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Abstract

Our main purpose in this project is to study several Hopf algebras of Feynman
graphs, and do some calculations of the values of an antipode on concrete
graphs. These Feynman graph Hopf algebras originated in the quantum field
theory, more precisely in a relatively new approach to the renormalization
of diverging Feynman integrals. In that approach to renormalization the
antipode map plays a key role.

We give a comprehensive introduction into the theory of graded Hopf alge-
bras. We describe in detail all the main definitions and theorems necessary
to understand Hopf algebras of Feynman graphs, and consider many concrete
graphs.
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Introduction

This text aims to first give a self-contained presentation of the fundamentals
necessary to understand Hopf algebras, and then to present the interesting
class of Hopf algebras associated to Feynman graphs. The reader will be
introduced to multilinear maps of modules and the universal problem of
multilinear maps, to which the tensor product is the solution. Relevant
properties of the tensor product are proven and examples given. The theory is
then extended from modules to associative algebras, modules with a structure
of a ring, and an important example of such, the notion of tensor algebra, is
explored. After the notion of algebra has been presented, its dual, the notion
of coalgebra, is defined and studied. These two notions are then combined to
a bialgebra, a module with structure of both an algebra and coalgebra in a
compatible way. A Hopf algebra is a bialgebra with an anti-linear mapping
called the antipode.

The text has two goals, one is of course to present Hopf algebras of Feynman
graphs. Each aspect of the theory needed to understand Hopf algebras of
Feynman graphs is in itself very important. Therefore a second goal is to
make the treatment of those elements a good introduction, and some mate-
rial not directly related to the final application but of general interest are
presented. Hopf algebras and its applications to Feynman graphs should be
seen as one of many interesting applications of the theory presented.



Chapter 1

Introduction to the tensor
product

1.1 Modules

The concept a module is a generalization of the notion of a vector space. The
main difference is that the scalars of a module instead of residing in a field
come from a commutative ring R. It is also possible to define a module over
a non-commutative ring, this will however not be the case in this text.

Definition. An R-module M over a commutative ring R consist of an abelian
group (M, +) and an operation R x M — M, which have the following prop-
erties for r,s € R and v,y € M

rle+y) = re+ry (1.1)
(r+s)z = re+sx (1.2)
(rs)r = r(sx) (1.3)
lrx = x If R has an identity element 1g (1.4)

It is important to note that a module does not necessarily have a basis,
something that makes it different from a vector space. A module which is
generated by a finite number of elements in M is called a finitely generated
module. This is not the same as having a basis in the sense of vector spaces.
Such a basis consists of a finite number of linearly independent elements. A
module having such a basis is called a free module.
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Definition. If a R-module M s generated, using the defined operations, by
a finite number of elements eq,...,e, € M such that forri,...,r, € R

rel,...,Tep, =0 & rH=r=...=r,=0

Then M is called a free module and B = {ey, ..., e,} is called the basis of
M and the number of elements in B is called the rank of B.

If the ring of scalars is in fact a field, the module is a vector space.

1.2 Multilinear maps and the universal prob-
lem

We will now describe two important concepts which together are used to
describe the tensor product. These are the definition of multilinear maps,
and the universal problem to which the tensor product pose a solution.

Definition. Assume My, My, . ..., M, and M are R-modules. Then a map-
ping

¢ My x My x....x M, - M
s called multilinear if it is linear in each of its components. That is, if

mi, Mo, ..., My are elements in their respective R-module and r € R then the
following equalities are satisfied:

¢(m17---7mi+m;7"'7mn) = ¢(m17 -, My, 7mn)
+ p(my,...,ml, ... my) 1.5)
d(ma,...,rmy, oo my) = rd(Ma, .. My, .., My)

forany 1 <1< n and any r € R.

Examples of multilinear maps are the determinant with respect to each of its
rows or columns, and the cross-product of vectors in R3.

When dealing with modules a linear map is called a homomorphism. Now
assume that besides the mapping ¢ there is also a homomorphism h : M —



N. It is easily verified that the composition h o ¢ is also a multilinear map.

h(p(my,...,mi+ml, ..., my,))
=h(d(ma,...,ms....my) + d(my,...,m5....my))
=h(p(my,...,m4i...,my)) + h(p(my,...,m.,....,my,)

By the multilinearity of ¢ and the linearity of A. Similarily we have:

h(p(my,....,rm4i, ... omy)) = h(re(my,...,mi....,my))

= Th(¢(m17 ey My, e 7mn>>

We have now proven that the composition of ¢ and h is a multilinear map.
The knowledge that a composition of a linear and multilinear mapping is a
multilinear map gives rise to a more general question.

The universal problem of multilinear maps. Find a pair of an R-
module M and a multilinear mapping ¢ : My x ... x M,, — M such that
for any multilinear mapping ¢ : My x ... x M,, — N there is exactly one
homomorphism h : M — N such that ho ¢ = 1. A solution, (M, $) to this
problem s said to have the universal property of multilinear maps.

Before we continue to find a solution to the universal problem we will conclude
the following.

Theorem 1. The solution to the universal problem is essentially unique in
the sense that if two solutions (M, ¢) and (M’,¢') exist then there will always
be inverse isomorphisms A : M — M’ and X' : M' — M.

Proof. First of we conclude that if a pair (M, ¢) is a solution, then whenever
there are two homomorphisms g : M — N and ¢ : M — N such that
go¢ = g o¢. Then g = ¢ by the uniqueness condition stated in the
definition.

By the universal property there are homomorphisms A and )\ such that
Aogp=¢ and X o ¢ = ¢. From this it follows directly that

idop=¢=Nod=Noloo

where id is the identity mapping of M. Now by what was stated at the
beginning of the proof this implies that A'o\ = id and similarly Ao\ = id. [

10



As a consequence of this, the solutions to the universal problem is unique
upto inverse isomorphisms. As a consequence one can often neglect the
messy details of the construction as soon as its possibility has been proven
and instead focus on this universal property to provide proofs of further
properties.

1.3 The construction of the tensor product

We will now turn to finding a solution to the universal problem. First we
construct a module called the free module generated by M; x My x ... x M,,.
Then we quotient out by a submodule to impose an equivalence. We then
show that this is a solution to the universal problem and name it the tensor
product.

The free module of a set F is created seeing the whole set as a basis for an
R-module. Any element in this R-module is a linear polynomial with the ele-
ments of £ as indeterminates and with coefficients from R. This free module
of E has the universal property that for any arbitrary mapping ¢ : E — N,
N being an R-module, there is an unique extension to a homomorphism
from the free module of ¥ to N. This is since we can, and must, define the
mapping, where U(E) is the free module of FE,

h:U(E)— N
as

h(rier + ...+ ren) =ripler) + ...+ rp(en)
fore; € Fand r € R.

