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Abstract

In this paper we study two classical control theory topics: the S-procedure and the
Kalman-Yakubovich-Popov Lemma. Using Fenchel duality one can show that the S-procedure
is lossless for a class of quadratic functions. We apply this result to derive a convex dual
problem for certain optimization problems. Fenchel duality is also used to prove an extended
version of the Kalman-Yakubovich-Popov lemma.
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1 Introduction

The S-procedure is a method of confirming that a hard-to-access inequality holds by showing that
another, stronger result is true. The losslessness of the S-procedure refers to the equivalence of
this “inequality” and the “stronger result”. This equivalence lies behind Lagrangian duality, but
it also has various applications in control theory. We shall demonstrate how the S-procedure can
be used to derive a convex dual problem for a non-convex optimization problem.

The Kalman-Yakubovich-Popov (KYP) lemma has its origins in the stability analysis of non-
linear control systems. There are various different formulations of the lemma, and not all of
them are equivalent. The KYP-lemma is a more general version of the positive real lemma, and
it is closely related to the bounded real lemma.

Generally speaking, the lemma states that the following assertions are equivalent:

(1) The frequency condition holds

(2) There exists a solution to the Lur’e equation

(3) There exists a solution to the corresponding LMI

In this paper we use a relatively uncommon optimization method to establish our results: Fenchel
duality. Although Fenchel duality has many similarities to the more popular Lagrangian duality
– in fact, they can be shown to be equivalent – it in some cases leads to more approachable and
even more general results. The main focus of this paper is on S. V. Gusev’s article The Fenchel
duality, S-procedure, and the Yakubovich-Kalman Lemma [1], in which the author uses Fenchel
duality to find conditions under which the S-procedure is lossless and to prove an extended
version of the Kalman-Yakubovich-Popov lemma.

Chapters 2 and 3 concern convex optimization. We go through the basic definitions and state
and prove both the Lagrangian and Fenchel’s duality theorem. In Chapter 4 we introduce the
S-procedure, and Chapter 5 is dedicated to the Kalman-Yakubovich-Popov lemma.

1.1 Notation

Scalars and scalar-valued functions are denoted by small letters: x ∈ C, f : X → R. Bold small
letters are used for column vectors and vector-valued functions: y = (y1, y2, . . . , yn)T ∈ Rn,
g = (g1, g2, . . . , gm)T : X → Rm. Matrices are denoted by capital letters: A ∈ Rn×n, B ∈ Ck×m.
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2 Convex Optimization

2.1 Basic Definitions

This section works as a reminder of basic definitions in the field of convex optimization.

Definition 2.1 (Convex set). A set C ⊆ Rn is called convex if for all x1, x2 ∈ C and λ ∈ [0, 1]
the following holds:

λx1 + (1− λ)x2 ∈ C

In other words a set C is convex if the line segment joining two arbitrary points x1 and x2

in C is entirely contained in the set. This is illustrated in Figure 1.

Definition 2.2 (Convex and concave function). A function f : C → R is convex if the following
inequality holds for all x1,x2 ∈ C and λ ∈ [0, 1]:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

If the above inequality is strict, the function is called strictly convex. A function g is called
(strictly) concave if −g is (strictly) convex.

Figure 2 gives an illustration of Definition 2.2. It is worth noting that the only functions
that are both convex and concave are the affine functions. It is also good to remember that a
function cannot be convex if its domain C is not convex (naturally, the opposite is not true; the
convexity of C does not guarantee the convexity of f).

Definition 2.3 (Epigraph). The epigraph of a function f is a subset of Rn+1 defined by:

epi f = {(x, y) ∈ Rn+1 | x ∈ C, y ∈ R, y ≥ f(x)}

Similarly, the hypograph of f is given by

hyp f = {(x, y) ∈ Rn+1 | x ∈ C, y ∈ R, y ≤ f(x)}

(a) (b)

Figure 1: The set (a) is convex; regardless of how we pick x1 and x2 the line
segment joining them lies in (a). As seen above, this is not true for the set (b).

2



2.1 Basic Definitions

(a) Convex (b) Concave

(c) Neither convex nor concave (d) Both convex and concave

Figure 2: The function f in (a) is convex: all points that lie on the line segment
joining a and b lie above the graph of the function. Similarly, the function g in (b)
is concave since the line segment always lies below the graph. h in (c) is neither
convex nor concave, whereas the affine function in (d) is both.

In R2 and R3 the epigraph can be characterized as all points that lie above the graph of the
function. Similarly, the hypograph consists of all points that lie below the function. One way to
define a convex function f is to require that the line segment joining the images of two arbitrary
points x1 and x2 in C lies entirely in the epigraph of the function. Notice that in some literature
the hypograph of a concave function is called the epigraph.

The next proposition establishes an important connection between the epigraph and convex-
ity. It is so fundamental that it is sometimes used as the definition of a convex function.

Proposition 2.4. A function f is convex if and only if its epigraph is convex. Similarly, f is
concave if and only if its hypograph is convex.

In order to be able to apply our theory more generally, we shall need to distinguish between
different kinds of interiors.

Definition 2.5 (Interior and relative interior). Let C ⊆ Rn. The interior (int) of C is given by
all points that are surrounded by a sphere completely contained in C. The relative interior (ri)
consists of all points that lie in the interior of C with respect to the smallest subspace containing
the set C.

We shall illustrate the difference between the regular and the relative interior with an exmple.

Example 2.6. Let C be the unit disk in R2, that is C = {(x, y) ∈ R2 | x2 + y2 ≤ 1}. Its interior
points are the points (x, y) ∈ R2 that satisfy the strict inequality x2 + y2 < 1. The smallest
subspace is containing C is R2 itself. Hence riC is the same as intC.
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2.2 Convex Optimization

Consider now the unit disk in R3: D = {(x, y, z) ∈ R3 | x2 + y2 ≤ 1 and z = 0}. This set is
lies on the xy-plane. It has no interior points in R3. The smallest subspace containing D is R2.
Hence the relative interior consists of all points (x, y, z) that satisfy x2 + y2 < 1 and z = 0. This
can be considered the same as intC. ♦

Lastly, by a cone we shall mean a cone with vertex at 0 as given in the next definition. Gen-
erally, a cone can have an arbitrary point as its vertex, but in order to simplify our calculations
in the later chapters we shall restrict our attention to this special case.

Definition 2.7 (Cone). A set C is called a cone if x ∈ C implies λx ∈ C for all λ > 0 and
x ∈ C. A cone that is convex is called a convex cone.

2.2 Convex Optimization

Convexity is a very useful concept in optimization. There are many reasons for this, the most
important of which being the fact that a local optimum under certain convexity assumptions
becomes a global optimum. Optimization problems are usually expressed in the standard form:

Minimize f(x)

subject to gi(x) ≤ 0 i = 1, 2, . . . ,m

hj(x) = 0 j = 1, 2, . . . , l

x ∈ C

(2.1)

where f , gi and hj are real-valued functions defined (at least) on a subset C of Rn.
f , the function we wish to minimize, is called the objective function, gi, i = 1, 2, . . . ,m are

called the inequality constraints, hj , j = 1, 2, . . . , l the equality constraints and the set restricted
by the constraints, i.e.

S = {x ∈ C | gi(x) ≤ 0, i = 1, 2, . . . ,m, hj(x) = 0, j = 1, 2, . . . , l}

is called the feasible region. A point that lies in the set S is called a feasible point and an
optimization problem that can be solved is called feasible.

(2.1) is called convex if the objective function f and the gi’s are convex, hj ’s are affine and
C is convex.

In a way convex optimization problems are the simplest after linear programs. Various
different methods have been developed to solve convex problems. However, merely assuming
that the functions involved are convex or affine is not always enough. Some regularity condition
is usually pressed on the set of constraints. One very common such is given in the following
definition.

Definition 2.8 (Slater’s condition). Consider the optimization problem given by (2.1). Slater’s
condition is said to hold if there exists x̄ ∈ riC such that gi(x̄) < 0 for i = 1, 2, . . . ,m and
hj(x̄) = 0, j = 1, 2, . . . ,m.

Remark. Constraints satisfying Slater’s conditions are sometimes referred to as “regular con-
straints”. ♦

Remark. Due to the vast amount of different applications in which Slater’s condition appears
there are many different versions of the above definition. For instance, a problem may only
have inequality constraints and no equality constraints. Or the inequality constraints may be
expressed in the form g(x) ≥ 0 in which case the regularity condition becomes g(x̄) > 0. We
shall use the term Slater’s condition even when referring to conditions not strictly speaking
equivalent to the above definition. ♦
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2.3 The Separating Hyperplane Theorem

2.3 The Separating Hyperplane Theorem

Definition 2.9 (Hyperplane). A hyperplane is a set determined by an affine function as follows:

H = {x ∈ Rn | 〈x,p〉 = α}

where p ∈ Rn/{0} and α ∈ R.

In R2 a hyperplane is a line, in R3 a plane (hence the word hyperplane). In general, a
hyperplane in Rn has dimension n − 1. What characterizes a hyperplane is that it divides the
space into two separate subspaces.

Suppose C1 and C2 are sets in Rn. A hyperplane H, as given in Definition 2.9, is said to
separate C1 and C2 if 〈x1,p〉 ≥ α for all x1 ∈ C1 and 〈x2,p〉 ≤ α for all x2 ∈ C2. This leads to
the inequalities

sup
x2∈C2

〈x2,p〉 ≤ inf
x1∈C1

〈x1,p〉 (2.2)

inf
x2∈C2

〈x2,p〉 ≤ sup
x1∈C1

〈x1,p〉 (2.3)

It can be shown that the above conditions are fulfilled if and only if C1 and C2 can be separated.
If both C1 and C2 are contained in the hyperplane H, this separation is called improper,

otherwise it is called proper. We make this distinction because otherwise we would be talking
about “separation” even when the sets involved have inner points in common. If the separation
is proper, then the inequality (2.3) must be strict. It is very straightforward to prove that the
opposite implication also holds, and hence we omit the proof of the following proposition.

Proposition 2.10. [[2], Theorem 11.1] Two nonempty sets C1 and C2 in Rn can be separated
properly if and only if there exists a nonzero vector p ∈ Rn such that

(i) supx2∈C2
〈x2,p〉 ≤ infx1∈C1 〈x1,p〉

(ii) infx2∈C2
〈x2,p〉 < supx1∈C1

〈x1,p〉

What is special for disjoint convex sets is that they can always be separated by a hyperplane.
This is not true in general, as Figure 3 illustrates.

Another important property of convex sets is that the distance to a point outside of the set
can always be minimized to a unique point in the set, as the following theorem states.

Proposition 2.11. [[3], 2.4.1 Theorem] Let C be a nonempty closed convex set in Rn, and let
ȳ ∈ Rn be a point outside of C. Then there exists a unique point x̄ ∈ C with minimum distance
to ȳ. Furthermore, x̄ is the minimizing point if and only if (ȳ − x̄)T (x− x̄) ≤ 0 for all x ∈ C.

We omit the proof. This result does not hold for non-convex sets: although the distance itself
is always uniquely determined, the point where the minimal distance is attained is not always
unique. See Figure 4 for illustration. We can now prove that a closed convex set and a point can
be separated by a hyperplane.

Proposition 2.12. [[3], 2.4.4 Theorem] Let C be a nonempty closed convex set in Rn, and let
ȳ ∈ Rn be a point outside C. Then there exists a hyperplane that separates C and ȳ.

Proof. We have to show that there exists a nonzero vector p ∈ Rn and a scalar α ∈ R such that
〈ȳ,p〉 ≥ α and 〈x,p〉 ≤ α for all x ∈ C. This shall establish that the hyperplane {y ∈ Rn |
〈y,p〉 = α} separates the point and the set.
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2.3 The Separating Hyperplane Theorem

(a) (b)

Figure 3: (a) The convex sets A and B can be separated. (b) No hyperplane
separates C and D.

By Proposition 2.11 there exists a unique minimizing point x̄ ∈ C such that

(ȳ − x̄)T (x− x̄) ≤ 0

for all x ∈ C. The result follows by setting p = ȳ − x̄ 6= 0 and α = x̄T (ȳ − x̄) = 〈p, x̄〉. �

If the point in question lies on the border of the set, it is more natural to use the word
“support” than “separate”. Hence the following proposition.

Proposition 2.13. [[3], 2.4.7 Theorem] Let C be a nonempty convex set in Rn, and let ȳ ∈ Rn
be a point on the border of C. Then there exists a hyperplane that supports C at ȳ. In other
words, there exists p ∈ Rn such that pT (x− ȳ) ≤ 0 for every x ∈ clC.

This result follows quite easily from Proposition 2.12. Note that although we say that the
hyperplane supports C at ȳ, it technically speaking separates C and ȳ and hence this situation
comes under Proposition 2.10. We are now ready to present the Separating Hyperplane Theorem.

Theorem 2.14 (Separating Hyperplane Theorem). [[2], Theorem 11.3] Let C1 and C2 be nonempty
convex subsets of Rn. The sets C1 and C2 can be separated properly if and only if riC1∩riC2 = ∅.

