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Abstract

We consider a large scale statistical inverse problem governed by a three dimensional

parabolic partial di�erential equation within the framework of Bayesian inference with

Gaussian noise and prior probability densities. The problem is formulated as a PDE con-

strained optimization problem. In addition to spectrally neutral prior, we consider 2nd

and 4th order Gaussian smoothness prior with both Dirichlet and Neumann boundary

conditions. In this thesis we apply a preconditioned Krylov subspace method focusing

on the fast solution of the linear systems in saddle point form. The preconditioner is of

block diagonal form that involves the e�ective approximation of the Schur complement.

We present the numerical experiments illustrating the performance of the preconditioners

and the e�ects of the regularization parameter for both noise and prior terms.
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Chapter 1

Introduction

This chapter includes the scienti�c overview and plan of the thesis.

1.1 Scienti�c Overview

Inverse problems [1, 2] are commonplace in many science and engineering applications.

Such as geophysics, radar, optics, biology, acoustics, communication theory, signal pro-

cessing and medical and other image processing. Also a great number of problems from

various branches of mathematics such as computational algebra, di�erential equations,

integral equations, functional analysis can be classi�ed as inverse problem. Inverse prob-

lem can be de�ne as considering the model

y = A(x) (1.1)

where, x ∈ R
n is the model parameter, y ∈ R

m is the observed data and A is the operator

describing the relationship between the model parameter x and the observed data y. If

the observed data y is evaluated given the model parameter x the problem is called

forward problem. On the other hand if the model parameter x is evaluated given the

observed data y the problem is called inverse problem.

The solution of inverse problems can describe the important properties like density,

velocity of wave propagation, elasticity parameters, conductivity, dielectric permeability,

magnetic permeability and properties and locations of inhomogeneities in inaccessible

1



Chapter 1. Introduction 2

areas. The development of computing power and the improvement of the numerical

techniques made it easier to simulate the problems of increasing complexity. But in

many applications in science and engineering problems model parameters ( the causes

for desired state or observed state) need to be reconstructed. This fact guided the rapid

development of the research in inverse problems. A number of theories and algorithm

have been developed to solve these inverse problems. A central feature of the inverse

problem is that they are ill-posed. In 1902 Jacques Hadamard [3] formulated three

conditions for the well-posedness of mathematical models of physical phenomena. The

conditions are namely:

• A solution exists

• The solution is unique

• The solution depends continuously on the problem data

Problems involving models that satisfy all of these conditions are called well-posed. On

the other hand, if one or more conditions are not satis�ed, the problem is called to be

ill-posed. In general inverse problems are ill-posed with solutions that depend on the

data [4]. Due to the ill-posedness of the inverse problem, further regularization [5] is

required to stabilize the computational solutions. The regularization methods transform

the ill-posed problem into a family of well-posed problems indexed by the regularization

parameter. In real-world problems another important aspect of the inverse problem is

that the measurements contain noise. Then the model (1.1) can be considered as

y = A(x) + η (1.2)

where η ∈ R
m represents both observational noise and noise due to the model. Because

of the noise, y is not the image of A. So, simply inverting A on the data y will not be

possible. Moreover, the noise η may not be known to us, often statistical properties of

noise are known. So we can not subtract η from the observed data y to obtain the image

of A. Probabilistic approach enable us to overcome these di�culties [4]. In addition,

the statistical inverse problem has many advantages compared to classical deterministic

methods [6]. In the theory of statistical inverse problems these are reformulated as

problems of statistical inference through Bayesian statistics. Recently many methods

using statistical inference to solve inverse problems are proposed including Bayesian
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inference method [7]. In Bayesian statistics all the variables are considered as random

variables. The randomness casts in all the variables is coded to the probability densities

of the variables. These densities are related to the unknowns and with the data of

the problem from which one looks for the characteristic values: average value, value of

the largest probability, dispersion, correlations etc. From the statistical view point the

solution of an inverse problem is the probability distribution of the quantity of interest

called posterior distribution with all the available information has been incorporated in

the model that describes the degree of con�dence about the quantity after measurement

has been done [7]. The mean of the posterior probability distribution is given by the

maximum a posteriori (MAP) point. The inverse problem leads us to an optimization

problem [7].

We consider a statistical inverse problem with high-dimensional parameter spaces within

the framework of Bayesian inference with Gaussian noise and prior probability densities.

The Bayesian formulation of linear statistical inverse problem with Gaussian noise and

prior is related to an approximately related least squares minimization problem [8]. The

parameter to observable map is chosen to be the discretized parabolic PDE. The main

objective of the thesis is to formulate the statistical inverse problem as PDE constrained

optimization problem for di�erent cases of the prior matrix such as mass matrix, 2nd

order and 4th order Gaussian smoothness priors which leads to saddle point systems.

Also propose block diagonal preconditioners that requires robust Scur complement ap-

proximation to implement the preconditioned MINRES algorithm.

1.2 Plan of the Thesis

To achieve the objectives of this thesis explained in the previous section the plan of work

is as follows. The work in the thesis is spread over to six chapters: Chapter one gives the

scienti�c overview and the plan of the thesis. Chapter two contains some basic concepts

and a review of some fundamental de�nitions, theorems and results from linear algebra

and saddle point systems. In chapter three we introduce the statistical inverse problem,

by discussing the Bayesian framework of statistical inverse problem with Gaussian noise

and prior. Then we formulate the large scale statistical inverse problem governed by the

parabolic PDE. The discretization via �nite element is also discussed here. The saddle

point system is derived for prior matrix as mass matrix, 2nd order and 4th order Gaussian

smoothness prior. Chapter four is devoted to the implementation of the preconditioned

MINRES algorithm. Here �ve e�cient Schur complement approximation is proposed for
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the system derived for the di�erent prior matrices. For the case of spectrally neutral

prior it is shown that the eigenvalues of (Ŝ−1S) ∈ [12 , 1), where Ŝ is the approximation of

Schur complement S. In the cases of smoothness prior we �rst make an approximation S̃i

(i = 1, 2, 3, 4) to the Schur complement which in turn can be robustly approximated by

a matrix Ŝi. In Chapter �ve we present the numerical results for di�erent regularization

parameter and e�ciency of the algorithm is presented by tables showing the number of

iterations and time taken by the algorithm. In �nal, Chapter six contains the conclusions

of the thesis.



Chapter 2

Preliminary Concepts

In this chapter we present some basic de�nitions, notation and some fundamental theo-

rems of linear algebra, matrix theory and saddle point systems. For the sake of brevity

discussion and the proofs of the theorems are omitted, since details of every topic and

theorem are available in the listed references.

2.1 Linear Algebra and Matrix Theory

De�nition 2.1. A matrix with special structure, that has few nonzero entries is called

sparse matrix. Usually standard discretization of PDEs lead to large and sparse system.

A sparse matrix is a matrix that motivates special techniques to take the bene�ts of the

large number of zero elements and their locations. Details about sparse matrices, their

properties, representations, and operations can be found in [9].

De�nition 2.2. [10] Let X be a vector space. A real valued function ‖.‖ : X → R is

said to be a norm on X if it satis�es the following properties:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖;

3. ‖αx‖ = |α‖|x‖

for any x, y ∈ X and α ∈ R. Let x ∈ C
n, then the vector p norm of x is de�ned as

5
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‖x‖p =
(

n∑

i=1

|xi|p
) 1

p

, for 1 ≤ p < ∞ (2.1)

In particular, when p = 1, 2, and ∞, we have

‖x‖1 =
n∑

i=1

|xi|,

‖x‖2 =
(

n∑

i=1

|xi|2
) 1

2

,

‖x‖∞ = max
1≤i≤n

|xi|.

De�nition 2.3. [11] Given a nonsingular symmetric positive de�nite matrix A ∈ C
n×n,

the A-norm (elliptic norm) generated by the A- inner product on C
n×1 is

‖x‖A =< x, x >A=< Ax, x >

De�nition 2.4. A projector or projection matrix P is a square matrix that satis�es

P = P 2.

Such a matrix is also known as idempotent matrix [10].

De�nition 2.5. [9] Let A ∈ R
n×n and v 6= 0 ∈ R

n then,

Kk(A, v) ≡ span{v,Av,A2v, . . . Ak−2v,Ak−1v} (2.2)

is called the Krylov subspace associated to A and v.

Theorem 2.6. [10, 12] Let the columns of Vk+1 = [v1, v2 . . . , vk+1] ∈ R
n×(k+1) form an

orthogonal basis for Kk(A, v1), then there exists an (k+1)×k unreduced upper Hessenberg

matrix

Ĥk =













h11 h12 . . . h1k

h21 h22 . . . h2k
. . .

. . .
...

hk,k−1 hk,k

hk+1,k













, (2.3)
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such that

AVk = Vk+1Ĥk. (2.4)

Conversely, a matrix Vk+1 with orthonormal columns satis�es a relation of the form in

(2.5) only if the columns of Vk+1 form the basis for Kk(A, v1).

De�nition 2.7. Let the column of Vk+1 = [Vk, vk+1] ∈ R
n×(k+1) form an orthogonal

basis. If there exists a Hessenberg matrix Ĥk ∈ R
k+1×k of the form (2.1) so that

AVk = Vk+1Ĥk. (2.5)

then (2.5) is called (unreduced) Arnoldi decomposition of order k.

By a suitable partition of Ĥk, we can write (2.5) as

AVk =
[

Vk vk+1

]
[

Hk

hk+1,ke
T
k

]

= VkHk + hk+1,kvk+1e
T
k (2.6)

where,

Hk =










h11 h12 . . . h1k

h21 h22 . . . h2k
. . .

. . .
...

hk,k










. (2.7)

By the orthogonality property of vk+1, (2.6) yields (for details see [10], [13])

Hk = V T
k AVk. (2.8)

Here, Hk is a projection of A onto the Krylov subspaces Kk(A, v).

De�nition 2.8. [12] Let A ∈ R
n×n and let the columns of Vk ∈ R

n×k be orthonormal.

The k × k matrix Hk = V T
k AVk is called Rayleigh quotient, an eigenvalue λ of Hk is
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called Ritz value, and if v is an eigenvector of Hk associated with λ, then Vkv is called

Ritz vector belonging to λ.

2.2 Basic Concepts of Saddle Point System

In this thesis we will formulate and attempt to solve a problem in the saddle point form.

This section is devoted to discuss a few properties of saddle point systems. The general

saddle point system is de�ned as:

[

A BT
1

B2 −C

][

x

y

]

=

[

f

g

]

(2.9)

where, A ∈ R
n×n, B1, B2 ∈ R

m×n, C ∈ R
m×m with n ≥ m.

