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The étale homotopy type

Magnus Carlson

Abstract

Artin-Mazur associated to every locally noetherian scheme X a certain invariant,
the étale homotopy type. This invariant captures a lot of information, for one thing,
it can be used to compute the sheaf cohomology of X for any locally constant sheaf.
Recently, Harpaz-Schlank constructed a relative étale homotopy type to unify some
classical obstruction theories in diophantine geometry. Later, Barnea-Schlank put
this in a model categorical framework and showed that we can construct many new
invariants closely related to the étale homotopy type of a scheme. In this thesis, we
study the classical Étale Homotopy type of Artin-Mazur and compute it for some
simple cases. This thesis should be seen as a preparation for a future master’s thesis
on Harpaz-Schlank’s construction.

1



” What if the man could see Beauty Itself, pure, unalloyed, stripped of mortality, and
all its pollution, stains, and vanities, unchanging, divine...the man becoming in that
communion, the friend of God, himself immortal...would that be a life to disregard? ”

-Plato
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1 Introduction

This thesis started in the summer of 2012 when Andreas Holmstrom told me about
some very interesting new work that had been done on the étale homotopy type and
suggested that it might make a good thesis subject. I became quickly intrigued and
after the initial hurdles of abstraction had been overcome, I was introduced to a fantas-
tic part of mathematics, blending abstraction with concrete arithmetical applications.
This was originally intended to be a paper that covered both a relative version of the
étale homotopy type and Artin-Mazur’s classical construction, however, I later decided
to split it in two, so that the latter becomes part of my master’s thesis. This paper does
not claim any new results, but simply tries to give the author’s perspective on some
classical constructions in Algebraic Geometry, much to help his own understanding of
the concepts. This thesis can be seen as an introduction to étale homotopy, where I have
included the most relevant material for understanding the relative étale homotopy type.

The first part covers some categorical constructions as well as some background on
simplicial sets. All of the material here is standard, but the reader might want to spend
some time on the part on simplicial sets, since these are crucial for our understanding
of the étale homotopy type. The second chapter covers the constructions leading up to
the étale homotopy type. The part on hypercoverings should be read carefully and the
same can be said on the last chapter, concering the étale homotopy type.
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2 Background

2.1 Pro-Objects

We start out by reviewing some well-known results regarding pro-objects, which will be
neccessary to understand the later parts of the thesis.

Definition 1. A category I is cofiltered when:

1. I is non-empty

2. For any two objects i1, i2 ∈ I ,we can find an object i3 ∈ I such that we have
morphisms i3 → i1, i3 → i2.

3. For any two parallell morphisms f, g : i1 ⇉ i2, there exists an object i3 ∈ I and a
morphism h:i3 → i2 such that

i1
� f
�

g
i2

i3

6

h

-

commutes, i.e f ◦ h = g ◦ h.

An ordered set (I,≤) is codirected exactly when the associated category I is cofiltered.
Dualizing the above definition, we get a notion of a filtered category. We will sometimes
say that a category is cofiltrant / filtrant as another way of saying that it is cofiltered /
filtered.

Definition 2. Let C be a category. We have an associated category, Pro(C), with
objects consisting of functors F : I → C, where I is small and cofiltered. The morphisms
between two objects F : I → C, G : J → C are

HomPro(C)(F,G) = lim
←−
j

(lim
−→
i

Hom(F (i), G(j))).

We call the objects of Pro(C) pro-objects. A morphism between pro-objects F : I → C,
G : J → C is thus given by specifying for each j ∈ J a morphism F (i) → G(j) for
some i, which are compatible with the morphisms in J . We think of pro-objects as
placeholders for projective limits, and with this viewpoint, the reason why we define
morphisms as we do becomes evident. To be more precise, for functors α : I → C,
β : J → C, with I and J cofiltrant and small, we can take the projective limit in the
category Fct(C, Set)opp (which is guaranteed to exist) of kc(α) = HomC(α,−) which is
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a functor I → Fct(C, Set)opp, and similarily with kc(β).

HomFct(C,Set)opp(lim←−
i

kc(α), lim←−
j

kc(β)) = lim
←−
j

HomFct(C,Set)opp(lim−→
i

kc(α(i)), kc(β(j)))

= lim
←−
j

lim
−→
i

HomFct(C,Set)opp(kc(α(i)), kc(β)(j))

= lim
←−
j

lim
−→
i

HomC(α(i), β(j))

by Yoneda and the interaction of colimits with hom-functors.

2.2 Categorical constructions

2.2.1 Kan Extensions

Let J, I and C be categories, and ϕ : J → I be a functor. For a functor F : I → C, we
can then naturally form a functor ϕ∗F : J → C by ϕ∗F (j) = F (ϕ(j)). It is now natural
to ask the converse question - Given a functor G : J → C, is there a way to extend it
to a functor from I to C? The answer is, in some favourable cases yes, and it is done by
Kan Extension.

Definition 3. Let J, I and C be categories and ϕ : J → I, F : J → I be functors. If
the functor taking G ∈ Fct(I, C) to HomFct(J,C)(F,ϕ∗G) is representable, we call its
representative the left Kan extension of F along ϕ, denoted LanϕF . We will then for
every G have an adjunction

HomFct(J,C)(F,ϕ∗G) ∼= HomFct(I,C)(LanϕF,G).

In the same way, if we demand that the functor HomFct(J,C)(ϕ∗G,F ) be representable,
we get the right Kan Extension of F along ϕ, RanϕF . In this case, for G ∈ Fct(I, C)
we then have an adjunction HomFct(J,C)(ϕ∗G,F ) ∼= HomFct(I,C)(G,RanϕF ). A natural
question is to ask, how do we construct Kan Extensions? The following theorem gives
some criteria, but first, we need a definition.

Definition 4. Let J,I be categories and ϕ : J → I a functor. For i ∈ I, we define ϕ ↓ i,
to be the category with objects f : ϕ(j) → i where f ∈ HomI(ϕ(j), i) and morphisms
between f1 : ϕ(j1)→ i, f2 : ϕ(j2)→ i given by h ∈ HomJ(j1, j2) such that f1 = f2ϕ(h).
In the same way, we define the category ϕ ↑ i to have as objects f : i → ϕ(j) where
f ∈ HomI(i, ϕ(j)) and morphisms between f1 : i → ϕ(j1) and f2 : i → ϕ(j2) given by
h ∈ HomJ(j1, j2) such that f2 = ϕ(h)f1.

Theorem 5. (i) Let ϕ : J → I be a functor and β ∈ Fct(J,C). Let us assume that

lim
−→

(ϕ(j)→i)∈ϕ↓i

β(j)

exists for any i ∈ I. Then
Lanϕβ
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exists and
Lanϕβ ∼= lim

−→
(ϕ(j)→i)∈ϕ↓i

β(j).

Thus, if C admits small inductive limits and J is small, the left Kan Extension of any
functor β : J → C exists.
(ii) Let ϕ : J → I be a functor and β ∈ Fct(J,C). Let us assume that

lim
←−

(i→ϕ(j))ϕ↑i

β(j)

exists for any i ∈ I. Then Ranϕβ exists and

Ranϕβ ∼= lim
←−

(i→ϕ(j))↑i

β(j).

Thus, if C admits small projective limits and J is small, the right Kan Extension of any
functor β : J → C exists.

Proof. See [5] p. 52

Mac Lane famously proclaimed that ”All concepts are Kan Extensions” so it seems
fitting that we at least provide two examples. Recall that if F : J → C is a functor,
for N ∈ Ob(C), a cone from N to F is a natural transformation const(N) → F , where
const(N) : J → C is the constant functor. The limit of a functor F can be defined as a
universal cone ψ : const(limF )→ F such that any other cone factors uniquely through
it.

Example 6. (All limits are Kan Extensions) Let C be a categoy F : I → C some functor,
T : I → 1 the unique functor from I to the terminal category 1. Then, suppose that the
right Kan Extension of F along T exists. A functor X : 1 → C is easily identified with
an object in C. We have that since the functor HomFctI,C(T∗, F ) is representable, for
X : 1 → C, we have HomFct(I,C)(T∗X,F ) ∼= HomFct1,C(X,RanTF ). This translates
to that RanTF is the limit of F, since we can identify the left side of the adjunction
as a cone to F. The right hand side then simply says that for each such cone there is
an unique morphism to the cone RanTF , that is, RanTF is the universal cone and as
such, the limit of F. A similar argument works for colimits, assuming that the left Kan
extension of F along T exists.

Example 7. (Induction is a Kan Extension) Let us try out the above formula in a
simple and manageable case. Let G be a finite group considered as a category with one
object, and H a subgroup of G. Let G − V eck be the category of vector spaces over the
field k with a G-representation, and H − V eck the analogous definition for H.We can
identify a representation of G with a functor F : G→ V eck, into the category of vector
spaces. We have a natural inclusion functor i : H → G and the restriction functor Res :
G− V eck → H − V eck is given by, for a functor F : G→ V eck by i∗F , precomposition.
Now, take the left Kan Extension of the representation F : H → V eck along i : H → G.
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I claim that this is the induced representation of F, IndGHF . Applying the above formula,
we have that LanIF (G) ∼= lim

−→i(H)→G
F (H). We see that the category i∗H → G can be

seen as a category consisting of separated components, where two elements g1 : G→ G,
g2 : G→ G lie in the same component iff they lie in the same coset in G/H. Now, this
is easily shown to be equivalent to the discrete category with [G : H] objects. We then
verify that, taking the colimit over this category, LanIF (G) ∼= ⊕g∈G/HF (G)g, one for
each coset .For each g ∈ G and gj a representative of a coset of G/H, there is a h ∈ H
and a coset representative gi such that ggj = gih. Then, for xgj ∈ F (G)gj the action of
g on xj is given by gxj = hxi, were xi ∈ F (G)gi. It is an easy verification to show that
⊕g∈G/HF (g)g with this action is the correct colimit and thus, the left Kan Extension of
F along Res, which we have shown to be isomorphic to the induced representation.

