
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

How does the Pereptron �nd a solution?

av

Anna-Karin Hermansson

2013 - No 7

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

How does the Pereptron �nd a solution?

Anna-Karin Hermansson

Självständigt arbete i matematik 15 högskolepoäng, Grundnivå

Handledare: Martin Tamm

2013

Contents

1 The Singlelayer Perceptron 3
1.1 Introduction . 3
1.2 Structure . 5

1.2.1 The learning rule . 6
1.2.2 The Bias input . 7

1.3 The learning algorithm . 8
1.3.1 An example . 9

1.4 Linear separability . 11
1.4.1 The exclusive Or (XOR) Function 12

1.5 The Perceptron convergence procedure 14
1.5.1 The Theorem . 14
1.5.2 The Proof . 17
1.5.3 An example . 20

1.6 Limitations . 21

2 The Multilayer Perceptron 22
2.1 Introduction . 22

2.1.1 An example . 23
2.1.2 Three different types of threshold functions 24

2.2 Hard limiting nonlinear models 25
2.2.1 Decision regions . 25
2.2.2 Sequential learning . 27

2.3 The Backpropagation algorithm - a continuous nonlinear model . 28
2.3.1 Introduction . 28
2.3.2 Going forwards . 30
2.3.3 Going backwards: Backpropagation of Error 31
2.3.4 The learning algorithm 38
2.3.5 Initialising the weights . 39
2.3.6 Local Minima . 39
2.3.7 Generalisation and overfitting 41
2.3.8 Number of hidden layers 41
2.3.9 Decision regions . 42
2.3.10 Limitations . 43

3 Implementation 43
3.1 Introduction . 43
3.2 Description . 44
3.3 Hypothesis, results and comments 46

1

Acknowledgements

First of all, I wish to thank Pepto systems for giving me the opportunity to
realize my degree project at their company. I would like to give a special thanks
to my supervisor Tomas Sjögren and the programmer Johan Larsson for their
attention.

Further, I express my thanks to Martin Tamm, my supervisor at the uni-
versity, for his great commitment to this thesis. I would also like to extend
my thanks to Jesper Oppelstrup from the Royal Institute of Technology, Stock-
holm, for his tips concerning the implementation part and my examiner Rickard
Bögvad for his valuable critics on an earlier draft of this paper.

Lastly, I would like to thank my family, friends and course mates for their
support throughout my time at the university. It has meant a lot to me.

1 The Singlelayer Perceptron

1.1 Introduction

Artificial neural net models are a type of algorithms which have been studied
for many years, in the hope of achieving human-like performance in areas such
as speech- and image recognition. These models are composed by many nonlin-
ear computational elements working in parallel and arranged in patterns with
inspiration from biological neural nets. These computational elements or nodes
are interconnected via weights who typically adapt themselves during use in the
purpose of improving performance.

In this report, I will focus on the Perceptron, an algorithm created by neural
nets which uses a method called Optimum minimum-error in order to classify
binary patterns. This algorithm is a highly parallel building block which illus-
trates neural-net components and demonstrates principles which can be used to
form more complex systems [4]. I will start this thesis by, in this first chapter,
discussing the theory behind the simplest form of the perceptron, namely the
Singlelayer Perceptron. When moving on to the second chapter, I will discuss
the Multilayer perceptron which consists of more complex networks. Finally, in
the third chapter I will demonstrate an implementation example of a perceptron
network used for image recognition. The main question that I will try to answer
throughout this report is:

How does the Perceptron find a solution?

Description The perceptron is often described as a highly simplified model of
the human brain (or at least parts of it) and was introduced by the psychologist
Frank Rosenblatt in 1959, whose definition of it follows as:

”Perceptrons... are simplified networks, designed to permit the study of
lawful relationships between the organization of a nerve net, the organization
of its environment, and the ”psychological” performances of which it is capable.
Perceptrons might actually correspond to parts of more extended networks and
biological systems; in this case, the results obtained will be directly applicable.
More likely they represent extreme simplifications of the central nervous sys-
tem, in which some properties are exaggerated and others suppressed. In this
case, successive perturbations and refinements of the system may yield a closer
approximation [5].”

Moreover, in computational terms the perceptron can be described as an
algorithm for supervised classification of an input into one of several possible
non-binary outputs [17]. This means that a training set of examples with the
correct responses (targets) are provided and, based on this training set, the
algorithm generalises to respond correctly to all possible inputs. More specifi-
cally, the Perceptron decides which of N classes different input vectors belong to,

3

based on the training from examples of each class. The classification problem
is discrete meaning that each example belongs to precisely one class, and that
the set of classes covers the whole possible output space [1].

The Neuron The most essential component in the perceptron is the neuron,
which in biological terms corresponds to nerve cells in the brain. I will here
give a short description of how this unit acts in the brain: There are about
1011 neurons in the brain and they function as processing units. Their general
operation is the following: Transmitter chemicals that exist in the fluid of the
brain raise or lower the electrical potential inside the body of the neuron. If
this membrane potential reaches a certain threshold, the neuron spikes or fires
and a pulse of fixed strength and duration is sent down a [1] nerve fibre called
axon [15]. The axons divide into connections to other neurons, by connecting to
each of these neurons in a [1] structure called Synapse [16]. The learning in the
brain basically occurs by modifying the strength of these synaptic connections
between the neurons and by creating new connections. If each neuron were
seen as a separate processor, whose computation is about deciding whether or
not to fire, then the brain would be a massively parallell computer with many
processing elements [1].

In 1962, Rosenblatt demonstrated the capabilities of the Perceptron in his
book ”Principles of Neurodynamics”, which brought attention to the area of
Neural ”connectionistic” networks. However, his book was not the first work to
treat the area. The neuroscientist Warren McCulloch, the logician Walter Pitts
and psychologist Donald O. Hebb released work treating Neurological networks
already in the 1940s [5].

Hebb’s rule In 1949, Hebb introduced a scientific theory, called Hebb’s
rule [18], which is based on the fact that changes in the strength for synaptic
connections are proportional to the correlation to the firing of the two connecting
neurons. To explain this further: If two neurons consistently fire simultaneously,
then it will affect the strength of the connection in between them in the sence
that it will become stronger. However, if two neurons never fire simultaneously
the connection in between them will eventually die out. So the idea is that
if two neurons both respond to something it would mean that they should be
connected.

McCulloch and Pitts neuron In 1943, McCulloch and Pitt constructed
a mathematical model in the purpose of capturing the bare essentials of the
neuron leaving out all extraneous details. Their neuron was built up by:

• a set of weighted inputs, wi, corresponding to the synapses

4

Figure 1: A single layer perceptron

• an adder that summed up all input signals

• an activation function that decided whether or not the neuron should fire,
depending on the current inputs

Note that their model is not very realistic, since real neurons are much more
complicated, but by building networks of these neurons, a behaviour resembling
the action of the brain can be provided.

1.2 Structure

The perceptron is a collection of neurons, inputs and weights that connect the
inputs with the neurons. An illustration of this is shown in figure 1. The input
nodes together correspond to the input layer of the Perceptron and they are
marked out as the greyshaded dots placed on the left in the image. These nodes
measure up to the input values that are beeing fed into the network, which
in turn correspond to the elements of an input vector. Thus, the number of
input values correspond to the dimension of the input vector. The neurons in
the perceptron together form the output layer and they are illustrated as the
blackcoloured dots to the right in the picture. Their thresholds are marked out
as the Z-shaped symbols to the right of them.

The neurons are independent from each other in the sense that the action of
one neuron does not influence on the action of other neurons in the perceptron.
In order to make the decision whether or not to fire, the sum of the weights
connected to the neuron should be multiplied by the inputs and then compared
with its own threshold. To explain this further let’s denote the elements of
the input vector, xi, where i = 1, 2, . . . and give every weight the subscript
of wij , such that i is an index that runs over the number of inputs and j
correspondingly the number of neurons. For instance, w32 would be the weight
that connects input number three to neuron number two. Then the value that
the jth neuron needs to compare with its threshold in order to make a decision
would be

∑
i=1 wij · xi. The output of a neuron contains a value that holds the

5

information of whether or not the neuron has fired. In figure 1 the number of
inputs and the number of neurons are the same, but that does not have to be
the case, in fact the number of inputs and outputs is determined by the data.
The purpose of the perceptron is to learn how to reproduce a particular target,
which is a given value in the network, by producing a pattern of firing- and
non-firing neurons for given inputs. To work out if a neuron should fire or not,
the values of the input nodes should be set to the values of the elements in an
inputvector followed up by the calculations

h =

m∑
i=1

wijxi (1)

o = g(h) =

{
1, if h > θ

0, if h ≤ θ
(2)

where h represents the input to a neuron and o is a threshold function that
decides whether or not the neuron should fire [1].

1.2.1 The learning rule

Applying equations (1) and (2) on every neuron would create a pattern of firing
and non-firing neurons in a vector of ones and zeros. For instance, a vector
looking like (0, 1, 0, 0, 1) would mean that the second and fifth neuron fired
and the others did not. This pattern should be compared with the target, i.e.
the correct answer, in order to determine which neurons got the right answer
and which ones got the wrong answer. The reason why this information is nec-
essary is that some of the weights need to be adjusted and by knowing this
the Perceptron knows exactly which weights to change and not. The weights
connecting to neurons that calculated the wrong answer need to be adjusted
with the purpose of getting closer to the correct answer next time, whereas the
values of the weights connecting to neurons with the correct answer should be
maintained. The initial values of the weights are unknown. In fact, it is the
duty of the network to find a set of values that works and that means producing
the correct answer for all neurons.

In order to demonstrate the adjustment procedure of the weights, let’s con-
sider a network with a given input vector where exactly one of the neurons
get the wrong answer. If the input vector has m elements, there should be m
weights connecting to each neuron. Giving the failing neuron the label k would
mean that the weights that needs to be changed are the ones denoted wik, where
i = 1, 2, . . . ,m, that is the weights connecting the inputs to neuron k. Now,
the Perceptron knows which weights to change, but it also need to know how to
change them. First of all, it needs to determine if the value of the weights are
too high or too low. If the neuron fired when it should not, it means that some
of the weights are too big and in the opposite way if it did not fire when i should
have, then some of the weights must be too small. To find out in what way the

6

kth neuron has failed, the Perceptron calculates tk − yk, where tk is the target
and yk is the actual answer that it has produced. If this difference is positive,
the neuron should have fired when it did not and vice versa if the difference is
negative. One thing that needs to be taken in consideration now is that elements
of the input vector could be negative, meaning that the value of the weight also
needs to be negative if we wanted a non-firing neuron to fire. To overcome this
problem, the input value can be multiplied by the difference between the target
and the actual output, creating the expression ∆wik = (tk − yk) · xi. Adding
this new product to the old weight value would almost complete the updating
process of the weight. There is only one thing left to consider and that is to
adding a learning rate, η, to the equation. This parameter determines by how
much a weight should be changed and it affects how fast the network will learn.
I will discuss this learning rate further in the next part. To sum up, the final
rule for updating a weight can be expressed as:

wij + η(tj − yj) · xi → wij (3)

The process of calculating the activations of the neurons and updating the
weights is called the training of the network and it will be repeated until the
Perceptron has got all answers correct [1].

The learning Rate The learning rate, η, consequently controls how much
the values of the weights should be adjusted. If the learning rate had been
skipped, that is giving it the value of one, the weights would have changed a lot
whenever the answer was wrong. That could cause the network to be unstable
and consequently the weights might never settle down. On the other hand,
the cost of having a small learning rate is that the weights would have to visit
the inputs very often before they could change significantly. As a result, the
network would take a longer time to learn. However, it would make the network
more stable and resistant to errors and inaccuracies in the data. Therefore it is
preferable to include the learning rate and a common way of setting this value
is within the interval 0.1 < η < 0.4 [1].

1.2.2 The Bias input

As mentioned earlier, every neuron has been given a threshold, θ, that deter-
mines a value which the neuron has to reach before it can fire. This value should
be adjustable and that has to do with the case when all inputs take the value
zero. In such cases, the weights would not matter. To demonstrate this, assume
that a network has an input layer where all inputs are zero and that the output
layer consists of two neurons, one that should fire and one that should not.
Let’s also assume that the threshold determines the same value all the time.
The result would be that the two neurons would act alike, which obviously is a
problem. However, there is a way of overcoming this issue, namely by adding an
extra input weight and connecting it to each neuron in the network and keeping
the value of the input connected to this weight fixed. If this weight is included

7

Figure 2: The bias node

in the updating process, its value will change in order to make the neuron fire
or not, whichever is correct. This extra fixed input is called a Bias node and its
placement in the network is illustrated in figure 2. The value of this Bias node
is often set to −1 and its subscribt to 0, such that a weight connecting it with
the jth neuron would be denotated as w0j [1].