For a generalized saddle point system the constituent blocks A, B1, B2 and C satisfy

one or more of the following conditions [14]:

C1 A is symmetric: A = AT

C2 the symmetric part of A, H ≡ 1
2(A+AT )

C3 B1 = B2 = B

C4 C is symmetric (C = CT ) and positive semide�nite

C5 C = 0(the zero matrix)

Note that C5 implies C4. Large scale saddle point systems arise in many areas of com-

putational science and engineering (see [14] for a list of application area).

De�nition 2.9. [15, 16] Let

A =

[

A B

C D

]

(2.10)

be an (m + n) × (m + n) block matrix, where A,B,C,D are matrices of size m × m,

m× n, n×m, n× n. Then the Schur complement of the block D of the matrix A is an

m×m matrix given by
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A−BD−1C provided D−1 exists, (2.11)

and the Schur complement of the block A of the matrix A is an n× n matrix given by

D − CA−1B provided D−1 exists. (2.12)

In the next part we discuss some algebraic properties of the saddle point system following

[14].

2.2.1 Block factorizations and the Schur complement

If A is nonsingular (when A is positive de�nite on the kernel of B which needs to have

full rank) the saddle point matrix A can be factorize into following block triangular

factorization:

A =

[

A BT
1

B2 −C

]

=

[

I 0

B2A
−1 I

][

A 0

0 S

][

I A−1

0 I

]

(2.13)

where S is the Schur complement of A. The factorization (2.13) is very important because

a number of important properties of saddle point system can be derived on the basis of

(2.13). There are also two other equivalent factorizations:

A =

[

A 0

B2 S

][

I A−1BT
1

0 I

]

(2.14)

and

A =

[

I 0

B2A
−1 I

][

A BT
1

0 S

]

. (2.15)
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In many applications the matrix A is singular [17]. In that case augmented Lagrangian

techniques [18�20] can be used to replace the original saddle point system with an equiv-

alent system having the same solution, but now the (1, 1) block is nonsingular.

2.2.2 Solvability conditions

Consider A to be nonsingular, then the block decompositions (2.13)-(2.15) imply that A
is nonsingular if and only if S is nonsingular. In order to comment on the invertibility

of S = −(C + B2A
−1BT

1 ) it is required to place some restrictritions on the matrices A,

B1, B2 and C.

2.2.3 Symmetric case

First we consider the standard saddle point system (2.9) with A symmetric positive

de�nite, B1 = B2 = B and C = 0. The Schur complement S = −BA−1BT , is symmetric

negative de�nite. So, S and hence A is invertible if and only if BT has full column rank

(i.e. if and only if rank(B) = m,) since S is symmetric and negative de�nite. Then the

saddle point problem (2.9) has unique solution. For the case C 6= 0 see [14]. The above

discussion can be summarize by the following theorem.

Theorem 2.10. Let A is symmetric positive de�nite, B1 = B2 = B, and C is symmetric

positive semide�nite. If ker(C) ∩ ker(BT ) = {0}, then the saddle point matrix A is

nonsingular. That is, A is invertible if B has full rank.

If A is inde�nite then A may be singular, even if B has full rank. However, A will be

invertible if A is de�nite on ker(B) [14]. For the case of A being symmetric positive

semide�nite, the following theorem holds.

Theorem 2.11. Consider that A is symmetric positive semide�nite, B1 = B2 = B has

full rank, and C = 0. Then a necessary and su�cient condition for the saddle point

matrix A to be nonsingular is ker(A) ∩ ker(B) = {0}.

Proof: See [14].

The proof of the above theorem shows that for A to be nonsingular the rank of A must

be at least n−m.
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2.2.4 The inverse of a saddle point matrix

As we discussed earlier a saddle point matrix A is invertible if and only if S = −(C +

B2A
−1BT

1 ) is nonsingular, the inverse of A is given by,

A−1 =

[

A BT
1

B2 −C

]−1

=

[

A−1 +A−1BT
1 S

−1B2A
−1 −A−1BT

1 S
−1

−S−1B2A
−1 S−1

]

. (2.16)

In the case of A is singular but C is nonsingular a similar expression can be derived

assuming the matrix A+BT
1 C

−1B2, Schur complement of C in A, is nonsingular.

2.2.5 Spectral properties of saddle point matrices

In this subsection we discuss a few facts on the spectral properties of saddle point matrices

relevant in solving the system by iterative methods.

Eigenvalues: The symmetric case

Let us consider that A is symmetric positive de�nite, B1 = B2 = B has full rank, and C

is symmetric positive semide�nite (possibly zero). Then from (2.13) we get

[

I 0

−BA−1 I

][

A BT

B −C

][

I −A−1BT

0 I

]

=

[

A 0

0 S

]

(2.17)

where, S = −(C+BA−1BT ) is symmetric negative de�nite. Hence A is congruent to the

block diagonal matrix

[

A 0

0 S

]

. Thus, according to Sylvester's law of inertia the saddle

point matrix A is inde�nite with n positive and m negative eigenvalues [21]. If B is rank

de�cient, Sylverter's law of inertia is also true, as long as S remains negative de�nite.

For the case of S is rank de�cient, suppose that rank(S) = m − r, A has n positive,

m− r negative and r zero eigenvalues. If A is considered positive semide�nite, then this

result holds, provided the condition ker(A)∩ker(B) = {0} is satis�ed. Generally, unless
m is very small, the matrix A is highly inde�nite, means that it has many eigenvalues of

both signs.

The following theorem [22] gives the eigenvalue bounds for the saddle point matrix with

B1 = B2 = B and C = 0.
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Theorem 2.12. Assume A is symmetric positive de�nite, B1 = B2 = B has full rank

and C = 0. Let µ1 and µn denote the largest and smallest eigenvalues of A, and let σ1

and σm denote the largest and smallest singular values of B. Also let σ(A) denote the

spectrum of A. Then

σ(A) ⊂ I− ∪ I+

where,

I− =

[
1

2

(

µn −
√

µ2
n + 4σ2

1

)

,
(

µ1 −
√

µ2
n + 4σ2

m

)]

and

I+ =

[

µn,
1

2

(

µ1 −
√

µ2
1 + 4σ2

1

)]

.

2.2.6 Preconditioner and preconditioning in linear system

Saddle point systems that arise in practice can be very poorly conditioned. So in order

to develop and apply solution algorithms extra care should be taken. For the sake of

simplicity consider a standard saddle point problem where A = AT is positive de�nite,

B1 = B2 = B has full rank, and C = 0. Here A is symmetric and the spectral condition

number of the system is given by

κ(A) =
max|λ(A)|
min|λ(A)| . (2.18)

If we keep λmax(A) and σmax(B) constant, then from Theorem 2.12 it can be said

that the condition number of A grows unboundedly as either µn = λmin(A) or σm =

σmin(B) goes to zero. This growth of the condition number of A indicates that the

rate of convergence of the Krylov subspace methods deteriorates when the problem size

increases. Preconditioning is applied to get rid of this problem.
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In order to discuss a preconditioner and preconditioning, let us consider that we want to

solve the linear system:

Ax = b. (2.19)

De�nition 2.13. [23, 24] A preconditioner P of a matrix A is a matrix such that

P−1A has a smaller condition number than A. Preconditioners are used in iterative

methods to solve a linear system Ax = b for x because the rate of convergence for most

iterative linear solvers increases as the condition number of a matrix decreases as a result

of preconditioning. In preconditioning techniques instead of solving the original linear

system Ax = b, we solve either the right preconditioned system:

AP−1Px = b (2.20)

by solving

AP−1y = b for y (2.21)

and

Px = y for x (2.22)

or the left preconditioned system

P−1(Ax− b) = 0. (2.23)

Preconditioning attempts to improve the spectral properties of the system matrix [14].

The convergence of MINRES depends only on the eigenvalues of the generalized eigen-

value problem Ax = λPx [25]. Since the preconditioned matrix has exactly three distinct

eigenvalues, the preconditioned MINRES (minimal residual method) will terminate after
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three iterations irrespective of the size of the discrete problem. Preconditioned iterative

solvers are applied for many problems, such as 3D PDE discretizations, where direct

solvers usually don't work. Iterative solvers can be used as matrix-free methods, i.e.

become the only choice if the coe�cient matrix A cannot be not stored explicitly, but is

accessed by evaluating matrix-vector products.



Chapter 3

Statistical Inverse Problem

In this chapter we present the Bayesian framework for statistical inverse problems for the

general case of of Bayes' theorem and continue with the linear parameter-to-observable

map with Gaussian noise and prior densities. Then we formulate our large scale statistical

inverse problem governed by the discretization of a three dimensional parabolic partial

di�erential equation within the framework of Bayesian inference with Gaussian noise

and prior probability densities. Then we discretized the problem using the �nite element

method. In the �rst section we present the Bayesian framework for statistical inverse

problems and in the 2nd section we present the Gaussian smoothness priors following [8]

and [7].

3.1 Bayesian Framework for Statistical Inverse Problems

The Bayesian framework is a methodology to associate prior assumptions in a statistical

way. A prior probability density describes the potential values that the parameter can

take. A posterior probability density describes how these potential values are a�ected

by the measurements. The main concern of the ill-posed inverse problems is the non-

uniqueness. Multiple values of the parameters may be consistent with the observations.

The least squares minimization techniques for ill-posed problems need regularization for

selecting the one solution that has largest regularity among the multiple parameter values

which results in a single deterministic estimate of the unknown parameters [8]. On the

other hand Bayesian estimation of the unknown, is a probability density that suggests

the credibility of any given point estimation. In Bayesian estimation of statistical inverse

15
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problem all the parameters are considered as random variables and hence the parameter

-to- observable map is written as g : Rn×k → R
n as

Y = g(X,E),

where X,Y, and E are random variables. The variable x ∈ R
n is the vector of the model

parameters to be recovered and is the realization of the random variable X, e ∈ R
k is

the vector of errors caused by both model error and observation noise and the realization

of the random variable E and y ∈ R
m is a vector of observables with yobs the actual

observation values and realization of the random variable Y .

Let us assume that we know the joint probability density of X and Y which is denoted

by π(x , y). Then the probability density function πprior : R
n → R which describes the

additional information about the parameters X, is de�ned by the marginal density of

the unknown X, i.e.,

πprior(x ) =

∫

Rm

π(x , y)dy.

On the other hand, if we would know the value of the unknown X = x , then the

conditional probability density of Y given this information, would be

π(y |x ) = π(x , y)

πprior(x )
, provided that πprior(x ) 6= 0.

This conditional probability is called the likelihood function since it describes the like-

lihood of di�erent measurement outcomes with X = x given. That is the likelihood

function π(y | x ) describes the relationship between the observables y and the unknown

parameter x ,

Again we assume that the measured data Y = yobs is given. Then the conditional

probability distribution

π(x |yobs) =
π(x , yobs)

π(yobs)

is the posterior probability density πpost : R
n → R on the model parameter X,
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where

π(yobs) =

∫

Rn

π(x , yobs)dx 6= 0.

and let πnoise : R
n → R describes the modeling error and the observation noise.

