
SJÄLVSTÄNDIGA ARBETEN I MATEMATIKMATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET
The lass of distane-hereditary graphs, the Hamiltonian problemsand a linear time algorithm

avMattias Timonen2013 - No 15

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

The lass of distane-hereditary graphs, the Hamiltonianproblems and a linear time algorithm
Mattias Timonen

Självständigt arbete i matematik 30 högskolepoäng, GrundnivåHandledare: Jörgen Bakelin2013

Abstract

This paper deals with graphs and graph algortihms for solving the Hamiltonian Problems. We
consider the class of distance-herditary graphs, for which there exist linear time algorithms
for determining whether a given distance-hereditary graph is Hamiltonian or not. We present
such an algorithm. We also give a new idea on the existence of Hamiltonian cycle in graphs

that are not trivially non-hamiltonian. We give an algorithm, based on this new idea, for
solving the Hamiltonian Problem on graphs with maximum degree gerater than one. Each

algorithm is exemplified.

Sammanfattning

Denna uppsats behandlar grafer och grafalgoritmer som löser hamiltonproblemen. Vi beaktar
klassen av distans-hereditära grafer, för vilka det finns linjärtidsalgortimer som avgör om en
given distans-hereditär graf är hamiltonsk eller inte. Vi presenterar en sådan algoritm. Vi ger
också en ny infallsvinkel på existensen av hamiltoncykler i grafer som inte är trivialt icke-

hamiltonska. Vi visar en algoritm som baseras på denna nya infallsvinkel som löser
hamiltonproblemen på grafer vars maximala nodgrad överstiger ett. Varje algoritm

exemplifieras.

Acknowledgments

 I would like to thank my supervisor Jörgen Backelin for his dedication throughout the
process of writing this paper.

CONTENTS

1. INTRODUCTION 1

2. GRAPH THEORETICAL BASICS
2.1. DEFINITIONS AND NOTATION 3

3. PROBLEMS , ALGORITHMS AND COMPLEXITY
3.1. PROBLEMS

3.1.1. Decision problem 5
3.1.2. Instance of a problem 5

3.2. ALGORITHMS COMPLEXITY AND EFFICIENCY
3.2.1. Algorithms 5
3.2.2. Complexity and efficiency 6
3.2.3. P and NP 6

4. DISTANCE-HEREDITARY GRAPHS
4.1. DEFINITION 7
4.2. CONSTRUCTION OF A DISTANCE-HEREDITARY

GRAPH
4.2.1. One-vertex extensions 7

4.3. MORE ABOUT DISTANCE-HEREDITARY GRAPHS
4.3.1. Theorems 1, 2 and 3 8
4.3.2. Proof of theorem 1 8
4.3.3. Proof of theorem 3 10
4.3.4. Theorem 5 with preliminaries 12
4.3.5. Proof of theorem 5 13

5. COGRAPHS
5.1. DEFINITION AND FEATURES OF COGRAPHS 16

6. DETERMINING WHETHER A GRAPH IS DISTANCE-
HEREDITARY OR NOT
6.1. RECOGNITION ALGORITHMS

6.1.1. Distance hereditary-graph recognition algorithm 17
6.1.1.1. Algorithm 1, Prune-dhg(G) 18
6.1.1.2. Algorithm 2, Prune-cograph(G,j) 19
6.1.1.3. Timing analysis of prune-dhg and prune-cograph 19

6.1.2. Cograph- recognition algorithm 20
6.1.2.1. Cograph-Recognition(�) 20

6.1.2.2. Procedure MARK(�) 21
6.1.2.3. Theorem 7 22
6.1.2.4. Proof of theorem 7 22
6.1.2.5. Function FIND-LOWEST 23
6.1.2.6. Timing analysis of MARK(x) and FIND-LOWEST 24

7. FORMATION OF A DISTANCE-HEREDITARY GRAPH
FROM TWO OF THAT KIND
7.1. ONE-VERTEX EXTENSION ORDERING 26
7.2. ONE-VERTEX EXTENSION TREE, ��(�)

7.2.1. Construction of ET(G) 26
7.2.2. Features of the ET(G) 26

7.3. TWIN-SET 27
7.4. A FEW LEMMAS WITH PROOFS 27
7.5. FROM OLD TO NEW DEFINITION OF DISTANCE-

HEREDITARY GRAPHS 31
7.6. THE DECOMPOSITION TREE, DT(G) 32
7.7. A TWIN-SET THEOREM WITH PROOF 33

8. A SOLUTION TO THE HAMILTONIAN PATH-
PROBLEM ON DISTANCE-HEREDITARY GRAPHS
8.1. Prerequisites 34

8.1.1. Theorem 9 with proof 35
8.1.2. Theorem 10 37
8.1.3. Proof of theorem 10 37
8.1.4. Theorem 11 45
8.1.5. Proof of theorem 11 45
8.1.6. Theorem 12 46

9. THE OTHER HAMILTONIAN PROBLEMS
9.1. The 2HP problem and the 1HP problem 47
9.2. The Hamiltonian cycle problem 47
9.3. Theorem 13 47

10. A SOLUTION TO THE HAMILTONIAN CYCLE
PROBLEM ON GRAPHS WITH ��	� ≥ �
10.1. �-PARTITION AROUND A VERTEX 48

10.1.1. Lemma 48
10.2. THEOREM 15. A NECESSARY AND SUFFICIENT

 CONDITION FOR HAMILTONICITY 49
10.2.1. Theorem 15 49

10.2.2. Proof of theorem 15 49
10.2.3. On the number of vertices and lengths of cycles 50

10.3. ALGORITHM CYCLE-�-PARTITION RECOGNITION 51
10.3.1. Algorithm SingleSourceCycleSearch(�), SSCS(�) 52

10.3.1.1. Procedure Backtrack(�, �) 54

10.3.2. Algorithm Match-�-cycles 54

11. CONCLUSION AND DISCUSSION 56

 REFERENCES 57

APPENDICES

Appendix 1. 58

A1.1. One-vertex-extension

Appendix 2. 60

A2.1. One-vertex-extension tree

A2.2 Twin Set

Appendix 3. 61

A3.1 Construction of a distance-heredtiary graph from two other ones

Appendix 4. 62

A4.1 Determining whether G is distance-hereditary or not

A4.2. The Decomposition Tree

A4.2.1 The Constants of the Decomposition Tree

Appendix 5. 75

A5.1 Cycle-k-partition recognition

A persistent theme in graph theory has been a desire to determine, in

some reasonable sense, which graphs have Hamiltonian circuits and

which have not, i.e, we want necessary and sufficient conditions for a

graph to have a Hamiltonian circuit. Of course, such necessary and

sufficient conditions must be of a psychologically satisfactory kind, and

we should not, for example, want a theorem which merely said, perhaps

in a slightly disguised form, that a graph has a Hamiltonian circuit if and

only if it has a Hamiltonian circuit. ... Crispin Nash-Williams (1975)