2.2.2 Localization

We briefly introduce the concept of localization. The reader further interested in the
subject should consult Kashiwara-Schapira chap 7. Let us say that we have a category
C and some certain class of morphisms M of C. A localization of C by M should be
seen as an universal way of turning all the morphisms in M to isomorphisms. It is very
useful, for example, to construct an associated homotopy category out of a category of
weak equivalences. If we formulate this with universal properties, we get the following
definition.

Definition 8. A localization of the category C by M is a category CM and a functor
Q : C → CM such that :
(i) For all m ∈M , Q(m) is an isomorphism.
(ii) For any other category A and a functor F : C → A such that for all m ∈M , F (m)
is an isomorphism, there exists a functor FM : CM → A and a natural isomorphism
FM ◦Q ∼= F .
(iii) The natural map (−) ◦Q : Fct(CM , A)→ Fct(C,A) is fully faithful.

Example 9. (Localization of a ring) Let R be a ring. R can be seen as a category with
one object (just as groups) and such that the homset HomR(R,R) is enriched over the
category of abelian groups, that is, the hom-set is an abelian group and the composition
is bilinear. Let S ⊂ R be a multiplicative set and consider the S−1R as a category, with
the natural functor Q : R→ S−1R. This is not the localization of R with (as a category)
by S. It does however satisfy some properties, which we shall investigate further. For
all s ∈ S. Q(s) = s/1 ∈ S−1R has an inverse, and as such is an isomorphism. (ii)
of the above just refers to the universal property of localization of rings. (iii) is not
however always true. Indeed, for rings, consider any multiplicative subset S containing
0. Then localizing in S, S−1R = 0, the trivial ring. Then Hom(0, T ) is empty, but
there is no reason for Hom(R, T ) to be, and we can have for two f, g ∈ Hom(R, T )
a h : R → R such that f = gh, and clearly this h can not in this case come from a
morphism Hom(0, T ) = ∅.

Example 10. (Derived category) Let R be any commutative ring and Ch(R) the cate-
gory of chain complexes in R. Let HoCh(R) be the category with the same objects, but
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where HomHoCh(R)(C•, D•) = HomCh(R)(C•, D•)/ ∼ , where ∼ means that we iden-
tify maps of chain complexes that are chain homotopic.Now, it can be shown that the
quasi-isomorphisms in HomHoCh(R), i,.e the equivalence classes of maps inducing iso-
morphisms on homology groups forms a multiplicative system (see definition below) and
we can thus localize to form the derived category. We only mention this, but won’t delve
deeper into this highly technical subject.

By usual abstract nonsense, if it exists it is unique up to equivalence of categories . A
localization with respect to some class of morphisms is not guaranteed to exist. For
rings we have that localization is only defined for a multiplicative set. We have a similar
construction for categories where the localization exists.

Definition 11. A family M of morphisms is a right multiplicative system if:
(i) All isomorphisms are in M .
(ii) M is closed under composition.
(iii) Given morphism f : X → Y and g : X → Z with g ∈M we can find t and s with
t ∈M such that

X
f - Y

Z

g

? s - W

t

?

commutes.
(iv) Given a morphism m ∈M and parallel morphisms f, g : X ⇉ Y such that f ◦m =
g ◦m, we can find a t : Y → Z in M such that t ◦ f = t ◦ g.

We get a similar notion of a left multiplicative system by reversing the arrows. Now, let
M be a right-multiplicative system. We define M Y , for Y ∈ C as the category which
has objects morphisms s : Y → Y ′ where s ∈M and morphisms are the obvious ones -
namely for two objects s : Y → Y ′, s′ : Y → Y ′′, a morphism is a map g : Y ′ → Y ′′ such
that g ◦ s = s′.. Let us form a new category CM as follows. The objects are the same as
in C, and

HomCM
(X,Y ) = lim

−→
Y→Y ′∈MY

HomC(X,Y
′).

It can easily be shown that the category M Y is filtrant for any Y ∈ C . To help the
reader get a feeling for multiplicative systems, we will give some details on how to prove
the following lemma:

Lemma 12. Assume that M is a right multiplicative system. Then if
m : X → X ′, m ∈M , we have that composition with m gives us an isomorphism

lim
−→

(Y→Y ′)∈MY

HomC(X
′, Y ′) ∼= lim

−→
(Y→Y ′)∈MY

HomC(X,Y
′).
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Proof. Since this is an isomorphism in Set, it suffices to show that the map ◦m is bijective.
We start by showing injectivity. Note that a morphism is given by an equivalence class
(f, t, Y ′) with t ∈M , f : X → Y ′ and t : Y → Y ′. The equivalance relation is given as
follows: Since the category M Y is filtrant, (f, t, Z) f ∈ HomC(X

′, Z), t : Y → Z and
(g, u,W ) g ∈ HomC(X

′,W ), u : Y →W , t, u ∈M are equivalent in the limit if there is
some h : Y → U , h ∈M and maps filling in the dots in

Z

X -

f

-

W
?
� h

Y

�

t

W

6

�

ug

-

and making the whole diagram commutative. With this, notion, injectivity follows from
(iv). Indeed, let f : X ′ → Y ′ and g : X ′ → Y ′′, with s : Y → Y ′, t : Y → Y ′′, s, t ∈M ,
and suppose that composition with m maps them to the same equivalence class. We
can, since the category is filtrant, assume that Y ′ = Y ′′. Then we have a commutative
diagram

X
m - X ′

f -

g
- Y ′

Y.

t

6

We can now by (iv) of the axioms find a morphism t′ : Y ′ → W , t ∈ M such that
t′ ◦ f = t′ ◦ g. So they’re equal in the limit, that is, ◦m is injective. The reader should
have no problem proving surjectivity using the third axiom of a right multiplicative
system.

It can be shown that we can find a composition that is both well-defined and associative
and we get a resulting category, CM . This category is the localization of C with respect
to M . The objects are the same, but Hom sets are given as previously defined. We
have a natural functor Q : C → CM . Now, for each m ∈M , m : X → X ′ Q(m) is an
isomorphism. This follows from that by our previous lemma,

HomCM
(X ′, Y ) ∼= HomCM

(X,Y ),

for any Y, the isomorphism given by composition with m. So, m is an isomorphism
under the Yoneda embedding and since this is fully faithful, m must be an isomorphism.
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Theorem 13. CM and Q is the localization of C with respect to M

Proof. [5] 7.1.16. p. 155

2.3 Model Categories

A model category is a certain kind of category where one can perform homotopy theory.
If we try to get to grip with what is really going on when we work with homotopy in
a category of convenient topological spaces (for example, compactly generated weakly
Hausdorff spaces), we see that we have attached to the objects three classes of mor-
phisms.Firstly, we have the fibrations, which as we recall, are simply maps satisfying
the homotopy lifting property for all spaces. A cofibration f : X → Y is simply a map
satsifying the homotopy extension property for all spaces, which we visualise by the
diagram

X
h - ZI

Y

f

? g -

f̂

-

Z

p0

?

.

Finally, a weak equivalence f : X → Y is a map inducing isomorphisms, f∗ : πn(X) →
πn(Y ) for all n and choice of basepoints. We know from basic homotopy theory that
we can factor each continous map f : X → Y ( [14] p. 113) as f = p ◦ i where p is a
fibration and i is an acyclic cofibration (i.e a cofibration that is a weak equivalence) and
also as f = q ◦ j for q an acyclic fibration and j a cofibration.

Definition 14. A model structure on a category C is a collection of three types of special
morphisms, (W ,F ,C ), weak equivalences, fibrations and cofibrations respectively, that
satisfy the following axioms:
(i) Each class is closed under composition and contains all identity maps.
(ii) The classes of morphisms are closed under retractions. More explicitly, if f : X → Y
is a map in C, and g : Z →W is a map belonging to some class of (W ,F ,C ) such that
we have i, j, r and s such that

Z
i - X

r - Z

W

g

? j - Y

f

? s - W

g

?

commutes and ri = idZ , sj = idW , then g belongs to the same class of morphism as f.
(iii) (2 of 3-property) If f and g are morphisms such that g ◦ f is defined, then, if two of
f ,g, g ◦ f are weak equivalences, so is the third.
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(iv) In a square

A
f - X

B

j

? g -

h

-

E

p

?

where the outer square commutes and j is a cofibration and p a fibration, we can find a
h making all triangles commutative if either j or p is a weak equivalence.
(v) Every morphism f in C can be factored as f = j ◦ q where j is a cofibration and q is
an acyclic fibration and f = i ◦ p where i is an acyclic cofibration and p a fibration.

We call an object X cofibrant if the unique map from the initial object 1 → X is a
cofibration, and dually if the unique map from X to the terminal object is a fibration,
X is fibrant. Note that these notions only make sense when the categories have initial
and terminal objects, and in some modern definitions of a model category, one requires
all finite limits and colimits to exist.

Example 15. The category of chain complexes Ch(R) with increasing differential (graded
by N) of left R-modules, for R a ring is a model category if we give it the following
structure: A map f : C• → D• of chain complexes is a weak equivalence if it induces
isomorphisms in homology (of the complexes). A map f : C• → D• of chain complexes is
a fibration if for all n, fn : Cn → Dn is an epimorphism where the kernel is an injective
module. A map f : C• → D• is a cofibration if for each n > 0, fn : Cn → Dn is a
monomorphism. Let us sketch how to prove that this in fact forms a model category. We
start with noting that (i) is clear, we’ll now start with showing (iii) and then return to
(ii) later.

(iii) We will consider this case by case. First, say that C•, D•, E• are chain complexes
and that f : C• → D• and g : D• → E• are weak equivalences and that additionally, f and
g are either fibrations or cofibrations. Then it is clear that the induced map gf : C• → E•

is a weak equivalence, since it induces isomorphism on the homology groups (follows by
transitivity of the isomorphism relation or that composition of isomorphisms are iso-
morphisms). If now we assume that f and gf are in the same class of morphisms and
additionally that f : C• → D• and gf : C• → E• are weak equivalences, so is g. Indeed,
writing f∗ for the induced map on homology, we have that f∗ being an isomorphism
amounts to it having an inverse, so we have that (gf)∗ ◦ f

−1
∗ = g∗ : D• → E• is an

isomorphism, since the composition of isomorphisms are isomorphisms. A similar case
holds when g and gf lie in the same class. So we have shown (iii).

