I'y UTy contains a cycle of length 3, 4, or 5. Furthermore, we give a conjec-
ture for the general case. We also prove some results on “almost bipartite
graphs,” by which we shall mean graphs that contain no cycle of odd length,
except possibly a number of 3-cycles.

1.2 Definitions and notation

In this section we define, above all, the graph theoretical notions used in this
thesis. Throughout the thesis, G1,...,Gs and 4, ... ,%; denote non-empty
(uncoloured) graphs and non-empty sets of non-empty (uncoloured) graphs,
respectively.

Definition 1.2.1. If X is a set, let | X| be the number of elements of X if
X is finite, and oo otherwise, let 2% = {4 C X}, and let ()k{) ={ACX|
|A| = k}. If A and B are two sets, let A— B ={zx € A|x ¢ B} and let
(as usual) A x B = {(a,b) | a € A and b € B} (the latter with the obvious
generalisation for more than two sets). Also, if n is a positive integer, let
A" =A X .-+ x A (n times).

Definition 1.2.2. Let R be the real numbers, let Z be the integers and let
N be the non-negative integers. If z € R, let [z] = max{n € Z | n < z}
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and let [2] = min{n € Z | n > z}. If a € Z, let a mod n be the least non-
negative integer congruent to a modulo n. If n € N, let [n] = {1,2,...,n}
(thus [0] = 0). If a < b are integers, let [a,b] = {a,a+1,...,b}, and if a > b
are integers, let [a,b] = (). = a means that x = a (mod 2).

Definition 1.2.3. A graph G is an ordered pair (V| E), where V is a finite
set and E C (‘2/), the elements of V' are called wvertices and the elements of
E are called edges. (Thus all graphs in this thesis are finite, simple, and
undirected.) If G is a graph, let Vo = V(G) and Eg = E(G) denote its
vertex set and its edge set, respectively. Note that we often write v € G and
|G| instead of v € V(G) and |V (G)|, respectively. Also note that we often
write uv or vu for the edge {u,v} = {v,u}.

Let G = (Vg, Eg) be a graph. Two vertices v and v of G are said to be
adjacent to one another, or neighbours, if uv € Eg. A vertex v and an edge
xy are said to be incident if v € {z,y}. Two edges are called independent
if they have no vertex in common. A graph H = (Vy, Ep) is said to be a
subgraph of G, written H C G, if Vg C Vg and Eyg C Eg; H is said to be
an induced subgraph of G if, moreover, Epy = (VQH) N Eg. The complement
of G is the graph (Vg, (Vzc) — Eq).

A graph G = (V, E) is said to be bipartite if V is the disjoint union of
two subsets V7 and V5, such that all edges e € E are of the form e = vyvo,
where v1 € V1 and vy € Vo; G is said to be complete bipartite if, moreover,
vivg € E, for all v1 € V; and all vy € Va. The graph K, , is complete
bipartite with |V;| = p and |Va2| = ¢. G is said to be m-regular if each vertex
of G has precisely m neighbours. The graph K, consists of n vertices and
all (g’) possible edges; it is called the complete graph on n vertices, or the
n-clique (note that K, is (n — 1)-regular).

Definition 1.2.4. Two graphs G; and G are said to be isomorphic if
there is a bijection V(G1) 2 V(Gy), such that wv € E(Gy) if and only if
o(u)p(v) € E(Ga), for all u,v € V(Gy). Let the isomorphism class [G] of
a given graph G consist of all graphs isomorphic to GG, and let &2 denote
the set of all isomorphism classes of graphs. We usually do not distinguish
between isomorphic graphs (in other words, we often identify G with [G]).
Thus for instance, we talk about the complete graph on n vertices.

Definition 1.2.5. Let
V=A{z1,29,...,2,} and FE = {z1x9,z23,...,Tn_1Tn},

where n is a positive integer and z; # x; for all i # j. Then (V, E) is called
a path of length n — 1, denoted P, = x1x2-- Ty, and if n > 3, then
(V,EU{xnx1}) is called a cycle of length n, or an n-cycle, denoted C,, =
T1X2 - Tply.
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If P=uxzy29-- 2y, let P’ =x,2,_1---x1. Formally, P = P’, but this is
still a useful definition. If P = z1x2 - - -z, and n > 3, let P° = xox3 - Tp_1;
To9,T3,...,Tn_1 are the inner vertices of P.

A j-chord of a cycle C = z1x2---x,x1 is an edge of the form x;x;y;,
where j mod n ¢ {1,n — 1}. Vertex indices are always interpreted modulo
the length of the cycle that we are considering at the moment. For instance,
x11 = x3 in a cycle of length 8.

Finally, let

V= {$1,$2ayl7927 cee 7yn} and E = {xle} U {xly] ’ (7’7]) € [2] X [n]})

where n is a positive integer and y; # y; for all ¢ # j. Then (V, E) is called
a tower of height n, denoted T}, = x1x2|y1y2 - - - yn. A tower T in a graph G
is called mazimal if the height of T, denoted ht(7T'), is maximal among the
heights of the towers in G.

Definition 1.2.6. A graph G is said to be almost bipartite if it contains
no cycle of odd length, except possibly a number of 3-cycles. A graph G on
n > 3 vertices is called Hamiltonian if it contains a cycle of length n, and
pancyclic if it contains cycles of all lengths between 3 and n.

Definition 1.2.7. Let s be a positive integer. An s-colouring p of a set X
is a function X 5 {c1,...,¢s}; p(x) is called the colour of z (x € X). An
s-edge colouring of a graph (V, E) is an s-colouring of E; the edge coloured
graph is denoted (V| E, p) and is said to be a colour graph.

Let G = (Vg, Eg, pc) be a colour graph. Two vertices u and v of G
are said to be ¢; adjacent to one another, or ¢; neighbours, if uv € Eg and
pc(uv) = ¢;. The c;-coloured subgraph G., of G is the (uncoloured) graph
(Vi,{e € Eg | pa(e) = ¢i}). A subgraph H = (Vi, Eg, prr) of G is said to
have the induced colouring if pyg(e) = pg(e) for all e € Ep.

If V.C V(G), let G[V] denote the induced subgraph on V with the
induced colouring. In case G is an uncoloured graph, then we use the same
notation for the induced subgraph on V. Also, if H C G, let H +V =
GIV(H)UV] and let H -V = G[V(H) — V]; moreover, if v € G, let
H+v=H+ {v}.

A colour graph (V, E, p) is said to be red-blue if s = 2 and {c1,c2} =
{red, blue}. Throughout the thesis, we shall assume this to be the case when
s = 2; furthermore, red will always be the first colour and blue will always
be the second. In order to simplify notation, we shall often also assume that
{c1,...,¢s} =[] for arbitrary s.

Definition 1.2.8. Let n and s be positive integers. We write

n—>(G1,...,GS)
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if, for each s-edge colouring p of K, there is an ¢ € [s], such that the ¢;-
coloured subgraph (K,,)., contains a subgraph isomorphic to G;; we often
express this as (Kp,p) (or just K,) containing a c;-coloured G;. n —
(t1,...,ts) has the same meaning as n — (K, ..., K;,).

The ordinary Ramsey number R(G1,...,Gs) denotes the least positive
integer n such that n — (Gi,...,Gs); here, R(t1,...,ts) = R(Ky,, ..., Ky,).
Since R(G1,...,Gs) only depends on the isomorphism classes of G, ..., Gg,
one may define a function, called the ordinary Ramsey function, from &2°
to the set of all positive integers, by ([G1],...,[Gs]) — R(G1,...,Gs).

It should be noted that it is not obvious that for each positive integer
s and all graphs G1,...,Gs, there is a positive integer n such that n —
(G1,...,Gs). In the next section, however, we prove this to be the case (see
Theorem 1.3.4), whence the ordinary Ramsey function is well-defined.

Definition 1.2.9. Let n and s be positive integers. We write
n — (gl,...,gs)

if, for each s-edge colouring p of K, there is an ¢ € [s], such that the ¢;-
coloured subgraph (K,)., contains a subgraph isomorphic to some G; € %;;
we often express this as (K, p) (or just K,,) containing a ¢;-coloured Gj.

The generalised Ramsey number R(%, . ..,%;) denotes the least positive
integer n such that n — (4,...,%,). Since R(%4,...,%;) only depends
on the isomorphism classes of the graphs in ¥, ...,%;, one may define a
function, called the generalised Ramsey function, from (27 — {(})* to the
set of all positive integers, by ([4],...,[%]) — R(%,...,¥;), where by
definition, (4] = {[Gi] | G; € 4;}.

It should be noted that it is not obvious that for each positive integer
s and all non-empty sets of graphs ¥4, ...,%;, there is a positive integer n
such that n — (44, ...,%;). However, this is easily proved to be the case (see
Corollary 1.3.7), whence the generalised Ramsey function is well-defined.

Also note that if 4 = {G,} for some ¢ € [s], then we often write n —
(“,...,Gi,...,9) instead of n — (4,...,{Gi},...,%;); similarly, we let
R(%,...,Gi,....9) = R(%,...,{Gi},...,9).

Definition 1.2.10. Recall that 4 and % denote non-empty sets of non-
empty (uncoloured) graphs. A complete red-blue graph G is said to be
(41, %)-avoiding if G contains neither a red subgraph belonging to % nor
a blue subgraph belonging to %.

Let P be a property such that for each (uncoloured) graph G, G fulfils
P if and only if all graphs isomorphic to G' do.! Then a complete red-blue

!Formally, one may define a graph property as a class of (uncoloured) graphs that is
closed under isomorphism (see [4]).
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graph G is said to be red P-fulfilling (blue P-fulfilling) if its red subgraph
Greq (its blue subgraph Gy ) fulfils P. In order to illustrate this concept,
consider the complete red-blue graphs given in Figure 2. They are both blue
bipartite and red (as well as blue) almost bipartite; the second one is also
blue complete bipartite.

Let € = {Cy | k > 3}, let 6, = {odd cycles} = {C} | k = 1}, and
let €. = {even cycles} = {C} | k = 0}. Also, for each integer m > 3, let
Cfgm = {Ck ’ k< m} and ngm = {Ck ’ k> m} Finally, if I' C €, let

in(I) min{k | C, € I'} if I is non-empty
min(T") =
o0 otherwise,

and for each i € [2], let 4* = min(T;) and 7¢ = min(T; N E,).

Figure 2: Two blue bipartite and red almost bipartite graphs.