1

1. INTRODUCTION

 The Hamiltonian problems include the Hamiltonian path, Hamiltonian cycle, the 1HP and 2HP
problems. The first two are to determine whether there exist a Hamiltonian path respectively cycle
in a given graph, and find it if it exists. The 1HP respectively 2HP is to determine whether there
exists a Hamiltonian path starting at a vertex �, respectively starting at a vertex � and ending at a
vertex � and find such paths if they exist. These problems are well known to be NP-complete for
general graphs. Thus, for general graphs there exists no known deterministic algorithms that run in
linear time for solving any of these problems. This fact have inspired mathematicians and computer
scientists to study special classes of graphs, and develop algorithms applicable on them (Hung and
Chang for example that are referred to in this paper). Some of them do indeed solve the
Hamiltonian problem in linear time. The author of this paper was inspired to study Hamiltonian
graphs in order to find out what (not trivially) distinguishes them from others. This led to the
contents of section 10.
 The aim of this paper is to gain some insights as to having a graph problem and design an
algorithm that solves that problem. We shall present a linear-time algorithm for the Hamiltonian
problems on distance-hereditary graphs and its theoretical foundation. These insights should be of
help as we also aim to uniquely characterize Hamiltonian graphs and describe an algorithm based
on this characterization, or theoretical foundation if one wants. We show this algorithm’s being
correct for one instance of the Hamiltonian cycle problem.
 Given a distance-hereditary graph and the task to find out whether it has a Hamiltonian path or
cycle, there are essentially three stages one has to work through. The first stage is to determine a
pruning sequence, which is found by a linear time algorithm. Secondly one needs the so called
decomposition tree, and we shall see how it is constructed with the aid of the pruning sequence, also
in linear time. The decomposition tree is finally used in a recursive program to find the numbers
��(�), �
(�), �(��), �(�)	in linear time for the distance-hereditary graph at hand. That is the last
stage, and once those numbers are computed for a distance-hereditary graph one easily (in constant
time, actually) can determine whether it is Hamiltonian or not. Each stage in the procedure, and
each step, will be explained and performed on a distance-hereditary graph.
 Moreover, we are going to see how distance-hereditary graphs are defined, what characterizes them
and also how they can be constructed in two somewhat different ways. One, the older definition, is
based on adding one new vertex at the time using one-vertex-extensions, and in the new recursive
definition, one forms a distance-hereditary graph from two pairs. Each such pair is a distance-
hereditary graph together with its twin-set. It is of interest to see the connection, or the leap,
between the old, original way if one wants, and the new way to construct a distance-hereditary
graph. This connection is essentially the so called one-vertex-extension tree, ��(�), and the
information it provides about the structure of distance-hereditary graphs.

 The structure of this paper is such that in section 2 we state assumptions and recall basic definitions
from graph theory, whilst some specialties will be defined in addition to their appearance in the text.
The idea is that, when reading, these not so standard concepts will be close at hand. Section 3 deals
briefly with concepts from computer science although this paper is a mathematical one. Therefore
we shall remind ourselves about some basic concepts from that area such as: ”problem”,
”algorithm” and ”complexity”. In section 4 we deal thoroughly with the class of distance-hereditary
graphs. First they will be defined of course, then we present the ”old” way of constructing distance
hereditary graphs using one-vertex-extensions, followed by a few theorems and proofs. In section 5
we define cographs. Section 6 is devoted to the algorithm that is used to determine whether a graph
is distance-hereditary or not. We present a distance-hereditary graph recognition algorithm. In
Section 7 we present the “new” definition of distance-hereditary graphs by presenting the concept
of one-vertex-extension ordering, on which both the above mentioned pruning sequence and the
one-vertex-extension tree relies. The one-vertex-extension tree is the foundation of the concept of

2

twin-set which is an essential part of the new definition of distance hereditary graphs. We give
proofs of a number of lemmas dealing with the one-vertex extension tree. Having done that we are
ready for the new recursive definition of distance hereditary graphs. We then present the
decomposition tree, used in the program presented in next section. Section 8 is devoted to the
lemmas and theorems that leads to the program for finding ��(�), �
(�)	and	�(�) in order to
determine whether the distance-hereditary graph at hand has a Hamiltonian path or not. Section 9
deals briefly with the extension of the solution of the Hamiltonian path problem to 1HP, 2HP and
the Hamiltonian cycle problems. In Section 10 we define a way to partition graphs, and present a
necessary and sufficient condition for Hamiltonicity in general graphs based on that partition. It is
followed by a few corollaries. We present an algorithm (non-linear though) for solving the
Hamiltonian Cycle problem on general graphs based on the N&S-condition.

3

 2. GRAPH THEORETICAL
BASICS

2.1. Definitions and Notation

 We assume that the reader is familiar with the concept of graphs in terms of vertices (or nodes) and
edges. All graphs in this text are non-empty, simple and finite. Below will be stated a few necessary
graph theoretical concepts that will be used in this text, or needed to explain others.

 � = (�,�): denotes a graph with vertex set � and edge set �. Vertices are denoted by small letters
�, � or ��, �
….. An edge between two, thus adjacent, vertices � and � is denoted by ��. The size
or cardinality of a graph,|�|, is equal to number of vertices in �.
 �(�,�) : a set of edges between vertices in � and vertices in �, where � and � are sets of vertices.
 Chord: a chord is an edge that joins two vertices of a cycle (or a path) but is not an edge of the
cycle (or the path) itself.
 Clique: a clique of a graph �, is its maximal complete subgraph of �.
 Closed neighborhood: the closed neighborhood, �[�], of a vertex �, is the neigbourhood of � and
v itself.
 Cograph: complement-reducible graph See section 5
 Complete graph: a graph in which all vertices are pairwise adjacent is called a complete graph and
the complete graph on vertices is denoted by !".
 Connected graph: a graph is said to be connected if there is a path between any two vertices in �.
 Cycle: if �# = �$ in a path �#%#��%�. . . %$'��$,then the path is a cycle. A chord-free cycle is an
induced cycle in a graph. We often denote a cycle by its vertex sequence and write (= �#��…�$'�
 Diameter: the greatest distance between two vertices in � is called the diameter of �.
 Distance: the distance)(�, �) of two vertices in � is the length of a shortest path from � to � in �.
The distance between two vertices in different components of a disconnected graph is infinite.
 Distance layout: all vertices �*, in �, such that)(�, �*) =).
 Finite graph: if the number of vertices in a graph � is finite, then we say that the graph is finite.
Else it is infinite.
 Induced subgraph: if �′ ⊆ � and �′ contains every edge �� of E with �, � ∈ �′, then �′ is an
induced subgraph of �. We let �[�′]	denote the induced subgraph.
 Inner face: a bounded region in a plane graph, see Diestel for technicalities.
 Join of graphs: the join � = �’ + �’’ of two graphs �’ and �’’ with disjoint vertex sets �’ and �’’
respectively and edge sets �’ and �’’ respectively is the union of the �’ and	�’’ together with all
edges joining �’ and �’’.
 Length of a cycle: the length of a cycle is the number of edges or the number of vertices as they
are the same.
 Length of a path: the length, 0(�, �) of a path �#%#��%�…%$'��$ is 1, i.e. the number of edges.
 Long cycle: if the length of a cycle is at least 5, then we say that it is a long cycle.
 Neighborhood: the neighborhood, �(�), of a vertex is the set of vertices that are adjacent to the
vertex	�.
 Parent(3): if, in a rooted tree with root �# and an edge ��, it holds that)(�#, �) =)(�#, �) + 1
then we say that � is the parent of � in � and we denote it 5(�). If)(�#, �) ≥)(�#, �) + 1 in	� we
say that � is an ancestor of � in �.
 Path: a path is a non-empty graph 7 = (�, �) of the form � = 8�#, ��, … , �$9,
� = 8�#��, ���
, … , �$'��$9. We can let %* = �*�*:� and thus write � = 8%#, %�, … , %$'
, %$'�9. In
a path all �* are distinct, all %* are distinct and �#and �$ are called end vertices. A path is usually
denoted by 7. We can write 7 = �#%#��%�…%$'��$ or 7 = �#��, … , �$, 7 = �# − �� −⋯− �$
whence the edges are implicit in the latter cases. Also, we can denote a path with start vertex �#and
end vertex �$ in an intuitive manner by �#7�$ or 7=>=?.