(ii) Suppose that g : E• → F• is a weak equivalence, and that f : C• → D• is a rectraction

13



of g, so that we have a commutative diagram :

C•

i - E•

r - C•

D•

f

? j - F•

g

? s - D•

f

?

such that ri = 1 and sj = 1. g is supposed to be a weak equivalence, that is, g∗ is an
isomorphism, so that we have an inverse g−1

∗ and it is then routine to check that r∗◦g
−1
∗ ◦

j∗ is an inverse to f∗ and thus, f∗ is an isomorphism and f is a weak equivalence. Now,
let us simply note that for R-modules, a retract of a monomorphism (or an epimorphism)
is a monomorphism (resp. an epimorphism). So it is easy to verify that cofibrations are
closed under retracts, we prove that fibrations also are closed under retracts. We clearly
have a commutative diagram

kerf
k - kerg

w - kerf

C•

? i - E•

? r - C•

?

D•

f

? j - F•

g

? s - D•

f

?

with kerg injective.Suppose now that we have a morphism t : A• → kerf and a monomor-
phism u : A• → B•, we want to show the existence of a v : B• → kerf such that t = vu.
We have maps kt : A• → kerg and since ker g is injective, there is a map l : B• → kerg
such that kt = lu.Now, we have that w ◦ k = idkerf so, w ◦ kt = t = w ◦ lu so that l ◦ u
is the desired map to kerf , thus showing that ker f is an injective in each degree.

(iv) Say that we have a commutative diagram

C•

f - E•

D•

j

? g - F•

p

?

14



where j is a cofibration that is also a weak equivalence and p a fibration. I claim that we
can then find a lift h as axiom (iv) requires us to.Note that p is an injective map in all
degrees, the case for n = 0 follows from looking at the commutative diagram

0 - kerd0C - C0
- C1

0
?

- kerd0D

∼=

?
- D0

p0

?
- D1

p1

?

and applying the five lemma. Now, since ker p is an injective module we have that
E•
∼= kerp ⊕ F• and as such, the differential δn : En → En+1 can via this isomorphism

be taken to the form δn(a, b) = (da + τc, dc) where d is the differential of X and τ is
a map such that dτ + τd = 0. We also have a map q : F → X which splits p. Then,
p(qgi− f) = 0 so by the fact that kerp is injective we have an extension h : D• → kerq
such that hi = qgi− f . Then qg − h is our desired lift which shows (iv) in the case that
j is a weak equivalence and a cofibration.

We will introduce two objects in our category which will play an analogous role to that of
the disk and the sphere in the category of topological spaces. Let the n-disk chain complex
of a R-module M be defined by Dn(M)k =M for n ≥ 0 if k = n or n+1, and 0 otherwise
and the boundary map is the identity between two non-zero copies of M and the zero map
in all other cases. The n-sphere chain complex Sn(M) is 0 except when k = n, where
it is M . Now, it is obvious that HomCh(R)(D

nM,C•) ∼= HomR−mod(M,Cn) where
we take f ∈ HomCh(R)(D

nM,C•) to fn. If Q is an injective R-module, the I claim
that Dn(Q) is an injective chain complex. Indeed, this follows from the isomorphism
HomCh(R)(C•, D

n(M)) ∼= HomR−mod(Cn+1,M). It will be shown that if Q• is an chain
complex consisting of injectives with no homology (i.e acyclic) then we can build up Q•

from certain n-disk chain complexes. In fact:

Lemma 16. Let Q• be an acyclic chain complex such that each Qn is injective. Then
each module of boundaries, Imdn n ≥ 0 is injective and Q•

∼= ⊕k≥0Dk(imdk).

Proof. For k ≥ 1 let Qk be the chain complex agreeing with Q above level k-1 and
Qk

k−1 = imdk−1 and and that is zero in all degrees less than k-1. Then we have that

Qk/Qk+1 ∼= Dk(Imdk−1Q). Now, Q• is acyclic, so that Q0 = Imd0 and we have a short
exact sequence

0 - Q0
- Q1

- imd1 - 0

and since Q0 is injective, Q1 = Q0 ⊕ imd1 and as such, Q• = Q2 ⊕ D0(Imd0) and
D0(Imd0) is injectivein each degree. A direct product is an injective R-module iff a each
direct factor is injective, so that Q2 is an injective module too. We can also check that
it is acyclic as a complex and 0 in degree zero, and as such, we can repeat the argument
but starting in degree one. Continuing in this way gives us Q•

∼= ⊕k≥0Dk(imdk).
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Now we are finally ready to prove the last part of (iv). Suppose we have a commutative
diagram

C•

f - E•

D•

j

? g - F•

p

?

where j is a cofibration and p is a fibration that is also a weak equivalence. Let Q• =
kerp, tje cp̊aöex that in each degree i is kerpi. Then we have a short exact sequence of
complexes

0 - Q•
- E•

- F•
- 0

which gives rise to a long exact sequence of homology and this shows that since E• and
F• have isomorphic homology groups, Q• is an acyclic complex of injectives and we can
write Q• = ⊕k≥0D

n(imdk) and imdk is injective. We then have that E•
∼= Q•⊕F•.Now,

drawing the diagram

C•

f- Q• ⊕ F•

D•

j

? g - F•

p

?

we see that we can find a lift by the property of ⊕ being a coproduct in the category of
chain complexes and Q• being injective (i.e we choose g for mapping to the factor F,
and to Q any lift of f and use the universal property of the coproduct to get a map to the
direct sum). This completes (iv).

(v) We will first show that a map is a cofibration iff it has the left lifting property
with respect to maps Dn(I) → 0 with I injective. Let K• be the kernel of j : C• →
D• and let k ≥ 1 be given and embed Kk in an injective module I. We know that
HomCh(R)(K•, Dk(I)) ∼= HomR−mod(Kk+1, I) . Now, since I is injective, we can find a
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map Ck+1 → I. So we have a commutative diagram

K•

C•

? f - Dk(I)

-

D•

j

? g - 0

p

?

and we can obiously not find an extension D• → Dk(I) if Ck+1 6= 0. So, Ck = 0 for
k > 0, implying that i is a monomorphism in all non-zero degrees. We will now briefly
introduce Quillen’s small object argument since it is so immensly useful for proving the
existence of factorizations.We will not however supply a proof, since this example is long
already as it is.

Definition 17. A weak factorization system in a category C is an ordered pair (L,R)
of morphisms of C such that every morphism f : X → Y in C can be factored as

X
g
−→ U

h
−→ Z where f ∈ L and g ∈ R and such that L consists of precisely those

morphisms which have the left lifting property with respect to maps in R and R consists
of those maps that precisely have the right lifting property with respect to morphisms
in L.

Suppose now that we have a set L of morphisms in C and f : X → Y and we want to
factor f as a composite map where the first is in L and the second is a morphism with
the right lifting property with respect to maps in L. Choose a well-ordering of L and an
order isomorphism with some ordinal ω. For f a morphism in C and q ∈ ω let Sq the
set of commutative squares

Aq
kq - X

Bq

iq

? jq - Y

f

?

where iq ∈ L correspondes to q ∈ ω by our well-ordering. We will now construct a
factorization diagram for f by gluing a copy of Bq to X along Aq for every commutative
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diagram in S. Namely, construct the pushout

∐q∈ω ∐Sq Aq
k = ∐kq- X

∐q ∈ ω ∐ SqBq

∐∐ iq

? l - Z

i

?

Y

f

-

p

-

j = ∐jq

-

where p is induced from the universal property of pushouts. Set i1 = i, p = p1 and
Z = Z1. Repeat this construction inductively to obtain an object Z∞ morphisms i∞ :
X → Z∞ and p∞ : Z∞ → Y such that p = p∞i∞. We will now state our main lemma
for proving the factorization . We will not state the small objects theorem in its full
generality, instead only taking what is neccessary for our purposes.

Definition 18. (Z+-small) Let C be a category with all small colimits and let F : Z+ →
C be a functor and A an object in C. We will then have maps F (n) → lim

−→
F and they

induce for each n a map Hom(A,F (n))→ Hom(A, lim
−→

F ) which combine to give a map
lim
−→

Hom(A,F (n)) → Hom(A, lim
−→

F ) which is canonical. If this map is a bijection for
every functor Z+, we say that A is Z-small.

Trying not to delve further into set theory or notational issues, let us quickly remark
that a set is Z+-small iff it is finite, and for Ch(R), a chain complex C• is Z+ small
iff only Cn is nonzero for finitely many n and for each such n, Cn is finitely presented.
This is not all too hard to prove, but quite messy and we omit it. Now, with this:

Lemma 19. (Quillen’s small object argument) Let C be a category with all small colimits
and let L be some set of morphisms in C, with a given well-ordering ω.For each q ∈ ω,
assume that Aq is Z+ small. Then there exists a weak factorization system C(L),R)
where C(L) is the set of of morphisms which are obtained by transfinite composition of
pushouts of morphisms in L (as in our construction above) and R is the set of morphisms
with the right lifting property with respect to L.

Proof. See, for example [9] p. 297

With this done, it can be shown (see for example, 2.3.13, Hovey) that the category of
chain complexes ( with increasing differential and 0 in negative degrees) has a set of maps
C and CW which we call generating cofibrations and acyclic cofibrations respectively. In
our case, they will have the property to be Z+-small, and further, a map is a fibration iff
it has the right lifting property with respect to CW and an acyclic fibration iff it has the
right lifting property with respect to maps in C. Then for a map f : C• → D• the small
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objects argument gives rise to a factorisation (taking L = C) i∞ : C• → Z, p∞ : Z → D•

such that p∞ is an acyclic fibration. It is easily checked that i∞ is a cofibration and the
similar case for L = CW gives the other factorization. We have thus finally shown that
this is a model category.

We now form the homotopy category of C, H C by localizing the weak equivalences and
get a functor Q : C →H C. We should thus intuitively consider the homotopy category
as the category where all the morphisms that induce homotopy equivalences, turns into
isomorphisms. Further, it can be proved that we can think of the hom set between two
objects as homotopy classes of maps between cofibrant and fibrant objects.