Definition 1.2.11. A complete red-blue graph G is said to have a Hamil-
tonian r-partition (P, ..., Py) if V(G) is the disjoint union of r subsets
Vi,...,V;, such that for each i € [r] with |V;| > 1, G[V;] contains a red path
Py of length [V;] — 1.

In order to make sense of some of the proofs in this thesis, we need the
following notation: Let G be a complete red-blue graph, let H be a blue K4
or a blue tower in G, and let v € H. Then a vertex x € G is said to be
RA(v) if = is red adjacent to each vertex of H, except possibly v.

1.3 Basic properties of the generalised Ramsey function
Proposition 1.3.1. Let s be a positive integer. Then
n— (Gy,...,Gs) if and only if n— (Gy,...,Gs, K»).

Proof. (=) Fix an arbitrary (s + 1)-edge colouring of K. If it contains an
(s 4 1)-coloured edge, then we have an (s 4 1)-coloured K. If not, then we
have (by assumption) an i-coloured G; for some ¢ € [s].

(<) Fix an arbitrary s-edge colouring of K,,. Since it contains no (s+1)-
coloured K9, we have (by assumption) an i-coloured G; for some i € [s]. [

14



Proposition 1.3.2. Let s be a positive integer and let o be a permutation
of [s]. Then

n— (Gi,...,Gs) if and only if  n = (Go1), -, Go(s))-

Proof. (=) Fix an arbitrary s-edge colouring p of K,,. We have to show that
(Kn, p) contains an i-coloured G, ;) for some i € [s]. Consider the s-edge
colouring p' = oo p of K,,. Since n — (Gi,...,Gs), (Ky,p') contains a
j-coloured G; for some j € [s], and since o is surjective, (K, p’) contains
a o(i)-coloured Gy(;) for some i € [s]. Thus (K, p) must have contained a
Go(;) in the colours that o maps to o (i), that is an i-coloured G, ;) (since o
is injective).

(«=) For each i € [s], let H; = G,(;); note that H,-1;) = G;. Since
n — (Hu,..., Hs), the = part implies that n — (H,-1(1), ..., Hy-1(y)), that
isn—)(Gl,...,Gs). [

Proposition 1.3.3. Let s be a positive integer, and for each i € [s], let
H; be a non-empty subgraph of G;. Then R(Hy,...,Hs) < R(Gy,...,Gjs)
(provided the right hand side exists).

Proof. By definition of R(G1,...,Gs), R(G1,...,Gs) = (G1,...,Gs), which
obviously implies that R(G1,...,Gs) = (Hi,...,Hs). Thus and by defini-
tion of R(Hy,..., Hy), R(Hy,..., Hy) < R(G1,...,G). O

Let s be a positive integer. Note that in case E(G;) = () for some i € [s],
then
R(G1,....Go) = min{|V(Go)| | E(G) =0} 2 1.

Thus for arbitrary graphs Gy,..., G,
R(Gi,...,Gs) > min{|V(G;)|} > 1

i€ls] o
(provided the left hand side exists).
Theorem 1.3.4 (Ramsey’s theorem).
(a) R(t) =t, for allt > 2.
(b) If s > 2, t; > 2 for alli € [s], and t; = 2 for some j € [s], then

R(tl, - ,ts) = R(tl, - ,tjfl,t]url,. . .,ts).

(c) If s > 1 and t; > 3 for all i € [s], then

R(t1,...,t5) < (ZR(tl,...,ti—l,...,ts)> —s+2.
i=1

15



(d) For each positive integer s and all integers ti,...,ts > 2, there is an
integer n > 2 such that n — (t1,...,ts); thus R(t1,...,ts) always
exists.

(e) For each positive integer s and all graphs G1,...,Gs, there is a posi-
tive integer n such that n — (G1,...,Gs); thus R(Gy,...,Gs) always
exists.

Remark. In parts (b) and (c), the right hand sides are assumed to exist. In
part (d), we prove this to be the case.

Proof. (a) This is an obvious result.

(b) Use Propositions 1.3.1 and 1.3.2.

(¢) The result follows directly from part (a) in case s = 1. Thus, from
now on, assume that s > 2. Let

n= <ZR(t1,...,ti—1,...,ts)> —5+2
i=1

and fix an arbitrary s-edge colouring p of K,. Take a vertex x € K,,
and for each i € [s], define I'Y = {y € K,, | p(zy) = i}. Then for some
j € [sl, IT§| = R(t1,...,t; — 1,...,t5). (Suppose not, that is suppose that
II'¥) < R(ty,...,t; —1,...,ts) — 1, for all i € [s]. Then

s s
Z|Fiz|§(ZR(tl,...,ti—l,...,ts))—s_n_Q’
1 =1

i=

which contradicts the fact that >;_; |[I'¥| = n— 1, the number of neighbours
of .) By definition of R(Gy,...,Gs), K,[I'j] contains either an i-coloured
K, for some i € [s] — {j}, or a j-coloured K;;, 1. In the former case, we are
done, and in the latter case, K,[I'j U {z}] contains a j-coloured Kj;.

(d) Use parts (a) through (c) and induction.

(e) Use part (d) and Proposition 1.3.3. O

Proposition 1.3.5. Let s be a positive integer and let o be a permutation
of [s]. Then

n—(4,...,%) if and only if n = (Yy1) - Yo(s))-
Proof. This is proved in the same way as Proposition 1.3.2. 0

Proposition 1.3.6. Let s be a positive integer, and for each i € [s], let 7
be a non-empty subset of 4;. Then R(%,...,9s) < R(JA,..., ;) (provided
the right hand side exists).
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Proof. By definition of R(/A4,...,7), R(JA,...,7) — (JA4,...,5),
which obviously implies that R(J4,...,%5) — (%,...,9s). Thus and by
definition of R(4,...,%;), R(%,...,9;) < R(JA4,...,55). O

Corollary 1.3.7. Let s be a positive integer, and for eachi € [s], let G; € ;.
Then R(%,...,%) < R(G1,...,Gs); in particular, R(%,...,9) always
exists. ]

Since we now know that R(¥,...,%;) always exists, the following result
is an immediate consequence of Proposition 1.3.5.

Proposition 1.3.8. Let s be a positive integer and let o be a permutation
of [s]. Then
R(%,....9s) = R(D51)s - -+ Go(s))- ]

1.4 An alternative view of generalised Ramsey numbers

In this section, we give an alternative, equivalent definition of generalised
Ramsey numbers, which perhaps makes this generalisation of the ordinary
Ramsey numbers appear more natural. The idea stems from [1] and personal
communication with its author. We begin by recalling the notion of a poset,
and some related concepts.

Definition 1.4.1. If P is a set and < is a binary relation on P, then (P, <)
is said to be a partially ordered set, or a poset, if the following properties
hold, for all elements z,y, z € P:

(i) x <z (reflezivity);
(i) x =y if x <y and y < = (antisymmetry); and
(iii) z <z if x <y and y < z (transitivity).

Naturally, z > y, x < y, and = > y have the same meaning as y < x, x <y
and x # y, and y < z, respectively. Two elements x,y € P are comparable
if x <y or y < x; otherwise they are incomparable.

Let (P, <) be a poset. A subset Q C P is a chain if any two elements
of @) are comparable, an antichain if any two distinct elements of () are
incomparable, an order ideal if y € () whenever x € Q and y < z, and a
dual order ideal, or a filter, if y € Q whenever x € (Q and y > x. An element
x € Q C P is mazimal (minimal) in @ if there is no element y € @ such
that y > z (y < z). Define

(1) Q] ={y € P|y <z for some x € Q}
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and
(2) [Q] ={y € P|y >z for some z € Q}

By transitivity, (1) is an order ideal and (2) is a filter. The subset @ is said
to generate (1) and (2), respectively. In case @ = {z}, then z is said to
generate the principal order ideal || = {y € P |y < x} and the principal
filter [x] ={y € P |y > x}, respectively. (Note that () generates the empty
order ideal and the empty filter, respectively.)

A poset (P, <) is said to satisfy the ascending chain condition or ACC
(the descending chain condition or DCC) if there is no infinite sequence
(x;)i>1 in P such that 1 <zg < -+ (21 > 22> --+).

Proposition 1.4.2. Given a poset (P, <) that satisfies ACC, there is a
natural bijection ¢ between the set of antichains A and the set of order
ideals I, given by p(A) = |A| and whose inverse is given by

o YI) = {x € I| v is mazimal in I}.

Similarly, given a poset (P,<) that satisfies DCC, there is a natural
bijection 1 between the set of antichains A and the set of filters J, given by
Y(A) = [A] and whose inverse is given by

Y UJ) = {x € J| x is minimal in J}.

Proof. By symmetry, it suffices to prove the second part of the proposition.
We know that [A] is a filter. We thus have to prove that (i) »~1(J) is an
antichain, (i) ¥~ 1((A)) = A, and (iii) ¥ (1 (J)) = J.

(i): We are done if [p"1(J)| < 1. Thus, take z # y in = 1(J) C J.
Since x € ¢~1(J) and y € J, y < x does not hold. Similarly, z < y does not
hold. Thus = and y are incomparable.

(ii): v~ 1(¥(A)) C A: Take 2z € = 1(¢p(A)). By definition, z is minimal
in [A]. In particular, z € [A], whence z > x for some z € A. Since z is
minimal in [A], z = x, whence z € A.

P~ ((A)) D A: Take z € A. We have to show that z is minimal in
[A]. Suppose not, that is suppose that there is an element y € [A] such
that y < z. Since y € [A], y > z for some z € A. By transitivity, z > =,
which contradicts the fact that A is an antichain.

(iii): ¥ (¢ ~1(J)) C J: Take y € ¥(v~1(J)). By definition, y > z for
some x € ¢¥~1(J), that is y > z for some (minimal) element = in .J. Since .J
is a filter, y € J.

P(p~H(J)) 2 J: Take y € J. We have to show that y > z for some
x € ¢~ 1(J) or, equivalently, that

(3) y > x for some minimal element x in J.
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If y is minimal in J, then (3) holds for z = y. If not, then there is an element
y1 € J such that y; < y. If y; is minimal in J, then (3) holds for x = y;.
If not, then there is an element yo € J such that yo < wy1, and so forth.
Since (P, <) satisfies DCC, we eventually reach a minimal element y,, in J
such that y, < yn—1 < --- < y1 < y. Thus and by transitivity, (3) holds for
T =Y. [

Now, recall that & is the set of all isomorphism classes of graphs. We
can make the set & into a poset (Z,<) by defining [G1] < [G2] in &
if G is isomorphic to a subgraph of Ga. Note that if [Gi] > [G2], then
[V(G1)|+ |E(G1)| > |[V(G2)| + |E(G2)|. Thus (£, <) satisfies DCC.