4

 Path cover: a path cover of a graph � is a set of disjoint paths such that they together contain all
the vertices of �.
 @A: a path on four vertices, i.e. of length 3.
 Plane graph: a graph drawn in the plane such that no edges cross. For technicalities, see Diestel.
 Root: sometimes it is convenient to consider one vertex of a tree as special; such a vertex is then
called the root of this tree. A tree with a root is a rooted tree. Choosing a root �# in a tree imposes a
partial ordering on �(�) by letting C ≤ ℎ, if �F is on a path �#%#��%�…%G'��G of the tree.
 Subgraph: a subgraph �′ = (�′, �′), denoted �′ ⊆ �, is a graph for which �′ ⊆ � and �′ ⊆ �.
 Stable Set: a stable set of vertices is a set of vertices that are pairwise non-adjacent.
 Tree: a connected graph that has no cycles is called a tree and is usually, and here, denoted �.
 Union of graphs: the union � = �’ ∪ �’’ of two graphs �’ and �’’ with disjoint vertex sets �’ and
�’’	respectively and edge sets �’	and �’’ respectively is the graph � with vertex set �’ ∪ �’’and edge
set �’ ∪ �’’
 Domino, Gem and House: Three forbidden subgraphs in a distance-hereditary graph.

5

3. PROBLEMS, ALGORITHMS AND COMPLEXITY

3.1. PROBLEMS

3.1.1. Problems, Decision Problem and Solution to the Problem

 A decision problem in the sense that is used here has nothing to do with human ambivalence before
choosing “between a rock and a hard place”, but has quite a precise meaning which we will learn
just after we have learned what a problem is, (Golumbic p.23):
 A problem consists of two things: a question to be answered, and a solution to be found.

If the question has a ”yes” or ”no” answer then the problem is a decision problem.
The solution can be a requirement to be fulfilled, a best possible situation or a structure to be
found.

 A decision problem may be: ”can the vertices of a graph be ordered	(�#, … , �") so that �* and �*:�
are adjacent in � for 1 ≤ I ≤ − 1?”, or it may be this: ”can the vertices of a graph be ordered in
some way, (�#, … , �")	, so that for 1 ≤ I ≤ − 1we have that �* and �*:� are adjacent, and we also
have that �" and �# are adjacent, in �?”. Those questions are seeking the yes- or no-answer to
whether there is a particular structure, namely a Hamiltonian path respectively a Hamiltonian cycle
in a graph � and hence the Hamiltonian Path- and Hamiltonian Cycle-problems are decision
problems.

3.1.2. Instance of a Problem

 Suppose we have a problem, the Hamiltonian Cycle Problem say, a graph at hand and some
knowledge about it, the adjacency matrix for example, and we will be satisfied when we have a
correct answer to whether our graph has a Hamiltonian Cycle or not, then we have an instance of a
problem. In more general and slightly formal terms one can say (Gould p. 15):

A graph problem can be posed in terms of a number of parameters. When specifying the
parameters in addition to the description of the problem and what is meant by a solution,
then one have an instance of a problem. The description may typically be in the form of the
graph structure: adjacency matrix, degree sequence.

 In this paper an instance of a problem will for example be a given distance-hereditary graph
together with a particular tree representation, namely a decomposition tree J�(�): given this
distance-hereditary graph and J�(�), does it have a Hamiltonian path?

3.2. ALGORITHMS AND COMPLEXITY

3.2.1. Algorithms

 What is an algorithm? In a sufficiently deep sense it can be thought of as an instruction, and in
particular an instruction to a computer on how to compute the solution to a problem. There are
further concepts associated with algotihms such as state and determinism (Golumbic pp.23,26):
Take into consideration the current values of all variables and the location of the instruction to be
executed, that is the state of the algorithm. If for each state, execution of the instruction determines
at most one new state, then the algorithm is deterministic. It explores the alternatives one at the time
so to say. Nondeterministic algorithms may allow several new states and for each new state it
branches off and explores all alternatives simultaneously.
 Later on in this paper we will state a number of algorithms and present them in pseudocode, which
is a way of expressing the computer logic in almost, or bitwise, ordinary language.

6

3.2.2. Complexity and Efficiency

 The efficiency of algorithms is measured in space complexity or time complexity. Space complexity
is not an issue to the extent that time complexity is, due to the powerful storage capacity of modern
computers and computer environments, so we'll leave it at that.
 Time complexity however, despite the computational power of computers today, is still a concern.
This measure is relative and not measured in time units, and there are a couple of reasons why such
an absolute measure would be impractical, (Gould p.16): computational speed of computers differ
and programmers vary in skills. This may effect the time in seconds or minutes it takes for the
algorithm to be performed. Therefore it is of higher interest to study the relative time it takes to
carry out an algorithm, more specificly in terms of the number of elementary computational steps
involved in the algorithm. Taking into consideration the worst-case scenario one gets the upper
bound for the complexity of the algorithm.
 How do we express this relative time measure then? A function �, usually of the size of the
problem (the number of vertices for example), expresses the complexity of the algorithm K. One
says that the function � runs in time L(�()), if there exists an implementation of K such that for
some constant M > 0, K terminates after at most M�(P) computational steps for all instances of size
P.

3.2.3. The Classes P and NP

 A decision problem is in the class 7, if there exists a deterministic algorithm that solves the
problem in polynomial time. Herbert S Wilf states this (Wilf p.106):

We say that a decision problem belongs to the class 7 if there is an algorithm � and a number
M such that for every instance Q of the problem the algorithm �	will produce a solution in time
L(�R), where B is the number of bits in the input string that represents I.
To put it more briefly, 7 is the set of easy decision problems.

For each of the problems in that class there is a fast (polynomial time) algorithm that provides a
solution.
 A decision problem is in the class �7 if an answer that is claimed to be correct is easy to check.
Also if a nondeterministic algorithm solves a problem in polynomial time, then the problem is in the
class �7. If, in each state of a non-deterministic algorithm, the ”correct” choice is made for the
next sate, then computing time is polynomial. If instead all possible choices are to be made, then a
nondeterministic algorithm becomes deterministic and requires an exponential number of
elementary computational steps.
 Problems in the class �7 can be classified according to reducibility, a concept that can be
described by the following (similar to “the teakettle principle”): if one is given a pen, a rubber and a
blank sheet of paper and is asked to draw a graph on ten vertices with no edges on the paper, then
one makes ten dots on the paper. If one is given a sheet of paper with five dots and is asked to do
the same thing one is tempted to draw five dots on the paper. But then one would have solved
another problem, so instead one can reduce the problem to the first one by erasing the five given
dots and draw ten new ones.
 Consider two problems S and �. � is quickly reducible to S, if for every instance ”U” of � we can
convert it in	5(P)-time (5 is a polynomial) to ”V”, an instance of S in such a way that they have the
same answer - ”yes” or ”no”.

 A decision problem is �7-hard if all problems in the class �7 are quickly reducible to it.
An �7-hard problem in �7 is �7-complete. For �7 -complete problems only exponential time
algorithms are known. The best known lower bounds are polynomial functions, though. If a
polynomial time algorithm should be proved to exist for one of them, then there exists one for each
of them.

7

4. DISTANCE-HEREDITARY GRAPHS

4.1. DEFINITION

 A description of distance hereditary graphs is the following (Bandelt and Mulder p.182):
a distance-hereditary graph is a connected graph in which every induced path is isometric.

That is, the distance of any two vertices in an induced path equals their distance in the graph.
So any connected induced subgraph of a distance hereditary graph inherits its distance
function from �, where the distance function gives the length of a shortest path between two
vertices.

