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Università degli studi
di Padova

Stockholm
University

May, 2013



Abstract

The principal aim of this thesis is to explain a possible model of Per Martin-
Löf’s type theory based on the concept of Giovanni Sambin’s basic pair. This
means to extend the concept of “set” in the easiest and most natural way:
transforming it in a couple of sets and an arbitrary relations set between
them, i.e. a basic pair. This reasoning will be applied to all the judgment
forms and will give us an interpretation of Martin-Löf’s type theory. Our
purpose will be to find a model which satisfies this interpretation, and we
will look for it following two different approaches. The first one is meant to
remain inside the standard type theory constructing an internal model; the
second one, arisen from some impasses reached in the development of the first
attempt, is aimed at adding new type constructors at the standard theory,
extending it and allowing us to create an external model. These new types,
that we have denoted here with a star, have to be seen like an arbitrary
relations set between two set of the same type without star. This extended
theory will give us all the results needed in a natural way, and might be
useful in different interpretations for further research.
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Chapter 1

Introduction

The principal aim of this thesis is to investigate into possible interpreta-
tion, based on the concept of the basic pair [Sambin, 201 ], of Martin-Löf’s
Type Theory ([Martin-Löf, 1984], and [Nordström et al., 1990]).

We will face two different approaches: the first one is meant to remain
inside the usual theory of types giving us an internal interpretation; the
second one aims at adding new types to the theory, leading us to a more
natural but external interpretation.

In this introductory chapter we first discuss the notion of basic pair,
without going in depth, and then we explain the motivation of our work, and
finally give a survey of the contents of the following chapters.

1.1 Basic Picture

“Basic Picture” is a new framework that gives a structural basis to con-
structive topology and at the same time it generalizes both pointfree and
pointwise topology, it even deals even with the foundation of mathematics.
This theory has been introduced by Giovanni Sambin in [Sambin, 201 ].

We now report the following part of the foreward section of the book
mentioned above, which fits perfectly to our purpose, i.e. sketching a few
of the central concepts of the book, and we refer the reader to it for further
in-depth analysis. To define a topological space in the usual sense, it suffices
in the first place to be given a set X of points and a family B of subsets
called basic open sets or neighbourhoods. For the resulting structure to be
a topological space, it is further required that certain well-known conditions
be satisfied by X and B: these are presented in terms of the membership
relation ∈X between elements of X and elements of B. The key concept of
the Basic Picture, that of basic pair, now emerges with compelling simplicity:

3



1.1 Basic Picture 4

to wit, by replacing B by an arbitrary set S and ∈X by an arbitrary relation

X between X and S. Thus a basic pair is just a binary relation: more
precisely, a structure (X,
X , S) with 
X a relation between X and S. If we
think of a basic pair (X,
X , S) as a “space”, the left-hand component X is
conceived as representing its domain of points-its “concrete”, or “pointed”
side–and its right-hand component S its domain of neighbourhoods–its “for-
mal” or “pointfree” side. The symmetry and consequent duality between the
concrete and formal sides of basic pairs arising from the Galois connection in-
duced by the relation linking the two sides underlies the whole development
of the Basic Picture. In particular the duality is used to reintroduce the
topological concepts of open and closed sets. By symmetry these notions are
interpretable on both “sides”, so giving rise to concrete open and concrete
closed sets, as well as formal open and closed sets. Each of these forms a
(not necessarily distributive) complete lattice: the lattices of concrete open
(closed) and formal open (closed) sets are isomorphic and the lattices of con-
crete (formal) open and concrete (formal) closed sets are in a natural sense
dual to one another. Moreover, the definitions of concrete open (closed), and
formal closed (open), involve a quantifier alternation of the form ∃∀ (∀∃), re-
sulting in a logical symmetry between these notions. In fact, one can see that
the topological notions of interior and closure are the result of the dynamics
between the two sets, furthermore the definition of interior of a subset can be
seen to have the logical form of ∃∀ while closure has the dual form ∀∃. This
allows one to discover a clear structure underlying topology: logical duality
between open and closed, symmetry between the traditional approach with
points (or pointwise) and the pointfree one. Only when adopting classical
logic this is “simplified” to the fact that closed is complement of open. So
considering only the notion of open means reducing to a half of the picture,
that which is enough from a classical perspective. That is why a truly con-
structive approach must begin everything anew, including the task of finding
correct definitions.

Given the intrinsic symmetry of the concept of basic pair, how should
a continuous map between basic pairs be defined? Again, the definition is
suggested by the classical case. It is easily shown that, given two topological
spaces (X,B) and (Y, C), a map f : X → Y is continuous precisely when the
diagram of relations

X

	f
��

∈X // B
F
��

Y ∈Y
// C

commutes, where F is the relation defined by UFV ↔ f [U ] ⊆ V . In keeping
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with the spirit of symmetry it is natural then to define a continuous map
between basic pairs (X,
X , S) and (Y,
Y , T ) to be a pair of relations r, s
between X and Y , and S and T , respectively, for which the diagram of
relations

X

	r
��


X // S

F
��

Y

Y

// T

commutes. Such a pair of relations is called simply a relation-pair. By passing
from functions to relations, one can see that also the notion of continuity has
a structural characterization, since it is commutativity of a square diagram.

These definitions give rise to a category. Clearly, if Rel denotes the
category of (sets with) binary relations, then the functor category Rel2 is
the category with basic pairs as objects and relation-pairs as arrows. The
category BP of basic pairs is defined to be the quotient category obtained
from Rel2 by identifying two arrows (r1, s1), (r2, s2) : (X,
X , S) → (Y,
Y

, T ) when 
Y ◦r1 =
Y ◦r2 and s1◦ 
X= s2◦ 
X . These conditions ensure,
in the author’s words, that the two arrows “behave equally with respect to
the topological structure a relation-pair is meant to preserve”.

These, then, are the fundamental ideas underlying the Basic Picture.
The author sees the concept of a basic pair as “the simplest extension of the
notion of a set”: in my view this represents a radical advance on the classical
conception of a topological space, which is normally viewed as the simplest
extension of the concept of a discrete set to a structure supporting continuity.
As has already been mentioned, an essential feature of the definition of a basic
pair is its symmetry: the definition of basic pair allows “movement” between
the concrete and the formal “sides”, and topological concepts are shown to
arise from this “movement”. While classical topology emphasizes points,
and pointless topology neighbourhoods, in the Basic Picture a symmetry is
fashioned between point and neighbourhood. It could be said that if point-
set topology is taken as Thesis, and pointless topology as Antithesis, then
the Basic Picture represents Synthesis.

It must be emphasized that the full richness of the conceptual framework
offered by the Basic Picture can only be seen by adopting a constructive
viewpoint under which both the law of excluded middle and the power set
axiom have been discarded. The version of constructivism adopted in the
book (and called “minimalist foundation”, see [Sambin, 2011]) not only is
intuitionistic and predicative, but also has no choice principles. This makes
it compatible with an intuitionistic impredicative foundation, as topos theory.

From a philosophical and methodological point of view, Sambin has else-
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where introduced the term dynamic constructivism (see [Sambin, 2002]) to
identify the approach to the problem of the nature of mathematics on which
his work rests.

Dynamic constructivism shares with Brouwer’s intuitionism the insight
that mathematical truth and mathematical objects are not simply given, but
must be constructed. Indeed, as Sambin has observed, dynamic construc-
tivism may be regarded as essentially intuitionism purged of its mystical
and solipsistic elements, in which Brouwer’s identification of mathematics
with the immediate intuitions of the creative subject is replaced by the ac-
knowledgment of the existence of other individuals. In this way the hermetic
world of the subject is opened out into the umwelt, the lived, changing world
which includes other persons, their perceptions and the interactions both
between themselves and the natural environment. The whole mathematical
universe exists in this umwelt, “in the minds of human beings”. In this way
mathematics becomes a cooperative enterprise. The objectivity of mathe-
matics then amounts essentially to a shared process of reification, through
a “democratic, though occasionally turbulent, dynamic process of achieving
consensus.” Such a process must include “the interaction with other individ-
uals, and with the outcome of their mental processes.” If intuitionism allows
just one subject (and formalism does away with the subject altogether) then
dynamic constructivism requires the interaction of many subjects. It is, in a
word, pluralistic.

1.2 Motivations of our work and further re-

search

Starting from the concept of a basic pair our aim is to build a new model
for Martin-Löf’s Type Theory. As in a basic pair, our interpretation is based
on the simplest extension of the concept of set: a couple of sets and an
arbitrary relation between them. So, what we are going to do is to transform
each judgment in the usual Type Theory, into a triple of judgments which
will follow the idea of the basic pair. For example a judgment of the form:

A : set

will be transformed into a arbitrary triple of judgments:
A0 : set

A1 : set

Ar : rel(A0, A1) or equivalent Ar(x0, x1) : set [x0 : A0, x1 : A1]



1.2 Motivations of our work and further research 7

After giving an interpretation to all possible judgments, substitution and
equality rules, we begin to construct an internal model transforming each
type into a triple of preexisting types, for example the type of natural num-
bers:

N : set

when passing to the internal model will become:
N : set

N : set

Id(N, x0, x1) : set [x0 : N, x1 : N]

where Id denotes the usual Identity type.
As we will show later, the internal model leads us to an impasse when

we have to deal with the interpretation of natural numbers, identity and
disjoint union type. Due to this reason we will abandon this approach in
order to work on an external model. Hence, the idea is to extend the usual
type theory introducing new types, that we will denote with a star. These
new “star” types represent the relation set between two sets of the same type
“without the star”. For example, in the external model the set of natural
numbers is interpreted as the following triple:

N : set

N : set

N∗ : rel(N,N)

An important observation is that we are not introducing any new judg-
ments but we are just expanding the standard type theory, in a way that we
can consider as the following inclusion:

standard type theory ⊂ star type theory

Furthermore this extended theory will gain some new properties, for ex-
ample a kind of extensionality between functions, as we will show later.

Further researches about this work could be, for example to investigate in
depth the relation between the Sambin’s Basic picture and the Martin-Löf’s
type theory since what we have done is just to build a model inspired on a
basic pair’s concept. What I mean is that now maybe one could investigate
the relation which subsists between this extended type theory and the whole
category of basic pairs, BP.

Another important application of this model can be found in the field of
category theory. Indeed the structure of our interpretation could be further
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seen as a model for a generic Set-valued presheaf. A Set-valued presheaf
on a category C is a functor F : Cop → Set. If we consider for example
a category C with just three objects, that we can call 0, 1, r and with just
unique morphisms f : 0 → r and g : 1 → r, such that they satisfy the
following scheme:

0
f
// r 1g
oo

Then a Set-valued presheaf, F , over this category will be described by
this diagram:

F (0) F (r)
F (f)
oo

F (g)
// F (1)

Immediately this presheaf can be related with our interpretation, indeed
it is enough to identify the set F (r) with the set of relations between F (0)
and F (1), and the morphisms F (f) and F (g) as its two projections into
them. So this shall be seen as an easy and first example of how our model
could be even related to category theory. Although this was not the main
motivation of our work, some further research into this direction might give
some good results.

Moreover, this model has arisen from the necessity to formalize the path
topology on types, introduced by Martin-Löf in his talks during the third and
the fourth workshops on formal topology ([4WO, 2012]). Indeed starting
from infinitely many types A0, A1, . . . , An, . . . and relations between them
P0 : rel(A0, A1), P1 : rel(A1, A2), . . . , Pn : rel(An, An+1), . . . one can define
a formal topology where the open sets consist of all the infinite branches
starting from the endpoint of a finite path; where the paths are the infinite
sequences of elements a0 : A0, a1 : A1, a2 : A2, . . ., such that Pn(an, an +
1) for all n = 0, 1, 2, . . .. This model has been named by Martin-Löf, the
spread model or interference spread model, but no papers about it have been
published after he introduced them during the third and fourth workshops
on formal topology. Obviously, our model is just the simplest example of this
spread model since we have just a pair of sets and one relation sets between
them. Anyway this could be taken like a starting point in order to construct
a complete model for this formal topology.

So, as we can see, a lot of different further research can arise from this
model, even if our first intention was just to find a possible relation between
the type theory and the basic pairs.



1.3 Notation and survey of contents 9

1.3 Notation and survey of contents

About what concerns the notation for the type theory we mainly follow
the one used in the book [Nordström et al., 1990] with possibly some slight
differences; however, in order to avoid misunderstandings, when we will go
to interpret types we often recall their rules.

The totally of our proof trees has been created using the package bussproof.sty
for LATEX. When the premises don’t fit on a line we will stack them like the
following picture:

P1

...
Pn

C

Furthermore, in this case, it will often happen that one or more premises
don’t fit neither on a single line, due to its length or its context, so to solve
this problem we will gather all its lines in a bracket, as follows:

P1

. . .

. . .

...
Pn{
C

. . .

About the contents, in the second chapter we will explain all the judg-
ments and rules’ interpretations. In the following chapter we will show our
attempt to construct the internal model and we will point out the prob-
lems encountered. Finally, in the last chapter, we will explain the external
model with its new type constructors and their rules, and we will use them
to interpret the standard type theory as wanted.



Chapter 2

The interpretation into basic
pairs

As we said in the introduction our aim is to build a model for type theory
based on the concept of the basic pair.

Basically what we will do is extend in the same way as the basic pair, the
concept of set to a triple of elements formed by a couple of sets and a set of
relationships between them. This extension of the concept of set will allow
us to give an interpretation of the judgment “to be a set”, namely a generic
judgment of the form:

A : set

is interpreted into: 
A0 : set

A1 : set

P : rel(A0, A1)

Consequently, all other interpretations of the different forms of judgment
of type theory will be constructed in analogous way, as we will show in the
next sections.

Furthermore observe that we are not introducing any new form of judg-
ment, but simply we are, in some way, “tripling” any judgment already exists.
So we shall not give any new explanation, philosophical or other beliefs, since
in interpreting a judgment will keep the same value it had before. For this
reason even the logical framework of [Nordström et al., 1990], i.e. the depen-
dent function space and the universe Set, is interpreted following the same
pattern.

This idea has been inspired by Martin-Löf mostly during his latest sem-
inary at University of Stockholm [Sem, 2013], where I had the fortune to
participate. During these talks he extended the type theory with new types

10



2.1 Interpretation of type theory’s judgment forms 11

in order to be able to interpret a set as two identical sets and an arbitrary
relation between them. Our interpretation is for this reason more general
since it is possible for us to have two different sets.

Anyway we are going to explain in the following sections all the different
interpretation of the judgment forms, and the validation of the substitution
rules.

2.1 Interpretation of type theory’s judgment

forms

We now show how to give the interpretation of the four different judg-
ments:

1. the judgment A : set, in the empty context is interpreted as three
different judgments in the empty context

A0 : set A1 : set P : rel(A0, A1)

Where rel(A0, A1) denotes the binary relations between A0 and A1 in
the type theoretic sense. In the higher order notation we may write

rel(A0, A1) =def (A0, A1)set

2. The elementhood judgment a : A in the empty context is interpreted
in three different judgments in the empty context

a0 : A0 a1 : A1 p : P (a0, a1)

Here p is regarded as the proof object for a0 and a1 being related via
P .

3. The judgment B(x): set in context [x : A] is interpreted as the triple
judgment:

B0(x0) : set [x0 : A0]

B1(x1) : set [x1 : A1]

Q(x0, x1, p)(y0, y1) : set

[x0 : A0, x1 : A1, p : P (x0, x1), y0 : B0(x0), y1 : B1(x1)]

the last judgment may be expressed in higher order notation,

Q(x0, x1, p) : rel(B0(x0), B1(x1)) [x0 : A0, x1 : A1, p : P (x0, x1)]
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4. The elementhood judgment b(x) : B(x) in context [x : A] is interpreted
as three judgments


b0(x0) : B0(x0) [x0 : A0]

b1(x1) : B1(x1) [x1 : A1]

q(x0, x1, p) : Q(x0, x1, p)(b0(x0), b1(x1)) [x0 : A0, x1 : A1, p : P (x0, x1)]

5. the equality judgment are interpreted in the expected way: one defini-
tional equality judgment becomes three definitional equality judgments
determined by the relevant judgment above.

For example the judgment of equality between sets in the empty con-
text: Generally speaking considering equality between sets:

A = B : set

It is interpreted in the following triple of standard judgments:
A0 = B0 : set

A1 = B1 : set

P (x0, x1) = Q(x0, x1) : set [x0 : A0 = B0, x1 : A1 = B1]

where, obviously, P (x0, x1) (and so even Q(x0, x1)) must be consider,
like in the usual type theory, extensional in the sense the whenever
a0 = b0 : A0 and a1 = b1 : A1 then P (a0, a1) = P (b0, b1).

In an analogous way we can interpret the equivalence between elements
in a set:

a = b : A

using the following triple:
a0 = b0 : A0

a1 = b1 : A1

ar = br : P (a0, a1) = P (b0, b1)

where P (a0, a1) = P (b0, b1) follows by its extensionality property.

The interpretations of the remaining equivalence judgments follow the
same pattern. So we leave them to the reader.
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2.2 Interpretation of judgments with more

than one assumption

We may now further generalize judgments to include hypothetical judg-
ments with an arbitrary number n of assumptions. We explain their meaning
by induction, that is, assuming we understand the meaning of judgment with
n− 1 assumptions. So assume we know:

• A1 is a set

• A2(x1) is a family of sets over A1

• A3(x1, x2) is a family of sets with two indexes x1 : A1 and x2 : A2(x1)

• . . .

• An(x1, . . . , xn−1) is a family of sets with n − 1 indexes x1 : A1, x2 :
A2(x1), . . . , xn−1 : An−1(x1, . . . , xn−2)

Then a judgment of the form:

A(x1, . . . , xn) set [x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1)] (2.1)

means that A(a1, . . . , an) is a set whenever [a1 : A1, a2 : A2(a1), . . . , an :
An(a1, . . . , an−1)] and that A(a1, . . . , an) = A(b1, . . . , bn) whenever [a1 =
b1 : A1, a2 = b2 : A2(a1), . . . , an = bn : An(a1, . . . , an−1)]. We say that
A(x1, . . . , xn) is a family of set with n indexes. The n assumptions in a
judgment of the form (2.1) constitute what we call the context, which plays
a role analogous to the sets of formulae ∆,Γ (extra formulae) appearing in
Gentzen sequents. Note also that any initial segment of a context is always
a context. Because of the meaning of a hypothetical judgment of the form
(2.1), we see that the first two rules of substitution may be extended to the
case of n assumptions, and we understand these extensions to be given.

2.2.1 Interpretation

In our interpretation a generic judgment becomes a triple of judgments
as shown before, and each of these it will have a different context, so we
will show how to obtain an interpretation of a judgment with a context of
arbitrary length. In the following section I will use superscript instead of
subscript, where necessary, in order to avoid confusion.
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• First of all we show how to interpret the the judgment with two as-
sumptions (a context of length 2):

A(x1, x2) : set [x1 : A1, x2 : A2(x1)] (2.2)

We can start interpreting the assumptions:

x1 : A1  


x0

1 : A0
1

x1
1 : A1

1

xr1 : Ar
1(x0

1, x
1
1) [x0

1 : A0
1, x

1
1 : A1

1]

and

x2 : A2(x1) [x1 : A1] 


x0

2 : A0
2(x0

1) [x0
1 : A0

1]
x1

2 : A1
2(x1

1) [x1
1 : A1

1]
xr2 : Ar

2(x0
1, x

1
1, x

r
1)(x0

2, x
1
2)

[x0
1 : A0

1, x
1
1 : A1

1, x
r
1 : Ar

1(x0
1, x

1
1),

x0
2 : A0

2(x0
1), x1

2 : A1
2(x1

1)]

Then from this assumptions we can create three well-formed contexts:
Γ0 ≡ [x0

1 : A0
1, x

0
2 : A0

2(x0
1)]

Γ1 ≡ [x1
1 : A1

1, x
1
2 : A1

2(x1
1)]

Γr ≡ [x0
1 : A0

1, x
1
1 : A1

1, x
r
1 : Ar

1(x0
1, x

1
1),

x0
2 : A0

2(x0
1), x1

2 : A1
2(x1

1), xr2 : Ar
2(x0

1, x
1
1, x

r
1)(x0

2, x
1
2)]

Finally, with these, we can give an interpretation of (2.2):
A0(x0

1, x
0
2) : set [Γ0]

A1(x1
1, x

1
2) : set [Γ1]

Ar(x0
1, x

1
1, x

r
1, x

0
2, x

1
2, x

r
2)(z0, z1) : set

[Γr, z0 : A0(x0
1, x

0
2), z1 : A1(x1

1, x
1
2)]

• Now we have to argue in a similar way in order to find an interpretation
for a judgment with an arbitrary n number of assumptions:

A(x1, ...xn) : set [x1 : A1, x2 : A2(x1), ..., xn : An(x1, ..., xn−1)] (2.3)
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In the same way, as we have done before, we will get three well-formed
contexts:

Γ0 ≡ [x0
1 : A0

1, x
0
2 : A0

2(x0
1), ..., x0

n : A0
n(x0

1, x
0
2, ..., x

0
n−1)]

Γ1 ≡ [x1
1 : A1

1, x
1
2 : A1

2(x1
1), ..., x1

n : A1
n(x1

1, x
1
2, ..., x

1
n−1))]

Γr ≡ [x0
1 : A0

1, x
1
1 : A1

1, x
r
1 : Ar

1(x0
1, x

1
1), x0

2 : A0
2(x0

1),

x1
2 : A1

2(x1
1), xr2 : Ar

2(x0
1, x

1
1, x

r
1)(x0

2, x
1
2), ...,

x0
n : A0

n(x0
1, x

0
2, ..., x

0
n−1), x1

n : A1
n(x1

1, x
1
2, ..., x

1
n−1))

xrn : Ar
n(x0

1, x
1
1, x

r
1, x

0
2, x

1
2, x

r
2, ..., x

0
n−1, x

1
n−1, x

r
n−1)(x0

n, x
1
n)]

Hence we can give an interpretation of (2.3):
A0(x0

1, ..., x
0
n) : set [Γ0]

A1(x1
1, ..., x

1
n) : set [Γ1]

Ar(x
0
1, x

1
1, x

r
1, ..., x

0
n, x

1
n, x

r
n)(z0, z1) : set

[Γr, z0 : A0(x0
1, ..., x

0
n), z1 : A1(x1

1, ..., x
1
n)]

2.2.2 Elementhood judgment with more assumptions

Since we have defined what is the interpretation to “be a set” judgment
with an arbitrary number of assumptions, we can now try to get the inter-
pretation of a generic elementhood judgment:

a(x1, ..., xn) : A(x1, ..., xn) [Γ] (2.4)

where Γ is a generic context of length n:

[x1 : A1, x2 : A2(x1), ..., xn : An(x1, ..., xn−1)]

First of all we recall the interpretation of judgment with a context of
length one and two, and then we will argue with a generic context of length
n:

length 1 : the interpretation is the following:

a : A 


a0 : A0

a1 : A1

ar : Ar(a0, a1)

length 2 : the interpretation is the following:

a(x1) : A(x1) [x1 : A1] 


a0(x0

1) : A0(x0
1) [x0

1 : A0
1]

a1(x1
1) : A1(x1

1) [x1
1 : A1

1]
ar(x

1
1, x

1
1, x

r
1) : Ar(x

0
1, x

1
1, x

r
1)(a0(x0

1), a1(x1
1))

[x0
1 : A0

1, x
1
1 : A1

1, x
r
1 : Ar

1(x0
1, x

1
1)]
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length n : in this case we should create an interpretation on (2.4), and we can do
it using the same pattern as in the previous section. Then our intended
interpretation will be:

a0(x0
1, ..., x

0
n) : A0(x0

1, ..., x
0
n) [Γ0]

a1(x1
1, ..., x

1
n) : A1(x1

1, ..., x
1
n) [Γ1]

ar(x
0
1, x

1
1, x

r
1, ..., x

0
n, x

1
n, x

r
n) :

Ar(x
0
1, x

1
1, x

r
1, ...., x

0
n, x

1
n, x

r
n)(a0(x0

1, ..., x
0
n), a1(x1

1, ..., x
1
n)) [Γr]

where Γ0,Γ1,Γr denote the same contexts as in the previous section.