Recall also, that the generalised Ramsey number R(%,...,%;) is the
least positive integer n, such that for each s-edge colouring of K,,, there is
an i € [s] such that (K,)., contains a subgraph isomorphic to some G; € %;.
We are now ready to give the alternative definition:

Definition 1.4.3. The generalised Ramsey number R(%i,...,9s) is the
least positive integer n, such that for each s-edge colouring of K, there is
an i € [s] such that (K,)., belongs to the filter [[4]].

In particular, the ordinary Ramsey number R(G1,...,Gs) is the least
positive integer n, such that for each s-edge colouring of K, there is an
i € [s] such that (K,)., belongs to the principal filter [[G;]].

Finally, for each i € [s], let <7 be a set of graphs such that

] = v~ ([[%]))-

Since (£, <) satisfies DCC, it follows from Proposition 1.4.2 that [<4] is an
antichain and

[[e4]] = v(l24]) = v~ ([[%1) = [[]].

Hence, R(4, ..., ) = R(4,...,9s). Thus, when dealing with generalised
Ramsey numbers, one may always take [4],...,[¥;] to be antichains in &
(with each ¥ containing no two isomorphic graphs). For instance, since
[K4] > [Cs], R(C4,{C5,Cs,K4}) = R(C4,{C5,Cs}). As to the two sets of
cycles case (see Chapter 2), note that each subset of [¢] is an antichain in

(2,5).
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2 The two sets of cycles case

In this chapter, we investigate generalised Ramsey numbers for two sets of
cycles, that is generalised Ramsey numbers of the form R(I'1,T'2), where
(T'1,T) is a pair of non-empty sets of cycles.

2.1 Preliminaries and previously known results

In this section, we first define a number of sets and colourings that will
be needed in the proofs to come. We then present some results which, to
the best of the author’s knowledge, include all previously known generalised
Ramsey numbers for two sets of cycles.

2.1.1 Preliminaries

For pairs (n, k) of integers such that n > k > 3, define

Ao ={(3,3),(4,4)},

Ay ={(n,k) |n=0and k =0} — {(4,4)},

Ay ={(n,k) |n=1, k=0, and 2n > 3k},
As={(n,k) |n=1, k=0, and 2n < 3k}, and
Ag={(n,k) | =1} —{(3,3)}.

= {( )
Ay ={T1,T2) | 0=7>> 1~} and (42,72) # (4,4)},
Wy = {(T1,T2) [1=7">37[/2},
Wy ={(T1,T2) [1=7"<392/2,0=9" <", and 4} > 2¢°},
Aoy ={(T1,T2) |7 >4 and 1 =" <+ <4l/2},
Wppe = {(T1,T2) [0 = 71 > 12 and (7v',72) # (4,4)},
e = {(T'1,T2) [ 1 =" > 392/2},
e = {(F1,T2) [ 1= <391/2,0=7" <+* and 7 > 2¢'}, and
Wpiue = {(T'1,T2) [ 7' >4 and 1 =+ < 4" <42/2}.

Finally, define
U ered and SBQ U lelue’

and for each i € [2], let

B; =B; N {(I'1,T2) | min(T; UT2) > 6}.
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One can show that

By = {(F17F2) ‘ 0= ’72 > max(67761)7 72 > 3’781/27 or

(71 =1,7}>2+% and (0=+2 > 29!/3 or 4> > max(4,71)))},
By = {('1,T2) | 0=19" > max(6,72), v' > 3+2/2, or

(v =1,92>2y", and (0=~"' > 29°/3 or 4" > max(4,7?))) },
B = {11, 12) [ 7! 2 6 and (0=19% 27}, 7% 2 391/2, or

(72 =1,72>2y, and (0=4' > 2¢%/3 or 4! > 72))>}
We now turn to the colourings. Note that Colourings 3, 4, 5, and 6 were
used to prove the lower bounds in Theorem 2.1.1, when (n, k) belongs to

Ag, A1 U Ay, As, and Ay, respectively.

e Colouring 1:

e Colouring 2:

e Colouring 3:




e Colouring 4: The complete red-blue graph with vertex set

{xlu vy In—1,Y1,- - 7yk/271}

and
p(ziz;) = p(yiy;) = red
p(z;y;) = blue.

e Colouring 5: The complete red-blue graph with vertex set

{LUl, ey L—1,Y1, - - '7yk—1}

and
{p(wixj) = p(yiy;) = blue
p(ziy;) = red.

e Colouring 6: The complete red-blue graph with vertex set

{xla ey Tn—1,Y1, - - '7yn—1}

and
p(ziz;) = p(yiy;) = red
p(z;y;) = blue.

2.1.2 Previously known results

The |I'1| = |T'2| = 1 subcase was proved independently by Rosta [13] and
by Faudree and Schelp [6]. A new, simpler proof was given by Kérolyi and
Rosta [11]. The second formula is due to Schwenk (see [10]).

Theorem 2.1.1. Let n > k > 3 be integers. Then

6 if (n,k) € Ag
R(Cy.Cy) = n+k/2—1 if (n,k) € A1 UA;

2% — 1 if (n,k) € Ag

2n —1 if (n,k) € Ay

or, equivalently,

R(Cy,C) = max (6,n+ k/2 — 1,
(2k — 1)(n —2[n/2]), (2n — 1)(k — 2|k/2])).

Furthermore, we have the following results of Erdés, Faudree, Rousseau,
and Schelp:
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Theorem 2.1.2 ([5, Theorem 3]). For alln > 2,

2 ifn<m<2n—1
R(@er, Ko) = n ifn<m n
B 2n—1 ifm>2n—1.
Corollary 2.1.3.
6 ifm=4
R(C<pm, C3) = f
5 4fm>5. O

Remark. Of course, R(¢<3,C3) = R(Cs,C3) = 6.

Theorem 2.1.4 ([7, Theorem 2]). For all m > 3 and alln > 2,
R(€>m, Ky) = (m—1)(n—1)+ 1.

Corollary 2.1.5. For all m > 3,

R(%Zm, 03) =2m — 1. ]

2.2 The red and blue Ramsey numbers

In this section, we define some numbers whose definitions are similar to
that of generalised Ramsey numbers. We then determine all such numbers
for two sets of cycles. They will turn out to be very closely related to
generalised Ramsey numbers for two sets of cycles (see Theorem 2.3.2 and
Conjecture 2.3.1).

Definition 2.2.1. Recall that 4 and % denote non-empty sets of non-
empty (uncoloured) graphs. Let the red Ramsey number R,eq(91,%) (the
red complete Ramsey number Ryedcomp(¥1,%)) be the least positive integer
n, such that each red bipartite (red complete bipartite) graph on n vertices
contains a red subgraph belonging to ¢; or a blue subgraph belonging to
“,. The blue Ramsey number Rpyj.(%1,%) and the blue complete Ramsey
number Ryjyecomp(%1,%2) are defined analogously.

Proposition 2.2.2.

Rycicomp(91,%2) < Rrea(91,%) = R(%1 U 6,,%) < R(%1,%)
and

Ryuecomp(%1,%) < Ryne(91, %) = R(%1,% U 6,) < R(%,%).

In particular, the red (complete) and blue (complete) Ramsey numbers al-
ways exist. O
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Corollary 2.2.3.
R(%1,%) > max(Ryca(¥%1,%2), Roue (41, %2)). O

Lemma 2.2.4. Let (I'1,T'2) be a pair of non-empty sets of cycles. Then

2 1 . 2 1
YAV /2—1 if 297 >,
(4) Rredcomp(rla FQ) = 2 e/ : 2 61
2y —1 if 2v° <,
and
1 2 . 1 2
VA /2=1 if 2y >,
(5) Rbluecomp(FI; F2) = 1 6/ X 1 Z
2y —1 if 2y <2

or, equivalently,
Rredcomp(rh [y) = min(’yz + 75}/2 -1, 2'72 —-1)

and
Rbluecomp(Fh FQ) = min(’ﬁ + '73/2 - 17 271 - 1)

Remarks. Actually, one may extend the definition of R,cqeomp(I't,T'2) to
include the case I'y = ), and (4) will still hold (note that y! = ! = c0).
Similarly, one may extend the definition of Rpjyecomp(I'1,'2) to include the
case I'y = (), and (5) will still hold (now note that 42> = 72 = o). The
analogous remarks apply to Proposition 2.2.5. Also note that ~° —|—*y£ /2—1=
27" — 1 when 2v' = q/g.

Proof. The two statements (4) and (5) are symmetric. Thus we only have
to prove (5). In order to simplify notation, let n = ! and k = ~2.

Assume first that 2n > k. Ryyecomp(I'1,'2) > n + k/2 — 1: Colouring 4
is blue complete bipartite on n + k/2 — 2 vertices, and contains no red cycle
of length at least n, no blue cycle of length at least k, and no odd blue cycle.

Ryyecomp(I'1,T'2) < n+k/2 —1: Let G be an arbitrary blue complete
bipartite graph on n + k/2 — 1 vertices; say that Gpe = K 4. Then either
max(p,q) > n or min(p,q) > k/2. In the former case, G contains a red C,,
and in the latter case, G contains a blue C}.

Assume now that 2n < k. Rpjyecomp(I'1,I'2) > 2n—1: Colouring 6 is blue
complete bipartite on 2n — 2 vertices, and contains no red cycle of length at
least n, no blue cycle of length at least k, and no odd blue cycle.

Ryyecomp(I'1,T'2) < 2n—1: Let G be an arbitrary blue complete bipartite
graph on 2n — 1 vertices; say that Gyjue = Kp 4. Then max(p, g) > n, whence
G contains a red C,. ]
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Proposition 2.2.5. Let (I'1,T'2) be a pair of non-empty sets of cycles. Then

V421 if 292 >4t and (42,72) # (3,4)

6 Ryea(I'1,I'2) =
(6) a(l1,T2) {272—1 if 29* <7 or (7%,78) = (3,4)

and

Y 492/2 =1 if 29t > 42 and (41, 12) # (3,4)

7)  Rpue(I'1,T2) =
(7) blue(L'1,T'2) {271_1 if 291 <42 or (v1,42) = (3,4)

or, equivalently,

5 if (Y2, 7e) = (3,4)

Ryeq(I'1,I'2) =
red ) min(y? +v2/2 —1,29% — 1)  otherwise

and

5 if (Y1 2) = (3,4)

2

Rypue(I'1,I'2) =
uel ) min(y! ++42/2 — 1,29 — 1) otherwise.