 Rephrasing it even more intuitively one can say that the distance between any two vertices � and W
in �, is the same in any induced subgraph that contains	� and W.
 Distance-hereditary graphs are also known under the name completely separable graphs. In this
paper we will only refer to this class of graphs as distance-hereditary graphs.

 The definition is theoretically appealing in its simplicity. In practice however, it may be difficult
and tedious to check the condition using the definition on other than small graphs. For instance
checking that a path on a small number of vertices is distance hereditary is easy, but as the number
of vertices grows and cycles appears, the checking rapidly becomes tedious. In this paper we will
discuss recursive methods to construct distance hereditary graphs and algorithmic methods to
determine whether a given graph is distance hereditary or not.

4.2. CONSTRUCTION OF A DISTANCE-HEREDITARY GRAPH

4.2.1. One-vertex extensions

 We shall now present the concept of one-vertex extension. It is pretty much what it sound like;
extending a graph by adding one vertex at the time, although following some particular rules while
doing so. Consider the induced subgraph �′ = (�′, �′) of � = (�′	 ∪ 8�9, �), and a vertex �′ in �′.
If �′ were extended to � by adding a new vertex � such that:
 I) �(�) = 8�′9, we say that we were attaching a pendant vertex � to �′	and denote the
 extension by �(7)�′

II) �(�) = �(�′), we say that �′ and � are false twins, and denote the extension by
�(X)�′

III) �[�] = �[�′], we say that �′ and	� are true twins, and denote the extension by
�(�)�′

 The last two operations are also referred to as splitting vertices (Bandelt and Mulder) among other
names, but in this paper they will be referred to as false-twin operation respectively true-twin
operation, whilst the first one will be referred to as a pendant operation. Any of the operations
above can of course act on any kind of graph, but they are of particular interest in the theory of
distance hereditary graphs. It is so because those three one-vertex extensions are such that, using
them and only them as we shall see in theorem 1 below, all finite distance-hereditary graphs can be
obtained. See also Appendix 1 for examples of each operation.

4.3 MORE ABOUT DISTANCE-HEREDITARY GRAPHS

 Below we present a few theorems and proofs of some, following the authors giving them. The first
theorem, theorem 1 given and proved by Bandelt and Mulder, relates a graph’s being distance-
hereditary to the one-vertex-extensions. We shall briefly present the proof of this theorem. In

8

theorem 2 given by Chang, Hsieh and Chen, will be stated that there is an order in which the
extensions are employed and that this ordering also will generate a distance-hereditary graph.
Theorem 3, given by Hammer and Maffray, gives a number of characteristics of distance-hereditary
graphs, and states that these properties are equivalent to �’s being a distance-hereditary graph.
Hammer and Maffray does not use the term “distance-hereditary graph”, instead they talk about
“completely separable graphs”, a notion based on Boolean Functions. Note that statement (d) of
theorem 3 is proved in the establishment of the ”only if” part of theorem 1 in which is shown that
every distance-hereditary graph	� contains a pair of twins or two pendant vertices (and hence a
[one] pendant vertex). This is a connection between the two theorems. This also proves theorem 2.
The proof of theorem 3 is partially given here, and otherwise given by Hammer and Maffray.
Finally, theorem 5, preceded by theorem 4 and a lemma, all of which are given and proved by
Bandelt and Mulder, gives a few conditions that are necessary and sufficient for a graph’s being
distance-hereditary. This theorem is also fundamental to the linear time algorithm that is used to
determine whether a given graph is distance-hereditary or not. The theorem is followed by a
presentation of its proof.

4.3.1. Theorems 1, 2 and 3

 Theorem 1 (Bandelt and Mulder p.188):

A connected graph �, |�| ≥ 2, is a distance-hereditary graph if and only if it is obtained from
!
 by a sequence of one-vertex-extensions: pendant, false-twin and true-twin operations, where
!
 is the complete graph on two vertices.

Remark: a graph �, |�| ≥ 2, is distance-hereditary but not connected if it is obtained from !� by a
sequence of one-vertex-extensions starting with a false-twin operation. To see this consider
�[��]	and �[�
] when adding �
 to � = 8��9 by a false-twin operation.

 Theorem 2 (Chang et al. p345):

A graph	G is a distance-hereditary graph if and only if it has a one-vertex-extension-ordering.

Remark: A one-vertex-extension ordering is a set of nodes together with an ordering that
constitutes the order in which the vertices are attached to the graph. See section 7.

 Theorem 3. Based on Hammer and Maffray theorem 4.2:

The following five properties are equivalent
(a)(a)(a)(a) � is a distance hereditary graph
(b)(b)(b)(b) � contains none of house, gem, domino, chordless cycle of length ≥ 	5 (long cycle) as an

induced subgraph
(c)(c)(c)(c) Every long cycle of � has at least two crossing chords
(d)(d)(d)(d) Every induced subgraph of � has a pair of twins or a pendant vertex
(e)(e)(e)(e) Given any two vertices � and � of �, all chordless paths from u to v have the same length

4.3.2. Proof of Theorem 1

 In the following, we refer to Bandelt and Mulder p188-191. The proof of the if-part is rather short
so we present it below. When it comes to the only-if-part, there are a number of cases and subcases.
The proof in its whole is quite long, so we will only briefly present the conclusion in each case and
we refer to Bandelt and Mulder for details.
 The ”if” part of the theorem, that is: if � is obtained from !
 by a series of one-vertex-extensions,
then � is distance hereditary is proved by induction on the number of vertices in the following way
(Bandelt and Mulder p.188):

Let � be a distance-hereditary graph with at least two vertices. Any graph obtained from � by

9

attaching a pendant vertex is, evidently, again a distance hereditary graph. Let �′ be obtained
from � by adding a twin �′ to a vertex � of �. Any induced path in �′ containing at most one
of � and �′ is isometric by induction hypothesis. If both x and x' are in an induced path 7 of
�′, then either 7 has length 1 (if � and �′ are adjacent, i.e. if �′ is a true twin to �) or 7 has
length 2 (if �′ is a false twin to �). In either case 7, trivially, is isometric. Therefore, �′ is
distance hereditary.

The ”only if” part, that is, if	� is distance hereditary then � is obtained from !
 by a series of one-
vertex-extensions, is proved by starting with the following assertion: let � be a distance hereditary
graph with ≥ 3 vertices. Assume that every distance hereditary graph with at least two and at most
 − 1 vertices contains either a pair of twins or two pendant vertices (Bandelt and Mulder p.188). To
prove that � contains either a pair of twins or two pendant vertices the authors distinguish a number
of cases. We present the assertion of each case together with a very brief description of the proof.

 ([V%	1(Bandelt and Mulder p.188):

 G contains at least two pendant vertices which is the trivial case and there is nothing to prove.

 ([V%	2 (Bandelt and Mulder p.188):

G contains exactly one pendant vertex z′, which is attached to the vertex z, say.
 To prove this they consider the vertex-deleted subgraph � −]′, which contains one pendant vertex
or none. In either case, by the induction hypothesis � contains a pair of twins.

	([V%	3 (Bandelt and Mulder p.188):

 � has no pendant vertices, but for some vertex] of �, the vertex-deleted subgraph � −] has

at least two pendant vertices. Let �′, �′ be two pedant vertices of �–]; say, �′ is attached to �
and �′ to �. They distinguish two subcases.

 ([V%	3.1(Bandelt and Mulder p.188):
 The vertices �′ and �′ belong to the same component of �	–].