In the Bayesian framework, the inverse problem is expressed as:

Given data Y = yobs, �nd the conditional probability distribution π(x|yobs) of the variable
X.

We state Bayes' theorem for inverse problems as:

Theorem 3.1 (Bayes' Theorem). [7] Assume that the random variable X ∈ R
n has

a known prior probability density πprior(x) and the data consists of observed value yobs

of an observable random variable Y ∈ R
k such that π(yobs) > 0. Then the posterior

probability distribution of X, given the data yobs, is given by

πpost(x) = π(x|yobs) =
πprior(x)π(yobs | x)

π(yobs)

where the marginal density

π(yobs) =

∫

Rn

π(x , yobs)dx =

∫

Rn

π(yobs|x )πprior(x )dx

plays the role of a norming constant and is usually of little importance [7].

Thus applying Bayes' theorem the posterior probability density πpost : R
n → R on the

model parameter X is obtained as

πpost(x ) ∝ πprior(x )π(yobs | x ).

That is, the posterior probability density on the parameter X is proportional to the

product of the prior probability on the parameter X and the conditional probability of

the observable Y given the parameter X.
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Often in classical inverse problems the noise is modeled as additive and mutually inde-

pendent with the unknown X. Thus if we consider the additive noise the parameter-to-

observable map is

Y = f(X) + E (3.1)

where X ∈ R
n, Y, E ∈ R

m with X and E are mutually independent random variables.

Suppose that we know the probability distribution of the noise E is πnoise(e). Since

X and E are mutually independent to each other, if we �x X = x the probability

distribution of E does not change when conditioned on X = x [26]. That is,

π(e |x ) = π(e) = πnoise(e). (3.2)

On the other hand if X = x is �xed we can say that Y conditioned on X = x is

distributed like E, the probability density being translated by f(x ), that is the likelihood

function is

π(yobs|x ) = πnoise(e) = πnoise(yobs − f(x )).

Where f : Rn → R
m and e ∈ R

m describes both the modeling error of f and observation

noise. Which implies E = Y − f(X). We consider that both X and E are mutually

independent. In case of X and E are not mutually independent we need to know the

conditional density of the noise, for detail see [7].

Hence from Bayes' theorem we can write

πpost(x ) ∝ πprior(x )πnoise(yobs − f(x )).

In statistical inverse problems, the most important and challenging step is to construct

the prior density. Actually, it depends on the nature of the prior information. In most

cases our prior knowledge of the unknown is qualitative in nature. Then the challenge

is to transform the qualitative information into quantitative information from which the

prior density is encoded. The most commonly used probability densities in Statistical

Inverse problems are Gaussian prior densities, since they are easy to construct but lead

to an explicit estimator.
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The Gaussian n-variate random variable is de�ned now.

De�nition 3.2. [7] Let x0 ∈ R
nand Γ ∈ R

n×n be a symmetric positive de�nite matrix,

denoted by Γ > 0 in the sequel. A Gaussian n-variate random variable X with mean x0

and covariance Γ is a random variable with probability density

π(x) =

(
1

2π|Γ|

)n/2

exp

(

−1

2
(x− x0)

TΓ−1(x− x0)

)

where, |Γ| = det(Γ). We use the notation X ∼ N (x0,Γ) to mean that X is a Gaussian

random variable with mean x0 and covariance Γ.

Thus if the prior probability density of X and the probability density of the error E are

both Gaussian then the prior and noise probability density function can be written as

πprior(x ) ∝ exp

(

−1

2
(x − x̄ prior)

TΓ−1
prior(x − x̄ prior)

)

πnoise(e) ∝ exp

(

−1

2
(e − ē)TΓ−1

noise(e − ē)

)

in which x̄ prior ∈ R
n is the mean of the model parameter prior pdf, ē ∈ R

m is the mean of

the noise pdf, Γprior ∈ R
n×n is the covariance matrix of the prior pdf, and Γnoise ∈ R

m×m

is the covariance of the noise pdf [8]. For Gaussian noise and prior Bayes' theorem can

be written as

πpost(x ) ∝ exp

(

−1

2
‖x − x̄ prior‖2Γ−1

prior

− 1

2
‖yobs − f(x )− ē‖2

Γ−1

noise

)

.

If f(x) is non-linear then the posterior probability density may not be Gaussian even

though the prior and noise probability density are Gaussian. We choose the parameter-

to-observable map to be linear i.e.

f(X) = AX

Here, A ∈ R
m×n is the linear operator that maps the parameter x to the observable y

through the solution of a large-scale discretized PDE. In this case πpost(x ) is Gaussian

with mean x̄ post ∈ R
n since the parameter-to-observable map is linear.
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The mean x̄ post ∈ R
n is given by the maximum a posteriori (MAP) point, i.e.

x̄ post = xMAP = arg max
x∈Rn

πpost(x )

provided that such maximization exists. Please note that even if the maximizer exists,

it may not be unique. The possible non-existence and non-uniqueness show that the

single-estimator based approaches to inverse problems may not be satisfactory [7]. To

�nd a MAP estimate the solution of an optimization problem is required.

Another popular point estimate is the conditional mean (CM) of the unknown X con-

ditioned on the data y , de�ned as

xCM = E{x |y} =

∫

Rn

xπ(x |y)dx,

provided that the integral converges [7].

In the case of purely Gaussian random variables the center point x̄ post is simultaneously

the maximum a posteriori estimate and the conditional mean [7], that is,

x̄ post = xCM = xMAP (3.3)

Thus �nding the MAP point is equivalent to solving the weighted least squares optimiza-

tion problem [8] i.e.

x̄ post = arg min
x∈Rn

(
1

2
‖x − x̄ prior‖2Γ−1

prior

+
1

2
‖yobs −Ax − ē‖2

Γ−1

noise

)

. (3.4)

This equation is equivalent to solving the regularized deterministic inverse problem where

Γ−1
prior works as the regularization operator and Γ−1

noise is a weighting of the data mis�t

term.

The covariance matrix of the posterior probability density function model parameter

πpost(x ) ∈ R
n×n is given by the inverse of the Hessian matrix of the least squares objective

function i. e.,

Γpost =
(

ATΓ−1
noiseA+ Γ−1

prior

)−1
(3.5)
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Since prior probability density, noise probability density and the posterior probability

densities are Gaussian we can write

πprior(x ) = N (x̄ prior,Γprior),

πnoise(e) = N (ē ,Γnoise),

πpost(x ) = N (x̄ post,Γpost).

3.2 Gaussian Smoothness Priors

In this section we are going to discuss the Gaussian smoothness priors in the light of

[7]. Let us consider that we are interested in solving (3.1) by a classical regularization

method. Suppose further that x ∈ R
n represents the discretized values of some function

f : D ⊂ R
n → R, which we know a priori to be twice continuously di�erentiable over D.

If we want to express the above information as a constraint, we introduce the generalized

Tikhonov functional

T (x) = ‖Ax− y‖2 + α‖Lx‖2 (3.6)

where α > 0 is the regularization parameter and the Tikhonov matrix L : Rn 7→ R is

a discrete approximation of a di�erential operator in R
n. Hence the posterior potential

V (x|y) de�ned by

π(x|y) ∝ exp(−V (x|y))

where

V (x|y) = 1

2σ2
‖Ax− y‖2 + α

2σ2
‖Lx‖2 =:

1

2σ2
T (x) (3.7)

We assume that the data are corrupted by white noise with variance σ2. Then minimizing

T (x) is equivalent to maximizing the conditional density x 7→ exp(−V (x|y)). Hence the
choice for the prior distribution is
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πprior(x ) ∝ exp(− 1

2γ2
‖Lx‖2) with γ2 =

σ2

α
(3.8)

If L is used as the gradient operator then (3.8) gives us

πprior(x ) ∝ exp(− 1

2γ2
‖∇x‖2) with γ2 =

σ2

α
(3.9)

The prior given in (3.9) is called 2nd order smoothness prior.

Again, if L is used as the Laplacian operator then (3.8) gives us

πprior(x ) ∝ exp(− 1

2γ2
‖∆x‖2) with γ2 =

σ2

α
(3.10)

The prior given in (3.10) is called 4th order smoothness prior. We will discuss both

Dirichlet and Neumann boundary conditions, as indicated in [7].

3.3 Problem Description

In this section we formulate a large scale statistical inverse problem governed by a

parabolic PDE. Here we introduce the operator of the parameter-to-observable map

by discretization of the parabolic PDE

ut −∆u = 0 in Ω× (0, T ) (3.11a)

u = 0 on ∂Ω× (0, T ) (3.11b)

u = u0(x) on Ω× {t = 0} (3.11c)

Here u0(x) describes a temperature pro�le at time t = 0. On the boundary ∂Ω of the

domain Ω the temperature is kept at 0. The forward problem is to �nd the temperature

at t = T . The inverse problem consists in �nding the initial temperature given the

temperature pro�le over time and prior information on the initial temperature.

As discussed in the earlier section the Bayesian formulation of a linear statistical in-

verse problem with Gaussian noise and prior is related to an approximately-weighted
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least squares minimization problem [8]. We choose to de�ne our noise and prior pdf by

discretizing the in�nite dimensional functional

J(t, x) =
βnoise
2

∫

Ω

∫ T

0
(u− uobs)

2dxdt+
βprior
2

∫

Ω
u20dx (3.12)

where βnoise, βprior > 0 are the regularization parameters and u(x, t) satis�es the time

dependent parabolic PDE (3.11a). Here Ω ∈ R
d, T is the �nal time and we have given

the observed state uobs(x, t). This as a classical PDE- constrained optimization problem

as given in [27]. The goal of the optimization process is to drive the state variable u(x, t)

as close as possible to the observed state using the control u0(x). The discretization of

the in�nite dimensional functional (3.12) for the posterior mean (3.4) gives,

ū0,post = arg min
u0

(
1

2
(u − uobs)

TΓ−1
noise(u − uobs) +

1

2
uT
0 Γ

−1
prioru0

)

(3.13)

where Γprior ∈ R
n×n is the covariance matrix of the prior pdf and Γnoise ∈ R

m×m is the

covariance of the noise pdf and u satis�es the discretization of the parabolic PDE (3.11).

The adjoint PDE is derived [28] as:

−pt −∆p+ βnoise(u− uobs) = 0 in Ω× (0, T ) (3.14a)

p = 0 on ∂Ω× (0, T ) (3.14b)

p(x, T ) = 0 on Ω (3.14c)

3.4 Finite Element Discretization

In this thesis we follow the discretize then optimize strategy [29]. We discretize the objec-

tive functional (3.12) and the constraint equation (3.11a) using �nite elements [25, 30, 31].