2.3 The interpretation of substitution rules

In the usual type theory the meanings of the four judgment forms when
they depend on a nonempty context yield four sets of substitution rules. The
judgment

C(x) : set [x : A]

means that C(a) is a set, provided a : A, and that C(a) = C(b) whenever
a = b : A. This explanation immediately gives us the rules:

C(x) : set [x : A] a : A

C(a) : set

C(x) : set [x : A] a = b : A

C(a) = C(b)

The same reasoning yields for the explanation of the other form of judg-
ments.

Anyway these rules for substitution are not sufficient because if we have
a judgment

C(x, y) : set [x : A, y : B(x)]

and want to substitute a : A for x and b : B(a) for y we cannot use
the rules given above since they cannot handle the case with simultaneous
substitution of several variables. We therefore extend the substitution rules
to n simultaneous substitutions. We present only the rule for substitution in
equal sets. Substitution in equal sets of n variables:

B(x1, . . . , xn) = C(x1, . . . , xn) [x1 : A1, . . . , xn : An(x1, . . . , xn−1)]

a1 : A1

...
an : An(a1, . . . , an−1)

B(a1, . . . , an) = C(a1, . . . , an)
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The rule is justified from the meaning of a hypothetical judgment with
several assumptions.

Another way to achieve the same effect is to allow substitution in the
middle of a context. For example if we have a judgment

C(x, y) : set [x : A, y : B(x)]

we could first substitute a : A for x obtaining the judgment

C(a, y) : set [y : B(a)]

then substitute b : B(a) for y. When using type theory to do formal proofs,
it is convenient to have substitution rules of this form.

2.3.1 Interpretation

Now in our intended interpretation each judgment becomes a triple of
judgments, and so each substitution rule will become a triple of substitution
rules. For example the first rule that we showed in the previous section will
become the following three:

C0(x0) : set [x0 : A0] a0 : A0

C0(a0) : set

C1(x1) : set [x1 : A1] a1 : A1

C1(a1) : set

and the last one on the set of relations will be:

Cr(x0, x1, xr) : rel(C0(x0), C1(x1)) [x0 : A0, x1 : A1, xr : Ar(x0, x1)]

a0 : A0

a1 : A1

ar : Ar(a0, a1)

Cr(a0, a1, ar) : rel(C0(a0), C1(a1))

which is validated by the rule of multiple substitution explained before.
Furthermore the same reasoning is valid for each substitution rule, in-

cluded the one of multiple substitution, so we are not going to show all the
interpretations, since they follow the same pattern.



Chapter 3

The internal model

We present now our first attempt to create a model based on the in-
terpretation explained in the previous chapter. This approach consists of
a creation of an internal model of the standard type theory, presented in
[Martin-Löf, 1984] with intentional equality type. Generally speaking what
we do, is for each type and each of its constants (canonical or not), we will
try to interpret it as a triple of judgments explained before. At the same time
this interpretation (triple of judgments) must, however, validate all the rules
that characterize that particular type: formation, introduction, elimination
and equality. The validation of the rules follows a common pattern: starting
from the interpretations of all the premises we should be able to construct an
interpretation for the conclusion. Generally speaking this reasoning leads to
a tripling, somehow of, the single rule since we need to find three judgments
in which to interpret its conclusion. The tripling happens often in a specific
manner: substantially the first two rules (and therefore the constants that
are introduced with it, or the equivalences that are asserted with it) remain
similar to the original one; on the other hand, for the third judgment needed
to derive the conclusion’s interpretation, we will often need to apply multiple
rules. This depends mainly on the interpretation that has been assigned to
the formation-rule, and the complexity of the set of relations that has been
chosen in it influences, as we shall see, all the complexity of the subsequent
validation rules and their constant.

However, as we shall see, we are not going to succeed in the interpretation
of all the types: the first obstacle will come out during the validation of the
natural number type, and furthermore some bigger ones in the interpretation
of identity and disjoint union type. These problems, as mentioned above, will
depend mainly on the choice that has been made during the interpretation
of the respective formation-rule, and so a choice more accurate and targeted
to solve the unexpected obstacles may perhaps succeed in the interpretation.

18
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Anyway we are not going to show different choices and/or to solve the prob-
lems, but we will give just some advice on how, if it should be possible, try
to avoid them.

The matter is that during the developing of this internal model, when
we faced the first obstacles, we also started, under the advice of Martin-
Löf, the construction of an external model, which was aimed to show that
an interpretation like ours was naturally obtained into an extended theory of
types with new types constructors. As we shall see the external model, which
will be explained in the next chapter, is going to result in a more natural
and easier construction than the internal one.

So this is the main reason why we did not waste energy on developing the
internal model, trying to solve the problems encountered at any cost. Hence
we will just limit ourselves to the observation of them and we will leave to
the discretion of the reader the opportunity to solve them.

Furthermore the lack of resolution of these problems and at the same time
the good behavior of the external model led us to omit the interpretation of
the first universe, U. This, however, could be carried out, without much
difficulty, starting from a definition a là Tarski like the one presented in
[Martin-Löf, 1984]. An idea could be for example interpreting the judgment
(that is at the same time the U-formation rule) :

U : set

into the following triple:
U : set

U : set

(x0 : U)(x1 : U)U : rel(U,U) [x0, x1 : U]

and the family of set T over U, such that:

a : U
T (a) : set

would became in the internal model the following triple of rules:

a0 : U

T (a0) : set

a1 : U

T (a1) : set

ar : U

T (ar) : set

where 
a0 : U

a1 : U

ar : U
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is the standard interpretation of the premise a : U.
About what concerning the notation we principally refer to the book of

Nordström at al. [Nordström et al., 1990], even if sometimes we could use
some different notations, although in order to avoid misunderstandings we
will introduce each rule every time that we need it, taken for granted that the
reader as already confidence with types and their generic rules’ constructions,
otherwise we refer him to [Nordström et al., 1990].

Finally we show what we did, presenting the interpretation of the various
types in the following order: Bool, Nn, Π, Σ, N, Id and +. I suggest the
reader to follow the order in which they are presented as it is growing in
complexity.

3.1 Interpretation of N2

From the interpretation of the judgment forms explained in the previous
chapter, we are now able to give an explicit interpretation of all the rules of
the N2 type (or the so called Bool type). Here I prefer to use the generic
notation of enumeration type since it will result more convenient when we
will pass from 2 elements to an arbitrary number n of elements.

• The formation rule
N2 : set

when passing to the model, becomes the following triple of judgments:

N2 : set N2 : set Id(N2, x, y) : set [x, y : N2]

Where here Id denotes the identity type construction.

• For each introduction rule we will have three judgments. For example:

i0 : N2

becomes:

i0 : N2 i0 : N2 r(i0) : Id(N2, i0, i0)

and analogous for i1 : N2 :

i1 : N2 i1 : N2 r(i1) : Id(N2, i1, i1)
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Note that each canonical element, when passing to the model, is es-
sentially transformed into the reflexivity relation of itself inside the set
N2.

• We have now to interpret the elimination rule, we recall it:

N2 – Elimination:

c : N2

C(x) : set [x : N2]

d : C(i0)

e : C(i1)

case(c, d, e) : C(c)

First of all we need to interpret the premises, and from these inter-
pretations, we should be able to construct an interpretation for the
conclusion. Well, each one of the premises will become a triple, as
follow:

c : N2  


c0 : N2

c1 : N2

cr : Id(N2, c0, c1)

C(x) : set (x : N2) becomes:
C0(x0) : set [x0 : N2]
C1(x1) : set [x1 : N2]
Q(x0, x1, p)(y0, y1) : set [x0 : N2, x1 : N2,
p : Id(N2, x0, x1), y0 : C0(x0), y1 : C1(x1)]

And the same yields for the other two premises:

d : C(i0) 


d0 : C0(i0)
d1 : C1(i0)
dr : Q(i0, i0, r(i0))(d0, d1)

e : C(i1) 


e0 : C0(i1)
e1 : C1(i1)
er : Q(i1, i1, r(i1))(e0, e1)
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Now using these ones we should be able, as said above, to build an
interpretation for the conclusion:

case(c, d, e) : C(c)

that will be of the following form:
k0 : C0(c0)
k1 : C1(c1)
kr : Q(c0, c1, cr)(k0, k1)

Let’s begin to construct k0 and k1. If we pick respectively the first and
the second judgment from all the triples of the interpretations of the
premises we get all what is needed to apply the normal N2-Elimination
rule, i.e:

c0 : N2

C0(x0) : set (x0 : N2)

d0 : C0(i0)

e0 : C0(i1)
:N2-El

case(c0, d0, e0) : C0(c0)

c1 : N2

C1(x1) : set (x1 : N2)

d1 : C1(i0)

e1 : C1(i1)
:N2-El

case(c1, d1, e1) : C1(c1)

Hence we can just put:

k0 ≡ case(c0, d0, e0)

k1 ≡ case(c1, d1, e1)

and we have exactly the first two judgments that we were looking for.

It remains to make the last judgment:

kr : Q(c0, c1, cr)(k0, k1)

where c0 : N2, c1 : N2, cr : Id(N2, c0, c1), k0 : C0(c0), k1 : C1(c1). In order
to find an element of this set, we will use the Id-Elimination rule, that
we recall here:

Id – elimination:
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a : A
b : A

c : Id(A, a, b)

C(x, y, z) : set [x : A, y : A, z : Id(A, x, y)]

f(x) : C(x, x, r(x)) [x : A]

idpeel(c, f) : C(a, b, c)

At this point, to be able to use this rule we can take all the judgments
of the interpretation of the premise c : N2 and we get:

c0 : N2 c1 : N2 cr : Id(N2, c0, c1)

that are similar to the first three premises in the Id-elimination, except
for the fact that instead of A, we have N2. Now to get something similar
to the fourth premise we can work on

Q(x0, x1, p)(y0, y1) : set

under the assumptions

[x0 : N2, x1 : N2, p : Id(N2, x0, x1), y0 : C0(x0), y1 : C1(x1)]

obtained from the interpretation of C(x) : set [x : N2]. To do this,
we have to avoid the dependence by y0 and y1, and we can do it by
instantiating them. Hence we have to select some appropriate elements
of, respectively, C0(x0) and C1(x1), when x0 and x1 are generic element
of N2. From what we said above for k0 and k1, we can readily put:

y0 = case(x0, d0, e0) : C0(x0)

y1 = case(x1, d1, e1) : C1(x1)

In this way we get a similar fourth assumption of the Id-elimination,
since we don’t have anymore the dependence by y0 and y1, i.e:

Q(x0, x1, p)(case(x0, d0, e0), case(x1, d1, e1)) : set

in the context:

[x0 : N2, x1 : N2, p : Id(N2, x0, x1)]

Now it remains just to find something similar to the last premise:

f(x) : C(x, x, r(x)) [x : A]
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where instead of C(x, x, r(x)) [x : A] we have:

Q(x, x, r(x))(case(x, d0, e0), case(x, d1, e1)) [x : N2].

We can do this using the N2-Elimination rule with the following premises:

c : N2

Q(x, x, r(x))(case(x, d0, e0), case(x, d1, e1)) [x : N2]

dr : Q(i0, i0, r(i0))(case(i0, d0, e0), case(i0, d1, e1))

er : Q(i1, i1, r(i1))(case(i1, d0, e0), case(i1, d1, e1))
:N2-El

case(c, dr, er) : Q(c, c, r(c))(case(c, d0, e0), case(c, d1, e1))

Observe that all the premises of this rules are correct since when
(case(i0, d0, e0), case(i0, d1, e1)) is evaluated, by N2-equality, yields the
couple of element (d0, d1), and so correctly

dr : Q(i0, i0, r(i0))(d0, d1)

And for the same reason when we compute (case(i1, d0, e0), case(i1, d1, e1))
we obtain (e0, e1) and so:

er : Q(i1, i1, r(i1))(e0, e1)

as we already had from the initial interpretation.

So we are finally able to use it to obtain the conclusion:

case(c, dr, er) : Q(c, c, r(c))(case(c, d0, e0), case(c, d1, e1))

from which we immediately get, abstracting:

case(x, d2, e2) : Q(x, x, r(x))(case(x, d0, e0), case(x, d1, e1)) [x : N2]

that is, exactly, the last premise that we needed to apply the Id-
elimination (the f(x), in the Id-elimination rule, that we were looking
for).

Hence, we shall just put all what we said together and use Id-elimination:
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c0 : N2

c1 : N2

cr : Id(N2, c0, c1){
Q(x0, x1, p)(case(x0, d0, e0), case(x1, d1, e1)) : set

[x0, x1 : N2, p : Id(N2, x0, x1)]

case(x, dr, er) : Q(x, x, r(x))(case(x, d0, e0), case(x, d1, e1)) [x : N2]

idpeel(cr, case(x, dr, er)) : Q(c0, c1, cr)(case(c0, d0, e0), case(c1, d1, e1))

Now notice that above we decided to define:

k0 ≡ case(c0, d0, e0)

k1 ≡ case(c1, d1, e1)

and so we get that:

idpeel(cr, case(x, dr, er)) : Q(c0, c1, cr)(k0, k1),

Hence, we can finally define kr in the following way:

kr ≡ idpeel(cr, case(x, dr, er)) : Q(c0, c1, cr)(k0, k1).

To conclude we have the complete interpretation of case(c, d, e) : C(c),
i.e.

case(c0, d0, e0) : C0(c0)
case(c1, d1, e1) : C1(c1)
idpeel(cr, case(x, dr, er)) : Q(c0, c1, cr)(case(c0, d0, e0), case(c1, d1, e1))

• At the end we have to check that the equality rules are validated. For
the N2 type we have just the following two equality rules:

N2 –Eqaulity:

C(x) : set [x : N2] d : C(i0) e : C(i1)

case(i0, d, e) = d : C(i0)

C(x) : set [x : N2] d : C(i0) e : C(i1)

case(i1, d, e) = e : C(i1)
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We give an explanation for the first one since the second will follow
in the same way. As usual we have to construct, starting from the
interpretations of the premises, three equality judgments that will form
the interpretation of the conclusion.

As we did before, C(x) : set [x : N2] becomes:
C0(x0) : set [x0 : N2]
C1(x1) : set [x1 : N2]
Q(x0, x1, p)(y0, y1) : set

[x0, x1 : N2, p : Id(N2, x0, x1), y0 : C0(x0), y1 : C1(x1)]

And the same yields for the other two premises:

d : C(i0) 


d0 : C0(i0)
d1 : C1(i0)
dr : Q(i0, i0, r(i0))(d0, d1)

e : C(i1) 


e0 : C0(i1)
e1 : C1(i1)
er : Q(i1, i1, r(i1))(e0, e1)

During the interpretation of the elimination rule we found the inter-
pretation of case(c, d, e) : C(c), that is:

case(c0, d0, e0) : C0(c0)
case(c1, d1, e1) : C1(c1)
idpeel(cr, case(x, dr, er) : Q(c0, c1, p)(case(c0, d0, e0), case(c1, d1, e1))

so we have just to substitute c with i0 and switch their interpretations,
i.e. the triple (c0, c1, cr) will become (i0, i0, r(i0)). Thus the interpreta-
tion of case(i0, d, e) : C(i0) is:

case(i0, d0, e0) : C0(i0)
case(i0, d1, e1) : C1(i0)
idpeel(r(i0), case(x, dr, er)) :
Q(i0, i0, r(i0))(case(i0, d0, e0), case(i0, d1, e1))

that, by the equality rules of Id and N2 types, is definitionally equal
to: 

d0 : C0(i0)
d1 : C1(i0)
dr : Q(i0, i0, r(i0))(d0, d1)
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And this is exactly the interpretation of d : C(i0). The validation of
the other elimination rule is analogous. Ergo even the equality rule is
satisfied.

So the validation of the finite type N2 in the internal model is complete,
and as we will see in the next section, even the generic finite type’s validation
will work in a similar way.
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3.2 Interpretation of Nn

We will now argue in the same way we did before, to extend the inter-
pretation of the set with two elements to the set with n elements: Nn, giving
an interpretation of all its rules.

• The formation rule,
Nn : set

, becomes the following triple of judgments:

Nn : set Nn : set Id(Nn, x, y) : set [x, y : Nn]

where Id denotes the identity type construction.

• For each introduction rule we have three judgments, as for the set with
two elements. The generic introduction rule:

ij : Nn

becomes:

ij : Nn ij : Nn r(ij) : Id(Nn, ij, ij)

And this yields for each 0 ≤ j < n.

So even in this interpretation each canonical element of Nn is trans-
formed in the reflexivity relation between itself.

• We have now to interpret the elimination rule, we recall it:

Nn – Elimination:

c : Nn

C(x) : set [x : Nn]

b0 : C(i0)

...
bn−1 : C(in−1)

case(c, b0, ..., bn−1) : C(c)
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The interpretation of the premises are exactly the same we had in the
two elements type, where in place of N2, we simply have Nn:

c : Nn  


c0 : Nn

c1 : Nn

cr : Id(Nn, c0, c1)

C(x) : set [x : Nn] becomes:
C0(x0) : set [x0 : Nn]
C1(x1) : set [x1 : Nn]
Q(x0, x1, p)(y0, y1) : set

[x0, x1 : Nn, p : Id(Nn, x0, x1), y0 : C0(x0), y1 : C1(x1)]

In the interpretation of the generic premises bj : C(ij), to avoid confu-
sion with the subscript numbers, we will use superscripts in the follow-
ing way:

bj : C(ij) 


b0
j : C0(ij)
b1
j : C1(ij)
brj : Q(ij, ij, r(ij))(b

0
j , b

1
j)

for each 0 ≤ j < n.

Exactly as we did before, using these ones we shall now be able to
construct an interpretation for the conclusion:

case(c, b0, ..., bn−1) : C(c)

that will be of the following form:
k0 : C0(c0)
k1 : C1(c1)
kr : Q(c0, c1, cr)(k0, k1)

The way to construct k0 and k1 is exactly the same: if we pick re-
spectively the first and the second judgment from all the triples of the
interpretations of the premises, we get all what is needed to apply the
normal Nn-Elimination rule, hence as before, we can just put:

k0 ≡ case(c0, b
0
0, . . . , b

0
n−1) : C0(c0)

k1 ≡ case(c0, b
1
0, . . . , b

1
n−1) : C1(c1)
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and we have exactly the first two judgments that we were looking for.

Furthermore to built kr we can move like we did in N2, adjusting the
premises to be able to apply the Id-Elimination rule. Reasoning in a
similar way to the previous section we get the following:

c0 : Nn

c1 : Nn

cr : Id(Nn, c0, c1){
Q(x0, x1, p)(case(x0, b

0
0, ..., b

0
n−1), case(x1, b

1
0, ..., b

1
n−1)) : set

[x0, x1 : Nn, p : Id(Nn, x0, x1)]
case(x, br0, ..., b

r
n−1) :

Q(x, x, r(x))(case(x, b0
0, ..., b

0
n−1), case(x, b1

0, ..., b
1
n−1))

[x : Nn]
Id-El{

idpeel(cr, case(x, br0, ..., b
r
n−1)) :

Q(c0, c1, cr)(case(c0, b
0
0, ..., b

0
n−1), case(c1, b

1
0, ..., b

1
n−1))

Now notice that by how we defined k0 and k1 so we have that:

idpeel(cr, case(x, br0, ..., b
r
n−1)) : Q(c0, c1, cr)(k0, k1),

hence, we can finally define kr in the following way:

kr ≡ idpeel(cr, case(x, br0, ..., b
r
n−1)) : Q(c0, c1, cr)(k0, k1).

and we have finally the complete interpretation of case(c, b0, ..., bn−1) :
C(c).