Category theory has taught us that one of the most important aspects when it comes to
studying the structure of a certain kind, we must understand how it interacts with other
structures. We would like to be able to compare different model categorical structures
in some way. The right tool for this turns out to be a certain kind of adjunction, called
a Quillen adjunction. First, we’ll define a homotopy derived functor. Let C and D be
any categories with weak equivalences. We define a functor F : C → D to be a (weakly)
homotopical functor if it takes weak equivalences to weak equivalences. We define any
functor F : C → E to be a homotopical functor if every weak equivalence is mapped onto
an isomorphism in E. If this is the case, we have that the universal property of localiza-
tion gives us a functor F̂ : H C → E such that F̂ ◦ Q ∼= F , by a natural isomorphism
γ. We call the functor F̂ a derived functor. This is however, too much of a restriction,
there are many functors that do not map weak equivalences to isomorphisms. We want
to extend our notion to be able to create more derived functors.

Definition 20. A left derived functor of F : C → D, where C is a model category,
consists of a pair (LF, γ), where LF : H C → D is a functor and γ : LF ◦ Q → F
is a natural transformation universal with the following property: For any pair (K,α)
K : H C → D, α : K ◦Q→ F there is a unique β : K → LF such that γ ◦ (β ◦Q) = α.

We also have a notion of a certain derived functor when both C and D has the structure
of a model category. If F : C → D, then a total left derived functor LF : H C → H D
is a left derived functor of Q′ ◦ F , where Q′ : D →H D is the localization functor. Let
us remember that an object X of a model category is called cofibrant if the unique map
from the initial object to X is a cofibration. Now, let us remember that we call a map
that is both a weak equivalence and a fibration an acyclic fibration, and likewise for
cofibration. In some favourable cases, a total left derived functor exists.

Theorem 21. If F : C → D is a functor such that it maps acyclic cofibrations c : X →
Y , X and Y cofibrant, to weak equivalences, then the total left derived functor (LF, α)
exists.

A similar theorem holds for the total right derived functor, just replace cofibration,
cofibrant with fibrant. Now, we are finally ready to define a Quillen adjunction .
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Definition 22. For C and D model categories, an adjoint pair of functors (L,R), L :
C → D, R : D → C is called a Quillen adjunction if the following equivalent conditions
are satisfied:
(i) L preserves cofibrations and acyclic cofibrations
(ii) R preserves fibrations and acyclic fibrations
(iii) L preserves cofibrations and R fibrations.
(iv) L preserves acyclic cofibrations and R acyclic fibrations.

Example 23. As above, let us consider the case where C = Ch(R), complexes of R-
modules and D = C. We have a model categorical structure on it, and I claim that the
two functors L = K ⊗R − and R = HomR(K,) form a Quillen adjunction if K is a
complex consisting of projective modules. Clearly, L and R are adjoint. We will verify
that (L,R) satisfies (iii). L is an exact functor, so if f : X → Y is a cofibration, we have
that for each n, fn : Xn → Yn is a monomorphism. Now, if f as before is a cofibration
I claim that L(f) : L(X) = K ⊗ X → L(Y ) = K ⊗ Y is a cofibration. We have that
L(f)n : (K⊗X)n = ⊕l+m=nKl⊗Xm → ⊕l+m=nKl⊗Ym = (K⊗Y )n is a monomorphism
by exactness of L. More than that, R preserves degreewise surjections as can easily be
checked. Further, L preserves monomorphisms and as such R must preserve injectives.
This gives that R preserves fibrations.

From this definition it is immediate that the left adjoint preserves weak equivalences
between cofibrant objects and right adjoint preserves weak equivalences between fibrant
objects. Now, for a Quillen adjunction, we see that the left adjoint has a total left derived
functor LL and RR a total right derived functor. They will form an adjoint pair. Now, it
is natural to ask when these two derived functor determine an equivalence of categories.
We first note that since both categories have a model categorical structure, we have
a full subcategory of cofibrant objects, and then we invert the weak equivalences, and
now, L will preserve the weak equivalences between cofibrant objects and R the same
with weak equivalences between fibrant objects. So, it is in some sense natural, given
the factorization of maps in C and D to ask for some relation between weak equivalences
between fibrant and cofibrant objects. This is made precise by the following theorem.

Theorem 24. A Quillen adjunction (L,R) is a Quillen Equivalence if the following
equivalent conditions are satisfied:
(i) For any map f : L(X) → Y with an adjoint map g : X → R(Y ), X cofibrant and Y
fibrant, the first map is a weak equivalence iff the latter is.
(ii) The total left derived functor LL is an equivalence of categories.
(iii) The total right derived functor RR is an equivalence of categories.

Remark. This is to me one of the most remarkable examples in mathematics of where
quite simple objects can capture a lot of inherent structure of seemingly complex spaces.
Namely, it is true that the category of simplicial sets is Quillen equivalent to the category
of compactly generated Hausdorff spaces! We have two natural functors, one taking a
simplicial set to its geometric realization, and another one taking a topological space to
its singular complex.
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2.4 Simplicial objects

Let ∆ be the category consisting of objects [n] = {0, 1, . . . , n}, one for each non-negative
integer n, and morphisms order-preserving maps. We call this category the simplicial
category. The set of morphisms in ∆ are generated by two classes of morphisms, face
maps, δni : [n− 1]→ [n] which is an injection that misses i ∈ [n], and degeneracy maps
ρni : [n + 1] → [n] the surjection that repeats i, that is, ρni (i) = ρni (i + 1) = i. If C
is any category, a simplicial object with values in C is simply a functor ∆opp → C.
We have a category of simplicial objects with values in C, with morphisms being nat-
ural transformations. For a simplicial object X, X(ρni ) = ρn : Xn → Xn+1 and
X(δni ) = dni : Xn−1 → Xn. If C = Set, we call the category of simplicial objects
simply simplicial sets, and the elements of A([n]) ∈ Set for A ∈ ∆opp → Set for n-
simplices. A certain kind of simplicial set will turn out to be very important later,
for our study of simplicial homotopy. Let ∆[n] be the simplicial set, given by,for any
[m] ∈ ∆, ∆[n](m) = Hom∆([m], [n]). We will sometimes denote this by ∆n(m) . We
say that a map of simplicial sets f : A → B, is homotopic to a map g : A → B if there
is a map of simplicial sets F : A × ∆[1] → B, such that F0 = f and F1 = g . We
have a functor | · | from simplicial sets to the category of topological spaces, called the
realization functor. It has a somewhat obtruse definition, but we shall try to elucidate
this by giving an easy example.

Definition 25. Let A : ∆opp → Set. The realization of A is

|A| = lim
−→

∆[n]→A

|∆n|

where each |∆n| the standard n-simplex in euclidean space. The colimit is taken over the
category ∆[n]→ A consisting of maps ∆[n]→ A and morphisms between f : ∆[n]→ A
and g : ∆[m]→ A are maps h : ∆[n]→ ∆[n] such that f = hg.

It is then easy to see that for example, practically by definition, |∆[n]| = |∆n|, the
standard n-simplex.

We will now define the coskeleton of a simplicial object with values in C. Let C∆ be
simplicial objects with values in C. Then we have a k-th truncation functor Trk : C∆ →
C∆n≤k . Here C∆n≤k denotes the full subcategory of C∆, where we simply ”truncate”
each simplicial object at the k-th simplex. If C is a category that has all finite inductive
limits, this functor will have a right adjoint coskk : C∆n≤k → C∆, that is, we have
Hom

C∆≤k (Trk(X), Y ) ∼= HomC∆(X, coskn(Y )). This functor can be constructed as the
(right) Kan Extension of Trk. We have a left adjoint, provided C has all finite projective
limits, constructed as the left Kan Extension of Trk called the skeleton, skk.

Let us spell out what this adjunction means in more concrete terms. It means that
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we have
HomC∆(X, cosknY ) ∼= Hom

C∆≤n (sknX,Y ).

Let us assume that C = Set for now. Then, the n-th skeleton, skn(Y ) of Y ∈ Set∆
≤n

is the simplicial set with no nondegenerate simplices of degree greater than n. By the
Yoneda lemma, the n-simplices of a simplicial set X is given by HomSet∆(∆[n], X). We
will compose the skeleton and coskeleton with the truncation functor, so that these both
are morphisms from simplicial objects in C to simplicial objects in C. So, we see that
since

HomSet∆(∆
n, cosknX) ∼= Hom

Set∆
≤n (Trn∆

n, T rnX) ∼= HomSet∆(skn∆
n, X)

, where the second isomorphism comes from the fact that skntrn∆
n = skn∆

n, the
n-simplices of cosknX are given by the maps sk∆n → X. We should think of the n-
simplicies as follows: Every time we have a map from the skeleton of a n-simplex to X,
there is an unique way to extend it to a map of all of the n-simplex to cosknX. Further,
for m > n, it can be shown that the m-simplices are determined by their boundary.

2.4.1 Kan Fibration

Let us recall that for the category of topological spaces, a map p : E → B is called a
fibration if for any homotopy F : X × I → B, and lift f̂0 : X → E of f0, there exists a
lifted homotopy f̂ : X × I → E with f̂0 = f̂X×0. I.e, we can always find a dashed arrow
in the diagram below:

X
f̂0 - E

X × I
? f -

f̂

-

B.

p

?

It turns out that to get a reasonable definition of homotopy in the category of simplicial
sets we must restrict ourself to a certain kind of simplicial sets, called Kan complexes.
If we do not restrict ourself to this subcategory, we cannot get a proper definition of ho-
motopy groups. However, if we first define homotopy in the category of Kan complexes,
there is a way to extend this to the whole of the category of simplicial sets. We will
return to that soon. First, remember that by the Yoneda lemma, that maps ∆[n]→ X
for X a simplicial set is in bijection with the n-simplices of X. We will write τm,x for the
map representing the m-simplex labelled x.

Definition 26. Let k ∈ [n]. The k-th horn of ∆[n], ∧k[n] is the smallest simplicial
subset (i.e subfunctor ) of ∆[n] containing all di(idn) for each 0 ≤ i ≤ n, except i = k
where idn : ∆[n]→ ∆[n] is the identity map.

