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Abstract

Our main purpose in this project is to study several Hopf algebras of Feynman
graphs, and do some calculations of the values of an antipode on concrete
graphs. These Feynman graph Hopf algebras originated in the quantum field
theory, more precisely in a relatively new approach to the renormalization
of diverging Feynman integrals. In that approach to renormalization the
antipode map plays a key role.

We give a comprehensive introduction into the theory of graded Hopf alge-
bras. We describe in detail all the main definitions and theorems necessary
to understand Hopf algebras of Feynman graphs, and consider many concrete
graphs.
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Introduction

This text aims to first give a self-contained presentation of the fundamentals
necessary to understand Hopf algebras, and then to present the interesting
class of Hopf algebras associated to Feynman graphs. The reader will be
introduced to multilinear maps of modules and the universal problem of
multilinear maps, to which the tensor product is the solution. Relevant
properties of the tensor product are proven and examples given. The theory is
then extended from modules to associative algebras, modules with a structure
of a ring, and an important example of such, the notion of tensor algebra, is
explored. After the notion of algebra has been presented, its dual, the notion
of coalgebra, is defined and studied. These two notions are then combined to
a bialgebra, a module with structure of both an algebra and coalgebra in a
compatible way. A Hopf algebra is a bialgebra with an anti-linear mapping
called the antipode.

The text has two goals, one is of course to present Hopf algebras of Feynman
graphs. Each aspect of the theory needed to understand Hopf algebras of
Feynman graphs is in itself very important. Therefore a second goal is to
make the treatment of those elements a good introduction, and some mate-
rial not directly related to the final application but of general interest are
presented. Hopf algebras and its applications to Feynman graphs should be
seen as one of many interesting applications of the theory presented.
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Chapter 1

Introduction to the tensor

product

1.1 Modules

The concept a module is a generalization of the notion of a vector space. The
main difference is that the scalars of a module instead of residing in a field
come from a commutative ring R. It is also possible to define a module over
a non-commutative ring, this will however not be the case in this text.

Definition. An R-module M over a commutative ring R consist of an abelian
group (M,+) and an operation R×M →M , which have the following prop-
erties for r, s ∈ R and x, y ∈M

r(x+ y) = rx+ ry (1.1)

(r + s)x = rx+ sx (1.2)

(rs)x = r(sx) (1.3)

1Rx = x If R has an identity element 1R (1.4)

It is important to note that a module does not necessarily have a basis,
something that makes it different from a vector space. A module which is
generated by a finite number of elements in M is called a finitely generated
module. This is not the same as having a basis in the sense of vector spaces.
Such a basis consists of a finite number of linearly independent elements. A
module having such a basis is called a free module.
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Definition. If a R-module M is generated, using the defined operations, by
a finite number of elements e1, . . . , en ∈M such that for r1, . . . , rn ∈ R

r1e1, . . . , rnen = 0 ⇔ r1 = r2 = . . . = rn = 0

Then M is called a free module and B = {e1, . . . , en} is called the basis of

M and the number of elements in B is called the rank of B.

If the ring of scalars is in fact a field, the module is a vector space.

1.2 Multilinear maps and the universal prob-

lem

We will now describe two important concepts which together are used to
describe the tensor product. These are the definition of multilinear maps,
and the universal problem to which the tensor product pose a solution.

Definition. Assume M1,M2, . . . .,Mn and M are R-modules. Then a map-
ping

φ :M1 ×M2 × . . . .×Mn →M

is called multilinear if it is linear in each of its components. That is, if
m1,m2, . . . ,mn are elements in their respective R-module and r ∈ R then the
following equalities are satisfied:

φ(m1, . . . ,mi +m′
i, . . . ,mn) = φ(m1, . . . ,mi, . . . ,mn)

+ φ(m1, . . . ,m
′
i, . . . ,mn) (1.5)

φ(m1, . . . , rmi, . . . ,mn) = rφ(m1, . . . ,mi, . . . ,mn) (1.6)

for any 1 6 i 6 n and any r ∈ R.

Examples of multilinear maps are the determinant with respect to each of its
rows or columns, and the cross-product of vectors in R

3.

When dealing with modules a linear map is called a homomorphism. Now
assume that besides the mapping φ there is also a homomorphism h : M →
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N . It is easily verified that the composition h ◦ φ is also a multilinear map.

h(φ(m1, . . . ,mi +m′
i, . . . ,mn))

=h(φ(m1, . . . ,mi, . . . ,mn) + φ(m1, . . . ,m
′
i, . . . ,mn))

=h(φ(m1, . . . ,mi, . . . ,mn)) + h(φ(m1, . . . ,m
′
i, . . . ,mn)

By the multilinearity of φ and the linearity of h. Similarily we have:

h(φ(m1, . . . , rmi, . . . ,mn)) = h(rφ(m1, . . . ,mi, . . . ,mn))

= rh(φ(m1, . . . ,mi, . . . ,mn))

We have now proven that the composition of φ and h is a multilinear map.
The knowledge that a composition of a linear and multilinear mapping is a
multilinear map gives rise to a more general question.

The universal problem of multilinear maps. Find a pair of an R-
module M and a multilinear mapping φ : M1 × . . . × Mn → M such that
for any multilinear mapping ψ : M1 × . . . ×Mn → N there is exactly one
homomorphism h : M → N such that h ◦ φ = ψ. A solution, (M,φ) to this
problem is said to have the universal property of multilinear maps.

Before we continue to find a solution to the universal problem we will conclude
the following.

Theorem 1. The solution to the universal problem is essentially unique in
the sense that if two solutions (M,φ) and (M ′, φ′) exist then there will always
be inverse isomorphisms λ :M →M ′ and λ′ :M ′ →M .

Proof. First of we conclude that if a pair (M,φ) is a solution, then whenever
there are two homomorphisms g : M → N and g′ : M → N such that
g ◦ φ = g′ ◦ φ. Then g = g′ by the uniqueness condition stated in the
definition.

By the universal property there are homomorphisms λ and λ′ such that
λ ◦ φ = φ′ and λ′ ◦ φ′ = φ. From this it follows directly that

id ◦ φ = φ = λ′ ◦ φ′ = λ′ ◦ λ ◦ φ

where id is the identity mapping of M . Now by what was stated at the
beginning of the proof this implies that λ′◦λ = id and similarly λ◦λ′ = id.
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As a consequence of this, the solutions to the universal problem is unique
upto inverse isomorphisms. As a consequence one can often neglect the
messy details of the construction as soon as its possibility has been proven
and instead focus on this universal property to provide proofs of further
properties.

1.3 The construction of the tensor product

We will now turn to finding a solution to the universal problem. First we
construct a module called the free module generated by M1×M2× . . .×Mn.
Then we quotient out by a submodule to impose an equivalence. We then
show that this is a solution to the universal problem and name it the tensor
product.

The free module of a set E is created seeing the whole set as a basis for an
R-module. Any element in this R-module is a linear polynomial with the ele-
ments of E as indeterminates and with coefficients from R. This free module
of E has the universal property that for any arbitrary mapping ϕ : E → N ,
N being an R-module, there is an unique extension to a homomorphism
from the free module of E to N . This is since we can, and must, define the
mapping, where U(E) is the free module of E,

h : U(E) → N

as

h(r1e1 + . . .+ rnen) = r1ϕ(e1) + . . .+ rnϕ(en)

for ei ∈ E and r ∈ R.

If we now let U(M1, . . . ,Mn) be the free module generated by M1× . . .×Mn,
then the basis will consist of sequences (m1, . . . ,mn). We define the mapping

π :M1 × . . .×Mn → U(M1, . . . ,Mn)

as the that maps (m1, . . . ,mn) to the corresponding base element in U(M1, . . . ,Mn).
By what we have just concluded, for any map ϕ :M1 × . . .×Mn → N there
will be a unique extension to a homomorphism h : U(M1, . . . ,Mn) → N such
that h ◦ π = ϕ. However, this does not pose a solution since the map π is
not necessarily multilinear.
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To solve this consider the submodule V (M1, . . . ,Mn) generated by elements
on one of the forms:

(m1, . . . ,mi +m′
i, . . . ,mn) − (m1, . . . ,mi, . . . ,mn)

− (m1, . . . ,m
′
i, . . . ,mn) (1.7)

(m1, . . . , rmi, . . . ,mn) − r(m1, . . . ,mi, . . . ,mn) (1.8)

Define M as:

M = U(M1,M2, . . . ,Mn)/V (M1,M2, . . . ,Mn)

and define a mapping

⊗ :M1 × . . .×Mn →M

so that ⊗(m1,m2, . . . ,mn) is the natural image of (m1,m2, . . . ,mn), consid-
ered as an element of U(M1,M2, . . . ,Mn) in M .

Now reconsider the definition of a multilinear map, equation (1.5) and (1.6).
Any of the elements on the form (1.7) or (1.8) will be mapped to zero by
⊗ as we now have defined it, since these elements will by definition belong
to the submodule V (M1, . . . ,Mn). From this it follows that ⊗ satisfies the
conditions (1.5) and (1.6) and thereby it is a multilinear map.

Theorem 2. (⊗,M) is a solution to the universal problem.

Proof. To prove this theorem suppose we have an arbitrary multilinear map-
ping

ψ :M1 ×M2 × . . .×Mn → N.

We know there is an R-homomorphism

h : U(M1,M2, . . . ,Mn) → N.

Since ψ is multilinear any element on the form (1.7) or (1.8) will be mapped to
zero in ψ and therefore ψ will vanish in V (M1,M2, . . . ,Mn). As a consequence
there is an induced map h : M → N such that h ◦ ⊗ = ψ. The uniqueness
of the solution is already given by the construction of the homomorphism h
from the free module.
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From now on we will be using an infix notation for the tensor product. If
(⊗,M) is a solution to the universal problem then it is customary to write
M =M1 ⊗RM2 ⊗R . . .⊗RMn and to denote the element ⊗(m1,m2, . . . ,mn)
by m1 ⊗R m2 ⊗R . . . ⊗R mn, also the elements m1 ⊗R m2 ⊗R . . . ⊗R mn will
be called monomial tensors. For ease of notation the suffix denoting the
ring will often be omitted if it is obvious which ring is considered.

Theorem 3. Each element of M , as defined earlier, can be expressed as a
finite sum of elements of the form m1 ⊗ . . . ⊗ mn. Or in other words, the
tensor product is generated by the monomial tensors.

Proof. Suppose that M ′ is the R-submodule of M generated by elements of
the form m1⊗ . . .⊗mn. Let h1 :M →M/M ′ be the natural homomorphism
and h2 :M →M/M ′ be the null homomorphism.

For any element m1 × . . .×mn ∈M1 × . . .×Mn it is obviously true that

h1 ◦ ⊗ :M1 × . . .×Mn →M/M ′

and
h2 ◦ ⊗ :M1 × . . .×Mn →M/M ′

will map the element to 0. But then h1 ◦ ⊗ = h2 ◦ ⊗ which in turn implies
that h1 = h2 so M =M ′.

For any x ∈M =M ′, x can be written as

x = r(m1 ⊗ . . .⊗mn) + r′(m′
1 ⊗ . . .⊗m′

n) . . . ,

However, since ⊗ is multilinear

r(m1 ⊗ . . .⊗mn) = (rm1 ⊗ . . .⊗mn)

and similarly for all the other terms

Many times the modules of interest are going to be free modules or vector
spaces. Therefore the next theorem is of great interest.

Theorem 4. Let Mi be a free R-module for (i = 1, 2 . . . , n) and Bi be its
basis. Then M1⊗M2⊗ . . .⊗Mn is also a free R-module and its basis consists
of the elements b1 ⊗ b2 ⊗ . . .⊗ bn where bi ∈ Bi. That is B1 ⊗B2 ⊗ . . .⊗Bn

is a basis.
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Proof. Since we now that M is generated by elements on the form m1⊗ . . .⊗
mn it will suffice to show that any such element is a linear combination of
elements b1 ⊗ b2 ⊗ . . . ⊗ bn. Since Bi is a basis for Mi we know that any

element mi ∈Mi can be written as
∑

iα

riαbiα = mi. As a consequence:

m1 ⊗ . . .⊗mn =
∑

1α

r1αb1α ⊗ . . .⊗
∑

nα

rnα
bnα

=
∑

1α,...,nα

r1α . . . rnα
b1α ⊗ . . .⊗ bnα

by the multilinearity of ⊗. The linear independence of these elements follows
directly from the linear independence of the respective Bi. This proves that
the elements b1α ⊗ . . .⊗ bnα

generates the whole of M .

1.4 Examples of tensor products

Example 1. Calculate Z/5⊗Z Z/7.

To calculate Z/5 ⊗Z Z/7 we will make use multilinear properties of ⊗Z, the
suffix will be left out for the rest of this example. First of it is clear that 5
annihilates the left factor and that 7 annihilates the right factor. But then
it also follows that if m ∈ Z/5 and n ∈ Z/7

0 = 0 · (m⊗Z n) = (0 ·m)⊗ n = (5 ·m)⊗ n = m⊗ (5 · n)

in other words, 5 also annihilates the right factor, similarly

0 = 0 · (m⊗ n) = m⊗ (0 · n) = m⊗ (7 · n) = (7 ·m)⊗ n = (2 ·m)⊗ n.

Then we can also write

(5m⊗ n)− 2(2 ·m⊗ n) = (5− 2 · 2)m⊗ n = m⊗ n
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But also

(5m⊗ n)− 2(2 ·m⊗ n) = 0− 2 · 0 = 0

Thereby any element m⊗ n in Z/5⊗ Z/7 is zero. But since any element of
Z/5⊗Z/7 can be written as a sum of terms m⊗n it follows that any element
in Z/5⊗ Z/7 is 0. So

Z/5⊗ Z/7 = 0

.

Example 2. R
3 ⊗R R

3 over the field of real scalars.

Now suppose that we have a basis B = {e1, e2, e3}. Then by Theorem 3 we
know that R3⊗R

3 has a basis B⊗B such that the elements in this basis will
be of the form b⊗ b′. That is elements on the form e1e2 or e3e1. The number
of elements in this basis is 32 = 9 since this is the number of ways you can
create a two element sequence where each element is on of three elements. If
we denote the basis

e′1 = e1e1 e′2 = e1e2 e′3 = e1e3 e′4 = e2e1 e′5 = e2e2,

e′6 = e2e3 e′7 = e3e1 e′8 = e3e2 e′9 = e3e3

an element x ∈ R
3⊗R

3 is given by x = a1e
′
1+a2e

′
2+ . . .+a9e

′
9 where ai ∈ R.