Remark. Note that Ryeq(I'1,1'2) = Rredeomp(T'1,[2), unless (v2,72) = (3,4),
in which case Ryeq(I'1,T'2) = Ryedeomp(I'1,T'2) + 1. Of course, the analogous
remark applies to Rpyue(I'1,2).

Proof. The two statements (6) and (7) are symmetric. Thus we only have
to prove (7). In order to simplify notation, let n = v and k = ~2.

The lower bounds follow from Proposition 2.2.2 and Colouring 1.

We now turn to the upper bounds. 2n > k and (n,k) # (3,4): Since
2n > k and (n,k) # (3,4), n > 4. Let G be an arbitrary blue bipartite
graph on n + k/2 — 1 vertices; say that Gpue C Kp 4. W.lo.g., assume that
p > ¢q. In order to obtain a contradiction, assume G is (I'1, I'z)-avoiding.

Either p > n or ¢ > k/2. Were p > n, G would contain a red C,
whence ¢ > k/2. Were G blue complete bipartite, G would contain a blue
Ck, whence there is at least one red edge between the red K, and the red
K,. Were there two independent red edges between K, and K,;, G would
contain a red C), (since n > 4), whence all red edges between K, and K,
have a common vertex z. Thus, were ¢ > k/2 + 1, G would contain a blue
Cy, whence ¢ = k/2 and p = n— 1. (Regardless whether = belongs to K, or
to Ky, G would contain a blue Ky /o1 1 1/2.)

Assume first that x € K}, /5. Were there at least two red edges between
K,—1 and z, G would contain a red C,, whence there is only one red edge
between K, 1 and x. Thus and since n > 4, there are at least two blue
edges between K,,_1 and x, say viz and vez, and vizvy can be extended to
a blue C}, contrary to the hypothesis.
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Assume now that z € K;,,—1. Then all edges between K,_1 —z and K}/,
are blue, whence G contains a blue Cf, unless n — 1 = k/2, in which case
r € K}, /o (which we have already treated).

2n < k or (n,k) = (3,4): Let G be an arbitrary blue bipartite graph
on 2n — 1 vertices; say that Gyye € Kp4. Then max(p,q) > n, whence G
contains a red C,,. ]

Given a pair (I'1,'2) of non-empty sets of cycles, let
m =m(I'1,I'2) = max(Rea(I'1, [2), Rprue(l'1,2)).

We shall see that the generalised Ramsey number R(I'1,T'2) often equals m
(Theorem 2.3.2), and we conjecture that there are no exceptions besides the
ones enumerated in the theorem (Conjecture 2.3.1). The following result is
an immediate consequence of Proposition 2.2.5.

Corollary 2.2.6. Let (I'1,I'2) be a pair of non-empty sets of cycles. Then

m = max(5, min(y? +~2/2 = 1,2y* = 1), min(y' ++2/2 - 1,2¢' = 1)). O

2.3 Main theorem and a conjecture

Let us first give the conjecture. We shall then prove that the conjecture
holds for many pairs of non-empty sets of cycles (see Theorem 2.3.2).

Conjecture 2.3.1. Let (I'1,T'2) be a pair of non-empty sets of cycles. Then

1 C Ciel1 NI d C Cs ¢ UTl
(8) R<F1’F2):{m+ if C3 or Cy 1 9 and C3 or Cs ¢ I'y 2

m otherwise
- 6 if C3 or Cy e’y NIy and Cs 0TC5¢F1UF2
m otherwise.

Remark. Note that Cg or Cy € I'y N T’y is equivalent to min(I'y NT'2) < 4.

The lower bounds follow from Corollary 2.2.3 and Proposition 2.3.4
(see below). For all pairs (I';,I'2) such that (8) holds, note that since m
only depends on !, v}, 42, and 42, so does R(T'1,T3), unless (y!,7?) €
{(3,3),(4,3),(3,4)}. In particular, if the conjecture is true, then this applies
for all pairs (I',I's).

We are now ready to state the main result of this thesis:
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Theorem 2.3.2. Let (I'1,T'2) be a pair of non-empty sets of cycles such that
either min(I'y UT9) <5 or (I'1,Ty) € By UDB,. Then

m+1 ifCs orCyp el 1Ny and C3 or Cs ¢ 'y Uy
R(I'1,T'y) = .
m otherwise
- 6 if C3 or Cy € T'1 NIy and Cy 07’C5¢F1UF2
m otherwise.

Theorem 2.3.2 is an immediate consequence of Propositions 2.3.3 through
2.3.10 (see below). We shall devote the rest of this chapter to the proofs of
these propositions.

Proposition 2.3.3. Let (I'1,T'2) be a pair of non-empty sets of cycles such
that (I'1,T2) € By UDBy. Then

Ryea(I'1,T2)  if (I'1,T'2) € By

R(Fl, FQ) =m = )
Rppue(I't,T2) if (I'1,T'2) € Bo.

Proposition 2.3.4. Let (I'1,'2) be a pair of non-empty sets of cycles such
that C3 or Cy € 'y NT'y. Then Rred(Fl, FQ) = Rblue(l“l, Fg) =5 and

5 if C3 and C5 € 1 UTy

6 otherwise.

R(I',T9) = {

Proposition 2.3.5. Let (I'1,'2) be a pair of non-empty sets of cycles such
that Cy € I'; # C3 and C3 € I'; # Cy, where i € [2] and j =3 —i. Then

R, Ty)=m=
(T3, T2) 7 otherwise.

{6 if Cs €T

Proposition 2.3.6. Let (I'1,I'2) be a pair of non-empty sets of cycles such
that 4* > 5 and v/ = 3, where i € [2] and j =3 —i. Then
Ropue(I'1,T2) ifi=1

R(I',Ty) =m=
T 12) {Rred(rl,m ifi=2.

Remark. Note the following special case of Proposition 2.3.6: R(C,,C3) =
2n — 1, for all n > 5.

Proposition 2.3.7. Let (I'1,'2) be a pair of non-empty sets of cycles such
that v =5 and v/ = 4, where i € [2] and j =3 —i. Then

6 ifC(; el

7 otherwise.

R(Fl,rg) =m= {
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Proposition 2.3.8. Let (I'1,I'2) be a pair of non-empty sets of cycles such
that v* > 6 and v = 4, where i € [2] and j = 3 —i. Then

R(F1,F2) =m= ’)/i + 1.

Proposition 2.3.9. Let (I'1,I'2) be a pair of non-empty sets of cycles such
that v' =~% = 5. Then

ifve =6

9) Rreq(T1,T2) =<8 ifyl =38
(9 if e =10,

ify: =6

(10) Ryue(T'1,T2) =48 ify2 =8
if 42 > 10,

and

if max(v2,~Z) = 6
if max(y;,77) = 8
if max(7y;,7Z) > 10.

R(Fl,rg) =m=

© 00 3

Proposition 2.3.10. Let (I'1,I's) be a pair of non-empty sets of cycles such
that 4* > 6 and v/ =5, where i € [2] and j =3 —i. Then

Rblue(Fh FQ) ’Lf’L =1

R(I',T9) =m=
1) {Rmd(rl,rz) ifi=2.

Remark. Note the following special case of Proposition 2.3.10: R(C),,C5) =
2n — 1, for all n > 6.

We end this section by proving Proposition 2.3.3:

Proof of Proposition 2.3.3. Consider Colourings 4, 5, and 6. Each one of
them is a complete red-blue graph whose red or blue subgraph equals a
complete bipartite (uncoloured) graph K, ,. Since K, ; and its complement
contain precisely the cycles of even length at most 2min(p, ¢) and of length
at most max(p, q), respectively, Colourings 3, 4, 5, and 6 contain precisely
the following red and blue cycles:

e Colouring 3: The red cycle Cys and the blue cycle Cs.

e Colouring 4: The red cycles Cs,CYy,...,C,_1 and the blue cycles
Cy,Cg,...,Cr_g if kK > 6 (no blue cycle exists if k = 4).
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e Colouring 5: The red cycles Cy,Cs,...,Co_o and the blue cycles
Cs,Cy, ..., Cp—1.

e Colouring 6: The red cycles C3,CYy,...,Cph—1 and the blue cycles
C4,Cs, ..., Copa.

Thus and by Corollary 1.3.7 and the upper bounds in Theorem 2.1.1, the
following statements hold, for each subset ® C %, each subset ¥ C %>,
each subset ®g C 6>91_1, each subset ¥y C €>9,_1, each subset 2 C %,
and all subsets Q,Q C ¢ — {C5}:

R{CL} U, {Cr}UQ) =6 if (n,k) € Ao,
R{C,} U {CUTUQ)=n+k/2 -1 if (n,k) € A1 U Ag,
RH{CL,}UP U {Cr}UT) =2k —1 if (n,k) € As, and
RH{CL}UP {Cr} UToUQ)=2n—1 if (n,k) € Ay.
Thus and by symmetry,
6 if (I',Ty) € A
Y+ ye/2—1 if ([1,T) e AL, UAZ,
(11) R(I'1,Ty) =4¢27%2 -1 if (T1,0g) € A3 ,uAL
Y HA2/2-1 if (T, To) € Ay, UAR,,
2y -1 if (U1, ) € Ajpye U Ay

Thus, if (1“1,1“2) € B4, then R(Fl,rg) = Rred(Fl,Fg), and if (Fl,rg) €
Bo, then R(I'1,'2) = Rpiue(I'1,T'2). By Corollary 2.2.3, this completes the
proof. O

2.4 Preparatory results

The following two lemmas, due to Kérolyi and Rosta, will be used in the
proof of Proposition 2.3.7 (see Section 2.7).

Lemma 2.4.1 ([11, Lemma 3.1)). Letn >k >4, let n > 5, let k =0, and
let G be a complete red-blue graph on n+k/2—1 vertices. Then G contains
either a monochromatic cycle of length at least n or a blue Cf.

Lemma 2.4.2 ([11, Lemma 3.3]). Letn > k > 3, let k > 4 if 0 =n > 6,
and let G be a complete red-blue graph such that G contains a blue Cp;
moreover, assume that |G| >2n—1 ifn =0 and k = 1. Then G contains
either a red C,, or a blue Cj,.