Note that di(idn) is indeed a n-1 simplex, since it is a map ∆[n]→ ∆[n− 1].
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Example 27. Let us take the k-th horn of ∆[2]. Imagine that we have labelled the
vertices (0-simplices) 0,1,2 in some order, and that we call 01 the 1-simplex such that
d0(01) = 1 and d1(01) = 0. Then, ∧k[2] can be seen to consist of all 0-simplices and
1-simplices of ∆[2], except the 1-simplex dk(012), 0 ≤ k ≥ 2. The realization of for
example ∧0[2] can be visualized as follows 1

��

2

��
0

i.e as a triangle but with the side 12 removed. This clearly deformation retracts onto a
point.

Definition 28. A map of simplicial sets p : E → B is a Kan Fibration if for any n ≥ 1
and commutative diagram

∧k[n] - E

∆[n]

i

?
-

-

B

p

?

we have a dashed map of simplicial sets making each triangle commutative. We say that
p has the right lifting property with respect to all inclusions ∧k[n] ⊂ ∆[n].

In some sense, every horn has a filler, meaning, that given a map onthe horn, we can
extend it to the whole of ∆[n]. We define a simplicial set S to be a Kan Complex if the
map to the terminal object is a Kan fibration. A Kan Complex should be thought of as
something analogous to a singular chain complex of a topological space.

Example 29. Let X be a topological space, and define a singular n-simplex to be a
continous map f : |∆n| → X (where |∆n| is the realization of the standard n-simplex),
and let Sn be all singular n-simplices, and set S = ∐nSn(X), with the usual face maps
and degeneracy maps. We have that any map defined on | ∧k [n]| extends to a map |∆n|,
since | ∧k [n]| is a deformation retract of |∆n|. Thus, singular chain complexes are Kan
complexes.

For further reference, we introduce the notion of a contractible Kan Object. Recall that
we say that a map p : E → B has the right lifting property with respect to maps in M

if for any commutative diagram

X - E

Y

i

?
- B

p

?

�

where i ∈M there exists a dashed arrow making each triangle commutative.
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Definition 30. We say that a map of simplicial sets p : E → B is an acyclic Kan
Fibration if it has the right lifting property with respect to all boundary inclusions
∂∆[n]→ ∆[n]. If B is the final object, we say that E is an contractible Kan complex.

It can be shown [Goerss-Jardine, I.7.10] that these induce isomorphisms on all simplicial
homotopy groups and also are Kan Fibrations, justifying the terminology. To provide
a good homotopy theory for the category of simplicial sets, Kan constructed a functor
Ex∞. Given any simplicial set X, Ex∞(X) is a Kan complex. It will be a fibrant
replacement functor, that is, a functor that takes an object and replaces it with a fibrant
simplicial set, that is, so that it is Kan. To construct this functor, we need to introduce
some concepts.

Definition 31. Let C be any locally small category. The nerve of C, N C, is a simplicial
set with (N C)0 = Ob(C) and (N C)1 =Mor(C),
(N C)2 = {Pairs of composable morphisms f : C1 → C2, g : C2 → C3},
(N C)k = {strings of length k consisting of composable morphisms}.
The face maps di : (N C)k → (N C)k−1 takes a string C0 → C1 → · · · → Ck and
composes the i:th and i+1th morphism, except for when i = 0 or
i = n, then it simply leaves out that arrow. The degeneracy maps
si : (N C)k → (N C)k+1 adds the identity map to the i-th morphism, and we thus
obtain a string of length k+1.

Example 32. Let ∆n be the standard n-simplex, and let us consider the non-degenerate
simplices. They correspond to injective maps [m] → [n]. We see that each choice of
m+ 1 elements of [n] gives a non-degenerate simplex, and thus the non-degenerate sim-
plices forms a poset P∆n ordered by inclusion. View this poset as a category, and form
the nerve. We call the resulting category, sd∆n = N P∆n.Let us explore the situation
further for n = 2. Then the poset P∆2 can be identified with all non-empty subsets of
{0, 1, 2}. If we form the nerve, and draw it we can see that it resembles the barycentric
subdivision of the triangle:

GG

��

WW

��

__ ??

ww ''

OO

��oo //

In fact, the following is true:

Theorem 33. The realization of sd∆n is homeomorphic to |∆n|, the standard realization
of the n-simplex by a homeomorphism taking {v0, . . . , vk} ∈ sd∆

n to the barycentre of
the vertices.
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Proof. [4] 4.1.

We now define subdivision for a general simplicial set X as

sdX = lim
−→

∆n→X

sd∆n

indexed over the category ∆→ X defined previously in the context of realization. Now
define Ex(X) to be the simplicial set with n-simplices given by the set Hom(sd∆n, X).
We have that Ex is a right adjoint to sd. We can see that it hold for standard simplices
of the form ∆m, since then we have that HomSset(∆

m, X) ∼= X(m). So,

HomSset(sd∆
m, X) ∼= Ex(X)m = HomSset(∆

m, Ex(X))

as claimed, and this is clearly a natural isomorphism. Thus, for general X and Y

HomSset(sdX, Y ) = HomSset( lim
−→

∆n→X

sd∆n, Y ) ∼= lim
←−

∆n→X

HomSset(sd∆
n, Y )

∼= lim
←−

∆n→X

Ex(Y )(n) = lim
←−

∆n→X

HomSset(∆
n, ExY )

= HomSset( lim
−→

∆n→X

∆n, ExY ) = HomSset(X,ExY ).

We have here used the fact that lim
−→∆n→X

∆n ∼= X, and this is standard, since any
presheaf defined on a small category is the colimit of representable functors. That aside,
we have a last vertex map lv : sd∆n → ∆n that is induced by the map of posets
s : P∆n → [n] , s(v0, . . . , vn) = vn. By going to the colimit, we get lv : sdX → X for
any simplicial set, and by adjointness, eX : X → Ex(X). We have a functor F from
the directed category N associated to the poset (N,≤), where F (n) = Exn(X), and
F (n→ n+ 1) = eExn(X) : Ex

n(X)→ Exn+1(X), and

F (m→ n) = eExn−1(X) ◦ eExn−2(X) ◦ · · · ◦ eExm(X).

We define Ex∞(X) as the colimit of this functor, and we get a functor Ex∞ : Sset →
Sset.

Theorem 34. For any simplicial set X, Ex∞(X) is a Kan Complex and it preserves
Kan Fibrations.

Proof. [4] 4.8

Definition 35. Let f, g : X → Y be maps of simplicial sets. We say that f is simplicially
homotopic to g if there is a map F : X ⊗∆[1] → Y such that the two restrictions of F
to X ⊗∆[0] is f resp. g.
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We will now define a model categorical structure on the category of simplicial sets.
The weak equivalences are the one that turns into weak equivalences in the category
of topological spaces when we pass to the geometrical realization. The cofibrations are
monomorphisms f : X → Y such that for each n f : Xn → Yn is injective, and the
fibrations are the Kan Fibrations. Quillen proved that this defines a model category
(Homotopical Algebra, Quillen) where the tricky part is not really showing that we can
turn Sset into a model category, but that the fibrations really are the Kan fibrations.

Definition 36. H S, the extended homotopy category of simplicial sets have objects
simplicial sets, and

HomH S(X,Y ) = [HomSset(Ex
∞X,Ex∞Y )]

where we by [] mean simplicial homotopy classes of maps.

3 Étale homotopy

We will describe and define Artin-Mazur’s Étale Homotopy type of a locally noetherian
scheme. The étale homotopy type contains a fantastic amount of detail, amongst other
things, it contains all the information needed to compute its étale cohomology with cer-
tain restriction on coefficients. If X is a locally noetherian scheme, every scheme Y étale
over X is a finite disjoint union of connected schemes. Associated to each such Y, we
have a set π0(Y ), consisting of the set of connected schemes making up Y. To get the
étale homotopy type we will apply this functor π0 to a certain class of coverings of X,
called hypercoverings and from it derive a pro-object. The topological realization of this
pro-object is the étale homotopy type of X.

3.1 Grothendieck topologies and sites

Grothendieck generalized the notion of a topology to categories. His generalization is as
elegant as it is simple. Instead of focusing on the individual open sets, what is important
is when something is covered or not. Let c be an object of the category C. A subfunctor
S ⊂ HomC(−, c) is a sieve on c. Each sieve on c can also be given as a collection of
morphisms with codomain c such that this collection is closed under precomposing with
morphisms in C. Much of the material here is my attempt to shorten the material in [8]
and we refer the reader to it for more details.

Definition 37. A Grothendieck topology on a category C is a collection of sieves for
each object, called covering sieves, one set of covering sieves for each c ∈ C, and we
denote the covering sieves of c by J(c). We require the covering sieves to satisfy the
following properties:
(i) The maximal sieve HomC(−, c) is a covering sieve of X for any object c..
(ii) If S ∈ J(c) and h : d→ c is a morphism, then the pullback h∗(S) ∈ J(d).
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(iii) Let S ∈ J(c) and R be any sieve on C. If for each h : d→ c in S, h∗(R) ∈ J(d), then
R ∈ J(c).

Example 38. Let us consider a topological space X, and let C = Op(X), the category
of open sets where morphisms are inclusions. Then a sieve on
U ∈ Op(X) is a family of open sets T such that if T ′′ ⊂ T ′ and T ′ ∈ T , then T ′′ ∈ T .
We say that a sieve is a covering sieve of U exactly when the union of all open sets in
the sieve covers U, in the usual topological sense. Let us check that this definition satisfy
the above axioms.
(i) The maximal sieve corresponds to the set of all open subsets in U, since Hom(−, U)
can be identified with all open subsets contained in U. These clearly cover U. So the
maximal sieve is a covering sieve.
(ii) The pullback is simply intersection here, so if T is any family of open sets covering
U, that is, U ⊂ ∪W∈TW and V ⊂ U , then clearly V ⊂ ∪W∈TW ∩ V .
(iii) Let S be a covering sieve of U and R any sieve on U. Let us assume that for all
V ∈ S, V ⊂ ∪W∈RW ∩V . It is then clear that since the union of all open V in S covers
U, and R covers all open in U, R must also cover U.

If a category C has fibered products there is a very convenient way of describing a basis
that generates a Grothendieck topology.