1.3 The learning algorithm

The perceptron algorithm consists of three phases, namely initialising the weights,
training and recognition, where the training correspond to the learning process.
It can be described as follows:

• Initialisation

– set all the weights, wij to random low values.

• Training

– for each iteration:

∗ for each input vector

· In order to determine the error, calculate the activation for
each neuron, j, by using the activation function g:

yj = g

(
m∑
i=1

wixi

)
=

{
1, if wijxi > 0.

0, if wijxi ≤ 0.
(4)

· update the weights by using the learning rule:

wij + η(tj − yj) · xi → wij

8

Figure 3: A Hard limiter

Figure 4: The output values computed by different input vectors

• Recognition

– Calculate the activation for each neuron, j, by using equation:

yj = g

(
m∑
i=1

wixi

)
=

{
1, if wijxi > 0.

0, if wijxi ≤ 0.

[1] There are different types of threshold functions [4]. The function that
have been used in this algorithm is called a Hard limiter and is illustrated in
figure 3. I will treat different types of threshold functions later on in this report,
but in this first chapter I will stick to the hard limiters.

1.3.1 An example

Here follows an example with the Perceptron learning. Consider a network with
two input nodes, one bias input and one output neuron, where the values of the
inputs and targets are given in the table in figure 4. In figure 5 you can see a plot
of the function in the input space where the high outputs are marked as crosses
and the low outputs are marked as circles. Figure 6 shows the corresponding
perceptron. Denote the inputs by x0, x1, x2 and the corresponding weights by
w0, w1, w2. The initial values of the weights is set to w0 = −0.05, w1 = −0.02
and w2 = 0.02 and the fixt value of the bias input x0 is set to −1. The network
starts with the first input vector (0, 0) and calculates the value of the neuron:

w0 · x0 + w1 · x1 + w2 · x2 = (−0.05) · (−1) + (−0.02) · 0 + (−0.02) · 0 = 0.05

9

Ln1

Ln2

Figure 5: A graph created by the values from the table in figure 4

Figure 6: The perceptron network from the example in 1.3.1

10

As 0.05 is above the threshold value zero, the neuron fires and the output
receives the value one. However, this is not the correct answer according to the
target which is zero. Therefore the learning rule must be applied in order to
adjust the weights. The learning rate used in this algorithm is η = 0.25.

w0 + η(t− y) · x0 → w0 ⇒ (−0.05) + 0.25 · (0− 1) · (−1) = 0.2

w1 + η(t− y) · x1 → w1 ⇒ (−0.02) + 0.25 · (0− 1) · 0 = −0.02

w2 + η(t− y) · x2 → w2 ⇒ 0.02 + 0.25 · (0− 1) · 0 = 0.02

The next input vector is (0, 1) and computing the value of the output in
the same way as with the first input results in a non-firing neuron. From the
table in figure 4 one can tell that this is an incorrect answer. As the target for
this input vector is one, i.e. that the neuron should fire, the weights need to be
updated again:

w0 + η(t− y) · x0 → w0 ⇒ 0.2 + 0.25 · (1− 0) · −1 = −0.05

w1 + η(t− y) · x1 → w1 ⇒ −0.02 + 0.25 · (1− 0) · 0 = −0.02

w2 + η(t− y) · x2 → w2 ⇒ 0.02 + 0.25 · (1− 0) · 1 = 0.27

The next input vectors (1, 0) and (1, 1) get the correct answers which means
that the weights do not need to be updated. Now, the perceptron will start from
the beginning again with the updated weights and perform the same process un-
til all answers are correct. When this is accomplished, the weights will settled
down and the algorithm will be finished. The perceptron has then learnt all the
examples correctly. For complete calculations of this algorithm, see appendix.

Note, that it is possible to pick lots of different values for the weights than
the ones used in this particular example, in order to get the correct outputs.
The weight values that the algorithm finds depends on the learning rate, the
inputs and the intial starting values of the weights. The interesting thing here
is not the actual values of the weights, but a set of values that actually works,
meaning that the network should generalise well to other inputs. In this exam-
ple the Perceptron converges successfully, meaning that it finds a set of weights
that classifies all input vectors correctly [1]. Further, that leads inevitably to
the question:

Does the perceptron always reach convergence?

I will discuss this matter in the next chapter.

1.4 Linear separability

Perceptrons with only one output neuron try to separate two different classes
from each other, where one of the classes consists of input vectors whose target
is a firing neuron and the other class consists of input vectors with a non-firing

11

w

Ln1

Ln2

Figure 7: A Decision boundary

neuron as their target. In two dimensions the perceptron tries to find a straight
line that separates these two classes, whereas in 3 dimensions this line would
correspond to a plane and in higher dimensions a hyperplane. This is called a
Decision boundary or a Discriminant function. So, the neuron should only fire
on one side of this decision boundary. An example of this in two dimensions is
illustrated in figure 7, where the decision boundary is a straight line. The cases
where a separating hyperplane exists are called linearly separable cases. The
example above demonstrates such a case and by looking at the graph in figure
5, one can see that it is possible to find a straight line that could separate the
cross from the circles (where the crosses mean that the neuron fired and the
circles mean that it did not). The cases where such a decision boundary exists
are sometimes referred to as the OR function. For perceptrons containing more
than one output neuron, the weights for each neuron would separately describe
such a hyperplane [1]. The discussion above raises the question:

Does the Perceptron always reach convergence in the linearly separable case?

I will try to answer this question in the section 1.5 which treats the percep-
tron convergence procedure.

1.4.1 The exclusive Or (XOR) Function

Figure 9 demonstrates an example of the XOR function. By looking at the
graph created from the values in the table, it can be found out that a straight
line that could separate the crosses from the circles does not exist. Thus, the
classes are not linearly separable and the perceptron would fail to get the right
answer [1]. This raises naturally the question:

Can the Perceptron reach convergence in the non-separable case?
If it can, then how does it do it?

The answer to the first question is yes and the solution is to make the network

12

Figure 8: The output values computed by different input vectors

Ln1

Ln2

Figure 9: A graph created by the values from the table in figure 8. It illustrates
an example of the XOR function.

13

Figure 10: A Linear combiner

more complicated by adding more neurons and by making more complicated
connections in between them [1]. I will discuss this further in the second chapter
which treats the Multilayer perceptron.

1.5 The Perceptron convergence procedure

At the time when McCulloch and Pitt constructed this perceptron hardly any
computers existed and the programming languagues were just above a minimal
standard, which might have been a reason for the poor interest in it. Moreover,
in the fifties some further developments were made, but at the end of the same
decade things became quiet due to the success of the serial von Neumann com-
puter. When Rosenblatt introduced the perceptron it brought attention to an
almost forgotten area. The Perceptron, in its simplicity, seemed to be actually
capable of learning certain things [5].

The original perceptron convergence procedure had adjusted weights and
was found by Rosenblatt. He proved that if inputs belonging to two different
classes were separable, the perceptron convergence procedure would converge
and find a decision hyperplane that separated the two classes [4].

I will now prove the perceptron convergence using the simplest kind of ar-
chitecture.

1.5.1 The Theorem

Consider a perceptron with m inputs and a linear combiner that combines them
as demonstrated in figure 10. Denote the inputs as x1, x2, . . . , xm and the
associated weights as w1, w2, . . . , wm. Also add a bias input, x0 , with a fixed
value of +1, directly in the linear combiner and a connecting bias weight, w0.
This linear combiner should add up the weights multiplied by the inputs by
calculating w>x, where w and x are colonn matrices containing the elements

14

Figure 11: Linear separability

w = (w0, w1, . . . , wm) and x = (x0, x1, . . . , xm). The result of this calculation
is the input to the neuron, v. Thus, after the presentation of the nth pattern,
v is written as

v(n) = −→w>(n)−→x (n) (5)

where −→w> is the transpose of the weight-vector, −→x (n) is the input-vector
for the nth pattern that has been fed into the network and v(n) is the scalar
product of −→w(n) and −→x (n). v is in turn followed up by a hard limiter, creating
the output value y = ϕ(v), by transforming it into the value of +1 or −1. Thus,
I will not use the same threshold function as the one I have been using so far,
where the output values zero or one were produced. The reason why I am in-
stead using a hard limiter that produces the values +1 or −1 is to simplify the
presentation of this proof. The fact that there are only two values that the out-
put of the neuron can produce makes our network a binary pattern classification.

Now, this pattern classification problem will be solved as a two class problem.
Let the two different classes C1 and C2 be linearly separable subsets of Rn.
Let also any pattern, i.e any input vector −→x from the n-dimensional space,
which is beeing fed into the network is either going to belong to C1 or C2.
Figure 11 demonstrates the sets of the classes in two dimensions, where (a) is a
linearly separable case and (b) is not. The end product of the training will be
a separating hyperplane (there can be many) such that the following conditions
are satisfied:

v = −→w> · −→x > 0 when −→x ∈ C1 (6)

v = −→w> · −→x ≤ 0 when −→x ∈ C2 (7)

By sending the input of the neuron, v, into the hard limiter function, the
output of the neuron, y, will be computed. This can be expressed as

15

v > 0⇒ y = +1 (8)

v ≤ 0⇒ y = −1. (9)

This hyperplane corresponds to the decision boundary and its equation is
−→w> · −→x = 0. In the linearly separable case, shown at image (a) in figure 11,
there is a hyperplane that separates the two classes. However, in the non-linearly
separable case, shown at image (b) in figure 11, such a hyperplane does not exist.

If −→w> · −→x is greater than zero, after having fed an x-vector from the set C1

into the network, the classification is correct. However, if an x-vector from the
set C2 is beeing fed into the network and −→w> · −→x still is greater than zero, the
classification is incorrect. In the cases when the classification is correctly made,
the values of the weights should remain the same and no action needs to be
taken. However, if the network has classified incorrectly the weights need to be
updated through the learning rule.

• For correct classifications maintain the values of the weights

−→w(n+ 1) = −→w(n) if −→w> · −→x (n) > 0 and −→x (n) ∈ C1 (10)

−→w(n+ 1) = −→w(n) if −→w> · −→x (n) ≤ 0 and −→x (n) ∈ C2 (11)

• For incorrect classifications update the weights by using the learning rule

−→w(n+ 1) = −→w(n) + η−→x (n) if −→w> · −→x (n) ≤ 0 and −→x (n) ∈ C1 (12)

−→w(n+ 1) = −→w(n)− η−→x (n) if −→w> · −→x (n) > 0 and −→x (n) ∈ C2 (13)

Note that the learning rule has different signs in the two different cases. The
reason why the perceptron makes a wrong classification is that the hyperplane
is intersecting at least one of the sets C1 and C2. Therefore it needs to move
and the sign at the learning rule determines in what direction the hyperplane
is moving [7]. I will now prove the following theorem.

Theorem 1. Let C1 and C2 be two bounded sets in Rn separated by a hy-
perplane given by the equation −→w0

> · −→x = 0 for some vector w0 such that
min |w0 ·x| ≥ α > 0, where minimum is taken over all x ∈ C1 ∪ C2. Then, w(n)
will converge when using the learning rule.

16

1.5.2 The Proof

In order to prove the convergence two initial assumptions will be made. The
first one is choosing the initial weight vector to be the zero vector, which is a
choice that only affects the speed of convergence. The second assumption is
choosing the value of the learning rate, η, to be one, which is made to simplify
the analysis. The approach of this proof is to find a lower bound and an upper
bound for w(n).

Proof. Suppose that the patterns −→x (n), starting with iteration n = 1, 2, . . . , are
beeing fed into the network. For some values of n the perceptron will classify
incorrectly and after each such presentation the learning rule will be used. These
n:s are a part of a series and will be denoted as n1, n2, n3, In order to prove
convergence, it is enough to to prove that the learning rule will stop the updating
process after a finite number of steps.