An example of a monomial tensor with usual vector notation would be

(1, 2, 3)⊗ (4, 5, 6) = (4, 5, 6, 8, 10, 12, 12, 15, 18)

We now have a new 9-dimensional vector space R
3⊗R

3 such that any multi-
linear mapping R

3 × R
3 → V , where V is any vector space, there is a linear

map h : R3 ⊗ R
3 → V . Since h is a linear map from one vector space to

another it can be written as a transformation matrix A.

The usual scalar product is a multilinear map and it is in R
3 defined by

(a1, a2, a3) · (a
′
1, a

′
2, a

′
3) = a1a

′
1 + a2a

′
2 + a3a

′
3

if we instead look at the induced linear map h from R
3⊗R

3 to R it would be
h(a1, a2, a3, a4, a5, a6, a7, a8, a9) = a1 + a5 + a9 and this linear map h would
have the transformation matrix

15



A = (1, 0, 0, 0, 1, 0, 0, 0, 1)

To sum it up we have the following equality for v, u ∈ R
3

v · u = A(v ⊗ u)

Similarly we can write the transformation matrix for the linear map induced
by the cross product

v × u =





0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0



 (v ⊗ u)

16



Chapter 2

Some elementary properties of

the tensor product

In this part of the text we will focus on some fundamental properties of the
tensor product. Among those are isomorphisms that prove that the tensor
product is in a sense both associative and commutative. Also we will study
the tensor product of homomorphisms and the the tensor product of a direct
sum.

2.1 Basic isomorphisms

As has been discussed earlier one does often not need to make an actual
construction of the tensor product for the use of its properties to solve prob-
lems. Instead it is sufficient to conclude that a construction is possible and
thereafter make use of proven properties that follow directly. Two solutions
to the universal problem will from this perspective be essentially the same
since there is an unique isomorphism between them.

Theorem 5. There is an isomorphism

M1 ⊗ . . .⊗Mn ⊗N1 ⊗ . . .⊗Np ≃ (M1 ⊗ . . .⊗Mn)⊗ (N1 ⊗ . . .⊗Np)

in which m1 ⊗ . . . ⊗mn ⊗ n1 ⊗ . . . ⊗ np is matched with (m1 ⊗ . . . ⊗mn) ⊗
(n1 ⊗ . . .⊗ np).
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Proof. By the universal property of the tensor product there is a homomor-
phism

f :M1 ⊗ . . .⊗Mn ⊗N1 ⊗ . . .⊗Np → (M1 ⊗ . . .⊗Mn)⊗ (N1 ⊗ . . .⊗Np)

induced by the multilinear mapping

M1 × . . .Mn ×N1 × . . .×Np → (M1 ⊗ . . .⊗Mn)⊗ (N1 ⊗ . . .⊗Np)

in which (m1, . . . ,mn, n1, . . . , np) is mapped to (m1⊗. . .⊗mn)⊗(n1⊗. . .⊗np).
To prove that this is an isomorphism one has to reverse this homomorphism
f .

Suppose that we hold n1, n2, . . . , np fixed. Again, by the universal property it
is obvious that there is an homomorphism M1⊗ . . .⊗Mn →M1⊗ . . .⊗Mn⊗
N1⊗. . .⊗Np where m1⊗. . .⊗mn is mapped with m1⊗. . .⊗mn⊗n1⊗. . .⊗np.
Consequently, since this is a homomorphism we have that if the following
relation is given

m1 ⊗m2 ⊗ . . .⊗mn +m′
1 ⊗m′

2 ⊗ . . .⊗m′
n+

+m′′
1 ⊗m′′

2 ⊗ . . .⊗m′′
n = 0

then

m1 ⊗ . . .⊗mn ⊗ n1 ⊗ . . .⊗ np +m′
1 ⊗ . . .⊗m′

n ⊗ n1 ⊗ . . .⊗ np+

+m′′
1 ⊗ . . .⊗m′′

n ⊗ n1 ⊗ . . .⊗ np = 0

Where 0 of course denotes the zero element in M1⊗ . . .⊗Mn⊗N1⊗ . . .⊗Np.
We get similar results if the roles Mi and Ni are interchanged.

Now by Theorem 3 we know that any element ξ ∈M1 ⊗M2 ⊗ . . .⊗Mn and
η ∈ N1 ⊗ N2 ⊗ . . . ⊗ Nn can be expressed using their respective monomial
tensors. Now let

ξ =
∑

m1 ⊗ . . .⊗mn =
∑

µ1 ⊗ . . .⊗ µn

and
η =

∑

n1 ⊗ . . .⊗ np =
∑

ν1 ⊗ . . .⊗ νn

be two such representations for ξ and η each. By what we stated in the last
paragraph we get the following equalities.

∑∑

m1 ⊗ . . .⊗mn ⊗ n1 ⊗ . . .⊗ np =

18



=
∑∑

µ1 ⊗ . . .⊗ µn ⊗ n1 ⊗ . . .⊗ np =

=
∑∑

µ1 ⊗ . . .⊗ µn ⊗ ν1 ⊗ . . .⊗ νp

Consequently ξ ⊗ η = m1 ⊗ . . .⊗mn ⊗ n1 ⊗ . . .⊗ np depends only on ξ and
η and are independent of the chosen representation. It follows that there is
a mapping

(M1 ⊗ . . .⊗Mn)× (N1 ⊗ . . .⊗Np) →M1 ⊗ . . .⊗Mn ⊗N1 ⊗ . . .⊗Np

that takes (ξ, η) into the element
∑∑

m1 ⊗ . . .⊗mn ⊗ n1 ⊗ . . .⊗ np. This
mapping is obviously bilinear, and as a consequence there is an homomor-
phism

g : (M1 ⊗ . . .⊗Mn)× (N1 ⊗ . . .⊗Np) →M1 ⊗ . . .⊗Mn ⊗N1 ⊗ . . .⊗Np.

Now if the definitions of f and g are considered it is clear that f ◦ g and g ◦f
are both the identity mapping for their respective elements and the proof is
done.

Corollary 1. There is an isomorphism

(M1 ⊗M2)⊗M3 ≃M1 ⊗ (M2 ⊗M3)

in which (m1 ⊗m2)⊗m3 is mapped to m1 ⊗ (m2 ⊗m3)

Proof. Theorem 4 provides us with isomorphisms

(M1 ⊗M2)⊗M3 ≃M1 ⊗M2 ⊗M3 ≃M1 ⊗ (M2 ⊗M3).

As discussed in the beginning of this part of the text this implies that the
tensor product is associative. Next we are going to prove that the tensor
product is also commutative.

Theorem 6. Let i1, i2, . . . , in be a permutation of (1, 2, . . . , n), then there is
an isomorphism

M1 ⊗ . . .⊗Mn ≃Mi1 ⊗ . . .⊗Min

which associates m1 ⊗ . . .⊗mn with mi1 ⊗ . . .⊗min.
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Proof. The multilinear mapping

M1 × . . .×Mn →Mi1 ⊗ . . .⊗Min

mapping (m1, . . . ,mn) to mi1 ⊗ . . .⊗min induces a homomorphism

h :M1 ⊗ . . .⊗Mn →Mi1 ⊗ . . .⊗Min .

Where h(m1, . . . ,mn) = mi1 ⊗ . . . ⊗ min . Similarly there is an induced
homomorphism

g :Mi1 ⊗ . . .⊗Min →M1 ⊗ . . .⊗Mn

with g(mi1 ⊗ . . .⊗min) = m1 ⊗ . . .⊗mn.

It is now obvious that both f ◦ g and g ◦ f are identity mappings and the
isomorphism is thereby proved.

Looking at the criteria for an R-module in (1− 4) it is obvious that R itself
can be looked at as an R-module. This is an important property which is
often used.

Theorem 7. Considering R as an R-module there are isomorphisms

R⊗M ≃M

such that r ⊗m is mapped to rm and

M ⊗R ≃M

such that m⊗ r is mapped to mr.

Proof. The mapping
ψ : R×M →M

in which r × m is mapped to rm is bilinear and therefore by the universal
property induces an isomorphism

h : R⊗M →M

such that h(r ⊗m) = ψ(r ×m) = rm. Now we consider a mapping

g :M → R⊗M

such that g(m) = 1⊗m which is obviously a homomorphism. But also

g(rm) = 1⊗ rm = r(1⊗m) = r ⊗m

and thereby f ◦ g and g ◦ f are identity mappings and the isomorphism is
proved. The case M ⊗R ≃M is proved analogous.
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2.2 Tensor product of homomorphisms

The tensor product is not a construction in any way confined to multilinear
maps of modules. On the opposite the tensor product can be defined and
studied for many different algebraic structures for which multilinearity is of
interest. Later on in this text we will define the tensor product of algebras,
coalgebras and also Hopf algebras. Now we are going to define the tensor
product of homomorphisms.

Suppose we have nmodulesM1, . . .Mn and another set of nmodulesM ′
1, . . . ,M

′
n

and that we have homomorphisms fi taking Mi → M ′
i for every 1 ≤ i ≤ n.

Then we can define a mapping

f1 ⊗ . . .⊗ fn :M1 × . . .×Mn →M ′
1 ⊗ . . .⊗M ′

n

in which (m1, . . . ,mn) is mapped to f(m1)⊗ . . .⊗ f(mn). This mapping can
easily be shown to be multilinear. If fi, gi are homomorphisms of M into M ′

and r is in R we can form new homomorphisms fi + gi and rfi. Looking
at the criteria for a multilinear mapping in (1.5) and (1.6) and this defined
mapping we see that

r(f1(m1)⊗ . . .⊗ fi(mi)⊗ . . .⊗ fn(mn)) = f1(m1)⊗ . . .⊗ rfi(mi)⊗ . . .⊗ fn(mn)

= f1(m1)⊗ . . .⊗ fi(rmi)⊗ . . .⊗ fn(mn)

By the multilinearity of the tensor product and the linearity of a homo-
morphism. Similarly condition (1.5) can be proven. Since this mapping is
multilinear it induces a homomorphism

f1 × . . .× fn :M1 ⊗ . . .⊗Mn →M ′
1 ⊗ . . .⊗M ′

n.

This homomorphism does, by the universal property, satisfy

(f1 ⊗ . . .⊗ fn)(m1 ⊗ . . .⊗mn) = f1(m1)⊗ . . .⊗ fn(mn)

Definition. Let M1, . . . ,Mn and M ′
1, . . . ,M

′
n be modules, and let

fi :Mi →M ′
i (i = 1, 2, . . . , n)

be homomorphisms. The tensor product of the homomorphisms fi de-
noted f1 ⊗ . . .⊗ fn is the homomorphism

M1 ⊗ . . .⊗Mn →M ′
1 ⊗ . . .⊗M ′

n
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induced by the multilinear map

M1 × . . .×Mn →M ′
1 ⊗ . . .⊗M ′

n

mapping (m1, . . . ,mn) with f1(m1)⊗ . . .⊗ fn(mn).

Before we proceed we note two things. If each fi is surjective then f1⊗. . .⊗fn
is surjective as well. If Mi = M ′

i for all i and fi is the identity mapping of
Mi then f1 ⊗ . . .⊗ fn is the identity mapping of M1 ⊗ . . .⊗Mn.

Now to proceed suppose that in addition to the mappings fi there are homo-
morphisms gi : M

′′
i → M for i = 1, 2, . . . , n. From the definition it follows

that

(f1 ⊗ . . .⊗ fn) ◦ (g1 ⊗ . . .⊗ gn) = (f1 ◦ g1)⊗ . . .⊗ (fn ◦ gn) (2.1)

From this it follows that if each fi is an isomorphism so is f1 ⊗ f2 ⊗ . . .⊗ fn.
Because, if fi is an isomorphism there is an inverse homomorphism

f−1
i :M ′

i →M

such that fi ◦ f
−1
i = f−1

i ◦ fi is the identity mapping. Now by (2.1) we have

(f1 ⊗ . . .⊗ fn) ◦ (f
−1
1 ⊗ . . .⊗ f−1

n ) = (f1 ◦ f
−1
1 )⊗ . . .⊗ (fn ◦ f

−1
n )

and since each fi ◦ f
−1
i is the identity mapping this proves that f1 ⊗ . . .⊗ fn

is an isomorphism.

2.3 Tensor product of direct sum of modules

It is of interest to study modules which have representations as direct sums
and to show that the tensor product of such modules does in itself have a
representation as a direct sum.

Definition. If a module N has a family of submodules {Ni}i∈I such that any
element n ∈ N has an unique representation of the form

n =
∑

i∈I

ni (2.2)
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where ni ∈ Ni and only finitely many summands are non-zero then N is called
the direct sum of {Ni}i∈I . When this is the case we will write

N =
∑

i∈I

Ni (2.3)

or if we know that the family of submodules is finite we might write

N = N1 ⊕N2 ⊕ . . .⊕Nn (2.4)

instead.

Now this is the usual way of defining direct sums to which you might be
accustomed. To complete the proofs we are interested in, we will instead use
another, slightly more general, definition as well.

Suppose that N can be described as in (2.3). Then for each i ∈ I we can
define two homomorphisms called the inclusion mapping and the projection
mapping. The inclusion mapping σi : Ni → N as the mapping which maps
ni ∈ Ni to the corresponding element ni ∈ N . We define the projection
mapping πi : N → Ni as the mapping that from the representation (2.2) of
an element n ∈ N picks out the summand from the submodule Ni. Now
these two mappings have the following properties:

(i) πi ◦ σj is a null homomorphism, mapping every element to the zero
element, if i 6= j and it is the identity mapping of Ni if i = j.

(ii) For each n ∈ N , πi(n) is non-zero for only finitely many values of i.

(iii)
∑

i∈I

σiπi(n) = n, for each n ∈ N ,

We are going to base the slightly more general definition of a direct sum on
these properties.

Suppose that N is a R-module, and that {Ni}i∈I is a family of R-modules.
This family is though no longer assumed to consist of submodules of N .
Suppose that for each i ∈ I there are mappings σi : Ni → N and πi : N → Ni

such that the conditions (i), (ii), and (iii) are satisfied. This is enough to
supply us with a construction compatible with the definition given earlier of
a direct sum.
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Theorem 8. Suppose N is an R-module, {Ni}i∈I is a family of R-modules
and there are homomorphisms σi : Ni → N and πi : N → Ni such that the
conditions (i), (ii), and (iii) are satisfied. Then N is a direct sum of the
submodules {σi(Ni)}i∈I .