(a) (b)

Figure 4: (a) The smallest distance between C and ȳ is attained only at x̄. (b)
The smallest distance to the set D is attained both at x̄1 and at x̄2.
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2.4 Lagrangian duality

Proof. Let C1 and C2 be nonempty convex sets such that riC1 ∩ riC2 = ∅, and consider the set
C = C1 − C2 = {x1 − x2 | x1 ∈ C1, x2 ∈ C2}. It is easily seen that C is convex and that

riC = riC1 − riC2 (2.4)

from which it follows that 0 6∈ riC by the assumption riC1 ∩ riC2 = ∅. If 0 6∈ clC, then
by Proposition 2.12 the point 0 and clC can be separated by a hyperplane. If 0 ∈ clC there
exists a hyperplane that supports clC at 0. Hence 0 and C can be separated properly and by
Proposition 2.10 there exists a vector p ∈ Rn such that

0 ≤ inf
x∈C
〈x,p〉 = inf

x1∈C1

〈x1,p〉 − sup
x2∈C2

〈x2,p〉 (2.5)

0 < sup
x∈C
〈x,p〉 = sup

x1∈C1

〈x1,p〉 − inf
x2∈C2

〈x2,p〉 (2.6)

Applying Proposition 2.10 on the above inequalities gives us the desired result: the sets C1 and
C2 can be separated properly.

Proving the opposite implication is straightforward: if C1 and C2 can be separated properly,
then the inequalities (2.5) and (2.6) hold and it follows that 0 6∈ C. By (2.4), we then get
riC1 ∩ riC2 = ∅. The proof is now complete. �

2.4 Lagrangian duality

Although we in this paper mainly use Fenchel duality we also state and prove a much more
common duality theory, namely Lagrangian duality. Or more precisely, we prove a weaker version
of the Lagrangian duality theorem. Denote g = (g1, g2, . . . , gm) and h = (h1, h2, . . . , hl).

Theorem 2.15 (Lagrangian duality theorem). Let f : Rn → R and gi : Rn → R, i = 1, 2, . . . ,m
be convex functions, let hj : Rn → R, j = 1, 2, . . . , l be affine, and let C be a convex subset of Rn.
Suppose that Slater’s condition holds (see Definition 2.8). Then the following equality holds:

inf
g(x)≤0
h(x)=0
x∈C

f(x) = sup
(p,q)∈Rm+l

p≥0

inf
x∈C
{f(x) + pTg(x) + qTh(x)}

We shall prove the above theorem without the equality constraints. Before we proceed, let
us note that the following always holds true:

inf
g(x)≤0
h(x)=0
x∈C

f(x) ≥ sup
(p,q)∈Rm+l

p≥0

inf
x∈C
{f(x) + pTg(x) + qTh(x)} (2.7)

This relation is called weak duality.
Consider the following assertions:

(I) φ(x) ≥ 0 for all x ∈ C such that gi(x) ≤ 0, i = 1, . . . , n.

(II) There exists pi ≥ 0, i = 1, . . . ,m such that for all x ∈ C we have

φ(x) +

m∑
k=1

pigi(x) ≥ 0

7



2.4 Lagrangian duality

We shall now attempt to construct conditions under which these statements are equivalent. The
discussion here is a combination of the proof of Lemma 6.2.3 in [3] and [[4], page 391-392].

It is easily seen that the assertion (II) implies (I). To prove the converse, suppose that (I)
holds. Denote

Ω(x) =


φ(x)
g1(x)
g2(x)

...
gm(x)

 (2.8)

and consider the following set:

D = {(a, b) ∈ Rm+1 | a < 0, b ≤ 0}

It follows from the assumption (I) that the sets Ω(C) and D are disjoint. Let us claim that a
hyperplane separates these sets. Then by Proposition 2.10 there exists a nonzero vector (u,v) ∈
Rm+1 such that

inf
(φ(x),g(x))∈Ω(C)

(uφ(x) + vTg(x)) ≥ sup
(a,b)∈D

(ua+ vT b)

Since a and b in D can be made arbitrarily small, this only makes sense when (u,v) ≥ 0. Hence
we have sup(a,b)∈D(ua+ vT b) = 0 and the following inequality holds for each x ∈ C:

uφ(x) + vTg(x) ≥ 0 (2.9)

Now, (2.9) translates to assertion (II) whenever u > 0. The result follows by setting p = v/u.
So the case u = 0 must be impossible. Suppose, to get a contradiction, that u = 0. Now, if

Slater’s condition holds then there exists an x̄ ∈ ri(C) such that g(x̄) < 0. From (2.9) we get

vTg(x̄) ≥ 0

Since v ≥ 0 and g(x̄) < 0 this is only possible when v = 0. But this contradicts the choice of
(u,v). Hence u > 0 under Slater’s condition.

So, in order for (I) and (II) to be equivalent we need to consider whether the sets Ω(C) and
D can be separated and if we can choose u to be nonzero. When the set Ω(C) is convex the

(a) Ω(C) is convex. (b) Ω(C) is not convex.

Figure 5: We wish to separate D and Ω(C) by a hyperplane. A sufficient condition
is the convexity of Ω(C).
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2.4 Lagrangian duality

Figure 6: If Ω(C) takes values from the negative a-axis then the only separating
hyperplane is the a-axis itself. If Slater’s condition holds this is not possible: a
convex set that contains points from the negative a-axis and the second quadrant
must intersect with D. If Ω(C) is not convex it may contain points from the nega-
tive a-axis and from the second quadrant. However, this means that a hyperplane
cannot separate Ω(C) from D.

existence of the separating hyperplane is self-evident (see Theorem 2.14). In the case when Ω(C)
is not convex, this is not guaranteed as is illustrated in Figure 5. Notice though that Ω(C) does
not have to be convex for a separating hyperplane to exist.

Now suppose that the only separating hyperplane is such that u = 0. As illustrated in Figure
6 this means that there exists an x̄ such that f(x̄) < 0 and g(x̄) = 0. To ensure that this
unfortunate situation does not occur it is sufficient to suppose that there exists ȳ such that
g(ȳ) < 0; that way a hyperplane cannot separate Ω(C) and D which is a contradiction. Observe
again that Slater’s condition is not a necessary condition.

The convexity of Ω(C) is trivial in the case when all the functions and sets involved are
convex. Hence the next lemma.

Lemma 2.16. [[3], Lemma 6.2.3] Let φ : Rn → R and gi : Rn → R, i = 1, 2, . . . ,m be convex
functions, and let C be a convex subset of Rn. If Slater’s condition is fulfilled, then (I) and (II)
are equivalent.

Using the above lemma, we can prove Lagrangian duality theorem.

Proof of Theorem 2.15 without equality constraints. Denote

α = inf
g(x)≤0
x∈C

f(x)

By Slater’s condition the problem is feasible and hence α <∞. If α = −∞, the theorem follows
from weak duality (2.7). Hence we can assume α to be finite. We shall now find a vector p such
that infx∈C{f(x) + pTg(x)} ≥ α; this shall establish equality in (2.7). Let

φ(x) = f(x)− α

and consider the following statement:

φ(x) ≥ 0 for all x ∈ C such that gi(x) ≤ 0, i = 1, . . . , n.

9



2.4 Lagrangian duality

By the choice of α, this is trivially true. Also, the function φ is convex. It follows from Lemma
2.16 that there exists p ≥ 0 such that

φ(x) + pTg(x) ≥ 0

for all x ∈ C. Going back to f , we get

f(x) + pTg(x) ≥ α

Taking the infimum gives us the desired expression. The proof is now complete. �

Notice that in the above proof we only use the convexity of f and g to show that the assertions
(I) and (II) are equivalent. It should therefore not come as a surprise that Lagrangian duality
can be applied to certain non-convex optimization problems.

Theorem 2.17. [[5], Theorem 3.1] Let X = R or X = C, f : Xn → R and g : Xn → Rm.
Let φ(x) = f(x) − α, where α is any real scalar. Suppose that the assertions (I) and (II) are
equivalent regardless of how we pick α. Then the following duality result holds:

inf
g(x)≤0
x∈Xn

f(x) = sup
p≥0

inf
x∈Xn

{f(x) + pTg(x)} (2.10)

where the supremum is attained. Conversely, if the relation (2.10) holds and the supremum is
attained, then (I) and (II) are equivalent regardless of how we pick α.

The implications of the above theorem shall be discussed in more detail in Chapter 4.
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3 Conjugate Functions and Duality

Duality is not really a method of solving an optimization problem. Instead its main purpose is
to convert the original problem (the primal problem) to another, hopefully more approachable
optimization problem (the dual). It often happens that the dual does not have any constraints, or
the constraints are significantly simpler than those of the primal problem. Solving unconstrained
optimization problems is a lot easier; it often suffices to differentiate the objective function.
Another application which we shall see later on is using duality to prove other results. Statements
of the form “the following systems are equivalent” are especially approachable. Also, it is fairly
common to come across a new problem that is easier to solve numerically.

3.1 Modifications and Generalizations

So far, and generally in optimization, we have used real-valued functions defined on a subset of
Rn. In Fenchel duality this leads to unnecessarily cumbersome notation. Luckily, there is an easy
way to come around this restriction. In a regular optimization problem one wishes to minimize
a function f : C → R, where C is a subset of Rn. If we redefine f as

f0(x) =

{
f(x) if x ∈ C
+∞ if x 6∈ C

, x ∈ Rn

then we get an extended real-valued function defined on the entire Rn. We use the notation
R = R ∪ {±∞} to denote the extended real line. Naturally, f0 has the same minimum as f .
Another important observation is that a function defined in this fashion is convex if and only if
the original function is convex. This can be seen by considering the inequality a convex function
must by definition fulfill:

f0(λx1 + (1− λ)x2) ≤ λf0(x1) + (1− λ)f0(x2)

If x1 6∈ C or x2 6∈ C, then the right-hand side equals infinity and since there is nothing greater
than +∞, the inequality must hold everywhere.

The extension is useful for convex functions, but it does not give desired results if f is concave.
The inequality

f0(λx1 + (1− λ)x2) ≥ λf0(x1) + (1− λ)f0(x2)

immediately leads to problems: we would require the left-hand side to be +∞, which does not
have to be true. The problem can be solved by replacing +∞ with −∞. Hence a concave
function is extended to the entire real space by setting f0(x) = −∞ for x 6∈ C.

The notation f0 was only introduced to make the definition rigorous and shall not be used
to distinguish between real-valued and extended real-valued functions.

Now that the domain is Rn, it is natural to give a name to the original domain.
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3.1 Modifications and Generalizations

(a) (b)

Figure 7: Consider a convex function f which at a point makes a jump to +∞.
Whether or not f is closed depends on how it behaves at the point of discontinuity.
The function in (a) is closed whereas the one in (b) is not.

Definition 3.1 (Effective domain). The effective domain of a convex function f : Rn → R is
given by

dom f = {x ∈ Rn | f(x) < +∞}

The effective domain of a concave function g : Rn → R is defined as the effective domain of −g,
that is

dom g = {x ∈ Rn | g(x) > −∞}

Notice that if f never takes the value −∞, then the effective domain is the largest domain
where the function is real-valued. The same goes for −g. Hence the next definition.

Definition 3.2 (Proper function). A convex function f is called proper if it satisfies the following
two conditions:

(i) The effective domain of f is nonempty

(ii) f(x) > −∞ for all x ∈ Rn

Similarly, a concave function g is proper if it fulfills the following conditions:

(i) The effective domain of g is nonempty

(ii) g(x) < +∞ for all x ∈ Rn

A function that is not proper is called improper.

The functions we have derived are discontinuous at the borders of their effective domains.
This is not really a problem but these functions must behave in a certain way at points of
discontinuity, as will be seen in the next section.

Definition 3.3 (Closed function). A convex function f is called closed if its epigraph is a closed
set. A concave function g is closed if its hypograph is closed.

The above definition is illustrated in Figure 7. A little loosely we may say that a closed
function attains the “lesser value”. In some publications the term lower semi-continuous is used
instead of closed – although the definitions look quite different it can be shown that these two
concepts are equivalent for proper convex functions.

Notice that all continuous functions are closed.
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3.2 Conjugate functions

Figure 8: The largest difference between the line xy and the function f is a − b.
This is equal to 0− a(y) = −a(y).

3.2 Conjugate functions

Before we can formulate the Fenchel dual problem we must introduce the concept of conjugate
functions. We illustrate the conjugate functions in the univariate case in order to get a better
intuition on the subject.

So, let us consider a differentiable convex function f of one variable. Fix y ∈ R and choose
a real number a(y) so that the line xy + a(y) is tangential to f . Notice that a tangent of slope
y does not always exist, but when it does exist it is uniquelly determined because f is a convex
function. The distance between f and the tangent is trivially 0 at a point of intersection x0:

x0y + a(y)− f(x0) = 0

or equivalently
−a(y) = x0y − f(x0)

Now, say that we begin with the expression xy−f(x) without knowing x0 and wish to determine
how large a(y) is. Not so surprisingly, there is a very straightforward way to recover a(y): as
illustrated in Figure 8, the maximal value of xy − f(x) must equal −a(y).

Hence we may determine a(y) by taking the supremum over all x:

−a(y) = sup
x∈R
{xy − f(x)}

The above expression is so important it deserves a name of its own.

Definition 3.4 (Conjugate functions). Let f : Rn → R. The conjugate convex function f∗ :
Rn → R of f is defined by

f∗(y) = sup
x∈Rn

{〈x,y〉 − f(x)}

Similarly, the conjugate concave function f∗ : Rn → R of f is given by

f∗(y) = inf
x∈Rn

{〈x,y〉 − f(x)}

13



3.2 Conjugate functions

Figure 9: If the function is not convex, there may be multiple points where the
tangent has the same slope. We choose the greater value and hence loose all
information about the other value. In this picture we have f∗(y) = −b > −a.