If we now let U(M;, ..., M,) be the free module generated by M; x ... x M,,
then the basis will consist of sequences (my, ..., m,). We define the mapping

M x...x M, = U(M,...,M,)

as the that maps (my, ..., m,) to the corresponding base element in U (M, ..., M,).
By what we have just concluded, for any map ¢ : My x ... x M, — N there

will be a unique extension to a homomorphism A : U(My, ..., M,) — N such

that h o m = ¢. However, this does not pose a solution since the map 7 is

not necessarily multilinear.
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To solve this consider the submodule V' (M, ..., M, ) generated by elements
on one of the forms:

(mlw"ami—i_mg?""mn) - (mly , Ty, Jmn)
- (mh amga amn)
(my,...,rmy, ... omy) — r(my,...,my, ..., my,) (1.8
Define M as:

M =U(My, My, ..., M,)/V(My, Ms, ..., M,)
and define a mapping
K : My x...x M, - M

so that ®(my, ms, ..., m,) is the natural image of (m, ms,...,m,), consid-
ered as an element of U(My, My, ..., M,) in M.

Now reconsider the definition of a multilinear map, equation (1.5) and (1.6).
Any of the elements on the form (1.7) or (1.8) will be mapped to zero by
® as we now have defined it, since these elements will by definition belong
to the submodule V (M, ..., M,). From this it follows that ® satisfies the
conditions (1.5) and (1.6) and thereby it is a multilinear map.

Theorem 2. (®, M) is a solution to the universal problem.

Proof. To prove this theorem suppose we have an arbitrary multilinear map-
ping
Vv My x My x ... x M, — N.

We know there is an R-homomorphism
h:U(My, My, ... ,M,)— N.

Since 9 is multilinear any element on the form (1.7) or (1.8) will be mapped to
zero in 1) and therefore ¢ will vanish in V (My, My, ..., M,). As a consequence
there is an induced map h : M — N such that h o ® = ¢. The uniqueness
of the solution is already given by the construction of the homomorphism h
from the free module. O
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From now on we will be using an infix notation for the tensor product. If
(®, M) is a solution to the universal problem then it is customary to write
M = M, ®gr My ®g ... ®g M, and to denote the element ®(mq, my,...,my,)
by mi ®g ms Qg ... ®r My, also the elements m; Qg Mo R ... @ m,, will
be called monomial tensors. For ease of notation the suffix denoting the
ring will often be omitted if it is obvious which ring is considered.

Theorem 3. Fach element of M, as defined earlier, can be expressed as a
finite sum of elements of the form m; ® ... ® m,. Or in other words, the
tensor product is generated by the monomial tensors.

Proof. Suppose that M’ is the R-submodule of M generated by elements of
the form m; ® ...®m,,. Let hy : M — M /M’ be the natural homomorphism
and hy : M — M /M’ be the null homomorphism.

For any element my x ... X m, € My x ... x M, it is obviously true that

h10®1M1X...XMn—>M/M/

and

h20®2M1 X oo, XMn—>M/M/
will map the element to 0. But then h; o ® = hy o ® which in turn implies
that hy = hy so M = M'.

For any z € M = M’, x can be written as

r=r(m®@...0m,)+r'(m®...0m,)...,

However, since ® is multilinear
r(m ®...0my,) =(rm ® ... my,)

and similarly for all the other terms [

Many times the modules of interest are going to be free modules or vector
spaces. Therefore the next theorem is of great interest.

Theorem 4. Let M; be a free R-module for (i = 1,2...,n) and B; be its
basis. Then M1 ®@ My®...® M, is also a free R-module and its basis consists
of the elements by Q by ® ... ® b, where b; € B;. That is Bi® Bo® ... B,
18 a basis.
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Proof. Since we now that M is generated by elements on the form m; ®...®
m,, it will suffice to show that any such element is a linear combination of
elements by ® by ® ... ® b,. Since B; is a basis for M; we know that any
element m; € M, can be written as Z r;. bi, = m;. As a consequence:

o

m...Qm, = Zrlab1a®...®ZTnabna
1o Na

= Z Tla...'f’nabla®.-~®bna

by the multilinearity of ®. The linear independence of these elements follows
directly from the linear independence of the respective B;. This proves that
the elements b, ® ... ® b, generates the whole of M.

1.4 Examples of tensor products
Example 1. Calculate Z./5 @7 7./ 7.

To calculate Z/5 ®z Z/7 we will make use multilinear properties of ®7, the
suffix will be left out for the rest of this example. First of it is clear that 5
annihilates the left factor and that 7 annihilates the right factor. But then
it also follows that if m € Z/5 and n € Z/7

0=0-(m®zn)=0-mn=>5-men=me (5-n)

in other words, 5 also annihilates the right factor, similarly

0=0-(m®n)=m®0-n)=mx((7T-n)=(7T-m)@n=(2-m)dn.

Then we can also write
Gm®n)—2(2-m®n)=5—-2-2)mRn=mn
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But also

(5Gm®n)—2(2-m®n)=0—-2-0=0

Thereby any element m @ n in Z/5 ® Z/7 is zero. But since any element of
Z/5®7Z/7 can be written as a sum of terms m ®n it follows that any element
inZ/5®Z/7is 0. So

Z/57Z]7T=0

Example 2. R? @g R? over the field of real scalars.

Now suppose that we have a basis B = {e1, €2, e3}. Then by Theorem 3 we
know that R?® ® R? has a basis B® B such that the elements in this basis will
be of the form b®’. That is elements on the form e;es or ese;. The number
of elements in this basis is 32 = 9 since this is the number of ways you can
create a two element sequence where each element is on of three elements. If
we denote the basis

! ! / ! /
€1 = €161 €9 = €162 €3 = €1€3 €4 = €261 €5 = €2€2,

€g = €263 €L = e36] €5 = €36y €y = €363

an element € R3@R3 is given by x = a1€} +aseh, + . . . + agel where a; € R.
An example of a monomial tensor with usual vector notation would be

(1,2,3) ® (4,5,6) = (4,5,6,8,10,12,12, 15, 18)

We now have a new 9-dimensional vector space R?® ® R? such that any multi-
linear mapping R? x R® — V. where V is any vector space, there is a linear
map h : R®* @ R® — V. Since h is a linear map from one vector space to
another it can be written as a transformation matrix A.

The usual scalar product is a multilinear map and it is in R? defined by
(a1, a9,a3) - (ay, ay, ay) = aja) + agay + azay

if we instead look at the induced linear map h from R3®R? to R it would be
h(ai, as, as, ay, as, ag, az, ag, ag) = a; + as + ag and this linear map h would
have the transformation matrix

15



A=(1,0,0,0,1,0,0,0,1)

To sum it up we have the following equality for v, u € R3

veou=A(v®u)
Similarly we can write the transformation matrix for the linear map induced

by the cross product

0 0
VX U= 00 -1
01

16



Chapter 2

Some elementary properties of
the tensor product

In this part of the text we will focus on some fundamental properties of the
tensor product. Among those are isomorphisms that prove that the tensor
product is in a sense both associative and commutative. Also we will study
the tensor product of homomorphisms and the the tensor product of a direct
sum.