In this case the prior covariance operator is chosen as L = I. The time discretization of

the PDE (3.11a) using a backward Euler method with time step τ gives
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uk − uk−1

τ
−∆uk = 0 in Ω for k = 1, 2, 3, ...., Nt (3.15a)

uk = 0 on ∂Ω for k = 1, 2, 3, ...., Nt (3.15b)

u0 = u0(x) in Ω (3.15c)

Then the weak formulation of (3.15) is to �nd uk ∈ H1
0(Ω) such that

a(uk, v) = L(v) (3.16)

where,

a(uk, v) =

∫

Ω
(uk − τ∆uk)vdx (3.17)

and

L(v) =

∫

Ω
uk−1vdx (3.18)

where v ∈ Vh be the space of piecewise continuous linear functions. Let {φ1, φ2, φ3, . . . , φn−1, φn}
be the basis of dimension n. Integrating by parts and using Green's �rst identity a(uk, v)

becomes

a(uk, v) =

∫

Ω
ukvdx+ τ

∫

Ω
∇v · ∇ukdx. (3.19)

For v ∈ Vh we can write

uk =

n∑

j=1

ukjφj (3.20)
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and

uk−1 =
n∑

j=1

uk−1
j φj (3.21)

with

v = φi 1 ≤ i ≤ n (3.22)

where, uk1, u
k
2, u

k
3, . . . , u

k
n−1, u

k
n and uk−1

1 , uk−1
2 , uk−1

3 , . . . , uk−1
n−1, u

k−1
n the unknown coe�-

cients to be determined.

Then we have

Muk + τKuk = Muk−1 (3.23)

where,

M = [Mij ], 1 ≤ i, j ≤ n

K = [Kij ], 1 ≤ i, j ≤ n

uk = [uk1, u
k
2, u

k
3, . . . , u

k
n−1, u

k
n]

T

uk−1 = [uk−1
1 , uk−1

2 , uk−1
3 , . . . , uk−1

n−1, u
k−1
n ]T

with

Mij =

∫

Ω
φiφjdx (3.25a)

Kij =

∫

Ω
∇φi∇φjdx. (3.25b)

Here the matrix M is called the mass matrix and the matrix K is called the sti�ness

matrix.
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Thus for each time step we have a system of the form

(M + τK)uk = Muk−1 for k = 1, 2, 3, ...., Nt. (3.26)

Putting all of the equation (3.26) together, the one-shot discretization for Nt time steps

becomes













M + τK

−M M + τK
. . .

. . .

−M M + τK

−M M + τK













︸ ︷︷ ︸

K













u1

u2

...

uNt













=













Mu0

0
...

0













(3.27)

In the objective functional the observed state uobs(x, t) is de�ned for the whole time

interval while we use the initial condition as the control u0(x). We discretize the observed

state �rst with respect to time by trapezoidal rule and then by weak formulation. We

discretize the control by weak formulation. Thus the discretize objective functional is

obtained as

J(u, u0) =
τβnoise

2
(u − uobs)

TMn(u − uobs) +
βprior
2

u0
TWpu0 (3.28)

Where,

Mn =













1
2M

M
. . .

M
1
2M













and Wp = M. (3.29)
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Here, u =
[

(u1)T , (u2)T , . . . (uNt)T
]T

, uobs =
[

uobs1
T , uobs2

T , . . . uobsNt

T
]T

and u0 =
[

u01, u02, . . . u0n

]T
are the state and observed state at time step 1 to

Nt and the control variable at the initial time step of backward Euler scheme. Here M

represents the lumped matrix for our choice of �nite elements on Ω.

According to [32] everything derived in this thesis also holds for consistent mass matrices.

Hence the Lagrangian for the functional J(u, u0) with respect to the constraint (3.27) is

given by

L(u ,u0,p) =
τβprior

2
(u − uobs)

TMn(u − uobs) +
βnoise
2

u0
TWpu0 + pT (−Ku + d)

with, d=













Mu0 + c

c
...

c













where, c represents the boundary condition of the PDE, in our

case 0.

The �rst order optimality condition [33] for the system can be written as







τβnoiseMn 0 −KT

0 βpriorWp MT
1

−K M1 0













u

u0

p






=







τβnoiseMnuobs

0

0







(3.30)

where, M1 =










M

0
...

0










.

The discretization of the problem and solution via �rst order optimality condition on a

Lagrangian leads to a linear system in saddle point form:
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[

A BT

B 0

]

︸ ︷︷ ︸

A

[

x

y

]

=

[

f

g

]

(3.31)

where A ∈ R
n×n is a symmetric positive de�nite or positive semi de�nite and B ∈ R

m×n,

m < n is a matrix of full rank [32].

3.5 Approximation of the Prior Matrix

In the discretized system (3.30) the (2, 2) blockWp represents the prior covariance matrix.

If we choose the Tikhonov matrix L as the discrete gradient operator, then the Tikhonov

regularization technique gives us 2nd order smoothness prior given in (3.9). Thus the

approximation gives us the prior matrix as Wp = ∆h, where ∆h is the discrete Laplacian

operator. Now the question is which boundary conditions to choose. We here consider

Dirichlet boundary conditions and Neumann boundary conditions.

3.5.1 Saddle point system for 2nd order smoothness prior with Dirich-

let boundary condition

The 2nd order smoothness prior with Dirichlet boundary conditions gives us the prior

matrix Wp = KD. Where KD is the discrete Laplacian with Dirichlet boundary condi-

tions. And in that case the system (3.30) would become:







τβnoiseMn 0 −KT

0 βpriorKD MT
1

−K M1 0













u

u0

p






=







τβnoiseMnuobs

0

0







(3.32)

3.5.2 Saddle point system for 2nd order smoothness prior with Neu-

mann boundary condition

Similarly, if we would use the regularization technique by the 2nd order smoothnes prior

with Neumann boundary condition then the the prior matrix would be Wp = KN , where
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KN is the discrete Laplacian with Neumann boundary condition. The system (3.30)

then becomes:







τβnoiseMn 0 −KT

0 βpriorKN MT
1

−K M1 0













u

u0

p






=







τβnoiseMnuobs

0

0







(3.33)

Alternatively, the choice of the Tikhonov matrix L as the discrete Laplacian gives 4th

order smoothness prior given in (3.10). Then the the prior matrix becomes Wp = ∆T
h∆h,

where ∆h is the discrete Laplacian. Since ∆h is symmetric, we have Wp = ∆2
h. As in the

previous case we choose the Laplacian operator for two cases of boundary conditions.

3.5.3 Saddle point system for 4th order smoothness prior with Dirich-

let boundary condition

The use of 4th order smoothness prior with Dirichlet boundary condition givesWp = K2
D,

where KD again the discrete Laplacian with Dirichlet boundary conditions. Hence the

system (3.30) would become







τβnoiseMn 0 −KT

0 βpriorK
2
D MT

1

−K M1 0













u

u0

p






=







τβnoiseMnuobs

0

0







(3.34)

3.5.4 Saddle point system for 4th order smoothness prior with Neu-

mann boundary condition

In a similar manner the use of 4th order smoothness prior with Neumann boundary

condition gives a new priorWp = K2
N , whereKN is the discrete Laplacian with Neumann

boundary condition. Then the system (3.30) given as







τβnoiseMn 0 −KT

0 βpriorK
2
N MT

1

−K M1 0













u

u0

p






=







τβnoiseMnuobs

0

0







(3.35)
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In this situation the system matrices given in (3.30) ,(3.32), (3.33) (3.34) and (3.35) are

symmetric and inde�nite.

We now brie�y show de�niteness of mass matrix M and sti�ness matrix K.

vTMv =

n∑

j=1

n∑

i=1

vj

(∫

Ω
φjφidx

)

vj

=

∫

Ω





n∑

j=1

vjφj





(
n∑

i=1

vjφj

)

dx

=

∫

Ω
vh.vhdx

≥ 0

where v is a general coe�cient vector and vh =
n∑

j=1

vjφj ∈ V h
0 . Therefore M is positive

semide�nite. To proof that M is positive de�nite let vTMv = 0 that implies that

∫

Ω
vh · vhdx = 0. (3.37)

That is, vh = 0 which implies v = 0 but v is nonzero. So, vTMv > 0. Hence the mass

matrix M is positive de�nite.

Again for the sti�ness matrix K

vTKv =
n∑

j=1

n∑

i=1

vj

(∫

Ω
∇φj∇φidx

)

vj

=

∫

Ω





n∑

j=1

vj∇φj





(
n∑

i=1

vj∇φj

)

dx

=

∫

Ω
∇vh.∇vhdx

≥ 0
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where vh =

n∑

j=1

vjφj ∈ V h
0 . Therefore K is positive semide�nite. To proof that K is

positive de�nite let vTKv = 0 that implies

∫

Ω
∇vh.∇vhdx = 0. (3.39)

That is, vTKv = 0 if and only if ∇vh = 0, i.e. if and only if vh is constant in Ω. Since

vh ∈ V h
0 , it is continuous up to the boundary and is zero on ∂ΩD. Thus ∇vh = 0 implies

vh = 0. Finally, since the test functions are a basis for V h
0 , vh = 0 implies v = 0, but v

is nonzero. So, vTKv > 0. Hence the sti�ness matrix K is positive de�nite.

In this thesis we consider iterative solvers to solve the systems (3.30) ,(3.32), (3.33) (3.34)

and (3.35) since the direct methods [34] perform very well for 2D problems, on the other

hand for the discretized 3D problems they quickly run of memory [35]. As the systems

(3.30) ,(3.32), (3.33) (3.34) and (3.35) are symmetric and inde�nite the minimal residual

method (MINRES) [36] described in Chapter 4 is the method of choice.



Chapter 4

MINRES and the Preconditioner

The formulation of the statistical inverse problem leads us to solve the sparse saddle

point system (3.31). A number of direct and iterative solvers are available. The sparse

direct solver is based on a direct elimination of equations, direct elimination requires the

factorization of an initially very sparse linear system of equations into a lower triangular

matrix followed by forward and backward substitution using these triangular systems.

The lower triangular matrix factors are typically much denser than the initial assembled

sparse matrix, hence the large disk or in-core memory requirements for direct methods.

Sparse direct solvers seek to minimize the cost of factorizing the matrix as well as the

size of the factor using sophisticated equation reordering strategies.

On the other hand we can use iterative solvers, where the solution is obtained through an

iterative process that successively updates an initial guess to a solution that is within an

acceptable tolerance of the exact solution. Iterative solvers do not require a matrix fac-

torization and typically iterate towards the solution using a series of sparse matrix-vector

multiplications along with a preconditioning step, both of which require less memory and

time per iteration than a direct factorization.