Proof. By (i), πi ◦ σi is the identity mapping of Ni. Therefore σi must be an
injection and πi an surjection, otherwise π ◦ σ couldn’t be the identity map-
ping of Ni. In particular the inclusion mapping σi maps Ni isomorphically
onto σi(Ni). Since Ni is a module, and σi is a homomorphism it follows that
σi(Ni) is a sub-module of N . From (ii) and (iii) it now follows that

N =
∑

i∈I

σi(Ni)

All the necessary conditions from the definition has now been satisfied and
N is a direct sum of the submodules {σi(Ni)}i∈I .

We have now introduced a more generalized notion of a direct sum where
the N ′

is do not have to be submodules themselves but instead it is sufficient
for the σi(Ni) to be submodules of N . This is very important. Also the
system formed by N , the Ni, and the homomorphisms σi and πi is called a
complete representation of N as a direct sum. The notation (2.2) and
(2.3) will continuously be used.

We will turn to the real point of interest. Suppose that M1,M2, . . . ,Mn are
R-modules and that each has a complete representation as a direct sum on
the form

Mµ =
∑

i∈Iµ

Mµ
i

with the homomorphisms

σµ
i :Mµ

i →Mµ and πµ
i :Mµ →Mµ

i

.

Theorem 9. Suppose we have R-modules M1,M2, . . . ,Mn each with a com-
plete representations as a direct sum. Then M1 ⊗M2 ⊗ . . .⊗Mn also has a
complete representation as a direct sum

M1 ⊗M2 ⊗ . . .⊗Mn =
∑

(i∈I)

M1
i ⊗M2

i ⊗ . . .⊗Mn
i
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where the inclusion and injection mappings are

σ1
i ⊗ . . .⊗ σn

i :M1
i ⊗ . . .⊗Mn

i →M1 ⊗ . . .⊗Mn

and
π1
i ⊗ . . .⊗ πn

i :M1 ⊗ . . .⊗Mn →M1
i ⊗ . . .⊗Mn

i

Proof. Set I = I1× I2× . . .× In, N =M1⊗M2⊗ . . .⊗Mn and for i in I, set

Ni =M1
i ⊗M2

i ⊗ . . .⊗Mn
i

σi = σ1
i ⊗ σ2

i ⊗ . . .⊗ σn
i

πi = π1
i ⊗ π2

i ⊗ . . .⊗ πn
i

To prove the theorem it will by Theorem 7 be sufficient to prove that condi-
tions (i), (ii), and (iii) holds. From what we know about the tensor product
of homomorphisms and in particular from (2.1) it follows that condition (i)
holds.

Any element n ∈ M1 ⊗ . . . ⊗Mn has the form n = m1 ⊗ m2 ⊗ . . . ⊗ mn.
Condition (ii) and (iii) are in light of this representation of the elements n
easily proven. By its multilinearity if any of the mi in a monomial tensor i
zero, then the whole monomial tensor is zero. Then if each πµ

i (mµ) is non-
zero for a finite number of values of iµ then of course so is also πi(n) and
thereby condition (ii) holds.

Similarly if each element mµ can be written as
∑

i∈Iµ

σµ
i (mµ) then

n = m1 ⊗ . . .⊗mn =
∑

i∈I1

σ1
i (m1)⊗ . . .⊗

∑

i∈In

σn
i (mn)

and by the multilinearity of the tensor product we can expand this tensor
product of sums into a sum of monomial tensors.

∑

i∈I1

σ1
i (m1)⊗ . . .⊗

∑

i∈In

σn
i (mn) =

∑

i∈I

σ1
i (m1)⊗ . . .⊗ σn

i (mn)
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Chapter 3

Associative algebras

Before proceeding to the study of the particular algebras of interest to us,
we will define and get familiar with the concept of an associative algebra.
We will only study algebras which possess an identity element. R and S will
denote commutative rings with identity elements. Ring homomorphisms, and
algebra homomorphisms, will be required to preserve identity elements.

3.1 Definition of an associative algebra

Associative algebras are modules that also have a compatible structure as
a ring. The sum of two elements in an associative algebra A has to be the
same whether the ring or the module structure is used. Also multiplication
with elements from the underlying ring R must be commutative in the sense
that

r(a1a2) = (ra1)a2 = a1(ra2) (3.1)

where a1, a2 ∈ A and r ∈ R. Note that this criteria is equivalent to

(r1a1)(r2a2) = (r1r2)(a1a2)

Definition. Let A be a R-module. If A has an associative bilinear mapping
mapping A× A→ A, or in other words for a1, a2, a3 ∈ A

(a1a2)a3 = a1(a2a3)
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such that it has an identity 1A element for this operation, and if multiplication
with elements from the underlying ring satisfies

r(a1a2) = (ra1)a2 = a1(ra2)

then A is called an associative R-algebra.

There is also another way to look at algebras. Consider the mapping

φ : R → A

defined by φ(r) = r1A. This mapping is both a ring-homomorphism and a
homomorphism of R-modules. Also

φ(r)a = r1Aa = ra = ra1A = ar1A = aφ(r) (3.2)

so φ(R) is contained in the center of A. The mapping φ is called the struc-
tural homomorphism of the R-algebra A. This provides us with another
way of looking at R-algebras. Suppose that A is a ring with an identity
element. Assume we are given a ring-homomorphism φ : R → A which maps
R into the center of A. If we define ra = φ(r)a it is obvious that A with
this mapping satisfies the conditions for a module (1.1 − 1.4). Now A is an
R-algebra with φ as its structural homomorphism. For example R with the
identity mapping as φ is an algebra.

Definition. Let A and B be R-algebras. A mapping

f : A→ B

is called an algebra homomorphism if it is both a homomorphism of rings
and a homomorphism of R-modules.

Note that if φ : R → A and ψ : R → B are the structural homomorphisms
of A and B then a mapping f : A → B is a algebra homomorphism if and
only if f ◦ φ = ψ and f is an ring homomorphism.

Definition. If C is a subring of the R-algebra A (with 1C = 1A) as well as
an R-submodule of A. Then C itself is an R-algebra and is called a subalgebra
of A.

27



3.2 Examples of associative algebras

Example 3. The set of square n × n matrices with entries from a ring R
form an associative algebra over R.

Take the identity element, multiplication and addition mappings to be the
usual ones for matrices and it is obvious that they satisfy the criteria for an
R-algebra.

Example 4. The complex numbers forms an associative algebra.

Any complex number can be described as a vector in R
2 where addition is the

usual vector addition. If we define the the bilinear mapping R
2 × R

2 → R
2

to be the normal multiplication of complex numbers they form an algebra.

Example 5. The polynomials with real coefficients form an associative R-
algebra over the reals.

The polynomials with real coefficients, R[X], are obviously compatible with
the conditions (1.1 − 1.4) for modules. Also if we define the multiplication
mapping to be the usual one for multiplication of polynomials this bilinear
map does comply with the criteria for an associative algebra.

Example 6. The endomorphisms of a R-module M form a algebra.

Homomorphisms of M into any R-module N can be added and be multiplied
by elements of R, in fact they form a R-module often denoted HomR(M,N).
Now if N =M these homomorphisms are in fact endomorphisms and we use
the notation EndR(M) instead. Now if f, g belong to EndR(M) then so does
f ◦ g. If we now take the multiplication mapping to be defined as ◦ then
EndR(M) becomes a ring with identity. Also for r ∈ R we have that

(rf) ◦ g = r(f ◦ g) = f ◦ (rg)

which satisfies the condition (3.1) and we have that EndR(M) is an R-algebra.
The identity mapping is the identity element and the structural homomor-
phism R →EndR(M) sends r to the corresponding homothety, that is the
mapping M →M in which m ∈M goes into rm.
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Example 7. Similarly to the free module of a set X it is possible to construct
the free R-algebra or the free commutative R-algebra from a set X.

The product of X1, X2 ∈ X is simply written as the concatenation X1 ·X2.
Depending on whether or not X1 · X2 = X2 · X1 we get the free algebra or
the commutative free algebra. The free commutative algebra is in essence
the same thing as the polynomial ring over R where the elements in X are
taken as the indeterminates. The free (non-commutative) algebra can be
seen as the noncommutative analouge of a polynomial ring, in other words
aX1X2 6= aX2X1.

To give an example we will do the calculations (a1X1X2 + a2X2X1) · X1X2

first as an free algebra and then as an free commutative algebra.

(a1X1X2 + a2X2X1) ·X1X2 = a1X1X2X1X2 + a2X2X
2
1X2

(a1X1X2 + a2X2X1) ·X1X2 = a1X
2
1X

2
2 + a2X

2
1X

2
2 = (a1 + a2)X

2
1X

2
2

3.3 The tensor product of algebras

Suppose A1, A2, . . . , An are R-algebras. Then A1⊗A2⊗ . . .⊗An is obviously
a R-module because of the module property of an algebra. We will show that
in fact it does also have a natural structure as an R-algebra.

Theorem 10. Let A1, A2, . . . , An be R-algebras. Then

A1 ⊗ A2 ⊗ . . .⊗ An

is an R-algebra where the R-module structure is the usual and the product of
two elements a1⊗a2⊗. . .⊗an and a′1⊗a

′
2⊗. . .⊗a

′
n is a1a

′
1⊗a2a

′
2⊗. . .⊗ana

′
n.

Proof. To prove that A1 ⊗ A2 ⊗ . . . ⊗ An is an R-algebra we need to pro-
vide it with an associative multiplication mapping with unity such that it is
commutative with respect to multiplication with scalars from the underlying
ring R in the sense described earlier.

Now consider the multilinear mapping

A1 × A2 × . . . .× An × A1 × A2 × . . .× An → A1 ⊗ A2 ⊗ . . .⊗ An
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in which (a1, . . . , an, a
′
1, . . . , a

′
n) is mapped into a1a

′
1 ⊗ a2a

′
2 ⊗ . . .⊗ ana

′
n. By

the universal property this mapping induces a homomorphism

A1 ⊗ A2 ⊗ . . .⊗ An ⊗ A1 ⊗ A2 ⊗ . . .⊗ An → A1 ⊗ A2 ⊗ . . .⊗ An

of R-modules. Theorem 5 states there is a R-module isomorphism

A1 ⊗ . . .⊗ An ⊗ A1 ⊗ . . .⊗ An ≃ (A1 ⊗ . . .⊗ An)⊗ (A1 ⊗ . . .⊗ An)

We now combine the induced homomorphism with this isomorphism to form
a homomorphism

(A1 ⊗ . . .⊗ An)⊗ (A1 ⊗ . . .⊗ An) → A1 ⊗ . . .⊗ An (3.3)

in which (a1⊗. . .⊗an)⊗(a1⊗. . .⊗an) is mapped with a1a
′
1⊗a2a

′
2⊗. . .⊗ana

′
n.

We can now define the multiplication mapping µ to be the mapping

µ : (A1 ⊗ . . .⊗ An)× (A1 ⊗ . . .⊗ An)

where µ(a1⊗ . . .⊗ an, a
′
1⊗ . . .⊗ a′n) is mapped to the image (a1⊗ . . .⊗ an)⊗

(a′1 ⊗ . . .⊗ a′n) under the mapping (3.3). Obviously, µ is a bilinear mapping.
It follows from this definition that for any x, x′, x′′ ∈ A1 ⊗ . . .⊗ An

µ(µ(x, x′), x′′) = µ(µ(a1 ⊗ . . .⊗ an, a
′
1 ⊗ . . .⊗ a′n), a

′′
1 ⊗ . . .⊗ a′′n)

= µ(a1a
′
1 ⊗ . . .⊗ ana

′
n, a

′′
1 ⊗ . . .⊗ a′′n)

= a1a
′
1a

′′
1 ⊗ . . .⊗ ana

′
na

′′
n

= µ(a1 ⊗ . . .⊗ an, a
′
1a

′′
1 ⊗ . . .⊗ a′na

′′
n)

= µ(x, µ(x′, x′′))

This proves the associativity of µ. Also because of the bilinearity of µ

µ(rx, x′) = rµ(x, x′) = µ(x, rx′)

and if e1, . . . , en are the respective identity elements of the algebras Ai then

µ(e1 ⊗ . . .⊗ en, a1 ⊗ . . .⊗ an) = a1 ⊗ . . .⊗ an = µ(a1 ⊗ . . .⊗ an, e1 ⊗ . . .⊗ en)

so the mapping µ is commutative with respect to multiplication with r ∈ R
and has an identity element e1 ⊗ . . .⊗ en.
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3.4 Some basic properties of the tensor product

of algebras

In this section some of the results proven for tensor products of modules will
be proven to hold true also for tensor product of algebras. First we will prove
an extension of Theorem 4.

Theorem 11. Let A1, A2, . . . .An and B1, B2, . . . Bp be R-algebras. Then
there is an isomorphism

A1 ⊗ . . .⊗ An ⊗ B1 ⊗ . . .⊗ Bp ≃ (A1 ⊗ . . .⊗ An)⊗ (B1 ⊗ . . .⊗ Bp)

of R-algebras in which a1 ⊗ . . .⊗ an ⊗ b1 ⊗ . . .⊗ bp is associated with
(a1 ⊗ . . .⊗ an)⊗ (b1 ⊗ . . .⊗ bp).

Proof. By Theorem 5 there is an isomorphism f of R-modules which satisfies
the module conditions. All that is needed to prove this theorem is to show
that f also is an isomorphism with respect to the multiplication mapping.

The isomorphism f satisfies the following

f(a1 ⊗ . . .⊗ an ⊗ b1 ⊗ . . .⊗ bp) = (a1 ⊗ . . .⊗ an)⊗ (b1 ⊗ . . .⊗ bp)

Now let
x = a1 ⊗ . . .⊗ an ⊗ b1 ⊗ . . .⊗ bp

and
x′ = a′1 ⊗ . . .⊗ a′n ⊗ b′1 ⊗ . . .⊗ b′p.