• In the end we have to check that the equality rules hold. For the Nn

type we have n equality rules,for each 0 ≤ j < n, with the following
generic form:

Nn – Equality:

C(x) : set [x : N2] b0 : C(i0) ... bn−1 : C(in−1)

case(ij, b0, ..., bn−1) = bj : C(ij)
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As usual we have to give the interpretation of the premises and from
these try to build three equality judgments that will form the interpre-
tation of the conclusion.

As we did before, C(x) : set [x : Nn] becomes:
C0(x0) : set [x0 : Nn]
C1(x1) : set [x1 : Nn]
Q(x0, x1, p)(y0, y1) : set

[x0, x1 : Nn, p : Id(Nn, x0, x1), y0 : C0(x0), y1 : C1(x1)]

and for each 0 ≤ j < n:

bj ∈ C(ij) 


b0
j : C0(ij)
b1
j : C1(ij)
brj : Q(ij, ij, r(ij))(b

0
j , b

1
j)

Now we have just to substitute c with ij and switch their interpretation,
i.e. the triple (c0, c1, cr) will become (ij, ij, r(ij)), in the interpretation,
explained above, of case(c, b0, ..., bn−1) : C(c).

So the interpretation of case(ij, b0, .., bn−1) : C(ij) will be:
case(ij, b

0
0, .., b

0
n−1) : C0(ij)

case(ij, b
1
0, .., b

1
n−1) : C1(ij)

idpeel(r(ij), case(x, br0, ..., b
r
n−1)) :

Q(ij, ij, r(ij))(case(ij, b
0
0, .., b

0
n−1)), case(ij, b

1
0, .., b

1
n−1))

that from the equality rules of Id and Nn types it is definitionally equal
to: 

b0
j : C0(ij)
b1
j : C1(ij)
brj : Q(ij, ij, r(ij))(b

0
j , b

1
j)

which is exactly the interpretation of bj : C(ij).

Ergo even the equality rule is satisfied.

Finally we have concluded the interpretation of a generic finite type in
the internal model.



3.3 Interpretation of Π type 32

3.3 Interpretation of Π type

We show in this section how to interpret the Π type. We will use some
slightly different notations from the book [Nordström et al., 1990], for exam-
ple we call the non-canonical constant of the elimination rule app instead
of apply. Moreover we will just show the elimination for the non-canonical
constant app, omitting the one for funsplit, with the understanding that the
same reasoning would lead to the desired result.

• As usual we need to give an interpretation into a triple of judgments.
Let start from the Π-formation rule.

Π – formation:

A : set B(x) : set [x : A]

(Πx : A)B(x) : set

In higher order notation we can define (Πx : A)B(x) ≡ Π(A,B), and
we are going to use the latter.

The interpretations of the premises are:

A : set 


A0 : set
A1 : set
P (x0, x1) : set [x0 : A0, x1 : A1]

and the other is the normal interpretation of the judgment B(x) :
set [x : A], i.e.


B0(x0) : set [x0 : A0]

B1(x1) : set [x1 : A1]

Q(x0, x1, p)(y0, y1) : set (3.1a)

[x0 : A0, x1 : A1, p : P (x0, x1), y0 : B0(x0), y1 : B1(x1)]

From these two triples we can get, using the Π-formation rule, the
following:

A0 : set B0(x0) : set [x0 : A0]
Π-formation

Π(A0, B0) : set
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A1 : set B1(x1) : set [x1 : A1]
Π-formation

Π(A1, B1) : set

and hence we can define:

Π(A0, B0) ≡ Π0(A0, B0)

Π(A1, B1) ≡ Π1(A1, B1)

which are the first two judgments of the interpretation of Π(A,B) : set.

We should now define a setR of relation between Π(A0, B0) and Π(A1, B1).
In order to do this we recall that in high order notation Π is of the fol-
lowing type:

Π : (Xset, (El(X))set)set

By abstraction we can translate between hypothetical judgments and
functions as showed in the chapter 19 of [Nordström et al., 1990]. So
applying this reasoning on the judgment (3.1a), we obtain by abstract-
ing on p:

(p)Q(x0, x1, p)(y0, y1) : (p : P (x0, x1))set

in the context

[x0 : A0, x1 : A1, y0 : B0(x0), y1 : B1(x1)]

Hence this allows us to create the following set (where the context will
be the same as above):

Π(P (x0, x1), (p)Q(x0, x1, p)(y0, y1)).

So iterating the same process by abstracting on x0 and x1 we will get:

Π(A0, (x0)Π(A1, (x1)Π(P (x0, x1), (p)Q(x0, x1, p)(y0, y1))))) (3.2)

in the context [y0 : B0(x0), y1 : B1(x1)].

Finally we can define the set of relations between f0 : Π(A0, B0) and
f1 : Π(A1, B1), just observing that app(A0, B0, f0, x0) : B0(x0) and
app(A1, B1, f1, x1) : B1(x1) (I will omit the first two arguments of app
when they are understandable from the context). So we can substitute
them inside (3.2), obtaining

Π(A0, (x0)Π(A1, (x1)Π(P (x0, x1), (p)Q(x0, x1, p)(app(f0, x0), app(f1, x1)))))
(3.3)
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and defining, in order to lighten the notation,

R(f0, f1) ≡ (3.3)

under the assumptions [f0 : Π(A0, B0), f1 : Π(A1, B1)]. Ergo this com-
pletes the interpretation of the formation rule:

Π(A,B) : set 


Π(A0, B0) : set
Π(A1, B1) : set
R(f0, f1) : set [f0 : Π(A0, B0), f1 : Π(A1, B1)]

• We have now to interpret the introduction rule:

Π – introduction:

A : set B(x) : set [x : A] b(x) : B(x) [x : A]

λ(A,B, b) : Π(A,B)

So, as usual, from the interpretations of the premises we have to find
an interpretation of λ(A,B, b) : Π(A,B) that shall have the following
form:

λ0(A0, B0, b0) : Π0(A,B)
λ1(A1, B1, b1) : Π1(A,B)
λr(A0, A1, P, B0, B1, Q, b0, b1, q) : R(λ0(A0, B0, b0), λ1(A0, B0, b0))

The interpretations of A : set and B(x) : set [x : A] are the same that
we used during the formation rule, so we are not going to write again.
On the other hand the interpretation of b(x) : B(x) [x : A] is:

b0(x0) : B0(x0) [x0 : A0]

b1(x1) : B1(x1) [x1 : A1]

q(x0, x1, p) : Q(x0, x1, p)(b0(x0), b1(x1)) (3.4a)

[x0 : A0, x1 : A1, p : P (x0, x1)]

Hence taking the first judgment of each triple and using Π-introduction
we get:
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A0 : set

B0(x0) : set [x0 : A0]

b0(x0) : B0(x0) [x0 : A0]
Π-intro

λ(A0, B0, b0) : Π(A0, B0)

and so we can define:

λ0(A0, B0, b0) ≡ λ(A0, B0, b0) : Π0(A,B) = Π(A0, B0)

and, obviously, the same reasoning holds for

λ1(A1, B1, b1) ≡ λ(A1, B1, b1) : Π1(A,B) = Π(A1, B1)

So we get the first two judgments, and to get the third one we just
work as in the formation rule, i.e. we need to abstract on the element
in (3.4a) above to be able to use the Π-introduction rule, and we have
to repeat this procedure for three times starting, from p:

(p)q(x0, x1, p) : (p)Q(x0, x1, p)(b0(x0), b1(x1)) [x0 : A0, x1 : A1]

and then using the introduction rules we get:

λ(P (x0, x1), (p)Q(x0, x1, p)(b0(x0), b1(x1)), (p)q(x0, x1, p))

is an element of:

Π(P (x0, x1), (p)Q(x0, x1, p)(b0(x0), b1(x1)).

Now starting from this element and iterating the same reasoning by
abstracting on x0 and x1 we will get the following (I will omit the sets
in the lambda structure since they have a really long notation and they
are the same used during the Π formation):

λ((x0)λ((x1)λ((p)q(x0, x1, p)))) (3.5)

that is an element of

Π(A0, (x0)Π(A1, (x1)Π(P (x0, x1), (p)Q(x0, x1, p)(b0(x0), b1(x1))))))

in which, from the equality (computational) rule of app, we can ex-
change the couple (b0(x0), b1(x1)) with:

(app(A0, B0, λ(A0, B0, b0), x0), app(A1, B1, λ(A1, B1, b1), x1))
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finally from all the definitions given before, we obtain that the element
(3.5) belongs to the set:

λ((x0)λ((x1)λ((p)q(x0, x1, p)))) : R(λ(A0, B0, b0), λ(A1, B1, b1)).

that is the exactly the last judgment that we were seeking. Then to
complete the interpretation it suffices to define:

λr(A0, A1, P, B0, B1, Q, b0, b1, q) ≡ λ((x0)λ((x1)λ((p)q(x0, x1, p))))

• At this point we try to validate the elimination rule:

Π – elimination:

A : set B(x) : set [x : A] f : Π(A,B) a : A

app(A,B, f, a) : B(a)

Again starting from the interpretation of the premises we have to find
an interpretation of app(A,B, f, a) : B(a) that shall be of this form:

app0(A0, B0, f0, a0) : B0(a0)
app1(A1, B1, f1, a1) : B1(a1)
appr(A0, A1, P, B0, B1, Q, f0, f1, fr, a0, a1, ar) :
Q(a0, a1, ar)(app0(A,B, f, a), app1(A,B, f, a))

where 
a0 : A0

a1 : A1

ar : P (a0, a1)

is the interpretation of a : A.

The first two premises of the rule are interpreted in the usual way and
f ∈ Π(A,B) becomes: 

f0 : Π(A0, B0)
f1 : Π(A1, B1)
fr : R(f0, f1)

Hence, as usual, taking the first judgment of the interpretation of each
premise and applying Π-elimination we get:
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A0 : set B0(x0) : set [x0 : A0] f0 : Π0(A,B) a0 : A0

app(A0, B0, f0, a0) : B0(a0)

and since the same holds even if we take the second judgment from
each triple, we can define:

app0(A0, B0, f0, a0) ≡ app(A0, B0, f0, a0)

app1(A1, B1, f1, a1) ≡ app(A1, B1, f1, a1)

It remains to find what should be

appr(A0, A1, P, B0, B1, Q, f0, f1, fr, a0, a1, ar) (3.6)

We just claim that since fr : R(f0, f1), that is to be explicit:

Π(A0, (x0)Π(A1, (x1)Π(P (x0, x1), (p)Q(x0, x1, p)(app(f0, x0), app(f1, x1)))))

it’s enough to do the following application app(app(app(fr, a0), a1), ar)
that will be an element of

Q(a0, a1, ar)(app(A0, B0, f0, a0), app(A1, B1, f1, a1))

as required. Hence if we put the element in (3.6) equivalent to the
following element

app(app(app(fr, a0), a1), ar)

we get the validation of the elimination rule.

• Finally we need just to show that even the equality rule is correct.

Π – equality:

A : set
a : A

B(x) : set [x : A]

b(x) : B(x) [x : A]

app(A,B, λ(A,B, b), a) = b(a) : B(a)

So we need to show that the following triple of equality is satisfied
starting from the interpretation of the premises:
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
app0(A0, B0, λ0(A0, B0, b0), a0) = b0(a0) : B0(a0)
app1(A1, B1, λ1(A1, B1, b1), a1) = b1(a1) : B1(a1)
appr(A0, A1, P, B0, B1, Q, λ0(A0, B0, b0), λ1(A1, B1, b1),
λr(A0, A1, P, B0, B1, Q, b0, b1, q), a0, a1, ar)

= q(a0, a1, ar) : Q(a0, a1, ar)(b0(a0), b1(a1))

But this follows immediately from how we have defined the interpreta-
tion of app and λ, as required.

Ergo this concludes the interpretation of the product type inside the
internal model.
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3.4 Interpretation of Σ type

We will explain what the Σ type becomes through the interpretation and
validation of its rules.

• Let start from the Σ-formation rule.

Σ – formation:

A : set B(x) : set [x : A]

(Σx : A)B(x) : set

In higher order notation we can define (Σx : A)B(x) ≡ Σ(A,B), and
we are going to use the latter.

As usual we start from the interpretation of the premises:

A : set 


A0 : set
A1 : set
P (x0, x1) : set [x0 : A0, x1 : A1]

and the other is the normal interpretation of the judgment B(x) :
set [x : A]:

B0(x0) : set [x0 : A0]
B1(x1) : set [x1 : A1]
Q(x0, x1, p)(y0, y1) : set

[x0 : A0, x1 : A1, p : P (x0, x1), y0 : B0(x0), y1 : B1(x1)]

From these two triples we can get, by using the Σ-formation rule, the
following:

A0 : set B0(x0) : set [x0 : A0]
Σ-formation

Σ(A0, B0) : set

A1 : set B1(x1) : set [x1 : A1]
Σ-formation

Σ(A1, B1) : set
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and hence we can define:

Σ(A0, B0) ≡ Σ0(A0, B0)

Σ(A1, B1) ≡ Σ1(A1, B1)

where, as usual, Σ0(A0, B0) and Σ1(A1, B1) are the first two judgments
of the interpretation of Σ(A,B).

We should now define a set S of relations between Σ0(A0, B0) and
Σ1(A1, B1). Hence, given two elements c0 : Σ(A0, B0) and c1 : Σ(A1, B1),
we have to define what is a relation between them. We can use the pro-
jection fst and snd of the Σ type, defined in the book [Nordström et al., 1990],
to obtain the following elements:

fst(c0) : A0

snd(c0) : B0(fst(c0))

and the same for c1:
fst(c1) : A1

snd(c1) : B1(fst(c1))

Using these facts, from the premises

P (x0, x1) :set [x0 : A0, x1 : A1]

Q(x0, x1, p)(y0, y1) :set [x0 : A0, x1 : A1,

p : P (x0, x1), y0 : B0(x0), y1 : B1(x1)]

we get, by substitution:

P (fst(c0), fst(c1)) :set

Q(fst(c0), fst(c1), p)(snd(c0), snd(c1)) :set [p : P (fst(c0), fst(c1))]

So we can use the Σ-formation to create a new set that will be the set
of relations S(c0, c1):

P (fst(c0), fst(c1)) : set{
Q(fst(c0), fst(c1), p)(snd(c0), snd(c1)) : set

[p : P (fst(c0), fst(c1))]{
Σ(P (fst(c0), fst(c1)),

(p : P (fst(c0), fst(c1)))Q(fst(c0), fst(c1), p)(snd(c0), snd(c1))) : set
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So we can define the set of relations between c0 : Σ(A0, B0) and c1 :
Σ(A1, B1):

S(c0, c1)

putting it equivalent to:

Σ(P (fst(c0), fst(c1)), (p)Q(fst(c0), fst(c1), p)(snd(c0), snd(c1)))

Hence this completes the interpretation of the formation rule:

Σ(A,B) : set 


Σ(A0, B0) : set
Σ(A1, B1) : set
S(c0, c1) : set [c0 : Σ(A0, B0), c1 : Σ(A1, B1)]

• Now we have to interpret the introduction rule:

Σ – introduction:

A : set B(x) : set [x : A] a : A b : B(a)

〈a, b〉 : Σ(A,B)

So as usual from the interpretation of the premises we have to find an
interpretation of 〈a, b〉 : Σ(A,B) that shall have the following form:

〈a0, b0〉0 : Σ(A0, B0)
〈a1, b1〉1 : Σ(A1, B1)
〈a0, a1, ar, b0, b1, br〉r : S(〈a0, b0〉0, 〈a1, b1〉1)

The interpretation of A : set and B(x) : set [x : A] will be the same
that we used in the formation rule, so we are not going to write them
again. Instead the interpretation of b : B(a) and a : A are:

a : A 


a0 : A0

a1 : A1

ar : P (a0, a1)

b : B(a) 


b0 : B0(a0)
b1 : B1(a1)
br : Q(a0, a1, ar)(b0, b1)

At this point, taking the first judgment of each triple and using Σ-
introduction we get:
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A0 : set

B0(x0) : set [x0 : A0]

a0 : A0

b0 : B0(a0)
Σ-intro

〈a0, b0〉 : Σ(A0, B0)

and so we can define:
〈a0, b0〉0 ≡ 〈a0, b0〉

and the same reasoning holds for

〈a1, b1〉1 ≡ 〈a1, b1〉

Hence we get the first two judgments, and in order to obtain the third
one we just need to observe that we can use the following rule:

P (a0, a1) : set

Q(a0, a1, p)(b0, b1) : set [p : P (a0, a1)]

ar : P (a0, a1)

br : Q(a0, a1, ar)(b0, b1)
Σ-intro

〈ar, br〉 : Σ(P (a0, a1), (p)Q(a0, a1, p)(b0, b1))

and we just need to claim, by the definition we gave before for the set
S, that:

Σ(P (a0, a1), (p)Q(a0, a1, p)(b0, b1)) ≡ S(〈a0, b0〉, 〈a1, b1〉)

So we have found an element belonging to the set required, and we can
complete the interpretation by putting:

〈a0, a1, ar, b0, b1, br〉r ≡ 〈ar, br〉

which belong to the set:

S(〈a, b〉0, 〈a, b〉1)

as wanted.

• We try now to validate the elimination rule:

Σ – elimination:
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C(v) : set [v : Σ(A,B)]

c : Σ(A,B)

d(x, y) : C(〈x, y〉) [x : A, y : B(x)]

split(c, d) : C(c)

Again starting from the interpretation of the premises we have to find
an interpretation of split(c, d) : C(c) that shall be of this form:

split0(c0, d0) : C0(c0)
split1(c1, d1) : C1(c1)
splitr(c0, c1, cr, d0, d1, dr) : R(c0, c1, cr)(split0(c0, d0), split1(c1, d1))

where 
c0 : Σ(A0, B0)
c1 : Σ(A1, B1)
cr : S(c0, c1)

C0(v0) : set [v0 : Σ(A0, B0)]
C1(v1) : set [v1 : Σ(A1, B1)]
R(v0, v1, vr)(z0, z1) : set [v0 : Σ(A0, B0),
v1 : Σ(A1, B1), vr : S(v0, v1), z0 : C0(v0), z1 : C1(v1)]

are the usual interpretation of c : Σ(A,B) and C(v) : set [v : Σ(A,B)].
Instead, d(x, y) : C(〈x, y〉) [x : A, y : B(x)] becomes:

d0(x0, y0) : C0(〈x0, y0〉) [x0 : A0, y0 : B0(x0)]
d1(x1, y1) : C1(〈x1, y1〉) [x1 : A1, y1 : B1(x1)]
dr(p, q) : R(〈x0, y0〉, 〈x1, y1〉, 〈p, q〉)(d0(x0, y0), d1(x1, y1))

[x0 : A0, y0 : B0(x0), x1 : A1, y1 : B1(x1), p : P (x0, x1),
q : Q(x0, x1, p)(y0, y1), d0(x0, y0) : C0(〈x0, y0〉),
d1(x1, y1) : C1(〈x1, y1〉)]

Now, as usual, taking the first judgment of the interpretations of each
premise and applying Σ-elimination we get:

C0(v0) set [v0 : Σ0(A,B)]

c0 : Σ0(A,B)

d0(x0, y0) : C0(〈x0, y0〉) [x0 : A0, y0 : B0(x0)]

split(c0, d0) : C0(c0)
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and since the same holds even if we take the second judgment from
each triple, we can define:

split0(c0, d0) ≡ split(c0, d0) : C0(c0)

split1(c1, d1) ≡ split(c1, d1) : C1(c1)

It remains to find what should be splitr(c0, c1, cr, d0, d1, dr). First of all
we can substitute c0 : Σ(A0, B0) and c1 : Σ(A1, B1) in place of v0 and
v1 in the following judgment:

R(v0, v1, vr)(z0, z1) : set

where

[v0 : Σ(A0, B0), v1 : Σ(A1, B1), vr : S(v0, v1), z0 : C0(v0), z1 : C1(v1)]

obtaining:

R(c0, c1, vr)(z0, z1) : set [vr : S(c0, c1), z0 : C0(c0), z1 : C1(c1)] (3.7)

Moreover we can observe that from c0 : Σ(A0, B0) we obtain fst(c0) : A0

and snd(c0) : B0(fst(c0)), so if we substitute them inside the interpre-
tation of d(x, y) in place of x0 and y0 we get:

d0(fst(c0), snd(c0)) : C0(〈fst(c0), snd(c0)〉) = C0(c0)

and the same reasoning leads us to the following:

d1(fst(c1), snd(c1)) : C1(〈fst(c1), snd(c1)〉) = C1(c1)

Applying the same substitutions in dr we get:

dr(p, q) : R(c0, c1, 〈p, q〉)(d0(fst(c0), snd(c0)), d1(fst(c1), snd(c1))

with the context

[p : P (fst(c0), fst(c1)), q : Q(fst(c0), fst(c1), p)(snd(c0), snd(c1))]

Then we can even substitute the two elements z0 and z1 in the set (3.7),
obtaining:
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R(c0, c1, vr)(d0(fst(c0), snd(c0)), d1(fst(c1), snd(c1))) : set

when [vr : S(c0, c1)]

Hence we need just to remember that S is a Σ-type, and we should be
able to use the Σ-elimination (I will omit the context but is exactly the
same as we stated before):{

R(c0, c1, vr)(d0(fst(c0), snd(c0)), d1(fst(c1), snd(c1))) : set

[vr : S(c0, c1)]

cr : S(c0, c1){
dr(p, q) : R(c0, c1, 〈p, q〉)(d0(fst(c0), snd(c0)), d1(fst(c1), snd(c1))

[p : P (fst(c0), fst(c1)), q : Q(fst(c0), fst(c1), p)(snd(c0), snd(c1))]

split(cr, dr) : R(c0, c1, cr)(d0(fst(c0), snd(c0)), d1(fst(c1), snd(c1)))

Finally it is enough to recall the computation rule of split(c, d), i.e. we
have to evaluate first of all c that it will yields a canonical element of
the form 〈fst(c), snd(c)〉; then the value of split(c, d) will be the value
of the computation of d(fst(c), snd(c)).