2.1 Basic isomorphisms

As has been discussed earlier one does often not need to make an actual
construction of the tensor product for the use of its properties to solve prob-
lems. Instead it is sufficient to conclude that a construction is possible and
thereafter make use of proven properties that follow directly. Two solutions
to the universal problem will from this perspective be essentially the same
since there is an unique isomorphism between them.

Theorem 5. There is an isomorphism
M®..M, N ®..N,~(Mi®...0M,)® (N ®...Q N,)

in whichmy ® ... @ m, ®ny @ ... n, is matched with (m; @ ... @ my) @
(N1 ®...Qn,).
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Proof. By the universal property of the tensor product there is a homomor-
phism

fiMi®@.. QM @N®...QN, - (M1 ®...0 M) (N1 ®...Q Np)
induced by the multilinear mapping
Myx. ..My XxNyX...x Ny = (M1 ®...0M,)®@ (N1 ®...0N)

in which (mq,...,my,, 0y, ..., n,) is mapped to (M ®. . .Qm,)® (M Q. ..Qn,).
To prove that this is an isomorphism one has to reverse this homomorphism

f.

Suppose that we hold nq,ns, ..., n, fixed. Again, by the universal property it
is obvious that there is an homomorphism M ® ... M, - M1 ®... @ M, ®
N1 ®...®N, where m; ®...®m, is mapped with m; ®...®@m,®dn;X...Qn,.
Consequently, since this is a homomorphism we have that if the following
relation is given

/

m@me® ... 0 My +my@myR ... m,+
+mi@ms®...@m, =0
then
M. 0m, N ®...0n,+m|®...0m,An; ® ... ny,+

+mi®@...omlen®...Qn, =0

Where 0 of course denotes the zero element in M1 ®... @ M,, @ N1 ®...Q N,.
We get similar results if the roles M; and N; are interchanged.

Now by Theorem 3 we know that any element £ € M; ® My ® ... ® M, and
n € N ® Ny ®...% N, can be expressed using their respective monomial
tensors. Now let

fzzm1®---®mn22m®---®un

N=) M. @n=) ne.. .

be two such representations for ¢ and n each. By what we stated in the last
paragraph we get the following equalities.

and

sz1®~--®mn®n1®...®np:

18



=D @ QM. @n, =

:ZZM1®...®MH®V1®...®Vp

Consequently { @ n=m ®...®m, ®n; ® ... ®n, depends only on { and
n and are independent of the chosen representation. It follows that there is
a mapping

(Mi®..QM)X(NM®...0QN,) > M ®..M, N, ®...Q N,

that takes (£,7) into the element > > m; ® ... ®m, ®n; ® ... ®n,. This
mapping is obviously bilinear, and as a consequence there is an homomor-
phism

g (Mi®..M)x (Ni®...QN,) > Mi®..0 M, ® N1 ® ... ® N,,.

Now if the definitions of f and g are considered it is clear that fog and go f
are both the identity mapping for their respective elements and the proof is
done. O

Corollary 1. There is an isomorphism
(My @ Mz) @ Mz ~ My @ (M2 @ Ms)

in which (Mmy ® my) ® mg is mapped to my @ (Mg & m3)

Proof. Theorem 4 provides us with isomorphisms

(M @ My) ® Mz ~ My @ My @ My ~ M, @ (My ® Ms).

As discussed in the beginning of this part of the text this implies that the
tensor product is associative. Next we are going to prove that the tensor
product is also commutative.

Theorem 6. Let iy,is, ..., i, be a permutation of (1,2,...,n), then there is
an isomorphism

which associates my @ ... Q my, with m;; @ ... dm,,.
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Proof. The multilinear mapping
My x...x M, =M, ®...0M,,
mapping (mq,...,my,) to m; ®...®m;, induces a homomorphism
h:M®&..QM,— M, ...Q0 M, .

Where h(mq,...,m,) = m;; ® ... ® m;, . Similarly there is an induced
homomorphism

with g(m;, ® ...Q@m;, ) =m; ® ... R m,.

It is now obvious that both f o g and g o f are identity mappings and the
isomorphism is thereby proved. O

Looking at the criteria for an R-module in (1 — 4) it is obvious that R itself
can be looked at as an R-module. This is an important property which is
often used.

Theorem 7. Considering R as an R-module there are isomorphisms
RoM ~M

such that r ® m 1s mapped to rm and
M®@R~M

such that m ® r 1s mapped to mr.

Proof. The mapping
Vv:RxM—M

in which r x m is mapped to rm is bilinear and therefore by the universal
property induces an isomorphism

h:RM— M
such that h(r @ m) = ¥ (r x m) = rm. Now we consider a mapping
g:M—->R®M
such that g(m) = 1 ® m which is obviously a homomorphism. But also
girm)=1@rm=r(1®@m)=r®m

and thereby f o g and g o f are identity mappings and the isomorphism is
proved. The case M ® R ~ M is proved analogous. O]
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2.2 Tensor product of homomorphisms

The tensor product is not a construction in any way confined to multilinear
maps of modules. On the opposite the tensor product can be defined and
studied for many different algebraic structures for which multilinearity is of
interest. Later on in this text we will define the tensor product of algebras,
coalgebras and also Hopf algebras. Now we are going to define the tensor
product of homomorphisms.

Suppose we have n modules My, ... M,, and another set of n modules M7, ..., M/
and that we have homomorphisms f; taking M; — M/ for every 1 <i < n.
Then we can define a mapping

Q... Qfn: My x...x M, = M®&...0 M,

in which (mq,...,m,) is mapped to f(m;)®...® f(m,). This mapping can
easily be shown to be multilinear. If f;, g; are homomorphisms of M into M’
and r is in R we can form new homomorphisms f; + ¢g; and rf;. Looking
at the criteria for a multilinear mapping in (1.5) and (1.6) and this defined
mapping we see that

r(film) ®@ ... @ film) ® ... ® fulm,)) = film)®...07fi(m) ®...® fu(m,)
= film) ®...® filrm;) ® ... ® fu(my)

By the multilinearity of the tensor product and the linearity of a homo-
morphism. Similarly condition (1.5) can be proven. Since this mapping is
multilinear it induces a homomorphism

XX fu:M®@...0 M, > M ®...0 M.
This homomorphism does, by the universal property, satisfy
(i®..@fL)m&...0m,) = film)®...Q fu(my)
Definition. Let My, ..., M, and Mj,..., M be modules, and let
fi: M; — M (i=1,2,...,n)

be homomorphisms. The tensor product of the homomorphisms f; de-
noted fi ® ...® f, is the homomorphism

Mi®... M, = M ®...0 M)

21



induced by the multilinear map
My x...x M, =M ®...9 M|

mapping (my,...,my) with fi(m) @ ... & fu(my,).

Before we proceed we note two things. If each f; is surjective then fi®...® f,
is surjective as well. If M; = M/ for all i and f; is the identity mapping of
M; then f1 ® ... ® f, is the identity mapping of M; ® ... ® M,.