The convex conjugate function sometimes goes under the name Legendre-Fenchel transfor-
mation because it generalizes the Legendre transformation. We shall in Section 3.4 give a more
general form of Definition 3.4. Right now we stick to the real case to avoid confusion.

Since most functions we shall consider later on are defined on the entire Rn, the terms “infx”
and “supx” shall from now on refer to infx∈Rn and supx∈Rn , respectively. We also use the
convenient notations sup{∅} = −∞ and inf{∅} = +∞.

The function
f∗∗(x) = (f∗)∗(x) = sup

x
{〈x,y〉 − f∗(x)}

is called the biconjugate of f . f∗∗ is defined in the same manner, and if it is clear from the
context, it shall also be referred to as the biconjugate.

The aim of formulating a dual problem is to find another problem with the same optimal
solution. If one is lucky, this other problem is more approachable than the original problem.
With this in mind, the next step is to ask when does f∗∗ = f hold?

Let us look a little closer at Definition 3.4. Notice that although we required f to be dif-
ferentiable and convex in the introduction, we do not mention these things in the definition.
As we saw earlier, when f is convex and differentiable, the conjugate transformation returns
information about the tangent with slope y. But even if a tangent with slope y does not exists,
the conjugate convex function is well-defined.

In the case when f is not convex, it may happen that speaking of the tangent with slope y is
not possible; there might be several tangents with the same slope. In this case, only one of the
tangents is used, as illustrated in Figure 9. The conjugate convex transformation is well-defined
for non-convex functions, but it does not preserve all information. It seems that the relation
f = f∗∗ cannot hold if f is not convex. Let us now apply the conjugate transformations on a
convex function.

Example 3.5. Consider the function f(x) = x2. It is easy to verify that f is a convex function.

14



3.2 Conjugate functions

Figure 10: The conjugate convex function exists although the tangent does not.

The conjugate convex function can be calculated by finding the zero of the first derivative:

f∗(y) = sup
x

{
xy − x2

}
=

1

2
y · y −

(
1

2
y

)2

=
y2

4

It is hard to say anything about this function by just looking at it, so let us proceed to calculating
the biconjugate of this function:

f∗∗(x) = sup
y

{
xy − 1

4
y2

}
= x · 2x− 1

4
(2x)2 = x2

We have come back to the original function and hence the relation f = f∗∗ holds true. It is
natural to wonder what the conjugate concave function looks like. Some simple calculations yield

f∗(y) = inf
x

{
xy − x2

}
= −∞

The conjugate concave transformation completely destroys the function and consequently, it is
not possible to recover the original function by applying the conjugate concave transformation
on the above expression. ♦

A little loosely we may say that the conjugate convex transformation is suitable for convex
functions, and the concave transformation for concave functions. In fact, f∗ is always convex,
regardless of f , and similarly f∗ is always concave.

We required f to be differentiable in the introduction in order to justify the use of the term
“tangent”. However, non-differentiable points are not a problem, as illustrated in Figure 10.
Interestingly though, the slope y is a subgradient to f at the points where f and the “tangent”
intersect. More information about subgradients can be found for instance in [[3], Section 3.2].

Example 3.6. Let us redefine the function from the previous example as

f(x) =

{
x2 if x > 0

+∞ if x ≤ 0
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3.2 Conjugate functions

We observe that f is convex but its epigraph is not closed. Is the conjugate transformation useful
for functions that are not closed? We have

f∗(y) = sup
x
{xy − f(x)} = sup

x>0

{
xy − x2

}
=

{
1
4y

2 if y ≥ 0

0 if y < 0

After some calculations we get the biconjugate:

f∗∗(x) =

{
x2 if x ≥ 0

+∞ if x < 0

The function f and its biconjugate take different values at x = 0. Hence the relation f = f∗∗

does not hold. ♦

Notice that the biconjugate in the previous example is closed. It seems that we must require
f to be closed if we wish to have f∗∗ = f . Why is that? Well, consider Figure 11. At the
point where the function makes a jump, we choose the “lower” point, because it gives a greater
−a(y)-value. In fact, both the convex and the concave conjugate function are always closed.

Figure 11: At a point of discontinuity there are two different “tangents”. Since
the conjugate convex function is defined by means of supremum, we choose the
greater value. Hence we pick f∗(y) = −b > −a in the picture.

Finally, a convex function is improper only when it is identically equal to −∞ in its effective
domain. Such functions lead to problems but are luckily of no interest. Based on the previous
examples, the reader should be confident that the following theorem holds.

Theorem 3.7 (Conjugacy Theorem). [[6], Proposition 7.1.1 c)] If f is a closed proper convex
function, then f = f∗∗. If g is a closed proper concave function, then g = g∗∗.

For all x and y we have

f∗(y) = sup{〈x,y〉 − f(x)} ≥ 〈x,y〉 − f(x)

from which it follows that the inequality

〈x,y〉 ≤ f(x) + f∗(y) (3.1)
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3.3 Fenchel’s Duality Theorem

holds for all x and y. Similarly we get

〈x,y〉 ≥ f(x) + f∗(y) (3.2)

The identities (3.1) and (3.2) are called Fenchel’s inequalities and they will come handy later
on.

Finally, let us apply the conjugate transformation to a couple of “real-world”-examples.

Example 3.8 (The Indicator Function). [[6], Example 7.1.2] Consider the indicator function of
the set C:

IC(x) :=

{
0 if x ∈ C
+∞ if x 6∈ C

Interestingly, the indicator function is a proper convex function if and only if C is a nonempty
convex set. Furthermore, IC is closed if and only if C is. Its conjugate convex function is given
by

I∗C(y) = sup
x
{〈x,y〉 − IC(x)} = sup

x∈C
〈x,y〉 = ΨC(y)

This function is called the support function of the set C. The special case in which C is a convex
cone, ΨC(y) becomes the indicator function of the polar cone of C.

Notice that there is nothing that dictates that the indicator function should be defined by
means of +∞; if we wish the indicator function to be concave we may simply let it take the
value −∞ outside C. Then the support function would be defined by means of infimum. We
shall use the words “indicator function” and “support function” in both cases if there is no risk
for confusion. ♦

Example 3.9 (Differentiable functions). [7] In the special case in which f is a differentiable
convex function, calculating the conjugate is straightforward. The expression 〈x,y〉 − f(x) is
concave in x and therefore attains its maximum at the zero of the gradient. So if for every
y ∈ Rn the equation y −∇f(x) = 0 has a solution x = s(y) then we simply get

f∗(y) = sup
x
{〈x,y〉 − f(x)} = 〈s(y),y〉 − f(s(y))

In this case the conjugate transformation and the Legendre transformation coincide. ♦

Remark. One way to interpret the conjugate transformation is as a collection of non-vertical
half-spaces (i.e. sets of the form {x ∈ Rn | 〈p,x〉 ≤ α}) containing epi f . It is generally true
that a closed set is convex if and only if is an intersection of closed half-spaces. As is seen in the
figures of this section, the conjugate function determines for every y a half-space that contains
the epigraph. The epigraph is the intersection of all such half-spaces if and only if f is a proper
closed convex function. ♦

3.3 Fenchel’s Duality Theorem

The Fenchel dual problem was originally formulated by Werner Fenchel and therefore carries his
name. Since the dual problem is defined by means of the conjugate transformations the term
“conjugate duality” is also frequently used.

The primal problem for Fenchel duality looks slightly different from (2.1):

Minimize f(x)− g(x)
subject to x ∈ C
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3.3 Fenchel’s Duality Theorem

Here f : Rn → R is a convex and g : Rn → R is a concave function, and C is a subset of
Rn. Actually we often drop the constraint: we may simply define f or −g to be infinitely large
outside of C. The problem above is a convex optimization problem: the sum of two convex
functions is convex.

The main idea behind Fenchel duality is the observation that minimizing the difference be-
tween f and g is equal to maximizing the difference between tangents of same slope. In other
words, minimizing f − g is under certain restrictions equivalent to maximizing g∗ − f∗.

So let us consider the problem of maximizing g∗ − f∗. By the definition of the convex
conjugate, we get:

sup
y
{g∗(y)− f∗(y)} = sup

y

{
inf
x
{〈x,y〉 − g(x)} − sup

x
{〈x,y〉 − f(x)}

}
= sup

y

{
inf
x
{〈x,y〉 − g(x)}+ inf

x
{f(x)− 〈x,y〉}

}
As is commonly known, the relation

inf
x
φ(x) + inf

x
ψ(x) = inf

x
{φ(x) + ψ(x)} (3.3)

does not hold in general. But when it does hold, the expression supy{g∗(y) − f∗(y)} becomes
infx{f(x) − g(x)} as desired. Fenchel duality essentially gives us conditions under which the
equation (3.3) is true.

There are many different versions of Fenchel’s Duality Theorem. Below we give a simple real
version and then reformulate it in the following section.

Theorem 3.10 (Fenchel’s Duality Theorem). [[2], Theorem 31.1] Let f : Rn → R be a proper
convex function and g : Rn → R a proper concave function. Then we have

inf
x
{f(x)− g(x)} = sup

y
{g∗(y)− f∗(y)}

if one of the following conditions hold:

(i) ri(dom f) ∩ ri(dom g) 6= ∅

(ii) f and g are closed, and ri(dom f∗) ∩ ri(dom g∗) 6= ∅

Under (i) the supremum is attained, under (ii) the infimum is attained. If both (i) and (ii) hold,
both the supremum and infimum are finite.

Proof of Theorem 3.10. Pick any x, y ∈ Rn. By Fenchel’s inequalities (relations (3.1) and (3.2)),
we have for all x and y in Rn that

f(x) + f∗(y) ≥ 〈x,y〉 ≥ g(x) + g∗(y)

By rearranging the terms we gain

f(x)− g(x) ≥ g∗(y)− f∗(y)

and hence
inf
x
{f(x)− g(x)} ≥ sup

y
{g∗(y)− f∗(y)} (3.4)

This is called weak duality. Set α = inf{f(x)−g(x)}. If α = −∞, then (3.4) forces the supremum
to be −∞ too and hence the theorem holds. Let us now assume that α > −∞.
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3.3 Fenchel’s Duality Theorem

Suppose that the condition (i) is true. Then α <∞ and hence α is finite. We shall now find
a vector y such that g∗(y)− f∗(y) ≥ α; this shall establish equality in (3.4). By Proposition 2.4
the sets A = epi(f) and B = hyp(g(x) + α) are convex. On the other hand,

ri(epi(f)) = {(x, z) ∈ Rn+1 | x ∈ ri(dom f), f(x) < z <∞} (3.5)

as can easily be verified (for the proof, see [[2], Lemma 7.3]). Since

α = inf
x
{f(x)− g(x)} ≤ f(x)− g(x)

holds for every x ∈ Rn, we have f ≥ g + α. Hence the set (3.5) and hyp(g(x) + α) are disjoint
and by Theorem 2.14 we can separate them properly with a hyperplane, call it H.

If H were vertical, then its projection on Rn would separate the sets A and B properly, which
would contradict (i). Hence H is not vertical and we can characterize it by an affine function

h(x) = 〈x,y〉 − β

Since H separates A and B, we have

f(x) ≥ 〈x,y〉 − β ≥ g(x) + α

for all x ∈ Rn. From these inequalities we can deduce that

β ≥ sup
x
{〈x,y〉 − f(x)} = f∗(y)

and also
α+ β ≤ inf

x
{〈x,y〉 − g(x)} = g∗(y)

and hence α = α+ β − β ≤ g∗(y)− f∗(y). This is the desired expression.
If (ii) holds, the result follows from Theorem 3.7. �

Remark. The reason we assume that f and g are proper functions is to avoid undefined situa-
tions like ∞−∞. ♦

Remark. The fact that the infimum is attained under the condition (ii) and supremum is
attained under (i) may seem a little unintuitive. As an example, take the following functions:

f(x) = ex

g(x) = −ex

As seen in Figure 12, the difference f − g gets smaller and smaller as x tends to −∞.
The solution to the primal problem is hence 0 but the infimum is not attained. This happens

although the condition (i) holds. It is easily seen that the only common point for dom f and
dom g is 0, which is not an interior point of either set. Hence (ii) does not hold. ♦

Remark. Although the Fenchel dual and Lagrangian dual problems look very different they
can in fact shown to be equivalent. For the proof, see [8]. This does not mean that one of the
problems is redundant. There are applications in which Fenchel duality is more suitable than
Lagrangian duality, and vice versa. ♦

19



3.4 Different Forms of the Duality Theorem

Figure 12: We have infx{f(x)− g(x)} = 0. Although dom(f)∩ dom(g) 6= ∅ holds
true, the infimum is not attained.

3.4 Different Forms of the Duality Theorem

In the previous section we introduced the Fenchel primal and the associated dual problem. There
are, however, other ways to define the primal problem. We dedicate this section to talking about
possible modifications and generalizations.