A lower boundary The learning rule will be expressed as

−→w(nk+1) = −→w(nk) +−→x (nk) for −→x (nk) ∈ C1 (14)

and

−→w(nk+1) = −→w(nk)−−→x (nk) for −→x (nk) ∈ C2 (15)

where η = 1. By using the assumption −→w(n0) =
−→
0 together with the learn-

ing rules following expressions can be made:

−→w(n1) = ±−→x (n0) (16)

−→w(n2) = ±−→x (n0) +−→x (n1) for −→x (nk) ∈ C1 (17)

−→w(n2) = ±−→x (n0)−−→x (n1) for −→x (nk) ∈ C2 (18)

leading to the general expression:

−→w(nk+1) = ±−→x (n0)±−→x (n1)± · · · ± −→x (nk) (19)

Taking the inner product of −→w0
> and all terms in equation (19) results in

−→w0
>−→w(nk+1) = ±−→w0

>−→x (n0)±−→w0
>−→x (n1)± · · · ± −→w0

>−→x (nk) (20)

Moreover, the conditions (6) and (7) must hold for w0, as it is a vector
belonging to a separating hyperplane. These conditions together with (14) and
(15) imply that whenever −→w0

>−→x (nk) < 0, then there must be a negative sign
before the corresponding term in equation (20) and in the opposite way; when
−→w0
>−→x (nk) > 0, there must be a positive sign before the corresponding term

in equation (20), for k = 0, 1, 2, ... Thus, each term in equation (20) is positive

17

and according to Theorem 1 it should also be greater than or equal to α. These
facts lead to the bounding expression

−→w0
>−→w(nk+1) ≥ kα. (21)

Applying Cauchy-Schwartz inequality on the expression −→w(nk+1) results in:

‖−→w0‖2‖−→w(nk+1)‖2 ≥ [−→w0
>−→w(nk+1)]2 ⇒ (22)

‖−→w0‖2‖−→w(nk+1)‖2 ≥ k2α2 ⇒ (23)

‖−→w(nk+1)‖2 ≥ k2α2

‖−→w0‖2
(24)

An upper boundary In order to find an upper bound, an alternative route
can be made. Again, feed the input vectors x(n), n = 1, 2, . . . ,, into the net-
work. As before, the system will classify incorrectly for n1, n2, n3, Thus,
the learning rule will be expressed as:

−→w(nk+1) = −→w(nk)±−→x (nk) for k = 1, 2, . . . and −→x (nk) ∈ C1 ∪ C2 (25)

The first step in this method is to update the squared euclidean norm on
both sides of equation (25) as follows:

‖−→w(nk+1)‖2 = ‖−→w(nk)‖2 + ‖−→x (nk)‖2 ± 2−→w>(nk) · −→x (nk) (26)

Now, as the assumption that the Perceptron classifies incorrectly for k =
1, 2, . . . is made, it would mean that the condition −→w(nk)> · −→x (nk) < 0 must
hold for −→x (nk) ∈ C1 and −→w(nk)> ·−→x (nk) > 0 for −→x (nk) ∈ C2. These conditions
imply, together with the conditions (14) and (15), the following statements:
When −→w(nk)> · −→x (nk) < 0, then there must be a positive sign in front of the
last term of equation (26) and when −→w(nk)> · −→x (nk) > 0, there must be a
negative sign in front of the same term. Consequently, the last term of equation
(26) must always be negative, which makes it possible to make the statements

‖−→w(nk+1)‖2 ≤ ‖−→w(nk)‖2 + ‖−→x (nk)‖2 ⇒ (27)

‖−→w(nk+1)‖2 − ‖−→w(nk)‖2 ≤ ‖−→x (nk)‖2. (28)

If equation (28) is applied on k = 0, 1, . . . , the following condition can be
established:

‖−→w(nk+1)‖2 ≤
∑
k=1

‖x(nk)‖2 (29)

If β is defined as the positive quantity,

18

β = max−→x (nk)∈C1∪C2

‖x(nk)‖2

then every ‖x(nk)‖2 for k = 0, 1 . . . will be less than or equal to β. This fact
makes it possible to form the following bounding expression:

‖−→w(nk+1)‖2 ≤ kβ (30)

A maximum number of iterations The bound of equation (30) says that
as k increases, ‖−→w(nk+1)‖2 increases at most linearly. It specifies an upper
limit whereas equation (24) specifies a lower limit. As a result, there must be a
maximum integer kmax such that both inequalities (24) and (30) will be satisfied.
It follows that kmax must satisfy

k2maxα
2

‖−→w0‖2
≤ kmaxβ (31)

from where we can obtain the limit of kmax as

kmax ≤
β‖−→w0‖2

α2
(32)

This inequality shows that the updating process must stop after a finite
number of steps. Hence, the proof is completed [7].

The Fixed Increment Convergence Theorem follows as

Theorem 2. Let the subsets of training vectors C1 and C2 be linearly sep-
arable. Let the inputs presented to the perceptron originate from these two
subsets. Then, the perceptron converges after some number of iterations, in the
sense that

−→w(m) = −→w(m+ 1) = −→w(m+ 2) = . . .

are vectors defining the same hyperplane that separates the two subsets, for
m ≥ m∗, where m∗ is a fixed number [9].

However, the main interest of the perceptron is contained in the following
theorem:

Theorem 3. If H1 and H2 are two finite subsets of C1 respective C2 and xn
is a series that feeds all elements in H1 and H2 into the network an infinitely
number of times, then the perceptron will classify all elements in H1 and H2

correctly after a finite number of steps.

This follows directly from Theorem 1. since once convergence has been reached
all further classifications must be correct.

19

Figure 12: An example which demonstrates the behavior of the decision bound-
aries during the convergence procedure. This image is taken from [4].

Is the solution unique? It has already been proved, speaking of linearly
separable cases, that a solution, −→w0, exists such that the hyperplane −→w0

>−→x = 0
separates the pattern classes C1 and C2 for every input pattern in the training
set. However, it does not mean that this hyperplane or solution −→w0 is unique.
In fact, there may be many such separating hyperplanes or solutions −→w0. The
point to make here is that a solution, −→w0, that is ultimately able to separate
the two pattern classes, can be reached and that there is a domain of such −→w0:s
that would satisfy this condition. To sum up, the idea is not to reach an exact
value of −→w0, but it is to reach convergence and by that I mean coming to a
stage, after having fed patterns into the network, when correct classification is
achieved [7].

1.5.3 An example

Figure 12 shows an example of perceptron convergence with two different classes.
Class A is marked out with circles and class B with crosses and the different
samples have been gone through until 80 inputs have been presented. As can be
seen, there are four lines in the image. These lines represent different decision
boundaries after the weights have been adjusted, following the errors, on iter-
ations 0, 2, 4 and 80. As can be seen, the classes have been almost separated
only after four iterations [4].

20

Figure 13: Decision regions for a single-layer perceptron

(a) Structure of
the network

(b) Exclusive or
problem

(c) Classes with
meshed regions

(d) Most general
region shapes

1.6 Limitations

Rosenblatt’s demonstration of the capability of the Perceptron raised a great
interest in solving a larger class of problems. Therefore, a lot of research was
done with the aim at finding more general methods by extending and refining
the training process and building bigger machines. In spite of all this effort, it
could be confirmed that there were certain things that the perceptron could not
learn [5].

Now, I have proved that the perceptron convergence procedure always works
in the cases when a separating hyperplane exists. However, this procedure is
not appropriate in cases where classes are not linearly separable, as it would
cause the hyperplane to oscillate continuously [4].

Figure 13 demonstrates the types of decision regions a singlelayer percep-
tron can form, namely a half plane bounded by a hyperplane. It illustrates two
non-separable situations at image (b) and (c). The closed contours around the
areas labelled A and B show the input distributions of the two classes, when
two continuous valued inputs have been fed into the net. The shaded areas
correspond to the decision regions. As can be seen in the image, the distribu-
tions of the two classes for the exlusive OR problem are disjoint and cannot be
separated by a straight line. However, the shaded area at image (b) in figure
13 shows a possible decision region that the perceptron might choose. Neither
the second problem, where the input distributions are meshed, can be solved
by finding a straight line that would separate the two classes. Image (d) illus-
trates the shape of general decision regions formed by the singlelayer perceptron.

This problem was used by the cognitive scientist Marvin Lee Minsky and the
mathematician and computer scientist Seymour Papert in order to illustrate the
weakness of the perceptron [4]. In 1969, they elucidated not only the possibili-
ties but also the restrictions on the perceptron in their book ”An introduction to
Computational Geometry”. The purpose of their mathematical analysis was to
advise against looking for methods that would work in every possible situation,
by showing in which cases the perceptron performed well and in which cases it

21

Figure 14: A multilayer perceptron network

performed badly. This publication is often seen as the reason for the diminished
interest in the perceptron during the seventies. In 1988, at a republication of the
book, Minsky and Papert stated that the early halt of research on neural net-
works was due to a lack of fundamental theories. According to them, too much
effort had been spent researching on the simple Perceptron instead of what was
important, namely the Representation of knowledge. Moreover, in the seventies
the interest and research on the last-mentioned area expanded enormously [5].

2 The Multilayer Perceptron

2.1 Introduction

So far, we have seen that linear models can find separating straight lines, planes
or hyperplanes. However, most problems of interest are not linearly separable.
In this second chapter, I will be concentrating on making a network more com-
plex in order to solve the classification problem. As concluded, the networks
learn through the weights, so to involve more computation more weights should
be added into the network. One way of doing so, is by adding more neurons
in between the input nodes and the output neurons. This new structure of the
network is called the Multilayer perceptron and an example is shown in Figure
14. As with the perceptron, a bias input needs to be connected to every neuron
[1].

Multilayer perceptrons are feed-forward nets with one or more layers of nodes

22

between the input- and the output nodes [4]. Feed-forward nets means that each
layer of neurons feeds only the very next layer of neurons and receives input only
from the immediately preceding layer of neurons. That means that the neurons
do not skip layers [11]. (These layers consist of hidden units, or nodes, that does
not directly connect to both the input- and output nodes.) Multilayer percep-
trons can overcome the limitations that the perceptron has, but were not used
in the past because of the lack of effective training algorithms. However, as new
training algorithms were developed, it was shown that multilayer perceptrons
actually could solve problems of interest.

The work by people like Hopfield, Rumelhart and McClelland, Sejnowski,
Feldman and Grossberg amongst other names lead to resurgence within the
field of neural networks. The new interest was probably due to the development
of new net topologies, new algorithms, new implementation techniques and the
growing fascination of the functioning of the human brain [4].

The question now is, how can a Mulitlayer network be trained so that the
weights can adapt themselves in order to get the correct answers? At first, the
same method as for the perceptron can be used, that is, to compute the error
of the output. The next step would be to calculating the difference between
the targets and the outputs. The issue to deal with now is the uncertainty of
which weights that are wrong. It could be either the ones from the first layer or
the second one. Besides, the correct activations for the neurons in the middle
layer(s) are also unknown. As it is not possible to examine or correct the values
of the neurons that belong to this layer directly, it is called the Hidden layer.

2.1.1 An example

The two-dimensional XOR problem that was demonstrated in figure 9 can not
be solved by a linear model like the perceptron. However, the act of adding
extra layers of nodes to the network makes it solvable and here is an example
that proves it. Take a look at the neural network illustrated in figure 15, where
the values of the weights and the names of each node have been marked out. In
order to demonstrate that the output neuron produces the correct answers, the
inputs will be fed into the network and afterwoods the results will be observed.
However, this time the network will be treated as two perceptrons in the sense
that the activations of the neurons in the middle, C and D, will be computed
first. These will in turn represent the inputs to the output neuron E. The weights
connecting the nodes in the input layer to the neurons in the hidden layer will,
in this example, be denoted as vij and wj will be the weights connecting the
hidden layer neurons to the output neuron, where i is an index that runs over
the nodes in the input layer and j runs over the neurons in the hidden layer.
The bias nodes connecting to the hidden neurons and the output neuron are
denoted as b1 and b2 and they have both been given the value one. The first
input vector to be fed into the network is (1, 0), which means that A=1 and
B=0. The calculations of the input to neuron C follow as:

23

Figure 15: A Multilayer perceptron with weight values which solve the XOR
problem

b1 · v01 +A · v11 +B · v21 = (−1) · 0.5 + 1 · 1 + 0 · 1 = 0.5

As 0.5 is above the threshold 0, neuron C fires and the value of its output is
thus one. The input of neuron D is calculated as:

b1 · v02 +A · v12 +B · v22 = (−1) · 1 + 1 · 1 + 0 · 1 = 0

As an input sent to the threshold function has to be greater than zero before
the neuron can fire, neuron D will not fire and its output value is thus set to
zero. Moving on to neuron E, its input will be:

b2 · w0 + C · w1 +D · w2 = (−1) · 0.5 + 1 · 1 + 0 · (−1) = 0.5

which means that E fires. Now, by using the same weights for the other
inputs (0,0), (0,1) and (1,1) in order to calculate the outputs, the result will be
that neuron E fires when A and B have different values and does not fire when
they have the same values. These latter calculations can be seen in the ap-
pendix. The conclusion to make out of this example is that the XOR function,
that was unsolvable for the perceptron, could be solved by adding an extra layer
of neurons into the network and thus transforming it to a non-linear model [1].