Iterative methods for solving saddle point systems are subdivided into two broad classes,

one is called segregated and the other is called coupled or all at once method. The

segregated method uses the techniques of solving two linear systems of reduced order.

Two main types of segregated methods are Schur complement reduction method and

the null space method. On the other hand an all at once method uses the whole system

matrix and then approximates the solution simultaneously for all variables. The iterative

techniques for all at once methods include Krylov subspace methods. In the next section

we brie�y discuss the Krylov subspace methods following the book [25].

32
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4.1 Krylov Subspace Methods

Suppose we want to solve the system

Au = f (4.1)

The k dimensional Krylov subspace generated by the square matrix A and a nonzero

vector x is given by

Kk(A, x) ≡ span{x,Ax,A2x, . . .Ak−2x,Ak−1x} (4.2)

That is, the kth krylov subspace associated with the pair (A, x) is a space consisting of the

linear combination of the linearly independent vectors {x,Ax,A2x, . . .Ak−2x,Ak−1x}.
The solution of (4.1) can be approximated from Kk(A, x) for any particular vector x and

di�erent increasing values of k. Since Kk(A, x) ≡ span{x,Ax,A2x, . . .Ak−2x,Ak−1x}
any member y of Kk(A, x) is of the form

y =

k−1∑

j=0

αjAjx. (4.3)

Alternatively we can write

y = qk−1(A)x (4.4)

where, qk−1(t) is a polynomial given by

qk−1(t) =
k−1∑

j=0

αjt
j (4.5)
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Thus y is speci�ed by the coe�cients of polynomial qk−1(t). Now our concern is how

well u = A−1f can be approximated by a vector from qk−1(A)x. If A is a square matrix,

then according to the Cayley Hamilton Theorem

p(A) = An + cn−1An−1 + · · ·+ c1A+ (−1)ndet(A)I = 0 (4.6)

which gives us

A−1 =
(−1)k

det(A)
(Ak−1 + ck−2Ak−2 + · · ·+ c1I) (4.7)

That is A−1 = qn−1(A), where qn−1 is the polynomial on the right-hand side of (4.7).

Hence,

u = qn−1(A)f (4.8)

So, f is a natural choice of the initial vector x.

More generally, if u0 is a starting vector and r0 = f −Au0 is the starting residual, then

the kth solution is given by

u(k) = u(0) +Kk(A, r0) (4.9)

The most common Krylov subspace methods are the Conjugate gradient, GMRES (gen-

eralized minimum residual), and MINRES (minimal residual) methods.

The Arnoldi iteration [37] is an iterative method to �nd the eigenvalues of non-Hermitian

matrices [9] on the other hand the Lanczos iteration is used to �nd the eigenvalues of

Hermitian matrices. The Conjugate gradient method [38] is an iterative method used

where the system matrix has to be symmetric and positive de�nite [9]. The minimal

residual (MINRES) method of Paige and Saunders [36] is used for nonsingular symmet-

ric possibly inde�nte matrices and on the other hand the generalized minimal residual
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(GMRES) of Saad and Schultz [39], [40] is used for generalized nonsingular matrices. In

the next section we are going to discuss the MINRES method we have used to solve our

problem in the light of the book [25].

4.2 The MINRES method

The formulation of the statistical inverse problem leads us to solve the saddle point

system (3.31), where A is symmetric so, A is symmetric (see for example [25]). A
is symmetric and inde�nite, i.e. A has eigenvalues with both positive and negetive real

parts. For symmetric and inde�nite system MINRES is a robust method which is derived

from Lanczos algorithm.

To solve the system (4.1) let v(1) be a vector such that the Euclidean norm ‖v(1)‖ = 1

and let v(0) = 0. An orthogonal basis for Kk(A,v(1)) is constructed by the recurrence

relation

γj+1v
(j+1) = Av(j) − δ(j)v

(j) − γ(j)v
(j−1), 1 ≤ j ≤ k (4.10)

where δj = 〈Av(j),v(j)〉, and γj+1 is chosen so that ‖v(j+1)‖ = 1. Note that δj > 0 for

positive de�nite A, where as the sign of γj+1 is not prescribed.

Let Vk = [v(1),v(2), . . . , ,v(k)] is the matrix containing v(j) in its jth column, j =

1, 2, . . . , k called the Lanczos vectros and let Tk denotes the symmetric tridiagonal matrix

tridiag[γj , δj , γj+1], 1 ≤ j ≤ k

Then (4.10) is equivalent to

AVk = VkTk + γk+1[0,0, . . . ,v
(k+1)] (4.11)

using the orthogonality of Vk we have
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V T
k AVk = Tk (4.12)

That is, in the Lanczos algorithm we �nd an orthonormal set v(j), j = 1, 2, . . . , k, which

is a basis for the Krylov subspace Kk(A, x).

Minimal residual method (MINRES) is an important Krylov subspace method derived

form Lanczos algorithm by Paige and Saunders [36]. This method is a robust algorithm

for inde�nite coe�cient matrices as well as symmetric positive de�nite matrices. The

MINRES algorithm works by minimizing the Euclidean norm of the residual ‖r(k)‖.

We start by assuming that

u(k) = u(0) + Vky
(k) (4.13)

where y(k) = [y
(1)
k , y

(2)
k , . . . , , y

(k)
k ] is a vector of dimension k such that the Euclidean

norm of the residual ‖r(k)‖ is minimal. Using (4.13), the residual of u(k) can be written

as

r(k) = f −Au(k) = r(0) −AVky
(k).

This gives us,

‖r(k)‖ = ‖Vk+1(‖r(0)‖e1 − T̂ky
(k))‖ (4.14)

as v1 = r0
‖r0‖ , where, T̂k ∈ R

k+1×k is the tridiagonal matrix Tk with an additional �nal

row [0, 0, . . . , , γk+1] and e1 represents the unit vector of dimensions k + 1. Thus, the

MINRES algorithm can be written as (see [25]):
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Algorithm 4.1 THE MINRES METHOD

1: v(0) = 0,w(0) = 0,w(1) = 0
2: Choose u(0), compute v(1) = f −Au(0), set γ1 = ‖v(1)‖
3: Setη = γ1, s0 = s1 = 0, c0 = c1 = 1
4: for j = 1 until convergence do
5: v(j) = v(j)/γj
6: δj = 〈Av(j),v(j)〉
7: v(j+1) = Av(j) − δjv

(j) − γjv
(j−1) ⊲ Lanczos process

8: γj+1 = ‖v(j+1)‖
9: α0 = cjδj − cj−1sjγj ⊲ Update the QR factorization

10: α1 =
√

α2
0 + γ2j+1

11: α2 = sjδj + cj−1cjγj
12: α3 = sjγj
13: cj+1 = α0/α1 ; sj+1 = γj+1/α1 ⊲ Givens Rotation
14: w(j+1) = (v(j) − α3w

(j−1) − α2w
(j))/α1

15: u(j) = (u(j−1) + cj+1ηw
(j+1)

16: η = −sj+1η
17: 〈 Test for convergence 〉
18: end for

4.2.1 Preconditioning

The MINRES algorithm states that the Euclidean norm ‖r(k)‖ is minimal over the whole

Krylov subspace. We describe vectors in the translated Krylov subspace in terms of

polynomials in A operating on the initial residual r(0). The residual vectors de�ned

by the MINRES iterates satisfy r(k) = pk(A)r(0), where pk ∈ Πk, Πk is the set of real

polynomials of degree less than or equal to k. Also pk(0) = 1 and pk is optimal in the

sense that ‖r(k)‖ is minimal. Let the eigenvectors of the matrix A are vj , then expanding

in terms of the eigenvectors

r(0) =
∑

j

αjvj , Avj = λjvj (4.15)

then

r(k) = pk(A)
∑

j

αjvj =
∑

j

αjpk(λj)vj (4.16)
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and

‖r(k)‖ = min
pk∈Πk,pk(0)=1

‖
∑

j

αjpk(λj)vj‖ (4.17)

or

‖r(k)‖ = min
pk∈Πk,pk(0)=1

‖
∑

j

αjpk(λj)vj‖

= min
pk∈Πk,pk(0)=1

(∑

α2
jpk(λj)

2〈vj ,vj〉
)1/2

≤ min
pk∈Πk,pk(0)=1

max
j

|pk(λj)|
(∑

α2
j 〈vj ,vj〉

)1/2

hence

‖r(k)‖ ≤ min
pk∈Πk,pk(0)=1

max
j

|pk(λj)|‖r(0)‖ (4.19)

From (4.19) the convergence depends only on the eigenvalues of the matrix. The inde�-

nite matrices have both positive and negative real eigenvalues λj . The minimum number

of iterations required for convergence for an inde�nite system must be more than a

positive-de�nite system with the same number of positive eigenvalues. So for the rapid

convergence, preconditioning will be important. We have to choose the preconditioner in

such a way that the preconditioner does not destroy the symmetry of the system. Other-

wise, iterative methods for non-symmetric systems would have to be implemented for the

system. In order to maintain the symmetric in the preconditioned system a symmetric

and positive de�nite preconditioner P = HHT is required. Thus the symmetric system

preconditioned as

H−1AH−Ty = H−1f, y = HTu (4.20)

has the same solution as the system (4.1) sinceH−1AH−T is a congruence transformation

on A. Thus by the Sylvester Law of inertia the coe�cient matrix has the same number

of positive, zero and negative eigenvalues as A.
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For any approximate solution u (k) to the system (4.1), the corresponding residual for

the preconditioned system is

H−1(b−Au (k)) = H−1r (k) = HT z (k), (4.21)

where r (k) is the residual for the original system (4.1) and z (k) = P−1r (k) is the precon-

ditioned residual. Thus we have,

‖H−1r (k)‖ = ‖r (k)‖P−1 (4.22)

and the convergence estimate for the preconditioned MINRES method becomes

‖r(k)‖P−1 ≤ min
pk∈Πk,pk(0)=1

max
j

|pk(λj)|‖r(0)‖P−1 (4.23)

where the maximum is taken over the eigenvalues of P−1A. Thus the MINRES algorithm

for the system (4.20) in terms of the vectors associated with (4.1) can be written as given

in Algorithm 4.2 taken from [25].
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Algorithm 4.2 THE PRECONDITIONED MINRES METHOD

1: v(0) = 0,w(0) = 0,w(1) = 0

2: Choose u(0), compute v(1) = f −Au(0)

3: Solve Pz(1) = v(1), set γ1 =
√

〈z(1),v(1)〉
4: Setη = γ1, s0 = s1 = 0, c0 = c1 = 1

5: for j = 1 until convergence do

6: z(j) = z(j)/γj

7: δj = 〈Az(j), z(j)〉
8: v(j+1) = Az(j) − δjv

(j) − γjv
(j−1) ⊲ Lanczos process

9: Solve Pz(j+1) = v(j+1),

10: γj+1 =
√

〈z(j+1),v(j+1)〉
11: α0 = cjδj − cj−1sjγj ⊲ Update the QR factorization

12: α1 =
√

α2
0 + γ2j+1

13: α2 = sjδj + cj−1cjγj

14: α3 = sjγj

15: cj+1 = α0/α1 ; sj+1 = γj+1/α1 ⊲ Givens Rotation

16: w(j+1) = (v(j) − α3w
(j−1) − α2w

(j))/α1

17: u(j) = (u(j−1) + cj+1ηw
(j+1)

18: η = −sj+1η

19: 〈 Test for convergence 〉
20: end for

4.3 Preconditioning Strategies

Generally the iterative solver is only applied together with a suitable preconditioner P
that speeds up the convergence of the solution procedure [14]. The role of the precon-

ditioner, P is to reduce the number of iterations required for the convergence of the

solution and also the preconditioner should work in such a way that the amount of work

the computation requires at each iteration does not increase signi�cantly. For a good

preconditioner P it is not necessary that P−1 be an approximate inverse of A. If P can

be selected with less computing e�ort such that P−1 be an approximate inverse of A,
then P can be considered as a good preconditioner. The main concern in selecting a

good preconditioner should be that the preconditioned matrix P−1A has a low degree

minimal polynomial. The preconditioned matrix P−1A has only few distinct eigenvalues.