The first thing we note is that a regular optimization problem consists of more than merely
the objective function. The problem often requires that some constraints are fulfilled. There is an
easy way to smuggle in linear constraints to Fenchel duality. Consider the following optimization
problem:

Minimize f(x)

subject to Ax ≤ 0

where f : Rn → R is convex and A is a real m× n matrix. If we let g : Rm → R be defined by

g(Ax) =

{
0 if Ax ≤ 0

−∞ if Ax > 0
(3.6)

then we can write
inf
Ax≤0

f(x) = inf
x
{f(x)− g(Ax)}

This looks like a problem suitable for Fenchel duality. In fact, we may assume that g is any
proper concave function. The above is a good illustration of how duality is used; a complicated
problem is converted into a couple of unconstrained problems that are either trivial or can be
solved by simple differentiation.

Theorem 3.11. [[2], Corollary 31.2.1] Let f : Rn → R be a closed proper convex function and
g : Rm → R a closed proper concave function. Suppose that A is a real m× n matrix. Then we
have

inf
x∈Rn

{f(x)− g(Ax)} = sup
y∈Rm

{g∗(y)− f∗(ATy)}

if one of the following conditions hold:

(i) There exists an x ∈ ri(dom f) such that Ax ∈ ri(dom g).

(ii) There exists a y ∈ ri(dom g∗) such that ATy ∈ ri(dom f∗).
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3.4 Different Forms of the Duality Theorem

Under (i) the supremum is attained, under (ii) the infimum is attained. If both (i) and (ii) hold,
both the supremum and infimum are finite.

Remark. In the special case (3.6) the condition (i) translates to Slater’s condition (see Definition
2.8). ♦

The above theorem can be taken one step further.

Theorem 3.12 (Extended Fenchel Duality). [[9], Theorem 2] Let f : Rn → R be a closed proper
convex function and g : Rm → R a closed proper concave function. Suppose that A is a real
m× n matrix and let b ∈ Rn, c ∈ Rm. Then we have

inf
x∈Rn

{f(x)− g(c−Ax) + bTx} = sup
y∈Rm

{h∗(ATy − b)− f∗(y) + cTy}

if one of the following conditions hold:

(i) There exists an x ∈ ri(dom f) such that c−Ax ∈ ri(dom g).

(ii) There exists a y ∈ ri(dom g∗) such that ATy − b ∈ ri(dom f∗).

Under (i) the supremum is attained, unless the common value is −∞. Under (ii) the infimum
is attained, unless the common value is ∞.

The second thing that can be made more general is the domain of definition. There is
nothing that really dictates that f and g should be defined on Rn. It is more common to assume
that f, g : X → R, where X is a finite-dimensional real vector-space. The problem that arises
from changing the domain of definition for f and g is that the domains of definition for their
conjugates are also affected. The reason is that the definition of the conjugate function includes
scalar product. In order for us to be able to define 〈x,y〉 properly, the notion of dual space must
be introduced.

Definition 3.13 (Dual Space). Let X be a finite-dimensional real vector space. The dual space
of X is denoted by X ′ and it consists of all linear maps from X to R.

Example 3.14.

(a) Consider the case X = Rn. A linear functional from Rn to R is given by an 1× n matrix C:

Cx ∈ R for all x ∈ Rn

Hence the dual space is R1×n. However, the scalar product of two n-vectors x and c is
usually defined by means of transpose: 〈c,x〉 = cTx. Therefore, we generally identify R1×n

with Rn and say that Rn is the dual of itself.

(b) Consider the case X = Rn×m. A linear functional can be expressed by means of the scalar
product of two real matrices: trace. Given an m× n matrix C we can write:

〈C,X〉 = tr(CX) ∈ R for all X ∈ Rn×m

Hence the dual space of Rn×m is Rm×n. ♦

Theorem 3.15. Let X be a finite-dimensional vector space and let f : X → R be a proper convex
function and g : X → R a proper concave function. Then we have

inf
x∈X
{f(x)− g(x)} = sup

y∈X ′
{g∗(y)− f∗(y)}

if one of the following conditions hold:
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3.4 Different Forms of the Duality Theorem

(i) ri(dom f) ∩ ri(dom g) 6= ∅

(ii) f and g are closed, and ri(dom f∗) ∩ ri(dom g∗) 6= ∅

Under (i) the supremum is attained, under (ii) the infimum is attained. If both (i) and (ii) hold,
both the supremum and infimum are finite.

In addition to the theorems in this section, there are plenty of other conditions under which
Fenchel duality holds. Banach spaces are discussed in [10]. There is even a discrete version of
the theorem involving discrete convex functions and sets that are not only suitable for the cause
but also arise in practical applications. See [[11], Theorem 8.21] for the discrete Fenchel-Type
duality result.
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4 The S-Procedure

We start by defining the S-procedure. Let X = R or X = C and f, g1 . . . , gm : Xn → R. Consider
the following two assertions:

S1: f(x) ≥ 0 for all x ∈ Xn such that gi(x) ≥ 0, i = 1, . . . , n.

S2: There exists pi ≥ 0, i = 1, . . . ,m such that for all x ∈ Xn we have

f(x)−
m∑
k=1

pigi(x) ≥ 0

Regardless of how we choose our functions, S2 always implies S1. The opposite implication, on
the other hand, is not always true. In some cases it is easier to show that S2 holds, and using
S2 to verify S1 is called the S-procedure. The equivalence of S1 and S2 is called the losslessness
of the S-procedure.

We have already seen one special case in which the S-procedure is lossless. According to
Lemma 2.16, S1 and S2 are equivalent when f and −g are convex. We shall in this chapter
establish other conditions under which these assertions are equivalent. Although these conditions
shall involve certain convexity assumptions we shall not directly require f and −g to be convex.
By Theorem 2.17 this gives rise to a class of non-convex optimization problems that can be solved
using regular methods.

It is quite common to express the S-procedure by means of equality constraints:

S′1: f(x) ≥ 0 for all x ∈ Xn such that gi(x) = 0, i = 1, . . . , n.

S′2: There exists pi ∈ R, i = 1, . . . ,m such that for all x ∈ Xn we have

f(x)−
m∑
k=1

pigi(x) ≥ 0

Also, strict inequalities come up frequently:

S′′1 : f(x) > 0 for all nonzero x ∈ Xn such that gi(x) ≥ 0, i = 1, . . . , n.

S′′2 : There exists pi ≥ 0, i = 1, . . . ,m such that for all x ∈ Xn we have

f(x)−
m∑
k=1

pigi(x) > 0

Remark. In Lagrangian duality the condition g(x) ≤ 0 is more common, whereas in papers
concerning the S-procedure the form g(x) ≥ 0 is more frequently used. As mentioned before, this
creates an ambiguous situation concerning the term “Slater’s condition”. By Slater’s condition
we shall mean the existence of an x̄ such that g(x̄) > 0, g(x̄) < 0 or g(x̄) = 0, depending on the
constraints we use. ♦
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4.1 Preliminaries

4.1 Preliminaries

So far we have mainly considered functions defined on a real set. From now on our theory will
also be applicable on the complex case. However, the notion of symmetric matrices and matrix
transpose do not give desired results. Instead we need to generalize these terms to suit our
purpose. Let X = R or X = C.

Definition 4.1 (Hermitian matrix). A complex-valued n × n matrix A is called Hermitian if
each entry aij is the complex conjugate of the entry aji, that is if

aij = aji

for all i = 1, 2, . . . , n and j = 1, 2, . . . , n.

It follows from the above definition that the diagonal entries of a Hermitian matrix are real.

Definition 4.2 (Conjugate transpose). The conjugate transpose of a complex-valued n × m

matrix A is defined as the complex conjugate of the transpose of the matrix: A∗ = AT

In the real case, the conjugate and the regular transpose coincide, just like Hermitian and
symmetric matrices do. Also, the conjugate of a Hermitian matrix is the matrix itself. Most rules
that apply for the regular transpose work for the conjugate transpose as well. An interesting
consequence of the above definitions is that for any Hermitian n × n matrix A the expression
x∗Ax is real for all x ∈ Cn. This is essentially the reason we do not use regular transpose for
complex-valued matrices. This also means that the following definition makes sense.

Definition 4.3. A Hermitian matrix A ∈ Xn×n is called positive semidefinite if for every x ∈ Xn
the following inequality holds:

x∗Ax ≥ 0

We denote A ≥ 0. If the equality is taken only at x = 0, then A is called positive definite,
and we write A > 0. A Hermitian matrix B is called negative (semi)definite if −B is positive
(semi)definite.

We shall use the following notations:

Sn The set of symmetric real matrices of size n

Sn+ The set of positive semidefinite symmetric real matrices of size n

Sn++ Positive definite symmetric real matrices of size n

Hn Hermitian matrices of size n

Hn+ Positive semidefinite Hermitian matrices of size n

Functions defined by means of Hermitian matrices have a special name.

Definition 4.4 (Quadratic Form). A function f : Xn → R is called a quadratic form if there
exists a Hermitian matrix F ∈ Xn×n, a vector u ∈ Xn and a real scalar v ∈ R such that

f(x) = x∗Fx+ 2 Reu∗x+ v

for all x ∈ Xn. If u = 0 and v = 0, then f is called a homogeneous quadratic form.

Quadratic forms possess certain highly desirable qualities. For instance, it is very easy to
determine whether a homogeneous quadratic form is convex. We simply have
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4.2 Dynamical Systems

f(x) = x∗Fx is convex ⇔ F is positive semidefinite

Furthermore, f is strictly convex if and only if F is positive definite.
In some publications quadratic forms are always assumed to be homogeneous. The reason is

simple: one can always derive a homogeneous quadratic form from a regular quadratic form. It
is easily seen that

f(x) = x∗Fx+ 2 Re(u∗x) + v = Re

((
x∗ 1

)(F u
u∗ v

)(
x
1

))
Furthermore, it follows from the fact that Re(u∗x) is linear that

f(x) = x∗Fx+ 2 Re(u∗x) + v is convex ⇔ F is positive semidefinite

A linear matrix inequality (LMI) is an expression of the form

A = F +

m∑
i=1

xiGi > 0 (4.1)

where the matrices F , Gi ∈ Xn×n are Hermitian and x = (x1, x2, . . . , xn) ∈ Xn. Here the
inequality means that A is positive definite. Naturally, other inequalities rise in applications, not
only “<”.

Linear matrix inequalities are common in both optimization and control theory. Various
problems that arise in these fields can be transformed into standard statements involving LMI’s,
see [12] for a more thorough discussion. That is why there are various different, seemingly useless
results concerning LMI’s.

Notice a strong connection between LMI’s and quadratic forms: the inequality (4.1) holds if
and only if the homogeneous quadratic form f(x) = x∗Ax is strictly convex.

4.2 Dynamical Systems

A dynamical system is usually expressed as a differential equation. The state vector x(t) =
(x1(t), x2(t), . . . , xn(t)) describes the state in which the system is in at a given time t. Its
derivative gives the rate of change at different points in time:

ẋ = ẋ(t) =
d

dt
x(t) = f(t,x(t),u(t))

The variable t is often absorbed from the calculations. It is common to study an initial value
problem with x(0) given, often x(0) = 0. The input vector u(t) = (u1(t), u2(t), . . . , um(t)) tells
us what we can do at a given point in time to get desired results. A dynamical system is called
linear if f is linear in x and u.

Stability analysis is one of the most fundamental areas in control theory. A dynamical system
is called Lyapunov stable at a critical point ẋ = 0 if all the trajectories are bounded. It is called
Lyapunov asymptotically stable if the trajectories converge to zero. A system can be shown to
be asymptotically stable if there exists a Lyapunov function V (x,u) such that V (x,u) > 0 and
V̇ (x,u) < 0 for all (x,u) 6= 0. What the Lyapunov function looks like depends on the problem
at hand, so a general form including all cases is hard to construct. Quite often, however, one
comes to ask if the function can be chosen to be homogeneous quadratic.

We shall soon investigate the most basic linear system there is: ẋ = Ax. Before proceeding
we need a couple of definitions.
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4.2 Dynamical Systems

Definition 4.5 (Kronecker product). Let A ∈ Cn×p and B ∈ Cm×q. The Kronecker product of
these matrices is given by

A⊗B =

a11B . . . a1mB
...

. . .
...

an1B . . . anmB


If A ∈ Cn×n and B ∈ Cm×m we can define their Kronecker sum:

A⊕B = (Im ⊗A) + (B ⊗ In)

If the eigenvalues of A and B are λi, i = 1, 2, . . . , n and µi, i = 1, 2, . . . ,m, respectively, then the
eigenvalues of their Kronecker sum are simply

λ1 + µ1, . . . , λ1 + µm, λ2 + µ1, . . . , λ2 + µm, . . . λn + µ1, . . . , λn + µm (4.2)

For the proof, see [[14], Theorem 13.16]. Note that neither the Kronecker product nor the sum
is commutative.

Definition 4.6 (Spectrum). The set of eigenvalues of a matrix A is called its spectrum and is
denoted by SpA.

Example 4.7. [15] Consider the following dynamical system:

ẋ = Ax

where A ∈ Rn×n and x ∈ Rn. A Lyapunov function for the above system can be assumed to be
of the form

V (x) = xTPx > 0

As mentioned before, the above inequality holds when P ∈ Sn++. To determine whether V̇ is
negative definite, consider:

V̇ (x) = ẋTPx+ xTP ẋ = xTATPx+ xTPAx = xT (ATP + PA)x < 0

Hence a Lyapunov function exists if and only if the system

ATP + PA < 0 P ∈ Sn++

is feasible. Indeed, we can pick any Q > 0 and solve the equation

ATP + PA = −Q (4.3)

If a solution P ∈ Sn++ exists then V must be a Lyapunov function.
Let us define the operator “vec” by stacking the columns of a matrix on top of each other:

vec(P ) =



p11

p12

...
p1n

p21

...
pnn


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4.2 Dynamical Systems

Then (4.3) takes the form

(A⊕AT ) vec(P ) = [(In ⊗A) + (AT ⊗ In)] vec(P ) = vec(Q)

It follows that a unique solution P ∈ Sn to (4.3) exists if and only if the Kronecker sum A⊕AT is
nonsingular. This happens when all the eigenvalues of the sum are nonzero. Since A is a square
matrix, it has the same eigenvalues as AT . By (4.2) a solution exists if and only if λ+ µ 6= 0 for
all λ, µ ∈ SpA.