Now to proceed suppose that in addition to the mappings f; there are homo-
morphisms ¢; : M/ — M for i = 1,2,... ,n. From the definition it follows
that

([i®..0f)o(@®...0¢0)=(ficg)®...® (fnogn) (2.1)

From this it follows that if each f; is an isomorphism sois f1 ® fo ®...® f,.
Because, if f; is an isomorphism there is an inverse homomorphism

fi_1 : MZ’—>M

such that f;o f, ' = f; ' o f; is the identity mapping. Now by (2.1) we have

(he..®f)o(fi'®..0fi)=(hofi)®...0 (fuco fi')

and since each f; o £

.~ is the identity mapping this proves that f; ®...® f,
is an isomorphism.

2.3 Tensor product of direct sum of modules

It is of interest to study modules which have representations as direct sums
and to show that the tensor product of such modules does in itself have a
representation as a direct sum.

Definition. If a module N has a family of submodules {N;}icr such that any
element n € N has an unique representation of the form

n = an (2.2)
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where n; € N; and only finitely many summands are non-zero then N is called
the direct sum of {N;}icr. When this is the case we will write

N=>"N (2.3)

iel
or if we know that the family of submodules is finite we might write

N=NON,D...® N, (2.4)

mstead.

Now this is the usual way of defining direct sums to which you might be
accustomed. To complete the proofs we are interested in, we will instead use
another, slightly more general, definition as well.

Suppose that N can be described as in (2.3). Then for each i € I we can
define two homomorphisms called the inclusion mapping and the projection
mapping. The inclusion mapping o; : N; — N as the mapping which maps
n; € N; to the corresponding element n; € N. We define the projection
mapping 7; : N — N, as the mapping that from the representation (2.2) of
an element n € N picks out the summand from the submodule N;. Now
these two mappings have the following properties:

(i) m; o o; is a null homomorphism, mapping every element to the zero
element, if 7 # j and it is the identity mapping of N; if ¢ = j.

(11) For each n € N, m;(n) is non-zero for only finitely many values of i.

(i17) Z o;mi(n) = n, for each n € N,

el

We are going to base the slightly more general definition of a direct sum on
these properties.

Suppose that N is a R-module, and that {N;},c; is a family of R-modules.
This family is though no longer assumed to consist of submodules of N.
Suppose that for each ¢ € I there are mappings o; : N; - N and 7; : N — N;
such that the conditions (i), (i7), and (iii) are satisfied. This is enough to
supply us with a construction compatible with the definition given earlier of
a direct sum.
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Theorem 8. Suppose N is an R-module, {N;}icr is a family of R-modules
and there are homomorphisms o; : N; — N and 7; : N — N; such that the
conditions (i), (i7), and (iii) are satisfied. Then N is a direct sum of the
submodules {o;(N;) }ier-

Proof. By (i), m; o 0; is the identity mapping of N;. Therefore o; must be an
injection and m; an surjection, otherwise 7 o ¢ couldn’t be the identity map-
ping of N;. In particular the inclusion mapping o; maps N; isomorphically
onto o;(N;). Since N; is a module, and o; is a homomorphism it follows that
0;(N;) is a sub-module of N. From (ii) and (7i7) it now follows that

N = Zai(Ni)

All the necessary conditions from the definition has now been satisfied and
N is a direct sum of the submodules {o;(N;)}ies- O

We have now introduced a more generalized notion of a direct sum where
the N/s do not have to be submodules themselves but instead it is sufficient
for the o;(V;) to be submodules of N. This is very important. Also the
system formed by N, the N;, and the homomorphisms ¢; and 7; is called a
complete representation of N as a direct sum. The notation (2.2) and
(2.3) will continuously be used.

We will turn to the real point of interest. Suppose that My, M,, ..., M, are
R-modules and that each has a complete representation as a direct sum on

the form
M, => M
i€l

with the homomorphisms

ot :M!"— M, and w:M,— M}

Theorem 9. Suppose we have R-modules My, Ms, ..., M, each with a com-
plete representations as a direct sum. Then M; @ My ® ... ® M, also has a
complete representation as a direct sum

Mi@Mo.. @M, =Y MeMe. oM
(ieI)
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where the inclusion and injection mappings are
0i®.®0 M. . M'—M®®...0 M,

and
TR.T M®..QM, - M'®...0 M

(2

Proof. Set =1 x Iy x...x1I,, N=M My®...® M, and for 7 in I, set
Ni=M@M®...® M"

1 2
0, =0, R0, ®...Q00;

— 1 2 n
=T QT Q...

To prove the theorem it will by Theorem 7 be sufficient to prove that condi-
tions (i), (44), and (i77) holds. From what we know about the tensor product
of homomorphisms and in particular from (2.1) it follows that condition (7)
holds.

Any element n € M; ® ... ® M, has the form n = m; @ my ® ... ® m,,.
Condition (i7) and (i) are in light of this representation of the elements n
easily proven. By its multilinearity if any of the m; in a monomial tensor i
zero, then the whole monomial tensor is zero. Then if each #!'(m,) is non-
zero for a finite number of values of i, then of course so is also m;(n) and
thereby condition (i7) holds.

Similarly if each element m,, can be written as Z ot'(m,) then
i€l

n:m1®...®mn:ZUI'I(m1)®"-®ZU?(mn)

iely i€,

and by the multilinearity of the tensor product we can expand this tensor
product of sums into a sum of monomial tensors.

Y olm)@... @Y o m) = ol(m)®...00(m,)

i€l i€ln il
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Chapter 3

Associative algebras

Before proceeding to the study of the particular algebras of interest to us,
we will define and get familiar with the concept of an associative algebra.
We will only study algebras which possess an identity element. R and S will
denote commutative rings with identity elements. Ring homomorphisms, and
algebra homomorphisms, will be required to preserve identity elements.

3.1 Definition of an associative algebra

Associative algebras are modules that also have a compatible structure as
a ring. The sum of two elements in an associative algebra A has to be the
same whether the ring or the module structure is used. Also multiplication
with elements from the underlying ring R must be commutative in the sense
that

r(aiaz) = (rai)as = ai(rag) (3.1)

where ai,a9 € A and r € R. Note that this criteria is equivalent to

(r1a1)(raag) = (r179)(@102)

Definition. Let A be a R-module. If A has an associative bilinear mapping
mapping A X A — A, or in other words for a,,as,a3 € A

(a1a2)a3 = CL1<CL26L3>
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such that it has an identity 14 element for this operation, and if multiplication
with elements from the underlying ring satisfies

r(ajas) = (raj)as = aq(rag)

then A is called an associative R-algebra.

There is also another way to look at algebras. Consider the mapping
p:R— A

defined by ¢(r) = r14. This mapping is both a ring-homomorphism and a
homomorphism of R-modules. Also

d(rya=rlpa=ra=rals=arls = ap(r) (3.2)

so ¢(R) is contained in the center of A. The mapping ¢ is called the struc-
tural homomorphism of the R-algebra A. This provides us with another
way of looking at R-algebras. Suppose that A is a ring with an identity
element. Assume we are given a ring-homomorphism ¢ : R — A which maps
R into the center of A. If we define ra = ¢(r)a it is obvious that A with
this mapping satisfies the conditions for a module (1.1 — 1.4). Now A is an
R-algebra with ¢ as its structural homomorphism. For example R with the
identity mapping as ¢ is an algebra.