For symmetric problems, the rate of convergence of Krylov subspace methods such as
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CG or MINRES depends on the distribution of the eigenvalues of A. The preconditioned
matrix Ã = P−1A (or Ã = AP−1) will have a smaller spectral condition number and/or

a small number of eigenvalues clusters [14]. In general for MINRES the preconditioner is

often a blockdiagonal matrix. In [41] it is shown that if we consider the preconditioner

for A to be de�ned by

P =

[

A 0

0 S

]

(4.24)

where S is the Schur complement of A, then the following result holds

Proposition 4.1. If a saddle point system (3.31) is preconditioned by the preconditioner

given in (4.24) then the preconditioned matrix Ã = P−1A satis�es

Ã(Ã − I)(Ã2 − Ã − I) = 0 (4.25)

Proof. The preconditioned matrix Ã is given by

Ã = P−1A

=

[

I A−1BT

S−1B 0

]

then

(

Ã − 1

2
I

)2

=

[
1
4I +A−1BTS−1B 0

0 5
4I

]

But (A−1BTS−1B)2 = I2 = I implies that A−1BTS−1B is a projection, so that

[(

Ã − 1

2
I

)2

− 1

4
I

]2

=

[(

Ã − 1

2
I

)2

− 1

4
I

]

That gives us

Ã(Ã − I)(Ã2 − Ã − I) = 0 (4.26)
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Since (4.26) can be factorized into distinct linear factors over R, Ã is diagonalizable

and has at most four distinct eigenvalues 0, 1, 12 ±
√
5
2 . If Ã is nonsingular then it has

3 nonzero eigenvalues. This implies that any appropriate Krylov subspace method such

as MINRES will converge in 3 iterations [41]. The practical implementation of such a

method involves exact construction of the Schur complement S, also to �nd the solution

of the systems with S, and the (1, 1) block of the system (3.31). Unfortunately, S is

dense even though both (1, 1) and (1, 2) blocks of the system (3.31) are sparse. Hence,

we require to approximate S by Ŝ and apply the preconditioner

P̂ =

[

A 0

0 Ŝ

]

. (4.27)

Also approximation to A by Â might be needed, see Stokes equation in [25].

The (1, 1) block A for the system (3.30) is given by

A =

[

τβnoiseMn 0

0 βpriorWp

]

(4.28)

where Mn is given in (3.29) and initially Wp = M . Thus the (1, 1) block is a block

diagonal matrix consisting multiples of lumped the mass matrices. The inverse of A is

given by

A−1 =

[
1

τβnoise
M−1

n 0

0 1
βprior

M−1

]

. (4.29)

4.4 Schur Complement Approximation

The necessity of the Schur complement approximation was discussed in the previous

section. In this section we present a Schur complement approximation for the system

(3.30). If Wp = M equation (3.30) can be written as a saddle point system (3.31) with

A =

[

τβnoiseMn 0

0 βpriorM

]

and B =
[

−K M1

]

.
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The (negative) Schur complement of the system is given by

S =
1

τβnoise
KM−1

n KT +
1

βprior
M1M

−1MT
1 . (4.30)

The 2nd part M1M
−1MT

1 of (4.30) gives us













M

0
...

0













M−1
[

M 0 . . . 0
]

=










M

0
. . .

0










which can be written as Γ1M−1
n Γ1, where,Γ1 =










1√
2
M

0
. . .

0










.

So, S in (4.30) can be written as

S =
1

τβnoise

[

KM−1
n KT +

τβnoise
βprior

Γ1M−1
n Γ1

]

. (4.31)

Now we wish to determine an appropriate approximation of the Schur complement given

by (4.31). In order to approximate S in (4.31) let us consider φ1 = τβnoiseMn and

φ2 = Γ1, here both φ1 and φ2 are block diagonal matrices consisting of the mass matrix,

hence symmetric positive de�nite. De�ne M as follows

M =













M

M
. . .

M

M













.
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Then the Schur complement (4.31) can be written as

S = Kφ−1
1 KT +

τβnoise
βprior

φ2φ
−1
1 φ2. (4.32)

We want to show that vT (K∆+∆KT )v > 0 for all v = [vT1 ,v
T
2 , . . . ,v

T
Nt−1,v

T
Nt]

T with

v1,v2, . . . ,vNt−1,vNt ∈ R
n, and

∆ = φ−1
1 φ2

=
1

τβnoise













1
2M

M
. . .

M
1
2M













−1









1√
2
M

0
. . .

0










=
1

τβnoise










√
2I

0
. . .

0










.

The product matrix ∆ = φ−1
1 φ2 is symmetric and positive de�nite.

Then,

M∆ =
1

τβnoise













M

M
. . .

M

M






















√
2I

0
. . .

0










=
1

τβnoise










√
2M

0
. . .

0









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and

∆M =
1

τβnoise










√
2I

0
. . .

0






















M

M
. . .

M

M













=
1

τβnoise










√
2M

0
. . .

0










.

So, ∆M = M∆.

Now,

K∆+∆KT =
1

τβnoise










2
√
2(M + τK) −

√
2M

−
√
2M 0

. . .

. . .
. . . 0

0 0










and

vT (K∆+∆KT )v =
1

τβnoise

[

2
√
2τvT1 Kv1 +

√
2(v1 − v2)

TM(v1 − v2) +
√
2vT1 Mv1

]

where we have used the fact that M∆1 = ∆1M with ∆1 is the (1, 1) block of ∆. Since

M and K are symmetric and positive de�nite, all of the above terms are positve. So,

we deduce that vT (K∆+∆KT )v > 0, and hence K∆+∆KT is positive de�nite. Since

K∆+∆KT is positive de�nite we are now ready to �nd the eigenvalue bounds of Ŝ−1S,
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where

Ŝ =

(

K +

√
τβnoise
√
βprior

φ2

)

φ−1
1

(

K +

√
τβnoise
√
βprior

φ2

)T

(4.36)

and S is given by (4.32).

The eigenvalues of the matrix Ŝ−1S are bounded by the extreme values of the Rayleigh

quotient [42]. Let us consider the Rayleigh quotient R given as

R =
pTp+ qTq

pTp+ qTq+ pTq+ qTp
(4.37)

where,

p =
1√

τβnoise
φ
− 1

2

1 KTw (4.38)

and

q =
1

√
βprior

φ
− 1

2

1 φ2w (4.39)

then,

pTq+ qTp =
1

√
τβnoiseβprior

wT
[
Kφ−1

1 φ2 + φ2φ
−1
1 KT

]
w > 0 (4.40)
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for any vector w since we have [Kφ−1
1 φ2 + φ2φ

−1
1 KT ] > 0. Thus R < p

T
p+qT

q

pTp+qTq
= 1 as

q 6= 0 for any w. Again, for any p and q 6= 0

(p− q)T (p− q) ≥ 0

⇔ pTp+ qTp− pTq− qTp ≥ 0

⇔ 1
2 [p

Tp+ qTp− pTq− qTp] ≥ 0

⇔ [pTp+ qTp] ≥ 1
2 [p

Tp+ qTp+ pTq+ qTp]

⇔ p
T
p+qT

q

pTp+qTq+pTq+qTp
≥ 1

2

⇔ R ≥ 1
2 .

Hence we conclude that λ(Ŝ−1S) ∈ [12 , 1) which tells us that Ŝ is a good Schur comple-

ment approximation of (4.32).

The above fact motivates us to state the following theorem

Theorem 4.2. If S and Ŝ are of the form (4.32) and (4.36) respectively with φ1, φ2 and

φ−1
1 φ2 symmetric and positive de�nite such that Mφ−1

1 φ2 = φ−1
1 φ2M then λ(Ŝ−1S) ∈

[12 , 1).

Hence,

Ŝ =
1

τβnoise
(K +

√
τβnoise
√

βprior
Γ1)M−1

n (K +

√
τβnoise
√

βprior
Γ1)

T (4.42)

is an appropriate approximation of the Schur complement of (4.31).

It will not be feasible if we apply the inverse of (K +
√
τβnoise√
βprior

Γ1) and its transpose

(K +
√
τβnoise√
βprior

Γ1)
T since that implies that we are solving the PDE directly [43]. We

will use algebraic multigrid technique [44] for (K +
√
τβnoise√
βprior

Γ1) and its transpose (K +
√
τβnoise√
βprior

Γ1)
T , that we require an algebraic multigrid process for the 1st diagonal block

M + τK +
√
τβnoise√
βprior

M ∈ R
n×n and algebraic multigrid process for the remaining blocks

of the form M + τK ∈ R
n×n. We apply a �xed (e.g. 4) cycles of such an algebraic

multigrid process Nt times to approximate the inverse of (K+
√
τβnoise√
βprior

Γ1) and Nt times

to approximate the inverse of (K +
√
τβnoise√
βprior

Γ1)
T .
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The (1, 1) block A for the system (3.32), (3.33), (3.34) and (3.35) is given by

A =

[

τβnoiseMn 0

0 βpriorWp

]

(4.43)

where Mn is given in (3.29) and Wp = {KD,KN ,K2
D,K

2
N}. Here the (1, 1) block A is a

block diagonal matrix. The inverse of A is given by

A−1 =

[
1

τβnoise
M−1

n 0

0 1
βprior

W−1
p

]

. (4.44)

Since the (1, 1) block of (4.44) consists of mass matrix which is diagonal, so the inverse

M−1
n can be evaluated easily. On the other hand the (2, 2) block of (4.44) is not diagonal

the inverse of (2, 2) block is approximated by using an algebraic multigrid preconditioner.