2.1.2 Three different types of threshold functions

The capabilities of multilayer perceptrons are due to the fact that the compu-
tational elements or nodes in these neural net models are nonlinear and ana-
log, meaning that the result of the summed weighted inputs is passed through
an internal nonlinear threshold as described before. Until now, hard limiters
have been presented as such nonlinearity. However, there are two other types,
namely threshold logic elements and sigmoidal nonlinearities. Representatives

24

Figure 16: A Threshold logic function

Figure 17: A Sigmoid function. This image is taken from [21].

from them are illustrated in figure 16 and 17. In this second chapter I will
treat both hard limiting models and a sigmoidal nonlinear model, called the
Backpropagation algorithm. I will begin with describing Hard limiting models.

2.2 Hard limiting nonlinear models

2.2.1 Decision regions

Figures 18 and 19 show the capabilities of perceptrons with two and three layers
where hard-limiting nonlinearities have been used. Image (a) shows the struc-
ture of the network, images (b) and (c) demonstrate examples of decision regions
for the exclusive OR problem and for meshed regions and image (d) examples
of general decision regions that the particular network can form.

Figure 18: Decision regions for a two-layer perceptron

(a) Structure of
the network

(b) Exclusive or
problem

(c) Classes with
meshed regions

(d) Most general
region shapes

25

Figure 19: Decision regions for a three-layer perceptron

(a) Structure of
the network

(b) Exclusive or
problem

(c) Classes with
meshed regions

(d) Most general
region shapes

Two layer perceptrons As discussed before, single-layer perceptrons form
half-plane decision regions in the input space. However, a two-layer perceptron
instead forms a convex region, including convex hulls and unbounded convex
regions, as illustrated at image (b) in figure 18. Such convex regions are formed
by intersections of the half-plane region created by each node in the first layer
of the multilayer perceptron. Each node in the first layer acts like a single-layer
perceptron and places the ”high” output points on one side of the hyperplane.
The final decision region is created by a logical AND operation in the output
node and is the intersection of all half-plane regions from the first layer. Thus,
this final decision region formed by a two-layer perceptron is convex and has at
most as many sides as there are nodes in the first layer.

This analysis leads to an insight to the problem of choosing the number of
nodes in a two-layer perceptron. The number of nodes has to be large enough to
form a decision region that is enough complex to solve the problem. Although, it
must not be too large because the number of weights required should be reliably
estimated from the available training data. An example is illustrated at image
(b) of figure 18, where a hidden layer with two nodes solves the exclusive OR
problem. However, there are no number of nodes that can solve the problem
with the meshed class regions for the two-layer perceptron.

Three layer perceptrons The three-layer perceptron can form arbitrarily
complex decision regions (where the complexity is limited by the number of
nodes) which are also capable of separating meshed classes. Thus, it can gener-
ate disconnected non-convex regions and this is illustrated at figure 19. There-
fore, at most three layers is needed to create perceptron-like feed-forward nets.

Moreover, it gives some insight to the problem of choosing the number of
nodes in a three-layer perceptron. The number of nodes in the second layer must
be greater than one in the cases when the decision regions are disconnected or
meshed and cannot be formed by one convex area. In the worst case, the number
of second layer nodes must be equal to the number of disconnected regions in
the input distributions. The number of nodes in the first layer must generally
be sufficient to create three or more edges on each convex area generated by

26

every second-layer node. Typically, there should be more than three times as
many nodes in the second layer as in the first [4].

Limitations Feed-forward layered neural networks are perhaps the simplest
neuro-computational devices which have the ability of implementing any asso-
ciation between pairs of input-output patterns, provided that enough hidden
units are present. Although, such networks, whose learning procedure is about
solving a problem given a task using a given architecture, have shown to be
computationally prohibitive. However, there is another class of learning proce-
dures that instead focuses on building a network architecture proceeding from
a given task and whose approach is to find networks close to the minimal size,
but with acceptable learning times. In contrast to the learning procedures of
feed-forward layered networks these ones do not focus on the error at all. I will
in the next part present one such learning procedure, called Sequential learning.

2.2.2 Sequential learning

Consider a Perceptron with N input units, one output and a yet unknown
number of hidden units, that is able to learn from any given set of input-output
examples. Sequential learning then means to sequentially separating groups of
patterns belonging to the same class from the rest of the patterns. This is done
by successively adding hidden units into the network until the patterns that
remain all belong to the same class. The internal representations created by
these procedures are then linearly separable. I will in this chapter prove the
existence of a solution for Sequential learning in Two layer perceptrons, but
before I start I will explain the phenomenon of ”the grandmother neuron”.

The grandmother neuron Consider a one-layer perceptron with N input
nodes and an unknown number of output neurons, where each input node ei-
ther holds the value of 1 or −1. The aim is that exactly one neuron, S,
should fire, i.e. produce the output +1, after having fed exactly one input
vector xi, i = 1, 2, 3, . . . into the network. For an input vector looking like
(1,−1,−1,−1, 1, 1,−1, 1, . . .), the weights wij should be chosen to have exactly
the same pattern (1,−1,−1,−1, 1, 1,−1, 1, . . .). Now, if the signum function
sgn(

∑
wixi−N) is used to calculate the output of the chosen neuron Sj it will

be +1 because the sum consists of N terms that are either 1*1 or (−1) ∗ (−1).
Thus, the total sum consists of N 1:s and subtracting N results in sgn(0) = 1.
However, if some of the xi:s does not coincide with the given input then some of
the terms in the sum will either be 1 ∗ (−1) or (−1) ∗ 1. Then

∑
wixi −N < 0

and sgn(
∑
wixi −N) = −1.

Proof of linear separability

Proof. Let M be a finite set consisting of binary vectors and let
D = (x1, x2, x3, . . . , xk) be a subset of M . The aim is to construct a neural

27

network with only one hidden layer that produces the output +1 if xi belongs
to D and −1 if xi does not belong to D. This can be realized by constructing
a grandmother neuron Si for every xi ∈ D. If we calculate the output-vector in
the hidden layer v = (S1(x), S2(x), . . . , Sk(x)), for a given input x, and if x /∈ D,
it will consist of k (−1)s: v = (−1,−1, . . . ,−1). On the other hand, if x ∈ D
then v = (−1,−1, . . . , 1, . . . ,−1), that is one 1 at some position. Therefore, if
we consider

∑
Si(x) + k − 1 we can see that the sum will be −1 for x /∈ D and

+1 for x ∈ D.

Remark: After this is performed, the input space will be partitioned into
different regions formed by all patterns, xi, where each region consists of at
least one pattern all with the same target and identified by a single internal
representation vector, v. Figure 16 demonstrates an example of a partition
in the input space from a sequential algorithm. The circle corresponds to the
input space and each hidden unit creates a straight line where the outputs are
respresented as + or − on each side of it. Note that in this particular example
there are nine internal representations but only five ”excluding” clusters.

Limitations Linear separability for Sequential learning in two-layer percep-
trons has now been proved. However, this proof does not say anything about
the ability of the algorithm to capture the correlations between the presented
patterns. In a worst case scenario each region would only contain one pattern,
xi, which means that none of the correlations between the presented patterns
will be captured. However, in practice, the purpose with this Sequential learn-
ing algorithm is that each region should cluster several patterns. There is, for
instance, a method that at each step chooses a weight vector that excludes
the maximal number of patterns with the same target [6]. However, the im-
plementation of this algorithm is not something that I will discuss further in
this report. Instead, I will focus on the so called Backpropagation algorithm, a
feed-forward neural network which uses a different type of threshold function,
namely a Sigmoid function.

2.3 The Backpropagation algorithm - a continuous non-
linear model

2.3.1 Introduction

As already demonstrated in the perceptron convergence procedure, the decision
boundaries would oscillate forever in the case when the inputs are non-separable
and the distributions overlap. Thus, it would fail to converge. However, for prac-
tical purposes the perceptron algorithm can be modified into the ”Least mean
square” algorithm or, in short form, the LMS algorithm. This algorithm mini-
mizes the mean square error, determined by the difference between the desired
output and the actual output, in a perceptron-like net. An essential difference
with Rosenblatt’s perceptron and the LMS algorithm is that Rosenblatt used

28

Figure 20: An example of the partition of the input space created by a sequential
algorithm. The input space is represented by the large circle and each straight
line represents a hidden unit, whose outputs are marked out as a + or − on
each side of the line.

a hard limiting nonlinearity, whereas the LMS algorithm makes this hard lim-
iter linear or replaces it by a threshold-logic nonlinearity. The Backpropagation
algorithm is a generalisation of the LMS algorithm and it uses a gradient de-
scent technique [4] in order to search the hypothesis space of possible weight
vectors to find the weights that would best fit the training examples [2]. This
method is also called Back-propagation of error and its technique is basically
about sending the errors backwards through the network [1]. Instead of adjust-
ing the weights according to the perceptron learning rule, which corresponds to
equation (3) [4], this algorithm uses a second training rule called the delta rule
[2]. This rule is applied after every iteration until the algorithm [4] converges
towards a best-fit approximation to the target concept.

Gradient descent In order to explain the gradient descent technique, let
us consider the two dimensional case. Consider an error function, E(w0, w1),
which we want to minimize. Now, the question is how do we find the (w0, w1)
for which the error is minimal, starting at an arbitrary point, (w0, w1)? The
answer is by going in the direction of the negated gradient −(∂E∂w0

, ∂E∂w1
). This

means changing the weight w0 by a multiple of − ∂E
∂w0

. An example of the error
surface is plotted in figure 21. Its axes w0 and w1 represent the values of the
two weights in a simple linear unit, that is an unthresholded perceptron. The
vertical axes represents the value of E depending on a fixed set of training ex-
amples. The arrow in figure 21 shows the negated gradient, i.e. the direction
of the steepest decrease of the error, E, at a certain point on the w0,w1 plane.
The error surface forms a parabolic shape with a single global minimum [2].

29

-1
0

1

2

w1

-1012
w0

0

5

10

15

EHwL

Figure 21: An Error surface in two dimensions

Sejnowski The Backpropagation algorithm has been shown to be capable of
solving a number of deterministic problems within areas like speech synthesis
and recognition and visual pattern recognition. It has been shown to perform
well in most cases by finding good solutions to different problems. One of the
first who demonstrated the power of this algorithm was Sejnowski, who trained
a two-layer perceptron to form letter to phoneme transcription rules. As the
input to the network he used a binary code that indicated the letters in a sliding
window with a width corresponding to seven letters that moved over a written
transcription of spoken text. The target output corresponded to a binary code
that indicated the phonemic transcription of the letter at the center of the win-
dow [4].

2.3.2 Going forwards

As with the perceptron, the training of the MLP consists of two parts. The first
one is called ”going forwards” and calculates the outputs from the given inputs
by using the current weights. Part two is called ”going backwards” and updates
the weights according to the output error through a function that computes
the difference between the outputs and the targets. Before I start to describe
these two phases further, I will list some of the notations that I am going to use
throughout this chapter:

i is an index running over the input nodes, j the hidden layer neurons, k the
output neurons, whereas vij denotes the first layer weights and wjk the second
layer weights. The activation function (which determines the output of a neu-
ron) used in this algorithm will be denoted as g. Further, the input and output
of neuron j in the hidden layer are denoted as hj respectively aj , whereas the
input and output of neuron k in the output layer are denoted as hk respectively
yk. In the continuation, when referring to the notation aj , I will use the word

30

activation instead of output.

The going forwards phase calculates the outputs of the neurons basically in
the same way as the perceptron. The only difference is that the calculation has
to be performed several times, once for each set of neurons or, in order words,
layer by layer. As the MLP works forwards through the network, the activations
of one layer of neurons will correspond to the inputs to the next layer.