Definition. Let A and B be R-algebras. A mapping
f:A—B

15 called an algebra homomorphism if it is both a homomorphism of rings
and a homomorphism of R-modules.

Note that if ¢ : R — A and ¥ : R — B are the structural homomorphisms
of A and B then a mapping f : A — B is a algebra homomorphism if and
only if fo¢ =1 and f is an ring homomorphism.

Definition. If C is a subring of the R-algebra A (with 1c = 14) as well as
an R-submodule of A. Then C itself is an R-algebra and is called a subalgebra
of A.
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3.2 Examples of associative algebras

Example 3. The set of square n x n matrices with entries from a ring R
form an associative algebra over R.

Take the identity element, multiplication and addition mappings to be the
usual ones for matrices and it is obvious that they satisfy the criteria for an
R-algebra.

Example 4. The complex numbers forms an associative algebra.

Any complex number can be described as a vector in R? where addition is the
usual vector addition. If we define the the bilinear mapping R? x R? — R?
to be the normal multiplication of complex numbers they form an algebra.

Example 5. The polynomials with real coefficients form an associative R-
algebra over the reals.

The polynomials with real coefficients, R[X], are obviously compatible with
the conditions (1.1 — 1.4) for modules. Also if we define the multiplication
mapping to be the usual one for multiplication of polynomials this bilinear
map does comply with the criteria for an associative algebra.

Example 6. The endomorphisms of a R-module M form a algebra.

Homomorphisms of M into any R-module N can be added and be multiplied
by elements of R, in fact they form a R-module often denoted Hompg(M, N).
Now if N = M these homomorphisms are in fact endomorphisms and we use
the notation Endg(M) instead. Now if f, g belong to Endg(M) then so does
fog. If we now take the multiplication mapping to be defined as o then
Endg(M) becomes a ring with identity. Also for r € R we have that

(rf)og=r(fog)=fol(rg)

which satisfies the condition (3.1) and we have that Endz (M) is an R-algebra.
The identity mapping is the identity element and the structural homomor-
phism R —Endg(M) sends r to the corresponding homothety, that is the
mapping M — M in which m € M goes into rm.
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Example 7. Similarly to the free module of a set X it is possible to construct
the free R-algebra or the free commutative R-algebra from a set X.

The product of X7, X5 € X is simply written as the concatenation X; - X5.
Depending on whether or not X; - Xo = X5 - X; we get the free algebra or
the commutative free algebra. The free commutative algebra is in essence
the same thing as the polynomial ring over R where the elements in X are
taken as the indeterminates. The free (non-commutative) algebra can be
seen as the noncommutative analouge of a polynomial ring, in other words
aX1Xs # aXoX;.

To give an example we will do the calculations (a; X7 X5 + a2 X2 X7) - X7 X5
first as an free algebra and then as an free commutative algebra.

(G1X1X2 + &2X2X1) - X1 Xy = a1 XnXo X5 Xo + G2X2X12X2
(1 X1 X0+ as X X1) - X1Xo = oy X7X3+a:X: X5 = (a1 + a2) X1 X5

3.3 The tensor product of algebras

Suppose Aq, A, ..., A, are R-algebras. Then A1 ® A, ®...® A, is obviously
a R-module because of the module property of an algebra. We will show that
in fact it does also have a natural structure as an R-algebra.

Theorem 10. Let Ay, A, ..., A, be R-algebras. Then
AIRAR...QA,
1s an R-algebra where the R-module structure is the usual and the product of

two elements a1 @as®. .. ®a, and d)®ay®...Qal, is a1a) ®ayaH®. .. Qayal,.

Proof. To prove that A; ® A, ® ... ® A, is an R-algebra we need to pro-
vide it with an associative multiplication mapping with unity such that it is
commutative with respect to multiplication with scalars from the underlying
ring R in the sense described earlier.

Now consider the multilinear mapping

Al xAgx ... x A, x A xAsx .. xA, A QAR .. A,
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: : / !/ : : /! / /
in which (aq,...,an,d,...,a)) is mapped into a1a] ® axa, ® ... ® ayal,. By

’'n

the universal property this mapping induces a homomorphism
AlRAR.. QA RARAR..QA, AR AR...®A,
of R-modules. Theorem 5 states there is a R-module isomorphism
A®..QARAR®R.. QA ~(A1IR..0A,)0(A41R®...0A,)

We now combine the induced homomorphism with this isomorphism to form
a homomorphism

(A1®..0A4,)0(4®...04,) 2 A®...0 A, (3.3)

in which (a;®...®a,)®(a;®...®a,) is mapped with a;a] ®a2a5®. .. Rayal,.
We can now define the multiplication mapping p to be the mapping
pr(A®.. . 0A4,)x(A4®...0A4A,)

where p(a1 ® ... ®a,,d;®...®al) is mapped to the image (a; ®...®a,)®
(6] ®...®al) under the mapping (3.3). Obviously, x is a bilinear mapping.
It follows from this definition that for any =, 2, 2" € A1 ® ... ® A,

plp(z, '), 2"y = ppla @ ... Qay,di®@...®ad,),dl ®@...0ad)
= plad) ®...Qazal,df ®@...0a)

" /i
= ma0; Q... aya,aq,

= pla®@...Qa,,dd] ®...0a,a)
p(, p(a’, 2"))

This proves the associativity of u. Also because of the bilinearity of
plre, o') = ru(z, o) = pla, ra’)

and if e, ..., e, are the respective identity elements of the algebras A; then

e ® ... ®ep, a1 Q... Qa,) =a1®...0a, = a1 ®...Qa,,e1Q...0ey,)

so the mapping p is commutative with respect to multiplication with r € R
and has an identity element ¢; ® ... ® e,.
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3.4 Some basic properties of the tensor product
of algebras

In this section some of the results proven for tensor products of modules will
be proven to hold true also for tensor product of algebras. First we will prove
an extension of Theorem 4.

Theorem 11. Let Ay, Ay, ... A, and By, Bs,...B, be R-algebras. Then
there 1s an isomorphism

A®R..QA B ®..08,~A4®..04,)R(B1®...0 B))

of R-algebras in which a1 ® ... ® a, ® by ® ... ® b, is associated with
(1 ®...0a,) @b ®...00b,).

Proof. By Theorem 5 there is an isomorphism f of R-modules which satisfies
the module conditions. All that is needed to prove this theorem is to show
that f also is an isomorphism with respect to the multiplication mapping.