We shall now prove four lemmas, the first of which will be used in the
proof of Proposition 2.3.6 (see Section 2.6); the other three will be used in
the proof of Proposition 2.3.10 (see Section 2.8). Note that in Lemmas 2.4.3
and 2.4.5, the conditions n > 6 and n > 7, respectively, are necessary.
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Lemma 2.4.3. Let G be a complete red-blue graph and let n > 6. If G
contains a Cy, all of whose chords are red, then the red subgraph Gieq is
pancyclic.

Proof. Let C = z129---x,2x1 be a C), all of whose chords are red. If n =1,
then x1x3 - xpToxy -+ Tp_121 is ared C), and x 23 - TpXoTy -+ * Tp—_3T7 1S
ared C,_1, and if n = 0, then 123 Tp_122TpTy_o - 1421 is a red C),
and 123 Tp_1T2Tp—2Tn—4q - - - X421 is a red Cp,—1. Now, define a sequence
(a;)i>1 such that for all j > 0, asj41 = T5511, a5j42 = T5j43, A5543 = L5545,
a554+4 = T554-2, and a5j+5 = T5j+4- For each k € [S,n — 2], let P(k) be
the path whose vertices are the first k£ elements of the sequence (a;). Then
Puyz1 is a red C, unless k = n — 2 and n = 0 (mod 5), in which case
P(k_g):cn,lxn,gacl is a red Cj. O

Definition 2.4.4. Two 2-chords e; and ey of a cycle C' = z1x9--- xpx1
are called crossing if there exists an ¢ € [n] such that e; = x;zi42 and
es = Tij+1Ti4+3. If such an i does not exist, they are called non-crossing.

Lemma 2.4.5. Let G be a complete red-blue graph and let n > 7. If G
contains a C, all of whose chords are red, except possibly one 2-chord or
two crossing 2-chords, then the red subgraph Greq is pancyclic.

Proof. Let C' = x1x2---zhx1 be a C), all of whose chords are red, except
possibly z;x; 12 and x; 12,43 for some i € [n]. W.lo.g., assume that zxs
and xox4 are either red or blue, and that the remaining chords are red.
If n = 1, then zi1z5230729 -+ - TpToTTaxg X1y« - Tp_121 is a red C,, and
T1X5L3L7LY * * * TpXoLeLg -+ Tp—121 18 a red Cp_1 (note that zg = x1 in case
n =7), and if n = 0, then zx5232729 - - - Tp_1T2TpTp—2 - - - T4 is a red Cp,
and T1X5T3L7L9 - Tpn_1L9Tn_2Tn_4- - 2421 1S a red C,p_1. Now, define a
sequence (a;);>1 such that a1 = x1, as = x4, a3 = xs, x4 = T2, a5 = T5,
ag = I3, and for allj > 1, a5j4+2 = X5542, 5543 = L5544, A554+4 = L5546,
asj+s = Tsj43, and asjye = ¥s5j45. For each k € [3,n — 2], let Py be
the path whose vertices are the first k£ elements of the sequence (a;). Then
Pyyx1 is a red Cy, unless k = n — 2 and n = 1 (mod 5), in which case
Plr—2)Tn—125-371 is a red Ck. ]

Remark. We have recently found the following result by Bondy [2], from
which Lemma 2.4.3, but not Lemma 2.4.5, follows as a (non-immediate)
corollary: Let G be Hamiltonian with n vertices and at least n?/4 edges.
Then G either is pancyclic or equals Ky, /3 /2

Lemma 2.4.6. Let G be a blue almost bipartite graph, let n > 7, and
assume that there is a vertex x € G such that G — x contains a red C,_1.
Furthermore, assume that
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(1) |Gl=n+1,n>8, and G — x contains a blue K4;

(2) |G| =n+1, G contains no blue K4, and G — x contains a blue tower
T which is mazimal in G; or

(3) |G| =n+2, G contains no blue K4, and G — x contains a blue tower
T which is maximal in G and of height at least 3.

Then G contains a red C,.

Remark. The complete red-blue graph on 8 vertices such that its red sub-
graph equals K44 shows that in Case 1, the condition n > 8 is necessary.
This has made the proof of Proposition 2.3.10, Subcase 1a, somewhat more
complicated than that of Subcase 1b.

Proof. Let C = x129---x,—1 be ared Cp_1 in G — z, and let y be the only
vertex or one of the two vertices of G —x — V(C).

Claim 1. If there is a j € [3,n — 4], such that for some i € [n—1], zz; and
xxiq; are red, then G contain a red C,.

Proof. In order to obtain a contradiction, suppose that G does not contain
ared Cy. Since j € [3,n—4], Ti—1, Ti, Tit1, Titj—1, Titj, and ;441 are all
different, and since G contains no red C,, x is blue adjacent to x;_1, T;y1,
Titj—1, and xiqj41. Were x;_1Ti4j_1 OF Tip1Ti4j4+1 red,

Ti1Ti45j—1Ti45—2 " TiTLj4jTi4541 " " Ti—1

or
L1 LG4 +1L454 542 * - LiX X4 Lg45—1  ** Li+1,

respectively, would be a red C,,, whence x;_12;4j—1 and ;112441 are blue.
Were Li—1Li+1 blue, Lit1Li4j+1LLj45—-1T5—1 would be a blue 05, whence
x;_12i41 is red. Were z;2;1 ;1 and x;x;4 ;41 blue,

Tt j—1T5 T4 j4 10541 X L4451
would be a blue Cs, whence ;2,41 or z;7;4 ;41 is red. Thus
TiLitj—1Li4j—2 " Lip1Ti—1Lj—2 * - i TL;

or

TiLitj41 L4542 Ti—1Ti41L542 * * - L5 LTy,

respectively, is a red C,,, contrary to the hypothesis. O
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Thus, from now on, assume that no such j exists.

Case 1. Let K be a blue K4 in G—z. Since z ¢ K, x is blue adjacent to
at most one vertex of K. Thus and since n > 8, x is red adjacent to exactly
two vertices of C'. Thus xy is red, y € K, and x is blue adjacent to some
vertex v € K. Of course, y is blue adjacent to v, but not to some other blue
neighbour z of x, since then zzyuvz would be a blue Cy for some u € K.
In particular, y is red adjacent to two consecutive vertices of C', whence G
contains a red C,.

Case 2. We consider two similar subcases, depending on ht (7).

ht(T") = 1: Since = ¢ T, z is blue adjacent to at most one vertex of T.
Thus x is red adjacent to at least one vertex of C'. Thus, w.l.o.g., among the
vertices of C, only x5 is red adjacent to x, only z9 and x4 are red adjacent
to x, or n = 7 and only x2, x4, and xg are red adjacent to . In the former
case, we obtain a red (), in the same way as in Case 1 (replacing K with T).
In the latter cases, x1x3 or zsxs is red (otherwise G[{z,z1,x3,x5}] would
be a blue Ky or zzs|zizs would be a blue tower of height 2), whence G
contains a red C,.

ht(T) > 2: Since x ¢ T, x is blue adjacent to at most one vertex of T.
Thus «x is red adjacent to at least two vertices of C'. Thus, w.l.o.g., among
the vertices of C, only x5 and x4 are red adjacent to =, or n = 7 and only
To, x4, and xg are red adjacent to x. In the former case, we obtain a red
C), in the same way as in Case 1 (replacing K with T'). In the latter case,
x1x3, T35, or x5x is red (otherwise G[{x, x1,x3, x5}] would be a blue Ky),
whence G contains a red C,,.

Case 3. The proof of Case 2, ht(T") > 2, applies to this case as well. [

Lemma 2.4.7. Let G be a blue almost bipartite graph on n vertices. Then
precisely one of the following statements holds:

(i) G has a Hamiltonian 2-partition;
(ii) Gppue s a tower; and
(iii) n <5 and G contains a blue K.

Proof. 1t is easy to see that at most one of the three statements holds. Thus
we have to prove that at least one of them holds.

If G is blue bipartite with parts V1 and V5, let ;) and Py be red paths
on Vi and on Vs, respectively. Then (P(l), P(2)) is a Hamiltonian 2-partition
of G. Thus, from now on, assume that G is not blue bipartite. We use
induction on n.

Base cases. n < 4. If n <2, then (i) holds, and if n = 3, then either (i)
or (ii) holds. n = 4: If G contains at least two red edges, then (i) holds, and
if G contains exactly one red edge, then (ii) holds. Otherwise (iii) holds.
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Induction step. Assume that the statement holds for n = p, for some
p > 4. We have to show that the statement holds for n = p+ 1. In order to
obtain a contradiction, suppose that this is not the case.

Take x € G. By the induction hypothesis, (1) G — x has a Hamiltonian
2-partition, (2) (G — @)pe is a tower, or (3) p < 5 and G — z contains a
blue K4.

Case 1. Let (P(1), P2)) = (122 Tny, Y1y2 - - - Yn,) be a Hamiltonian
2-partition of G — z. If possible, choose P(;) and Py so that ni,ny > 2.
Were zx1, %n,, TY1, TYnys T1Y1; T1Ynss Tny Y1, OF Tn, Yn, red, G would have
a Hamiltonian 2-partition, whence they are all blue. Since G contains no
blue Cs, 1 = xy, or y1 = yn,; say that y1 = y,, = y.

p = 4: Were x123 blue, G[{z,y, 1, z3}] would be a blue K4, whence zx3
is red. If zxy or yxo is red, then (zix3zomw,y) or (x1z372Y, X), Tespectively,
is a Hamiltonian 2-partition of G, and if they are both blue, then Gyue =
xy|rixexs is a blue tower, contrary to the hypothesis.

p > 5: Were y red adjacent to some x;, (z122- - Tj—1, YTiTit1 - Tn,)
(if © # 2) or (z1x9y,x324 - Tp,) (if © = 2) would be a Hamiltonian 2-
partition of G — x, whence all yx; are blue. Were x red adjacent to all inner
vertices of P(y), (v12222374 - Tpn,,y) would be a Hamiltonian 2-partition
of G, whence xxy is blue for some x; € P(°1). Were x12,, blue, zzoyx12,, T
would be a blue C5, whence x12,, is red. Were xx; red for some x; € P(Ol),
(xxiTip1 - Ty, w122 -+ - xi—1,y) would be a Hamiltonian 2-partition of G,
whence all zz;, i € [ni], are blue. Were z;z; blue for some ¢ and j, then
for some k, xx;x;jyx,x would be a blue Cs, whence all x;x; are red. Thus
Ghlue = TY|T122 - - - Ty, 1S & tower, contrary to the hypothesis.