Definition 39. Let f : X ⇒ Z and g : Y → Z be morphisms in a category C. Then,
the fiber product X ×Z Y (if it exists) is an object fitting into a commutative diagram

X ×Z Y
p2 - Y

X

p1

? f - Z

g

?

such that for any other object Q fitting into a commutative diagram

Q
q2 - Y

X

q1

? f - Z

g

?

there is a unique morphism s : Q→ X ×Z Y such that p2 ◦ s = q2 and p1 ◦ s = q1.

Definition 40. A basis for a Grothendieck topology on a category C with fiber products
is a collection of families of morphisms, one family of morphisms for each c ∈ C denoted
K(c) called covering families with the property that all morphisms in K(c) has codomain
c. These collections are required to satisfy the following axioms:
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(i) K(c) contains all isomorphisms, more precisely, if f : c′ → c is any isomorphism, then
{f} ∈ K(c).
(ii) If {fi : ci → c|i ∈ I} ∈ K(c), then for any g : d → c, {ci × d → d} ∈ K(d) where
ci × d→ d is the canonical projection coming from the fiber product.
(iii) If {fi : ci → c|i ∈ I} ∈ K(c), and if for each i we have a covering family {gij : dij →
ci|j ∈ Ii} ∈ K(ci) then the family of composites {fi ◦ gij : dij → c|i ∈ I, j ∈ Ii} ∈ K(c).

We call a category C with a Grothendieck topology J or a basis for a Grothendieck
topology K for a site. Associated to each category C with a Grothendieck topology we
have a category of sheaves on C, Sh(C). It would be fair to say that the use of sheaves
have been central throughout 20th century mathematics and continue to be to this day.

Definition 41. Let C be a small category, J a Grothendieck Topology on C and
P : Cop → Set a presheaf (i.e a contravariant functor from C to Set) on C. Then,
we say that P is a sheaf (of sets) on C if for every X ∈ Ob(C) the diagram

P (X)
i
−→ Π(f :Ui→X)∈SP (Ui) ⇉ Π(f :Ui→X)×(g:V→Ui),f∈S,g∈Mor(C)P (V )

is an equalizer of sets. The product in the second is thus taken over all pairs satisfying
the condition. The first map i takes x ∈ P (X) to (P (f)(x))f ∈ Π(f :Ui→X)∈SP (Ui) . The
upper of the stacked arrows takes xf ∈ Π(f :Ui→X)∈SP (Ui) to

(xfg) ∈ Π(f :Ui→X)×(g:V→Ui),f∈S,g∈Mor(C)P (V ).

This is sensible since xfg ∈ S. The lower of the stacked arrows takes xf to

P (g)(xf ) ∈ Π(f :Ui→X)×(g:V→Ui),f∈S,g∈Mor(C)P (V )

where g varies over all maps g : V → Ui.

We denote by Sh(C) the category of sheaves on C, where morphisms are natural
transformations. We call any category of the form Sh(C) for C any site a Grothendieck
topos.

Example 42. If X and Y are topological spaces, the category of sheaves Sh(X) and
Sh(Y ) are Grothendieck topoi. Further, if we have a continuous map f : X → Y it gives
us a morphism f : Op(X) → Op(Y ) . We have two associated functors f∗ : Sh(X) →
Sh(Y ) and f∗ : Sh(Y ) → Sh(X), called the direct image functor and inverse image
functor. f∗ right adjoint to f∗. Further, f∗ is left exact.

With this example as motivation, it would of course be natural to consider how we should
capture a notion of a morphism of sites. We want to model it on the case for topological
spaces, and we see that it has the property that for any sheaf S ∈ Sh(X), f∗(S), the
presheaf on Y defined by, for V ∈ O(Y ), f∗(S)(V ) = S(f−1(V )) actually is a sheaf. We
call a functor F : C → D between sites a continuous functor if for any S ∈ Sh(D), the
presheaf F (S) on C given by F (S)(c) = S(F (c)) is a sheaf. We thus have that F induces
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a functor F̂ : Sh(D)→ Sh(C) and it will have a left adjoint, F ∗ : Sh(C)→ Sh(D) given
by, for X ∈ Sh(C) the left Kan Extension of X along F̂ . The adjunction is thus

HomSh(C)(X,F∗(Y )) ∼= HomSh(D)(F
∗(X), Y ).

Definition 43. A continuous functor F : C → D is a morphism of sites from D to C if
F ∗ : Sh(C)→ Sh(D) preserves all finite limits.

Definition 44. A geometric morphism f : Sh(C)→ Sh(D) between Grothendieck topoi
is an adjoint par (f∗, f∗) such that f∗ is left exact. We call f∗ the direct image of f and
f∗ the inverse image of f.

Let X denote a fixed scheme. We have the usual Zariski topology on X, but this is for
most cases much too coarse to actually capture subtle geometric properties of the scheme,
since the open sets are so ”large”. The small étale site remedies this by replacing them
with étale open sets, which should be thought of as somewhat akin to local isomorphisms
in the complex analytic case. Grothendieck first used the (small) étale site to define étale
cohomology.

Definition 45. With X as above, the site Xét consists of a category, with objects
schemes with an étale morphism f : U → X and morphisms the obvious one.We have a
basis for a Grothendieck topology, given by families of étale morphisms {fi : Ui → X}
such that ∪iimfi = X.

Given a presheaf F : Cop → Set, it is natural to ask if we can make this into a sheaf in
some natural manner. The answer is yes:

Theorem 46. Let C be a Grothendieck site and F a presheaf on C. Then there is
a sheafication functor Sh : Presh(C) → Sh(C) which is left adjoint to the natural
inclusion functor i : Sh(C)→ Presh(C).

Proof. [8] III.5.

3.2 Etale morphisms

We will here briefly remind the reader on some classes of morphisms from algebraic
geometry of particular importance for our purposes. We will assume that the reader is
familiar with the basic notions of scheme theory.

Definition 47. Let f : X → Y be a morphism of schemes. We say that f is unramified
if it is locally of finite presentation and if for all x in X, the map OY,f(x)/η → OX,x/m,
where m and η are the maximal ideals of OX,x and OY,f(x) respectively, is a finite and
separable field extension.

Definition 48. Let f : X → Y be a morphism of schemes. We say that f is an étale
morphism if it is unramified and flat.

29



Example 49. If K and L are fields, and L is a finite field extension of K, the morphism
f : SpecL→ SpecK is étale iff L is a separable field extension of K.

Example 50. Let us consider one of the easiest examples of an étale morphism. Let
k be a field and f(x) a monic irreducible polynmial and set X = speck[x]/(f(x)). The
canonical ring homomorphism k → k[x]/(f(x)) induces a morphism of schemes X →
speck which is étale iff f is a separable polynomial. Generalizing the argument, it is
easy to see that if f() is a monic polynomial with coefficients in k, the induced maps
X → speck is étale iff its irreducible factors only occur with multiplicity one and all are
separable polynomials.

We will stop here, and refer the reader to [6] for a more detailed treatment.

3.3 Profinite completion of spaces

To later be able to fully understand Artin-Mazur’s comparison theorem for étale homo-
topy, we will have to develop the basics of Profinite homotopy theory. The reader is
referred to [2] for proofs.

Definition 51. ( A class of groups) A class C of groups is a full subcategory of Grp
such that:
(i) The trivial group is in C.
(ii)A If G ∈ C and H ⊂ G is a subgroup, then H ∈ C. Further, if

0 - A - B - C - 0

is an exact sequence of groups, B ∈ C if and only if A,C ∈ C.

Example 52. Consider the C to be the full subcategory consisting of finite groups. Then
clearly the trivial groups in C and any subgroup of a finite group is finite. The condition
on short exact sequences follows from for example the first isomorphism theorem.

Example 53. Let C consist of finite groups with cardinality a power of p for p a prime.
I claim that this is a class of groups. Indeed, the trivial group is in C and by Lagrange’s
theorem, the order of every subgroup H of a group of cardinality a power of p also has
cardinality a power of p. Lastly, if we have a short exact sequence as above, then,
denoting by # cardinality, #C = #B/#A so (ii) clearly holds.

We want a condition so that if G ∈ C and A an abelian G-module such that A ∈ C, then
the cohomology groups Hq(G,A) stay in C. The following ensures this:

Definition 54. Let C be a class of groups. We say that C is a complete class of groups
if for A,B ∈ C the product Πb∈BAb ∈ C where Ab means a copy of A indexed by b.

Example 55. Take finitely generated abelian groups to be C. This is not a complete
class, since Πa∈ZZa is not a finitely generated abelian group. However, it is clear that
the previous two examples are complete.

30



Now, I will briefly explain why if a class of groups is complete, the cohomology groups as
mentioned above stays in the class. This follows instantly from that the cochain groups
Cq given in the group cohomology case are Cq = AG×···×G which will be in C, since we
assumed it to be complete. Now, we have that Zq, the class of cycles is a subgroup of
Cq and further, the class of Bq is also a subgroup of Cq so by (ii) it is in C and from the
obvious short exact sequence

0 - Bq
- Zq

- Hq(G,A) - 0

(ii) gives that Hq(G,A) is in C.

Definition 56. Let {Gi} be an inverse system of groups, that is, a functor F : I → Grp
such that I is small and cofiltered. Set G = lim

←−i∈I
Gi. A group is called a profinite group

if it is isomorphic to a group arising as the inverse limit of a system of groups in this
way.

Example 57. Let us consider the inverse system Gm = Z/pmZ, m ∈ N, and if n > m
homomorphism Gn → Gm given by the canonical quotient map.Taking the inverse limit
we obtain the p-adic integers.

Now, let C be a class of groups and G a profinite group. Consider now the category
consisting of maps G → H where H ∈ C and H varies through C, and morphisms are
commutative triangles.We can by (ii) check that the opposite category is cofiltering and
thus, we can take the inverse limit. We call this object Ĝ the profinite completion of G
in C. This gives us a pro-object in C-groups with a canonical map G→ Ĝ universal with
respect to maps from G into pro-C-groups.