By Theorem 10

xx′ = a1a
′
1 ⊗ . . .⊗ ana

′
n ⊗ b1b

′
1 ⊗ . . .⊗ bpb

′
p

and as an immediate consequence

f(xx′) = (a1a
′
1 ⊗ . . .⊗ ana

′
n)⊗ (b1b

′
1 ⊗ . . .⊗ bpb

′
p)

but also

f(x)f(x′) = ((a1 ⊗ . . .⊗ an)⊗ (b1 ⊗ . . .⊗ bp))((a
′
1 ⊗ . . .⊗ a′n)⊗ (b′1 ⊗ . . .⊗ b′p))

= ((a1 ⊗ . . .⊗ an)(a
′
1 ⊗ . . .⊗ a′n))⊗ ((b1 ⊗ . . .⊗ bp)(b

′
1 ⊗ . . .⊗ b′p))

= (a1a
′
1 ⊗ . . .⊗ ana

′
n)⊗ (b1b

′
1 ⊗ . . .⊗ bpb

′
p)

= f(xx′)
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Recall that by Theorem 3 any element of A1 ⊗ . . .⊗An ⊗B1 ⊗ . . .⊗Bp can
be expressed as a sum of monomial tensors. Since f is an isomorphism and
thereby also R-linear it follows directly that if y and y′ are any two elements
of A1 ⊗ . . . ⊗ An ⊗ B1 ⊗ . . . ⊗ Bp expressed as sums of monomial tensors
then f(yy′) = f(y)f(y′). The theorem follows from the bijective property of
f .

Note that by an identical argument as in Corollary 2, there is an algebra-
isomorphism of A1, A2, A3

(A1 ⊗ A2)⊗ A3 ≃ A1 ⊗ (A2 ⊗ A3)

In a similar manner, a theorem extending Theorem 6 can be proved.

Theorem 12. Let i1, i2, . . . , in be a permutation of 1, 2, . . . , n. Then there is
an isomorphism of algebras

A1 ⊗ A2 ⊗ . . .⊗ An ≃ Ai1 ⊗ Ai2 ⊗ . . .⊗ Ain

which associates a1 ⊗ . . .⊗ an with ai1 ⊗ . . .⊗ ain

Proof. Theorem 6 provides us with an R-module isomorphism which we will
denote f . As in the proof of Theorem 11 all we need to do is to prove that
f is an isomorphism also with respect to the multiplication mapping. Let
x = a1 ⊗ . . .⊗ an and x′ = a′1 ⊗ . . .⊗ a′n

f(xx′) = f(a1a
′
1 ⊗ . . .⊗ ana

′
n) = ai1a

′
i1
⊗ . . .⊗ aina

′
in =

(ai1 ⊗ . . .⊗ ain)(a
′
i1
⊗ . . .⊗ a′in) = f(x)f(x′)

which together with the same reasoning as in the last proof is enough.

Now for the next proof recall that R is in itself a R-algebra. This theorem is
an extension of Theorem 7.

Theorem 13. Let A be an R-algebra, considering R as an R-algebra, there
is an isomorphisms

R⊗ A ≃ A

such that r ⊗ a is mapped with ra. There is a similar isomorphism for
A⊗R ≃ ar.
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Proof. By Theorem 7 there is an isomorphism of R-modules f . Now

f((r ⊗ a)(r′ ⊗ a′)) = f(rr′ ⊗ aa′) =

= (rr′)(aa′) = (ra)(r′a′) = f(r ⊗ a)f(r′ ⊗ a′)

and the rest is obvious from previous proofs.

The tensor product of algebra homomorphisms will prove to have the ex-
pected properties.

Theorem 14. Suppose A1, A2, . . . An and A′
1, A

′
2, . . . , A

′
n are R-algebras and

that there are homomorphisms fi : Ai → A′
1. Then the tensor product of

homomorphisms is an algebra homomorphism

f1 ⊗ . . .⊗ fn : A1 ⊗ . . .⊗ An → A′
1 ⊗ . . .⊗ A′

n

Proof. In 2.2 the concept of tensor products of module homomorphisms was
defined. It is obvious that the same mapping f = f1 ⊗ . . . ⊗ fn maps the
identity element to the identity element if each fi is an algebra homomor-
phism. By the previous proofs in this section it is enough to prove that for
x, x′ ∈ A1 ⊗ . . .⊗ An f(xx

′) = f(x)f(x′). We can write x = a1 ⊗ . . . an and
x′ = a′1 ⊗ . . .⊗ a′n so

f(xx′) = f(a1a
′
1 ⊗ . . .⊗ ana

′
n)

= f1(a1a
′
1)⊗ . . .⊗ fn(ana

′
n).

Each fi is a homomorphism so

f(a1a
′
1)⊗ . . .⊗ f(ana

′
n) = f(a1)f(a

′
1)⊗ . . .⊗ f(an)f(a

′
n)

= (f(a1)⊗ . . .⊗ f(an))(f(a
′
1)⊗ . . .⊗ f(a′n))

= f(x)f(x′)

which completes the proof.

3.5 Graded algebras

Recall the associative algebra of polynomials over the real numbers, R[X].
This algebra has a natural structure as a direct sum of the submodules
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{R[X]n}n∈Z where each submodule consists of the polynomials of degree n.
This representation as a direct sum of submodules also has some extra struc-
ture. The product of two elements akX

k ∈ {R[X]k} and apX
p ∈ {R[X]p}

is
akX

kapX
p = akapX

k+p

which is an element in {R[X]k+p}. This is true for any two elements of R[X].
This extra structure on an algebra with a representation as a direct sum is
called a grading on that algebra.

Definition. Let {An}n∈Z be a family of submodules such that the algebra A
is the direct sum of these modules. If the multiplication satisfies that

ak ∈ Ak, ap ∈ Ap ⇒ akap ∈ Ak+p

then {An}n∈Z is said to constitute a grading of A. The elements of An is
said to be homogenous of degree n and an algebra with such a grading
is called a graded algebra. If An = 0 for n < 0 the grading is called a
non-negative grading. We let |x| denote the degree of x.

We will prove some properties of a graded algebra.

Theorem 15. The identity element 1A belongs to A0

Proof. Assume 1A 6∈ A0 and instead was of degree q 6= 0. Then the equality

1Aak = ak = ak1A

implies that ak ∈ Ak and ak ∈ Ak+q which contradicts that A is a direct sum
of {An}n∈Z.

Theorem 16. A0 is a R-subalgebra of A.

Proof. Since we already know that A0 is an submodule and that 1A ∈ A0,
all we need to prove is closure for the multiplication mapping. For a0 ∈ A0

and a′0 ∈ A0 we have
a0a

′
0 ∈ A0+0

and the proof is done.

Theorem 17. Assume A is a graded algebra and that A is generated as
an R-algebra by A1. Then the grading is non-negative and for p > 0, each
element of Ap is a sum of products of p elements in A1. Furthermore A0 is
generated, as an R-module, by the identity element 1A and therefore A0 is
contained in the center of A.
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Proof. A is generated as an R-module by products of elements of A1, in-
cluding the empty product and such a product will always be homogenous
of degree p where p is the number of factors, which of course always will be
≥ 0. Also the empty product of A1 is the identity element 1A, and since the
whole of A is generated as a R-module by products of A1 and 1A is the only
element in A0 which can be written as a product of elements in A1, A0 must
be generated by 1A.

Theorem 18. Let A(1), A(2), . . . , A(n) be graded algebras then

A = A(1) ⊗ A(2) ⊗ . . .⊗ A(n)

is also a graded algebra. The family of submodules constituting the grading
on A are the submodules {An}n∈Z

An =
∑

|I|=n

A
(1)
i1

⊗ A
(2)
i2

⊗ . . .⊗ A
(n)
in

where I = i1, i2, . . . , in is any sequence of n integers and |I| = i1+i2+. . .+in.

Proof. By Theorem 9 we know that

A(1) ⊗ A(2) ⊗ . . .⊗ A(n) =
∑

I

A
(1)
i1

⊗ A
(2)
i2

⊗ . . .⊗ A
(n)
in

and if we set ∑

I

AI =
∑

I

A
(1)
i1

⊗ A
(2)
i2

⊗ . . .⊗ A
(n)
in

then A =
∑

I AI . Let J = (j1, j2, . . . , jn) be a second sequence of n integers.
Then for aI ∈ AI and aJ ∈ AJ we have

aIaJ = ai1aj1 ⊗ ai2aj2 ⊗ . . .⊗ ainajn

and since each Aµ is a graded algebra aiµajµ ∈ Aµ
iµ+jµ

for 1 ≤ µ ≤ n and in
addition

aIaJ ∈ A
(1)
i1+j1

⊗ A
(2)
i2+j2

⊗ . . .⊗ A
(n)
in+jn

= AI+J

Now recall that
An =

∑

|I|=n

A
(1)
i1

⊗ A
(2)
i2

⊗ . . .⊗ A
(n)
in

so it follows easily from what we just have proven that for x ∈ An and y ∈ Ak,
xy ∈ An+k.
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This grading of the tensor product of graded algebras will be called the total
grading of the tensor product. Evidently, if each Aµ is non-negative, then
so is the grading of A.

It is worth noting that because of the way Theorem 11 and 12 are formulated
it is true that these isomorphisms are also isomorphisms of graded algebras.
Before we can conclude the same for Theorem 13 we note the following. For
an algebra B one can obtain a grading by defining B0 = B and Bn = 0 for
n 6= 0. If we endow R with this trivial grading as an R-algebra it follows
in the same way that Theorem 13 provides us with isomorphisms of graded
algebras. Also if the homomorphisms fi are assumed to be homomorphisms
of graded algebras then Theorem 14 provides us with an homomorphism of
graded algebras.
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Chapter 4

The tensor algebra

In this chapter we construct an associative algebra out of the tensor powers
of a module. Also, we show that the tensor algebra of a module is a solution
to a universal problem.

4.1 Definition of the tensor algebra

The n:th tensor power of a module M , denoted Tn(M), is simply

Tn(M) =M ⊗M ⊗ . . .⊗M
︸ ︷︷ ︸

n times

and we denote T (M) =
∑
Tn(M)

Theorem 19. The set T (M) of tensor powers of a module form an associa-
tive graded R-algebra where the multiplication mapping is the tensor product.
The identity element is the identity element of R, 1R, and the grading consists
of {Tn}n∈N where

Tn =M ⊗M ⊗ . . .⊗M
︸ ︷︷ ︸

n times

and this grading is non-negative. This algebra is generated (as an algebra)
by T1(M).

Proof. To prove this theorem we have to show that the tensor product sat-
isfies the conditions for a multiplicative mapping of an associative algebra.
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Theorem 11 supplies us with an isomorphism

Tp ⊗ Tq ≃ Tp+q

then Theorem 12 gives the isomorphisms T0 ⊗ Tp ≃ Tp and Tp ⊗ T0 ≃ Tp
(recall that R ≃ T0). Thus for p ≥ 0 and q ≥ 0 we have explicit isomorphisms
Tp ⊗ Tq ≃ Tp+q. As a direct consequence there is a bilinear map

µpq : Tp × Tq → Tp+q

in which, for xp ∈ Tp and yq ∈ Tq, µpq(xp, yq) is the image of xp⊗yp under the
relevant isomorphism. To summarize, if m1,m2, . . . ,mp and m′

1,m
′
2, . . . ,m

′
q

belong to M then

µpq(m1 ⊗m2 ⊗ . . .⊗mp,m
′
1 ⊗m′

2 ⊗ . . .⊗m′
q) =

= m1 ⊗m2 ⊗ . . .⊗mp ⊗m′
1 ⊗m′

2 ⊗ . . .⊗m′
q (4.1)

if r ∈ T0 = R we instead have

µ0q(r, yq) = ryq (4.2)

µp0(xp, r) = xpr = rxp. (4.3)

Now suppose p, q ≥ 0 and let xp, yq, zt belong to Tp, Tq, Tt respectively. Now
it follows from the (4.1− 4.3) that

µp+q,t(µpq(xp, yq), zt) = µp,q+t(xp, µqt(yp, zt)

and we are now ready to define multiplication on A. Let x, y ∈ A, these
elements have unique representations x = x0 + x1 + x2 + . . . and y = y0 +
y1 + y2 + . . ., where of course xn, yn belong to Tn. Now the required product
may be defined as

µ(x, y) =
∑

p≥0,q≥0

µpq(xp, yq).

It follows directly from the multilinearity of the tensor product and the bi-
linearity of µ that

µ(rx, y) = rµ(x, y) = µ(x, ry),

and that multiplication is distributive with respect to addition. Also 1R
belongs to T0 and µ(1r, y) = y, µ(x, 1r) = x by (4.2− 3)4. By what we have
just done it is also clear that this algbra is graded and that the grading is
the stated.

38



We will denote this tensor algebra of a module M with T (M) and the grading
with {Tn(M)}n∈Z. It is helpful to define a mapping

φ :M → T (M) (4.4)

where M simply is mapped isomorphicly to T1. With this notation one can
conclude that T (M) is generated as an algebra by φ(M) = T1(M) since

φ(M)φ(M) . . . φ(M) =M ⊗M ⊗ . . .⊗M.

4.2 The universal property of the tensor alge-

bra

As stated earlier, the tensor algebra provides a solution to a universal prob-
lem. Let M be an R-module. Now suppose A is an R-algebra and that
φ : M → A is a homomorphism of R-modules. Let h : A → B be a homo-
morphism of R-algebras, then h◦φ :M → B is an R-module homomorphism
of M into B. We are now ready to formulate the problem, which is similar
to the universal problem of multilinear mappings.

The universal problem of algebras containing M. Let M be an R-
module, the problem is to choose A and φ : M → A so that given any
R-module homomorphism ψ :M → B, where B is an R-algebra, there exists
a unique homomorphism h : A→ B, of R-algebras such that h ◦ φ = ψ.

It is obvious that if there are two solutions to this problem, (A, φ) and (A′, φ′),
then there are inverse algebra-isomorphisms λ : A → A′ and λ′ : A′ → A
such that λ ◦ φ = φ′ and λ′ ◦ φ′ = φ. So, much like the universal problem of
multilinear mappings, this problem has essentially at most one solution.

Theorem 20. The tensor algebra of M , T (M) together with the natural
mapping φ : M → T (M) provides a solution of the universal problem. That
is, for any R-module homomorphism ψ : M → B, where B is an algebra,
there is a unique algebra-homomorphism h : A→ B such that h ◦ φ = ψ.

Proof. Let ψ : M → B be a module homomorphism. We can construct a
multilinear mapping

M ×M × . . .×M → B,
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where (m1,m2, . . . ,mn) is mapped to ψ(m1)ψ(m2) . . . ψ(mn). That this map-
ping is multilinear follows from the conditions for a multiplication map of the
algebra B. This induces a mapping hp : Tp(M) → B where

hp(m1 ⊗m2 ⊗ . . .⊗mn) = ψ(m1)ψ(m2) . . . ψ(mn).

For T0(M) = R we can define h0 : T0(M) → B to be the structural homomor-
phism of R → B. Now T (M) is a direct sum of {Tn(M)}n≥0, consequently
we can define a mapping

h : A→ B

which agrees with hn on Tn(M). If x and y are homogenous elements it is
easily verified, using the appropriate of (4.1 − 4.3),that h(xy) = h(x)h(y).
It follows that h : T (M) → B is a homomorphism of R-algebras by the
multilinear and linear properties the tensor product and the homomorphism
as any element of T (M) is a direct sum of homogenous elements.