So since before we defined:

split0(c0, d0) ≡ split(c0, d0) : C0(c0)

split1(c1, d1) ≡ split(c1, d1) : C1(c1)

we get that the set:

R(c0, c1, cr)(d0(fst(c0), snd(c0)), d1(fst(c1), snd(c1)))

is exactly:
R(c0, c1, cr)(split(c0, d0), split(c1, d1))

ergo split(cr, dr) is exactly an element in the set that we required and
so we can conclude the interpretation just putting:

splitr(c0, c1, cr, d0, d1, dr) ≡ split(cr, dr)

• Finally we need just to show that also the equality rule is valid. Σ

– equality:
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a : A
b : B(a)

C(v) set [v : Σ(A,B)]

d(x, y) : C(〈x, y〉) [x : A, y : B(x)]

split(〈a, b〉, d) = d(a, b) : C(〈a, b〉)

So we need to show that the following triple of equality is satisfied
starting from the interpretation of the premises:

split0(〈a0, b0〉, d0) = d0(a0, b0) : C0(〈a, b〉0)
split1(〈a1, b1〉, d1) = d1(a1, b1) : C1(〈a, b〉1)
splitr(〈a0, b0〉, 〈a1, b1〉, 〈ar, br〉, d0, d1, dr) = dr(ar, br) :
R(〈a0, b0〉, 〈a1, b1〉, 〈ar, br〉)(d0(a0, b0), d1(a1, b1))

But this follows immediately from how we have defined the interpreta-
tion of split, and from its standard computation. Hence we leave this
easy check to the reader.

Finally even the Σ-type is interpreted in our internal model.
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3.5 Interpretation of N
Following the same pattern of the finite types, we show now the interpre-

tation of the N type.

• The formation rule:
N : set

becomes the following triple:
N : set
N : set
Id(N, x0, x1) : set [x0, x1 : N]

• The introduction rules:

0 : N a : N
succ(a) : N

we can immediately define the interpretation of the canonical constant
0 just putting: 

0 : N
0 : N
r(0) : Id(N, 0, 0)

The second rule’s premise give us the following triple:
a0 : N
a1 : N
ar : Id(N, a0, a1)

from which we can get immediately succ(a0) : N and succ(a1) : N. We
need now to construct an element in the set Id(N, succ(a0), succ(a1))
and we can do it using the Id-elimination:

Id – elimination:

a0 : N
a1 : N

ar : Id(N, a0, a1)

C(x, y, z) : set [x, y : N, z : Id(N, x, y)]

f(x) : C(x, x, r(x)) [x : N]

idpeel(ar, f) : C(a0, a1, ar)
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where in place of C we have (x, y, z)Id(N, succ(x), succ(y)) and in place
of f(x) we have r(succ(x)). So we get the following conclusion:

idpeel(ar, (x)r(succ(x))) : Id(N, succ(a0), succ(a1))

as required.

Hence the interpretation of succ(a) : N becomes:
succ0(a0) ≡ succ(a0) : N
succ1(a1) ≡ succ(a1) : N
succr(a0, a1, ar) ≡ idpeel(ar, (x)r(succ(x))) : Id(N, succ(a0), succ(a1))

• Now we have to validate the elimination rules:

N – Elimination:

c : N
C(v) : set [v : N]

d : C(0)

e(x, y) : C(succ(x)) [x : N, y : C(x)]

natrec(c, d, e) : C(c)

First of all we need to interpret the premises, and from these interpre-
tations, we should be able to get an interpretation for the conclusion.
Well, each one of the premises will become a triple, as follow:

c : N 


c0 : N
c1 : N
cr : Id(N, c0, c1)

C(v) : set [v : N] becomes:
C0(v0) : set [v0 : N]
C1(v1) : set [v1 : N]
Q(v0, v1, p)(w0, w1) : set

[v0, v1 : N, p : Id(N, v0, v1), w0 : C0(v0), w1 : C1(v1)]

d : C(0) 


d0 : C0(0)
d1 : C1(0)
dr : Q(0, 0, r(0))(d0, d1)

and the last one, e(x, y) : C(succ(x)) [x : N, y : C(x)], becomes:
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

e0(x0, y0) : C0(succ(x0)) [x0 : N, y0 : C0(x0)]
e1(x1, y1) : C1(succ(x1)) [x1 : N, y1 : C1(x1)]
er(x0, x1, xr, y0, y1, yr) :
Q(succ(x0), succ(x1), idpeel(xr, (x)r(succ(x))))(e0(x0, y0), e1(x1, y1))

[x0 : N, y0 : C0(x0), x1 : N, y1 : C1(x1),
xr : Id(N, x0, x1), yr : Q(x0, x1, xr)(y0, y1)]

Now, using these ones, we should be able to construct an interpretation
for the conclusion:

natrec(c, d, e) : C(c)

that it will be of the following form:
k0 : C0(c0)
k1 : C1(c1)
kr : Q(c0, c1, cr)(k0, k1)

where (c0, c1, cr) is the triple of elements getting by interpretation of
c : N.

Let’s begin to construct k0 and k1. If we pick respectively the first and
the second judgment from all the triples of the interpretations of the
premises we get all what is needed to apply the normal N-Elimination
rule, i.e.

c0 : N
C0(v0) : set [v0 : N]

d0 : C0(0)

e0(x0, y0) : C0(succ(x0)) [x0 : N, y0 : C0(x0)]
:N-El

natrec(c0, d0, e0) : C0(c0)

c1 : N
C1(v1) : set [v1 : N]

d1 : C1(0)

e1(x1, y1) : C1(succ(x1)) [x1 : N, y1 : C1(x1)]
:N-El

natrec(c1, d1, e1) : C1(c1)

Hence we can just put:

k0 ≡ natrec(c0, d0, e0)
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k1 ≡ natrec(c1, d1, e1)

and we have exactly the first two judgments that we were looking for.

It remains to make the last judgment:

kr : Q(c0, c1, cr)(k0, k1)

where

[c0 : N, c1 : N, cr : Id(N, c0, c1), k0 : C0(c0), k1 : C1(c1)]

In order to find an element of this set, we will use the Id-Elimination
rule, that we recalled before.

Now to be able to use this rule we must take all the judgments of the
interpretation of the premise c : N and we get:

c0 : N c1 : N cr : Id(N, c0, c1)

that are similar to the first three premises in the Id-elimination, and
to get something similar to the fourth one we have to work on

Q(v0, v1, p)(w0, w1) : set

in the context:

[v0 : N, v1 : N, p : Id(N, v0, v1), w0 : C0(v0), w1 : C1(v1)]

obtained from the interpretation of C(v) : set [v : N]. In order to
obtain what we wanted, we have to avoid the dependence by w0 and
w1, and we can do it by instantiating them. Hence we have to choose
some appropriate elements of, respectively, C0(v0) and C1(v1), when v0

and v1 are generic elements of N. From what we said above for k0 and
k1 we can immediately put:

w0 = natrec(v0, d0, e0) : C0(v0)

w1 = natrec(v1, d1, e1) : C1(v1)

In this way we get a similar fourth premise of the Id-elimination, since
we do not have anymore the dependence of w0 and w1:

Q(v0, v1, p)(natrec(v0, d0, e0), natrec(v1, d1, e1)) : set
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under the assumptions

[v0 : N, v1 : N, p : Id(N, v0, v1)]

Now it remains just to find something similar to the last premise:

f(x) : C(x, x, r(x)) [x : A]

but where instead of C(x, x, r(x)) [x : A] we have:

Q(v, v, r(v))(natrec(v, d0, e0), natrec(v, d1, e1)) [v : N].

We may do this, exactly in the same way as we built k0 and k1, using
the N-Elimination rule, but in order to use it we have to adjust the
following judgment:

er(x0, x1, xr, y0, y1, yr) :
Q(succ(x0), succ(x1), idpeel(xr, (x)r(succ(x))))(e0(x0, y0), e1(x1, y1))

[x0 : N, y0 : C0(x0), x1 : N, y1 : C1(x1),
xr : Id(N, x0, x1), yr : Q(x0, x1, xr)(y0, y1)]

where we have x0 = x1 = v.

We shall do this in a way that it will depend only on two variables:
v : N and yr : Q(v, v, r(v))(y0, y1). So we need just to choose xr =
r(v) : Id(N, v, v) and to take two elements in the sets C0(v) and C1(v)
in such way that we can substitute y0 and y1. From what we said above
for k0 and k1 a natural choice it will be:

y0 = natrec(v, d0, e0) : C0(v)

y1 = natrec(v, d1, e1) : C1(v)

Moreover, by using the following equivalence:

idpeel(r(v), (x)r(succ(x))) = r(succ(v))

obtained readily applying Id-elimination, we get:

er(v, v, r(v), natrec(v, d0, e0), natrec(v, d1, e1), yr) :
Q(succ(v), succ(v), r(succ(v)))
(e0(v, natrec(v, d0, e0)), e1(v, natrec(v, d1, e1)))

[v : N, yr : Q(v, v, r(v))(natrec(v, d0, e0), natrec(v, d1, e1))]
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It suffices now to note that, from the natrec computation (N-equality):

e0(v, natrec(v, d0, e0)) = natrec(succ(v), d0, e0)

e1(v, natrec(v, d1, e1)) = natrec(succ(v), d1, e1)

and so we found an element in the set, when [v : N],:

Q(succ(v), succ(v), r(succ(v)))(natrec(succ(v), d0, e0),natrec(succ(v), d1, e1))

as required.

In order to lighten the syntax we define g(x, yr) to be equivalent to:

er(x, x, r(x), natrec(x, d0, e0), natrec(x, d1, e1), yr)

Finally we are able to apply N-elimination rule with the following
premises:

c : N
Q(v, v, r(v))(natrec(v, d0, e0), natrec(v, d1, e1)) : set [v : N]

dr : Q(0, 0, r(0))(natrec(0, d0, e0), natrec(0, d1, e1))
g(x, yr) : Q(succ(x), succ(x), r(succ(x)))

(natrec(succ(x), d0, e0), natrec(succ(x), d1, e1))

[x : N, yr : Q(x, x, r(x))(natrec(x, d0, e0), natrec(x, d1, e1))]
:N-El

natrec(c, dr, g) : Q(c, c, r(c))(natrec(c, d0, e0), natrec(c, d1, e1))

The premises of this rules are correct since when

(natrec(0, d0, e0), natrec(0, d1, e1))

are evaluated yield the couple of element,

(d0, d1)

and correctly
dr : Q(0, 0, r(0))(d0, d1)

and analogous for gr, for the explanation given above.

So we can use the rule to obtain the conclusion:

natrec(c, dr, g) : Q(c, c, r(c))(natrec(c, d0, e0), natrec(c, d1, e1))
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from which we immediately get by abstraction, when x : N:

natrec(x, dr, g) : Q(x, x, r(x))(naterc(x, d0, e0), natrec(x, d1, e1))

that is, exactly, the last premise that we needed to apply the Id-
elimination (is the f(x), in the Id-elimination rule, that we were looking
for).

Hence now, we have just to put all together:

c0 : N
c1 : N

cr : Id(N, c0, c1){
Q(x0, x1, xr)(natrec(x0, d0, e0), natrec(x1, d1, e1)) : set

[x0, x1 : N, xr : Id(N, x0, x1)]
natrec(x, dr, g) :

Q(x, x, r(x))(natrec(x, d0, e0), natrec(x, d1, e1))

[x : N]{
idpeel(cr, (x)natrec(x, dr, g)) :

Q(c0, c1, cr)(natrec(c0, d0, e0), natrec(c1, d1, e1))

Note that before we decided to put:

k0 ≡ natrec(c0, d0, e0)

k1 ≡ natrec(c1, d1, e1)

and so we have that:

idpeel(cr, (x)natrec(x, dr, g)) : Q(c0, c1, cr)(k0, k1),

hence, we can finally define kr in the following way:

kr ≡ idpeel(cr, (x)natrec(x, dr, g)) : Q(c0, c1, cr)(k0, k1).

In conclusion we have the complete interpretation of natrec(c, d, e) :
C(c): 

natrec(c0, d0, e0) : C0(c0)
natrec(c1, d1, e1) : C1(c1)
idpeel(cr, (x)natrec(x, dr, g)) :
Q(c0, c1, cr)(natrec(c0, d0, e0), natrec(c1, d1, e1))
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• In the end we have to check that the equality rule is valid. For the N
type we have the following two equality rules:

N – Eqaulity:

C(v) : set [v : N]

d : C(0)

e(x, y) : C(succ(x)) [x : N, y : C(x)]

natrec(0, d, e) = d : C(0)

C(v) : set [v : N]

a : N
d : C(0)

e(x, y) : C(succ(x)) [x : N, y : C(x)]

natrec(succ(a), d, e) = e(a, natrec(a, d, e)) : C(succ(a))

We start giving an explanation for the first one. As usual we have to
give the interpretation of the premises and from these try to build three
equality judgments that will form the interpretation for the conclusion.

The interpretations of the premises are exactly the same we used before,
so we will not write them again.

In the last part we found the interpretation of natrec(c, d, e) : C(c),
that is: 

natrec(c0, d0, e0) : C0(c0)
natrec(c1, d1, e1) : C1(c1)
idpeel(cr, (x)natrec(x, dr, g)) :
Q(c0, c1, cr)(natrec(c0, d0, e0), natrec(c1, d1, e1))

so we have just to substitute c with 0 and switch their interpretations,
i.e. the triple (c0, c1, cr) will become (0, 0, r(0)). So the interpretation
of natrec(0, d, e) : C(0) is:

natrec(0, d0, e0) : C0(0)
natrec(0, d1, e1) : C1(0)
idpeel(r(0), (x)natrec(x, dr, g)) :
Q(0, 0, r(0))(natrec(0, d0, e0), natrec(0, d1, e1))
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that from the equality rules of Id and N types it is equivalent to:
d0 : C0(0)
d1 : C1(0)
dr : Q(0, 0, r(0))(d0, d1)

which is exactly the interpretation of d : C(0), as required.

We will show now that we will not be able to validate the second
equality rule.

What we should validate is the triple of equalities coming from the
following judgment:

natrec(succ(a), d, e) = e(a, natrec(a, d, e)) : C(succ(a))

i.e. for all what we said during the previous points:

natrec(succ(a0), d0, e0) = e0(a0, natrec(a0, d0, e0)) : C0(c0) (3.8a)

natrec(succ(a1), d1, e1) = e1(a1, natrec(a1, d1, e1)) : C1(c1) (3.8b)

idpeel(idpeel(ar, (x)r(succ(x))), (x)natrec(x, dr, g)) = (3.8c)

er(a0, a1, ar, natrec(a0, d0, e0), natrec(a1, d1, e1), idpeel(ar, (x)natrec(x, dr, g))) :

Q(a0, a1, ar)(natrec(a0, d0, e0), natrec(a1, d1, e1))

We derive readily (3.8a) and (3.8b) just by applying the N-equality,
but on the other side we are not able to derive (3.8c). The reason is
that ar : Id(N, a0, a1), which we need to compute idpeel, is a generic
element of that set, and we do not know which canonical element it
will yield in its computation. Hence we cannot state the last equality
in our model.

Ergo this show the failure to complete an interpretation of N inside this
internal model.

We have now headed the first concrete problem of this model, which
comes from the generality of the interpretation of the judgment a : N, and
the impossibility to argue with it inside the intentional equality.

Probably there are different ways to avoid this obstacle, but we will show
in the next chapter a possible interpretation in an extended type theory that
will make everything working in a natural and easier way; although I’m not
asserting the impossibility to find a validation of the natural numbers type.
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3.6 Interpretation of Equality type

In this section we are going to explain what could be an interpretation of
the equality type (intensional), and at the same time we will try to validate
it, through the interpretation of its introduction, elimination, and equality
rules.

During the validation we are going to find different obstacles and we will
show how to avoid them, anyway we will arrive at a dead-end problem which
implies the failure of this interpretation in an internal model, like for the
natural number type.

• We begin with the formation rule:

Id – Formation:

A : set a : A b : A
Id(A, a, b) : set

we try to built an interpretation of

Id(A, a, b) : set (3.9)

The premises are interpreted, respectively, in the following triple:
A0 : set
A1 : set
Ar : rel(A0, A1)


a0 : A0

a1 : A1

ar : Ar(a0, a1)


b0 : A0

b1 : A1

br : Ar(b0, b1)

Now taking from each triple the first (respectively the second) judgment
and then applying the Id-formation rule, we get:

Id(A0, a0, b0) : set

Id(A1, a1, b1) : set

which really seem natural candidates to be the first two judgments for
the interpretation we are looking for.

At this point we shall define, what is a set of relations between them.
What we would like to do is transport ar : A(a0, a1) and br : Ar(b0, b1)
into the same set, in order to be able to make a comparison between
them. The matter is, at the same time, trying to keep some kind of
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symmetric property: for example the transportation of ar : Ar(a0, a1)
into Ar(b0, b1), or viceversa, doesn’t sound correct, since all the con-
struction would lose its symmetry. The symmetric property might be
possibly important in a further interpretation of the concept of basic
pair, when for example we would deal with all the category of the Basic
Picture.

So what I suggest to do is the following idea:

(a) trying to define a set of the type Ar(x0, y0) [x0 : A0, x1 : A1]. So
what we need are two elements respectively inside A0 and A1

(b) then trying to transport ar and br into this set, in a symmetric
way.

In order to solve the first problem the best thing to do is to use the
other information we have: c0 : Id(A0, a0, b0) and c1 : Id(A1, a1, b1). A
way to do this is using the Id-elimination rule, so we can to introduce
the following two elements:

a0, b0 : A0

c0 : Id(A0, a0, b0)

A0 : set [x0, y0 : A0, z0 : Id(A0, x0, y0)]

x0 : A0 [x0 : A0, r(x0) : Id(A0, x0, x0)]
Id-el

idpeel(c0, (x0)x0) : A0

a1, b1 : A1

c1 : Id(A1, a1, b1)

A1 : set [x1, y1 : A1, z1 : Id(A1, x1, y1)]

x1 : A1 [x1 : A1, r(x1) : Id(A1, x1, x1)]
Id-el

idpeel(c1, (x1)x1) : A1

So we can just select the set:

Ar(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1)) (*)

as the one in which we want to transport ar and br, in order to compare
them.

But, how to do this?
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If we want to redirect the set Ar(a0, a1) into the set (*) we just need
to do two transportation: the first one:

Ar(a0, a1) −→ Ar(idpeel(c0, (x0)x0), a1) (3.10)

and the second one:

Ar(idpeel(c0, (x0)x0), a1) −→ Ar(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1))
(3.11)

We can make (3.10) by choosing in the Id-elimination rule, regarding
the set A0, the following:

C(x, y, z) ≡ Ar(x, a1) −→ Ar(idpeel(z, (x0)x0), a1) (3.12)

d(x) ≡ λw.w : Ar(x, a1) −→ Ar(idpeel(r(x), (x0)x0), a1)

In this way we get: idpeel(c0, d) : C(a0, b0, c0) that by the previous
equivalence is:

idpeel(c0, (x)λw.w) : Ar(a0, a1) −→ Ar(idpeel(c0, (x0)x0), a1)

So we can define a new operator:

Jc0(q) = apply(idpeel(c0, (x)λw.w), q) [q : Ar(a0, a1)]

that it will be an element in the set Ar(idpeel(c0, (x0)x0), a1).

A really important observation is that, the value of the operator Jc0
does not depend on c0, since independently by the canonical element
obtained in the computation of c0, the operator Jc0(q) will keep the
same value as q. So for this reason it is correct to call it a transportation
operator, since what is doing is just keep an element from a set and
put it inside a different one, without changing its value.

Now in order to do the (3.11) transportation we can always using Id-
elimination, but this time regarding the set A1, with the following
equivalence:{
C(x, y, z) ≡
Ar(idpeel(c0, (x0)x0), x) −→ Ar(idpeel(c0, (x0)x0), idpeel(z, (x1)x1)

(3.13){
d(x) ≡ λv.v :

Ar(idpeel(c0, (x0)x0), x) −→ Ar(idpeel(c0, (x0)x0), idpeel(r(x), (x1)x1))

(3.14)
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obtaining:{
idpeel(c1, (x)λv.v) :

Ar(idpeel(c0, (x0)x0), a1) −→ Ar(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1))

and defining a new operator:

Tc1(p) = apply(idpeel(c1, (x)λv.v), p) [p : Ar(idpeel(c0, (x0)x0), a1)]

The same observation we did before for the previous operator holds
also for this one. Indeed Tc1(p) just changes the set of the element p,
but without modifying its value.

Hence collecting all these observations we can make the following as-
sumption:

Tc1(Jc0(q)) = q ∀q : Ar(a0, a1), c0 : Id(A0, a0, b0), c1 : Id(A1, a1, b1)
(3.15)

Here we have first problem since (3.15) could be true (and probably it
is) in extensional type theory, but probably not in the intensional the-
ory. The fact is that we will need it later when we are going to interpret
the elimination rule. Hence in order to succeed in the interpretation of
the Id type we have to, for this reason, consider an extensional theory
of types, going against our initial intentions.

Now applying this two operators to ar we get exactly what we were
looking for:

Tc1(Jc0(ar)) : Ar(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1)) (3.16)

With an analogous reasoning we can work with the transportation of
br: it is sufficient just change to in the right-hand side of the definitions
(3.12) and (3.13) the variable x with the variable y. In this way we will
get two new similar operators Ic0(◦) and Sc1(◦) such that:

Sc1(Ic0(br)) : Ar(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1)) (3.17)

as required.