 They show that the two pendant vertices must be attached to the same vertex, i.e that � = �, in
�–], by showing that the converse implies one of the forbidden subgraphs in �–], where �–] is
distance-hereditary by induction hypothesis. They conclude that � = � and that this implies that
�_, �′ is a pair of twins in �.
 ([V%	3.2 (Bandelt and Mulder p.189):

 All pendant vertices of �–] belong to different components of �–].
 To prove that	�–] contains at least two pendant vertices, Bandelt andMulder argues that] is a cut-
vertex and hence the removal splits � into disconnected subgraphs. They further argue that the
component ̀ containing �′ has at least two vertices, is a distance-hereditary graph containing
exactly one pendant vertex and hence by hypothesis having a pair of twins �, �′. They settle the case
by showing a number of outcomes depending on the adjacency relation between] and �, �′.

 ([V%	4 (Bandelt and Mulder pp.189-191):

� has no pendant vertices, and for every vertex] of �, the subgraph �–] contains at most
one pendant vertex.

 �–] contains by hypothesis a pair of twins and one want to show that this implies that so do �.
Bandelt and Mulder argues that the pair of twins in �–] cannot involve a pendant vertex and that
the pendant vertex cannot be attached to any of the vertices in the pair of twins. Then by way of
contradiction, they assume that � does not contain a pair of twins, and argue that] is thus adjacent
to exactly one vertex of a pair of twins �, �′ in �–].
They let] be a vertex in � and have maximum degree and they let �, �′ be a pair of twins in �–]
such that] is adjacent to �′ but not to �. The following argument of case 4 is subdivided into two

10

main subcases, one where the pair of twins �, �′ in �–] are adjacent and one where they are not. In
either way, Bandelt and Mulder show that for each subcase this will lead to a contradiction either by
violating the maximality assumption on], the existence of forbidden subgraphs (see theorem 3.b)
or the existence of troublesome pairs of twins. The strategy is to investigate adjacency relations
between] and pairs of twins, adjacency relations between couples of pairs of twins and the
interrelations between all three entities. For details see Bandelt and Mulder pages 189-191)

In this manner Bandelt and Mulder have proved the existence of either a pair of twins or two
pendant vertices in any distance-hereditary graph on at least two vertices. They conclude that
(Bandelt Mulder p.191):

we can decompose	� according to the one-vertex-extensions until we finally arrive at the graph
!

and thus they have settled the proof of theorem 1.

4.3.3. Proof of Theorem 3

 The theory behind theorem 4.2 in Hammer Maffray is based on Boolean functions and a property
thereof called separablity (Hammer and Maffray p.85). That is outside the scope of this paper,
therefore we give proofs in terms of graph theoretical concepts where the authors do not. First we
give a proof of that property (e) is equivalent to the graph �’s being distance hereditary, i.e. that	(a)
is equivalent to (e). Using Theorem 1 we argue that (a) is equivalent to (d). Then we give an outline
for the proof of the implication (a)⇒(b). Hammer and Maffray show that (b)⇒(c) and finally, we
give a proof of the implication (c)⇒(e), and we are done.

(a)⇔(e) (Backelin and Timonen): First we prove the implication (a)⇒(e). Assume that � is a
distance-hereditary graph, that 7 = 8�,… . , �9 is a chord-free path in � and that 7 has length
)d(�, �). 7 is an induced subgraph of �. Since � is distance-hereditary we have that)d(�, �) 	=
)e(�, �), and in every induced subgraph of � the distance between � and � is the same, and
therefore all chord-free paths from � to � has the same length.
To prove that (e)⇒(a), we assume that � is a connected graph, and ` is a connected subgraph of �.
We also assume that 0e(�, �) is the length of any shortest path from u to v in �. 7 is chord-free (else
there would be a shorter path). Finally we assume that 0f(�, �) is the length of a shortest path from
� to � in ̀ . This path is chord-free for the same reason. Thus we have that the distance between
any two vertices in �, is the same in any induced connected subgraph `, and hence � is distance-
hereditary by definition.

(a)⇔(d): The equivalence follows from Theorem 1 and its proof.

(a)⇒(b): to show that a distance hereditary graph does not contain any of the forbidden subgraphs
as an induced subgraph is a fairly straight forward exercise done by considering the subgraph	` −
�, where ̀ is one of the house, domino, gem or long cycle, and where � is a vertex of highest
degree. By removing � in the house, gem or domino it is obvious that the paths of length two on
three vertices, 7 = 8�, �, �9 with � not on any endpoint, the remaining paths from � to � in ̀ is
not of length two.
If ` is the long cycle, we have that if 7 = 8�, �, �9 as above, the removal of � will result in a path
of length − 1 ≥ 3. Thus the distance between � and � in ̀ − � ≥ 2.
Thus the removal of � from ̀ as explained above results in a change of distances between two
vertices in the subgraph ` − �, and hence they cannot exist as induced subgraphs of a distance
hereditary graph.

 (b)⇒(c), we follow Hammer and Maffray who use induction on 1, where 1 is the length of a long
cycle	(of �, (Hammer and Maffray p.89):

11

If 1 = 5, then (must have two crossing chords, otherwise its vertices would induce a
pentagon, a house or a gem. If 1 = 6, either the vertices of (induce a hexagon or a domino,
which are forbidden, or (has two non-triangular chords and they necessarily cross each other,
or it contains a cycle of length 5 and thus two crossing chords by the induction hypothesis. If
1 ≥ 7, the cycle (must have a chord since � contains no long chordless cycle. This chord
divides (in two shorter cycles, one of which has length at least 5. By the induction hypothesis
this subcycle of (has two crossing chords, which in turn are crossing chords of (.

(c)⇒(e)We give a proof for the implication (Backelin and Timonen):
 The distance between the vertices � and � in a graph is, by definition, the minimum length of a
path from � to �:)(�, �) 	= 	PI 80(�, �)9.)(�, �) is also equal to the minimum length of a chord-
free path between � and �.
We want to show that for any chord-free path between � and � 0(�, �) =)(�, �), and we will do so
by induction on)(�, �).
The statement is true for)(�, �) ≤ 1, that is for graphs on identical or adjacent vertices.
We assume, for some 1 ≥ 1, that if)(�, �) ≤ 1, it holds that every chord free path between � and �
has length)(�, �). Now we want to show that this holds when)(�, �) = 1 + 1.

Let 7 = �– �� −	…	− �$– � be a shortest path between � and �, with distance)d(�, �) = 1 + 1,
and let j = �– W� −	…	− W"– � be any chord free path between � and � with distance)k(�, �) =
 + 1.

We want to show that = 1. We get two cases:

([V%	1. There exists a vertex � = �* = Wl. We have that)d(�, �) = I ≤ 1. By hypothesis
)k(�, �) = I. Also)d(�, �) ≤ 1 and by hypothesis)d(�, �) =)k(�, �) ≤ 1. Hence = 1.

([V%	2. There is no vertex � = �* = Wl, i.e.
 78�, �9 ∩ 	j8�, �9 = 8�� −	…	− �$9 ∩ 8W� −	…	− W"9 = ∅.
 2 ≤ 1 + 1 ≤ , �– �� −⋯− �"– �–	W$ −⋯− W�–� is a long cycle which we know has two
crossing chords.
Let	I be the smallest index such that there is a crossing chord W* − �l .
Claim 1: For �l it holds that o ≥ 2.
Proof: Since W* − �l is a crossing chord, there is a chord W*′ − �l′ being crossed. Since I is minimal
we have that I < I’. In order to preserve the crossing condition this leaves us no other possibility
than that o > o’, thus o ≥ 2.
Claim 2: The smallest i such that there is a crossing chord W* − �l is I = 1.

Proof: assume I	 > 1. Since �l ∈ 8�
, … , �$	9, �– W� −⋯	− W*– �l −⋯− �� − � is a long cycle
and thus has a crossing chord from WF , C < I which contradicts our assumption. Hence I = 1.