The only thing left to prove is that h ◦ φ = ψ and that h is the only homo-
morphism with this property. For x ∈M = T1(M) we have h(x) = ψ(x) and
since φ(M) = M = T1(M), h ◦ φ = ψ. But M = T1(M) generates T (M),
in the sense of an algebra, and as a consequence h must be the only algebra
homomorphism which combined with φ gives ψ.

Because of the great generality of the tensor algebra many other algebras
of interest are created by imposing an equality on some of the elements by
quotioning out an ideal. For example, it is possible to construct the sym-
metric algebra S(M) of a module M by imposing a symmetric equivalence.
If we define an ideal I(M) as the ideal generated by all elements of the form
x⊗ y − y ⊗ x we define the symmetric algebra as

S(M) = T (M)/I(M)

or in other words we impose the equivalence x⊗ y = y ⊗ x. Other examples
of interesting algebras constructed in this manner are the exterior algebra,
universal enveloping algebras and Clifford algebras.
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Chapter 5

Coalgebras

Coalgebras are the dual to algebras. For any mapping used to define an
algebra there is an opposite mapping in the definition of a coalgebra. If
we describe an algebra by commuting diagrams, which we will do soon, we
obtain an coalgebra by reversing all the arrows. For example, in an algebra
one has a mapping

A⊗ A A
µ

while in a coalgebra one has a mapping

A⊗ A A
∆

going in the opposite direction.

Before the concept of a coalgebra will be studied closer and better defined,
the concept of an algebra will be redefined. We will redefine it in a way which
more naturally allows us to move on to the coalgebra and see similarities and
differences. Also we will need this new description when we later define the
concept of a Hopf algebra.
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5.1 A new view of associative algebras

Since commutatative diagrams will be extensively used for this part we will
start with a definition of such.

Definition. A commutative diagram is a diagram where each vertex is
an object and each arrow is a morphism such that all directed paths with the
same initial and final vertex lead to the same result by composition.

One can now make a new definition of an R-algebra by making use of these
commutative diagrams.

Definition. Let A be an R-module. Suppose there is an R-linear mapping µ
such that the following diagram commutes:

A⊗ A⊗ A A⊗ A

A⊗ A A

µ⊗ id

id⊗ µ

µ

µ

Which corresponds to µ being associative. Furthermore suppose there is a
R-linear mapping η : R → A of A such that the diagram

R⊗ A A⊗ A A⊗R

A

η ⊗ id id⊗ η

µ

commutes. R ⊗ A → A and A ⊗ R → A are the isomorphisms provided by
Theorem 7. The triple (A, µ, η) will be said to constitute an associative R-
algebra; µ is called the multiplication mapping and η the unit mapping.
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For x, y ∈ A we define xy = µ(x⊗ y). It is easily verified that this definition
of an associative algebra is compatible with the one earlier given, where η :
R → A is the structural homomorphism.

We are now going look at some of the important aspects of the theory of
algebras from this new definition.

Theorem 21. Let (A, µA, ηA) and (B, µB, ηB) be two associative R-algebras.
If f is a mapping from A to B then f is an algebra-homomorphism if and
only if the following conditions are satisfied

(i) f is R-linear

(ii) f ◦ µa = µb ◦ (f ⊗ f)

(iii) f ◦ ηA = ηB

Proof. The first condition is an obvious property since it is a property we
already now an algebra-homomorphism must posess. The second condition
is equivalent to that the following diagram

A⊗ A

A B ⊗ B

B

µA f ⊗ f

f µB

commutes. Similarly the third condition be described by the following com-
muting diagram.

R B

A

ηB

ηA f

Together, these conditions are equivalent to those given in 3.1.
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To describe the algebra created by the tensor product of n algebras we will
need to define some new mappings. Let (Ai, µi, ηi) be algebras for each
1 ≤ i ≤ n, and let

Λn : (A1 ⊗ . . .⊗ An)⊗ (A1 ⊗ . . .⊗ An) → (A1 ⊗ A1)⊗ . . .⊗ (An ⊗ An)

be an isomorphism matching (a1 ⊗ . . .⊗ an)⊗ (a′1 ⊗ . . . a′n) with (a1 ⊗ a′1)⊗
. . .⊗ (an ⊗ a′n). Also let

∆
(n)
R : R → R⊗R⊗ . . .⊗R

︸ ︷︷ ︸

n factors

be the R-linear mapping in which 1 → 1⊗ 1⊗ . . .⊗ 1.

Now we can describe the algebra A1⊗A2⊗ ...⊗An from Section 3.3 as having
the mappings

µA1⊗...⊗An
= (µ1 ⊗ µ2 ⊗ . . .⊗ µn) ◦ Λn (5.1)

and

ηA1⊗...⊗An
= (η1 ⊗ η2 ⊗ . . .⊗ ηn) ◦∆

(n)
R . (5.2)

Next in turn are graded algebras. Assume (A, µ, η) is an algebra and assume
{An}n∈Z is a family of submodules of A such that

A =
∑

n∈Z

An,

which means that we suppose that {An}n∈Z grades A as an R-module. From
this we also have a grading {(A⊗ A)n}n∈Z of the module A⊗ A, where

(A⊗ A)n =
∑

p+q=n

Ap ⊗ Aq,

this is of course the usual total grading on A ⊗ A. Now the statement that
{An}n∈Z is an algebra-grading is equivalent to that the mappings µ : A⊗A→
A and η : R → A preserves degrees, with R being granted the trivial grading.

Suppose now that (A(1), µ1, η1), (A
(2), µ2, η2), . . . , (A

(n), µn, ηn) are graded R-
algebras. For each two sequences of integers I = (i1, i2, . . . , in) and J =
(j1, j2, . . . , jn) there is an isomorphism between

(A
(1)
i1

⊗ A
(2)
i2

⊗ . . .⊗ A
(n)
in

)⊗ (A
(1)
j1

⊗ A
(2)
j2

⊗ . . .⊗ A
(n)
jn

) (5.3)
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and
(A

(1)
i1

⊗ A
(1)
j1
)⊗ (A

(2)
i2

⊗ A
(2)
j2
)⊗ . . .⊗ (A

(n)
in

⊗ A
(n)
jn

). (5.4)

Now since (A(1)⊗A(2)⊗ . . .⊗A(n))⊗(A(1)⊗A(2)⊗ . . .⊗A(n)) is the direct sum
of the modules (5.3) while (A(1) ⊗ A(1))⊗ (A(2) ⊗ A(2))⊗ . . .⊗ (A(n) ⊗ A(n))
is the direct sum of modules (5.4) we can combine the various isomorphisms
and define an isomorphism

Λn : (A(1)⊗ . . .⊗A(n))⊗(A(1)⊗ . . .⊗A(n)) → (A(1)⊗A(1))⊗ . . .⊗(A(n)⊗A(n))

such that we can now describe A(1) ⊗ A(2) ⊗ . . . ⊗ A(n) as a graded algebra
with this new Λn in (5.1).

5.2 Definition of a coalgebra

We have now done the necessary preperations to describe a coalgebra as a
concept dual to that of an algebra. That is, for each commutative diagram
we have used to define an algebra, we obtain the corresponding diagram for
coalgebras by reversing the arrows.

Definition. Let A be an R-module and suppose that we are given R-linear
mappings ∆ : A→ A⊗ A and ε : A→ R. If the following two diagrams

A A⊗ A

A⊗ A A⊗ A⊗ A

∆

∆ id⊗∆

∆⊗ id

and

R⊗ A A⊗ A A⊗R

A

ε⊗ id id⊗ ε

∆
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are commutative (A → A ⊗ R maps a into a ⊗ 1). We will call the triple
(A,∆, ε) a coalgebra. The mapping ∆ : A→ A⊗A is called the comultipli-

cation mapping of the coalgebra and the commutativity of the first diagram
is described by saying that comultiplication is coassociative. The mapping
ε : A→ R is known as the counit.

R itself becomes a coalgebra if we define the two mappings to be ∆ : R →
R⊗R to be the R-linear mapping which carries 1 into 1⊗ 1 and ε : R → R
to be the identity mapping. This allows us to speak of R as an coalgebra,
and whenever we do, this will be the structure considered. We will now make
two relevant definitions.

Definition. Suppose (A,∆A, εA) and (B,∆B, εB) are coalgebras. A mapping
f : A → B is called a homomorphism of coalgebras if the following
conditions are satisfied

(i) f is R-linear

(ii) ∆B ◦ f = (f ⊗ f) ◦∆A

(iii) εB ◦ f = εA

if the mapping f is a bijection it is called an isomorphism of coalgebras.

Definition. Let (A,∆, ε) be an R-coalgebra and let {An}n∈Z be a grading of
A considered as a module. Now let A⊗A have the usual induced total grading
{(A⊗ A)n} and let R have the trivial grading.

We say that A is a graded coalgebra with the grading {An}n∈Z if ∆ and ε
preserves the degrees of homogenous elements. Also, a homomorphism of

graded coalgebras is coalgebra homomorphism which preserves degrees.

Note that this definition implies that if (A,∆, ε) is a graded coalgebra, then
ε maps any homogeneous element of a degree not equal to zero into the zero
element of R.
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5.3 The tensor product of coalgebras

Before we move on to define the tensor product of coalgebras we will define
some concepts needed.

Suppose A1, A2, . . . , Ap are R-modules. We define the isomorphism

Vn : (A1 ⊗A1)⊗ . . .⊗ (An ⊗An) → (A1 ⊗ . . .⊗An)⊗ (A1 ⊗ . . .⊗An) (5.5)

in which (a1 ⊗ a′1)⊗ . . .⊗ (an ⊗ a′n) is matched with the element (a1 ⊗ . . .⊗
an)⊗ (a′1 ⊗ . . .⊗ a′n). Also in a similar manner we define the isomorphism

Wn : (A1 ⊗ A1 ⊗ A1)⊗ . . .⊗ (An ⊗ An ⊗ An)

→ (A1 ⊗ . . .⊗ An)⊗ (A1 ⊗ . . .⊗ An)⊗ (A1 ⊗ . . .⊗ An). (5.6)

That these two module isomorphisms exist is a consequence of Theorem 5
and 6.

Suppose that for 1 ≤ i ≤ n, (Ai,∆i, εi) is an R-coalgebra. And set

A = A1 ⊗ A2 ⊗ . . .⊗ An

at the moment only considered as a module. Next we define the R-linear
mapping ∆ : A→ A⊗ A to be the composition

∆ = Vn ◦ (∆1 ⊗∆2 ⊗ . . .⊗∆n).

Also we define a mapping

µn
R : R⊗R⊗ . . .⊗R

︸ ︷︷ ︸

n times

→ R

in which µn
R(r1 ⊗ r2 ⊗ . . . ⊗ rn) = r1r2 . . . rn with which we can define the

mapping ε : A→ R to be

ε = µn
R ◦ (ε1 ⊗ ε2 ⊗ . . .⊗ εn)

which is R-linear.

Theorem 22. Let (Ai,∆i, εi) be R-coalgebras. Then, with the notation just
described, (A,∆, ε) is also an R-coalgebra
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Proof. To establish our claim we will have to prove that the conditions de-
scribed in the definition of a coalgebra are satisfied.

The mapping

(id⊗∆1) ◦∆1 ⊗ (id⊗∆2) ◦∆2 ⊗ . . .⊗ (id⊗∆n) ◦∆n

maps A1 ⊗ A2 ⊗ . . . ⊗ An into (A1 ⊗ A1 ⊗ A1) ⊗ . . . ⊗ (An ⊗ An ⊗ An) and
consequently

Wn ◦ ((id⊗∆1) ◦∆1 ⊗ . . .⊗ (id⊗∆n) ◦∆n) (5.7)

maps A into A⊗A⊗A. To show the coassociativity of ∆ as defined we will
start by with proving that (id⊗∆) ◦∆ is equal to the mapping (5.7).

Since any element in A⊗A can be written as a finite sum of monomial tensors
we know that

∆i(ai) =
∑

λ

a′i(λ)⊗ a′′i (λ)

where λ is some labelling. To simplify the notation we will instead write

∆i(ai) =
∑

a′i⊗ a′′i . This notation will be called the summative notation

of the coproduct. Because of this we can write

(∆1 ⊗ . . .⊗∆n)(a1 ⊗ . . .⊗ an) = (
∑

a′1 ⊗ a′′1)⊗ . . .⊗ (
∑

a′n ⊗ a′′n)

and as a consequence

∆(a1 ⊗ . . .⊗ an) =
∑

(a′1 ⊗ . . . a′n)⊗ (a′′1 ⊗ . . .⊗ a′′n)

where the summation is taken over all the different labellings. This rewriting
is possible because of the multilinearity of the tensor product. It follows that

(id⊗∆)(∆(a1 ⊗ . . .⊗ an)) =
∑

(a′1 ⊗ . . .⊗ a′n)⊗∆(a′′1 ⊗ . . .⊗ a′′n).

We also have that,

((id⊗∆1) ◦∆1 ⊗ . . .⊗ (id⊗∆n) ◦∆n)(a1 ⊗ . . .⊗ an)

= (
∑

a′1 ⊗∆1(a
′′
1))⊗ . . .⊗ (

∑

a′n ⊗∆n(a
′′
n))

and from this it follows that

Wn ◦ ((id⊗∆1) ◦∆1 ⊗ . . .⊗ (id⊗∆n) ◦∆n)(a1 ⊗ . . .⊗ an)
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is mapped to

∑

(a′1 ⊗ . . .⊗ a′n)⊗ Vn(∆1(a
′′
1)⊗ . . .⊗∆n(a

′′
n)) =

=
∑

(a′1 ⊗ . . .⊗ a′n)⊗∆(a′′1 ⊗ . . .⊗ a′′n)

and we have now proven the claim that

(id⊗∆) ◦∆ = Wn ◦ ((id⊗∆1) ◦∆1 ⊗ . . .⊗ (id⊗∆n) ◦∆n).

In the same manner it can be proved that

(∆⊗ id) ◦∆ = Wn ◦ ((∆1 ⊗ id) ◦∆1 ⊗ . . .⊗ (∆n ⊗ id) ◦∆n).