We know that the eigenvalues of a real matrix come in complex conjugate pairs, meaning that
if λ = a+ ib ∈ SpA then λ∗ = a− ib ∈ SpA. Hence we only have to assume that the conjugate
pairs are never equal. Therefore, a solution P ∈ Sn exists if and only if λ+ λ∗ = 2 Reλ 6= 0 for
all λ ∈ SpA. This argument is valid even if some eigenvalues happened to be real. Furthermore,
it can be shown that P is positive definite exactly when Re(λ) < 0 for each λ ∈ SpA. ♦

Remark. The function ATP+PA is called the Lyapunov operator, the expression ATP+PA < 0
Lyapunov’s inequality and ATP + PA = −Q Lyapunov’s equality. ♦

The fact that the system in the above example is stable when all eigenvalues of A have
negative real parts is so important that such matrices have earned a name.

Definition 4.8 (Hurwitz). A matrix A ∈ Cn×n is called Hurwitz if all its eigenvalues have
negative real part. It is called antihurwitz if all the eigenvalues have positive real part.

Multiplying Lyapunov’s inequality by −1 and setting F = −A gives us the system

FTP + PF > 0 P > 0

Since the eigenvalues of −A are the negatives of the eigenvalues of A it follows that the above is
solvable if and only if F is antihurwitz.
ẋ is enough to determine a dynamical system, but in some cases an output vector is included

in the calculations:
y = y(t) = h(t,x(t),u(t))

We shall consider systems of the following form:

ẋ = Ax+Bu

y = Cx+Du
(4.4)

Here x ∈ Xn, u,y ∈ Xm, A ∈ Xn×n, B ∈ Xn×m, C ∈ Xm×m and D ∈ Xm×n. To study
stabilization of a system, one often requires it to be controllable. By this we mean that using the
input vector we can, given any initial state, always force the system into another state under a
finite amount of time. We say that the pair {A,B} is controllable.

One way to show that a pair is controllable is by showing that the controllability matrix(
B AB A2B · · · An−1B

)
has full row rank.

Another important assumption is that the system is observable. We are quite handicapped
if the output vector does not tell us everything we need to know about the state of the system.
One can show that the pair {A,C} is observable by showing that the observability matrix

C
CA
CA2

...
CAn−1


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4.3 Special Case: Farkas Lemma

has full row rank.

Example 4.9 (Sector constraint). [17] Consider the dynamical system (4.4) with D = 0. Let
us assume that the system is real. Suppose that the so-called sector constraint holds:

σ(y,u) = (βy − u)T (u− αy) ≥ 0

where α and β are real numbers that satisfy α < β.
In order to find out whether the critical point (x,u) = 0 is stable let us seek for a quadratic

Lyapunov function of the form V (x,u) = V (x) = xTPx > 0. The derivative of V becomes:

V̇ (x,u) = ẋTPx+ xTP ẋ = (Ax+Bu)TPx+ xTP (Ax+Bu) =

= xT (ATP + PA)x+ uTBTPx+ xTPBu+ uT · 0 · u =

=
(
xT uT

)(ATP + PA PB
BTP 0

)(
x
u

)
< 0

The inequality must be satisfied for all (x,u) 6= 0 that satisfy the sector constraint: σ(y,u) =
σ(Cx,u) ≥ 0. Let us define f(x,u) = −V̇ (x,u) and

g(x,u) = 2σ(Cx,u) = 2(βCx− u)T (u− αCx) =

= −2αβxTCTCx+ 2(α+ β)xTCTu− 2uTu =

=
(
xT uT

)(−2βαCTC (β + α)CT

(β + α)C −2

)(
x
u

)
We can now reformulate the existence of a quadratic Lyapunov function as

f(x,u) > 0 for all (x,u) 6= 0 such that g(x,u) ≥ 0

This is equivalent to S′′1 . We shall later see that in this case the S-procedure is lossless since f
and g are quadratic. Hence a quadratic Lyapunov function exists if and only if there exists p > 0
such that f + pg > 0 for all (x,u) 6= 0. ♦

4.3 Special Case: Farkas Lemma

Farka’s Lemma is a very well-known result from convex optimization and it is closely related to
the S-procedure. Farka’s Lemma states that if A is a real m× n matrix and b a real m-vector,
then only one of the following systems has a solution:

(i) There exists x ∈ Rn such that Ax ≥ 0 and bTx < 0.

(ii) There exists y ∈ Rm such that ATy = b and y ≥ 0.

What Farka’s Lemma says about convex cones is not that interesting. Instead it is very useful
when proving other results in convex optimization. Proving Farka’s Lemma using Fenchel duality
is very straightforward. This is not surprising since both of them follow from the Separating
Hyperplane Theorem.

Let us begin by rewriting the lemma. Farka’s lemma is true when the following assertions
are equivalent:

(i)* Ax ≥ 0 implies bTx ≥ 0.

(ii)* There exists y ∈ Rm such that ATy = b and y ≥ 0.
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4.4 Relation to Fenchel duality

The assertion (i)* is equivalent to requiring that

inf
Ax≥0

bTx ≥ 0

It is easily seen that the equality holds by noting that x = 0 is included in the set of points
fulfilling (i)*. In fact, since the feasible set defines a convex cone it follows that the infimum is
either 0 or it is −∞; no other case is possible.

Let f(x) = bTx and

g(Ax) =

{
0 if Ax ≥ 0

−∞ if Ax < 0

Then f is a proper convex and g a proper concave function. Hence we can apply Theorem 3.11
on the following optimization problem:

inf
Ax≥0

bTx = inf
x∈Rn

{f(x)− g(Ax)}

We get

f∗(ATy) = sup
x

{(
ATy

)T
x− bTx

}
=

{
0 if ATy = b

∞ otherwise

and

g∗(y) = inf
Ax

{
yTAx− g(Ax)

}
= inf
Ax≥0

{
yTAx

}
=

{
0 if y ≥ 0

−∞ otherwise

Keeping in mind that sup{∅} = −∞ we obtain

inf
x∈Rn

{f(x)− g(Ax)} = sup
y∈Rm

{g∗(y)− f∗(ATy)} = sup
ATy=b
y≥0

{0}

If (ii)* holds, then the supremum is attained and equals 0. This in turn implies that (i)* holds.
If (ii)* does not hold, then the supremum is −∞ and hence the infimum is also −∞. From this
it follows that (i)* is not true. Hence (i)* and (ii)* are equivalent.

4.4 Relation to Fenchel duality

The S-procedure is connected to duality in a very similar way as Farka’s lemma: The statement
S1 is equivalent to

inf{f(x) | gi(x) ≥ 0, i = 1, 2, . . . ,m, x ∈ Xn} ≥ 0

In fact, the assumptions we shall press on f and g shall force the infimum to be either zero or
−∞ as in the proof of Farka’s lemma. The objective of this section is to find a dual problem
that can be associated with S2. Notice that unlike with Farka’s lemma, we cannot directly apply
Fenchel duality to the above problem because the domain is not necessarily real.

Consider the following optimization problem:

Minimize f(x)

subject to g(x) ∈ D
x ∈ C
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4.4 Relation to Fenchel duality

where C ⊆ Xn and D ⊆ Rm. In order to connect the above problem to assertion S2, let us
consider all points p ∈ Rm that satisfy the following inequality

p1g1(x) + p2g2(x) + · · ·+ pmgm(x) = 〈p, g(x)〉 ≤ f(x) (4.5)

for all x ∈ C. Denote the set of such p’s by P . Notice that unlike in S2, we are not interested
in the signs of pi’s at this stage. The infimum taken over the right-hand side must naturally be
larger than the supremum over the left-hand side. Hence

inf
g(x)∈D
x∈C

f(x) = inf
y∈D

 inf
g(x)=y
x∈C

f(x)

 ≥ inf
y∈D

sup
p∈P
〈p,y〉

We also have
inf
y∈D

sup
p∈P
〈p,y〉 ≥ sup

p∈P
inf
y∈D
〈p,y〉

Keeping in mind how a support function is defined (see Example 3.8) we write ΨD(p) =
infy∈D 〈p,y〉 and get

inf
g(x)∈D
x∈C

f(x) ≥ sup
p∈P

p∈dom ΨD

ΨD(p) (4.6)

In the next theorem we establish conditions under which the equality holds.

Theorem 4.10. [[1], Theorem 1] Let X = R or X = C. Suppose that C is a nonempty subset
of Xn, D a nonempty convex subset of Rm and let f : Xn → R and g : Xn → Rm. Denote
Ω(x) = (f(x), g(x)). Suppose further that Ω(C) a convex cone, and that

ri(D) ∩ ri(g(C)) 6= ∅ (4.7)

Then the following equality holds:

inf
g(x)∈D
x∈C

f(x) = sup
p∈P∩dom ΨD

ΨD(p) (4.8)

where ΨD(p) is the support function of the set D and P is the set of vectors satisfying (4.5). If
in addition we have

P ∩ dom(ΨD) 6= ∅ (4.9)

then the supremum is finite and attained.

Remark. This theorem holds even in the case where the functions are defined on a set of
matrices Xn×m. Rm in the definition of g may be replaced by any finite-dimensional real vector
space Y, in which case D is a subset of Y. ♦

Proof. Define φ : Rm → R by

φ(y) = inf{f(x) | x ∈ C, g(x) = y}

and ID : Rm → {−∞, 0} by

ID(y) =

{
0 if y ∈ D
−∞ it y 6∈ D

We notice that the set {x ∈ C | g(x) = y} may be empty for some y, in which case we use the
convention φ(y) = inf ∅ = +∞.
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4.4 Relation to Fenchel duality

The function φ is convex since Ω(C) is convex. The indicator function ID of the convex set
D is a proper concave function. The effective domains of φ and ID are easily calculated:

dom(φ) = g(C)

dom(ID) = D

from which it follows that

ri(dom(φ)) ∩ ri(dom(ID)) = ri(g(C)) ∩ ri(D) 6= ∅ (4.10)

as assumed in the theorem. And most importantly, we get

inf
g(x)∈D
x∈C

f(x) = inf
y∈Rm

{φ(y)− ID(y)} (4.11)

We wish to apply Fenchel’s duality theorem on the right-hand side. However, we first have to
consider the case in which φ is improper. If φ is an improper convex function, that is we have
φ(y) = −∞ for some y ∈ Rm, then the convexity of φ forces the function to attain the value
−∞ everywhere in the relative interior of the domain of φ. By (4.10) there exists a point that
lies both in the effective domain of φ and in the effective domain of ID. The first set only giving
function value −∞ and latter set 0, it follows from (4.11) that

inf
g(x)∈D
x∈C

f(x) = inf
y
{φ(y)− ID(y)} = −∞

The inequality (4.6) forces the supremum of ΨD(p) to be −∞, and hence the equality (4.8)
holds.

Let us now assume that φ is a proper convex function. By (4.10) and Theorem 3.15 the
following equality holds:

inf
y∈Rm

{φ(y)− ID(y)} = sup
p∈Rm

{ID∗(p)− φ∗(p)}

By (4.10), the supremum is attained for some p. Let us now calculate the conjugate functions.
We have already seen in Example 3.8 that the conjugate of the indicator function is the support
function: ID∗(p) = ΨD(p).

Computing φ∗ is not as straightforward. We shall divide the calculations in two cases: (i)
p 6∈ P and (ii) p ∈ P .

(i) Suppose that p 6∈ P . Then there exists an x0 ∈ C such that

〈p, g(x0)〉 − f(x0) = δ > 0

Since Ω(C) is a cone there exists xλ ∈ C for any λ > 0 such that

〈p, g(xλ)〉 − f(xλ) = 〈p, λg(x0)〉 − λf(x0) = λδ

We now get

φ∗(p) = sup
y∈Rm

{〈p,y〉 − φ(y)} ≥ sup
λ>0
{〈p, λg(x0)〉 − λf(x0)} = +∞

and hence φ∗(p) = +∞ for all p 6∈ P .
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4.5 S-Procedure for Homogeneous Quadratic Forms

(ii) Suppose now that p ∈ P . Then

φ∗(p) = sup
y∈Rm

〈p,y〉 − inf
x∈C
g(x)=y

f(x)


Since φ(y) = +∞ whenever an x ∈ C such that y = g(x) does not exist, we can ignore
such points and simply write

φ∗(p) = sup
x∈C

{
〈p, g(x)〉 − inf

z∈C:g(z)=g(x)
f(z)

}
By the choice of p, we always have f(z) ≥ 〈p, g(z)〉 and hence

sup
x∈C

{
〈p, g(x)〉 − inf

z∈C:g(z)=g(x)
f(z)

}
≤ sup
x∈C
{〈p, g(x)〉 − 〈p, g(x)〉} = 0

since C is nonempty. Since Ω(C) is a cone, we have 0 ∈ cl Ω(C). Hence the equality must
hold and we get φ∗(p) = 0 for all p ∈ P .