The Network Output To explain this further, have a look at figure 14 again.
The MLP then starts from the left in the figure by feeding the input values, xi,
to the network. These inputs calculate the activations of the hidden layer, aj ,
by multiplying them with the first layer of weights, vij , such that aj = g(hj) =
g(
∑
i vijxi). Moving on to the next step, these activations, aj , compute the

activations of the output layer, yk, by multiplying them with the next layer of
weights, wjk, such that yk = g(hk) = g(

∑
j wjkaj). Thus, the output of the

network is a function of the following two variables:

• the current input, x

• the weights of the first layer, v, and of the second layer, w

The values of these computed output neurons, yk, will in turn be compared
to the targets, tk, in order to determine the error.

2.3.3 Going backwards: Backpropagation of Error

The Error of the Network Thus, the purpose of the learning rule for the
MLP is, as for the perceptron, to minimise an error function. However, as more
layers have been added to the network it cannot use the same error function as
the perceptron, which was E =

∑
i=1(ti − yi). Now, that there is more than

one layer of weights, it has to find out which ones that caused the error; the
weights between the input layer and hidden layer or the weights between the
hidden layer and the output layer? (In cases with more than one hidden layer
it could also be the weights between two such layers.) Another reason why the
MLP cannot use the perceptron error function is that the errors for the different
neurons may have different signs and thus, summing them up would not result
in a realistic value of the total error. To overcome this issue, there is a function
called the Sum-of-squares that calculates the difference between the target, t,
and the output, y, for each node, squares them and adds them together:

E(t, y) =
1

2

n∑
k=1

(tk − yk)2. (33)

The reason why the term 1
2 has been added to the function is to make it

easier to differentiate, which is exactly what the algorithm will do as it uses the
gradient descent method. After having computed the errors, the next step for
the algorithm to take is to adjusting the weights, in the purpose of producing a

31

firing or non-firing neuron according to the target. The gradient of the Sum-of-
squares function reveals along which direction the error increases and decreases
the most and it can be computed by differentiating the function. Since the pur-
pose is to minimise the error, the direction that the algorithm wishes to take is
downhill along the graph of the Sum-of-squares function.

The Sum-of-squares function has to be differentiated with respect to a vari-
able and there are two variables that vary in the network during training, namely
the weights and the inputs. Although, the only variable that the algorithm have
the possibility to vary during training, in order to improve the performance of
the network, is the weights. Therefore the function will be differentiated with
respect to them and it can be written as E(v,w). As the weights vary, the
output value will change which in turn would change the value of the error.
Thus, the sum-of-squares function can be expressed as

E(w) =
1

2

N∑
k=1

(tk − yk)2 = (34)

=
1

2

∑
k

tk − g
∑

j

wjkaj

2

(35)

In equation (35), the inputs from the hidden layer neurons, aj , and the
second-layer weights, wjk, are used to decide on the activation of the output
neurons, yk. To explain this further, let’s get back to the algorithm of the
singlelayer perceptron. Let the activation of a neuron this time be

∑
j

wjkxj

instead of one or zero and replace equation (35) with

E(w) =
1

2

∑
k

tk −∑
j

wjkxj

2

, (36)

where xj is an input node. The algorithm adjusts the weights, wjk, in the
direction of the gradient of E(w). Differentiating the error function with respect
to the weights results in

∂E

∂wik
=

∂

∂wik

(
1

2
(tk − yk)2

)
= (37)

=
1

2
2(tk − yk)

∂

∂wik
(tk − wjkxj) , (38)

where ∂tk
∂wik

= 0, as tk is not a function of wik. Thus, the only term which
depends on wik is one corresponding to i = j, that is wjk itself, which means
that:

∂E

∂wik
= (tk − yk)(−xi) (39)

32

Now, the aim of the weight updating rule was that the gradient should go
downhill. Therefore a negative sign should be added before the gradient, which
makes it possible to express the learning rule as

wik − η
∂E

∂wik
→ wik. (40)

The expressions (39) and (40) together completes the expression of the learn-
ing rule:

wik + η(tk − yk)xi → wik. (41)

Note that this equation is not identical with equation (3) as the output yk
is computed differently. Until now, the fact that the perceptron uses the none
differentiable threshold function have been ignored. However, in order to use
the gradient descent method the output must be differentiable and so must the
activation function. Thus, the next step would be to finding such an activation
function.

A suitable Activation function A suitable activation function should have
the three following properties.

• It has to be differentiable, so that its gradient can be computed

• It has to saturate, that is, become constant at the ends of the range so
that the neuron could fire or not

• It should change fairly quickly in the middle, in order to reach its satura-
tion values fast

There is a family of S-shaped functions called the sigmoid functions that
satisfies these criterions and they are suitable as activation functions, due to
their S-shaped forms reminding of the form of the threshold function. The aim
with the algorithm is, after all, that the units should act like neurons, that is
to fire or not to, but at the same time to vary continuously. An example of a
sigmoid curve is illustrated in figure 17 and the most commonly used sigmoid
function for the backpropagation algorithm is the one expressed as

a = g(h) =
1

1 + exp(−βh)
, (42)

where β is some positive number. Thus, with the sum-of-squares function
and a sigmoid function as activation function, it is now possible to differentiate
the first one and adjust the weights in order to decrease the error function. An
advantage with the sigmoid functions is that its derivatives have a suitable form
for the purpose of the backpropagation algorithm. They are computed as

g′(h) =
dg

dh
=

d

dh
(1 + e−βh)−1 = −1(1 + e−βh)−2

de−βh

dh
=

33

= −1(1 + e−βh)−2(−βe−βh) =
βe−βh

(1 + e−βh)2
= βg(h)(1− g(h)) =

= βa(1− a) (43)

For the moment the parameter β will be ignored as it is a matter of scaling.
Now that a suitable activation function has been found, the adjustment proce-
dure of the weights needs to be worked out.

Backpropagation of error To sum up, until now the inputs have been fed
into the network, the decision of which neurons to fire and not have been made
and the errors have been computed, using the sum-of-squared difference between
the targets and the outputs. The next step is to find a gradient of the errors
that indicates how each weight should be updated. The algorithm starts with
the neurons in the output layer and then moves backwards through the network
until the input layer has been reached. However, there are two problems;

• The values of the inputs to the output neurons are unknown

• The targets for the hidden neurons are unknown (if there were more than
one hidden layer neither their inputs nor their targets would be known)

However, this problem can be solved by using the chain rule of differenti-
ation. In order to find out how the error changes as the network varies the
weights, consider how the error changes as the inputs to the weights vary, and
multiply this by the change of the input values as the network varies the weights.
Differentiating the error function E(w) gives the expression

∂E

∂wjk
=

∂E

∂hk

∂hk
∂wjk

, (44)

where hk is the sum of the activations from the hidden layer neurons, a, and
the second-layer weights, w, such that hk =

∑
l wlkal. hk is at the same time

the input to the output layer neuron k. Equation (44) says that it is possible
to know how the output error changes as the second-layer weights vary, ∂E

∂wjk
,

since it is possible to know how the error changes as the input to the output
neurons varies, ∂E

∂hk
, and how the input values change as the weights vary, ∂hk

∂wjk
.

Further, by expressing the activations of the output nodes in terms of the ac-
tivations of the hidden nodes and the output weights, such that yk = g(

∑
j ajwjk),

then the error calculations can be sent back through the network to the hidden
layer in order to determine what the target outputs were for those neurons. This
can be expressed as

∂E

∂vij
=
∂E

∂hj

∂hj
∂vij

, (45)

where vij corresponds to the first layer weights. (Note that exactly the
same computations can be performed if the network has extra hidden layers

34

between the inputs and the outputs). Thus, the gradients of the errors can be
computed with respect to the weights, so that the weights can be changed in
order to decrease the error function. Although, this cannot be done directly,
as the differentiation is done with respect to variables that are known. This
leads to two different update functions, one for each of the sets of weights, that
should be applied backwards through the network starting at the neurons in the
output layer and ending up at the input layer. These two learning rules can be
expressed as

wjk − η
∂E

∂wjk
→ wik (46)

vij − η
∂E

∂vij
→ vij . (47)

In order to complete the learning rules, the terms ∂E
∂wjk

and ∂E
∂vij

need to be

computed. I will start off with the first one by calculating the second factor of
equation (44), leading to

∂hk
∂wjk

=
∂
∑
l wlkal
∂wjk

=
∑
l

∂wlkal
∂wjk

= aj (48)

where the condition ∂wlk

∂wjk
= 0 for all l except from when l = j has been

used. Now, the first factor of equation (44), also called the delta term, ∂E
∂hk

,

remains to be computed. It will in the continuation have the notation δo = ∂E
∂hk

,

which together with equation (48) gives the expression ∂E
∂wjk

= δoaj . Now, as

the input values of a neuron in the output layer are unknown, it is not possible
to compute the error of the output directly. Therefore, the chain rule should be
applied again, which leads to the expression

δo =
∂E

∂hk
=
∂E

∂yk

∂yk
∂hk

, (49)

where the output of the k:th neuron in the output layer can be described as

yk = g(houtputk) = g

∑
j

wjka
hidden
j

 . (50)

To avoid confusion, I’ve started to mark out whether h refers to the input of
an output layer neuron or a hidden layer neuron. Further, developing the delta
term for the output layer, δo, leads to

δo =
∂E

∂yk

∂yk
∂hk

=
∂E

∂g(houtputk)

∂g(houtputk)

∂houtputk

= (51)

=
∂E

∂g(houtputk)
g′(houtputk) = (52)

35

=
∂

∂g(houtputk)

[
1

2

∑
k

(g(houtput)− tk)2

]
g′(houtputk) = (53)

= (g(houtputk)− tk)g′(houtputk) = (54)

= (yk − tk)g′(houtputk), (55)

where g′(houtputk) can be computed as g′(houtputk) = y′k = yk(1−yk) by using
equation (43). Note that in equation (53), the error at the output is replaced
by expression (35). Now, the delta term in the output layer can be written as

δo = (yk − tk)yk(1− yk) (56)

Thus, the differentiated error function in the learning rule for the second
layer weights (46), may be expressed as

∂E

∂wjk
= δoaj = (yk − tk)yk(1− yk)aj . (57)

Finally, the learning rule for the second layer weights can be expressed as

wjk − η(yk − tk)yk(1− yk)aj → wjk (58)

or

wjk − ηδoaj → wjk. (59)

Let’s now move on to the first layer of weights, vjk, which connects the
input nodes with the hidden nodes. Remember that the algorithm is moving
backwards through the network. The first step to take is to compute the delta
term of equation (45), ∂E

∂hj
, denoting it as δh.

δh =
∂E

∂hhiddenj

=
∑
k

∂E

∂houtputk

∂houtputk

∂hhiddenj

= (60)

=
∑
k

δo
∂houtputk

∂hhiddenj

(61)

During the calculation in (60), k runs over the output nodes and in order
to reach the step (61), where the notation δo = ∂E

∂hk
has been used. Before I

continue, remember that the inputs of the output layer neurons come from the
activations of the hidden layer neurons multiplied by the second layer weights,
so that

houtputk =
∑
l

wlkal =
∑
l

wlkg(hhiddenl) = g

(∑
l

wlkh
hidden
l

)
. (62)

36

This brings about the calculations

∂houtputk

∂hhiddenj

=
∂g
(∑

l wlkh
hidden
l

)
∂hhiddenj

= wjkg
′(hhiddenj), (63)

where the condition ∂hl

∂hj
= 0, for all l except when l = j, has been used in

the last step. Further, the computations

wjkg
′(hhiddenj) = wjk · g(hhiddenj)(1− g(hhiddenj)) = wjkaj(1− aj), (64)

result in the fact that δh could be expressed as

δh = aj(1− aj)
∑
k

δowjk. (65)

Note that by differentiating the inputs to the hidden neurons with respect
to the first layer weights, the result would be the input values:

∂hj
∂vij

=
∂ (
∑
l vljxl)

∂vij
=

∑
l ∂(vljxl)

∂vij
= xi as

∂vlj
∂vij

= 0 for all l except l = j.

To sum up, the following conditions have been established:

∂E

∂vij
=
∂E

∂hj

∂hj
∂vij

,
∂E

∂hj
= δh and

∂hj
∂vij

= xi.

Finally, the differentiated error function, ∂E
∂vij

, of the learning rule for the

first layer of weights, vij , can be computed as

∂E

∂vij
= δhxi =

(∑
k

δowjkaj(1− aj)

)
· xi = aj(1− aj)

(∑
k

δowjk

)
xi, (66)

which means that the learning rule for the first layer of weights (47) can be
expressed as

vij − ηaj(1− aj)

(∑
k

δowjk

)
xi → vij (67)

or simply

vij − ηδhxi → vij . (68)

Remark:

Note that it is possible to do the same computations with extra hidden layers
added between the input layer and the output layer.