Case 2. Let (G — 2)pye = urug|viva---vp—2. If both zu; and zus
are blue, then Gpue = uiug|zvivs - - Up—2 is a tower, and if zu; is red for
some i € [2]|, then for some j, (u;xv;vj41 - Vp—2V1V2 - Vj_1,U3—;) is a
Hamiltonian 2-partition of GG, again contrary to the hypothesis.

Case 3. Note that p = 5. Let K = G[{u1,u2,us,us}] be a blue Ky
in G — z, and let y be the vertex of G — z — V(K). Then, w.l.o.g., either
both z and y are RA(uy) or x is RA(uq) while y is RA(ug). In either case,
(u1,ugxrugyuy) is a Hamiltonian 2-partition of G, once again contrary to the
hypothesis. O

2.5 The max(y!',~?) < 4 subcase

Proof of Proposition 2.3.4. 1t is easy to see that
Rred(rb F2) = Rblue(Fh F2) = 5.

Thus and by Corollary 2.2.3, R(I'1,I'2) > 5. By Corollary 1.3.7 and since
R(C35,C3) = R(Cy4,Cy) =6, R(I'1,T'y) <6.

33



If C3 ¢ T'y UT9, then Colouring 2 shows that R(I'1,I'2) > 6, and if
C5 ¢ T'y UT9, then Colouring 3 shows that R(I'1,I'9) > 6. Thus, from now
on, assume that both C5 and C5 € I'y U T's.

C3 € I'1 NT9: We have to show that R(I';,I'2) < 5. Thus, let G be
an arbitrary complete red-blue graph on 5 vertices. In order to obtain a
contradiction, assume G is (I';, I'y)-avoiding. Were some vertex of G incident
with at least three edges of the same colour, G would contain a red Cs or
a blue C5 (see the proof of Proposition 1.1.1), whence each vertex of G is
incident with at most two edges of same colour. Since each vertex is incident
with a total of four edges, each vertex has two red and two blue neighbours.
Thus Greq and Gppye are 2-regular, whence G contains a red Cs and a blue
Cs, contrary to the hypothesis.?

C3 ¢ T'1 NT9: Then Cy € Ty NTy and, w.l.o.g., either both C3 and
Cs5 € I'1 or 3 € I'y while C5 € I'y. In either case, we have to show that
R(T'1,T3) < 5. Thus, let G be an arbitrary complete red-blue graph on 5
vertices. In order to obtain a contradiction, assume G is (I'1,I'2)-avoiding.
Were each vertex of G incident with at most two edges of the same colour, we
would obtain, in the same way as above, a red C'5 and a blue C5, whence some
vertex of GG is incident with at least three edges of the same colour. Thus
and since G contains no red C3, G contains a blue Cs, say C' = z1x9x3%1;
let v1 and vy be the vertices of G — V(C'). Were v; or ve blue adjacent to at
least two vertices of C, G would contain a blue C4, whence both v; and v
are red adjacent to at least two vertices of C. Were v; and v9 red adjacent
to the same two vertices of C, G would contain a red Cy whence, w.l.o.g.,
we have the following figure:

><

v1 v2

Now, if vvo is red, then vivezsvy is a red Cs, and if v1v9 is blue, then
V1212201 18 a blue Cy, contrary to the hypothesis. O

2We have to prove that a 2-regular graph on 5 vertices is a Cs: The vertex v has two
neighbours, say v1 and v2. vz has one neighbour other than v, say vs. Were vs = vy,
either the remaining two vertices would have at most one neighbour each or v, v1, or v
would have more than two neighbours, whence v3 # v1. vs has one neighbour other than
va, say va. Were v4 = v, v would have more than two neighbours, and were v4 = v1, either
the remaining vertex would have no neighbours or v, v1, vz, or v3 would have more than
two neighbours, whence va ¢ {v,v1}. v4, finally, has one neighbour other than vs. This
neighbour must be v1, since otherwise v or v2 would have more than two neighbours.
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Proof of Proposition 2.3.5. W.l.o.g., assume that i = 1.
It is easy to see that R,¢q(I'1,I'2) =5 and

6 if Cg eIy

R I, Ty) =
siue(T'1,T2) {7 otherwise.

Thus and by Corollary 2.2.3,

6 if Cg eIy

7 otherwise.

R(I',T9) > {

We now turn to the upper bounds. By Corollary 1.3.7, R(I'1,T2) <
R(C4,C3) = 7. Thus, from now on, assume that Cg € I's. We have to show
that R(I'1,T'2) < 6. Thus, let G be an arbitrary complete red-blue graph on
6 vertices. In order to obtain a contradiction, assume G is (I'1, I'2)-avoiding.
Since R(C35,C3) = R(Cy,Cy) = 6, G contains a red C3 and a blue Cy, say
C = ryxox3ryxy; let vy and ve be the vertices of G — V(C). Then zyx3 and
xaxy4 are red and, w.l.o.g., either (1) vivazgvy or (2) vazaxgvy is a red Cs.

Case 1. Since (G contains no red Cy, xov71 is blue, since G contains no
blue C3, z3v1 is red, and since G contains no red Cy, x3vo is blue. Now, if
Tovg is red, then xovov1x4x9 is a red Cy, and if xovy is blue, then wovox3xo
is a blue Cs, contrary to the hypothesis.

Case 2. Since GG contains no red Cy, either vixs or vixy is blue. In
either case, vix; and vixs are red (since G contains no blue C3). Thus
C(l) = x1v12321 and C(Q) = x9Uox4x9 are red 3-cycles. Since G contains no
red Cy, at most one of the edges between C(1) and C9) is red, whence G
contains a blue Cg, again contrary to the hypothesis. O

2.6 The C; € I'y UI'; subcase

Proof of Proposition 2.3.6. W.l.o.g., assume that i = 1 and v' = n.

For the lower bound, see Proposition 2.2.2.

R(T'1,T2) < Rpuye(I'1,T2): Let G be an arbitrary complete red-blue
graph on Rpyjye(I'1,T'2) vertices, and assume G is (I'1,I'2)-avoiding. Were
G blue bipartite, G would contain a red subgraph belonging to I'y or a
blue subgraph belonging to I'o, whence G contains an odd blue cycle. Let
Co = ujug - - - uggr1u1 be a shortest odd blue cycle in G; note that k > 2.
Were some chord of Cy blue, G would contain an odd blue cycle shorter
than Cy, whence all chords of Cy are red.

We shall show that G contains a red C,, contradicting the (I'1,T'9)-
avoidance of G. We do so by proving the following, stronger result:

Statement 1. For each subset V C V(G), G[V] either contains a red C)y,
or is blue bipartite.
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How does Statement 1 imply that G contains a red C,? Consider the
case |V| = n; note that n < |V(G)|. If 2k +1 < n, choose V so that G[V]
contains Cp. Then G[V] is not blue bipartite, whence (by Statement 1)
G[V] contains a red Cjy/| = Cp. On the other hand, if 2k + 1 > n, then by
Lemma 2.4.3, G[V(C))], and thus G, contains a red C,,. We now turn to
the proof of Statement 1, which is by induction on |V|:

Base cases. |V| < 2k. Since G[V] C G and 2k + 1 is the length of a
shortest odd blue cycle in G, G[V] contains no odd blue cycle, whence G[V]
is blue bipartite.

Induction step. Assume that the statement holds for each subset V' C
V(G) with |V] < p, for some p € [2k, |V (G)| — 1]. We have to show that for
each subset V' C V(G) with |V| =p+ 1, G[V] either contains a red C}y| or
is blue bipartite. Thus, let V' C V(G) with |V| = p+ 1. If G[V] is not blue
bipartite, then G[V] contains an odd blue cycle. Let C' = x129 - - Tom+171
be a shortest odd blue cycle in G[V]; note that m > k. As for Cy, all chords
of C are red. In particular, the m-chords of C' form a red Co,,11, say C’. If
V(C) =V, then C" is ared Cpy1. If not, then we may construct a red Cpi1
by replacing one or two edges of C” (that is, one or two m-~chords of C') with
one or two red paths, respectively:

Consider the non-empty subgraph H = G[V] — V(C) of G[V]. By the
induction hypothesis, H either contains a red Cp_2,, or is blue bipartite. In
the former case, let P = viva -+ -vp_om be a red Py_a,, in H. In the latter
case, V —V(C) is the disjoint union of two subsets V; and Va2, which we may
assume to be non-empty, such that G[Vi] and G[V3] are red cliques. Then,
let r = [Vi] and let Py = viva -+ v, and Pgy = vp410p12 -+ Up—2m be a red
Py, and a red Py,|, respectively, in H.

Consider first the case in which H contains a red P,_g,,. Since G, and
thus G[V], contains no blue C3, v; is red adjacent to some x;, say x1, and
vp—2m is red adjacent either to x,,11 or to @y, 2, say x,,12. We thus obtain
a red Cpy1 by replacing the edge x1x,,+2 with the red path P.

Consider now the case in which H contains a red Py;| and a red Py
Since G[V] contains no blue Cs, v; is red adjacent to some z;, say x1, v, is
red adjacent either to x,;,+1 or to Ty, SAY T2, and vey1 is red adjacent
either to x5 or to x3.

Vp4102 Ted: Vp_2mTm42 OF Vp_2mTm+3 is red, whence we obtain a red
Cp+1 by replacing the edges x12m42 and x,, 1272 or the edges 1242 and
TaTm+3, respectively, with the red paths Fqy and P(’Q) or with the red paths
Py and F(y), respectively.

Vr4173 Ted: Vp_2,Timg3 OF Vp_2mTmia is red, whence we obtain a red
Cp+1 by replacing the edges x12y,42 and x,,4373 or the edges z12,,42 and
T3Tm+4, respectively, with the red paths Fqy and P(’Q) or with the red paths
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P(1y and P(y), respectively. O

2.7 The C, € I'y UI'; subcase

Proof of Proposition 2.3.7. W.l.o.g., assume that i = 1.
It is easy to see that Rpe(I'1,T'2) = 6 and

6 if Cgecly

7 otherwise.

Rred(FL FQ) = {

Thus and by Corollary 2.2.3,

6 ifCﬁEFl

7 otherwise.