For the case of 4th order Gaussian smoothness prior in order to approximate the inverse

of K2
D or K2

N the algebraic multigrid preconditioner is applied twice.

4.5 Schur Complement Approximation for Smoothness Prior

The Schur complement approximation discussed above is not applicable if the prior

covariance matrix is approximated. Because the structure of (K+
√
τβnoise√
βprior

Γ1) is changed.

In the previous case Γ1 consisted of the mass matrixM . But if the prior covariance matrix

is approximated then in the Schurcomplemet approximation (4.42) the (1, 1) block of Γ1

is changed. So, we need to rede�ne Γ1 to approximate the Schur complement for the case

of approximated priors. In the next sections we are going to discuss the approximation of

the Schur complement for the case of prior matrix as 2nd order and 4th order Gaussian

smoothness prior with Dirichlet and Neumann boundary conditions respectively.

4.5.1 2nd order smoothness prior with Dirichlet boundary condition

In the case of 2nd order smoothness prior with Dirichlet boundary condition the system

to solve is given in (3.32) with
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A =

[

τβnoiseMn 0

0 βpriorKD

]

and B =
[

−K M1

]

.

The (negative) Schur complement of the system is

S1 =
1

τβnoise
KM−1

n KT +
1

βprior
M1K

−1
D MT

1 . (4.45)

In the 2nd term M1K
−1
D MT

1 of (4.45) the inverse of KD can not be found easily. So we

approximate KD by K̂D = diag(KD) [45]. Thus, the Schur complement approximation

can be written as

S̃1 =
1

τβnoise
KM−1

n KT +
1

βprior
M1K̂

−1
D MT

1 . (4.46)

The 2nd term of (4.46) M1K̂
−1
D MT

1 gives us













M

0
...

0













K̂−1
D

[

M 0 . . . 0
]

=










MK̂−1
D M

0
. . .

0










= Γ2M−1
n ΓT

2

where,

Γ2 =










1√
2
MK̂

− 1

2

D M
1

2

0
. . .

0










.
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Thus, the Schur complement approximation given in (4.46) can be written as

S̃1 =
1

τβnoise
KM−1

n KT +
1

βprior
Γ2M−1

n Γ2. (4.47)

A suitable approximation for the Schur complement approximation given in (4.47) is

chosen as

Ŝ1 =
1

τβnoise
(K +

√
τβnoise
√
βprior

Γ2)M−1
n (K +

√
τβnoise
√
βprior

Γ2)
T . (4.48)

4.5.2 2nd order smoothness prior with Neumann boundary condition

For 2nd order smoothness prior with Neumann boundary condition the saddle point

system to solve is given in (3.33) with

A =

[

τβnoiseMn 0

0 βpriorKN

]

and B =
[

−K M1

]

.

The (1, 1) block of the system, A, is not invertible, since KN is not invertible. Due to the

non-invertibility of KN as well as A, the Schur complement of the system (3.33) does not

exist. So, to prescribe an approximation for a preconditioner, we recommend an approx-

imation K̂N to KN given by K̂N = diag(KN ) [45]. Which gives us the approximation

to A as follows:

Â =

[

τβnoiseMn 0

0 βpriorK̂N

]

.

Hence we examine the approximated saddle point system

[

Â BT

B 0

]

. The (negative)

Schur complement of this system is

S2 =
1

τβnoise
KM−1

n KT +
1

βprior
M1K̂

−1
N MT

1 . (4.49)
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The 2nd term of (4.49) M1K̂
−1
N MT

1 gives us













M

0
...

0













K̂−1
N

[

M 0 . . . 0
]

=










MK̂−1
N M

0
. . .

0










= Γ3M−1
n ΓT

3

where,

Γ3 =










1√
2
MK̂

− 1

2

N M
1

2

0
. . .

0










.

The Schur complement given in (4.49) can be written as

S̃2 =
1

τβnoise
KM−1

n KT +
1

βprior
Γ3M−1

n Γ3. (4.50)

As in the case of 2nd order smoothness prior with Dirichlet boundary condition an

approximation for the Schur complement approximation given in (4.50) is proposed as

Ŝ2 =
1

τβnoise
(K +

√
τβnoise
√
βprior

Γ3)M−1
n (K +

√
τβnoise
√
βprior

Γ3)
T . (4.51)

4.5.3 4th order smoothness prior with Dirichlet boundary condition

In the case of 4th order smoothness prior with Dirichlet boundary condition the system

to solve is given in (3.34) with

A =

[

τβnoiseMn 0

0 βpriorK
2
D

]

and B =
[

−K M1

]

.

The (negative) Schur complement of the system is
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S3 =
1

τβnoise
KM−1

n KT +
1

βprior
M1K

−2
D MT

1 . (4.52)

As in the case of 2nd order smoothness prior with Dirichlet boundary condition the

2nd term M1K
−2
D MT

1 in (4.52) the inverse of KD can not be found easily. So in the

same way we approximate KD by K̂D = diag(KD) [45]. Then the Schur complement

approximation is given by

S̃3 =
1

τβnoise
KM−1

n KT +
1

βprior
M1K̂

−2
D MT

1 (4.53)

The 2nd term of (4.53) M1K̂
−2
D MT

1 gives us













M

0
...

0













K̂−2
D

[

M 0 . . . 0
]

=










MK̂−2
D M

0
. . .

0










= Γ4M−1
n ΓT

4

where,

Γ4 =










1√
2
MK̂−1

D M
1

2

0
. . .

0










.

Thus, the Schur complement given in (4.53) can be written as

S̃3 =
1

τβnoise
KM−1

n KT +
1

βprior
Γ4M−1

n Γ4. (4.54)

Similarly an approximation for the Schur complement approximation given in (4.54) is

proposed as
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Ŝ3 =
1

τβnoise
(K +

√
τβnoise
√
βprior

Γ4)M−1
n (K +

√
τβnoise
√
βprior

Γ4)
T . (4.55)

4.5.4 4th order smoothness prior with Neumann boundary condition

In the case of 4th order smoothness prior with Neumann boundary condition the system

to solve is given in (3.35) with

A =

[

τβnoiseMn 0

0 βpriorK
2
N

]

and B =
[

−K M1

]

.

The (1, 1) block of the system, A, is not invertible, since KN is not invertible. Due to the

non-invertibility of KN as well as A, the Schur complement of the system (3.35) does not

exist. So, to prescribe an approximation for a preconditioner, as in the case of 2nd order

smoothness prior with Neumann boundary condition we recommend an approximation

K̂N to KN given by K̂N = diag(KN ) [45]. Which gives us the approximation to A as

follows:

Â =

[

τβnoiseMn 0

0 βpriorK̂
2
N

]

.

Hence, we examine the approximated saddle point system

[

Â BT

B 0

]

. The (negative)

Schur complement of this system is

S4 =
1

τβnoise
KM−1

n KT +
1

βprior
M1K̂

−2
N MT

1 . (4.56)
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The 2nd part of (4.56) M1K̂
−2
N MT

1 can be written as













M

0
...

0













K̂−2
N

[

M 0 . . . 0
]

=










MK̂−2
N M

0
. . .

0










= Γ5M−1
n ΓT

5

where,

Γ5 =










1√
2
MK̂−1

N M
1

2

0
. . .

0










.

The Schur complement approximation given in (4.56) can be written as

S̃4 =
1

τβnoise
KM−1

n KT +
1

βprior
Γ5M−1

n Γ5. (4.57)

In a similar manner we propose a suitable approximation for the Schur complement

approximation given in (4.57) as

Ŝ4 =
1

τβnoise
(K +

√
τβnoise
√
βprior

Γ5)M−1
n (K +

√
τβnoise
√
βprior

Γ5)
T . (4.58)

As in the case of prior matrix is mass matrix it will not be feasible if we apply the

inverse of (K+
√
τβnoise√
βprior

Γi) and its transpose (K+
√
τβnoise√
βprior

Γi)
T , i = 2, 3, 4, 5. We will use

algebraic multigrid technique for (K +
√
τβnoise√
βprior

Γi) and its transpose (K +
√
τβnoise√
βprior

Γi)
T .

That is we require an algebraic multigrid process for the 1st diagonal block M + τK +
√
τβnoise√
βprior

MK̂
− 1

2

D M
1

2 ∈ R
n×n for the case of 2nd order smoothness prior with Dirichlet

boundary condition, M + τK +
√
τβnoise√
βprior

MK̂
− 1

2

N M
1

2 ∈ R
n×n for the case of 2nd order

smoothness prior with Neumann boundary condition, M + τK +
√
τβnoise√
βprior

MK̂−1
D M

1

2 ∈
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R
n×n for for the case of 4th order smoothness prior with Dirichlet boundary condition and

M+τK+
√
τβnoise√
βprior

MK̂−1
N M

1

2 ∈ R
n×n in case of 4th order smoothness prior with Neumann

boundary condition and algebraic multigrid process for the rest of the block M + τK ∈
R
n×n. We apply a �xed (i.e. 4) number of v-cycles of an algebraic multigrid process Nt

times to approximate the inverse of (K +
√
τβnoise√
βprior

Γi) and Nt times to approximate the

inverse of (K +
√
τβnoise√
βprior

Γi)
T .



Chapter 5

Numerical Results and Discussions

The results presented in this section are based on an implementation of our algorithms

within the deal.II [46] framework. For the AMG precondtioner, we use the Trillions ML

packages [47] that implements a smoothed aggregation AMG. Our implementation of

MINRES was taken from [25] with a tolerance of 10−6 for the relative pseudo residual.

For all our experiments T = 1 and τ = 0.05 which results in 20 time steps. We discretized

usingQ1 �nite elements for each of the state, control and Lagrange multiplier �elds as well

as the backward Euler scheme. Also note that whenever we show degrees of freedom these

are only the degrees of freedom for one grid point of time (i. e. for a single time step).