The isomorphism f satisfies the following
flar®..®a, 30 ®...0b,) =11 ®...®a,) b1 ®...Qb,)

Now let
rT=01®...0a6,3b®...®b,

and
=0 ®...®aqele... .0,

By Theorem 10
rr' = a0} ® ... ® apa, @bib) ® ... @Dbyb,
and as an immediate consequence

flxz') = (a10) ® ... ® ana;,) ® (Db ® ... @ byb))

/

(@1 ®..®a) @1 ®...0b)((d)®..0a)0 0 ®...00))
(a1 ®.. ®a)(d)®..0a,))2 (0.0 ®...00))
= (110d) ®...®a,a,) @ (0t @ ... @ bb))

= f(za!)
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Recall that by Theorem 3 any element of 4; ®...® A, ® B1 ®...® B, can
be expressed as a sum of monomial tensors. Since f is an isomorphism and
thereby also R-linear it follows directly that if y and 3’ are any two elements
of 41 ®...® A, ® B; ® ... ® B, expressed as sums of monomial tensors
then f(yy') = f(y)f(y/). The theorem follows from the bijective property of

I O

Note that by an identical argument as in Corollary 2, there is an algebra-
isomorphism of A;, Ay, Az

(A1 ® Ag) ® Az > A1 ® (A ® A3)

In a similar manner, a theorem extending Theorem 6 can be proved.

Theorem 12. Let iy, io,...,i, be a permutation of 1,2,...,n. Then there is
an isomorphism of algebras

which associates a1 ® ... & a, with a;; @ ... a;,

Proof. Theorem 6 provides us with an R-module isomorphism which we will
denote f. As in the proof of Theorem 11 all we need to do is to prove that
f is an isomorphism also with respect to the multiplication mapping. Let
= ®...0a,and ¥’ =a| ®...®a,

flza') = flara) @ ... @ apay) = a;,0;, @ ... @ a;,a;, =

(ai, ® ... ®a;,)(a;, ®...®a; )= f(x)f(z')

which together with the same reasoning as in the last proof is enough. [

Now for the next proof recall that R is in itself a R-algebra. This theorem is
an extension of Theorem 7.

Theorem 13. Let A be an R-algebra, considering R as an R-algebra, there

s an isomorphisms
R A~A

such that r ® a is mapped with ra. There is a similar isomorphism for
A® R~ ar.
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Proof. By Theorem 7 there is an isomorphism of R-modules f. Now
f(r@a)(r ®@ad)) = f(rr' ©ad) =
= (r')(ad) = (ra)(r'd’) = f(r @ a) f(r' ® ')

and the rest is obvious from previous proofs. [

The tensor product of algebra homomorphisms will prove to have the ex-
pected properties.

Theorem 14. Suppose Ay, Ay, ... A, and A\, A, ..., Al are R-algebras and
that there are homomorphisms f; : A; — A}. Then the tensor product of
homomorphisms is an algebra homomorphism

Q.. @f:AA®.. QA 2A®...QA,

Proof. In 2.2 the concept of tensor products of module homomorphisms was
defined. It is obvious that the same mapping f = f; ® ... ® f, maps the
identity element to the identity element if each f; is an algebra homomor-
phism. By the previous proofs in this section it is enough to prove that for
r, 2’ € A1 ®...0 A, f(xa') = f(x)f(2"). We can write z = a; ® ... a, and
¥=ad®...®a, so
flzz') = flma,®...Q ayal,)
= filaa}) ®...® fu(ayal).

Each f; is a homomorphism so

flara) ® ... @ flana,) = flar)f(ay) ®... @ f(an)f(a,,)
= (fla) ®...® flan))(fa}) ® ... ® f(a,))
= f)f(«)

which completes the proof. ]

3.5 Graded algebras

Recall the associative algebra of polynomials over the real numbers, R[X].
This algebra has a natural structure as a direct sum of the submodules
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{R[X],, }nez where each submodule consists of the polynomials of degree n.
This representation as a direct sum of submodules also has some extra struc-
ture. The product of two elements a; X* € {R[X].} and a,X? € {R[X],}
is
akaapo = akapXk+p

which is an element in {R[X |4, }. This is true for any two elements of R[X].
This extra structure on an algebra with a representation as a direct sum is
called a grading on that algebra.

Definition. Let {A,},cz be a family of submodules such that the algebra A
1s the direct sum of these modules. If the multiplication satisfies that

ai € Ag,ap, €A, = aga, € Apyyp

then { Ay, }nez is said to constitute a grading of A. The elements of A, is
said to be homogenous of degree n and an algebra with such a grading
is called a graded algebra. If A, = 0 for n < 0 the grading is called a
non-negative grading. We let |x| denote the degree of x.

We will prove some properties of a graded algebra.

Theorem 15. The identity element 14 belongs to Ag

Proof. Assume 14 ¢ Ay and instead was of degree g # 0. Then the equality
1ACLk = Q) = aklA

implies that a, € Ay and aj € Ag4, which contradicts that A is a direct sum
Of {AH}REZ' D

Theorem 16. Ay is a R-subalgebra of A.

Proof. Since we already know that Ay is an submodule and that 14 € A,
all we need to prove is closure for the multiplication mapping. For ag € Ay
and af, € Ay we have

apay € Agyo

and the proof is done. O

Theorem 17. Assume A is a graded algebra and that A is generated as
an R-algebra by Ay. Then the grading is non-negative and for p > 0, each
element of A, is a sum of products of p elements in A;. Furthermore Ay is
generated, as an R-module, by the identity element 14 and therefore Aq is
contained in the center of A.
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Proof. A is generated as an R-module by products of elements of A;, in-
cluding the empty product and such a product will always be homogenous
of degree p where p is the number of factors, which of course always will be
> 0. Also the empty product of A; is the identity element 14, and since the
whole of A is generated as a R-module by products of A; and 14 is the only
element in Ay which can be written as a product of elements in A;, Ay must
be generated by 1 4. ]

Theorem 18. Let AM, A® .. A™ be graded algebras then
A=AV AP .. @ A"

is also a graded algebra. The family of submodules constituting the grading
on A are the submodules { A, }nez

A, =Y AV @AY ®.. @Al

[I|l=n

where I =iy,1ig, ..., 10, 15 any sequence of n integers and |I| = iy +iz+. .. +1,.

Proof. By Theorem 9 we know that

AV AP . oAM= AP eAP ... 0 AP
I

and if we set

Y= AVeAY e @A
I I

then A=, A;. Let J = (j1,J2,-..,Jn) be a second sequence of n integers.
Then for a;r € Ay and ay € Ay we have

aray = Q;;0j; Q Qi Q4, Q... Q a;, aj,

K

i for 1 < pu <nandin

and since each A" is a graded algebra a;,a;, € A
addition

1 2 n
arag € Agl)ﬂ'l ® A52)+]'2 Q... Az(n)ﬂ'n = Ars

Now recall that " o o
1 2 n
A4,=) AV @AY ®... ® A
[I|=n
so it follows easily from what we just have proven that for x € A, and y € Ay,
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This grading of the tensor product of graded algebras will be called the total
grading of the tensor product. Evidently, if each A" is non-negative, then
so is the grading of A.