R(T1,T9) > {

We now turn to the upper bounds. By Corollary 1.3.7, R(I'1,T2) <
R(C5,Cy) = 7. Thus, from now on, assume that Cg € I';. We have to show
that R(I';,T'2) < 6. Thus, let G be an arbitrary complete red-blue graph on
6 vertices. In order to obtain a contradiction, assume G is (I'1, I'2)-avoiding.
By Lemma 2.4.1 (with (n,k) = (5,4)), G contains a monochromatic C5, a
monochromatic Cg, or a blue Cy. Since G is (I'1,'y)-avoiding, we have a
blue C5 or a blue Cg. In the former case, Lemma 2.4.2, with (n, k) = (5,4),
yields a red C5 or a blue Cy4, and in the latter case, Lemma 2.4.2, now with
(n,k) = (6,4), yields a red Cg or a blue Cy, contrary to the hypothesis. [

Proof of Proposition 2.3.8. W.l.o.g., assume that i = 1.
Note that (I'1,T'9) € Qlll)lue U nglue C B,. Thus the result follows from
Proposition 2.3.3 and (11). O

2.8 The C5 € I'y UT'y subcase

Proof of Proposition 2.3.9. The two statements (9) and (10) follow directly
from Proposition 2.2.5. Thus and by Corollary 2.2.3,

7 if max(y},92) =6
R(T1,T2) > <8 if max(y},72) =8
9 if max(y},42) > 10.

We now turn to the upper bounds. By Corollary 1.3.7, R(I'1,T2) <
R(Cs5,C5) = 9.

R(T1,T9) < 7 if max(y},72) = 6: Let G be an arbitrary complete
red-blue graph on 7 vertices, and assume G is (I'1,['2)-avoiding. Since
R(Cy4,Cy) = 6, G contains a monochromatic Cy; say that C' = zyxex3rsxy
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is a blue Cy in G, and let v1, va, and v3 be the vertices of G — V(C). Since
G contains no blue Cj5, each v; is red adjacent to two opposite vertices of C.
W.l.o.g., assume that v; and vy are red adjacent to x1 and x3.

Since G contains no red Cj, vs is blue adjacent to two opposite vertices
of the red Cy vizyvex3zvy. Thus, (1) vszy and vsxs are red, in which case
vsv; and vsvy are blue, (2) vsze and vsxy are red, and vsz; and vsxs are
blue, or (3) vsxy and vszy are red, and vzv; and vzve are blue. Note that
Cases 1 and 2 are symmetric. Thus we only have to consider Cases 1 and
3. In either case, note that if v1z9 and vz were blue, then vixox1T4V9v3V1
would be a blue Cg, whence at least one of them is red, say vixs.

Case 1. Were z2v9 red, xov9x1v3230122 Would be a red Cg, whence xov9
is blue. Were z4v3 blue, z4v3vorsxizs Would be a blue Cs, whence x4v3 is
red. Now, if x4v; is red, then zyviziv2z3V324 1S & red Cg, and if z4vq is
blue, then z v v3vexox124 is a blue Cfg, contrary to the hypothesis.

Case 3. Were x4v9 red, x4v9x1v1 20324 Would be a red Cg, whence x4v9
is blue. Now, if zqvs is red, then xiv3xovix3v221 is a red Cg, and if z1v3 is
blue, then zv3vex4x3T927 is a blue Cg, again contrary to the hypothesis.

R(T1,T2) < 8 if max(y},72) < 8: Let G be an arbitrary complete
red-blue graph on 8 vertices, and assume G is (I';,I'2)-avoiding. Since
R(C4,Cy) = 6, G contains a monochromatic Cy; say that C' = xjxowsxg2 is
a blue Cy in G, and let vy, va, v3, and vy be the vertices of G — V (C). Also,
let V' = {v1,v2,v3,v4}. As before, each v; is red adjacent to two opposite
vertices of C. Thus, w.l.o.g., (1) v, ve, vs, and vy are red adjacent to x;
and 3, (2) only v1, vg, and v3 are red adjacent to z1 and z3, while vy is red
adjacent to x2 and x4, or (3) only v1 and ve are red adjacent to z1 and x3,
while only v3 and v4 are red adjacent to x2 and x4.

Case 1. Consider the red Cy v;x1vjx3v;. Since G contains no red Cs,
vgv; and vgv; are blue. This is true for all 4, j, and k, whence each v;v; is
blue. Since G contains no blue Cs, x2, as well as x4, has at most one blue
edge to V. Also, if both z2 and x4 have a blue edge to V, then it must be to
the same vertex v;; w.l.o.g., assume that ¢ = 1. Then xyviz3v222v32; and
T1U123V2L2v3L4v4x1 are a red Cg and a red Cyg, respectively, contrary to the
hypothesis.

Case 2. Note that vqx; or vsxs is blue, say vqrs. Consider the red
C4 viz1vj23v;. Since G contains no red Cs, viv; and viv; are blue. This is
true for all 4, j, and k in [3], whence vjva, v1v3, and vovs are blue. We now
consider two subcases: (a) vyz; red and (b) vszy blue.

Subcase 2a. Since G contains no red Cs, v1v4, v9v4, and v3vy are blue.
Then, since G contains no blue Cjs, neither x9 nor x4 has a blue edge to V.
Thus zivgzoviz3ver and xqv4xovixz3VT4v3T1 are a red Cy and a red Cg,
respectively, contrary to the hypothesis.
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Subcase 2b. Were zox4 blue, xox4x3v421 29 Would be a blue C5, whence
xoxy is red. Were vixo and wvoxy red, vizoxgvexiv; would be a red Cs,
whence at least one of them is blue, say vix2. Were vovy blue, vovsxixovive
would be a blue C5, whence vovy is red. Now, note that if x4v3 is red, then
T4v3L1020424 18 a red Cs, and if x4v3 is blue, then z vzvizoTiT4 IS @ blue
Cs, again contrary to the hypothesis.

Case 3. Consider the red Cy viz1v223v1 = C’. Since G contains no red
(5, v3 and vy are blue adjacent to two opposite vertices of C'. Were v3 or
vy blue adjacent to z; and x3, we would be in a case symmetric to Case 1 or
to Case 2 (with C” instead of C'), whence both v3 and v4 are blue adjacent
to v1 and vo:

[ ] [ ] [ J [ ]
v1 >)‘§§)‘2<’U4
[ ] [ ] [ ] [

Now, vix9 or vizy is blue, say vixe, and vsx; or vzxs is blue, say vsx;.
Thus vixex3rax1v3v1 and vixoxrszxrsx1V3V204v1 are a blue Cy and a blue Cy,
respectively, once again contrary to the hypothesis. O

Proof of Proposition 2.3.10. W.l.o.g., assume that i = 1 and v' = n.

For the lower bound, see Proposition 2.2.2.

R(I'1,T2) < Rppue(I'1,T'2): Let G be an arbitrary complete red-blue
graph on Rpjye(I'1,T'2) vertices, and assume G is (I'1,'9)-avoiding. Were
G blue bipartite, G would contain a red subgraph belonging to I'1 or a blue
subgraph belonging to I'y, whence G contains an odd blue cycle. We shall
consider two cases: (1) G is blue almost bipartite and (2) G is not blue
almost bipartite.

Case 1. We shall consider two subcases: (a) G contains a blue Ky and
(b) G does not contain a blue Ky4. Note that |G| > n + 2.

Subcase la. Let H' C G with |H'| = n+ 1, such that H' contains a
blue Ky, say K = G[{u1,us,us,us}]. Iff n =7, let H = H' + v for some
veG—V(H'),and if n # 7, let H = H'. We shall show that H, and thus
G, contains a red C,.

n = 6: Let vy, ve, and vs be the vertices of H — V(K). Since G, and
thus H, contains no blue Cjs, each v; is blue adjacent to at most one wu;.
Thus, w.l.o.g., v1, ve, and vs are RA(uy), v1 and ve are RA(uy) while vg is
RA(u3), or each v; is RA(u;). In each case, viugvzusvousvy is a red Cs.

n = 7: In order to obtain a contradiction, suppose that H does not
contain a red C7. Take z,y € H — V(K). By the n = 6 case, H — {z,y}
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contains a red Cg, say C' = z122 - - - x6x1; let z be the vertex of H — {x,y} —
V(C). Then, w.lo.g., K = H[{z,72,%4,%6}|, and zzy and xx4 are red.
Thus zx1, zx3, x5, T1T3, and x3x5 are blue. Since H contains no blue Cs,
y is blue adjacent to at most one x; with ¢ = 1 and at most one z; with
i = 0. Thus y is red adjacent to two consecutive vertices of C', which yields
a red C%, contrary to the hypothesis.

n > 8: We use induction on n.

Base case. n = 8. Since R(C3,(C5) =9 and H contains no blue C5, H
contains a red Cs, say C. Take v € H — V(K) — V(C), and let vy, va, vs,
and v4 be the vertices of H — 2z — V(K). Regardless whether K and C have
one vertex or zero vertices in common, H — x — V(K) contains a red edge,
say vovs. Consider K and v1, v9, and vs. By the n = 6 case and w.l.o.g., we
may assume that viusvsugvougvs is a red Cg in H — x. Now, consider the
four cases vqus and vquyg red, vqaug blue, viuy blue and vave red, and viug
and vqve blue. In the last case, vau; is red (otherwise vovququzuive would
be a blue C5), whence vjugvsvouivqugv; is a red C7. In the other cases, it is
even easier to find a red C7 in H — z. Thus and by Case 1 of Lemma 2.4.6,
H contains a red Cs.

Induction step. Assume that the statement holds for n = p, for some
p > 8. We have to show that if n = p + 1, then H contains a red Cp1.

Take z € H — V(K). By the induction hypothesis, H — x contains a red
Cp. Thus and by Case 1 of Lemma 2.4.6, H contains a red Cpy1.

Subcase 1b. Let H' C G with |H'| = n + 1, such that H' contains a
blue Cj5, and thus a maximal blue tower 7. If ht(7") > 3,let H = H' + v
for some v € G — V(H'), and if ht(T") < 2, let H = H'. In either case, let
T = ajag|biby - - - by () be a maximal blue tower in H. Using induction on
n, we shall show that H, and thus G, contains a red C,,.

Base case. n = 6.

ht(T) = 1: Let vy, va, vs, and vg be the vertices of H — V(T'). Then,
w.lo.g., (@) v1, ve, v3, and vy are RA(by1), (B) v1, ve, and vs are RA(by)
while vg is RA(a1), () v1 and ve are RA(by) while vz and vy are RA(aq),
or () v1 and ve are RA(b1), vs is RA(a1), and vs is RA(a2).