Now assume that W� − �l is the last chord from W�.
Claim 3: The greatest o such that there is a crossing chord W� − �l is o = 2.

Proof: �– W� − �l is chord-free and)q�, �lr = 2. [�– �� −⋯–�l =>)d(�, �l) = 2]�[o = 2],
since we have by assumption that all chord-free paths from] to]’, have the same length as the
shortest path from] to]’ when)(],]’) ≤ 1.
When] = W� and]’ = � we have that W�– �
–…− �$– � is the shortest path from W� to �, and
hence has the same length as the chord free path W�– W
	– …− W"– �. Hence 1 = .

12

4.3.4 Theorem 5 with preliminaries

 Theorem 5, stated and proved by Bandelt and Mulder, is the foundation for the linear-time
algorithm which is used to determine whether a graph is distance-hereditary or not. We shall present
the theorem and its proof. Before we do that, we shall present the definition of a few concepts,
theorem 4 and a lemma. The proof of theorem 4 is omitted here but is given by the authors.

 Definition 4.3.4.2 (Bandelt and Mulder p.184):

The interval function, Q(�, �), for a graph � and for any pair �, � of vertices in �, is defined,

by Q(�, �) 	= 	 8�	|	�	IV	[�%CU%�	s�	�	s 	VsP%	VℎsCU%VU	(�, �)	– 	5[Uℎ9.

The following theorem is an extension of theorem 3.
 Theorem 4. (Bandelt and Mulder p.194):

Let � be a connected graph with distance function d and interval function Q. Then the
following conditions are equivalent:
(a)(a)(a)(a) � is distance-hereditary
(b)(b)(b)(b) For any two vertices � and � with)(�, �) = 2, there is no induced (�, �)-path of length

greater than 2.
(c)(c)(c)(c) The gem, the domino, the house and the long cycles are not induced subgraphs of �,
(d)(d)(d)(d) The gem, the domino, the house and the long cycles are not isometric subgraphs of �,
(e)(e)(e)(e) The gem, the domino, the house and the long cycles are not induced (or isometric)

subgraphs of �, and Q(�, �) ∩ Q(�, �) = 8�9 ⟹)(�, �) ≥)(�, �) +)(�,�) − 1,
(f)(f)(f)(f) the gem is not an induced subgraph of �, and for any three vertices �, �, � at least two of

the following inclusions hold: Q(�, �) ⊆ Q(�, �) ∪ Q(�, �), Q(�, �) ⊆ Q(�, �) ∪
Q(�, �), Q(�, �) ⊆ Q(�, �) ∪ Q(�, �)

(g)(g)(g)(g) for any four vertices �, �, �, � at least two of the following distance sums are equal:
)(�, �) +)(�, �),)(�,�) +)(�, �),)(�, �) +)(�,�),

(h)(h)(h)(h) � satisfies condition (g)(g)(g)(g), and if in (g)(g)(g)(g) the smaller distance sums are equal, then the largest
one exceeds the smaller ones by at most 2.

 A graph � can be decomposed into levels with respect to the distance from a fixed vertex. A level is
the set of vertices on a particular distance, 1, from a particular vertex �:

Definition 4.3.4.1 (Bandelt and Mulder p.200):

The k:th level with respect to u, is defined by
�$(�) = 8�|�	IV	[�%CU%�	s�	�	�IUℎ)(�, �) = 19

 Each such level in a distance-hereditary graph can be viewed as a building stone of such a graph,
provided, as we shall see in theorem 5 below, each level contains no paths of length 3 as induced
subgraphs.

 Definition 4.3.4.3. (Bandelt and Mulder p.200):

 The 1: Uℎ internal level of any interval, Q(�, �), is the intersection of the interval function and
the 1: Uℎ level, denoted �$(�, �).

 Lemma 4.3.4.4. (Bandelt and Mulder p.200):

 Let � be a distance-hereditary graph. Then for any two vertices � and �, and for any integer	I
with 0 ≤ I <)(�, �), every vertex in �*(�, �) is adjacent to all vertices in �*:�(�, �).

Theorem 5. (Bandelt and Mulder p.201):

Let � be a connected graph, and let � be any vertex of �. Then � is distance-hereditary if and

13

only if � satisfies the following five conditions, for any integer 1 ≥ 1:

(a)(a)(a)(a) if �,� are two vertices in the same component of �$(�), then
�(�) ∩ �$'�(�) = �(�) ∩	�$'�(�)	,

(b)(b)(b)(b) there is no induced path of length 3 (i.e no 7u as an induced subgraph) in �$(�).

(c)(c)(c)(c) if a vertex � of �$(�), has neighbors � and	W in two distinct components v and w of

�$'�(�), then � is adjacent to all vertices in v and w, and

�(�) ∩ �$'
(�) = �(W) ∩ �$'
(�) ,

(d)(d)(d)(d) if �,� are vertices in different components of �$(�), then �(�) ∩ �$'�(�), and �(�) ∩
�$'�(�), are either disjoint, or one of the two sets is contained in the other.

(e)(e)(e)(e) if a vertex	� of �$(�), is adjacent to two vertices � and W in the same component of

�$'�(�),, then the vertices of this component which are not adjacent to � are adjacent to
either both	� and W, or none.

4.3.5 Proof of Theorem 5

 The following proof is given by Bandelt and Mulder. They first prove the only if part(Bandelt and
Mulder p. 201-203):

Let � be distance-hereditary. To prove 4(a) 4(a) 4(a) 4(a) it suffices to show that the assertion holds for any
two adjacent vertices �,� in �$(�). From condition (e) of theorem 4 they infer that there is
some neighbor � of � and � in �$'�(�). Suppose that there exists a neighbor W of � in
�$'�(�) which is not adjacent to �. Then by Lemma 1, one can find a common neighbor]
of �	and W	 in �$'
(�). Then �,�, �, W,] induce one of the forbidden subgraphs - house,
gem or domino – which is a contradiction. Hence (a)(a)(a)(a) is true.

Assume that 7 is an induced path of length 3 in �$(�). Then by (a), (a), (a), (a), there exists a vertex � in
�$'�(�) adjacent to all vertices in 7. Hence 7 and � induce a gem, which is forbidden. This
proves (b).(b).(b).(b).

For � and W, given as in (c)(c)(c)(c) one can find a vertex] in �$'
(�) adjacent to both � and W, by
the Lemma. Then �, �, W,] induce a 4 − MICM�IU in �. If � is some vertex in �$'�(�)
adjacent to one of � and W, then by (a), (a), (a), (a), also � is adjacent to]. Since the house may not occur
in �, it follows that � and � are adjacent, proving the first part of (c)(c)(c)(c). Finally, note that, by the
Lemma, every neighbor of � in �$'
(�) is also adjacent to W. This settles (c)(c)(c)(c).

Next, given �,� as in (d)(d)(d)(d), let � be a common neighbor of � and � in �$'�(�), and let W and
] be vertices in �$'�(�) such that W is adjacent to � but not to �, and] is adjacent to � but
not to �. Then, by (a)(a)(a)(a) and (c)(c)(c)(c), there exists a vertex t in �$'
(�) adjacent to all three verices
�, W and]. Then the subgraph induced by 8U, �, �, �, W,]9 contains one of the forbidden
subgraphs as an induced subgraph, whence one is done.

Finally, to prove (d) (d) (d) (d) let � and W be neighbors of � within the same component of �$'�(�).
From (a) (a) (a) (a) one knows that there exists a vertex] in �$'
(�) adjacent to all vertices of this
component. Let U be a vertex of the latter adjacent to � but not to �. If U and W re not
adjacent, then 8U, �, �, W,]9 would induce one of the forbidden subgraphs.

14

 This concludes the ”only if” part.