Now using (3.16) and (3.17) we could define as the set of relation be-
tween Id(A0, a0, b0) and Id(A1, a1, b1) the following:

Id(Ar(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1)), Tc1(Jc0(ar)), Sc1(Ic0(br)))

under the assumption c0 : Id(A0, a0, b0) and c1 : Id(A1, a1, b1), further-
more we recall that ar : Ar(a0, a1) and br : Ar(b0, b1). Finally this
concludes our interpretation of (3.9).
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• Now we check the validation of the other rules. First of all we consider
the introduction rule:

Id – Introduction:

a : A
r(a) : Id(A, a, a)

We shall now find an interpretation, starting from the one of a : A
shown before, of r(a) : Id(A, a, a) that should be of the following form:
r0(a0) : Id(A0, a0, a0)

r1(a1) : Id(A1, a1, a1)

rr(a0, a1, ar) : Id(Ar(idpeel(r0(a0), (x0)x0), idpeel(r1(a1), (x1)x1)),

Tr1(a1)(Jr0(a0)(ar)), Sr1(a1)(Ir0(a0)(ar)))

(**)

Easily we can put, by Id-introduction:

r0(a0) ≡ r(a0) : Id(A0, a0, a0)

r1(a1) ≡ r(a1) : Id(A1, a1, a1)

From these definitions we get immediately, by Id-equality, and by the
definitions of the operators explained in the previous stage:

idpeel(r0(a0), (x0)x0) ≡ idpeel(r(a0), x0) = a0 : A0

idpeel(r1(a1), (x1)x1) ≡ idpeel(r(a1), x1) = a1 : A1

Tr1(a)(Jr0(a)(ar)) ≡ Tr(a1)(Jr(a0)(ar)) = ar : Ar(a0, a1)

Sr1(a)(Ir0(a)(ar)) ≡ Sr(a1)(Ir(a0)(ar)) = ar : Ar(a0, a1)

and so the last element that we are searching is in the set:

Id(Ar(idpeel(r0(a0), (x0)x0), idpeel(r1(a1), (x1)x1), ar, ar)

which for all what we said is:

Id(Ar(a0, a1), ar, ar)

hence we can just take:

rr(a0, a1, ar) ≡ r(ar) : Id(Ar(a0, a1), ar, ar)

and finally we have concluded the introduction rule’s validation.
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• Now we have to validate the elimination rule, which we recall:

Id – Elimination:

a, b : A

c : Id(A, a, b)

C(x, y, z) : set [x, y : A, z : Id(A, x, y)]

d(x) : C(x, x, r(x)) [x : A]

idpeel(c, d) : C(a, b, c)

First of all we need to interpret the premises, and from these interpre-
tations, we shall be able to get an interpretation for the conclusion.
Well, each one of the premises will become a triple, as follows:

c : Id(A, a, b) 


c0 : Id(A0, a0, b0)
c1 : Id(A1, a1, b1)
cr : Id(Ar(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1)),
Tc1(Jc0(ar)), Sc1(Ic0(br)))

C(x, y, z) : set [x, y : A, z : Id(A, x, y)] becomes:

C0(x0, y0, z0) : set [x0, y0 : A0, z0 : Id(A0, x0, y0)]
C1(x1, y1, z1) : set [x1, y1 : A1, z1 : Id(A1, x1, y1)]
Cr(x0, x1, xr, y0, y1, yr, z0, z1, zr)(v0, v1) : set

[x0 : A0, x1 : A1, xr : Ar(x0, x1), y0 : A0, y1 : A1, yr : Ar(y0, y1),
z0 : Id(A0, x0, y0), z1 : Id(A1, x1, y1),
zr : Id(Ar(idpeel(z0, (x0)x0), idpeel(z1, (x1)x1)), Tz1(Jz0(xr)), Sz1(Iz0(yr))),
v0 : C0(x0, y0, z0), v1 : C1(x1, y1, z1)]

And the last one, d(x) : C(x, x, r(x)) [x : A], gives the following triple:
d0(x0) : C0(x0, x0, r(x0)) [x0 : A0]
d1(x1) : C1(x1, x1, r(x1)) [x1 : A1]
dr(x0, x1, xr) : Cr(x0, x1, xr, x0, x1, xr, r(x0), r(x1), r(xr))(d0(x0), d1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]

Hence using these ones we have to construct an interpretation for the
conclusion:

idpeel(c, d) : C(a, b, c)

that will be of the following form:
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
k0 : C0(a0, b0, c0)
k1 : C1(a1, b1, c1)
kr : Cr(a0, a1, ar, b0, b1, br, c0, c1, cr)(k0, k1)

where the triple (a0, a1, ar) and (b0, b1, br) are the usual interpretations
of a : A and b : A.

Let’s begin to construct k0 and k1. If we pick respectively the first and
the second judgment from all the triples of the interpretations of the
premises we get what is needed to apply the Id-Elimination rule, i.e.

a0, b0 : A0

c0 : Id(A0, a0, b0)

C0(x0, y0, z0) : set [x0, y0 : A0, z0 : Id(A0, x0, y0)]

d0(x0) : C0(x0, x0, r(x0)) [x0 : A0]
:Id-El

idpeel(c0, d0) : C0(a0, b0, c0)

a1, b1 : A1

c1 : Id(A1, a1, b1)

C1(x1, y1, z1) : set [x1, y1 : A1, z1 : Id(A1, x1, y1)]

d1(x1) : C1(x1, x1, r(x1)) [x1 : A1]
:Id-El

idpeel(c1, d1) : C1(a1, b1, c1)

Hence we can just put:

k0 ≡ idpeel(c0, d0) (3.18)

k1 ≡ idpeel(c1, d1) (3.19)

and we have exactly the first two judgments we were looking for.

Now it remains to construct the last judgment:

kr : Cr(a0, a1, ar, b0, b1, br, c0, c1, cr)(k0, k1)

The idea is to work on the following:

dr(x0, x1, xr) : Cr(x0, x1, xr, x0, x1, xr, r(x0), r(x1), r(xr))(d0(x0), d1(x1))
(3.20)

in the context:
[x0 : A0, x1 : A1, xr : Ar(x0, x1)]
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in such a way to be able to transport the element in (3.20) into the set

Cr(a0, a1, ar, b0, b1, br, c0, c1, cr)(k0, k1)

But, how can we do this? What we need is to find a set from which
starting and then make three transportation.

◦ First of all we can act like we did during the formation rule: i.e.
substituting the elements x0, x1, xr inside (3.20) with respectively:

idpeel(c0, (x0)x0) : A0

idpeel(c1, (x1)x1) : A1

idpeel(cr, (xr)xr) : Ar(idpeel(c0, (x1)x1), idpeel(c1, (x1)x1))

obtaining the following judgment

dr(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1), idpeel(cr, (xr)xr)) :

Cr(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

idpeel(c0, (x0)x0), idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

r(idpeel(c0, (x0)x0)), r(idpeel(c1, (x1)x1)), r(idpeel(cr, (xr)xr)))

(d0(idpeel(c0, (x0)x0)), d1(idpeel(c1, (x1)x1)))

(3.21)

◦ Now starting from (3.21) we can do the first transportation: just
choosing in the Id-elimination rule, with respect to the set A0, in
place of C(x, y, z) and d(x) : C(x, x, r(x)) the following:

C(x, y, z) ≡
Cr(idpeel(z, (x0)x0), idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

idpeel(z, (x0)x0), idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

r(idpeel(z, (x0)x0)), r(idpeel(c1, (x1)x1)), r(idpeel(cr, (xr)xr)))

(d0(idpeel(z, (x0)x0)), d1(idpeel(c1, (x1)x1)))

−→
Cr(x, idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

y, idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

z, r(idpeel(c1, (x1)x1)), r(idpeel(cr, (xr)xr)))

(idpeel(z, d0), d1(idpeel(c1, (x1)x1)))

(3.22)
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Note that when we consider the set C(x, x, r(x)) by the compu-
tation rule of idpeel we get exactly the same set in the right-hand
side and left-hand of the arrow. So the natural choice of the ele-
ment d(x) : C(x, y, z) will be the identity element of this product
type, and we can call it λw1.w1.

So we can apply the Id-elimination rule with c0 : Id(A0, a0, b0)
obtaining:

idpeel(c0, (x)λw1.w1) :

Cr(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

idpeel(c0, (x0)x0), idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

r(idpeel(c0, (x0)x0)), r(idpeel(c1, (x1)x1)), r(idpeel(cr, (xr)xr)))

(d0(idpeel(c0, (x0)x0)), d1(idpeel(c1, (x1)x1)))

−→
Cr(a0, idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

b0, idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

c0, r(idpeel(c1, (x1)x1)), r(idpeel(cr, (xr)xr)))

(idpeel(c0, d0), d1(idpeel(c1, (x1)x1)))

(3.23)

Now using the Π-elimination rules on the element of (3.23) we are
able to introduce this new operator:

T 1
c0

(q1) ≡apply(idpeel(c0, (x)λw1.w1), q1) :

Cr(a0, idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

b0, idpeel(c1, (x1)x1), idpeel(cr, (xr)xr),

c0, r(idpeel(c1, (x1)x1)), r(idpeel(cr, (xr)xr)))

(idpeel(c0, d0), d1(idpeel(c1, (x1)x1)))

(3.24)

when q1 is an element of the left-hand arrow’s side of (3.23).

This new operator is exactly the first operator that we are looking
for, where instead of q1 we can use the element in (3.21).

◦ Now we need in an analogous way to do another transportation,
but where the new C(x, y, z), in the Id-elimination rule, this time
concerning the set A1, it will be the following:
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C(x, y, z) ≡
Cr(a0, idpeel(z, (x1)x1), idpeel(cr, (xr)xr),

b0, idpeel(z, (x1)x1), idpeel(cr, (xr)xr),

c0, r(idpeel(z, (x1)x1)), r(idpeel(cr, (xr)xr)))

(idpeel(c0, d0), d1(idpeel(z, (x1)x1)))

−→
Cr(a0, x, idpeel(cr, (xr)xr), b0, y, idpeel(cr, (xr)xr),

c0, z, r(idpeel(cr, (xr)xr)))(idpeel(c0, d0), idpeel(z, d1))

(3.25)

Reasoning in the same way as before we can take as d(x) : C(x, x, r(x))
the identity element that we will call this time λw2.w2. Hence, as
before, we can introduce a new operator:

T 2
c1

(q2) ≡apply(idpeel(c1, (x)λw2.w2), q2) :

Cr(a0, a1, idpeel(cr, (xr)xr), b0, b1, idpeel(cr, (xr)xr),

c0, c1, r(idpeel(cr, (xr)xr)))(idpeel(c0, d0), idpeel(c1, d1))

(3.26)

when q2 is an element of the left-hand arrow’s side of (3.25),where
instead of z we have c1, which is the same set where T 1

c0
(q1) be-

longs.

◦ Again we can do the last transportation, using the Id- elimination
rule, this time with respect to the setAr(idpeel(c0, (x0)x0), idepeel(c1, (x1)x1))
where:

C(x, y, z) ≡
Cr(a0, a1, idpeel(z, (xr)xr), b0, b1, idpeel(z, (xr)xr),

c0, c1, r(idpeel(z, (xr)xr)))(idpeel(c0, d0), idpeel(c1, d1))

−→
Cr(a0, a1, x, b0, b1, y, c0, c1, z)

((idpeel(c0, d0), idpeel(c1, d1))

(3.27)

Also this time, reasoning in the same way as in the first point
we can take as d(x) : C(x, x, r(x)) the identity element that we
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will call this time λw3.w3, since the left and right-hand sides of
the arrow in the set C(x, x, r(x)) are exactly the same. Hence as
before we can introduce a new operator:

T 3
cr(q3) ≡apply(idpeel(cr, (x)λw3.w3), q3) :

Cr(a0, a1, Tc1(Jc0(ar)), b0, b1, Sc1(Ic0(br)),

c0, c1, cr)(idpeel(c0, d0), idpeel(c1, d1))

(3.28)

when q3 is an element of the left-hand arrow’s side of (3.27),where
instead of z we have cr, that is the same set where T 2

c1
(q2) belongs.

Now we can just observe that applying this operator:

T 3
cr(T

2
c1

(T 1
c0

(−)))

to the element in (3.21), i.e.

dr(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1), idpeel(cr, (xr)xr))

we get an element in the set:

Cr(a0, a1, Tc1(Jc0(ar)), b0, b1, Sc1(Ic0(br)), c0, c1, cr)(idpeel(c0, d0), idpeel(c1, d1))
(3.29)

At this point arises the necessity to use the assumption (3.15)
stated before, since we would assert the following equalities:

Tc1(Jc0(ar)) = ar

Sc1(Ic0(br)) = br

but, as explained above, (3.15) is true probably only in an exten-
sional type theory. Anyway assuming it true, it is enough to note
that (3.29) is the same as:

Cr(a0, a1, ar, b0, b1, br, c0, c1, cr)(idpeel(c0, d0), idpeel(c1, d1))

that is exactly what we wanted.

Finally we have complete the validation of the Id-elimination rule, us-
ing as interpretation of idpeel(c, d) : C(a, b, c), the following triple:

idpeel(c0, d0) : C0(a0, b0, c0)

idpeel(c1, d1) : C1(a1, b1, c1)

T 3
cr(T

2
c1

(T 1
c0

(dr(idpeel(c0, (x0)x0), idpeel(c1, (x1)x1), idpeel(cr, (xr)xr))))) :

Cr(a0, a1, Tc1(Jc0(ar)), b0, b1, Sc1(Ic0(br)), c0, c1, cr)

(idpeel(c0, d0), idpeel(c1, d1))
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• The Id-equality rule is automatically satisfied just observing that, from
the validation of the previous rules, we got that the equality idpeel(r(a), d) :
C(a, a, r(a)) is interpreted in the following triple:

idpeel(r(a0), d0) : C0(a0, a0, r(a0))

idpeel(r(a1), d1) : C1(a1, a1, r(a1))

T 3
r(ar)(T 2

r(a1)(T 1
r(a0)(dr(idpeel(r(a0), (x0)x0),

idpeel(r(a1), (x1)x1), idpeel(r(ar), (xr)xr))))) :

Cr(a0, a1, Tr(a1)(Jr(a0)(ar)), a0, a1, Sr(a1)(Ir(a0)(ar)), r(a0), r(a1), r(ar))

(idpeel(r(a0), d0), idpeel(r(a1), d1))

which is equivalent by Id-equality to:
d0(a0) : C0(a0, a0, r(a0))
d1(a1) : C1(a1, a1, r(a1))
T 3
r(ar)(T 2

r(a1)(T 1
r(a0)(dr(a0, ar, ar)))) :

Cr(a0, a1, Tr(a1)(Jr(a0)(ar)), a0, a1, Sr(a1)(Ir(a0)(ar)), r(a0), r(a1), r(ar))
(d0(a0), d1(a1))

and by the evaluation of all the operators we get:
d0(a0) : C0(a0, a0, r(a0))
d1(a1) :: C1(a1, a1, r(a1))
dr(a0, ar, ar) :
Cr(a0, a1, ar, a0, a1, ar, r(a0), r(a1), r(ar))(d0(a0), d1(a1))

that is exactly the interpretation of d(a) : C(a, a, r(a)), as required.

Ergo this conclude the validation of Id-type.
We want just claim, another time, that this interpretation is valid only

assuming the assumption (3.15), and this is probably true only in an ex-
tensional type theory. So since our initial purpose was to stay inside an
intensional theory this can be consider like a failure, and a problem to solve
in another way.

A possible different solution, in order to stay inside the intensional type
theory, might be obtained using the result contained in [Streicher, 1993],
like for example the K-axiom, which is a computational axiomatization of
uniqueness of identity proof-objects (UIP in [Palmgren, 2012]).

Anyway as stated in the introduction, we have just pointed out the prob-
lem giving a possible solution, even if it is not completely satisfactory.
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3.7 Interpretation of the disjoint union

Concerning the disjoint union type, +, we will immediately face the main
problem of defining the relations set between two generic + types. This prob-
lem regards the lack of symmetry of many possible constructions or, more
generally, the necessity to give a definition by cases, making more difficult
all the other interpretations of its canonical and non-canonical constants.
Generally speaking, the symmetry properties for this interpretation is a very
important fact since it is the base, and one of its strengths, in the devel-
opment of topology in the Basic Picture [Sambin, 201 ]. So in this first
confrontation with the basic pair is important, if not essential, try to keep as
much as possible these properties, since this will facilitate, maybe afterwards,
further rapprochement between the two theories. Hence, as we said in the
introduction of this chapter, we just present here the problem trying to give
some possible ideas on how to solve it, but without developing them.

Finally we can just point out some of these ideas arguing on the validation
of the formation rule.

• + – formation:

A : set B : set
A+B : set

where in place of A+B we can use sometimes the high order notation
+(A,B). From the premises we obtain these two triples:

A : set 


A0 : set
A1 : set
Ar(x0, x1) : set [x0 : A0, x1 : A1]

B : set 


B0 : set
B1 : set
Br(y0, y1) : set [y0 : B0, y1 : B1]

As usual, taking the first two judgments of each triple, and applying
+-formation we can readily put

A0 +0 B0 ≡ A0 +B0 (3.30)

A1 +1 B1 ≡ A1 +B1 (3.31)

Now what we have to do is define a set of relations between them, which
depends on the following sets:

+r (A0, A1, Ar, B0, B1, Br) : rel(+0(A0, B0),+1(A1, B1)) (3.32)
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At the beginning I thought that the best choice should be something
like

Ar(x0, x1) +Br(y0, y1)

However here the problem is that if we take two elements c0 : A0 +0B0

and c1 : A1 +1 B1 it could be that they had different canonical forms:
one of the kind inl(a0) [a0 : A0] or inl(a1) [a1 : A1] and the other of the
kind inr(b0) [b0 : B0] or inr(b1) [b1 : B1]; in this case there shouldn’t
be any reason that a relation between them exists.

Hence here arises the necessity to create a definition by cases for the
set (3.32) in order to distinguish the provenience of the elements c0

and c1, and in this way keeping the information about that. Thus
some definition for (3.32), that could satisfy this necessity, could be
the following:{

Ar(x0, x1) +Br(y0, y1) if c0, c1 come from the same set

∅ otherwise

where, with ”they come from the same set” I mean they both are of the
form inl(◦) or inr(◦). Another observation is that we need to avoid
the dependence by x0, x1, y0, y1, but this can be done just using the
+-elimination rule, and afterwards in place of x0 and y0 substituting
for example the element:

when(c0, (x0)x0, (y0)y0)

and analogous yields for x1 and y1.

Eventually another definition for (3.32) could be:

Ar(x0, x1) if (∃a0 : A0)(∃a1 : A1)

(Id(A0 +B0, c0, inl(a0)) ∧ (Id(A1 +B1, c1, inl(a1))))

Br(y0, y1) if (∃b0 : B0)(∃b1 : B1)

(Id(A0 +B0, c0, inr(b0)) ∧ (Id(A1 +B1, c1, inr(b1))))

∅ otherwise

Anyway definitions by cases, like these, imply the use of the first uni-
verse, which probably will make more complicated the validation of the
next rules. Although the last one seems a good way in order to hold on
in the validation of the disjoint union, as we said in the introduction of
the chapter, we will leave to the reader’s interest to complete it, since
in the external model even this type will be interpreted in a natural
way.



Chapter 4

The external model

The failure to build an internal model leads us to the necessity to con-
struct new types that will solve all the problems. For this reason we will
introduce in this chapter some new “star”-types which are nothing more
than relation sets between two same types “without star”. What we mean
is that, for example, a Π∗-type it will be simply a relation set between two
Π-types. As we will see, adding these new types to the standard type theory,
will create a really natural model for our interpretation, and the validation
of each rule will turn out in an easy way.

First of all, we will introduce Bool∗,Π∗,Σ∗, Id∗,+∗,N∗ (we will explain
only Bool since it will be analogous to a generic finite star type), by giving
their formal rules, and after that we will validate the respective type “without
star” in this external model.

After the validation of all the standard types we will then validate also
the first universe U, inside what we can call a “first universe of relations”,
U∗; and even this last validation will turn out in a natural way.

Hence, the external model, obtained by these extending the usual type
theory with these new star types, will solve all the problems encountered
before when we tried to stay inside an internal model. Generally speaking
not only the problems we encountered will be solved, but also the types that
we have successfully interpreted in the internal model, in the external one
their interpretations will seem more natural.