(cv): Since H contains neither a blue K4 nor a blue tower of height 2,
H — V(T) contains at least two red edges. Thus, w.l.o.g., either vjvy and
v9v3 or v1vg and vgvy are red. In the former case, vivouzaiviasvy is a red
Cs, and in the latter case, v1v2a1v3v4a2v71 is a red Cy.

(B): If vgay is red, then H may be treated in («). Thus, suppose that
v4aq is blue. Similarly, if v1b; or veby is red, then H may be treated in (J).
Thus, suppose that they are both blue. Then, since H contains no blue Cj,
v1v4 and vevy are red. Thus vivav9aiv3a0v7 18 a red Cs.

(7): If v1by, voby, vsaq, or vyay is red, then H may be treated in ().
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Thus, suppose that they are all blue. Then, since H contains no blue Cj,
v1v4 and vovg are red. Thus vivgasvszveaivy is a red Cg.

(6): Then viajvibivzagv; is a red Cg.

ht(T") = 2: Let vy, ve, and v3 be the vertices of H — V(T'). Then, since
H contains no blue C5, no blue K4, and no blue tower of height 3, each v;
is blue adjacent to at most one vertex of 7. Thus we obtain a red C in the
same way as in Subcase la (think of the vertices of T as vertices of a blue
Ky).

ht(T") = 3: The proof of the ht(7T") = 2 case applies to this case as well,
mutatis mutandis.

ht(T") = 4: Let v1 and vg be the vertices of H —V(T'). Then, w.l.o.g., v1
and vy are RA(aq), v1 and vy are RA(b1), v; is RA(a1) while vy is RA(ag),
v1 is RA(by) while vg is RA(b2), or vy is RA(aq) while vg is RA(b1). In each
case, v1bab1b3vobsvy is a red Cy.

ht(T") = 5: Let v be the vertex of H — V(T'). Then, w.l.o.g., v is either
RA(ay) or RA(by). In either case, vbabibsbsbsv is a red Cs.

ht(T") = 6: Then bibs - - - bgby is a red Cs.

Induction step. Assume that the statement holds for n = p, for some
p > 6. We have to show that if n = p+ 1, then H contains a red Cp41.

If Hyye = T, then biby---by11b1 is a red Cppq. Thus, from now on,
assume that H — V(T') is non-empty. Take v € H —V (T'). By the induction
hypothesis, H — = contains a red Cp,. Thus, if ht(T") < 2, then by Case 2 of
Lemma 2.4.6, H contains a red Cp1, and if ht(7") > 3, then by Case 3 of
Lemma 2.4.6, H contains a red Cp41.

Case 2. G is not blue almost bipartite. Let Cy = ujug - - ugkr1uy
be a shortest odd blue cycle in G longer than C3; note that £ > 3. Were
some j-chord of Cp blue, with j ¢ {2,2k — 1}, G would contain an odd
blue cycle shorter than Cjy but longer than Cs, whence all such j-chords of
Cy are red. Furthermore, were two non-crossing 2-chords (or, equivalently,
(2k —1)-chords) of Cp blue, G again would contain an odd blue cycle shorter
than Cy but longer than C3. Thus all chords of Cy are red, except possibly
one 2-chord or two crossing 2-chords.

We shall show that G contains a red C,, contradicting the (I'j,I'9)-
avoidance of G. We do so by proving the following, stronger result:

Statement 1. For each subset V C V(G), G[V] either contains a red C)y,
or is blue almost bipartite.

How does Statement 1 imply that G contains ared C,,?7 Consider the case
|V| = n; note that n < |[V(G)|. If 2k+1 < n, choose V so that G[V] contains
Cy. Then G[V] is not blue almost bipartite, whence (by Statement 1) G[V]
contains a red Cjy| = C,. On the other hand, if 2k + 1 > n, then by
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Lemma 2.4.5, G[V(C))], and thus G, contains a red C,,. We now turn to
the proof of Statement 1, which is by induction on |V|:

Base cases. |V| < 2k. Since G[V] C G and 2k + 1 is the length of a
shortest odd blue cycle in G longer than C5, G[V] is blue almost bipartite.

Induction step. Assume that the statement holds for each subset V' C
V(G) with |V| < p, for some p € [2k, |V (G)| — 1]. We have to show that for
each subset V' C V(G) with [V| = p+1, G[V] either contains a red C}y| or is
blue almost bipartite. Thus, let V' C V(G) with |[V| =p+ 1. If G[V] is not
blue almost bipartite, then G[V] contains an odd blue cycle longer than Cs.
Let C' = x1x9 - xam4171 be a shortest odd blue cycle in G[V] longer than
Cs; note that m > k. As for Cy, all chords of C' are red, except possibly one
2-chord or two crossing 2-chords. In particular, the m-chords of C' form a
red Copy1, say C'. f V(C) =V, then C’ is a red Cpy1. If not, then we may
construct a red Cp41 by replacing one, two, three, or four edges of C’ (that
is, one, two, three, or four m-chords of C') with one, two, three, or four red
paths, respectively:

Consider the non-empty subgraph H = G[V] — V(C) of G[V]. By the
induction hypothesis, H either contains a red Cp,_2,, or is blue almost bi-
partite. In the former case, H has a Hamiltonian 1-partition, and in the
latter case, it follows from Lemma 2.4.7 that H either has a Hamiltonian
3-partition or is a blue Kj .

Claim 1. If some vertex v € H is blue adjacent to z; and to x;1;, then
jmod (2m+1) € {1,2,2m—1,2m}. In particular, x;x;y; cannot be an edge
of C'.

Proof. Were 3 < jmod (2m+1) < 2m —2, vxjziq1 - - Tiyjv (in case j mod
(2m +1) = 1) or vajzi—1 - xip;v (in case j mod (2m + 1) = 0) would be
an odd blue cycle of length between 5 and 2m — 1. O

Thus, if some vertex v € H has more than two blue neighbours in C,
then they have to be three and of the form xj_1, z, and x4 for some
k € [2m + 1]. Hence, if H = {v}, then there is an edge zsx¢1,, of C’ such
that vxy and vxei,, are both red. We thus obtain a red C,11 by replacing
TpTptm With 2pvxpiy,. Thus, from now on, assume that |H| > 2.

Claim 2. Let v1 # vy belong to H. Then they have at most two common
blue neighbours in C.

Proof. As we just saw, if v1 has more than two blue neighbours in C, then
they have to be three and of the form xy_1, xx, and xgy1 for some k €
[2m + 1]. Thus, v; and vy cannot have more than two common blue neigh-
bours in C, since then vizy_1v22,2K+1v1 would be a blue Cs. O
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Let vy # vy belong to H. If they have two common blue neighbours in
C, then at most four of the 2m + 1 edges of C’ have a vertex which is blue
adjacent to both v1 and vo. Thus and by Claim 1, at least 2m —3 > 3 of the
2m+ 1 edges of C’ are good, that is one of the edge’s vertices is red adjacent
to vy, and the other one is red adjacent to vo. Similarly, if v; and vo have
at most one common blue neighbour in C', then at least 2m — 1 > 5 of the
2m + 1 edges of C’ are good.

Claim 3.

(a) Let K C H be a blue K3 and let its vertices be vy, vy, and vs. If vix;
is blue, then all edges between K — vy and C — {x;, xiy3, i—3} are red.

(b) Let K C H be a blue K4y and let its vertices be vi, va, v3, and vy.
If vix; is blue, then all edges between K — vy and C are red, except
possibly vex;rs or vexi—g for at most one vy € K — vy, if, moreover,
m > 4, then all edges between K — vy and C are red.

Proof. W.l.o.g., assume that vox;y; is blue. Then viz;z;4jv2v3v1 is a blue
Cs if j mod (2m + 1) € {1,2m}, v12;xit1 - - - Ti4;v201 is an odd blue cycle
of length between 5 and 2m — 1 if 0 = j mod (2m + 1) € [2,2m — 4], and
VIZ;Ti—1 - - Ti4jU201 is an odd blue cycle of length between 5 and 2m — 1 if
1 =j mod (2m+1) € [5,2m—1]. This proves part (a). In part (b), also note
that v1x;v9v3v4v1 is a blue Cs if j mod (2m+1) = 0. Thus, if vpz;43 or vez;—3
is blue for some vy € K — vy, then all edges between K — {v1, vy} and C are
red. Finally, if j mod (2m + 1) € {3,2m — 2}, then vy 2;2;412; 122, +3V20301
is a blue C7, which contradicts the hypothesis if m > 4. O

Now, we know that there is an r € [4] such that H has a Hamiltonian
r-partition but not a Hamiltonian (r — 1)-partition, and if r = 4, then H is
a blue K4. We consider two subcases: (a) r < 3 and (b) r = 4.

Subcase 2a. Let (P, ..., Py)) = (01 - 05 ,...,0] -~ v} ) be a Hamil-
tonian r-partition of H. For each i € [r], choose k; € [2m + 1] with k;, # ki,
for all i1 # i, such that all vimj are red, except possibly U’l'xki_l, vixki, and
vizy, 1. By part (a) of Claim 3 and since each vi'v!? is blue (otherwise H
would have a Hamiltonian (r — 1)-partition), this is always possible if r = 3.
Since H contains no blue C5 and viv? is blue, this is also always possible if
r=2.

Now, for each i € [r] such that v} = v

Tk, 420 Tk, +24m, and for each i € [r] such that v} # v

%
ng?

replace T, 42Tk, +24+m With
i
g’

one of the at least three good edges of C’, say xy, ¢, +m, has not (yet) been
replaced, and replace it with Wi”li “ee UZ"% T, +m-

note that at least

Subcase 2b. Let the vertices of H be v, v, vs, and vy. If all edges
between H and C' are red, then we obtain a red C,; by replacing x;x;+m
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with the red path x;v;x;m,, for each i € [4]. Thus, from now on, assume
that some vertex of H, say v1, is blue adjacent to some vertex of C'. As we
have seen, there is a k € [2m + 1] such that all viz; are red, except possibly
V1Tk—1, V1Tk, and v1xg11. In case there is only one x; such that vyx; is blue,
let k =4. Then by part (b) of Claim 3, there is a vertex v, € H — vy, say va,
such that all edges between H — v; and C' are red, except possibly voxi3
or voxy_3 if m = 3.

Now, replace Tri2Tkt24ms Thr24mThil, Tht3+mTh+2, AN Thid1mTri3
With T2V Tk 12 4m, Thy24mV2Thil, Thi34mU3Tht2, aNd Try4qmVaTEy3, TE-
spectively. This concludes the proof of Proposition 2.3.10. O
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