For each ∆i we have by its coassociativity that (id⊗∆i)◦∆i = (∆i⊗ id)◦∆i.
And as a consequence the following equality holds

(id⊗∆) ◦∆ = Wn ◦ ((id⊗∆1) ◦∆1 ⊗ . . .⊗ (id⊗∆n) ◦∆n)

= Wn ◦ ((∆1 ⊗ id) ◦∆1 ⊗ . . .⊗ (∆n ⊗ id) ◦∆n)

= (∆⊗ A) ◦∆

and the commutativity of the diagram

A A⊗ A

A⊗ A A⊗ A⊗ A

∆

∆ id⊗∆

∆⊗ id

has been proven. Now to complete the proof we have to prove the commu-
tativity of the diagram

R⊗ A A⊗ A A⊗R

A

ε⊗ id id⊗ ε

∆
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as well. We consider only the left triangle since the proof of the right is almost
identical. It is enough to prove that the effect of applying the composition
of homomorphisms

A A⊗ A R⊗ A A
∆ ε⊗ id ∼

to an element a1 ⊗ a2 ⊗ . . . ⊗ an is to leave the element unchanged, when
the last isomorphism is the one given by theorem 13. Now when these ho-
momorphisms are applied the image is

(
∑

ε1(a
′
1)a

′′
1)⊗ . . .⊗ (

∑

εn(a
′
n)a

′′
n)

but we already know that for each i that
∑
εi(a

′
i)a

′′
i = ai since the diagram

R⊗ Ai Ai ⊗ Ai

Ai

εi ⊗ A

∆

commutes. Accordingly the first diagram commutes and the proof is done.

Definition. The coalgebra (A,∆, ε) as described in Theorem 21 is called the
tensor product of coalgebras and will be denoted A1 ⊗ A2 ⊗ . . .⊗ An.

5.4 Some properties of the tensor product of

coalgebras

As noted in the beginning of this chapter the coalgebra is a concept dual to
that of an algebra, and as a consequence for most of the results of an algebra
there is a corresponding result for coalgebras.

Theorem 23. Let A1, A2, . . . , An and B1, B2, . . . , Bn be coalgebras and for
each 1 ≤ i ≤ n let

fi : Ai → Bi
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be a homomorphism of coalgebras. Then

f1 ⊗ . . .⊗ fn : A1 ⊗ . . .⊗ An → B1 ⊗ . . .⊗ Bn

is also a coalgebra homomorphism.

Proof. We know that f1⊗ . . .⊗ fn is a module-homomorphism, i.e. R-linear.
Now put f = f1⊗ . . .⊗ fn, A = A1⊗ . . .⊗An and B = B1⊗ . . .⊗Bn. Using
the summative notation of the coproduct we have

∆A(a1 ⊗ . . .⊗ an) =
∑

(a′1 ⊗ . . .⊗ a′n)⊗ (a′′1 ⊗ . . .⊗ a′′n)

and therefore

(f ⊗ f)(∆A(a1 ⊗ . . . an)) =
∑

(f1a
′
1 ⊗ . . .⊗ fna

′
n)⊗ (f1a

′′
1 ⊗ . . .⊗ fna

′′
n).

Because fi is an coalgebra homomorphism ∆Bi
(fiai) =

∑
fia

′
i ⊗ fia

′′
i and as

a consequence

∆B(f1a1 ⊗ . . .⊗ fnan) =
∑

(f1a
′
1 ⊗ . . .⊗ fna

′
n)⊗ (f1a

′′
1 ⊗ . . .⊗ fna

′′
n).

This shows that ∆B ◦ f = (f ⊗ f) ◦∆A. Now for counits, for each i we have
the equality εBi

◦ f = εAi
and therefore

(εB ◦ f)(a1 ⊗ . . .⊗ an) = εB1
(f1a1)εB2

(f2a2) . . . εBn
(fnan)

= εA1
(a1)εA2

(a2) . . . εAn
(an)

so εB ◦ f = εA and the proof is done.

Theorem 24. Let A1, A2, . . . , An and B1, B2, . . . , Bp be coalgebras. Then
there is an isomorphism

A1 ⊗ . . .⊗ An ⊗ B1 ⊗ . . .⊗ Bp ≃ (A1 ⊗ . . .⊗ An)⊗ (B1 ⊗ . . .⊗ Bp)

.

Proof. We know from Theorem 5 that there is a corresponding isomorphism
of modules, we now prove that this isomorphism is also an isomorphism of
coalgebras if the modules are in fact coalgebras. Denote A = A1 ⊗ . . .⊗An,
B = B1 ⊗ . . .⊗ Bp and C = A1 ⊗ . . .⊗ An ⊗ B1 ⊗ . . .⊗ Bp. We denote the
module-isomorphism

φ : A1 ⊗ . . .⊗ An ⊗ B1 ⊗ . . .⊗ Bp
∼
→ (A1 ⊗ . . .⊗ An)⊗ (B1 ⊗ . . .⊗ Bp).
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For this proof to be complete it suffices to show that φ is a coalgebra-
homomorphism. For (φ⊗ φ) ◦∆C we have

((φ⊗ φ) ◦∆C)(a1 ⊗ . . .⊗ an ⊗ b1 ⊗ . . .⊗ bp)

=
∑

((a′1 ⊗ . . .⊗ a′n)⊗ (b′1 ⊗ . . .⊗ b′p))⊗ ((a′′1 ⊗ . . .⊗ a′′n)⊗ (b′′1 ⊗ . . .⊗ b′′p)).

But for ∆A⊗B ◦ φ we have

(∆A⊗B ◦ φ)(a1 ⊗ . . .⊗ an ⊗ b1 ⊗ . . .⊗ bp) = ∆A⊗B((a1 ⊗ . . .⊗ an)⊗ (b1 ⊗ . . .⊗ bp))

=
∑

((a′1 ⊗ . . .⊗ a′n)⊗ (b′1 ⊗ . . .⊗ b′p))⊗ ((a′′1 ⊗ . . .⊗ a′′n)⊗ (b′′1 ⊗ . . .⊗ b′′p)),

so (φ⊗ φ) ◦∆C = ∆A⊗B ◦ φ. The result of applying both εC and εA⊗B ◦ φ to
a1 ⊗ . . .⊗ an ⊗ b1 ⊗ . . .⊗ bp is

εA1
(a1) . . . εAn

(an)εB1
(b1) . . . εBp

(bp)4

so εA⊗B ◦ φ = εC and the proof is done

Theorem 25. Let A1, A2, . . . , An be coalgebras and let I = i1, i2, . . . , in be a
permutation of (1, 2, . . . , n). Then there is an isomorphism

A1 ⊗ A2 ⊗ . . .⊗ An ≃ Ai1 ⊗ Ai2 ⊗ . . .⊗ Ain .

Proof. We denote A = A1, . . . , An, B = Ai1 , . . . Ain and the corresponding
module isomorphism with

φ : A1 ⊗ . . .⊗ An
∼
→ Ai1 ⊗ . . .⊗ Ain .

Similar to the previous two proofs, if one apply (φ⊗ φ) ◦∆A and ∆B ◦ φ the
result is ∑

(a′i1 ⊗ . . .⊗ a′in)⊗ (a′′i1 ⊗ . . .⊗ a′′in)

so (φ⊗ φ) ◦∆A = ∆B ◦ φ. Also the result of applying both εB ◦ φ and εA is

εA1
(a1) . . . εAn

(an).

Theorem 26. Let A be an R-coalgebra. Regarding R as an R-coalgebra there
are isomorphisms

R⊗ A ≃ A and A⊗R ≃ A

.
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Proof. Let φ : A ⊗ R → A be the corresponding module-isomorphism in
which φ(a⊗ r) = ar. Now

(φ⊗ φ)(∆A⊗R(a⊗ r) = r
∑

a′ ⊗ a′′ = ∆A(φ(a⊗ r)

so (φ⊗ φ) ◦∆A⊗R = ∆A ◦ φ. Also

εA(φ(a⊗ r)) = rεA(a) = εA⊗R(a⊗ r)

and therefore εA ◦ φ = εA⊗R. Similarly for R⊗ A.

Theorem 27. Let A(1), A(2), . . . , A(n) be graded coalgebras, then the usual
total grading on the module

A(1) ⊗ A(2) ⊗ . . .⊗ A(n)

is a coalgebra grading.

Proof. From Theorem 21 we have a natural structure of A(1)⊗A(2)⊗. . .⊗A(n)

as an coalgebra. Also if each ∆(i) and ε(i) preserves grading under the usual
total grading then so does ∆ and ε, as these mappings are described in
(5.3).

5.5 The convolution product

Let A be an R-algebra and C be an R-coalgebra. Then there is an as-
sociative product on the R-module HomR(C,A), the R-module of module
homomorphisms from C to A, called the convolution product denoted ∗. The
convolution product is for ϕ, ψ ∈ HomR(C,A) given by:

ϕ ∗ ψ = µA ◦ (ϕ⊗ ψ) ◦∆C (5.8)

which reads in summative notation

(ϕ ∗ ψ)(x) =
∑

ϕ(x′)ψ(x′′). (5.9)

The associativity of this product is a direct consequence of the associativity
of µ and the coassociativity of ∆. The identity of the convolution product is
the mapping η ◦ ε. To see this consider for f ∈ HomR(C,A) and x ∈ C

(f ∗ (η ◦ ε))(x) =
∑

f(x′)(η ◦ ε)(x′′) =
∑

f(x′)ε(x′′)1 = f(x)

by the definition of the unit and counit mapping.
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Chapter 6

Hopf algebras

6.1 Bialgebras

A bialgebra is a structure that is both an algebra and a coalgebra at the
same time, in such a way that the two structures are compatible.

Definition. Let A be an R-module. Suppose there are R-linear mappings

µ : A⊗ A→ A (6.1)

η : R → A (6.2)

∆ : A→ A⊗ A (6.3)

ε : A→ R (6.4)

then (A, µ, η,∆, ε) is called a bialgebra if the following four conditions are
satisfied

(i) (A, µ, η) is an R-algebra

(ii) (A,∆, ε) is a R-coalgebra

(iii) ∆ : A→ A⊗ A and ε : A→ R are homomorphisms of algebras

(iv) µ : A⊗ A→ A and η : R → A are homomorphisms of coalgebras

We can also say that the following diagrams commute.
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A⊗ A A A⊗ A

A⊗ A⊗ A⊗ A A⊗ A⊗ A⊗ A

µ ∆

∆⊗∆

id⊗ τ ⊗ id

µ⊗ µ

where τ : A⊗ A→ A⊗ A maps a′ ⊗ a′′ to a′′ ⊗ a′.

A⊗ A

R⊗R ≃ R

A
µ

ε⊗ ε ε

A⊗ A

R⊗R ≃ R

A
∆

η ⊗ η η

and

R

A

R

η ε

id

These conditions of a bialgebra are however not independent.

Theorem 28. Suppose (A, µ, η) is an algebra and (A,∆, ε) is a coalgebra.
Then the following statements are true.
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(i) µ : A⊗ A→ A is compatible with comultiplication if and only if
∆ : A→ A⊗ A is compatible with multiplication

(ii) µ : A⊗A→ A preserves counits if and only if ε : A→ R is compatible
with multiplication

(iii) η : R → A is compatible with comultiplication if and only if
∆ : A→ A⊗ A preserves identity elements

(iv) η : R → A preserves counits if and only if ε : A→ R preserves identity
elements

Proof. (i) The mapping µ : A⊗ A → A is compatible with comultiplication
if and only if ∆ ◦ µ = (µ⊗ µ) ◦∆A⊗A. We know that

∆A⊗A = (id⊗ τ ⊗ id) ◦ (∆⊗∆)

from the description of the tensor product of coalgebras, τ is the mapping in
which τ(a⊗ a′) = a′ ⊗ a. Consequently we can write the condition as

∆ ◦ µ = (µ⊗ µ) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆). (6.5)

But ∆ : A→ A⊗A is compatible with multiplication precisely when ∆◦µ =
µA⊗A ◦ (∆⊗∆) and since

µA⊗A = (µ⊗ µ) ◦ (id⊗ τ ⊗ id)

this condition is equivalent to (6.5).

(ii) The mapping µ : A ⊗ A → A preserves counits if and only if ε ◦ µ =
εA⊗A(A⊗ A), which in turn by definition of εA⊗A can be written as ε ◦ µ =
µR ◦ (ε ⊗ ε). But this is the condition for ε : A → R to be compatible with
multiplication.

(iii) The structural homomorphism η : R → A is compatible comultiplication
if and only if (η ⊗ η) ◦∆R = ∆ ◦ η. And for this to occur it is necessary and
sufficient that ∆(1A) = 1A ⊗ 1A.

(iv) For η : R → A to preserve counits we require that εR = ε ◦ η and this
occurs precisely when ε(1A) = 1R.

Corollary 2. Suppose (A, µ, η) is an algebra and (A,∆, ε) is a coalgebra.
Then µ : A ⊗ A → A and η : R → A are homomorphisms of coalgebras if
and only if ∆ : A→ A⊗ A and ε : A→ R are homomorphisms of algebras.
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6.2 Hopfalgebras

Definition. A Hopf algebra is a bialgebra H with a linear map S : H → H
called the antipode, such that the following diagram commutes:

H

H⊗H H⊗H

H⊗H H⊗H

R H

∆

ε

S ⊗ id

id⊗ S

η

µ

µ∆

Note that commuting diagram can be translated to the following equality
using the summative notation for a coproduct:

∑

S(x′)x′′ =
∑

x′S(x′′) = (η ◦ ε)(x).

Since (η ◦ ε) is the unit element of the convolution product this statement is
the same as the antipode S : H → H is the inverse of the identity mapping
id : H → H under the convolution product as defined in 5.5. Since the
inverse of a function is unique this also means that the antipode is uniquely
defined if it exists. The convolution from H → H is always defined since H
has a structure as both an algebra and a coalgebra. From this follows an
important property of the antipode mapping.

Theorem 29. Let H be a Hopf algebra with an antipode S. Then for any
g, h ∈ H

S(hg) = S(g)S(h)

or in other words, the antipode is an antihomomorphism.

Proof. Consider the three functions from H⊗H to H defined by

F (h⊗ g) = S(g)S(h)

G(h⊗ g) = S(hg)

M(h⊗ g) = hg,
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for any h, g ∈ H. We want to show that, with respect to the convolution
product from (H⊗H) to H, that both F and G are inverses to M under the
convolution. Let h, g be any elements in H.