37

2.3.4 The learning algorithm

The MLP learning algorithm can be summed up by dividing it into the different
parts Initialisation, Training and Recognition:

• Initialisation

– Set the values of the weights to small randomly chosen numbers

• Training

– for each input vector do the following:

∗ Forwards phase:

· Calculate the activation of each neuron j in the hidden layer(s)
with the following equations:

hj =
∑
i

xivij (69)

aj = g(hj) =
1

1 + exp(−βhj)
(70)

· Move forward in the network and calculate the activations of
the output layer neurons, by using:

hk =
∑
j

ajwjk (71)

yk = g(hk) =
1

1 + exp(−βhk)
(72)

∗ Backwards phase:

· Compute the delta term of the output using the equation:

δok = (yk − tk)yk(1− yk) (73)

· Compute the delta term of the hidden layer(s) using:

δhj = aj(1− aj)
∑
k

wjkδok (74)

· update the output layer weights

wjk − ηδokaj → wjk (75)

· Update the hidden layer weights:

vij − ηδhjxi → vij (76)

∗ Randomize the input vectors into a different order so that they
do not get trained in the exactly same order for each iteration

38

– continue until the training stops, that is when the error becomes
less than its prescribed limits or when a given maximum number of
iterations has been reached

• Recognition

– Use the Forwards phase again

2.3.5 Initialising the weights

Up to this point, I have claimed that the initial weights of the MLP algorithm
should be small, randomly chosen, values. This can be explained further by
looking at the shape of the sigmoid function in figure 17. If the initial weights
were close to 1 or −1, i.e. large in this case, this would cause the sum of the
weighted inputs to be close to ±1 and consequently the sigmoid function will
saturate to its maximum or minimum value. Thus, the output of the neuron
would receive the value zero or one. On the other hand, if the initial weights
were close to zero, it would mean that the sum of the weighted inputs also would
be close to zero. Moreover, as the sigmoid function is approximately linear at
such values, the output of the neuron would be an approximately linear model.
However, it is the duty of the network to decide for itself which way to take and
consequently the initial values of the weights should be chosen to be somewhere
in between ”large” and ”close to zero”.

2.3.6 Local Minima

As discussed above, the force of the learning rule is to try to minimize the
error of the network, by approximating the gradient of the error and follow-
ing it downhill until a minimum is reached. However, there are no guarantees
that the global minimum will be found, but it can also be a local one. The
Gradient descent works in the same way for two or more dimensions. One of
the problems with this method is that efficient downhill directions are hard to
compute locally. The algorithm does not know where the global minimum is
or what the error landscape looks like, but it can only compute local features
proceeding from the point where it is located at the moment. Thus, the min-
imum that the algorithm finds depends on where it starts. If it begins near
the global minimum, then that is where it is most likely to end up. On the
other hand, if it starts near a local minimum it would most probably end up
there. How long it will take to find a minimum depends on the exact appearance
of the landscape at the current point. This issue is demonstrated in figure 22 [1].

Within the classification area, the problem caused by ending up in a local
minima is that the network would cluster two or more disjoint class regions
into one [4]. However, despite the fact that convergence towards a global min-
imum error is not guaranteed, Backpropagation has shown to be a successful
approximation method in practice. In practical applications, the problem of
getting stuck in a local minima has turned out not to be as severe as one might

39

Figure 22: An error landscape in two dimensions which demonstrates different
paths that the gradient can take in order to find a minimum. How long it will
take to find it depends on the exact appearance of the landscape at the current
point. This is illustrated by the two arrows within the landscape.

think for a reason that I will now explain. As each weight corresponds to one
dimension, networks with a large number of weights has error surfaces in high
dimensional spaces. When the gradient descent finds a local minimum with
respect to one of the weights, this point is not neccessarily a local minimum
with respect to the other weights. The larger number of weights in the network,
the more dimensions are there that can provide an ”escape route” for the gra-
dient descent leading away from a local minimum with respect to a single weight.

Another essential aspect of the local minima is the behavior of the weights
as the number of iterations increases. If the weights are initialized to be close
to zero, then during the early gradient descent steps the network will form a
smooth function which is approximately linear in its inputs, as I have already
explained in the previous chapter. Only as the weights have had time to grow,
they have come to a stage when they can represent highly nonlinear network
functions. The existence of local minimas in the region of the weight space
representing these more complex functions does not necessarily have to be a
problem, though. The reason for that is that by the time the weights have come
to this stage they have hopefully moved close enough to the global minimum,
such that also local minimas in this region would be acceptable.

Despite of the reasoning above, gradient descent within complex error sur-
faces used for artificial neural networks is poorly understood. There are no
methods to determine when getting stuck in a local minima will cause difficul-
ties and when it will not. However, there are a some heuristics to avoid local
minimas and to make it more likely to find the global minimum [2], like for
instance adding more hidden units, lowering the learning rate [4], trying out
several different starting points by training several different networks or adding
a term to the weight-update rule, called the Momentum term [2].

40

2.3.7 Generalisation and overfitting

The whole purpose with the neural network is that it should generalise by using
training examples from all the inputs. The network must be exposed to enough
training before it is able to generalise. However, there is a risk in training
the network for too long. As every weight in the network can be varied, the
variability of the network is huge and should therefore be trained with caution.
Training it for too long would result in overfitting the data, which means that
the network would learn about the noise and inaccuracies of the data as well
as the actual function. Then the model that has been learnt would be too
complicated and it has not generalised well.

2.3.8 Number of hidden layers

There are two things that need to be taken into consideration when choosing the
number of weights for the network and that is the number of hidden nodes and
hidden layers. These choices are fundamental in succeeding with the application
of the Backpropagation algorithm [1]. I will now present some theory treating
the area.

Cybenko Consider a network of continuous valued units with the activation
function g(u) = 1

1+exp(−u) for the hidden units and g(u) = u for the output

units. Let this network implement a set of functions yi = Fi[xk] where the input
variables are represented by xk, where [xk] means x1, x2, . . . , xN , and where yi
represents the output variables. The calculation for such a network with no
hidden layer would then be

yi =
∑
i

wikxk − θi

and with one hidden layer

yi =
∑
j

Wijg

(∑
k

wjkxk − φj

)
− θi,

and so on. θi and φj represent the thresholds in this case. Now, the question
is: How many hidden layers are needed in order to approximate a particular set
of functions Fi[xk] to a given accuracy? The answer is at most two hidden layers
with arbitrary accuracy beeing received, given that there is enough units per
layer. This was proved by Cybenko in 1988. He also proved, in 1989, that only
one hidden layer is enough to approximate any continuous function. Although,
the utility of these proofs depends on the number of hidden units which is not
known in general. However, in many cases this number grows exponentially
with the number of input units [3].

Consequently, at most two hidden layers are necessary for the MLP in order
to find a solution. As there is no theory which treats the number of hidden

41

Figure 23: An example of decision regions formed after 50, 100, 150 and 200
iterations created by a two layer perceptron when using the Backpropagation
algorithm. This image is taken from [4].

nodes one must experiment with different numbers until a result of satisfaction
is achieved [1].

2.3.9 Decision regions

I have already treated the decision regions of multi-layer perceptrons which use
hard limiting nonlinearities and only have one output. Their behavior is similiar
to multi-layer perceptrons which instead use sigmoidal nonlinearities and have
multiple output nodes, and whose way of deciding the class at the recognition
part is by choosing the output node with the largest output. However, the
behavior of these nets is more complex, because the decision regions are bounded
by smooth curves instead of straight line segments. This makes them more
difficult to analyse. I will now demonstrate an example of the decision regions
formed by a two-layer perceptron.

An example Figure 23 shows an example of how the decision regions can
behave when applying a sigmoidal nonlinear model, or more specifically the
backpropagation algorithm. The network that has been used here is a two-
layer perceptron consisting of two inputs, one hidden layer with eight nodes
and an output layer with two nodes. The two different classes that have been
classified, denoted as A and B, have been presented on alternate trials and the
desired outputs have the value one or zero. The decision region for samples
belonging to class A constitutes of a circle with radius one situated at the origin
of the inputspace. The initial decision region was a slightly curved hyperplane

42

as can be seen in the picture. It changes gradually as the algorithm runs and
eventually, after 200 trials, becomes the circular region that encloses the circular
distribution of class A. In this example, 100 patterns from each class have been
fed into the network [4].

2.3.10 Limitations

Some limitations that we have seen so far with the Backpropagation algorithm
are the risk of overfitting by training the network for too long and the risk of get-
ting stuck in a local minima. Further, the fact that the number of hidden nodes
is unknown could also be considered as a limitation as one must experiment
with the number until a satisfying result is reached. Another difficulty with
the Backpropagation algorithm is that it often requires a very large number of
presentations of training data in order to reach convergence which consequently
lowers the speed of it [4].

3 Implementation

3.1 Introduction

Today, neural networks are seen as an alternative to ”old fashioned” program-
ming [5]. They are often well suited to problems that people are good at solving,
but for which traditional computing methods are not [12]. Such methods can
solve problems that we have already understood how to solve, whereas artifi-
cial neural networks can solve problems that we do not exactly know how to
solve [11]. Further, they can solve problems that are too complex for conven-
tional technologies, that is problems that do not have an algorithmic solution
or for which an algorithmic solution is too complex to be found [12]. An ad-
vantage using neural networks is their ability to adapt, learn, cluster, organize
[11] and generalize in making decisions based on imprecise input data [12]. As
neural net models use massively parallel nets composed of many computational
elements, they can explore many competing hypothesis simultaneously rather
than performing a program of instructions sequentially. This is useful in areas
such as speech- and image recognition, where many hypothesis are pursued in
parallel and consequently, high computation rates are required. They have a
great degree of robustness or fault tolerance due to the many processing nodes
in the network, where each of them has primarily local connections. A damage
on a few nodes or links would not necessarily affect the overall performance
of the network [4]. Two other advantages using neural networks within image
recognition are the extensibility of the system, that is their ability to recognize
more patterns than initially defined, and the fact that the code is simpler when
compared to other computing methods.

Training patterns are used in the purpose of teaching the neural network
to recognize the images. They consist of two single-dimensional arrays of float

43

numbers - Inputs and Outputs arrays. The Inputs array contains the input
data, that is a digitized representation of the character’s image [12]. The effort
spent in training is to force the neural network to see intrinsic characteristics in
the training set. Almost any neural network can be trained so well it might not
encounter any errors at all on the training set. But the question is

How well will the neural network perform on patterns that it has never seen before?

This is what the concept of generalisation is about [10].

3.2 Description

Problem formulation The company Pepto systems has an invoicing system
where customers print documents via a virtual printer to a server system placed
at the company. In this system the printout is interpreted and transformed into
a digital format by applying a customer specific template. In order to inter-
pret the print stream which is fed into the system, a computer language called
Postscript is used. However, this method has limitations, especially when it
comes to special- and unicode signs (where unicode is a computing industry
standard for the consistent encoding, representation and handling of text ex-
pressed in most of the world’s writing systems [19]).

In order to solve this problem, the company gave me the assignment of
implementing a method which could recognize signs without the use of char
information from Postscript (where char is a character type and enumeration
whose values represent Unicode characters [22]). I was asked to create a program
which could learn how to recognize digital signs by using the Backpropagation
algorithm. The idea for the program was to train itself on signs with a certain
font and then try to recognize new signs, that it had never seen before, all with
the same font. As their system is developed in Delphi, the solution should be
implemented in the same language.

Method To determine the values in the inputlayer, an image with a sign
is transformed into a gray scale. Every pixel of this image receives a value
depending on the colour of it. If it is black, it receives the value one and if it is
white it receives the value zero. These pixels become the values of the inputlayer,
by attaching all the rows of the pixels into an inputvector. The initial values
of the weights are within the interval w = [−0.05, 0.05], the learning rate that
has been picked is η = 0.2 and the activation function that is beeing used is
the sigmoid function 1

1+exp(−x) . The target is known by navigating all patterns

belonging to a particular sign to the same output node. This output node should
have the value one when feeding these patterns into the network, while the rest
of the nodes are given the target value zero for the same patterns. Thus, the
number of nodes in the output must correspond to the number of unique signs.