Example 58. Let G be any group and C the class of finite groups. The above category
will then consist of maps G→ H, where H is a finite group. It can easily be seen that for
computing the inverse limit in the opposite category, it is enough to consider the maps
where ϕ : G → H are surjective. This means that G/kerϕ ∼= H, and conversly, for
every normal subgroup N such that G/N has finite index, we obtain a map. This gives
us that that the profinite completion of G in the class of finite groups is the inverse limit
of G/N , where N runs through all normal subgroups of finite index in G and the maps
between are the canonical ones.

Artin-Mazur constructs an analogue of this for CW-complexes, but we can equivalently
use it for realizations of simplicial sets. Namely, let C be a class of groups and we call a
simplicial set X pointed if there is a choice of basepoint in X, and a morphism between
simplicial sets is pointed if it sends the distinguished basepoints to the distinguished
basepoint. We have an obvious category of pointed simplicial sets, and we can restrict
it to a full subcategory consisting of simplicial sets X such that the homotopy groups
of the realizations of X is in C. Call this category C − H•. They then show that if
X is a pro-simplicial pointed set, meaning its an inverse limit of an inverse system of
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simplicial pointed sets, then there is an object X̂ ∈ Pro-C − H• with a map X → X̂
which is universal with respect to maps from X into objects of Pro-C −H• .We call this
pro-simplicial set the C-completion of X. The construction is messy and we refer the
reader to Artin-Mazur, 3.4.Intuitively we get X̂ by ignoring all facts about X except
those concerning maps into objects of C −H•.

Obviously, we have a notion of homotopy groups for the X̂, the C-completion of X. Let
us assume that C is a complete class, now and X = {Xi} a pro-simplicial set. We have

a map X → X̂ and this induces a map ˆπn(X)→ πn(X̂) for each n, where we by ˆπn(X)
mean the C completion of the inverse system of groups πn(X) = {πn(Xi)} .If n = 1 then

it can be shown (see Artin-Mazur) that π1(X̂) ∼= ˆπ1(X). More generally, they prove the
following

Theorem 59. Let X be a pro-simplicial space and suppose that πq(X) = 0 for 1 ≤ q <

n.Then ˆπn(X) ∼= πn(X̂) .

We will use this material in the section on étale homotopy, namely, it will play a cru-
cial part in understanding Artin-Mazur’s comparison theorem. The moral behind why
profinite completions are important is that when analyzing the homotopy type, the infor-
mation we are looking for can be quite hard to obtain. Going to the profinite completion
may sometimes make this information more accessible.

3.4 Hypercoverings

Let C be a site with all finite products and coproducts, and fiber products, assume
further that all representable presheaves are actually sheaves under the Grothendieck
topology of C. This is the case for many different topologies, for example, the Zariski
topology and étale topology. It can be shown that each category can be given a finest
topology such that all representable presheaves are sheaves. We want to define the notion
of a pointed site. A point of a site C is simply a morphism of sites Set → C. We then
say that a pointed site is a site C with a choice of a fixed morphism of sites Set→ C .

Definition 60. Let C be a (pointed) site. A hypercovering of C is a simplicial object
K with values in C such that
(i) If e is the terminal object of C, then the map K0 → e is a covering.
(ii] For every n ≥ 0, the canonical morphism Kn+1 → (CosknK)n+1 is a covering.

We say that K covers an object X if K is a hypercovering of the category C/X which
has as objects morphisms in C with codomain X and morphisms between objects of
C/X are compatible maps. A morphism of sites clearly preserves hypercoverings. The
definition of a hypercovering might at first seem rather obtruse, but in some sense we
could see it as a generalization of a Cech complex in the following sense. For an open
cover U = {Ui} of a topological space X the Cech complex first takes as 0-simplicies all
open sets in U, and 1-simplicies all non-empty intersections Ui ∩Uj , and 2-simplicies all
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non-empty triple intersections and so on. We want to believe if that we chose a nice
enough open covering of a topological space X, then the cohomology of the Cech complex
should be the same as that of the original space. However, in many cases, say Cech étale
cohomology, doesn’t agree with the usual étale cohomology of a scheme. To remedy this
we have hypercoverings. Let U be a hypercovering of X. Then:
(i) U has 0-simplicies given by the open sets forming an open cover of X, as before. So
U0 is an open cover of X.
(ii) U1 is an open covering of the double intersections of open sets in U0.
(ii) U2 is an open covering of the non-empty triple intersections of open sets in U1 .
(iii) U3 is an open covering of the non-empty quadruple intersections of the opens in U2,
etc.
So we allow for a greater degree of freedom, and it is a theorem of Verdier [1] (2, 7,
Appendix), that the étale cohomology of the hypercovering is the same as that of the
original scheme.

Example 61. Let C = Set considered as a site with coverings as surjective families of
maps. A hypercovering of {p} ∈ Set, a terminal object of Set, is is a simplicial set K such
that K0 = {fi : ki → p} covers the terminal object, i.e it’s non-empty. The requirement
that Kn+1 → (cosknK.)n+1 is a covering is equivalent to the fact that for each map
g ∈ HomSset(skn∆

n+1,K) we have that there is at least one f ∈ HomSset(∆
n+1,K)

such that the image of it under the canonical map skn∆
n+1 → ∆n+1 is g. This since

the condition that Kn+1 → (CosknK.)n+1 is a covering (i.e surjective), gives, from the
adjunction properties that the map

Hom(∆[n+ 1],K) ∼= Kn+1 → Hom(sk∆[n+ 1],K) ∼= (cosknK)n+1

is surjective. This translates to the fact that every map

sk∆[n+ 1] = ∂∆[n+ 1]→ K

there is at least one map ∆[n+1]→ K inducing it. This shows that K is an acyclic Kan
complex, since by what we just have said K has the right lifting property with respect to
the boundary inclusions.

We have an associated category of hypercoverings, with objects hypercoverings and
morphisms between them. Let X now be a locally noetherian scheme, then Ét(X) is
locally connected. We have a functor π : Ét(X) → Set which associates the set of
connected components to an object of Ét(X). For each hypercovering U of X we have
an object π(U) ∈ Sset. We call the category of étale hypercoverings of X for HR(XÈt).
If we applied the functor π to all hypercoverings of X, we would like to view them
as a pro-objects, analogous to gluing them together. However, the category of étale
hypercoverings of X is not cofiltering, a major problem to be overcome. Artin-Mazur
overcomes this by passing to the homotopy category of étale hypercoverings, HC(XÈt).

Theorem 62. Let X be a locally noetherian scheme. Then the category HC(X
Èt
) is

cofiltering.
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Proof. Let U → X and V → X be hypercoverings. We form the hypercover U×XV → X
which is for n, U×XVn → X The fact that this is an étale hypercovering follows from that
the property of being surjective, étale are stable under base change and composition. It
is easy to see that this hypercovering dominates both U and V. Further, it is clearly non-
empty. So we are only left to show that if f, g : U ⇉ V are morphisms of hypercoverings
of X, there is a hypercovering W of X such there exists v :W → U such that

U
f -

g
- V

W

6
�

v

commutes up to simplicial homotopy, that is there is a homotopy between f ◦v and g ◦v.
To achieve this, we will need some auxillary lemmas.

Lemma 63. Let C be any site with fibre products, X ∈ Ob(C). For simplicial objects
K,L,M with values in C, let us assume that:
(i) K is a hypercovering of X
(ii) M0 → L0 is a covering
(iii) For all n ≥ 0, the arrow γ in the diagram

Mn+1

��

//

γ

**

(cosknsknM)n+1

��

Ln+1 ×(cosknsknL)n+1
(cosknsknM)n+1

tt
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Ln+1
// (cosknsknL)n+1

is a covering.
Then the fiber product K ×L M is a hypercovering of X.

Proof. [13] 20.4.1

Lemma 64. Let C be a site with fiber products, X an object of C, and L a simplicial
object with values in C. Let n ≥ 0 and consider the commutative diagram

Hom(∆[1], L)n+1
//

��

(cosknsknHom(∆[1], L))n+1

g

��
(L× L)n+1

f // (cosknskn(L× L))n+1

(65)

coming from the morphisms ei : ∆
0 → ∆1, i = 0, 1. Then the fiber product of f and g

is equal to Hom(U,L)0 where U ⊂ ∆[1]×∆[n+ 1] is the smallest simplicial subset such
that both ∆[n+ 1]∐∆[n+ 1] and ∆[1]× ∂∆[n+ 1] map into it.
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Proof. [13] 20.6.1

With these two technical lemmas we can finally prove the last part. Consider the diagram

U ×V×V Hom(∆1, V ) - Hom(∆1, V )

U

v

? f, g - V × V.
?

The horisontal morphism U ×V×V Hom(∆1, V ) → Hom(∆1, V ) is equivalent to a mor-
phism (U×V×V Hom(∆1, V ))(∆1)→ V ,which gives a simplicial homotopy between f ◦h
and g ◦ h, so we are done if we can show that U ×X×X Hom(∆1, X) is a hypercovering.
We use the lemma 4.11 for this.
1) is satisfied (U is by hypothesis a hypercovering of X) .
2) is true since Hom(∆[1], V )0 = V1 and (d10, d

1
0) : L1 → L0 × L0 is a covering, since L

is one (remember the condition on coskeleton). Finally, for 3) we use lemma 4.12, this
gives that γ in the first lemma is the morphism Hom(∆[1]×∆[n+1], V )0 → Hom(U,L)0
with U as in the 4.12 . But this is a covering (see Stacks 5.2).

As we have seen, to show that the homotopy category of hypercoverings is cofiltered
is not by any means easy. We will later see another way to prove that the category is
cofiltering.

Definition 66. We say that a category C is distributive if:
(i) C has finite fiber products.
(ii) C has an initial object.
(iii) For every family of objects Xα such that ∐Xα exists and any family of morphisms
Xα → Y and for any X → Y , the canonical map ∐Xα ×Y X → X ×Y (∐Xα) induced
by the universal properties is an isomorphism.

Definition 67. Let C be a distributive category. We say that an object X ∈ C is
connected if it is not the initial object and has no non-trivial coproduct decomposition,
i.e if X = X1 ∐X2 implies that Xi = ∅ for some i. We say that a distributive category
is locally connected if every object can be decomposed into a coproduct of connected
objects.