(M ∗ F )(h⊗ g) =
∑

(g),(h)

M(h′ ⊗ g′)F (h′′ ⊗ g′′)

=
∑

(g),(h)

h′g′S(g′′)S(h′′)

=
∑

(h)

h′(η ◦ ε)(g)S(h′′)

=
∑

(h)

h′ε(g)1S(h′′)

= ε(h)ε(g)1

= ε(h⊗ g)1

= (η ◦ ε)(h⊗ g)

similarly

(G ∗M)(h⊗ g) =
∑

G(h′ ⊗ g′)M(h′′ ⊗ g′′)

=
∑

S(h′g′)h′′g′′

= ε(hg)1

= (η ◦ ε)(h⊗ g)

since inverses are unique the theorem follows.

Definition. A Hopfalgebra H is called a graded Hopf algebra if it is graded
as an algebra, as a coalgebra and if x ∈ Hn implies S(x) ∈ Hn i.e. for
hi ∈ Hn :

H =
∑

i∈I

Hi

hp · hq ∈ Hp+q

∆(hn) ∈
∑

p+q=n

Hp ⊗Hq

S(hn) ∈ Hn

If the antipode criterium is omitted this is the definition of a graded bial-

gebra.
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A graded Hopf algebra, or bialgebra, is called connected if H0 is generated
by the identity element. Notice that if H is a vector space or a free module
this is the same as H0 being one-dimensional.

Note that from the definition of graded coalgebras the kernel of ε is all
elements of degree 1 or higher.

Theorem 30. Let H be a connected graded Hopf algebra. For any x ∈ Hn

we can write:

∆(x) = x⊗ 1 + 1⊗ x+ ∆̃(x), ∆̃(x) ∈
⊕

p+q=n,p 6=0,q 6=0

Hp ⊗Hq.

The map ∆̃ is coassociative and ∆̃k = (id⊗k−1⊗∆̃)◦(id⊗k−2⊗∆̃) . . . ∆̃ sends
Hn into (Hn−k)

(⊗k+1).

Proof. It is always to split up the sum given by the coproduct, using the
summative notation, in two parts. One with all terms where either |x′| = 0
or |x′′| = 0 and the one where |x′|, |x′′| ≥ 1. Now if we group all terms where
|x′| = 0 together it follows from the connectedness of H that we can write:

∆(x) = a(x⊗ 1) + b(1⊗ x) + ∆̃(x)

where a, b ∈ R and ∆̃(x) ∈ ker ε⊗ ker ε, that is:

∆̃(x) =
∑

x′ ⊗ x′′, such that |x′|, |x′′| ≥ 1

The co-unit property now tells us, together with the isomorphism R ⊗H ≃
H⊗R ≃ H, that:

x = (ε⊗ id)(∆(x)) = bx

x = (id⊗ ε)(∆(x)) = ax

which gives a = b = 1. To prove the coassociativity we now compute:

(∆⊗ id)∆(x) = (∆⊗ id)(x⊗ 1 + 1⊗ x+ ∆̃(x)) =

= x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x

+
∑

(x′ ⊗ x′′ ⊗ 1 + x′ ⊗ 1⊗ x′′ + 1⊗ x′ ⊗ x′′)

+ (∆̃⊗ id)(∆̃(x))
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and

(id⊗∆)∆(x) = (id⊗∆)(x⊗ 1 + 1⊗ x+ ∆̃(x)) =

= x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x

+
∑

(x′ ⊗ x′′ ⊗ 1 + x′ ⊗ 1⊗ x′′ + 1⊗ x′ ⊗ x′′)

+ (id⊗ ∆̃)(∆̃(x))

since ∆ is co-associative, i.e. (id⊗∆)∆(x) = (∆⊗ id)∆(x) it follows that ∆̃
is co-associative.

Using the definition of ∆̃k we have for any x ∈ Hn that

∆̃k(x) =
∑

x(1) ⊗ x(2) ⊗ . . .⊗ x(k+1)

with a total of k + 1 terms with every term |x(j)| ≥ 1, from the definition of
∆̃. Also the filtration imposes that

k+1∑

j=1

|x(j)| ≤ n

so the maximal degree of any term is n− k.

The convolution product is a binary product on the set of homomorphisms
from an R-coalgebra C to an R-algebra A, denoted HomR(C,A). We are
particularly interested in the case where the R-coalgebra C is in fact a con-
nected graded bialgebra H. We can then construct an interesting group.

Definition. Let H be a connected graded bialgebra and A be any algebra. We
define the subset GL(H,A) of HomR(H, A) as the following set:

GL(H,A) = {ϕ ∈ HomR(H, A), ϕ(1) = 1A}.

Theorem 31. Let H be a connected graded R-bialgebra and let A be any
R-algebra. Then set GL(H,A) together with the convolution product form a
group. The identity element of this group is the function e = ηA ◦ ε.

Proof. When the convolution product was introduced the associativity and
the unit mapping was proved and the closure property follows easily from
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definition. The only thing left to prove is the inverse property. To do this
let us consider the formal power series:

ϕ∗−1(x) = (e− (e− ϕ))∗−1(x) =
∑

k≥0

(e− ϕ)∗k(x)

where a∗n is defined as a ∗ a ∗ . . . ∗ a, the convolution taken n times. If this
formal power series is well defined then it must be the inverse. Compare with
the well known equality.

1

1− x
=

∑

xn.

Now by the definition of the elements in the set G and of e it is evident that
(e− ϕ)(1) = 0 and as an immediate consequence (e− ϕ)∗k(1) = 0.

For any x ∈ ker ε it is evident that (e− ϕ)(x) = −ϕ(x). As a consequence

(e− ϕ)∗k = µk−1(−ϕ⊗ . . .⊗−ϕ)∆̃k−1(x)

When x ∈ Hn this expression vanishes for k ≥ n + 1 by Theorem 30. As a
consequence the formal series ends up with a finite number of terms for any
x, therefore ϕ∗−1 is well defined and the theorem is proved.

The next theorem is a direct consequence of what we now know about graded
bialgebras, Hopf algebras and the convolution product. This is a theorem we
will make heavy use of later.

Theorem 32. Any connected graded bialgebra H is a graded Hopf algebra in
the sense that an antipode always can be defined by:

S(x) =
∑

k≥0

(e− id)∗k(x)

It can be calculated by S(1) = 1 and alternatively by any of the two formulas
for x ∈ ker ε:

S(x) = −x−
∑

S(x′)x′′

S(x) = −x−
∑

x′S(x′′)

which are recursive on the degree of x.
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Proof. The antipode, when it exists, is the inverse of the identity mapping
under the convolution product, thus the inverse of the identity mapping in
GL(H,H) as defined in Theorem 31. The first antipode formula is now a direct
consequence of applying Theorem 31 to the identity mapping. It follows from
Theorem 31 that the sum is finite in the sense that all but finitely many terms
are zero.

Consider the antipode of an element x of degree n, then

S(x) =
n∑

k≥0

(e− id)∗k(x)

=
n∑

k≥0

µk−1(−id⊗ . . .⊗−id)∆̃k−1(x)

= µn−1(−id⊗ . . .− id)∆̃n−1(x) + . . .+ µ2(−id⊗−id)∆̃2(x)− id(x)

= µ((..((∆̃ . . .)∆̃ +−id)⊗−id)∆̃ +−id)(x)

where µ simply represents the multiplication mapping of the correct number
of elements. This can in summative notation be written as

S(x) = −x−
∑

S(x′)x′′

and the second formula can be derived similarly.
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6.3 Examples of Hopf algebras

Example 8. Let G be a group and let RG be the free module of G as described
in 1.3. The product in G extends uniquely to a bilinear map µ : RG×RG→
RG in which (rg, r′g′) is mapped to rr′gg′. The neutral element of G is the
unit element for µ. It is possible to endow RG with the following co-unital
coalgebra structure:

∆(
∑

rigi) =
∑

ri(gi ⊗ gi)

ε(
∑

rigi) =
∑

ri

The antipode is given by:

S(g) = g−1, g ∈ G.

Proof. We check some of the conditions. We first prove that the coproduct
and product are compatible. For any g, h ∈ G we have:

∆(gh) = gh⊗ gh = (g ⊗ g)(h⊗ h) = ∆(g) ·∆(h).

For the antipode criteria we can conclude the following for any g ∈ G:

µ((S ⊗ id)∆(g)) = g−1g = e

µ((id⊗ S)∆(g)) = gg−1 = e

η ◦ ε(g) = e

so the antipode defined satisfies the criteria.

Example 9. There is a natural structure as a cocommutative, the coproduct
is commutative, Hopf algebra on the tensor algebra T (M).

It is possible to define different coalgebraic structures on the tensor algebra,
but not all are such that they fulfill the conditions for a bialgebra and/or a
Hopf algebra. One coalgebra structure that does fulfill these conditions are
the shuffle coproduct, which is defined as

∆(x1⊗x2⊗ . . .⊗xn) =
n∑

p=0

∑

σ∈Shp,m−p

(xσ(1)⊗ . . .⊗xσ(p))⊗(xσ(p+1)⊗ . . .⊗xσ(n))
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the summation is taken over the (p, n−p) shuffles of (1, 2, ..., n). The (p, n−p)
shuffles are all the ways in which it is possible to partition (1, 2, ..., n) in such
a way that

σ(1) < σ(2) < . . . < σ(p)

σ(p+ 1) < σ(p+ 2) < . . . < σ(n).

Another way to define this coproduct is to define it as the algebra morphism
from T (M) into T (M)⊗ T (M) such that

∆(1) = 1⊗ 1

∆(x) = x⊗ 1 + 1⊗ x

which extends to

∆(x1 ⊗ x2 ⊗ . . .⊗ xn) = ∆(x1)∆(x2) . . .∆(xn)

so for example

∆(x1 ⊗ x2) = (x1 ⊗ 1 + 1⊗ x1)(x2 ⊗ 1 + 1⊗ x2)

= (x1 ⊗ 1)(x2 ⊗ 1) + (x1 ⊗ 1)(1⊗ x2)

+(1⊗ x1)(x2 ⊗ 1) + (1⊗ x1)(1⊗ x2)

= (x1 ⊗ x2)⊗ (1⊗ 1) + (x1 ⊗ 1)⊗ (1⊗ x2)

+(1⊗ x2)⊗ (x1 ⊗ 1) + (1⊗ 1)⊗ (x1 ⊗ x2)

= (x1 ⊗ x2) + (x1)⊗ (x2) + (x2)⊗ (x1) + (x1 ⊗ x2).

The counit is defined as ε(1) = 1 and ε|M = 0. With these two mappings
T (M) is a cocommutative bialgebra. For these mappings η ◦ ε(1) = 1, so
S(1) = 1, and η ◦ ε(x) = 0 for x ∈M = T1(M). For x ∈ T1(M) the antipode
can be defined as

S(x) = −x

for which
S ∗ id(x) = S(x)1 + 1x = −x+ x = 0

by the definition of multiplication with a scalar id T (M), so id ∗ S(x) =
S(x) ∗ id = 0. Since T (M) is generated by T1(M) we can simply extend this
to T (M) with the use of Theorem 29 so that

S(x1 ⊗ . . .⊗ xn) = S(xn) . . . S(x1) = (−1)n(xn ⊗ . . .⊗ x1)

Example 10. The universal enveloping algebra of a Lie algebra is also a
cocommutative Hopf algebra.
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A Lie algebra can be constructed out of an algebra by defining the commu-
tator

[x, y] = xy − yx

Then we can construct the universal enveloping algebra of the Lie algebra L
from T (L) by factoring out the ideal I generated by elements

[x, y]− x⊗ y + y ⊗ x.

Similarly one can construct the symmetric algebra, equivalent to the com-
mutative free algebra of M , by factoring T (M) by the ideal generated by
elements

x⊗ y − y ⊗ x.

And also the exterior algebra of a module M by factoring by the ideal gen-
erated by elements

x⊗ x.
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Chapter 7

Hopf algebras of graphs

In this part we will take a closer look at particular kind of Hopf algebras.
Hopf algebras created from different sets of graphs. The algebraic structure
in these examples are the same, the free commutative R-algebra as described
in example 7. We will see that depending on the additional properties of the
graphs it is possible to create different gradings and coalgebraic structures.
These sets of graphs will be shown to have a graded connected bialgebraic
structure, and therefore by Theorem 32 also Hopf algebraic structures.

7.1 Hopf algebra of rooted trees

A rooted tree is a finite simply connected oriented graph such that each
vertex has exactly one incoming edge except one distinguished vertex, called
the root, which has no incoming edge. A vertex without any outgoing edges
is called a leaf. A rooted forest is a disjoint union of rooted trees, s =
{t1, t2, . . . , tn} which we simply denote by the commutative product t1 · t2 ·
. . . · tn. Two examples of rooted trees with 5 vertices are:

To construct a bialgebraic structure, let H be the free commutative R-algebra
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of rooted forests generated via the disjoint union by all rooted trees, where the
empty tree is the identity element 1. To define a bialgebra on this set we must
define a counit and a comultiplication such that these structures together
with the free commutatvie structure satisfies the axioms of a bialgebra. We
let the co-unit ε be the map sending 1 to 1 and any non-empty forest to 0.

The coproduct is somewhat more complicated, to define it we will first need
some other concepts. An elementary cut on a tree is a cut on some edge of
that tree. An admissable cut is a collection of elementary cuts such that
any path from the root to a leaf passes at most one edge with an elementary
cut on it. The empty cut as well as the total cut, a cut under or above the
whole tree, are considered to be elementary. A cut on a forest is said to be
admissable if its restriction to any tree factor is admissable. Any admissable
cut sends a forest to a couple (P c(F ), Rc(F )), called the crown and the
trunk. The trunk is, as its name suggests, the graph containing the original
root, and the crown is the other. The trunk of an admissable cut on a single
tree is a tree itself, the crown on the other hand is a forest. We give an
example of an admissable cut on a tree, and the pair of forests associated to
the cut.

→ ( · , )

Note how the crown in this example is a forest while the trunk is a single
tree. We let Adm(F ) denote the set of admissable cuts of a forest F and are
now ready to define the coproduct.

∆Tr(F ) =
∑

c∈AdmF

P c(F )⊗Rc(F )

The compatability of the product and coproduct is clear from the definition
of admissable cuts on a forest. The grading defined by the number of vertices
in a forest is obviously compatabile both with the coproduct and the prod-
uct. The important thing left to prove is the coassociativity of the defined
coproduct.