Conversely, let � satisfy conditions (a) (a) (a) (a) through (e).(e).(e).(e). Bandelt and Mulder show by induction on
1 that the subgraph �$ of � induced by all levels �*(�) with I ≤ 1 does not contain any (",
 ≥ 5, or any of the forbidden subgraphs house, gem or domino as an induced subgraph. For
1 ≤ 1 this is trivial by (b)(b)(b)(b). So let 1 ≥ 2. By hypothesis, one only have to consider
configurations touching �$(�). First they prove two simple facts, (A)(A)(A)(A) and (B)(B)(B)(B) below, which are
used in the sequel.

(A)(A)(A)(A) If 7 = � − � − � − W is an induced path in �$ such that the internal vertex � is in �$(�),

then � is also in �$(�), and �, W	are in �$'�(�).
Proof:Proof:Proof:Proof: This is seen as follows. By (b)(b)(b)(b) at least one vertex of 7 belongs to �$'�(�). Then by (a) (a) (a) (a)
there cannot be any edge of 7 in �$(�). Hence � and W are in �$'�(�). If � is in �$'
(�),
then either (a) (a) (a) (a) or (c)(c)(c)(c) is violated, depending on whether � and W are in the same component of
�$'�(�) or not. If � is in �$'�(�), then either (e) (e) (e) (e) or (c)(c)(c)(c) is violated.

(B)(B)(B)(B) If j = � − � − � − W −] is a path in �$ with no chords except possibly �] such that � has

an internal vertex in �$(�), then �, �,] are in �$(�) and �, W are in �$'�(�).
Proof:Proof:Proof:Proof: By (�), the vertices of j	are alternatively in �$'�(�) and �$(�). If �, �,] are in
�$'�(�), then either (a) (a) (a) (a) or (d)(d)(d)(d) is violated, depending on whether	� and	W are in the same
component of �$(�) or not.

Now, from (B)(B)(B)(B) and (a) (a) (a) (a) they infer that there is no induced (", ≥ 5 in �$. Note that the
domino contains two induced paths of length 4. If this graph were induced in �$, then at least
one of the two paths would violate the conclusion of (B)(B)(B)(B)
To prove that the graphs house and gem does not occur in �$, Bandelt and Mulder consider
induced paths of length 3 touching �$(�) such that the end vertices are at distance 2 in �$.
By (A)(A)(A)(A) and (a)(a)(a)(a) there are only five possibilities for such paths. Figure 4.3.5.1– 4.3.5.5,
illustrating the cases (1)-(5). In the figures � ∈ �$(�) and � ∈ �$'�(�) indicating the levels.
Let] be a common neighbor of � and W.

([V%	1.

Figure 4.3.5.1 (Bandelt and Mulder p.203)

It follows from (a)(a)(a)(a) that] is in �$'�(�). But then either (e) (e) (e) (e) or (c)(c)(c)(c) is violated.

([V%	2. The vertices � and W belong to different components of �$(�) by (a).(a).(a).(a).

Figure 4.3.5.2 (Bandelt and Mulder p.203)
Hence] is in �$'�(�). This however, together with (e)(e)(e)(e) violates (d)(d)(d)(d).

([V%	3. It follows from (a)(a)(a)(a) that] is in �$'�(�), conflicting with (e).(e).(e).(e).

15

 Figure 4.3.5.3 (Bandelt and Mulder p.203)

 ([V%	4. Similarly to ([V%	3,] is in �$'�(�). But this violates either (e) (e) (e) (e) or (c). (c). (c). (c).

 Figure 4.3.5.4 (Bandelt and Mulder p.203)

([V%	5. Either (a) (a) (a) (a) or (c)(c)(c)(c) is not satisfied.

 Figure 4.3.5.5 (Bandelt and Mulder p.203)

Now, in view of Theorem 4, the proof is completed.

16

5 COGRAPHS
Complement-reducible graphs

5.1 DEFINITION AND FEATURES OF COGRAPHS

 In this section we will become familiar with cographs. They have been discovered and studied
under various names by different authors; “J ∗ −zC[5ℎV” (Jung), “7u- restricted grahps” (Corneil,
Lerchs and Burlinham), “Hereditary Dacey graphs” (Sumner), and “2-parity graphs” (Burlet and
Uhry) are names and authors given on the cograph page on en.Wikipedia.org/cograph.
 In this paper we will use the name cograph, as we shall later on become acquaintances to a cograph
recognition algorithm given by Corneil, Perl and Stewart.
 There are a number of characteristics that are equivalent to a graph’s being a cograph. The
following conditions are found in wolfram.mathworld, Corneil et al., Mandelt & Mulder and
Chuang-Chieh Lin. Some conditions are the same but formulated differently, others are unique.

We will be concerned with the cotree later on in the text, thus first and foremost, (Corneil et al. p.
927):

Cographs have two remarcable properties:
1) Cographs are precisely the class of graphs that does not have a path of length three, that is a
path containing exactly four vertices, as an induced subgraph.
 2) They can be uniquely represented by a tree, a so called cotree.
The cotree consists of internal nodes and leaves. The internal nodes are labelled 0 or 1. The
root is always labelled 1 thus being a (1)	node. The labelling of internal nodes are such that
(0)	nodes and (1) nodes alternate along every path, through the tree, starting from the root.
The leaves in the cotree �, correspond to the vertices of the graph �. Two vertices	� and W
are adjacent in � if and only if the unique path from � to the root of the tree meets the unique
path from W to the root of the tree at a (1) node..

(Chuang-Chieh Lin):

The internal nodes, (0)	-nodes respectively (1)	nodes of a cotree corresponds to union
respectively join operations.

 Moreover, one can state a number of equivalent conditions so that if a graph satisfies one of them it
is a cograph and thus indeed satisfies all of them and Wolfram Mathworld presents the
following(mathworld.wolfram.com/Cograph):

1. � can be constructed from isolated vertices by disjoint union and graph join operations.
2. � is the disjoint union of distance-hereditary graphs with diameter at most 2.
3. In every induced subgraph ` of �, the intersection of any maximal clique and
any maximum independent set contains precisely one vertex
4. Every nontrivial subgraph of � has at least one pair of twins
5. The graph complement of every nontrivial connected subgraph of � is disconnected
6. Every connected subgraph of � has diameter at most 2.
7. � does not contain the path graph 7u as an induced subgraph

Chuang-Chieh Lin states and proves the following: �’s being a cograph implies condition 4.
(4)⇒(3), (3)⇒(7), (7)⇒(5) and finally that (5) implies that � is a cograph. In this paper we will be
concerned mainly with condition (7). Bandelt and Mulder (Bandelt and Mulder p. 193) states the
conditions (1), (2) and (7) and also gives the condition

� can be obtained from the one-vertex graph by a sequence of vertex splittings (i.e. twin
operations).

In the appendix we will construct cotrees when applying the cograph recognition algorithm.

17

6 DETERMINING WHETHER A GRAPH
IS DISTANCE-HEREDITARY OR NOT

 Recall theorem 1, 2 and 3.d. They really say the same thing but one can take this a bit further by
explaining that this property has an actual meaning. Hammer and Maffray gives the explanation:
given a distance hereditary graph �, |�| = , there is an indexing of the vertices and a list of
”words” on the form �*7�l , �*X�l and �*��l, with their respective meanings: �* is a pendant vertex
attached to �l, �* is a false twin to �l, �* is a true twin to �l, for 1 ≤ 	I < and o < I. This means
that the graph � induced by vertices �#, . . . , �* is obtained from the subgraph �′ induced by vertices
�#, . . . , �*'� by making �* either a pendant, a false twin or a true twin to �l. This list of words is
called a pruning sequence (Hammer and Maffray p.90-91). Thus we have that a graph	� is a
distance-hereditary graph if and only if it has a pruning sequence by Theorem 1 and Theorem 3.d.