4.1 Bool∗ type

• Bool∗ – formation:

Bool∗ : rel(Bool, Bool)

70
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• Bool∗ – introduction:

0∗ : Bool∗(0, 0) 1∗ : Bool∗(1, 1)

• Bool∗ – elimination:

D(z, z′, r) set [z, z′ : Bool, r : Bool∗(z, z′)]

d : D(0, 0, 0∗)

e : D(1, 1, 1∗)

case∗(z, z′, r, d, e) : D(z, z′, r) [z, z′ : Bool, r : Bool∗(z, z′)]

• Bool∗ – equality:

0 : Bool
D(z, z′, r) : set [z, z′ : Bool, r : Bool∗(z, z′)]

d : D(0, 0, 0∗)

e : D(1, 1, 1∗)

case∗(0, 0, 0∗, d, e) = d : D(0, 0, 0∗)

1 : Bool
D(z, z′, r) : set [z, z′ : Bool, r : Bool∗(z, z′)]

d : D(0, 0, 0∗)

e : D(1, 1, 1∗)

case∗(1, 1, 1∗, d, e) = e : D(1, 1, 1∗)

4.1.1 The interpretation of Bool in the model

• Bool – formation:

Bool : set

in the model becomes the rule:

Bool0 : set Bool1 : set Boolr : rel(Bool0, Bool1)
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which is automatically validated by the rule of Bool∗ formation just
putting:

Bool0 = Bool

Bool1 = Bool

Boolr = Bool∗ : rel(Bool, Bool) = rel(Bool0, Bool1)

• Bool – introduction:

0 : Bool 1 : Bool

when passing to the model, these are transformed into, using the inter-
pretation of the Bool-formation:

00 : Bool 01 : Bool 0r : Bool∗(00, 01)

10 : Bool 11 : Bool 1r : Bool∗(10, 11)

which are automatically validated by the rule of Bool∗-introduction
just using the following definitions:

00 = 01 = 0 : Bool

10 = 11 = 1 : Bool

and finally put:

0r = 0∗ : Bool∗(0, 0)

1r = 1∗ : Bool∗(1, 1)

• Bool – elimination:

C(z) : set [z : Bool] d : C(0) e : C(1)

case(z, d, e) : C(z) [z : Bool]
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When passing to the model all the judgments are transformed into a
triple of judgments; our aim is to validate the interpretation of the con-
clusion starting from all the judgments gotten from the interpretation
of the assumptions, which are respectively:

C0(z0) : set [z0 : Bool]

C1(z1) : set [z1 : Bool]

Cr(z0, z1, zr) : rel(C0(z0), C1(z1))

[z0 : Bool, z1 : Bool, zr : Bool∗(z0, z1)]


d0 : C0(0)

d1 : C1(0)

dr : Cr(0, 0, 0
∗)(d0, d1)

e0 : C0(1)

e1 : C1(1)

er : Cr(1, 1, 1
∗)(e0, e1)

And what we need to find is a triple of elements of this kind:

case0(z0, d0, e0) : C0(z0) [z0 : Bool] (4.1a)

case1(z1, d1, e1) : C1(z1) [z1 : Bool] (4.1b)

caser(z0, z1, zr, d0, d1, dr, e0, e1, er) : (4.1c)

Cr(z0, z1, zr)(case0(z0, d0, e0), case1(z1, d1, e1))

[z0 : Bool, z1 : Bool, zr : Bool∗(z0, z1)]

We can immediately define (4.1a) and (4.1b) using the standard Bool-
elimination, taking the premises we need from the interpretations above,
obtaining:

case0(z0, d0, e0) = case(z0, d0, e0) : C0(z0) [z0 : Bool]

case1(z1, d1, e1) = case(z1, d0, e0) : C1(z1) [z1 : Bool]

In order to define (4.1c) it is sufficient to apply the Bool∗-elimination
with the following premises (where the equivalence between the sets in
the second and third assumption, comes immediately from the Bool-
equality applied to the sets C0(z) and C1(z) [z : Bool] )
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{
Cr(z0, z1, zr)(case0(z0, d0, e0), case1(z1, d1, e1))

[z0, z1 : Bool, zr : Bool∗(z0, z1)]

dr : Cr(0, 0, 0
∗)(case0(0, d0, e0), case1(0, d1, e1)) = Cr(0, 0, 0

∗)(d0, d1)

er : Cr(1, 1, 1
∗)(case0(1, d0, e0), case1(1, d1, e1)) = Cr(1, 1, 1

∗)(e0, e1){
case∗(z0, z1, zr, dr, er) : Cr(z0, z1, zr)(case0(z0, d0, e0), case1(z1, d1, e1))

[z0, z1 : Bool, zr : Bool∗(z0, z1)]

which is validated by the rules of Bool∗-elimination, by choosing

D(z0, z1, zr) = Cr(z0, z1, zr)(case0(z0, d0, e0), case1(z1, d1, e1))

[z0, z1 : Bool, r : Bool∗(z0, z1)]

d = dr : D(0, 0, 0∗) = Cr(0, 0, 0
∗)(h0(0), h1(0))

e = er : D(1, 1, 1∗) = Cr(1, 1, 1
∗)(h0(1), h1(1))

So to conclude we can just define:

caser(z0, z1, zr, d0, d1, dr, e0, e1, er) = case∗(z0, z1, zr, dr, er) :

Cr(z0, z1, zr)(case0(z0, d0, e0), case1(z1, d1, e1))

in the usual context.

• Bool-equality

0 : Bool
C(z) : set [z : Bool]

d : C(0)

e : C(1)

case(0, d, e) = d : C(0)

1 : Bool
C(z) : set [z : Bool]

d : C(0)

e : C(1)

case(1, d, e) = e : C(1)

The validation of the equality rule is an easy check which comes im-
mediately from the above interpretation and applying, Bool-equality
in the first two equivalences and Bool∗-equality in the last one.

This finishes the validation of the Bool-rules in the model.

The construction of a generic finite type, N∗n, and the respective validation
will follow exactly the same pattern so we leave it to the reader.
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4.2 Π∗ type

• Π∗ – formation:

A set
A′ set

P : rel(A,A′)

B(x) : set [x : A]

B′(x′) : set [x′ : A′]

Q(x, x′, p) : rel(B(x′), B′(x′)) [x : A, x′ : A′, p : P (x, x′)]

Π∗(A,A′, P, B,B′, Q) : rel(Π(A,B),Π(A′, B′))

• Π∗ – introduction:

b(x) : B(x) [x : A]

b′(x′) : B′(x′); [x′ : A′]

q(x, x′, p) : Q(x, x′, p)(b(x), b′(x′)) [x : A, x′ : A′, p : P (x, x′)]

λ∗(b, b′, q) : Π∗(A,A′, P, B,B′, Q)(λ(b), λ(b′))

where we are writing λ∗(A,A′, P, B,B′, Q, b, b, q) for λ∗(b, b′, q),
λ(A,B, b) for λ(b), and λ(A′, B′, b′) for λ(b′) .

• Π∗ – elimination:

the premises of Π∗-formation{
D(z, z′, r) : set [z : Π(A,B), z′ : Π(A′, B′),

r : Π∗(A,A′, P,B,B′, Q)(z, z′)]
d(f, f ′, q) : D(λ(f), λ(f ′), λ∗(f, f ′, q))

[f : (x : A)B(x), f ′ : (x : A′)B′(x),

q : (x : A, x′ : A′, p : P (x, x′))Q(x, x′, p)(f(x), f ′(x′))]{
funsplit∗(z, z′, r, d) : D(z, z′, r)

[z : Π(A,B), z′ : Π(A′, B′), r : Π∗(A,A′, P,B,B′, Q)(z, z′)]

• Π∗ – equality:
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the premises of Π∗-formation and -introduction{
D(z, z′, r) : set [z : Π(A,B), z′ : Π(A′, B′),

r : Π∗(A,A′, P,B,B′, Q)(z, z′)]
d(f, f ′, q) : D(λ(f), λ(f ′), λ∗(f, f ′, q))

[f : (x : A)B(x), f ′ : (x′ : A′)B′(x′),

q : (x : A, x′ : A′, p : P (x, x′))Q(x, x′, p)(f(x), f ′(x′))]{
funsplit∗(λ(b), λ(b′), λ∗(b, b′, q), d) = d(b, b′, q)

: D(λ(b), λ(b′), λ∗(b, b′, q))

4.2.1 The interpretation of Π in the model

• Π – formation:

A : set B(x) : set [x : A]

Π(A,B) : set

in the model the assumptions become:

A : set 


A0 : set

A1 : set

Ar : rel(A0, A1)

B(x) : set [x : A] 


B0(x0) : set [x0 : A0]

B1(x1) : set [x1 : A1]

Br(x0, x1, xr) : rel(B0(x0), B1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]

Starting from these we need to find an interpretation of Π(A,B), i.e.
a triple of this kind:

Π0(A,B) : set (4.2a)

Π1(A,B) : set (4.2b)

Πr(A,B) : rel(Π0(A,B),Π0(A,B)) (4.2c)

Taking the first judgment (respectively the second one) from interpreta-
tions of the assumptions, we can define immediately (4.2a) and (4.2b),
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by applying Π-formation:

Π0(A,B) = Π(A0, B0) (4.3)

Π1(A,B) = Π(A1, B1) (4.4)

Now to obtain (4.2c) it is enough to apply Π∗-formation with the fol-
lowing premises:

A0 : set
A1 : set

Ar : rel(A0, A1)

B0(x0) : set [x0 : A0]

B1(x1) : set [x1 : A1]{
Br(x0, x1, xr) : rel(B0(x0), B1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]

Π∗(A0, A1, Ar, B0, B1, Br) : rel(Π(A0, B0),Π(A1, B1))

in which substituting (4.3) and (4.4) we get exactly the set of relations
that we were looking for. So it suffices to put:

Πr(A,B) = Π∗(A0, A1, Ar, B0, B1, Br)

• Π – introduction:

b(x) : B(x) [x : A]

λ(b) : Π(A,B)

when passing to the model the premises is transformed into:

b(x) : B(x) [x : A] 


b0 : B0(x0) [x0 : A0]

b1 : B1(x1) [x1 : A1]

br(x0, x1, xr) : Br(x0, x1, xr)(b0(x0), b1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]

And the interpretation of the conclusion will be:

λ(b) : Π(A,B) 


λ(b0) : Π(A0, B0)

λ(b1) : Π(A1, B1)

λ∗(b0, b1, br) : Π∗(A0, A1, Ar, B0, B1, Br)(λ(b0), λ(b1))
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where the first two are readily obtained from the standard Π-introduction,
starting from the first two judgments in the interpretation of the premise.
Furthermore the last one is immediately validated by applying the Π∗-
introduction with the following assumptions:

b0(x0) : B0(x0) [x0 : A0]

b1(x1) : B1(x1) [x1 : A1]{
br(x0, x1, xr) : Br(x0, x1, xr)(b0(x0), b1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]
Π∗-intro

λ∗(b0, b1, br) : Π∗(A0, A1, Ar, B0, B1, Br)(λ(b0), λ(b1))

• Π – elimination:

C(z) set [z : Π(A,B)] c(f) : C(λ(f)) [f : (x : A)B(x)]

funsplit(z, c) : C(z) [z : Π(A,B)]

When passing to the model the premises are transformed respectively
into

C0(z0) : set [z0 : Π(A0, B0)]

C1(z1) : set [z1 : Π(A1, B1)]

Cr(z0, z1, zr) : rel(C0(z0), C1(z1))

[z0 : Π(A0, B0), z1 : Π(A1, B1), zr : Π∗(A0, A1, Ar, B0, B1, Br)]

c0(f0) : C0(λ(f0)) [f0 : (x0 : A0)B0(x0)]

c1(f1) : C1(λ(f1)) [f0 : (x0 : A0)B0(x0)]

cr(f0, f1, fr) : Cr(λ(f0), λ(f1), λ∗(f0, f1, fr))(c0(f0), c1(f1))

[f0 : (x0 : A0)B0(x0), f1 : (x1 : A1)B1(x1),

fr : (x0 : A0, x1 : A1, xr : Ar(x0, xr))Br(x0, x1, xr)(f0(x0), f1(x1))]

Starting from these we need to find an interpretation for the conclusion:

funsplit0(z0, c0) : C0(z0) [z0 : Π(A0, B0)] (4.5a)

funsplit1(z1, c1) : C1(z1) [z1 : Π(A1, B1)] (4.5b)

funsplitr(z0, z1, zr, c0, c1, cr) : (4.5c)

Cr(z0, z1, zr)(funsplit0(z0, c0), funsplit1(z1, c1))

[z0 : Π(A0, B0), z1 : Π(A1, B1), zr : Π∗(A0, A1, Ar, B0, B1, Br)]
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We can use readily the following definition, just applying the Π-elimination:

funsplit0(z0, c0) ≡ funsplit(z0, c0) : C0(z0) [z0 : Π(A0, B0)]

funsplit1(z1, c1) ≡ funsplit(z1, c1) : C1(z1) [z1 : Π(A1, B1)]

In order to get (4.5c) we need to apply the Π∗-elimination by choosing
in the assumptions:

D(z0, z1, zr) =Cr(z0, z1, zr)(funsplit(z0, c0), funsplit(z1, c1))

[z0 : Π(A0, B0), z1 : Π(A1, B1), zr : Π∗(A0, A1, Ar, B0, B1, Br)]

d(f0, f1, fr) =cr(f0, f1, fr) :

Cr(λ(f0), λ(f1), λ∗(f0, f1, fr))(c0(f0), c1(f1))

=Cr(λ(f0), λ(f1), λ∗(f0, f1, fr))(funsplit(λ(f0), c0), funsplit(λ(f0), c1))

=D(λ(f0), λ(f1), λ∗(f0, f1, fr))

[f0 : (x0 : A0)B0(x0), f1 : (x1 : A1)B1(x1),

fr : (x0 : A0, x1 : A1, xr : Ar(x0, xr))Br(x0, x1, xr)(f0(x0), f1(x1))]

Hence we can use the following rule:

{
Cr(z0, z1, zr) : rel(C0(z0), C1(z1)) [z0 : Π(A0, B0),

z1 : Π(A1, B1), zr : Π∗(A0, A1, Ar, B0, B1, Br)]
cr(f0, f1, fr) : Cr(λ(f0), λ(f1), λ∗(f0, f1, fr))(c0(f0), c1(f1))

[f0 : (x0 : A0)B0(x0), f1 : (x1 : A1)B1(x1),

fr : (x0 : A0, x1 : A1, xr : Ar(x0, xr))Br(x0, x1, xr)(f0(x0), f1(x1))]
Π∗-eli

funsplit∗(z0, z1, zr, cr) : Cr(z0, z1, zr)(funsplit(z0, c0), funsplit(z1, c1))

[z0 : Π(A0, B0), z1 : Π(A1, B1),

zr : Π∗(A0, A1, Ar, B0, B1, Br)]

To conclude the validation of this rule it suffices to define:

funsplitr(z0, z1, zr, c0, c1, cr) = funsplit∗(z0, z1, zr, cr)

since they belong to equivalent sets.

• Π – equality:
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b(x) : B(x) [x : A]

C(z) set [z : Π(A,B)]

c(f) : C(λ(f)) [f : (x : A)B(x)]

funsplit(λ(b), c) = c(b) : C(λ(b))

The validation of the equality rules follows exactly the same pattern as
the elimination rule, so we leave it to the reader.

This finishes the validation of the Π-rules in the model.
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4.3 Σ∗ type

• Σ∗ – formation:

A set
A′ set

P : rel(A,A′)

B(x) : set [x : A]

B′(x′) : set [x′ : A′]

Q(x, x′, p) : rel(B(x′), B′(x′)) [x : A, x′ : A′, p : P (x, x′)]

Σ∗(A,A′, P, B,B′, Q) : rel(Σ(A,B),Σ(A′, B′))

• Σ∗ – introduction:

a : A
a′ : A′

ar : P (a, a′)

b : B(a)

b′ : B′(a′)

br : Q(a, a′, ar)(b, b
′)

〈a, a′, ar, b, b′, br〉∗ : Σ∗(A,A′, P, B,B′, Q)(〈a, b〉, 〈a′, b′〉)

• Σ∗ – elimination:{
D(z, z′, r) : set [z : Σ(A,B), z′ : Σ(A′, B′),

r : Σ∗(A,A′, P, B,B′, Q)(z, z′)]
d(x, x′, p, y, y′, q) : D(〈x, y〉, 〈x′, y′〉, 〈x, x′, p, b, b′, q〉∗)

[x : A, x′ : A′, p : P (x, x′), y : B(x),

y′ : B′(x′), q : Q(x, x′, p)(y, y′)]{
split∗(z, z′, r, d) : D(z, z′, r) [z : Σ(A,B), z′ : Σ(A′, B′),

r : Σ∗(A,A′, P, B,B′, Q)(z, z′)]

• Σ∗ – equality:
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Introduction and formation rule’s premises{
D(z, z′, r) : set [z : Σ(A,B), z′ : Σ(A′, B′),

r : Σ∗(A,A′, P, B,B′, Q)(z, z′)]
d(x, x′, p, y, y′, q) : D(〈x, y〉, 〈x′, y′〉, 〈x, x′, p, b, b′, q〉∗)

[x : A, x′ : A′, p : P (x, x′), y : B(x),

y′ : B′(x′), q : Q(x, x′, p)(y, y′)]{
split∗(〈a, b〉, 〈a′, b′〉, 〈a, a′, ar, b, b′, br〉∗) = d(a, a′, ar, b, b

′, br) :

D(〈a, b〉, 〈a′, b′〉, 〈a, a′, ar, b, b′, br〉∗)

4.3.1 The interpretation of Σ in the model

• Σ – formation:

A : set B(x) : set [x : A]

Σ(A,B) : set

in the model the two premises become:

A : set 


A0 : set

A1 : set

Ar : rel(A0, A1)

B(x) : set [x : A] 


B0(x0) : set [x0 : A0]

B1(x1) : set [x1 : A1]

Br(x0, x1, xr) : rel(B0(x0), B1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]

From which we can use the following rules:
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A0 : set B0(x0) : set [x0 : A0]
Σ-form

Σ(A0, B0) : set

A1 : set B1(x1) : set [x1 : A1]
Σ-form

Σ(A1, B1) : set

A0 set

A1 set

Ar : rel(A0, A1)

B0(x0) : set [x0 : A0]

B1(x1) : set [x1 : A1]

Br(x0, x1, xr) : rel(B0(x0), B1(x1)) [x0 : A0, x1 : A1, xr : Ar(x0, x1)]
Σ∗-form

Σ∗(A0, A1, Ar, B0, B1, Br) : rel(Σ(A0, B0),Σ(A1, B1))

Now using these rules we can give valid interpretation of the judgment

Σ(A,B) : set

by defining it as follow:
Σ(A0, B0) : set

Σ(A1, B1) : set

Σ∗(A0, A1, Ar, B0, B1, Br) : rel(Σ(A0, B0),Σ(A1, B1))

• Σ – introduction:

a : A b : B(a)

〈a, b〉 : Σ(A,B)

when passing to the model, the assumptions are transformed into:

a : A 


a0 : A0

a1 : A1

ar : Ar(a0, a1)

b : B(a) 


b0 : B0(a0)

b1 : B1(a1)

br : Br(a0, a1, ar)(b0, b1)

which immediately give us the following rules:
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a0 : A0 b0 : B0(a0)
Σ-intro

〈a0, b0〉 : Σ(A0, B0)

a1 : A1 b1 : B1(a1)
Σ-intro

〈a1, b1〉 : Σ(A1, B1)

a0 : A0

a1 : A1

ar : Ar(a0, a1)

b0 : B0(a0)

b1 : B1(a1)

br : Br(a0, a1, ar)(b0(a0), b1(a1))
Σ∗-intro

〈a0, a1, ar, b0, b1, br〉∗ : Σ∗(A0, A1, Ar, B0, B1, Br)(〈a0, b1〉, 〈a1, b1〉)

Like before, using these ones, we are now able to build a valid inter-
pretation of the judgment:

〈a, b〉 : Σ(A,B)

that is:
〈a0, b0〉 : Σ(A0, B0)

〈a1, b1〉 : Σ(A1, B1)

〈a0, a1, ar, b0, b1, br〉∗ : Σ∗(A0, A1, Ar, B0, B1, Br)(〈a0, b1〉, 〈a1, b1〉)

• Σ – elimination:

C(z) : set [z : Σ(A,B)] c(x, y) : C(〈x, y〉) [x : A, y : B(x)]

split(z) : C(z) [z : Σ(A,B)]

When passing to the model the premises are respectively transformed
into

C0(z0) : set [z0 : Σ(A0, B0)]

C1(z1) : set [z1 : Σ(A1, B1)]

Cr(z0, z1, zr) : rel(C0(z0), C1(z1))

[z0 : Σ(A0, B0), z1 : Σ(A1, B1), zr : Σ∗(A0, A1, Ar, B0, B1, Br)]
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

c0(x0, y0) : C0(〈x0, y0〉) [x0 : A0, y0 : B0(x0)]

c1(x1, y1) : C1(〈x1, y1〉) [x1 : A1, y1 : B1(x1)]

cr(x0, x1, xr, y0, y1, yr) :

Cr(〈x0, y0〉, 〈x1, y1〉, 〈a0, a1, ar, b0, b1, br〉∗)(c0(x0, y0), c1(x1, y1))

x0 : A0, x1 : A1, xr : Ar(x0, xr), y0 : B0(x0), y1 : B1(x1),

yr : Br(x0, x1, xr)(y0, y1)]

These interpretations give us the premises to apply the following rules:

C0(z0) : set [z0 : Σ(A0, B0)]

c0(x0, y0) : C0(〈x0, y0〉) [x0 : A0, y0 : B0(x0)]
Σ-eli

split(z0, c0) : C0(z0) [z0 : Σ(A0, B0)]

C1(z1) : set [z1 : Σ(A1, B1)]

c1(x1, y1) : C1(〈x1, y1〉) [x1 : A1, y1 : B1(x1)]
Σ-eli

split(z1, c1) : C1(z1) [z1 : Σ(A1, B1)]

{
Cr(z0, z1, zr)(split(z0, c0), split(z1, c1)))

[z0 : Σ(A0, B0), z1 : Σ(A1, B1), zr : Σ∗(A0, A1, Ar, B0, B1, Br)]
cr(x0, x1, xr, y0, y1, yr) :

Cr(〈x0, y0〉, 〈x1, y1〉, 〈a0, a1, ar, b0, b1, br〉∗)(c0(x0, y0), c1(x1, y1))

x0 : A0, x1 : A1, xr : Ar(x0, xr), y0 : B0(x0), y1 : B1(x1),

yr : Br(x0, x1, xr)(y0, y1)]
Σ∗-eli{

split∗(z0, z1, zr, cr) : Cr(z0, z1, zr)(split(z0, c0), split(z1, c1)))

[z0 : Σ(A0, B0), z1 : Σ(A1, B1), zr : Σ∗(A0, A1, Ar, B0, B1, Br)]

It is sufficient to note that the last rule is validated since its sec-
ond premise, using the Σ-equality in the set Σ(A0, B0) and the set
Σ(A1, B1), is equivalent to:
cr(x0, x1, xr, y0, y1, yr) :

Cr(〈x0, y0〉, 〈x1, y1〉, 〈a0, a1, ar, b0, b1, br〉∗)(split(〈x0, y0〉, c0), split(〈x1, y1〉, c1))

[x0 : A0, x1 : A1, xr : Ar(x0, xr), y0 : B0(x0), y1 : B1(x1),

yr : Br(x0, x1, xr)(y0, y1)]
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So we have exactly the rule of Σ∗-elimination, by choosing

D(z0, z1, zr) = Cr(z0, z1, zr)(split(z0, c0), split(z1, c1)))

[z0 : Σ(A0, B0), z1 : Σ(A1, B1), zr : Σ∗(A0, A1, Ar, B0, B1, Br)]

d(x0, x1, xr, y0, y1, yr) = cr(x0, x1, xr, y0, y1, yr) :

Cr(〈x0, y0〉, 〈x1, y1〉, 〈a0, a1, ar, b0, b1, br〉∗)(c0(x0, y0), c1(x1, y1))

= Cr(〈x0, y0〉, 〈x1, y1〉, 〈a0, a1, ar, b0, b1, br〉∗)(split(〈x0, y0〉, c0), split(〈x1, y1〉, c1))

= D(〈x, y〉, 〈x′, y′〉, 〈x, x′, p, y, y′, q〉∗)

Hence we can complete the validation of the elimination rule, by putting
as interpretation of the judgment

split(z, c) : C(z) [z : Σ(A,B)]

the following triple:
split(z0, c0) : C0(z0) [z0 : Σ(A0, B0)]

split(z1, c1) : C1(z1) [z1 : Σ(A1, B1)]

split∗(z0, z1, zr, cr) : Cr(z0, z1, zr)(split(z0, c0), split(z1, c1)))

[z0 : Σ(A0, B0), z1 : Σ(A1, B1), zr : Σ∗(A0, A1, Ar, B0, B1, Br)]

• Σ – equality:

C(z) : set [z : Σ(A,B)] c(x, y) : C(〈x, y〉) [x : A, y : B(x)]

split(〈a, b〉, c) = c(a, b) : C(〈a, b〉)

for a : A and b : B(a).