It is worth noting that because of the way Theorem 11 and 12 are formulated
it is true that these isomorphisms are also isomorphisms of graded algebras.
Before we can conclude the same for Theorem 13 we note the following. For
an algebra B one can obtain a grading by defining By = B and B,, = 0 for
n # 0. If we endow R with this trivial grading as an R-algebra it follows
in the same way that Theorem 13 provides us with isomorphisms of graded
algebras. Also if the homomorphisms f; are assumed to be homomorphisms
of graded algebras then Theorem 14 provides us with an homomorphism of
graded algebras.

36



Chapter 4

The tensor algebra

In this chapter we construct an associative algebra out of the tensor powers
of a module. Also, we show that the tensor algebra of a module is a solution
to a universal problem.

4.1 Definition of the tensor algebra

The n:th tensor power of a module M, denoted T,,(M), is simply
T,(M)y=MaeM®...9M

n times

and we denote T (M) =>_T,(M)

Theorem 19. The set T(M) of tensor powers of a module form an associa-
tive graded R-algebra where the multiplication mapping is the tensor product.
The identity element is the identity element of R, 1g, and the grading consists

of {1}, }nen where

T,=MaM...2M
n t;;nes

and this grading is non-negative. This algebra is generated (as an algebra)

Proof. To prove this theorem we have to show that the tensor product sat-
isfies the conditions for a multiplicative mapping of an associative algebra.
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Theorem 11 supplies us with an isomorphism
T, T, ~T,,

then Theorem 12 gives the isomorphisms Ty ® T, ~ T, and T, ® Ty ~ T,
(recall that R ~ Tp). Thus for p > 0 and ¢ > 0 we have explicit isomorphisms
T,®T, ~T,, As a direct consequence there is a bilinear map

tipg = Tp X Tq = Thiyg

in which, for z, € T), and y, € Ty, f1pq(Zp, y,) is the image of z, ®y, under the
relevant isomorphism. To summarize, if my, my, ..., m, and my,ms, ..., my
belong to M then

Ppg(M1 @My @ ... @My, M @My ® ... @my) =
= m@my®...Qm, dm;@my®...Qm, (4.1)

if r € Ty = R we instead have

tog (7, Yq) = TYq (4.2)

po(Zp, ) = Tpr = T,

Now suppose p,q > 0 and let z,,y,, 2: belong to T}, T,, T; respectively. Now
it follows from the (4.1 — 4.3) that

Mptq,t (#pq (xzn yq)» Zt) = Mpq+t (ZEp, Mqt(ypy Zt)

and we are now ready to define multiplication on A. Let x,y € A, these
elements have unique representations x = o + 21 + 22 + ... and y = yo +
Y1+ Y2 + . .., where of course z,,y, belong to T,,. Now the required product
may be defined as

wz,y) = Z tog (Tps Yg)-

20,420
It follows directly from the multilinearity of the tensor product and the bi-
linearity of p that
plra,y) = ru(e,y) = pl, ry),
and that multiplication is distributive with respect to addition. Also 1y
belongs to Ty and u(1,,y) =y, u(x,1,) = x by (4.2 — 3)4. By what we have

just done it is also clear that this algbra is graded and that the grading is
the stated.
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We will denote this tensor algebra of a module M with T'(M) and the grading
with {T,,(M)}nez. It is helpful to define a mapping

¢: M — T(M) (4.4)

where M simply is mapped isomorphicly to 7;. With this notation one can
conclude that T'(M) is generated as an algebra by ¢(M) = T1(M) since

SM)G(M)...o(M)= MM ...® M.

4.2 The universal property of the tensor alge-
bra

As stated earlier, the tensor algebra provides a solution to a universal prob-
lem. Let M be an R-module. Now suppose A is an R-algebra and that
¢ : M — Ais a homomorphism of R-modules. Let h: A — B be a homo-
morphism of R-algebras, then ho¢ : M — B is an R-module homomorphism
of M into B. We are now ready to formulate the problem, which is similar
to the universal problem of multilinear mappings.

The universal problem of algebras containing M. Let M be an R-
module, the problem is to choose A and ¢ : M — A so that given any
R-module homomorphism i : M — B, where B is an R-algebra, there exists
a unique homomorphism h : A — B, of R-algebras such that h o ¢ = 1.

It is obvious that if there are two solutions to this problem, (A, ¢) and (A4’, ¢'),
then there are inverse algebra-isomorphisms A : A — A" and X' : A’ — A
such that Ao ¢ = ¢’ and X o ¢’ = ¢. So, much like the universal problem of
multilinear mappings, this problem has essentially at most one solution.

Theorem 20. The tensor algebra of M, T(M) together with the natural
mapping ¢ : M — T(M) provides a solution of the universal problem. That
18, for any R-module homomorphism ¢ : M — B, where B is an algebra,
there is a unique algebra-homomorphism h : A — B such that ho ¢ = 1.

Proof. Let ¢ : M — B be a module homomorphism. We can construct a
multilinear mapping

MxMx...xM— B,
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where (my, ma, ..., my) is mapped to ©¥)(mq)i(ms) ... 1Y (m,). That this map-
ping is multilinear follows from the conditions for a multiplication map of the
algebra B. This induces a mapping h, : T,(M) — B where

hp(mi @ me ® ... @ my) = (ma)p(mz) ... Y (my).

For To(M) = R we can define hg : To(M) — B to be the structural homomor-
phism of R — B. Now T'(M) is a direct sum of {7},(M)},>0, consequently

we can define a mapping
h:A— B

which agrees with h, on T,,(M). If 2 and y are homogenous elements it is
easily verified, using the appropriate of (4.1 — 4.3),that h(zy) = h(z)h(y).
It follows that h : T(M) — B is a homomorphism of R-algebras by the
multilinear and linear properties the tensor product and the homomorphism
as any element of T'(M) is a direct sum of homogenous elements.

The only thing left to prove is that h o ¢ = 1 and that h is the only homo-
morphism with this property. For z € M = T} (M) we have h(xz) = ¢(x) and
since p(M) = M = Ty (M), ho ¢ =1p. But M = Ty(M) generates T'(M),
in the sense of an algebra, and as a consequence h must be the only algebra
homomorphism which combined with ¢ gives . O

Because of the great generality of the tensor algebra many other algebras
of interest are created by imposing an equality on some of the elements by
quotioning out an ideal. For example, it is possible to construct the sym-
metric algebra S(M) of a module M by imposing a symmetric equivalence.
If we define an ideal I(M) as the ideal generated by all elements of the form
r®y—y Rz we define the symmetric algebra as

S(M) = T(M)/I1(M)

or in other words we impose the equivalence r ® y = y ® x. Other examples
of interesting algebras constructed in this manner are the exterior algebra,
universal enveloping algebras and Clifford algebras.
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Chapter 5

Coalgebras

Coalgebras are the dual to algebras. For any mapping used to define an
algebra there is an opposite mapping in the definition of a coalgebra. If
we describe an algebra by commuting diagrams, which we will do soon, we
obtain an coalgebra by reversing all the arrows. For example, in an algebra
one has a mapping

AoA—1g

while in a coalgebra one has a mapping

A®A<AA

going in the opposite direction.