In fact in that case we are solving a linear system of dimension two times the number of

time step times the number of degrees of freedom plus one times the degrees of freedom

of the spatial discretization. For example, a spatial discretization with 274625 unknowns

and 20 time steps corresponds to an overall linear system of dimension 11259625. We

vary the smoothing parameters βnoise and βprior choosing βnoise = 100, 10−2, 10−4 and

10−6 and βprior = 100, 10−2, 10−4 and 10−6. To exemplify our approach, in table 5.1-5.3

we show degrees of freedom (DoF), number of MINRES iterations along with CPU times

(in seconds) for the system 3.30 which is with prior matrix as the mass matrix with Schur

complement given in (4.42). Table 5.4-5.6 show degrees of freedom (DoF), number of

MINRES iterations along with CPU times (in seconds) for the system 3.32, for the 2nd

order smoothness prior with Dirichlet boundary condition with Schur complement given

in 4.48 and in Table 5.7-5.9 we depict degrees of freedom (DoF), number of MINRES

along with cpu times (in seconds) for the system 3.33, for the 2nd order smoothness prior

with Neumann boundary condition with Schur complement given in 4.51. On the other

hand, in Table 5.10-5.12 we depict degrees of freedom (DoF), number of MINRES along
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with CPU times (in seconds) for the system 3.34, for the 4th order smoothness prior

with Dirichlet boundary condition with Schur complement given in 4.55. And �nally

in Table 5.13-5.15 we depict degrees of freedom (DoF), number of MINRES along with

CPU times (in seconds) for the system 3.35, for the 4th order smoothness prior with

Neumann boundary condition with Schur complement given in 4.58.

Figure 5.1 shows the computed control, observed solutions and computed solutions at

t = 1 for βnoise = 100 and βprior = 100 with degrees of freedom 4913 for the prior matrix

chosen to be the mass matrix. While the Figure 5.2 shows the computed control, the

observed solutions and computed solutions at t = 1 for βnoise = 10−2 and βprior = 100

with degrees of freedom 35937 for 2nd order smoothness prior with Dirichlet boundary

condition. On the other hand the Figure 5.3 shows the computed control, the observed

solutions and computed solutions at t = 1 for βnoise = 10−4 and βprior = 100 with degrees

of freedom 4913 for 2nd order smoothness prior with Neumann boundary condition.

Figure 5.4 depicts the computed control, the observed solutions and computed solutions

at t = 1 for βnoise = 10−2 and βprior = 10−2 with degrees of freedom 35937 for the

4th order smoothness prior with Dirichlet boundary condition. Finally the Figure 5.5

depicts the computed control, the observed solutions and computed solutions at t = 1

for βnoise = 10−4 and βprior = 10−4 with degrees of freedom 35937 for the 4th order

smoothness prior with Neumann boundary condition.

It can be easily seen from the tables that the number of iterations remains almost constant

with varying mesh size and the regularization parameter βnoise and βprior. In case of 4th

order smoothness prior with Dirichlet boundary condition the method converge if the

ratio βnoise

βprior
≤ 102. If the ratio βnoise

βprior
> 102, then the number of iterations of MINRES

method is very high and it takes more time. For the case of 4th order smoothness prior

with Neumann boundary condition the method converge if the ratio βnoise

βprior
≤ 1. If the

ratio βnoise

βprior
> 1, then the number of iterations of MINRES method increases substantially

and it takes more time.
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5.0.5 Prior matrix as mass matrix

(a) Computed control (b) Observed state (c) Computed solution

Figure 5.1: Plots of Control, Observed state, and Computed state for βnoise = 100

and βprior = 100 at t = 1 with DOF 4913 for prior matrix as mass matrix.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 6(10) 8(14) 12(19) 12(19)

35937 6(90) 8(117) 12(162) 14(187)

274625 6(731) 8(897) 12(1259) 14(1446)

Table 5.1: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−2 with βprior = 100, 10−2, 10−4 and

10−6 for the prior matrix as the mass matrix.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(7) 6(11) 8(13) 12(20)
35937 4(69) 6(93) 8(116) 12(159)
274625 4(555) 6(732) 8(927) 12(1263)

Table 5.2: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−4 with βprior = 100, 10−2, 10−4 and

10−6 for the prior matrix as the mass matrix.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(8) 4(8) 6(11) 8(14)
35937 4(71) 4(70) 6(95) 8(118)
274625 4(556) 4(554) 6(773) 8(907)

Table 5.3: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−6 with βprior = 100, 10−2, 10−4 and

10−6 for the prior matrix as the mass matrix.
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5.0.6 2nd order smoothness prior with Dirichlet boundary condition

(a) Computed control (b) Observed state (c) Computed solution

Figure 5.2: Plots of Control, Observed state, and Computed state for βnoise = 10−2

and βprior = 100 at t = 1 with DOF 35937 for 2nd order smoothness prior with Dirichlet
boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(7) 4(9) 4(9) 8(8)

35937 4(69) 4(69) 6(93) 9(127)

274625 4(539) 4(546) 7(814) 9(1530)

Table 5.4: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−2 with βprior = 100, 10−2, 10−4 and
10−6 rrespectively for 2nd order smoothness prior with Dirichlet boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(9) 4(8) 4(8) 4(8)
35937 4(69) 4(75) 4(69) 6(93)
274625 4(534) 4(552) 4(539) 7(823)

Table 5.5: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−4 with βprior = 100, 10−2, 10−4 and
10−6 rrespectively for 2nd order smoothness prior with Dirichlet boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 3(7) 4(8) 4(8) 4(9)
35937 3(57) 4(69) 4(69) 4(70)
274625 3(455) 4(548) 4(551) 4(541)

Table 5.6: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−6 with βprior = 100, 10−2, 10−4 and
10−6 respectively for 2nd order smoothness prior with Dirichlet boundary condition.
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5.0.7 2nd order smoothness prior with Neumann boundary condition

(a) Computed control (b) Observed state (c) Computed solution

Figure 5.3: Plots of Control, Observed state, and Computed state for βnoise = 10−4

and βprior = 10−0 at t = 1 with DOF 4913 for 2nd order smoothness prior with
Neumann boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(8) 5(10) 7(12) 12(19)

35937 5(88) 7(108) 7(109) 12(168)

274625 5(559) 7(1002) 7(955) 13(1464)

Table 5.7: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−2 with βprior = 100, 10−2, 10−4 and
10−6 respectively for 2nd order smoothness prior with Neumann boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(8) 4(8) 5(9) 7(12)
35937 4(72) 5(82) 7(108) 7(108)
274625 4(557) 5(651) 7(848) 7(878)

Table 5.8: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−4 with βprior = 100, 10−2, 10−4 and
10−6 respectively for 2nd order smoothness prior with Neumann boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(9) 4(8) 4(8) 5(9)
35937 4(72) 4(72) 5(85) 7(109)
274625 4(590) 4(568) 6(663) 7(833)

Table 5.9: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−6 with βprior = 100, 10−2, 10−4 and
10−6 respectively for 2nd order smoothness prior with Neumann boundary condition.
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5.0.8 4th order smoothness prior with Dirichlet boundary condition

(a) Computed control (b) Observed state (c) Computed solution

Figure 5.4: Plots of Control, Observed state, and Computed state for βnoise = 10−2

and βprior = 10−2 at t = 1 with DOF 35937 for 4th order smoothness prior with
Dirichlet boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4

DoF MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(9) 4(9) 6(11)

35937 4(71) 7(111) 11(159)

274625 7(851) 9(1042) 18(1884)

Table 5.10: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−2 with βprior = 100, 10−2, 10−4 and
10−6 respectively for 4th order smoothness prior with Dirichlet boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(8) 4(9) 4(8) 6(11)
35937 4(75) 4(73) 7(111) 11(157)
274625 4(569) 7(858) 9(1049) 18(1921)

Table 5.11: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−4 with βprior = 100, 10−2, 10−4 and
10−6 respectively for 4th order smoothness prior with Dirichlet boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 4(9) 4(9) 4(8) 4(9)
35937 4(70) 4(75) 4(74) 7(110)
274625 4(540) 4(571) 7(857) 9(1053)

Table 5.12: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−6 with βprior = 100, 10−2, 10−4 and
10−6 respectively for 4th order smoothness prior with Dirichlet boundary condition.
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5.0.9 4th order smoothness prior with Neumann boundary condition

(a) Computed control (b) Observed state (c) Computed solution

Figure 5.5: Plots of Control, Observed state, and Computed state for βnoise = 10−4

and βprior = 10−4 at t = 1 with DOF 35937 for 4th order smoothness prior with
Neumann boundary condition.

βprior = 100 βprior = 10−2

DoF MINRES(Time) MINRES(Time)

4913 12(20) 17(24)

35937 12(167) 17(228)

274625 10(1148) 23(2381)

Table 5.13: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−2 with βprior = 100, 10−2 and 10−4

respectively for 4th order smoothness prior with Neumann boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4

DoF MINRES(Time) MINRES(Time) MINRES(Time)

4913 10(17) 12(20) 36(54)
35937 10(145) 12(168) 17(227)
274625 11(1246) 10(1151) 23(2367)

Table 5.14: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−4 with βprior = 100, 10−2 and 10−4

respectively for 4th order smoothness prior with Neumann boundary condition.

βprior = 100 βprior = 10−2 βprior = 10−4 βprior = 10−6

DoF MINRES(Time) MINRES(Time) MINRES(Time) MINRES(Time)

4913 10(18) 10(17) 12(20) 18(28)
35937 10(143) 10(145) 12(225) 27(347)
274625 11(1222) 11(1236) 10(1228) 23(2831)

Table 5.15: Number of DoF, MINRES steps and CPU-time (in seconds) for di�erent
values of for regularization parameter βnoise = 10−6 with βprior = 100, 10−2, 10−4 and
10−6 respectively for 4th order smoothness prior with Neumann boundary condition.
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Conclusion

In this thesis we have presented a setup for the inverse problem governed by a three

dimensional parabolic PDE within the framework of Bayesian inference with Gaussian

noise and prior probability densities. We have derived the discretized �rst order opti-

mality conditions using the �nite element method that leads us to a very large linear

system in the form of a saddle point system. We studied Gaussian smoothness pri-

ors. Namely, 2nd order Gaussian smoothness prior with Dirichlet boundary conditions

and with Neumann Boundary conditions. Additionally a 4th order Gaussian smooth-

ness prior with Dirichlet boundary conditions and Neumann boundary conditions. We

proposed an all-at-once approach to solve the linear system. The system matrix in all

cases was symmetric inde�nite, so the Krylov subspace method MINRES is used with

the application of a block diagonal preconditioner P. the preconditioner P was chosen to

enhance the convergence behavior that allowed us to have a fast solution of the problems.

We also proposed approximations of the Schur complements for the preconditioners for

all cases. For the case of spectrally neutral prior the eigenvalues of (Ŝ−1S) are found

in [12 , 1), where Ŝ is the approximation of Schur complement S. This shows that the

Schur complement approximation for the case of spectrally neutral prior is robust for

the original system. For the cases of smoothness prior though eigenvalue bounds as in

the case of spectrally neutral prior could not be guaranteed, the approximations of the

Schur complement approximations perform robustly with respect to all the parameters.

Our preconditioners did not need to solve the time evaluation accurately (e. g. using a

direct method) but only used an AMG preconditioner. This approach not only speed up

the solution of the system but also allowed for much larger problems to be solved as the

AMG preconditioner can easily handle extremely large three dimensional matrices.
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