Combining (i) and (ii) we see that φ∗ disappears from the calculations and we simply get

sup
p∈Rm

{ID∗(p)− φ∗(p)} = sup
p∈P∩dom(ΨD)

ΨD(p)

Hence the equality (4.8) holds.
Furthermore, if the condition P ∩ dom(ΨD) 6= ∅ holds, then the supremum must be larger

than −∞, which, combined with the above discussion, means that φ cannot be improper. As we
saw earlier, the supremum is attained when φ is proper. The proof is now complete. �

4.5 S-Procedure for Homogeneous Quadratic Forms

One frequently used condition under which the assertions S1 and S2 are equivalent is that the
functions involved are homogeneous quadratic (together with some additional requirements).
This means that the assertion S2 transforms into a linear matrix inequality. That is very conve-
nient since various numerical and explicit methods have been constructed to solve problems of
that form.

The earliest result of the losslessness of the S-procedure is due to Finsler. In [18] he proved
that if xTBx = 0 implies that xTAx > 0, then A + pB is positive definite for some real p.
Yakubovich was the first to formulate the S-procedure in abstract terms. Like Finsler, he only
proved the result for m = 1. The proof Yakubovich used can be found for example in [4]. The
idea is very similar to the discussion is Section 2.4. Yakubovich uses a result that states that
when f and g are homogeneous quadratic, then Ω(Rn) is a convex set.

Using Theorem 4.10 we can easily show the following result.

Proposition 4.11. Let X = R or X = C. Let f : Xn → R and g : Xn → Rm be quadratic
functions determined by

f(x) = x∗Fx

gi(x) = x∗Gix i = 1, 2, . . . ,m

where F,G1, . . . , Gm ∈ Xn×n are Hermitian matrices. Denote Ω(x) = (f(x), g(x)) and suppose
that Ω(Xn) convex. Also, suppose that Slater’s condition holds. Then the S-procedure is lossless,
that is, S1 and S2 equivalent.
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4.6 Quadratic Duality

Proof. Let D = {y ∈ Rm | y ≤ 0}. It is easily seen that D is a convex subset of Rm. Ω(Xn) is
a cone because f and g are quadratic. We wish to apply Theorem 4.10. In order to do that, we
must show that the condition

ri(D) ∩ ri g(Xn) 6= ∅

holds. This is true when there exists a x ∈ Xn such that g(x) < 0, i.e. when Slater’s condition
holds.

We now get from Theorem 4.10 that

inf
g(x)≥0
x∈Xn

f(x) = sup
p∈P

inf
y≥0
〈p,y〉 (4.12)

The infimum is easily calculated:

inf
y≥0
〈p,y〉 =

{
0 if p ≥ 0

−∞ otherwise

And hence (4.12) gets the form

inf
g(x)≥0
x∈Xn

f(x) =

{
0 if there exists p ≥ 0 in P

−∞ otherwise

If a suitable p exists (S2) then all f(x)-values are greater than or equal to zero whenever g(x) ≥ 0
(S1). On the other hand, if the infimum on the left-hand side equals zero (S1), then a suitable
p exists (S2). �

Considering the labor behind Theorem 4.10, the above proof cannot really be considered more
elegant than the one found for instance in [5]. The latter is analogous to the proof of Lemma
2.16. Instead, the results of this section can be used in quadratic programming.

4.6 Quadratic Duality

Suppose that f : Xn → R and g : Xn → Rm are homogeneous quadratic functions determined
by

f(x) = x∗Fx

gi(x) = x∗Gix i = 1, 2, . . . ,m

where F and the Gi’s are Hermitian matrices. Consider once again the following optimization
problem:

Minimize f(x)

subject to g(x) ∈ D
x ∈ Xn

(4.13)

This is a special case of the class of a quadratically constrained quadratic programs (QCQP)
with the exception that the functions involved are assumed to be homogeneous quadratic instead
of merely quadratic.

The next proposition follows from Theorem 4.10.
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Proposition 4.12 (Quadratic Duality). Let f and g be homogeneous quadratic and denote
Ω(x) = (f(x), g(x)). Suppose that Ω(Xn) convex. Let D ⊆ Rm be convex. If

ri(D) ∩ ri(g(Xn)) 6= ∅ (4.14)

then we have the following duality relation:

inf
g(x)∈D
x∈Xn

f(x) = sup
p∈P

inf
y∈D
〈p,y〉

What we have done is that we have translated the original non-convex problem to a convex
one; the set P can easily be shown to be convex. Notice that Slater’s conditions is replaced by
the more general regularity condition (4.14).

Now pick two real m-vectors α and β such that −∞ < α < β ≤ ∞. If in the above
proposition we set

D = {y ∈ Rm | α ≤ y ≤ β}

then we get the following duality relation:

inf
α≤g(x)≤β
x∈Xn

f(x) = sup
p∈P

{
inf

α≤y≤β
〈p,y〉

}

Consider the sum 〈p,y〉 = p1y1 + p2y2 + · · · + pmym. When pi ≥ 0, then piαi is smaller than
piβi. When pi < 0, then the opposite holds. If βi = ∞ for some i, then the infimum simply
becomes −∞ if pi ≤ 0. Since we are interested in the supremum, we may ignore such points and
assume pi to be nonnegative when βi =∞. We now get:

inf
α≤g(x)≤β
x∈Xn

f(x) = sup
p∈P

pi≥0 when βi=+∞

∑
pi≥0

piαi +
∑
pi<0

piβi

 (4.15)

In the special case β = ∞ this expression can be simplified to

inf
α≤g(x)≤β
x∈Xn

f(x) = sup
p∈P
p≥0

〈p,α〉

Hence the problem 4.13 for D = {y ∈ Rm | y ≥ α} has the following dual problem:

Maximize 〈p,α〉

subject to F −
m∑
i=1

piGi ≥ 0

p ≥ 0

(4.16)

As mentioned before, this is a convex optimization problem, and it is a standard problem in the
theory of LMI’s. It is simply a question of maximizing a linear function over a convex set, and
there are effective numerical methods for solving this kind of problems. The Lagrangian dual
problem

Maximize inf
x∈Xn

{
x∗Fx−

m∑
i=1

pi(x
∗Gix− αi)

}
≥ 0

subject to p ≥ 0

(4.17)
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4.6 Quadratic Duality

is not quite as approachable. Also, it is not that straightforward to find the Lagrangian dual
problem in the general case (4.15) where the entries of β are allowed be finite. Summing up we
may say that the result derived using Fenchel duality has certain advantages compared to the
Lagrangian version and also it applies to a wider circle of quadratic optimization problems. For
further discussion on how to solve (4.15), see for instance [12] or [3].

We have so far seen the broad uses the convexity of Ω(C) implies. Unfortunately, finding and
proving conditions under which this set is convex is quite laborious. In the real case, the easiest
and perhaps the most useful result can be found in [19]. It is the following:

If m = 1, then Ω(C) is convex for all symmetric matrices F and G1.

This result cannot be generalized to m > 1. Instead, one has to construct special cases. The
simplest condition for X = C is the following:

If m = 2, then Ω(C) is convex for arbitrary Hermitian matrices F , G1 and G2.

For the proof, see [20]. This result cannot be generalized, either.
In addition to the ones mentioned above, several other conditions for the convexity of Ω(C)

have been derived. See [21] for more thorough discussion.
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5 Kalman-Yakubovich-Popov Lemma

As mentioned in the introduction, the Kalman-Yakubovich-Popov (KYP) lemma states that
certain assertions are equivalent. We start by giving an example from passivity analysis and
then generalize the result thus gaining a standard form of the KYP-lemma. After that we
generalize the result even further in order to state and prove the extended version of the lemma
that Gusev established in [1].

We shall only consider the real case since the complex case leads to certain cumbersome
definitions.

5.1 Standard Form of the Lemma

Example 5.1 (Passive systems). [22] Consider the following real dynamical system including
an output vector:

ẋ = Ax+Bu

y = Cx
(5.1)

Let us investigate the storage function V (t) associated with the system. The storage function
can be assumed to be quadratic: V (x) = 1

2x
TPx > 0. From (5.1) we obtain:

0 = ẋ−Ax−Bu
0 = xTP ẋ− xTPAx− xTPBu

uTy = xTP ẋ− xTPAx− (xTPBu)T + uTy

uTy = xTP ẋ− xTPAx− uTBTPx+ uTCx

(5.2)

The derivative of V (x) is

V̇ (x) =
dV (x)

dt
=

1

2
ẋTPx+

1

2
xTP ẋ =

(
1

2
ẋTPx

)T
+

1

2
xTP ẋ = xTP ẋ

Integrating the last equation of (5.2) between 0 and a positive real number t with respect to
time gives us the relation∫ t

0

u(s)Ty(s) ds =V (t)− V (0)− 1

2

∫ t

0

x(s)T (PA+ATP )x(s) ds−

−
∫ t

0

u(s)T (BTP − C)x(s) ds

(5.3)

Let us claim that the last term simply disappears. Then we get the so-called dissipation equality :

(a)︷︸︸︷
V (t) =

(b)︷ ︸︸ ︷
V (0) +

(c)︷ ︸︸ ︷
1

2

∫ t

0

xT (s)(PA+ATP )x(s) ds+

(d)︷ ︸︸ ︷∫ t

0

u(s)Ty(s) ds
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5.1 Standard Form of the Lemma

A system that satisfies the above equation along its trajectories is called dissipative. There is a
very intuitive physical interpretation of the above equation. The term (a) on the left-hand side
tells us how much energy there is at time t. This energy depends on (b) the initial energy, (c) the
absorbed energy and (d) the energy that is produced externally. The term (c) is never positive,
and hence if the last term in (5.3) disappears we get the dissipation inequality :

V (t)− V (0) ≤
∫ t

0

u(s)Ty(s) ds

If the above holds then the system is called passive, meaning that it does not produce energy via
the input-output process. Returning to the infinitesimal form gives us:

xTP ẋ ≤ uTCx

and hence

2xTP (Ax+Bu)− 2uTCx = xT (ATP + PA)x+ 2xT (PB − CT )u =

=

(
ATP + PA PB − CT
BTP − C 0

)
≤ 0

(5.4)

It can be shown that the above has a solution P ∈ Sn++ if and only if there exists anH ∈ R(n+m)×n

such that (
ATP + PA PB − CT
BTP − C 0

)
= −HTH (5.5)

for some P ∈ Sn++. So if the system (5.1) is passive then the above equation and the LMI (5.4)
are feasible. To show that the opposite implication holds, set H = (LT W ). Then the above
becomes (

ATP + PA PB − CT
BTP − C 0

)
= −

(
LLT LW
WTLT WTW

)
From this we get BTP − C = 0 and hence the last term in (5.3) disappears which leads to the
dissipation inequality.

We have now found two different ways to determine whether a system is passive. To find a
third one, let us consider the transfer function H : C→ Hm of the system. The transfer function
is defined as the ratio between the output y and input u. It can be shown to be equal to

H(s) = C(sIn −A)−1B

Notice that if we have the initial condition x(0) = 0 then the dissipation inequality takes the

form
∫ t

0
u(s)Ty(s) ds ≥ 0. Let us define

uT (s) =

{
u(s) 0 ≤ s ≤ t
0 otherwise

It follows from Parseval’s theorem and some other manipulations that we can write∫ t

0

u(s)Ty(s) ds =
1

2π

∫ ∞
−∞

Re(H(iω))|uT (ω)|2 dω

If Re(H(iω)) ≥ 0 for every ω ∈ R, then the right-hand side of the above equation is nonnegative
and the system is passive. The opposite implication also holds. Hence the system (5.1) is passive
if and only if the transfer function satisfies the following:

ReH(iω) ≥ 0 for all ω ∈ R (5.6)
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5.1 Standard Form of the Lemma

For a more thorough discussion, see the proof of Theorem 2.6 in [22]. Summing up, one can show
passivity by using any of the conditions (5.4), (5.5) or (5.6). ♦

Remark. We have not taken into account all necessary details in the above example, such as
assumptions on controllability and the poles of the transfer function. ♦

The equivalence of the three conditions that guarantee passivity of the system in Example 5.1
is essentially what the Kalman-Yakubovich-Popov Lemma looks like. But since similar results
arise in other applications it is not desirable to restrict our attention to this special case.

Set

Λ′(P ) =

(
ATP + PA PB

BTP 0

)
(5.7)

and pick any matrix G ∈ Sn+m. Consider the system

Λ′(P )−G = −HTH P ∈ Sn H ∈ Rm×(n+m) (5.8)

This is known as the Lur’e equation. It is easily seen that (5.5) is a special case of the above.
The only difference is that P is not assumed to be positive definite. This follows from other
assumptions that we do not wish to include in the general form of the KYP-lemma. The Lur’e
equation is feasible if and only if the following linear matrix inequality is feasible:

Λ′(P )−G ≤ 0 P ∈ Sn (5.9)

This expression is the “associated LMI” that was mentioned in the introduction. There are
results involving strict inequalities, but we shall only discuss the semidefinite case.