The validation of the equality rule follows immediately from the inter-
pretation of the non-canonical constant split defined during the previous
point, and by the application of the Σ- and Σ∗- equality. So we leave
it to the reader.

This concludes the validation of the Σ-type in the external model.
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4.4 Id∗ type

• Id∗ – formation:

A : set
a : A
b : A

A′ : set
a′ : A′

b′ : A′

P : rel(A,A′)

p : P (a, a′)

q : P (b, b′)

Id∗A,A′,P (a, a′, p, b, b′, q) : rel(IdA(a, b), IdA′(a
′, b′))

• Id∗ – introduction:

a : A a′ : A′ p : P (a, a′)

r∗(a, a′, p) : Id∗A,A′,P (a, a′, p, a, a′, p)(r(a), r(a′))

• Id∗ – elimination:


D(x, x′, p, y, y′, q, z, z′, s) : set

[x : A, x′ : A′, p : P (x, x′), y : A, y′ : A′, q : P (y, y′),

z : IdA(x, y), z′ : IdA′(x
′, y′), s : Id∗A,A′,P (x, x′, p, y, y′, q)(z, z′)]{

d(x, x′, p) : D(x, x′, p, x, x′, p, r(x), r(x′), r∗(x, x′, p))

[x : A, x′ : A′, p : P (x, x′)]
idpeel∗(z, z′, s, d) : D(x, x′, p, y, y′, q, z, z′, s) : set

[x : A, x′ : A′, p : P (x, x′), y : A, y′ : A′, q : P (y, y′),

z : IdA(x, y), z′ : IdA′(x
′, y′), s : Id∗A,A′,P (x, x′, p, y, y′, q)(z, z′)]

• Id∗ – equality:
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same premises as in formation and introduction rules
D(x, x′, p, y, y′, q, z, z′, s) : set

[x : A, x′ : A′, p : P (x, x′), y : A, y′ : A′, q : P (y, y′),

z : IdA(a, b), z′ : IdA′(a
′, b′), s : Id∗A,A′,P (a, a′, p, b, b′, q)(z, z′)]{

d(x, x′, p) : D(x, x′, p, , x, x′, p, r(x), r(x′), r∗(x, x′, p))

[x : A, x′ : A′, p : P (x, x′)]{
idpeel∗(r(a), r(a′), r∗(a, a′, p), d) = d(a, a′, p) :

D(a, a′, p, a, a′, p, r(a), r(a′), r∗(a, a′, p))

4.4.1 The interpretation of Id in the model

• Id– formation:

A : set a : A b : A
Id(A, a, b) : set

in the model this becomes the rules:

A0 : set
a0 : A0

b0 : A0

A1 : set
a1 : A1

b1 : A1

Ar : rel(A0, A1)

ar : Ar(a0, a1)

br : Ar(b0, b1)

Idr(A0, A1, Ar, a0, a1, ar, b0, b1, br) : rel(Id0(A0, a0, b0), Id1(A1, a1, b1))

which is validated by the rule of Id-formation, putting first of all:

Id0(A0, a0, b0) = Id(A0, a0, b0)

Id1(A1, a1, b1) = Id(A1, a1, b1)

and then, by Id∗-formation:

Idr(A0, A1, Ar, a0, a1, ar, b0, b1, br) = Id∗A0,A1,Ar
(a0, a1, ar, b0, b1, br)

which, from the previous equivalences, is exactly the following set of
relations:

rel(Id(A0, a0, a1), Id(A1, a1, b1)) = rel(Id0(A0, a0, b0), Id1(A1, a1, b1))

as required.
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• Id – introduction:

a : A
r(a) : Id(A, a, a)

when passing to the model is transformed into:

a0 : A0 a1 : A1 ar : Ar(a0, a1)

rr(a0, a1, ar) : Idr(A0, A1, Ar, a0, a1, ar, b0, b1, br)(r0(a0), r1(a1))

So we need to define three elements which satisfy the following
r0(a0) : Id0(A0, a0, b0)
r1(a1) : Id1(A1, a1, b1)
rr(a0, a1, ar) : Idr(A0, A1, Ar, a0, a1, ar, b0, b1, br)(r0(a0), r1(a1))

The first two ones are readily validated, using the equivalences showed
before and the Id-introduction rule, defining:

r0(a0) = r(a0) : Id0(A0, a0, b0) = Id(A0, a0, b0)

r1(a1) = r(a1) : Id1(A1, a1, b1) = Id(A1, a1, b1)

Starting from these, the last one is validated by the rule of Id∗-introduction,
putting:

rr(a0, a1, ar) = r∗(a0, a1, ar)

which belongs to the set:

Id∗A0,A1,Ar
(a0, a1, ar, a0, a1, ar)(r(a0), r(a1))

that is equivalent to:

Idr(A0, A1, Ar, a0, a1, ar, b0, b1, br)(r0(a0), r1(a1))

as required.

• Id – elimination:

C(x, y, z) : set [x, y : A, z : Id(A, x, y)]

d(x) : C(x, x, r(x)) [x : A]

idpeel(z, d) : C(x, y, z) [x, y : A, z : Id(A, x, y)]
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When passing to the model each premise is respectively transformed,
using the equivalence showed before, into:

C0(x0, y0, z0) : set [x0, y0 : A0, z0 : Id(A0, x0, y0)]
C1(x1, y1, z1) : set [x1, y1 : A1, z1 : Id(A1, x1, y1)]
Cr(x0, x1, xr, y0, y1, yr, z0, z1, zr) : rel(C0(x0, y0, z0), C1(x1, y1, z1))

[x0 : A0, x1 : A1, xr : Ar(x0, y0), y0 : A0, y1 : A1, yr : Ar(y0, y1),
z0 : Id(A0, x0, y0), z1 : Id(A1, x1, y1),
zr : Id∗A0,A1,Ar

(x0, x1, xr, y0, y1, yr)(z0, z1)]
d0(x0) : C0(r(x0)) [x0 : A0]
d1(x1) : C1(r(x1)) [x1 : A1]
dr(x0, x1, xr) :
Cr(x0, x1, xr, x0, x1, xr, r(x0), r(x1), r∗(x0, x1, xr))(d0(x0), d1(x1))
[x0 : A0, x1 : A1, xr : Ar(x0, x1)]

The aim is now to find an interpretation for the conclusion: that should
be of the following form:

idpeel0(z0, d0) : C0(x0, y0, z0) [x0, y0 : A0, z0 : Id(A0, x0, y0)](4.6a)

idpeel1(z1, d1) : C1(x1, y1, z1) [x1, y1 : A1, z1 : Id(A1, x1, y1)](4.6b)

idpeelr(z0, z1, zr, d0, d1, dr) : (4.6c)

Cr(x0, x1, xr, y0, y1, yr, z0, z1, zr)(idpeel0(z0, d0), idpeel1(z1, d1))

[x0 : A0, x1 : A1, xr : Ar(x0, y0), y0 : A0, y1 : A1, yr : Ar(y0, y1),

z0 : Id(A0, x0, y0), z1 : Id(A1, x1, y1),

zr : Id∗A0,A1,Ar
(x0, x1, xr, y0, y1, yr)(z0, z1)]

Just taking the first (respectively the second) judgment from each triple
of the interpretation of the premises, and applying the standard Id-
elimination we get immediately the first two judgments of the interpre-
tation of the conclusion, (4.6a),(4.6b):

idpeel0(z0, d0) = idpeel(z0, d0) : C0(x0, y0, z0) [x0, y0 : A0, z0 : Id(A0, x0, y0)]

idpeel1(z1, d1) = idpeel(z1, d1) : C1(x1, y1, z1) [x1, y1 : A1, z1 : Id(A1, x1, y1)]

To be able to get (4.6c) we need to apply the Id∗-elimination rule, with
the following premise, taken from the interpretation of the assumptions
of Id-elimination:
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
Cr(x0, x1, xr, y0, y1, yr, z0, z1, zr)(idpeel(z0, d0), idpeel(z1, d1))

[x0 : A0, x1 : A1, xr : Ar(x0, y0), y0 : A0, y1 : A1, yr : Ar(y0, y1),

z0 : Id(A0, x0, y0), z1 : Id(A1, x1, y1),

zr : Id∗A0,A1,Ar
(x0, x1, xr, y0, y1, yr)(z0, z1)]

dr(x0, x1, xr) :

Cr(x0, x1, xr, x0, x1, xr, r(x0), r(x1), r∗(x0, x1, xr))(d0(x0), d1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]
Id∗-eli 

idpeel∗(z0, z1, zr, dr) :

Cr(x0, x1, xr, y0, y1, yr, z0, z1, zr)(idpeel(z0, d0), idpeel(z1, d1))

[x0 : A0, x1 : A1, xr : Ar(x0, y0), y0 : A0, y1 : A1, yr : Ar(y0, y1),

z0 : Id(A0, x0, y0), z1 : Id(A1, x1, y1),

zr : Id∗A0,A1,Ar
(x0, x1, xr, y0, y1, yr)(z0, z1)]

which is validated by the rules of Id∗-elimination, by choosing

D(z0, z1, zr) = Cr(x0, x1, xr, y0, y1, yr, z0, z1, zr)(idpeel(z0, d0), idpeel(z1, d1))

[x0 : A0, x1 : A1, xr : Ar(x0, y0), y0 : A0, y1 : A1, yr : Ar(y0, y1),

z0 : Id(A0, x0, y0), z1 : Id(A1, x1, y1),

zr : Id∗A0,A1,Ar
(x0, x1, xr, y0, y1, yr)(z0, z1)]

d(x0, x1, xr) = dr(x0, x1, xr) :

Cr(x0, x1, xr, x0, x1, xr, r(x0), r(x1), r∗(x0, x1, xr))(d0(x0), d1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]

Hence we can just complete the validation of the Id-elimination, defin-
ing the element in (4.6c) as follows:

idpeel∗(z0, z1, zr, dr) = idpeelr(z0, z1, zr, d0, d1, dr)

inside the set

Cr(x0, x1, xr, y0, y1, yr, z0, z1, zr)(idpeel(z0, d0), idpeel(z1, d1))

in the usual context.

• Id – equality:
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a : A
C(x, y, z) : set [x, y : A, z : Id(A, x, y)]

d(x) : C(x, x, r(x)) [x : A]

idpeel(r(a), d) = d(a) : C(a, a, r(a))

What we need to check is that the interpretation of

idpeel(r(a), d) = d(a) : C(a, a, r(a))

yields three correct equivalences, i.e. the correctness of the following:

idpeel0(r0(a), d0) = d0(a0) : C0(a0, a0, r0(a))

idpeel1(r1(a), d1) = d1(a1) : C1(a1, a1, r1(a))

idpeelr(r0(a), r1(a), rr(a), d0, d1, dr) = dr(a0, a1, ar) :

Cr(a0, a1, ar, a0, a1, ar, r0(a), r1(a), rr(a))

(idpeel0(r0(a), d0), idpeel1(r1(a), d1))

That is from all the definition given before:

idpeel(r(a0), d0) = d0(a0) : C0(a0, a0, r(a0)) (4.7a)

idpeel(r(a1), d1) = d1(a1) : C1(a1, a1, r(a1)) (4.7b)

idpeel∗(r(a0), r(a1), r∗(a0, a1, ar), d0, d1, dr) = (4.7c)

dr(a0, a1, ar) :

Cr(a0, a1, ar, a0, a1, ar, r(a0), r(a1), r∗(a0, a1, ar))

(idpeel(r(a0), d0), idpeel(r(a1), d1))

We had already interpreted all the premises during the previous valida-
tions, so we can just observe that (4.7a) and (4.7b) follow immediately
from the standard Id-equality rule, where in the premises we took re-
spectively the first and the second judgment of the interpretations of
the assumptions of Id-equality.

Note that now we have that the set

Cr(a0, a1, ar, a0, a1, ar, r(a0), r(a1), r∗(a0, a1, ar))(idpeel(r(a0), d0), idpeel(r(a1), d1))

is equivalent to

Cr(a0, a1, ar, a0, a1, ar, r(a0), r(a1), r∗(a0, a1, ar))(d0(a0)), d1(a1)))

Then to get the (4.7c) we can take the third judgment of each inter-
pretation mentioned above (to be more precise all the ones from the
interpretation of a : A), and then this time apply the Id∗-equality rule:
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r(a0) : Id(A0, a0, a0)

r(a1) : Id(A1, a1, a1)

r∗(a0, a1, ar) : Id∗A0,A1,Ar
(a0, a1, ar, a0, a1, ar)(r(a0), r(a1))

Cr(x0, x1, xr, y0, y1, yr, z0, z1, zr)(idpeel(z0, d0), idpeel(z1, d1))

[x0 : A0, x1 : A1, xr : Ar(x0, y0), y0 : A0, y1 : A1, yr : Ar(y0, y1),

z0 : Id(A0, x0, y0), z1 : Id(A1, x1, y1),

zr : Id∗A0,A1,Ar
(x0, x1, xr, y0, y1, yr)(z0, z1)]

dr(x0, x1, xr) :

Cr(x0, x1, xr, x0, x1, xr, r(x0), r(x1), r∗(x0, x1, xr))(d0(x0), d1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]
Id∗-equ 

idpeel∗(r(a0), r(a1), r∗(a0, a1, ar), dr) = dr(a0, a1, ar)

Cr(a0, a1, ar, a0, a1, ar, r(a0), r(a1), r∗(a0, a1, ar))

(idpeel(r(a0), d0), idpeel(r(a1), d1)) =

Cr(a0, a1, ar, a0, a1, ar, r(a0), r(a1), r∗(a0, a1, ar))(d0(a0), d1(a1))

that is exactly the last equivalence we were seeking.

Ergo this concludes the validation of the Id-type in the external model.
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4.5 +∗ type

• +∗ – formation:

A : set
B : set

A′ : set
B′ : set

P : rel(A,A′)

Q : rel(B,B′)

+∗(A,A′, P, B,B′, Q) : rel(+(A,B),+(A′, B′))

• +∗ – introduction:

a : A a′ : A′ ar : P (a, a′)

i∗(a, a′, ar) : +∗(A,A′, P, B,B′, Q)(i(a), i(a′))

b : B b′ : B′ br : Q(b, b′)

j∗(b, b′, br) : +∗(A,A′, P, B,B′, Q)(j(b), j(b′))

• +∗ – elimination:

D(z, z′, r) set [z : +(A,B), z′ : +(A′, B′), r : +∗(A,A′, P, B,B′, Q)(z, z′)]

d(x, x′, p) : D(i(x), i(x′), i∗(x, x′, p)) [x : A, x′ : A′, p : P (x, x′)]

e(y, y′, q) : D(j(y), j(y′), j∗(y, y′, q)) [y : B, y′ : B′, q : Q(y, y′)]{
when∗(z, z′, r, d, e) : D(z, z′, r)

[z : +(A,B), z′ : +(A′, B′), r : +∗(A,A′, P, B,B′, Q)(z, z′)]

• +∗ – equality:

same premises as in formation and introduction rules

D(z, z′, r) set [z : +(A,B), z′ : +(A′, B′), r : +∗(A,A′, P,B,B′, Q)(z, z′)]

d(x, x′, p) : D(i(x), i(x′), i∗(x, x′, p)) [x : A, x′ : A′, p : P (x, x′)]

e(y, y′, q) : D(j(y), j(y′), j∗(y, y′, q)) [y : B, y′ : B′, q : Q(y, y′)]{
when∗(i(a), i(a′), i∗(a, a′, ar), d, e) = d(a, a′, ar) : D(i(a), i(a′), i∗(a, a′, ar))
when∗(j(b), j(b′), j∗(b, b′, br), d, e) = e(b, b′, br) : D(j(b), j(b′), j∗(b, b′, br))
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4.5.1 The interpretation of + in the model

• + – formation:

A : set B : set
+(A,B) : set

in the model this becomes the rules:

A0 : set
B0 : set

A1 : set
B1 : set

Ar : rel(A0, A1)

Br : rel(B0, B1)

+r(A0, A1, Ar, B0, B1, Br) : rel(+0(A0, B0),+1(A1, B1))

which is validated by the rule of +-formation, putting first of all:

+0(A0, B0) = +(A0, B0)

+1(A1, B1) = +(A1, B1)

and then, by +∗-formation:

+r(A0, A1, Ar, B0, B1, Br) = +∗(A0, A1, Ar, B0, B1, Br) :

that is the following relation set:

rel(+(A0, B0),+(A1, B1))

which, from the previous equivalences, is exactly:

rel(+(A0, B0),+(A1, B1)) = rel(+0(A0, B0),+1(A1, B1))

as wanted.

• + – introduction:

a : A
i(a) : +(A,B)

b : B
j(b) : +(A,B)

when passing to the model, the first one is transformed into:
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a0 : A0 a1 : A1 ar : Ar(a0, a1)

ir(a0, a1, ar) : +r(A0, A1, Ar, B0, B1, Br)(i0(a0), i1(a1))

So we need to define three elements which satisfy the following
i0(a0) : +0(A0, B0)
i1(a1) : +1(A1, B1)
ir(a0, a1, ar) : +r(A0, A1, Ar, B0, B1, Br)(i0(a0), i1(a1))

The first two ones are readily validated, using the equivalences showed
before and the +-introduction rule, defining:

i0(a0) = i(a0) : +0(A0, B0) = +(A0, B0)

i1(a1) = i(a1) : +1(A1, B1) = +(A1, B1)

Starting from these, the last one is validated by the rule of +∗-introduction,
putting:

ir(a0, a1, ar) = i∗(a0, a1, ar)

which belongs to the set:

+∗(A0, A1, Ar, B0, B1, Br)(i(a0), i(a1))

i.e.
+r(A0, A1, Ar, B0, B1, Br)(i0(a0), i1(a1))

as wanted.

The validation of the second introduction rule is analogous and so we
will omit it.

• + – elimination:

C(z) : set [z : +(A,B)]

d(x) : C(i(x)) [x : A]

e(y) : C(j(y)) [y : B]

when(z, d, e) : C(z) [z : +(A,B)]
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When passing to the model each premise is respectively transformed,
using the equivalence showed before, into:

C0(z0) : set [z0 : +(A0, B0)]
C1(z1) : set [z1 : +(A1, B1)]
Cr(z0, z1, zr) : rel(C0(z0), C1(z1)) [z0 : +(A0, B0), z1 : +(A1, B1),
zr : +∗(A0, A1, Ar, B0, B1, Br)(z0, z1)]


d0(x0) : C0(i(x0)) [x0 : A0]
d1(x1) : C1(i(x1)) [x1 : A1]
dr(x0, x1, xr) : Cr(i(x0), i(x1), i∗(x0, x1, xr))(d0(x0), d1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]


e0(y0) : C0(j(y0)) [y0 : B0]
e1(y1) : C1(j(y1)) [y1 : B1]
er(y0, y1, yr) : Cr(j(y0), j(y1), j∗(y0, y1, yr))(e0(y0), e1(y1))

[y0 : B0, y1 : B1, yr : Br(y0, y1)]

The aim is now to find an interpretation for the conclusion, which
should be of the following form:

when0(z0, d0, e0) : C0(z0) [z0 : +(A0, B0)] (4.8a)

when1(z1, d1, e1) : C1(z1) [z1 : +(A1, B1)] (4.8b)

whenr(z0, z1, zr, d0, d1, dr, e0, e1, er) : (4.8c)

Cr(z0, z1, zr)(when(z0, d0, e0),when(z1, d1, e1))

[z0 : +(A0, B0), z1 : +(A1, B1), zr : +∗(A0, A1, Ar, B0, B1, Br)(z0, z1)]

Just taking the first (respectively the second) judgment from each triple
of the interpretation of the premises, and applying the +-elimination we
get immediately the first two judgments of the conclusion, (4.8a),(4.8b):

when0(z0, d0, e0) = when(z0, d0, e0) : C0(z0) [z0 : +(A0, B0)]

when1(z1, d1, e1) = when(z1, d1, e1) : C1(z1) [z1 : +(A1, B1)]

To be able to get (4.8c) we need to apply the +∗-elimination rule, with
the following premise, taken from the interpretation of the assumptions
of +-elimination:
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
Cr(z0, z1, zr)(when(z0, d0, e0),when(z1, d1, e1))

[z0 : +(A0, B0), z1 : +(A1, B1),

zr : +∗(A0, A1, Ar, B0, B1, Br)(z0, z1)]{
dr(x0, x1, xr) : Cr(i(x0), i(x1), i∗(x0, x1, xr))(d0(x0), d1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]{
er(y0, y1, yr) : Cr(j(y0), j(y1), j∗(y0, y1, yr))(e0(y0), e1(y1))

[y0 : B0, y1 : B1, yr : Br(y0, y1)]
when∗(z0, z1, zr, dr, er) : Cr(z0, z1, zr)(when(z0, d0, e0),when(z1, d1, e1))

[z0 : +(A0, B0), z1 : +(A1, B1),

zr : +∗(A0, A1, Ar, B0, B1, Br)(z0, z1)]

which is validated by the rules of +∗-elimination and -equality, by
choosing

D(z0, z1, zr) = Cr(z0, z1, zr)(when(z0, d0, e0),when(z1, d1, e1))

[z0 : +(A0, B0), z1 : +(A1, B1),

zr : +∗(A0, A1, Ar, B0, B1, Br)(z0, z1)]

d(x0, x1, xr) = dr(x0, x1, xr) : Cr(i(x0), i(x1), i∗(x0, x1, xr))(d0(x0), d1(x1))

[x0 : A0, x1 : A1, xr : Ar(x0, x1)]

e(y0, y1, yr) = er(y0, y1, yr) : Cr(j(y0), j(y1), j∗(y0, y1, yr))(e0(y0), e1(y1))

[y0 : B0, y1 : B1, yr : Br(y0, y1)]

Hence we can just complete the validation of the +-elimination, defining
the element in (4.8c) as follows:

when∗(z0, z1, zr, dr, er) = whenr(z0, z1, zr, d0, d1, dr, e0, e1, er) :

Cr(z0, z1, zr)(when(z0, d0, e0),when(z1, d1, e1))

in the usual context.