44

During training, for each iteration, the error is beeing checked until it reaches
the maximum error, which is set to be 1.0. If it never reaches the maximum error
the training continues until the maximum iteration 10000 is reached. When the
training phase is finished, the updated weights will be saved. At the recognition
procedure, new patterns are beeing fed into the network through the forwards
phase once by using these saved weights. The output node which computes the
highest value, when feeding a specific pattern into the network, corresponds to
the answer of the network, that is the sign that it will guess that this pattern
belongs to.

Structure The network that I have created has an inputlayer with 6534 nodes,
determined in a way I will soon describe. I have chosen to include only one
hidden layer in the network architecture. As the patterns have the same font,
the variation of them are limited and consequently the network should only need
to form decision regions of a simpler kind. The difference in their looks conerns
the size and if they have bold or italic styles. When it comes to deciding on the
number of hidden nodes, this is something that I will discuss more thoroughly
later on. The training set that I have been using has in total 192 different
patterns, whereof 60 of them are unique signs, which means that there are 60
neurons in the output layer (as I have explained before, the number of unique
signs has to be the same as the number of output nodes). Each sign had at
least one and at most five patterns represented in the training set, but with an
average of approximately 3 patterns per sign. When choosing the training set I
tried to pick signs with as different looks as possible. Therefore, the signs with
more varied look had a higher number of representatives in the training set than
the ones with very similiar looks.

Adaptive learning There might be cases when the learning rate, η, will
be to high, meaning that it might take too big steps each time, as it approaches
the minimum, so that it will not be able to get closer and reach it. Therefore,
there is a function called adaptive learning, which is optional to use during
training, whose purpose is to prevent this from happening. It basically compares
the current error with the previous one and adjusts the learning rate according
to this comparison.

Assumptions Before training the patterns, there are a few interventions
that I have made for different reasons:

• Centering the sign, in order to match as many pixels as possible.

• Erasing as much dirt as possible that should not be there, so that the
network will learn only about what is essential which is the sign itself.
(This dirt could for example come from the cutting process, when parts
of other signs could be included in the image.)

45

• All the signs that are identical to any sign in the training set are beeing
excluded from it. That is done to prevent the network from favoring one
particular look of a sign and to improve generalisation.

• To determine the number of nodes in the input layer, the bitmap with
the largest height and the one with the largest width is searched in the
training set. Five pixels are added to each one of these values and then
the two factors are multiplied by each other, such that (largest width+5) ·
(largest height + 5) = number of input nodes. All bitmaps in the training
set are then magnified to this size, by adding white pixels to the edges.
This is done, because all signs need to have the same amount of elements
in the input layer for the network to work. The reason why extra pixels
are added to the largest height and width, is to prevent from loosing
information at the recognition procedure. Imagine, if a bitmap of a pattern
that was to be recognized was larger then the trained network, there would
not be enough elements in the input vector to fit all information.

• As no patterns containing exclusionary white pixels will be used in this
network, no bias unit has been included.

Parts of the code are shown at the appendix.

3.3 Hypothesis, results and comments

Choosing the training set In order to make the network generalize as well
as possible, for every sign I have picked images with as many different looks as
possible to the training set. If H1 is training set and subset of the set C1 of a
particular sign, where C1 represents all possible looks of that sign, then I want
to spread out the points in the input space as much as possible. In this case
C1 is finite because the input vectors that are beeing fed into the network are
binary vectors consisting of a limited amount of elements. I want the network
to form decision regions which are as large as possible, that is as close looking
to the set C1 as possible. When new patterns are beeing fed into the network
after the training process in order to be recognized, it is more likely for the
network to make the right guesses if the decision region formed at the firing
output neuron for this sign is close looking to the set C1.

Another aspect that I would like to add into the discussion about choosing
the training set is the time that it takes to train a network. According to the
theory, one limitation of the Backpropagation algorithm is the requirement of
large training sets and a thereto a low speed of convergence. Then, my thought
is that by using as little amount of patterns in the training set as possible, this
problem would be smaller as the network to take less time to train. If, for in-
stance, two patterns are very similiar, than only one of them should be chosen in
order to teach the network something new rather than something that it already
has seen. From my point of view, this method would make the network more
efficient. However, as my program trains and recognizes digital signs with the

46

same font, there are fewer possible looks that each sign could have, compared
to for instance all digital signs or handwritten signs. Therefore my network will
not require such a large training set as others might do and consequently this
limitation will not effect my case that much.

Choosing the number of hidden nodes When it comes to choosing the
number of nodes, I have been thinking of the risks and advantages which should
be considered when decreasing or increasing the number of nodes.

Using too few hidden nodes A network with few hidden units could
have a problem finding an XOR as the decision regions formed by such a network
will be less complex compared to a network with a high number of hidden
nodes. Consequently, it might not converge at all. My interpretation of the
theory is that another disadvantage with using too few hidden units could be
that the risk of local minima increases. According to the theory, as the number
of weights increases the number of dimensions also increases which means that
there are more ”escape routes” that can help to avoid getting stuck in a local
minima. Thus, decreasing the number of hidden nodes would mean that there
are fewer such ”escape routes” that helps avoiding local minimas. However, an
advantage decreasing the number of hidden nodes should be that the ability
to capture more correlations between the patterns, as more patterns will be
clustered together. Consequently, the generalisation should improve.

Using too many hidden nodes Using a higher number of hidden nodes
should increase the chance of finding an XOR, as such a network should be
able to form more complex decision regions. Thus, the chance of reaching con-
vergence should be improved. However, the ability to capture the correlations
between the patterns should worsen, as the patterns would be more spread out.
Consequently, it could cause the generalisation to worsen. However, the risk
of getting stuck in a local minima should decrease as there are more escape
routes in a network with higher dimensions. Another disadvantage is that big-
ger networks take longer to train as there are more calculations to make for each
iteration.

I have tried several networks with the same training set, but different ar-
chitectures, and by this I mean different amounts of nodes in the hidden layer.
More specifically I have tried in total 12 different networks with every hundred
of hidden nodes within the interval [100, 1000] and another two networks built
up by 50 and 75 hidden nodes. For each network I have made the network
try to recognize 1100 new (unseen) patterns (with the same font as the ones in
the training set). Among these patterns there were at least one representative
of each of the 60 signs. I have gathered the results in the table below where
the columns (in the order from left to right) represent the number of hidden
nodes, if convergence has been reached or not, the number of incorrect guesses,

47

the number of correct guesses and finally a percentage number of correct guesses.

Before I present the results of my research, there is a comment that I would
like to make. All networks made the same mix-up between lower case L:s and
capital i:s. However, I would not consider these guesses as incorrect because the
two signs have exactly the same shape for this particular font and sometimes
also the same size. As there are at least two patterns in the training set which
are identical for these two signs, it is likely that their decision regions overlap
and therefore this behavior was expected. Consequently, as it is the job of the
network to cluster patterns with exactly the same shape and size in the same
decision region, I will consider these guesses as correctly made.

Results and comments

Hidden nodes Convergence? incorrect correct share correct
50 no
75 yes 2 1098 99.80
100 yes 0 1100 100
200 yes 0 1100 100
300 yes 0 1100 100
400 yes 0 1100 100
500 yes 1 1099 99.90
600 yes 0 1100 100
700 yes 1 1099 99.90
800 yes 7 1093 99.40
900 yes 7 1093 99.40
1000 yes 2 1098 99.80

By looking at the table of results above, there are some comments that I
would like to make. First of all, I would like to comment on the result of all
networks by trying to answer the question: Was this result expected? Well,
as the patterns have a limited variation in their looks and the patterns outside
the training set do not differ that much from the training set, the training set
makes a realistic view of the reality. Moreover, according to the theory almost
any neural network could be trained so well that no errors will be encountered
on the training set. Thus, my answer to the question if the achieved result was
expected would be yes because of the above arguments.

When discussing each network separately, I will presuppose my own discus-
sion treating the risk and advantages when decreasing or increasing the number
of hidden units. Beginning with the network using 50 hidden nodes, it appears
from the table that it did not reach convergence. I tried to train the network
twice and in the second one I included the function Adaptive learning, but no
convergence was reached. My conclusion to that is that the decision regions
formed were not complex enough to find an XOR.

48

Increasing the number of hidden nodes to 75 resulted in a network that did
reach convergence. However, it did make two mistakes. I would suspect that
it is due to the fact that the network got stuck in a local minima rather than
failing to capture the correlations in between the patterns, refering to my dis-
cussion under the paragraph treating too few number of hidden units.

By looking at the overall achievement, one notable thing is that there is an
interval from 100 to 400 nodes where no incorrect guesses have been made. This
fact leads naturally to the question if this is a coincidence or if it is a logical
pattern? I will discuss this matter later on. Before, I would like to comment on
the intervall from 500 to 1000. As can be seen on the table it is more common
to make incorrect guesses than not within this interval. More specifically all
networks in this interval with the exception of the one with 600 hidden units
make incorrect guesses. My first thought is that these networks have been worse
at generalising and capturing the correlations between the patterns, referring to
my discussion about increasing the number of hidden nodes. Of course, I can
not exclude the fact that the incorrect guesses could be due to overfitting of the
network, which would be done if the network was trained for too long. During
this research, I found that the time increased each time I increased the number
of hidden nodes in the network and thus, the network containing 1000 hidden
units took the longest to train. However, this behavior is expected as increas-
ing the number of hidden nodes means that there are more computations to
perform for each iteration and naturally the training process should take longer
time. Therefore, overfitting is not something that I suspect in the first place. Of
course, the incorrect guesses could also be caused by local minimas. However,
I find this occurence less likely due to my discussion about number of hidden
nodes. Consequently, I find it more likely that these networks have generalised
badly.

To sum up, when choosing the architecture of the network for this particular
font I think that my research can be used as a decision basis and that the good
results of networks using 100 to 400 nodes could work as a direction when choos-
ing the amount of nodes in the hidden layer. One way of deciding the amount
of hidden nodes could be to choose a number in the middle of this intervall.

Moreover, the conclusion that I make by looking at the result from my re-
search is that the number of hidden nodes did not affect the results in a signifi-
cant way, meaning that the overall achievement was really good as all networks
performed at least 99.4 percent. However, according to the theory, the result
also depend on other things like, for instance, the training set.

Even if the result from my test was really good, it might not work as well
in the reality. When this program is going to be used for the purpose it is
made for, the training set will not be chosen in the same way that I did, that
is with great concern, as a computer will make that job. I had the privilege to
know all possible looks that each sign could have when choosing my training

49

set, whereas this will not be the case for a computer. Thus, my network might
be more robust and generalise better than others. Therefore, I mean that it is
still meaningful to suggest interventions for improvements.

Suggestions for improvement According to the theory, the order of the
patterns should be changed after each iteration during the training process.
This is something that the current version of the algorithm does not do. My
speculations and thoughts of why this is important are the following:

A possible explanation that I could think of is preventing the weights from
bouncing around. If the weights are focusing on adapting very similar patterns
that occur very frequently for a while, and then suddenly start adapting to other
similar patterns for a while and so on, rather than seeing a totally different pat-
tern every time, than the weights might bounce around a lot instead of making
small adjustments towards different directions. This could lower the speed of
convergence (or in worst case never reach convergence), which would give the
weights a lot of time to grow and create strong connections between the nodes.
Consequently, the risk of overfitting the network would increase.

Eventually, to sum up, my suggestions to improve this program are the
following:

• Change the order after each iteration

• When choosing the training set, pick patterns with as different looks as
possible so that the network will form decision regions as close to the
reality as possible.

• for this particular font that I have been experimenting with, use one hid-
den layer and somewhere in between 200 and 300 hidden nodes in the
network structure.

• In general, when designing networks for other fonts, I believe that one
hidden layer is enough, again due to the little variation of the patterns
(where only a simple kind of decision region is needed). When it comes to
the number of hidden nodes, the only direction that I can give according to
the theory and my observations is to find a number which is high enough
to reach convergence and avoid local minimas and low enough to generalise
well.