The third equivalent system usually included in the KYP-lemma is the so-called frequency
condition. In Example 5.1 it was (5.6). Let Γ be the set of purely imaginary numbers. It then
follows from (5.6) that the system (5.1) is passive if and only if:

H(λ) +H(λ)∗ ≥ 0 for all λ ∈ Γ

However, this expression is not good since it is defined by means of the matrix C. Instead we
want to have a condition expressed by means of G in order to connect the frequency condition
to the general case (5.8). We get

H(λ) +H(λ)∗ = C(λIn −A)−1B + ((λIn −A)−1B)∗CT =

=

(
(λIn −A)−1B

Im

)∗(
0 CT

C 0

)(
(λIn −A)−1B

Im

)
=

=

(
(λIn −A)−1B

Im

)∗
G

(
(λIn −A)−1B

Im

)
≥ 0

Notice that λ must be chosen so that λIn − A is invertible. This inconsistency rises from the
fact that we were not very exact in example 5.1. The above expression is well-defined as long as
no λ ∈ Γ is not an eigenvalue of A, that is SpA ∩ Γ = ∅.

Returning to the general case the frequency condition with arbitrary G ∈ Sn+m takes the
form (

(λIn −A)−1B
Im

)∗
G

(
(λIn −A)−1B

Im

)
≥ 0 for all λ ∈ Γ (5.10)

We are now ready to present the KYP-lemma.
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5.2 Generalizations

Lemma 5.2 (KYP-Lemma). [24] Suppose that the pair {A,B} is controllable and that the
condition Sp(A ∩ Γ) = ∅ holds. Pick any matrix G ∈ Sn+m. Then the systems (5.8), (5.9) and
(5.10) are equivalent.

Example 5.3 (Positive real lemma and ARE’s). Sometimes the Lur’e equation is given as a set
of equalities. The system

ẋ = Ax+Bu

y = Cx+Du

can be shown to be passive in and only if there exists P = PT > 0 and H ∈ R(n+m)×n satisfying
the following Lur’e equation:(

ATP + PA PB − CT
BTP − C −D −DT

)
= −HTH (5.11)

Setting H = (LT W ) gives us the following equations:

ATP + PA = −LLT

PB − CT = −LW
D +DT = WTW

The feasibility of the above system of equations is equivalent to the transfer function H(s) =
C(sIn −A)−1B +D fulfilling (5.6). This result is a special case of the KYP-lemma and it often
goes by the name positive real lemma.

Another interesting point is that the Lur’e equation (5.11) has the same solutions as the
following algebraic Riccatti equation:

−PA−ATP − (C −BTP )T (D +DT )−1(C −BTP ) ≥ 0

assuming that D +DT > 0. ♦

5.2 Generalizations

We shall now start generalizing the definitions from the previous section. Remember that so far
we have used Γ = iR. In his article [25] Churilov shows that the KYP-lemma holds in the case
in which Γ is a circle on the complex plane or any line vertical with the imaginary axis. We let
Γ to be defined by means of a real 2× 2 matrix Θ such that det Θ < 0 in the following manner:
Consider the function ϕ(λ) =

(
λ 1

)
Θ
(
λ 1

)∗
defined on C. Then

Γ = {λ ∈ C | ϕ(λ) = 0} (5.12)

By setting λ = a+ bi we obtain(
λ 1

)
Θ

(
λ∗

1

)
=
(
λ 1

)(θ11 θ12

θ12 θ22

)(
λ∗

1

)
=

= θ11a
2 + θ11b

2 + 2aθ12 + θ22 = 0

If θ11 = 0 then Γ is a line parallel with the imaginary axis. If θ 6= 0 then it is a circle centered at
a = −θ12/θ11, b = 0 and with radius θ2

12/θ
2
11 − θ22/θ11. The assumption set on the determinant

of Θ guarantees that the radius is positive. Γ divides the complex plane into two disjoint sets:

Ω+
Θ = {λ ∈ C | ϕ(λ) > 0}

Ω−Θ = {λ ∈ C | ϕ(λ) < 0}
(5.13)
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5.2 Generalizations

Now, assume that two matrices M and N in Rn×(n+m) are given. Consider the function Λ :
Hn+m → Sn given by

Λ(S) =
(
M N

)
(Θ⊗ S)

(
MT

NT

)
(5.14)

To see that Λ really is real-valued, see the proof of Lemma 5.4 in the appendix. In the case

m = 0, M = A and Θ =

(
0 1
1 0

)
we simply get the Lyapunov operator: Λ(S) = AS + SAT .

Therefore (5.14) is called the generalized Lyapunov operator. The adjoint operator of (5.14) is
given by

Λ′(P ) =
(
MT NT

)
(ΘT ⊗ P )

(
M
N

)
(5.15)

and it is a function from Sn to Sn+m.
Suppose now that m > 0 and consider the following system:

∃F± ∈ Rm×(n+m) det

(
N
F±

)
6= 0 Sp

(
M

(
N
F±

)−1(
In
0

))
⊆ Ω±Θ (5.16)

We are interested in the case in which (5.16) is feasible.
To understand how the above definitions are connected to those made in the previous section,

consider the following special case:

Θ =

(
0 1
1 0

)
N =

(
In 0

)
(5.17)

This special case has certain advantages toward the general form. We shall see that there always
exists a transformation that allows us to express our function in the form (5.17). If we denote

M =
(
A B

)
(5.18)

where A ∈ Rn×n and B ∈ Rn×m then we obtain

Λ′(P ) =

(
AT In
BT 0

)(
0 P
P 0

)(
A B
In 0

)
=

=

(
P ATP
0 BTP

)(
A B
In 0

)
=

=

(
ATP + PA PB

BTP 0

) (5.19)

This expression is consistent with our previous definition of the adjoint operator, see equation
(5.7). Also, we get

Λ(S) =
(
M N

)(0 S
S 0

)(
MT

NT

)
= NSMT +MSNT = 0 (5.20)

If Θ is given in this standard way we get

ϕ(λ) =
(
λ 1

)(0 1
1 0

)(
λ∗

1

)
= λ+ λ∗ = 2 Reλ
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5.2 Generalizations

Hence Γ is simply the imaginary axis. Ω+
Θ therefore contains all complex numbers with positive

real part and Ω−Θ those with negative real part. If we use (5.18) it follows from condition (5.16)
that (

A B
)(In 0

F±

)−1(
In
0

)
=
(
A B

)( In ∗
K± ∗

)(
In
0

)
=

=
(
A+BK± ∗

)(In
0

)
= A+BK±

Hence the feasibility of (5.16) translates to the existence of matrices K± ∈ Rm×n such that
A+BK− is Hurwitz and A+BK+ is antihurwitz. This is equivalent to assuming that the pair
{A,B} is controllable.

We shall now present some auxiliary result needed in the next section.

Lemma 5.4. If (5.16) is feasible, then Λ(Sn+m
+ ) = Sn.

Lemma 5.5. Suppose (5.16) is feasible. Then

(a) If the matrix S ∈ Sn+m
+ solves the equation Λ(S) = 0 then there exists vectors

zi ∈ Cn+m, i = 1, 2, . . . , n+m solving Λ(ziz
∗
i ) = 0 such that

S =

n+m∑
i=1

ziz
∗
i

(b) Let

A1 = {z ∈ Cn+m | Λ(zz∗) = 0}
A2 = {z ∈ Cn+m | (λN −M)z = 0 for some λ ∈ Γ}

Then A1 = clA2

The proofs can be found in the appendix.
We shall now prove a duality result for matrices. As was mentioned in the remark following

Theorem 4.10, the result holds even for matrices. Since the scalar product for matrices is defined
as trace, the support function in the theorem takes the form:

ΨD(P ) = inf
S∈D

tr(SP )

Theorem 5.6. Let D be a nonempty closed convex set in Sn. Suppose that (5.16) is feasible.
Then we have the following duality relation:

inf
S∈Sn+m

+

Λ(S)∈D

tr(GS) = sup
P∈dom ΨD

Λ′(P )−G≤0

ΨD(P )

where Λ is given by (5.14). If there exists P ∈ dom ΨD satisfying

Λ′(P )−G ≤ 0

then the supremum attained.

Proof. Pick f(S) = tr(GS), g(S) = Λ(S) and C = Sn+m
+ in Theorem 4.10. The condition (4.7)

holds by Lemma 6.3 and Ω(Sn+m
+ ) is a convex cone because the mappings f and g are linear.

If there exists P ∈ dom ΨD satisfying Λ′(P )−G ≤ 0 then (4.9) is fulfilled and the supremum is
attained. �
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5.3 Extended Version

5.3 Extended Version

We are now ready to prove a more general version of the celebrated Kalman-Yakubovich-Popov
Lemma.

Theorem 5.7. [[1], Theorem 3] Let M,N ∈ Rn×(n+m) and Θ ∈ S2 such that det Θ < 0. Suppose
that that (5.16) is feasible. Then for any G ∈ Sn+m the following statements are equivalent:

(1) (Lur’e equation) There exist P ∈ Sn and H ∈ Rm×(n+m) such that

Λ′(P )−G = −HTH (5.21)

(2) (Corresponding LMI) There exists P ∈ Sn such that

Λ′(P )−G ≤ 0

(3) (Frequency condition) For every z ∈ Cn+m for which there exists a λ ∈ Γ such that

(λN −M)z = 0

the following inequality holds:
z∗Gz ≥ 0

(4) For every z ∈ Cn+m such that Λ(zz∗) = 0 we have

z∗Gz ≥ 0

(5) For all S ∈ Sn+m
+ that satisfy Λ(S) = 0 we have

tr(GS) ≥ 0

(6) There exist Q ∈ Sn such that
inf

S∈Sn+m
+

Λ(S)=Q

tr(GS) > −∞

(7) If D is a bounded closed convex nonempty set in Sn then the following duality result holds:

inf
S∈Sn+m

+

Λ(S)∈D

tr(GS) = sup
P∈Sn

Λ′(P )−G≤0

ΨD(P ) (5.22)

where the supremum is attained.

Proof. We shall show the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (1).
The implication (1) ⇒ (2) is self-evident.
To show (2) ⇒ (3), suppose that (2) holds and pick z ∈ Cn+m for which the equality

λNz = Mz holds for some λ ∈ Γ. Then we get

Λ(zz∗) =
(
M N

)
(Θ⊗ zz∗)

(
M N

)T
=
(
Mz Nz

)
Θ
(
Mz Nz

)∗
= Nz

(
λ 1

)
Θ
(
λ 1

)∗
(Nz)∗ = 0
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5.3 Extended Version

The last equality follows from the definition of Γ, see equation (5.12). Using the above, we get

z∗Gz = tr (Gzz∗) = tr (Gzz∗)−
=0︷ ︸︸ ︷

trPΛ(zz∗) = tr (Gzz∗ − PΛ(zz∗))

where P ∈ Sn is a matrix satisfying (2), that is G− Λ′(P ) ≥ 0. We then obtain

z∗Gz = tr (Gzz∗ − Λ′(P )zz∗) = tr ((G− Λ′(P ))zz∗) = z∗(G− Λ′(P ))z ≥ 0

as desired.
(3) ⇒ (4) follows directly from Lemma 5.5 (b).
We shall now prove the implication (4) ⇒ (5). Suppose that P ∈ Hn+m

+ fulfills Λ(P ) = 0.
By Lemma 5.5 (a) we can express P as a sum

P =

n+m∑
i=1

ziz
∗
i

where zi ∈ Cn+m, i = 1, 2, . . . , n + m solve the equation Λ(zz∗) = 0. Using general rules for
trace and the condition (4) we get

tr(GS) = tr

(
G

n+m∑
i=1

ziz
∗
i

)
=

n+m∑
i=1

tr(Gziz
∗
i ) =

n+m∑
i=1

z∗iGzi ≥ 0

This completes the proof of the implication.
(5) ⇒ (6) is trivially true: it suffices to choose Q = 0.
To show (6) ⇒ (7), suppose that (6) holds for some Q ∈ Sn. The duality relation (5.22)

follows directly from Theorem 5.6 and the fact that dom ΨD = Sn since D is bounded. It remains
to show that the supremum is attained.

Consider the set {Q}. We have

Ψ{Q}(P ) = inf
S=Q

tr(SP ) = tr(QP )

Notice also that dom Ψ{Q} = Sn. It now follows from Theorem 5.6 and the assertion (6) that

−∞ < inf
S∈Sn+m

+

Λ(S)=Q

tr(GS) = sup
P∈Sn

Λ′(P )−G≤0

tr(QP )

In the above we see that there must exist a symmetric P that satisfies Λ′(P ) − G ≤ 0. Again,
by Theorem 5.6 this implies that the supremum is attained.

It remains to show that (7) ⇒ (1) holds. As was seen above, the condition (7) implies that
there exists a P satisfying Λ′(P )−G ≤ 0. This in turn implies (1). �

Remark. There is also a similar result involving only strict inequalities. ♦

Remark. We have taken away some components from the original formulation of condition (7).
The reason is that proving the complete version requires using results from the strict version of
the lemma. As the components are consequences of the given duality relation, it is really not
necessary to include them.

The missing items state that there exist P± ∈ Sn such that:

arg max{tr(P ) | P ∈ Sn, Λ′(P )−G ≤ 0} = {P+}
arg min{tr(P ) | P ∈ Sn, Λ′(P )−G ≤ 0} = {P−}
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5.3 Extended Version

Also, any matrix P ∈ Sn that satisfies the condition Λ′(P )−G ≤ 0 also fulfills

P− ≤ P ≤ P+

Furthermore, there exists H± ∈ Rm×(n+m) such that the pairs (P+, H+) and (P−, H−) satisfy
the Lur’e equation (5.21). ♦
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6 Appendix: Proofs

Transformation

In this section we state and prove a proposition that shall simplify the proofs of Lemmas 5.4 and
5.5 significantly. We show that there always exists a transformation that allows us to express Θ
and N in the special form (5.17).