• + – equality:
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a : A
C(z) : set [z : +(A,B)]

d(x) : C(i(x)) [x : A]

e(y) : C(j(y)) [y : B]

when(i(a), d, e) = d(a) : C(i(a))

b : B
C(z) : set [z : +(A,B)]

d(x) : C(i(x)) [x : A]

e(y) : C(j(y)) [y : B]

when(j(b), d, e) = e(b) : C(j(b))

We are going to validate just the first one, since the second one is
similar.

What we need to check is that the interpretation of

when(i(a)) = d(a) : C(i(a))

yields three correct equivalences, i.e. correctness of the following,
when0(i0(a), d0, e0) = d0(a0) : C0(i0(a))

when1(i1(a), d1, e1) = d1(a1) : C1(i1(a))

whenr(i0(a), i1(a), ir(a), d0, d1, dr, e0, e1, er) = dr(a0, a1, ar) :

Cr(i0(a), i1(a), ir(a))(when0(i(a0), d0, e0),when1(i(a1), d1, e1))

That is, by all the definitions given before:


when(i(a0), d0, e0) = d0(a0) : C0(i(a0)) (4.9a)

when(i(a1), d1, e1) = d1(a1) : C1(i(a1)) (4.9b)

when∗(i(a0), i(a1), i∗(a0, a1, ar), dr, er) = dr(a0, a1, ar) : (4.9c)

Cr(i(a0), i(a1), i∗(a0, a1, ar))(when(i(a0), d0, e0),when(i(a1), d1, e1))

We have already interpreted all the premises during the previous vali-
dation, so we can just observe that (4.9a) and (4.9b) come from easy
applications of the standard +-elimination rule, where in the premises
we take respectively the first and the second judgment of the interpre-
tation of the assumptions of +-elimination.
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Note that now we have that the set

Cr(i(a0), i(a1), i∗(a0, a1, ar))(when(i(a0), d0, e0),when(i(a1), d1, e1))

is equivalent to

Cr(i(a0), i(a1), i∗(a0, a1, ar))(d0(a0)), d1(a1)))

Then to get (4.9c) we can take the third judgment of each interpretation
mentioned above (to be more precise all the ones from the interpretation
of a : A), and then apply this time the +∗-elimination rule.

Ergo, this concludes the validation of the +-type in the external model.
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4.6 N∗ type

• N∗ – formation:

N∗ : rel(N,N)

• N∗ – introduction:

0∗ : N∗(0, 0)
a : N a′ : N p : N∗(a, a′)

succ∗(a, a′, p) : N∗(succ(a), succ(a′))

• N∗ – elimination:

D(z, z′, r) set [z, z′ : N, r : N∗(z, z′)]
d : D(0, 0, 0∗){

e(x, x′, p, y) : D(succ(x), succ(x′), succ∗(x, x′, p))

[x, x′ : N, p : N∗(x, x′), y : D(x, x′, p)]

natrec∗(z, z′, r, d, e) : D(z, z′, r) [z, z′ : N, r : N∗(z, z′)]

• N∗ – equality:

0∗ : N∗(0, 0)

D(z, z′, r) : set [z, z′ : N, r : N∗(z, z′)]
d : D(0, 0, 0∗){

e(x, x′, p, y) : D(succ(x), succ(x′), succ∗(x, x′, p))

[x, x′ : N, p : N∗(x, x′), y : D(x, x′, p)]

natrec∗(0, 0, 0∗d, e) = d : D(0, 0, 0∗)
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a : N
a′ : N

p : N∗(a, a′)
D(z, z′, r) : set [z, z′ : N, r : N∗(z, z′)]

d : D(0, 0, 0∗){
e(x, x′, p, y) : D(succ(x), succ(x′), succ∗(x, x′, p))

[x, x′ : N, p : N∗(x, x′), y : D(x, x′, p)]
natrec∗(succ(a), succ(a′), succ∗(a, a′, p), d, e) =

e(a, a′, p, natrec∗(a, a′, p, d, e)) :

D(succ(a), succ(a′), succ∗(a, a′, p))

4.6.1 The interpretation of N in the model

• N – formation:

N : set

in the model this becomes the rule:

N0 : set N1 : set Nr : rel(N0,N1)

which is automatically validated by the rule of N∗ formation just putting:

N0 = N
N1 = N

Nr = N∗ : rel(N,N) = rel(N0,N1)

• N – introduction:

0 : N a : N
succ(a) : N

when passing to the model, the first one is transformed, using the
interpretation of the N-formation, into:

00 : N 01 : N 0r : N∗(00, 01)
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which is readily validated by the rule of N∗-introduction just using the
following definitions:

00 = 01 = 0 : N
0r = 0∗ : N∗(0, 0)

In order to validate the second one, we need to find an interpretation
for the judgment succ(a) : N, starting from the interpretation of a : N:

a : N 


a0 : N
a1 : N
ar : N∗(a0, a1)

So we can apply the N-introduction and N∗-introduction to obtain read-
ily the following triple:

succ(a0) : N
succ(a1) : N
succ∗(a0, a1, ar) : N∗(succ(a0), succ(a1))

which, as required, is a valid interpretation for the judgment:

succ(a) : N

• N – elimination:

C(z) : set [z : N] d : C(0) e(x, y) : C(succ(x)) [x : N, y : C(x)]

natrec(z, d, e) : C(z) [z : N]

When passing to the model our aim is to validate the interpretation
of the conclusion starting from all the judgments that we got from the
interpretations of the assumptions, which are respectively:

C0(z0) : set [z0 : N]

C1(z1) : set [z1 : N]

Cr(z0, z1, zr) : rel(C0(z0), C1(z1)) [z0, z1 : N, zr : N∗(z0, z1)]
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
d0 : C0(0)

d1 : C1(0)

dr : C(0, 0, 0∗)(d0, d1)



e0(x0, y0) : C0(succ(x0)) [x0 : N, y0 : C0(x0)]

e1(x1, y1) : C1(succ(x1)) [x1 : N, y1 : C1(x1)]

er(x0, x1, xr, y0, y1, yr) :

Cr(succ(x0), succ(x1), succ∗(x0, x1, xr))(e0(x0, y0), e1(x1, y1))

[x0, x1 : N, xr : N∗(x0, x1), y0 : C0(x0), y1 : C1(x1),

yr : Cr(x0, x1, xr)(y0, y1)]

And what we are looking for is a triple of elements of this form:

natrec0(z0, d0, e0) : C0(z0) [z0 : N] (4.10a)

natrec1(z1, d1, e1) : C1(z1) [z1 : N] (4.10b)

natrecr(z0, z1, zr, d0, d1, dr, e0, e1, er) : (4.10c)

Cr(z0, z1, zr)(natrec0(z0, d0, e0), natrec1(z1, d1, e1))

[z0, z1 : N, zr : N∗(z0, z1)]

Immediately we can define (4.10a) and (4.10b) using the standard
N-elimination, taking the premises we need from the interpretations
above, obtaining:

natrec0(z0, d0, e0) =natrec(z0, d0, e0) : C0(z0) [z0 : N]

natrec1(z1, d1, e1) =natrec(z1, d1, e1) : C1(z1) [z1 : N]

Instead in order to define (4.10c) it is enough to apply the N∗-elimination
asserting the following equivalences:
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D(z0, z1, zr) = Cr(z0, z1, zr)(natrec(z0, d0, e0), natrec(z1, d1, e1))

[z0, z1 : N, r : N∗(z0, z1)]

d = dr : Cr(0, 0, 0
∗)(d0, d1)

= Cr(0, 0, 0
∗)(natrec(0, d0, e0), natrec(0, d1, e1))

= D(0, 0, 0∗)

e(x0, x1, xr, y) = er(x0, x1, xr, natrec(x0, d0, e0), natrec(x1, d1, e1), yr) :

Cr(succ(x0), succ(x1), succ∗(x0, x1, xr))

(e0(x0, natrec(x0, d0, e0)), e1(x1, natrec(x1, d1, e1)))

= Cr(succ(x0), succ(x1), succ∗(x0, x1, xr))

(natrec(succ(x0), d0, e0), natrec(succ(x1), d1, e1))

= D(succ(x0), succ(x1), succ∗(x0, x1, xr))

[x0, x1 : N, xr : N∗(x0, x1),

yr : D(x0, x1, xr)

= Cr(x0, x1, xr)(natrec(x0, d0, e0), natrec(x1, d1, e1))]

The equality in these definition is easily obtained by applying the N-
equality on the sets C0(z) and C1(z) [z : N].

With the previous premises we are now able to validate the following
N∗-elimination rule:

{
Cr(z0, z1, zr)(natrec0(z0, d0, e0), natrec1(z1, d1, e1))

[z0, z1 : N, zr : N∗(z0, z1)]

dr : Cr(0, 0, 0
∗)(natrec(0, d0, e0), natrec(0, d1, e1)) = Cr(0, 0, 0

∗)(d0, d1)

er(x0, x1, xr, natrec(x0, d0, e0), natrec(x1, d1, e1), yr) :

Cr(succ(x0), succ(x1), succ∗(x0, x1, xr))

(e0(x0, natrec(x0, d0, e0)), e1(x1, natrec(x1, d1, e1)))

[x0, x1 : N, xr : N∗(x0, x1),

yr : Cr(x0, x1, xr)(natrec(x0, d0, e0), natrec(x1, d1, e1))]
natrec∗(z0, z1, zr, dr, er) :
Cr(z0, z1, zr)(natrec(z0, d0, e0), natrec(z1, d1, e1))
[z0, z1 : N, zr : N∗(z0, z1)]



4.6 N∗ type 106

Hence we can conclude this interpretation putting:

natrecr(z0, z1, zr, d0, d1, dr, e0, e1, er) = natrec∗(z0, z1, zr, dr, er) :

Cr(z0, z1, zr)(natrec0(z0, d0, e0), h1(z1, d1, e1))

in the same context as above.

• N-equality

0 : N
C(z) : set [z : N]

d : C(0)

e(x, y) : C(succ(x)) [x : N, y : C(x)]

natrec(0, d, e) = d : C(0)

x : N
C(z) : set [z : N]

d : C(0)

e(x, y) : C(succ(x)) [x : N, y : C(x)]

natrec(succ(x), d, e) = e(x, natrec(x, d, e)) : C(succ(x))

The validation of the equality rule is an easy check which comes imme-
diately from the above interpretation and the application of N-equality
in the first two equivalences, while N∗-equality in the last equivalence
of the triples which we get transporting the conclusion into our model.

Finally this concludes the validation of the N-rules in the model.
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4.7 U∗ type

We shall first introduce a set of relation U∗ between two generic elements
of the first universe U, which has constructors corresponding to the relation
set forming operations that we defined before, i.e. Bool∗,Π∗,Σ∗, Id∗,+∗,N∗
(we are using Bool since we have explained it, but it will be the same with
a generic finite type).

The relation set U∗ is defined, as usual, by giving its canonical elements
and their equality relation. The idea is to let each canonical element represent
(code) a relation set (“star”-types) formed by using the forming operations
mentioned earlier. We will denote this encoding function with an hat over
the standard relation set that it represents.

Simultaneously with the definition of the canonical elements, we will de-
fine a decoding function, T ∗, which decodes the elements of this universe to
the relation set they represent.

A problem with the set U∗ is that, because of the finite star types, the
number of constructors is not fixed; this makes it impossible to formulate
an induction principle for U∗. Probably, following an analogous reasoning as
in the book [??rogramming] for the first universe U, we can change the set
structure avoiding the dependence of a finite number of constructors in order
to justify an elimination rule for the universe U∗. One motivation for this is
to introduce a selector urec∗, which is necessary for doing computations with
the elements in the set of small relations sets. This it should be done by
representing a generic N∗n set starting from a finitely many star enumeration
sets, although we are not going to develop this idea in our work.

Hence, improperly, we are going to use the decoding function as the elim-
ination and equality rules; even if in our formulation à la Tarski, T ∗ should
be seen simply as a family of set over U∗, where what we have called U∗-
elimination and U∗-equality, are just its formation and introduction rules,
like in [??TT].

• U∗ – formation:

U∗ : rel(U,U)

• U∗ – introduction:

– Introduction-1
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B̂ool∗ : U∗(B̂ool, B̂ool)

– Introduction-2

a : U
a′ : U

p : U∗(a, a′)

b(x) : U [x : T (a)]

b′(x′) : U [x′ : T (a′)]

q(x, x′, t) : U∗(b(x), b′(x′)) [x : T (a), x′ : T (a′), t : T ∗(a, a′, p)(x, x′)]

Π̂∗(a, a′, p, b, b′, q) : U∗(Π̂(a, b), Π̂(a′, b′))

– Introduction-3

a : U
a′ : U

p : U∗(a, a′)

b(x) : U [x : T (a)]

b′(x′) : U [x′ : T (a′)]

q(x, x′, t) : U∗(b(x), b′(x′)) [x : T (a), x′ : T (a′), t : T ∗(a, a′, p)(x, x′)]

Σ̂∗(a, a′, p, b, b′, q) : U∗(Σ̂(a, b), Σ̂(a′, b′))

– Introduction-4

a : U
u : T (a)

v : T (a)

a′ : U
u′ : T (a′)

v′ : T (a′)

p : U∗(a, a′)

s : T ∗(a, a′, p)(u, u′)

t : T ∗(a, a′, p)(v, v′)

Îd∗a,a′,p(u, u
′, s, v, v′, t) : U∗(Îda(u, v), Îda′(u

′, v′))

– Introduction-5

a : U
b : U

a′ : U
b′ : U

p : U∗(a, a′)

q : U∗(b, b′)

+̂∗(a, a′, p, b, b′, q) : U∗(+̂(a, b), +̂(a′, b′))

– Introduction-6

N̂∗ : U∗(N̂, N̂)
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• U∗ – elimination:

a : U a′ : U p : U∗(a, a′)

T ∗(a, a′, p) : rel(T (a), T (a′))

• U∗ – equality:

– Equality 1:{
T ∗(B̂ool, B̂ool, B̂ool∗) = Bool∗ :

rel(Bool, Bool) = rel(T (B̂ool), T (B̂ool))

– Equality 2:

same premises as Intro-2

T ∗(Π̂(a, b), Π̂(a′, b′), Π̂∗(a, a′, p, b, b′, q)) =

Π∗(T (a), T (a′), T ∗(a, a′, p), (x)T (b(x)), (x′)T (b′(x′)),

(x, x′, t)T (b(x), b′(x′), q(x, x′, t))) :

rel(Π(T (a), (x)T (b(x))),Π(T (a′), (x′)T (b′(x′)))) =

rel(T (Π̂(a, b)), T (Π̂(a′, b′)))

– Equality 3:

same premises as Intro-3

T ∗(Σ̂(a, b), Σ̂(a′, b′), Σ̂∗(a, a′, p, b, b′, q)) =

Σ∗(T (a), T (a′), T ∗(a, a′, p), (x)T (b(x)), (x′)T (b′(x′)),

(x, x′, t)T (b(x), b′(x′), q(x, x′, t))) :

rel(Σ(T (a), (x)T (b(x))),Σ(T (a′), (x′)T (b′(x′))))) =

rel(T (Σ̂(a, b)), T (Σ̂(a′, b′)))

– Equality 4:

same premises as Intro-4
T ∗(Îda(u, v), Îda′(u

′, v′), Îd∗a,a′,p(u, u
′, s, v, v′, t)) =

Id∗T (a),T (a′),T ∗(a,a′p)(u, u
′, s, v, v′, t) :

rel(IdT (a)(u, v), IdT (a′)(u
′, v′)) =

rel(T (Îda(u, v)), T (Îda′(u
′, v′)))
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– Equality 5:

same premises as Intro-5
T ∗(+̂(a, b), +̂(a′, b′), +̂∗(a, a′, p, b, b′, q)) =

+∗(T (a), T (a′), T (a, a′, p), T (b), T (b′), T (b, b′, q)) :

rel(+(T (a), T (b)),+(T (a′), T (b′))) =

rel(T (+̂(a, b)), T (+̂(a′, b′)))

– Equality 6: {
T ∗(N̂, N̂, N̂∗) = N∗ :

rel(N,N) = rel(T (N̂), T (N̂))

4.7.1 The interpretation of U in the model

• U – formation:

U : set

in the model this becomes the rule:

U0 : set U1 : set Ur : rel(U0,U1)

which is immediately validated by the U∗-formation putting:

U0 = U1 = U

Ur = U∗

• The six introduction rules of U:

– Introduction 1:

B̂ool : U

– Introduction 2:

a : U b(x) : U [x : T (a)]

Π̂(a, b) : U

– Introduction 3:
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a : U b(x) : U [x : T (a)]

Σ̂(a, b) : U

– Introduction 4:

a : U u : T (a) v : T (a)

Îda(u, v) : U

– Introduction 5:

a : U b : U
+̂(a, b) : U

– Introduction 6:

N̂ : U

The validation of these rules comes almost as an immediate consequence
of the respective U∗-introduction rules. We will show the first two
validations and we will leave the rest to the reader.

When passing to the model, U-introduction 1 becomes:

B̂ool0 : U B̂ool1 : U B̂oolr : U∗(B̂ool0, B̂ool1)

and it is automatically validated by U∗-introduction 1, putting:

B̂ool0 = B̂ool1 = B̂ool : U

B̂oolr = B̂ool∗ : U∗(B̂ool0, B̂ool1) = U∗(B̂ool, B̂ool)

On the other side the premises of U-introduction 2, when passing to
the model, are interpreted in the following triples:

a0 : U

a1 : U

ar : U∗(a0, a1)
b0(x0) : U [x0 : T0(a0)]

b1(x1) : U [x1 : T1(a1)]

br(x0, x1, xr) : U∗(b0(x0), b1(x1))

[x0 : T0(a0), x1 : T1(a1), xr : Tr(a0, a1, ar)(x0, x1)]
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Starting from these we have to find three judgments that shall be a
valid interpretation for

Π̂(a, b) : U

We will show, during the next point, that a correct interpretation of
the non-canonical constant T , i.e. the triple (T0, T1, Tr), is obtained by
defining:

T0 = T1 = T

Tr = T ∗

From this fact, we can apply U-introduction 2 and get:

a0 : U b0(x0) : U [x0 : T (a0)]

Π̂(a0, b0) : U

a1 : U b1(x1) : U [x1 : T (a1)]

Π̂(a1, b1) : U

which conclusions are exactly the first two judgments that we were
looking for. Now, in order to get the third one, it suffices to apply the
U∗-introduction 2 with the following premises:

a0 : U
a1 : U

ar : U∗(a, a′)

b0(x0) : U [x0 : T (a0)]

b1(x1) : U [x1 : T (a1)]{
br(x0, x1, xr) : U∗(b0(x0), b1(x1))

[x0 : T (a0), x1 : T (a1), t : T ∗(a0, a1, ar)(x0, x1)]

Π̂∗(a0, a1, ar, b0, b1, br) : U∗(Π̂(a0, b0), Π̂(a1, b1))

and finally this complete the validation of this rule:
Π̂(a0, b0) : U

Π̂(a1, b1) : U

Π̂∗(a0, a1, ar, b0, b1, br) : U∗(Π̂(a0, b0), Π̂(a1, b1))
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• U – equality:

a : U
T (a) : set

In order to validate this rule we have to find a triple of the following
form: 

T0(a0) : set

T1(a1) : set

Tr(a0, a1, ar) : rel(T0(a0), T1(a1))

starting from: 
a0 : U

a1 : U

ar : U∗(a0, a1)

But this follow immediately by U∗-elimination, putting:

T0 = T1 = T

Tr = T ∗

• The validation of the six equality rules is just an easy exercise that
comes immediately by the interpretation of the respective introduction
rule and the application of the respective U-equality; so we leave all of
them to the reader.

Finally this concludes our interpretation.
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