Definition 68. Let C be a locally connected category. The Verdier functor Π : C → Set
takes an object X ∈ C to the set of connected components of X, and maps between
objects into maps between the connected components in the obvious way.

3.5 The étale homotopy type

Definition 69. Let X be a locally Noetherian scheme. The étale homotopy type of X,
Ét(X) is a pro-object in the homotopy category of simplicial sets, defined by Ét(X) =
ΠHR(Xét) = {π0(U)}U∈HR(X).
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Taking the geometrical realisation of the étale homotopy type, we can define homol-
ogy groups and homotopy groups. This has the nice application that for any abelian
group A, if we form the locally constant sheaf A and consider cohomology, Hq(A(K)) =
Hq(π(K), A) for any hypercovering K. Combining this with that we have a canonical iso-
morphism for any pointed site betweenHq(C,A) and lim

−→K
Hq(A(K)) = lim

−→K
Hq(π(K.), A)

(Verdier’s hypercovering theorem) we can achieve some surprising results. The latter is
isomorphic as a pro-object to ΠX, thus we see that we can compute any cohomology
with locally constant coefficients through the geometrical realization of this homotopy
type! How lovely this homotopy type though may seem, it is lacking in many regards.
First and foremost, it is hard to find any suitable model categorical structure in this
construction, thus not permitting us to use a variety of powerful tools. Also, the étale
homotopy type is constructed in an ad-hoc fashion, and can be hard to compute.

Example 70. Let C = G − set be the site of left G-sets, coverings surjective maps.
We have a morphism of sites Set → G − set given by the forgetful functor. There is a
terminal hypercovering K, Kn = G×n timesG. So in this case, ΠC ∼= π(K). Remember
that an object X of a category (with coproducts ) is connected if it has no non-trivial
decomposition as a coproduct and it is not the initial object. Every G-set decomposes (by
standard group theory) as a coproduct of transitive G-sets which is the quotient of G by
some subgroup. Following these ideas we see that π(K) is isomorphic to the orbit space
of K under the obvious action . This is exactly how Eilenberg-Maclane spaces K(G, 1)
are most commonly constructed [Milnor, Construction of Universal Bundles II] . We
will in brief explain how to construct K(G, 1), and how to see that it really is K(G, 1).
Remember that a space X is K(G, 1) if its only non-zero homotopy group is π1(X) =
G. Now, if we consider the simplicial set EG such that EGn = G × Gn times × G,
with face and degeneracy maps di(g1, . . . gn+1) = (g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1) and
si(g1, . . . , gn+1) = (g1, . . . , gi−1, e, gi, . . . , gn+1) for 1 ≤ i ≤ n . There is an action of G
on EG, taking (g1, . . . , gn) to (gg1, . . . , ggn) for g ∈ G, and it is easy to see that this
action is free, and further, EG is contractible (note that it is isomorphic to cosk0(G)
which we showed to be contractible and Kan).Let BG = EG/G be the orbit space, with
π1(BG) = G and since EG→ BG is a fibration with fiber G with the discrete topology,
there is a long exact sequence of homotopy groups which shows that πi(BG) = 0 for
i > 1.

The étale homotopy type allows us to define étale homotopy groups. It is easy to see
that the construction of the étale homotopy type of a locally noetherian scheme has
an analogous definition for a locally noetherian scheme with a choice of a geometric
point x ∈ X, so that (XÈt, x) becomes a pointed site. We have a category of pointed
hypercoverings and the associated homotopy category is cofiltering, so we can form the
pointed étale homotopy type for X, we call it (ΠX,x). Then, with a geometric point,
we can define a pro-group, by πn((ΠX,x)) = {πn(π0(U)}U∈HR(X,x).

Example 71. Take as above C to be the site of left G-sets and the étale homotopy type,
which we showed to be isomorophic to K(G, 1). So here π1(C) = π1(K(G, 1)) = G and
πm(C) = 0 for m ≥ 2.
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Example 72. Let k be a field and let G be the absolute galois group of k. We know
that the étale site of k is equivalent to the category of left G-sets, and so our above
computation gives that Étk ∼= K(G, 1), so that π1(K(G, 1)) = G and πm(K(G, 1)) = 0
for m > 1.

This étale homotopy type is in general, very hard to compute. However, there are some
theorems that in some cases make the object tractable for computation. We need to
introduce more terminology for this however.

Definition 73. Let X be a connected and locally connected topological space with a
choice of a basepoint x ∈ X.Let Cord be the site with objects coproducts of open sets in
X, with the following Grothendieck topology : A covers B iff B ⊂ A as open sets.

Definition 74. We see that this is a locally connected category, meaning that we can
apply ΠX and we get by this, homotopy pro-groups for X (actually, for the category
Cord), we call πq(Cord) simply π̆q(X). The homotopy pro-groups of Cord will have a close
connection with the étale homotopy type of X, if X is a scheme of finite type over the
complex numbers, as we will see in a few paragraphs.

Let S•X denote the simplicial set such that SqX consists of singular q-simplices, i.e
continuous maps ∆q → X (where ∆q is the standard q-simplex). Let X be a topological
space. We say that X is paracompact if every open cover {Uα} has a refinement {Vβ} of
open sets such that this refinement satisfies the following: For every point x ∈ X there
is a neighborhood W of x such that W only has finitely many non-empty intersections
with the open sets in {Vβ}.

Example 75. Any compact space is paracompact, obviously, since a finite refinement
{Vβ} only have finitely many open sets.

Example 76. Let X be any infinite set and let us define a topology called the particular
point topology. Choose some x ∈ X We say that U ⊂ X is open iff either U = ∅ or
x ∈ U . I claim that this is not paracompact. Indeed, let {Uα} be the open cover {x, p},
p ∈ X. Now, this open set has no open refinement except itself, and p lies in every open
set of the covering. Thus, it is not paracompact.

Theorem 77. Let X be a connected pointed topological space,and assume that every
open subset of X is paracompact and that X is locally contractible, meaning that every
point contains arbitrarly small neighborhood that are contractible. Assume further that
U• is a hypercovering of the site Cord as previously mentioned such that for every q ∈
N, the connected components of Uq are contractible. Then, the simplicial set π(U•) is
canonically homotopic to S•X.With this, it follows that ΠX ∼= S•X and that πq(X) ∼=
π̆(X).

It is proven in [7] that if X is a connected, pointed scheme of finite type over SpecC, it is
triangulable. This implies that the conditions of our above theorem are satisfied and as
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such, letting Cord be as above where the open sets of X are in the analytical topology [for
definition, see [12]], ΠCord = S•X as pro-objects in the homotopy category of pointed
simplicial sets. This is not a statement about the étale homotopy type of X, but of the
object we get by appling the connected components functor to the site Cord.

Proof. This is a highly technical proof, involving properties of bismplicial sets which is
out of scope for this thesis. The reader is referred to [2], theorem 12.1.

Definition 78. Let X be a locally Noetherian scheme. We say that X is geometrically
unibranch if for every x ∈ X, the integral closure of the stalk OX,x is again local.

Theorem 79. Let X be a noetherian, connected, geometrically connected and pointed
scheme. The étale homotopy type Ét(X) is then a profinite-object, in the sense that
Ét(X) ∈ Pro-C −H• where C is the complete class of finite groups as in 2.3 .

With these preliminaries, Artin-Mazur helps us compute the étale homotopy type for
schemes of finite type over C which are geometrically unibranch. Namely, we have the
following theorem:

Theorem 80. Let X be a connected,geometrically unibranch, pointed scheme of finite
type over C. Let C be the category consisting of coproducts of open sets in X with the
analytical topology, with a Grothendieck Topology such that ∐Ui covers ∐Vi iff ∐Vi ⊂
∐Ui. Set Xcl = ΠC. Then the étale homotopy type of X is isomorphic to the profinite
completion of Xcl.

Now, we have that Xcl = ΠC is isomorphic to S•X, and as such, π̂n(X) ∼= πn(XÉt)
where the left hand side is the profinite completion of πn(X), where we view X with the
analytical topology.

Remark. In a letter to Faltings Grothendieck mentions an idea of anabelian geome-
try, which has gained much interest the last decade. Without going into definitions
too much, Grothendieck asks how much information regarding a variety X that can be
recovered from its étale fundamental group π(X,x) for various choices of x.It is shown
in [11] i showed that for certain cases such as hyperbolic curves over number fields, the
isomorphism class of X can be recovered from its étale fundamental group. Grothendieck
formulated a certain famous section conjecture in anabelian geometry which is still un-
solved to this day. However, there is the natural extension of Grothendieck’s ideas of
anabelian geometry, which asks:
To what extent is the isomorphism type of a scheme / variety determined
by the étale fundamental group together with all the higher étale homotopy
groups?
It seems as if this should, from a topological viewpoint, capture a larger class of schemes
than we get from simply considering the étale fundamental group. It should only be pos-
sible to determine the isomorphism class of the scheme X if the higher étale homotopy
groups vanishes. I hope that I will be able to give the reader more details on anabelian
geometry, the section conjecture and étale homotopy in a later paper.
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Example 81. So for example, take X = P 1
C
projective space over the complex numbers.

Then we have that π1(P
1
C
) is trivial, and as such, the profinite completion is also trivial,

for any choise of basepoint. This implies that π1(P
1
C,Ét

) is trivial.

Example 82. Let us consider X = SpecFp a finite field. Then it is true that the

absolute Galois group of X is Ẑ, so that ÉtFp
∼= K(Ẑ, 1) .This suggests some very nice

ideas. First of all, note that we have that π1(ÉtFp) ∼= Ẑ and the fundamental groups
vanishes for higher homotopy groups. The circle S1 has just the same property, but with
Z instead of Ẑ i.e it is K(Z, 1). We might consider SpecFp as an arithmetical analogue
of the topological circle. With this, we get a further analogy between prime ideals in the
number ring SpecOK and knots on a 3-manifold. Namely, note that a prime ideal in
q ∈ OK we have a natural map OK/q = SpecFp → SpecOK and I claim that we can view
SpecOK as an arithmetical analogue of a 3-manifold. This since the étale cohomological
dimension is 3 ( [10]) up to 2-torsion, and satisfies an arithmetic type Poincaré duality
theorem [3].
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