Consider a transformation T determined by two nonsingular matrices Π ∈ R2×2 and T ∈
R(n+m)×(n+m) such that

ΘT = Π−1Θ(Π−1)T(
MT NT

)
=
(
M N

)
(Π⊗ In+m)(I2 ⊗ T−1)

(6.1)

Furthermore, a vector z ∈ Cn+m and a matrix F ∈ R(n+m)×n become

zT = Tz

FT = TF
(6.2)

The matrices G and S in Sn+m that define the function Λ are be given by

GT = (T−1)TGT−1

ST = TSTT
(6.3)

and the function Λ itself by

ΛT (P ) =
(
MT NT

)
(ΘT ⊗ P )

(
MT
T

NT
T

)
(6.4)

Set ρ(ν, µ) =
(
ν µ

)
Θ
(
ν µ

)∗
. This function becomes:

ρT (ν, µ) =
(
ν µ

)
ΘT

(
ν µ

)∗(
νT µT

)
=
(
ν µ

)
Π

(6.5)

The above conditions lead to the following relations:

tr(GT ST ) = tr(GS) (6.6a)

ΛT (ST ) = Λ(S) (6.6b)

ρT (νT , µT ) = ρ(ν, µ) (6.6c)

We shall need the following two lemmas:

Lemma 6.1. For any F ∈ C(n+m)×n the following two conditions are equivalent:

(a) det(NF ) 6= 0 and Sp[(NF )−1MF ] ⊂ Ω±Θ
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(b) det(NF ) 6= 0 and det(νNF − µMF ) 6= 0 for all ±ρ(ν, µ) ≤ 0.

Lemma 6.2. Let F ∈ R(n+m)×n. If FT = TF then

νTNT FT − µTMT FT = det(Π)(νNF − µMF )

Similar result holds for any vector z ∈ Cn+m.

Proof. Remember that it is generally true that

(A⊗B)(C ⊗D) = AC ⊗BD

if the matrices involved have suitable dimensions. Notice also that the following equality holds:(
−µT
νT

)
= det(Π)Π−1

(
−µ
ν

)
We now get

νTNT FT − µTMT FT = (MT NT )

((
−µT
νT

)
⊗ In+m

)
FT =

= det(Π)
(
M N

)
(Π⊗ In+m)(I2 ⊗ T−1)

(
Π−1

(
−µ
ν

)
⊗ In+m

)
TF =

= det(Π)
(
M N

)
(Π⊗ T−1)

(
Π−1

(
−µ
ν

)
⊗ In+m

)
TF =

= det(Π)
(
M N

)(
ΠΠ−1

(
−µ
ν

)
⊗ T−1

)
TF =

= det(Π)(νNF − µMF )

The proof for z is almost identical. �

Proposition 6.3. If (5.16) is feasible, there exists a transformation T determined by two non-
singular matrices Π ∈ R2×2 and T ∈ R(n+m)×(n+m) that satisfy the conditions (6.1) – (6.5) such
that we can express Θ and N in the form

ΘT =

(
0 1
1 0

)
NT =

(
In 0

) (6.7)

Furthermore, the matrices ΘT , MT and NT satisfy the condition (5.16).

Proof. We can always write

Θ = Π

(
0 1
1 0

)
ΠT (6.8)

for some invertible Π =

(
π11 π12

π21 π22

)
∈ R2×2. This gives us the desired transformation for Θ:

ΘT = Π−1Θ(Π−1)T = Π−1Π

(
0 1
1 0

)
ΠT (Π−1)T =

(
0 1
1 0

)
We shall now construct two transformations T1 and T2 and determine T as a combination of these.
The variables associated with transformation T1 shall have subscript 1, and those associated with
T2 will be marked by 2.
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Now consider T1 given by Π1 = Π and T1 = In+m. As we saw above, we get Θ1 =

(
0 1
1 0

)
and by (6.1) we gain

M1 = (π21N + π11M)

N1 = (π22N + π12M)

Furthermore, from (6.5) we get the relations(
ν1 µ1

)
=
(
ν µ

)
Π

ρ1(ν, µ) =
(
ν µ

)(0 1
1 0

)(
ν∗

µ∗

)
= 2 Re(νµ∗)

Let F± be solutions to (5.16). Define H± ∈ R(n+m)×n and K± ∈ R(n+m)×m by(
N
F±

)−1

=
(
H± K±

)
It follows from (

N
F±

)(
N
F±

)−1

=

(
N
F±

)(
H± K±

)
=

=

(
NH± NK±

F±H± F±K±

)
=

(
In 0
0 Im

) (6.9)

that NH± = In. This, together with the fact that

Sp

(
M

(
N
F±

)−1(
In
0

))
= Sp(MH±) ⊂ Ω±Θ

allows us to use Lemma 6.1. Hence

det(νNH± − µMH±) 6= 0 for all ± ρ(ν, µ) ≤ 0 (6.10)

Using (6.8) we get that ρ(π22,−π12) = 0 and hence

det((π22N + π12M)H±) = det(N1H
±) 6= 0 (6.11)

We also get from the equation (6.9) that(
N1

F±

)(
H± K±

)
=

(
N1H

± N1K
±

0 Im

)
(6.12)

Equation (6.11) implies that the right-hand side of (6.12) is nonsingular and hence we obtain

det

(
N1

F±

)
6= 0. We can therefore define matrices H±1 ∈ R(n+m)×n and K±1 ∈ R(n+m)×m by the

relations (
N1

F±

)−1

=
(
H±1 K±1

)
Combining the above with (6.12) yields H±1 = H±(N1H

±)−1. Keeping in mind that T = In+m

we now get from Lemma 6.2 that

det(ν1N1H
±
1 − µ1M1H

±
1 ) = det(νNH± − µMH±) det(Π) det(N1H

±)−1
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We already know that the determinants of Π and (N1H
±)−1 are nonzero. From(6.10) and (6.6c)

we get that det(ν1N1H
±
1 −µ1M1H

±
1 ) 6= 0 whenever ±ρ1(ν1, µ1) ≤ 0. Remember that Γ is simply

the imaginary axis whenever Θ is of the standard form (5.17). Since N1H
±
1 = In in the same

way as in (6.9) it follows from Lemma 6.1 that

Sp(M1F
±
1 ) ⊂ C± (6.13)

Let now T2 be given by Π2 = I2 and T2 =

(
N1

F−

)
and consider the transformation T determined

by Θ = Θ1Θ2 and T = T1T2. Then ΘT and NT are of the desired form (6.7). Also, we get
MT = M1T

−1. It remains to show that (5.16) holds for these matrices.
Consider F±T = F±T−1. Then

det

(
NT
F±T

)
= det

(
N1

F±

)
det(T−1) 6= 0

Let us choose

H±T =

(
NT
F±T

)−1(
In
0

)
We the get MTH

±
T = M1H

±
1 and the result follows from (6.13). �

Lemma 5.4

Let us first note that it follows from the relation (6.6b) that

Λ(S) = ΛT (ST ) = NT STM
T
T +MT STN

T
T

A matrix plus its Hermitian conjugate is a real symmetric matrix, from which it follows that the
right-hand side is real symmetric. Hence the choice of codomain to Λ is justified.

Let Q ∈ Sn be given. By Lemma 6.3 and the relation (6.6b) we may restrict our attention
to the special case (5.17). We shall show that there exists S ∈ Sn+m

+ such that Λ(S) = Q. This
shall prove the lemma.

Let F± be matrices that fulfill the condition (5.16). If we set

H± =

(
N
F±

)−1(
In
0

)
then the condition (5.16) implies that MH− is Hurwitz and MH+ antihurwitz. Notice that

NH± =
(
In 0

)(In 0
F±

)−1(
In
0

)
=
(
In 0

)(In ∗
∗ ∗

)(
In
0

)
= In (6.14)

Since Q is symmetric we may express it as a sum Q = Q+ +Q− where Q+ ≥ 0 and Q− ≤ 0. As
seen in Example 4.7 and the discussion following it, the Lyapunov equations

(MH±)P + P (MH±)∗ = Q± (6.15)

have solutions P± in Sn+. Let S = H+P+(H+)∗ +H−P−(H−)∗ ∈ Sn+m
+ . The result follows by

inserting S in (5.20) and using relations (6.14) and (6.15). The proof is now complete.
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Lemma 5.5

In order to show the result we need the following two lemmas from [24]:

Lemma 6.4. Let N and M be complex matrices of the same size. Then FG∗ +GF ∗ = 0 if and
only if there exists a matrix U such that UU∗ = I and F (I + U) = G(I − U).

Lemma 6.5. Let x,y ∈ Cn and y 6= 0. Then xy∗ + yx∗ = 0 if and only if there exists a ∈ R
such that x = iay.

To show that (a) holds, suppose that S solves the equation Λ(S) = 0. By Lemma 6.3 and
the relation (6.6b) we can again restrict our attention to the special case (5.17). We get from
(5.20) that

Λ(P ) = NPMT +MPNT = NP 1/2(MP 1/2)T +MP 1/2(NP 1/2)T = 0

By Lemma 6.4 there exists a matrix U such that

NP 1/2(I + U) = MP 1/2(I − U) (6.16)

The condition UU∗ = I means that U is unitary, and hence there exists θj ∈ R, uj ∈ Cn+m,

j = 1, 2, . . . , n+m such that
∑n+m
j=1 uju

∗
j = I and U =

∑n+m
j=1 eiθjuju

∗
j . If we set zj = P 1/2uj

then we obtain
∑n+m
j=1 zjz

∗
j = P as desired. Let us now show that

Λ(zjz
∗
j ) = Nzj(Mzj)

∗ +Mzj(Nzj)
∗ = 0

We have

Nzj(1 + eiθj ) = NP 1/2uj(1 + eiθj ) = NP 1/2(I + U)uj =

= MP 1/2(I − U)uj = Mzj(1− eiθj )

Applying Lemma 6.4 once again gives the desired result. We have now proved the first part of
our lemma.

To show (b) it is not sufficient to consider the case (5.17). The reason is that whether or
not A2 is compact depends on the nature of Γ. Let T be a transformation as in Lemma 2.9 and
suppose that z ∈ Cn+m ∈ A1.

Consider the point zT = Tz. We shall show that the equation

(νTNT − µTMT ) zT = 0 (6.17)

is satisfied for some µT , νT ∈ C such that

|µT |+ |νT | 6= 0

ρT (νT , µT ) = 2 Re(µT ν
∗
T ) = 0

(6.18)

If NT zT = 0, then we may choose µT = 0 and νT = i. Suppose that NT zT 6= 0. We have

0 = Λ(zz∗) = ΛT (zT z
∗
T ) = NT zT (MzT )∗ +MT zT (NT zT )∗ = 0

Set x = NT zT and y = MT zT . By Lemma 6.5 there exist an a ∈ R such that Re(a) ≥ 0 and
Mz = iaNz. Hence the points µT = 1 and νT = ai satisfy (6.17) and the conditions (6.18).

By the Lemma 6.2 we get from (6.17) that

(νN − µM) z = 0 (6.19)
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Here µ and ν are determined by the relation (6.5). The relations (6.18) translate directly to

|µ|+ |ν| 6= 0

ρ (ν, µ) = 0
(6.20)

Pick any ν, µ satisfying the equations (6.19) and (6.20). We shall now show that z ∈ clA2. There
are two cases to consider: (1) µ 6= 0 and (2) µ = 0.

(1) If µ 6= 0 then the result follows by inserting λ = ν/µ in (6.19). The condition ρ (ν, µ) = 0
implies that ρ (λ, 1) = ϕ(λ) = 0 and hence λ ∈ Γ. This means that z ∈ A2.

(2) Suppose that µ = 0. We get from (6.19) that

ρ (ν, 0) =
(
ν 0

)
Θ

(
ν∗

0

)
=
(
ν 0

)(θ11 θ12

θ21 θ22

)(
ν∗

0

)
= νν∗π11 = 0

From this it follows that θ11 = 0, otherwise we would have |µ|+ |ν| = 0, a contradiction. As
mentioned earlier, this implies that Γ is a line in C and not a circle. Hence we can find a
sequence {λi}∞i=1 ⊂ Γ such that limi→∞ λi is +∞ or −∞.

We shall now construct a sequence {zi}∞i=1 ⊂ Cn+m in A2 that converges to z. Let F−

satisfy (5.16) and consider

H− =

(
N
F−

)(
In
0

)
In the same way as in (6.14) we get NH− = In. From (5.16) we also obtain

det(λiIn −MH−) 6= 0, i = 1, 2, . . .

Let us now construct the sequence {zi}∞i=1 by setting:

zi = z +H−(λiIn −MH−)−1Mz

Then we get

λiNzi −Mzi = λiIn(λiIn −MH−)−1Mz −Mz −MH−(λiIn −MH−)−1Mz =

= (λiIn −MH−)(λiIn −MH−)−1Mz −Mz = Mz −Mz = 0

Hence each zi belongs to A2. The result follows by noting that

lim
i→∞

zi = z +H− lim
i→∞

(λiIn −MH−)−1Mz = z

since limi→∞(λiIn −MH−)−1Mz = 0. The proof is now complete.
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