Before the concept of a coalgebra will be studied closer and better defined,
the concept of an algebra will be redefined. We will redefine it in a way which
more naturally allows us to move on to the coalgebra and see similarities and
differences. Also we will need this new description when we later define the
concept of a Hopf algebra.
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5.1 A new view of associative algebras

Since commutatative diagrams will be extensively used for this part we will
start with a definition of such.

Definition. A commutative diagram is a diagram where each vertex is
an object and each arrow is a morphism such that all directed paths with the
same tnitial and final vertex lead to the same result by composition.

One can now make a new definition of an R-algebra by making use of these
commutative diagrams.

Definition. Let A be an R-module. Suppose there is an R-linear mapping p
such that the following diagram commutes:

& ud
ARA®RA AR A
id @ 0
A® A
® i A

Which corresponds to p being associative. Furthermore suppose there is a
R-linear mapping n: R — A of A such that the diagram

A
i

R®A

AR A AR R
N ®id @ 1d®n @

commutes. R® A — A and A® R — A are the isomorphisms provided by
Theorem 7. The triple (A, pu,n) will be said to constitute an associative R-
algebra;  is called the multiplication mapping and n the unit mapping.
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For z,y € A we define xy = p(x ®y). It is easily verified that this definition
of an associative algebra is compatible with the one earlier given, where n :
R — A is the structural homomorphism.

We are now going look at some of the important aspects of the theory of
algebras from this new definition.

Theorem 21. Let (A, pua,na) and (B, ug,ng) be two associative R-algebras.
If f is a mapping from A to B then f is an algebra-homomorphism if and
only if the following conditions are satisfied

(i) f is R-linear

(1) fopa=pmo(f®f)

(i) fona=np
Proof. The first condition is an obvious property since it is a property we

already now an algebra-homomorphism must posess. The second condition
is equivalent to that the following diagram

AR A

N

B® B

N,

commutes. Similarly the third condition be described by the following com-
muting diagram.

Together, these conditions are equivalent to those given in 3.1. ]
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To describe the algebra created by the tensor product of n algebras we will
need to define some new mappings. Let (A;, p;,n;) be algebras for each
1 <i<n,and let

Ap:(A1®..04)0(A4®...04,) - (ALHA)R®..0 (4, A4,)

be an isomorphism matching (@) ® ... ® a,) ® (a] ® ...a,) with (a; ® a]) ®
. ® (a, ®al,). Also let

AY:R-ROR®...0R

n factors

be the R-linear mapping in which 1 - 1® 1®...® 1.

Now we can describe the algebra A; ® A, ®...® A,, from Section 3.3 as having
the mappings

A0, = (11 @ pg @ ... @ py) 0 Ay (5.1)
and
Moot = (MO0 ... @1n,) 0 Al (5.2)

Next in turn are graded algebras. Assume (A, i, n) is an algebra and assume
{A, }nez is a family of submodules of A such that

A=A,
nez

which means that we suppose that {A, },ez grades A as an R-module. From
this we also have a grading {(A ® A), }nez of the module A ® A, where

(A®A>n = Z Ap®Aq7
p+g=n

this is of course the usual total grading on A ® A. Now the statement that
{A, }nez is an algebra-grading is equivalent to that the mappings p: AQ A —
Aandn: R — A preserves degrees, with R being granted the trivial grading.

Suppose now that (AM, p1,m1), (A®, po, me), ..., (A™ . m,) are graded R-

algebras. For each two sequences of integers I = (iy,4s,...,4,) and J =
(71,72, - - -, jn) there is an isomorphism between
1 2 n 1 2 n
AP 0AP ®.. AN e AV AP e ... @A) (5.3)
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and

(AP @A) @ (AP @ A @ ... (A" @ AD). (5.4)
Now since (AV AP ®. . . @ AM (AN AP .. . AM) is the direct sum
of the modules (5.3) while (A1) @ AM) ® (A? @ A?) ... @ (AW x AM)
is the direct sum of modules (5.4) we can combine the various isomorphisms
and define an isomorphism

Ap:(AV®. . . AN @AV .. @ A™) 5 (AV AN .. .0 (AM g AM)

such that we can now describe AN @ A® @ ... ® A™ as a graded algebra
with this new A, in (5.1).

5.2 Definition of a coalgebra

We have now done the necessary preperations to describe a coalgebra as a
concept dual to that of an algebra. That is, for each commutative diagram
we have used to define an algebra, we obtain the corresponding diagram for
coalgebras by reversing the arrows.

Definition. Let A be an R-module and suppose that we are given R-linear
mappings A : A— A® A and e : A — R. If the following two diagrams

A a AR A
A id® A
AR A ARQAR A
A ®id
and
A
R®A A®R

AR A
e ®id ® d® e
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are commutative (A — A ® R maps a into a ® 1). We will call the triple
(A, A ¢e) a coalgebra. The mapping A : A — AR A is called the comultipli-
cation mapping of the coalgebra and the commutativity of the first diagram
15 described by saying that comultiplication is coassociative. The mapping
e: A — R is known as the counit.

R itself becomes a coalgebra if we define the two mappings to be A : R —
R ® R to be the R-linear mapping which carries 1 into 1® 1l and e : R — R
to be the identity mapping. This allows us to speak of R as an coalgebra,
and whenever we do, this will be the structure considered. We will now make
two relevant definitions.

Definition. Suppose (A, A4, e4) and (B, Ap,ep) are coalgebras. A mapping
f A — B is called a homomorphism of coalgebras if the following
conditions are satisfied

(i) f is R-linear
(i) Apo f=(f®f)ol

(iii) epo f =4

if the mapping f is a bijection it is called an tsomorphism of coalgebras.

Definition. Let (A, A, ¢) be an R-coalgebra and let { A, }nez be a grading of
A considered as a module. Now let A® A have the usual induced total grading
{(A® A),} and let R have the trivial grading.

We say that A is a graded coalgebra with the grading {Ap}nez if A and €
preserves the degrees of homogenous elements. Also, a homomorphism of
graded coalgebras is coalgebra homomorphism which preserves degrees.

Note that this definition implies that if (A, A ¢) is a graded coalgebra, then
€ maps any homogeneous element of a degree not equal to zero into the zero
element of R.
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5.3 The tensor product of coalgebras

Before we move on to define the tensor product of coalgebras we will define
some concepts needed.

Suppose Aj, Ag, ..., A, are R-modules. We define the isomorphism

Vi:i(A1A)®..0 (4,04, - (A1®..0A4,)0(AI®...0A,) (5.5)

in which (¢ ® a}) ® ... ® (a, ® al,) is matched with the element (¢; ® ... ®
a,) ® (af ®...®al). Also in a similar manner we define the isomorphism

Wy (AAARA)R..Q (A4, R4, A4,)
- (A1®..04,)0(410..04,) (A4 ®...0A4,). (5.6)

Th