50

References

[1] Machine Learning, Stephen Marsland, Taylor and Francis Group, 2009

[2] Machine Learning, Tom M. Mitchell, The McGraw-Hill Companies, 1997

[3] Introduction to the theory of neural computation, John Hertz, Anders
Krogh, Richard G. Palmer, Addison-Wesley Publishing Company, 1991

[4] An introduction to Computing with Neural Nets, Richard P. Lippman,
IEEE ASSP Magazine, April 1987

[5] Perceptrons, H.J.M. Peters, Department of Quantitative Economics, Uni-
versity of Limburg, Maastricht (publishing year unknown)

[6] A convergence theorem for sequential learning in two layer perceptrons,
Mario Marchan, Mostefa Golea, Department of Physics, University of Ot-
tawa, 34 G. Glinsky, Ottawa, Canada K1N-6N5, Accepted by Europhysics
Lett, December 19, 1989

[7] http://www.youtube.com/watch?v=tRG-OnnQ9g4, 2013

[8] http://psych.stanford.edu/~jlm/papers/PDP/Chapter1.pdf, 2013

[9] http://www.pearsonhighered.com/assets/hip/us/hip_us_

pearsonhighered/samplechapter/0131471392.pdf, 2013

[10] http://www.codeproject.com/Articles/16650/

Neural-Network-for-Recognition-of-Handwritten-Digi, 2012

[11] http://www.codeproject.com/Articles/19323/

Image-Recognition-with-Neural-Networks, 2012

[12] http://www.codeproject.com/Articles/3907/

Creating-Optical-Character-Recognition-OCR-applica, 2012

[13] http://en.wikipedia.org/wiki/Massively_parallel_(computing),
2013

[14] http://en.wikipedia.org/wiki/Machine_learning, 2013

[15] http://en.wikipedia.org/wiki/Axon, 2013

[16] http://en.wikipedia.org/wiki/Synapse, 2013

[17] http://en.wikipedia.org/wiki/Perceptron, 2013

[18] http://en.wikipedia.org/wiki/Hebbian_theory, 2013

[19] http://en.wikipedia.org/wiki/PostScript, 2013

[20] http://www.asciitable.com/, 2013

51

[21] http://en.wikipedia.org/wiki/File:Logistic-curve.svg, Qef, 2013

[22] http://www.haskell.org/ghc/docs/latest/html/libraries/base/

Data-Char.html, 2013

52

Appendix

In this section I will continue and finish the calculations for the examples in
1.3.1 and 2.1.1 and show parts of the code from the implementation.

Continuation of the calculations in 1.3.1

Round 1 Activation of (0, 1):

w0 · x0 + w1 · x1 + w2 · x2 = 0.2 · (−1)− 0.02 · 0 + 0.02 · 1 = −0.18

(The updated values of these weights have already been calculated as w0 =
−0.05, w1 = −0.02 and w2 = 0.27.)

Activation of (1, 0):

w0 · x0 + w1 · x1 + w2 · x2 = −0.05 · (−1)− 0.02 · 1 + 0.27 · 0 = 0.03

Activation of (1, 1):

w0 · x0 + w1 · x1 + w2 · x2 = −0.05 · (−1)− 0.02 · 1 + 0.27 · 1 = 0.3

Round 2 Activation of (0, 0):

w0 · x0 + w1 · x1 + w2 · x2 = −0.05 · (−1)− 0.02 · 0 + 0.27 · 0 = 0.05

Updating of the weights:

w0 + η(t− y) · x0 → w0 ⇒ −0.05 + 0.25(0− 1) · (−1) = 0.2

w1 + η(t− y) · x1 → w1 ⇒ −0.02 + 0.25(0− 1) · 0 = −0.02

w2 + η(t− y) · x2 → w2 ⇒ 0.27 + 0.25(0− 1) · 0 = 0.27

Activation of (0, 1):

w0 · x0 + w1 · x1 + w2 · x2 = 0.2 · (−1)− 0.02 · 0 + 0.27 · 1 = 0.07

Activation of (1, 0):

w0 · x0 + w1 · x1 + w2 · x2 = 0.2 · (−1)− 0.02 · 1 + 0.27 · 0 = −0.22

Updating of the weights:

w0 + η(t− y) · x0 → w0 ⇒ 0.2 + 0.25(1− 0) · (−1) = −0.05

w1 + η(t− y) · x1 → w1 ⇒ −0.02 + 0.25(1− 0) · 1 = 0.23

w2 + η(t− y) · x2 → w2 ⇒ 0.27 + 0.25(1− 0) · 0 = 0.27

Activation of (1, 1):

w0 · x0 + w1 · x1 + w2 · x2 = −0.05 · (−1) + 0.23 · 1 + 0.27 · 1 = 0.55

53

Round 3 Activation of (0, 0):

w0 · x0 + w1 · x1 + w2 · x2 = −0.05 · (−1) + 0.23 · 0 + 0.27 · 0 = 0.05

Updating of the weights:

w0 + η(t− y) · x0 → w0 ⇒ −0.05 + 0.25(0− 1) · (−1) = 0.2

w1 + η(t− y) · x1 → w1 ⇒ 0.23 + 0.25(0− 1) · 0 = 0.23

w2 + η(t− y) · x2 → w2 ⇒ 0.27 + 0.25(0− 1) · 0 = 0.27

Activation of (0, 1):

w0 · x0 + w1 · x1 + w2 · x2 = 0.2 · (−1) + 0.23 · 0 + 0.27 · 1 = 0.07

Activation of (1, 0):

w0 · x0 + w1 · x1 + w2 · x2 = 0.2 · (−1) + 0.23 · 1 + 0.27 · 0 = 0.03

Activation of (1, 1):

w0 · x0 + w1 · x1 + w2 · x2 = 0.2 · (−1) + 0.23 · 1 + 0.27 · 1 = 0.3

Round 4 Activation of (1, 1):

w0 · x0 + w1 · x1 + w2 · x2 = 0.2 · (−1) + 0.23 · 0 + 0.27 · 0 = −0.2

Now, it has been confirmed that all input vectors compute the right answers
for w0 = 0.2, w1 = 0.23 and w2 = 0.27.

Continuation of the calculations in 2.1.1

Input vector (0, 0) Calculation of neuron C:

b1·v01+A·v11+B·v21 = (−1)·0.5+0·1+0·1 = −0.5⇒ the output of neuron C is zero

Calculation of neuron D:

b1·v02+A·v12+B·v22 = (−1)·1+0·1+0·1 = −1⇒ the output of neuron D is zero

Calculation of neuron E:

b2·w0+C·w1+D·w2 = (−1)·0.5+0·1+0·(−1) = −0.5⇒ the output of neuron E is zero

54

Input vector (0, 1) Calculation of neuron C:

b1·v01+A·v11+B·v21 = (−1)·0.5+0·1+1·1 = 0.5⇒ the output of neuron C is one

Calculation of neuron D:

b1·v02+A·v12+B·v22 = (−1)·1+0·1+1·1 = 0⇒ the output of neuron D is zero

Calculation of neuron E:

b2·w0+C·w1+D·w2 = (−1)·0.5+1·1+0·(−1) = 0.5⇒ the output of neuron E is one

Input vector (1, 1) Calculation of neuron C:

b1·v01+A·v11+B·v21 = (−1)·0.5+1·1+1·1 = 1.5⇒ the output of neuron C is one

Calculation of neuron D:

b1 ·v02+A·v12+B ·v22 = (−1)·1+1·1+1·1 = 1⇒ the output of neuron D is one

Calculation of neuron E:

b2·w0+C·w1+D·w2 = (−1)·0.5+1·1+1·(−1) = −1.5⇒ the output of neuron E is zero

55

Parts of the Code

The Sum-of-squares function

function TBP1Layer.GetError : double;

var

j : integer;

total : double;

begin

total:= 0.0;

for j:= 0 to OutputNum-1 do

begin

total:= total + Power((OutputLayer[j].Target - OutputLayer[j].output), 2) / 2;

end;

Result:= total;

end;

The Activation function

function TBP1Layer.F(x : double) : double;

begin

result:= 1/(1+exp(-x));

end;

The Forwards phase

procedure TBP1Layer.ForwardPropagate(pattern: array of double; output : string);

var

i, j : integer;

total : double;

begin

//Apply input to the network

for i:= 0 to InputNum-1 do

begin

InputLayer[i].Value:= pattern[i];

end;

//Calculate the hidden layer’s inputs and outputs:

for i:= 0 to Hidden1Num-1 do

begin

total:= 0.0;

56

for j:= 0 to InputNum-1 do

begin

total:= total + InputLayer[j].Value * InputLayer[j].Weights[i];

end;

Hidden1Layer[i].InputSum:= total;

Hidden1Layer[i].Output:= F(total);

end;

//Calculate the output layer’s inputs, outputs, targets and errors:

for i:= 0 to OutputNum-1 do

begin

total:= 0.0;

for j:= 0 to Hidden1Num-1 do

begin

total:= total + Hidden1Layer[j].Output * Hidden1Layer[j].Weights[i];

end;

OutputLayer[i].InputSum:= total;

OutputLayer[i].output:= F(total);

if OutputLayer[i].Value = output then

OutputLayer[i].Target:= 1.0

else

OutputLayer[i].Target:= 0.0;

OutputLayer[i].Error:= (OutputLayer[i].Target - OutputLayer[i].output) *

(OutputLayer[i].output) * (1 - OutputLayer[i].output);

end;

end;

The Backwards phase: Backpropagation of error

procedure TBP1Layer.BackPropagate;

var

i,j : integer;

total : double;

begin

//Calculate hidden layer’s error:

for i:= 0 to Hidden1Num-1 do

begin

total:= 0.0;

for j:= 0 to OutputNum-1 do

begin

total:=total + Hidden1Layer[i].Weights[j] * OutputLayer[j].Error;

end;

Hidden1Layer[i].Error:=

Hidden1Layer[i].Output * (1 - Hidden1Layer[i].Output) * total;

57

end;

//Update the first layer weights:

for i:= 0 to Hidden1Num-1 do

begin

for j:= 0 to InputNum-1 do

begin

InputLayer[j].Weights[i]:=InputLayer[j].Weights[i] +

flearningRate * Hidden1Layer[i].Error * InputLayer[j].Value;

end;

end;

//Update the second layer weights:

for i:= 0 to OutputNum-1 do

begin

for j:= 0 to Hidden1Num-1 do

begin

Hidden1Layer[j].Weights[i]:=Hidden1Layer[j].Weights[i] +

flearningRate * OutputLayer[i].Error * Hidden1Layer[j].Output;

end;

end;

end;

The Training process

function TNeuralNetwork.Train(AdaptiveLearn : Boolean) : Boolean;

var

currentError : double;

previousError : double;

currentIteration : integer;

ix : integer;

TrainingValue : TTrainingValue;

begin

currentIteration:= 0;

previousError:= 0;

repeat

begin

currentError:= 0;

NeuralNet.SaveOldWeights;

for ix:=0 to TrainingSet.count-1 do

begin

TrainingValue := TrainingSet[ix];

NeuralNet.ForwardPropagate(TrainingValue.Value, TrainingValue.Key);

NeuralNet.BackPropagate();

currentError:= currentError + NeuralNet.GetError();

end;

58

if AdaptiveLearn then

begin

if currentIteration<>0 then

begin

if previousError<currentError then

begin

NeuralNet.LearningRate:= NeuralNet.LearningRate*0.8;

end

else begin

NeuralNet.LearningRate:= NeuralNet.LearningRate*1.1;

end;

end;

previousError:= currentError;

end;

inc(currentIteration);

end until ((currentError <= maximumError) or (currentIteration >= maximumIteration));

Result:= true;

if currentIteration >= maximumIteration then

Result:= false;

end;

The Recognition process

procedure TBP1Layer.Recognize

(Input : array of double; var MatchedHigh : string; var OutputValueHight : double;

var MatchedLow : string; var OutputValueLow : double);

var

i,j : integer;

total : double;

max : double;

begin

max:= -1;

for i:= 0 to InputNum-1 do

begin

InputLayer[i].Value:= Input[i];

end;

if not IsItBlank then

begin

for i:= 0 to Hidden1Num-1 do

begin

total:= 0.0;

59

for j:= 0 to InputNum-1 do

begin

total:= total + InputLayer[j].Value * InputLayer[j].Weights[i];

end;

Hidden1Layer[i].InputSum:= total;

Hidden1Layer[i].Output:= F(total);

end;

for i:= 0 to OutputNum-1 do

begin

total:= 0.0;

for j:= 0 to Hidden1Num-1 do

begin

total:= total + Hidden1Layer[j].Output * Hidden1Layer[j].Weights[i];

end;

OutputLayer[i].InputSum:= total;

OutputLayer[i].output:= F(total);

if OutputLayer[i].output > max then

begin

MatchedLow:= MatchedHigh;

OutputValueLow:= max;

max:= OutputLayer[i].output;

MatchedHigh:= OutputLayer[i].Value;

OutputValueHight:= max;

end;

end;

end else

begin

MatchedLow:= ’ ’;

OutputValueLow:= 1;

MatchedHigh:= ’ ’;

OutputValueHight:= 1;

end;

end;

60