To prove the coassociativity we define the concept of bi-admissable cuts.
We say that two cuts (c1, c2) are bi-admissable if each of the cuts is admiss-
able, and if c1 never bypasses c2, or in other words if c2 never cuts the trunk
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of c1. Any bi-admissable cut c = (c1, c2) of a tree creates not only a trunk
and a crown, bu also a middle part M c(F ). An example of a bi-admissable
cut is:

→ ( · , · , )

Another way to understand a bi-admissable cut is to see it as a sequence
of one admissable cut followed by a second cut on the trunk, or first one
admissable cut and then a second on the crown. This description is possible
since the two cuts (c1, c2), by definition do not cross each other and each one
of them is an admissable cut in its own right.

Any two sequential admissable cuts yield the same result as some bi-admissable
cut, and also any bi-admissable cut yields the same result as both some com-
bination of one admissable cut and a second admissable cut of its crown or
some admissable cut followed by an admissable cut of its trunk. We denote
the set of all bi-admissable cuts by Adm2F , and note that

(∆⊗ id)∆(F ) =
∑

c∈Adm2F

P c(F )⊗M c(F )⊗Rc(F ) =

= (id⊗∆)∆(F )

so the defined coproduct is in fact coassociative and then we have defined a
connected graded bialgebra, H0 is generated by the empty tree. By Theorem
32, this gives us a Hopf algebraic structure where the antipode is defined
recursively on ker ε as

S(F ) = −F −
∑

c∈Adm
∗(F )

S(P c(F )) ·Rc(F )

= −F −
∑

c∈Adm
∗(F )

P c(F ) · S(Rc(F ))

and S(1) = 1, Adm*(F ) is the set of non-trivial admissable cuts. In the
end of this chapter we show some concrete examples of calculations of the
antipode in this Hopf algebra.
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7.2 Hopf algebra of Feynman graphs

The notion of Feynman graphs originated in quantum field theory. They are
used as a graphical interpretation of the complex mathematical expressions
governing the behavior of subatomic particles. A Feynman graph consists of
internal and external edges of different types, together with different types of
vertices. Every external edge has a vector attached to it (called an exterior
momenta), and the sum of all exterior momenta is always zero. The different
types of edges and vertices available are given by the particles studied. For
example Feynman graphs in quantum electrodynamcis have two types of
edges and three types of vertices. For our purposes , however, it is not
relevant exactly what kind of edges or vertices there are, instead we will a
look at some more general results.

7.2.1 Some basic concepts

Three different Hopf algebraic structures on Feynman graphs will be consid-
ered. The first is more general while the following two make use of more
structure when defining the coproduct. Before discussing these three cases
some definitions and properties will be defined.

An oriented Feynman graph is an oriented graph with a finite number
of vertices and edges. Orientation means that a choice of direction is given
to each edge. An edge will be classified as internal if it is connected to a
vertex in both ends or external if it is connected to a vertex in only one
edge. Below follows an example of an oriented Feynman graph with two
external and four internal edges.

A cycle in an oriented Feynman graph is a finite collection (e1, . . . , en) of
oriented internal edges such that the target of ek coincides with the source
of ek+1 for any k = 1, . . . , n modulo n, i.e. the target of en is the source of
e1.
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The loop number, L(Γ) of a graph Γ is given by:

L(Γ) = |I(Γ)| − |V (Γ)|+ 1

where |I(Γ)| is the number of internal edges and |V (Γ)| is the number of
vertices.

A one-particle irreducible (1PI) graph is a connected oriented Feynman
graph which remains connected when any internal edge is cut. A disconnected
graph is said to be locally 1PI if all of its connected components are 1PI. The
left graph is an example of a 1PI graph and the right is a non-1PI graph.

Let P be a non-empty subset of V (Γ), where Γ is an oriented Feynman graph.
We define the associated subgraph Γ(P ) in the following way. The internal
edges of Γ(P ) are the internal edges of Γ with source and target in Γ(P ),
and the external edges of Γ(P ) are all the edges of Γ with the source or the
target in Γ(P ) but not both. The orientations of the edges in Γ(P ) are the
same as the orientation when seen as an edge in Γ. We say that Γ(P ) is a
connected subgraph if and only if for any v, w ∈ P there is an undirected
path from v to w consisting only of internal edges to Γ(P ). We set Γ(∅) = 1
where 1 is the empty graph. An obvious result is that if Q ⊆ P ⊆ V (Γ)
then:

Γ(P )(Q) = Γ(Q)

since all internal edges of Γ(Q) will be internal edges of Γ(P ) and any external
edges of Γ(Q) will either be an external or internal edge of Γ(P ).

a

b
c d

e

f

If we to the above graph, Γ, define P = {a, b, c} then the subgraph Γ(P ) is

a

b
c

A covering subgraph of Γ is an oriented Feynman graph γ (in general dis-
connected), consisting of a collection {Γ(P1), . . . ,Γ(Pn)} of connected sub-
graphs such that Pi ∩ Pj = ∅ when i 6= j, and such that any vertex of Γ
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belongs to some Pj, j ∈ {1, . . . , n}. For any covering subgraph γ we can de-
fine the contracted graph Γ/γ by shrinking all the connected components
of γ onto a single vertex. Using the same graph Γ

a

b
c d

e

f

we can define the covering subgraph γ = {Γ(P1),Γ(P2)} with P1 = {a, b, c},
P2 = {d, e, f}. The contracted graph Γ/γ is

P1 P2 .

7.2.2 The full Hopf algebra of oriented Feynman graphs

We start with a more general Hopf algebraic structure, and continue later
with similar constructions on more specific Feynman graphs. Let H̃ be the
free commutative algebra generated by connected oriented Feynman graphs.
The unit 1 is identified with the empty graph. We define the coproduct as:

∆F (Γ) =
∑

γ∈Cov(Γ)

γ ⊗ Γ/γ

where Cov(Γ) is the set of all covering subgraphs of Γ. Since the product in
H̃ is just the concatenation, this is obviously an algebra homomorphism.

If we let γ be a covering subgraph of Γ and δ be a covering subgraph of γ,
then looking at the definition of contraction one notes the following property:

Γ/γ = (Γ/δ)/(γ/δ),

this is clear since it does not matter if we first contract some of the subgraphs
of the connected graphs in γ befor contracting them fully. By similar reason-
ing, if we let γ̃ be a covering graph of Γ/δ there is a bijection γ → γ̃ = γ/δ
from covering subgraphs of Γ containing δ to covering subgraphs of Γ/δ, given
by shrinking δ. As a consequence we have:

(∆F ⊗ id)∆F (Γ) =
∑

δ∈Cov(γ), γ∈Cov(Γ)

δ ⊗ γ/δ ⊗ Γ/γ

(id⊗∆F )∆F (Γ) =
∑

δ∈Cov(Γ), γ̃∈Cov(Γ/δ)

δ ⊗ γ̃ ⊗ (Γ/δ)/γ̃
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and since these two expressions coincide the coassociativity of the defined
coproduct is proved. We let the counit ε be the mapping defined by ε(1) = 1
and ε(Γ) = 0 for any non-empty graph Γ. The number of vertices does not
make up a grading for this bigalgebra structure since the number of vertices is
not preserved by the coproduct. Instead we define the grading to be number
of internal edges, something which is preserved, since exactly those edges
which are internal in the covering subgraph γ are contracted in Γ/γ. There
are many different kinds of graphs without internal edges, so H̃0 is not one-
dimensional and therefore H̃ is not connected, something that prevents the
application of Theorem 32.

To solve this problem let us define a new space by identifying all degree zero
elements with 1, i.e.:

H = H̃/J

where J is the bi-ideal generated by elements h̃0 − 1, with h̃0 in H̃0. Now
this bialgebra H is obviously connected, and therefore a connected graded
bialgebra. So we can define the Hopf algebraic structure as in Theorem 32:

SF (Γ) = −Γ−
∑

γ∈Cov
∗(Γ)

S(γ) · Γ/γ

SF (Γ) = −Γ−
∑

γ∈Cov
∗(Γ)

γ · S(Γ/γ)

where Cov∗(Γ) is the set of on non-trivial covering sub graphs of Γ and S(1)
= 1.

7.2.3 The Hopf algebra of 1PI graphs

We can make a similar construction of locally 1PI graphs. Let H̃1PI be the
free algebra generated by 1PI graphs. Then we can define a coproduct, where
1PICov(Γ) is the set of 1PI covering subgraphs:

∆1PI(Γ) =
∑

γ∈1PICov(Γ)

γ ⊗ Γ/γ

since the same argument about transitivity of subgraphs holds for the subset
of the covering subgraphs which are 1PI the coassociativity is given. The
grading consisting of the number of internal edges still makes sense, but
there is also an alternative grading available in the form of the loop number.
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The coproduct ∆1PI which only sums over 1PI covering subgraphs preserves
the loop number, unlike the more general coproduct.

The elements of degree one is in both gradings the residues without any
internal edges, since a 1PI graph with loop number one cannot have any
internal edges. We can therefore, similarly to the general case, construct the
Hopf algebra H1PI from H̃1PI by identifying any element of degree 0 with
the identity element 1.

7.2.4 The Hopf Algebra of cycle free graphs

A cycle free graph is a graph that does not contain any cycle as described
earlier. Such a graph has a natural poset structure given by, v ≤ w if and
only if there exist a path from v to w, i.e. a sequence (e1, . . . , en) such that
the target of ek is the source of ek+1 and the source of e1 is v and the target
of en is w. This structure would not be possible on any graph with cycles
since the antisymmetry of the relation would not be satisfied.

Let H̃CF be the free algebra generated by cycle-free graphs. Any covering
subgraph will in itself be cycle free, but the same is not necessarily true for
the contracted graph Γ/γ. For instance, consider the graph:

→ Γ/γ =

for which Γ/γ is not a cycle free graph. We call a covering subgraph γ poset-
compatible if the contracted graph Γ/γ is cycle-free. We can now define
the coproduct if we denote the set of poset-compatabile covering subgraphs
of Γ with PoCov(Γ):

∆CF (Γ) =
∑

γ∈PoCov(Γ)

γ ⊗ Γ/γ

this coproduct is also coassociative since the argument of transitive shrinking
is valid also for this subset of covering subgraphs. The relevant grading is
the one consisting of the number of internal edges. We can also construct an
associated Hopf algebra HCF by identifying the zero degree elements with 1.
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Note that the set of rooted trees is a subset of the connected oriented cyclefree
graphs, and therefore we can use this structure, as well as the one in 7.1, for
rooted trees.

Another important remark is that in all of these examples it is possible to
completely disregard any external edges and still obtain an Hopf algebraic
structure, and in many cases it is convenient to do so.

7.3 Examples of Hopf algebraic calculations

This part will mainly be concerned with calculations of the antipode of dif-
ferent graphs for the different Hopf algebraic structures discussed.

Example 11. Two different Hopfalgebraic structures on trees.

The essential difference between the different structures is the defined co-
product, and as a consequence of that the antipode is also different. In our
first example we will look at a simple tree and see the difference between
the first Hopf algebraic structure on trees, which we will denote ∆Tr and
then the cycle free structure. We start by calculating the coproducts for the
different structures. Note how the number of vertices is conserved in the first
and the number of inner edges in the second but not the other way around,
this refelcts the different gradings. From the tree structure we get:

∆Tr( ) =
∑

c∈AdmF

P c( )⊗Rc( )

= ⊗ 1 + 1 ⊗ + 2( ⊗ ) + · ⊗ + ⊗
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And for the cycle-free structure we have.

∆CF ( ) =
∑

γ∈PoCov(Γ)

γ ⊗ Γ/γ

= ⊗ 1 + 1 ⊗ + 2( · · ⊗ ) + · · ⊗

+2( · ⊗ ) + · ⊗

We can also write the coproduct in H, where we identify any zero degree
element with the identity, as

∆CF ( ) =
∑

γ∈PoCov(Γ)

γ ⊗ Γ/γ

= ⊗ 1 + 1 ⊗ + 2( ⊗ ) + ⊗ + 2( ⊗ ) + ⊗ .

To compute the antipodes we use the formulas and get.

STr( ) = − −
∑

c∈Adm
∗(F )

S(P c( )) ·Rc( )

= − − (2S( ) · + S( · ) · + S( ) · )

= − + 2 · + · · − (− − 2S( ) · − S( · ) · ) ·

= − + 2 · − · · + · − · · ·
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and

SCF ( ) = − −
∑

γ∈PoCov
∗(Γ)

S(γ) · Γ/γ

= − − (2(S( ) · ) + S( ) · + 2(S( ) · ) + S( ) · )

= − + 2( · ) + · − 2(− − S( ) · − S( ) · ) ·

−(− − S( ) · − S( ) · ) ·

= − + 2( · ) + · + 2( · )− 2( · · )

−2( · · ) + · − · · − · ·

The exterior structure of the graphs are of limited interest and greatly in-
creases the complexity of the antipode calculations, the latest computation
disregarding exterior edges become.

SCF ( ) = − + 4 · + 2 · − 6 · ·

We will continue to do the calculations disregarding exterior edges since this
better highlights the differences of interest.

Example 12. A cycle free and locally 1PI graph.

In this example we will directly consider the Hopfalgebraic structure where
all zero degree elements equal the identity element. The graph under con-
sideration is the simplest non-trivial example of a cycle free and 1PI graph
namely.

The coproduct computations of this graph is

∆F ( ) = 1 ⊗ + ⊗ 1 + 2( ⊗ ) + ⊗

∆1PI( ) = 1 ⊗ + ⊗ 1

∆CF ( ) = 1 ⊗ + ⊗ 1 + 2( ⊗ )
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The antipodes are simple because of the low degree.

SF ( ) = − + 2( · ) + ·

S1PI( ) = −

SCF ( ) = − + 2( · )

Example 13. A somewhat more complicated 1PI graph.

In this example we consider the graph

which have 5 non-trivial locally 1PI covering subgraphs, the three triangles
and the two paralellograms. So the coproduct is, with any zero degree ele-
ment identified with 1,

∆1PI( ) = ⊗ + ⊗

+ ⊗ + 2( ⊗ )

With formula for calculating the antipode we get

S( ) = − − (S( ) · + S( ) ·

+S( ) · + 2(S( ) · ))

= − + · + · + ·

+2( · )− 4( · · )
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7.4 Note on Feynman integrals

Feynman graphs are used to describe the interactions of subatomic particles.
Depending on the theory being used, there are many different theories using
Feynman graphs. A set of rules are used to generate integrals from the graph
which describe the behavior of the particles. A problem that arises is that
these integrals generally do not converge, something they would have to do
to make sense. Therefore, various techniques created to tackle problems with
infinity, called renormalization, have been used. One set of such techniques
rely on a Hopf algebraic structure and this is why it is important to find and
describe Hopf algebraic structures of Feynman graphs. See [4] for a thorough
explanation of such techniques.
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