 We will use a linear time distance-hereditary graph recognition algorithm, first introduced by
Hammer and Maffray. However, Damiand, Habib and Paul, found that there was an error in the
their algorithm such that although the graph contains a domino or a house, it will answer ”yes, the
graph is distance-hereditary” if one starts with a degree 3 vertex. This is corrected by Damiand et al.
 In the algorithm one also employs a cograph recognition algorithm given by Corneil, Perl and
Stewart. We present the algorithm in this section and demonstrate it in Appendix 4.

6.1 RECOGNITION ALGORITHMS

In this section we present the linear-time algorithm used to determine whether a given graph is
distance-hereditary or not. As mentioned above, a cograph recognition algorithm is employed,
which in turn calls the procedure {�|!(�) and the function XQ�J − }L~�S�.
 Clearly, each subalgorithm, procedure and function employed during the quest for the overall
purpose of the algorithm must also run in at most linear time. We shall see that this is the case as we
present time complexity analysis for each and one of them.

6.1.1. Distance-Hereditary Graph Recognition Algorithm

 Now, recall theorem 5 with its five conditions. The distance-hereditary graph recognition algorithm
is based on this theorem. This will be clearer when we present the proof of the algorithms
correctness.
 The linear time algorithm for recognizing a distance-hereditary graph calls a number of algorithms
such that there is algorithms, procedures and functions within the algorithm for different purposes.
The working order is simplified as follows: Find the distance layouts, }* ,(i is the distance from the
starting vertex) of the input graph � = (�, �), then find the connected components of each such
level. Check if each connected component in the distance layout are free from induced paths of
length 3, i.e. whether they are cographs or not. This is done by employing the cograph recognition
algorithm of Corneil et al.’s. Now, since cographs are distance-hereditary they have a pruning
sequence. Hence we get a pruning sequence and a ”last vertex” of }*, to which we contract the
distance layout at hand – this means the other vertices of each connected component of }* are
removed from the graph during the pruning. For the remaining vertices of }*, one first determines
which are pendant vertices to any vertex in a distance layout, }*'�, that is one distance unit closer to
the starting vertex. For the others, those of higher inner degree one needs to check that the closer
distance level is a cograph too, since, if the remaining vertices are twins or pendants to vertices in
the closer level – that must also be a cograph (by theorem 5(b)) in order to still have the possibility
of � being a distance-hereditary graph.
 We shall now present each algorithm in the order in which they are first employed. First, to get an

18

overview, only stated in terms of input and output and its main task. Thereafter fully described in
pseudo code. We will later, in Appendix 4, give a total and successful application of the algorithm.

Algorithm 1:Prune-dhg(G) (Damiand et al.)
Input: a graph � = (�, �).
Output: a pruning sequence I�� � is a distance-hereditary graph.
 Compute the distance layouts, }*, of �.

 Algorithm 2: Prune-cograph (G) (Damiand et al.)
 Input: a graph � = �(}*)
 Output: a pruning sequence and its last vertex iff �(}*) is a cograph.
 Compute a cotree of �(}*) using cograph recognition algorithm

 Algorithm 3: Cograph-Recognition (Corneil et al.)
 Input: a graph �(}*);
 Output: a cotree iff �(}*) is a cograph

 Procedure: ����(�)
 Input: a cograph � = (�, �), a cotree � and vertex � to be added to �
 Output: marked and unmarked leaves and internal nodes of the cotree �.

 Function: Find Lowest
 Input: the cotree with marked and unmarked leaves and internal nodes.
 Output: the lowest marked vertex of � if � + � is a cograph.

Algorithm 4: Verification Step (Damiand et al.)
Input: A graph � = (�, �) and a list of words, S	 = [�ov�I	. . . �1v�0], where v is either	7, X or �.
Output: ”True” iff	S is a pruning sequence.
Below follows the more detailed descriptions of the algorithms in pseudocode.

6.1.1.1. Algorithm 1, Prune-dhg(G)
(Damiand et al. p.108):
Input: a graph � = (�, �).
Output: a pruning sequence iff � is a distance-hereditary graph.

1.1.1.1. BeginBeginBeginBegin
 1.1 o � 1; compute the distance layouts }�	, . . , }$ from an arbitrary starting vertex �.
 2.02.02.02.0 ForForForFor I = 1 downto 1 DoDoDoDo
 2.1 For eachFor eachFor eachFor each connected component cc of �[}*] DoDoDoDo
 2.1.1] � Prune-cograph(�[MM], o);
 contract cc into];
 o � o	 + 	 |MM| 	− 	1;
 sort the vertices of �[}*] by increasing inner degree;
 For each For each For each For each vertex � of }* with inner degree 1 DoDoDoDo
 let W be the only neighbor of �;
 �(o)�� and Vl�(�7W);
 o �	o + 1;
 IfIfIfIf	I ≠ 	1 TTTThenhenhenhen
 For eachFor eachFor eachFor each � in }* taken in increasing inner degree order DoDoDoDo
 W	� Prune-cograph(�[�*'�(�)], o);
 contract �*'�(�) into W;
 j�o + |�*'�(�)| − 1;

19

 �(o) �	� and Vl�(�7W);
 o�o + 1;
 EndEndEndEnd

6.1.1.2. Algorithm 2, Prune-cograph(G, j)
(Damiand et al. p.107):
Input: a graph �
Output; A pruning sequence (S, �) and the last vertex of the pruning sequence if and only if � is a
cograph;
 BeginBeginBeginBegin
 Call cograph-recognition(�) algorithm to compute a cotree � of �.
 Let � be the nodes of � having only leaves as descendant;
 WhileWhileWhileWhile � ≠ 	Ø DoDoDoDo
 Pick an arbitrary node � in �;
 Pick an arbitrary son � of �;
 For EachFor EachFor EachFor Each son W ≠ � of � DoDoDoDo
 IfIfIfIf	� is a 1-node
 ThenThenThenThen �(o´) 	= W	and Vl′ � (W��);
 ElseElseElseElse �(o´) = W and Vl′ � (WX�);
 o �o´ + 1;
 Replace � by � in �;
 IfIfIfIf � is the root of � ThenThenThenThen Return; �	is the last vertex of the pruning
 sequence;
 IfIfIfIf father(�) has only leaves as descendant ThenThenThenThen
 add father(�) to �;
 EndEndEndEnd, , , ,

6.1.1.3. Timing Analysis of Algorithm 1, Prune-dhg(�) and Algorithm 2, Prune-cograph(�, �)

 We shall here present a theorem and its proof given by Damiand et al. The theorem states that the
algorithm Prune-dhg(�) actually computes a pruning sequence if � is distance-hereditary, and also
the converse, that is, if it computes a pruning sequence then � is distance hereditary. Moreover, the
theorem states that the algorithm runs in L(+P). The latter statement, however, does depend on
the use of a proper linear time cograph recognition algorithm. The one we present and use here is
the one given by Corneil, Perl and Stewart which later will be shown to run in linear time. First we
do need a new definition for the proof of theorem 6. We closely follow Damiand, Habib and Paul
through the definition, the theorem and the proof.

Definition 6.1.1.3.1 is based on Damiand et al. definition 4. A set of vertices { of a graph � is a
module iff for any � and W in {, �(�)\{ = �(W)\{. A module { is a prime module iff any subset
S, such that |S| 	≠ 	1 and S	 ≠ 	{, of { is not a module. A module { is a strong module iff for any
module {′ either {′ is a subset of { or { is a subset of {′.

Theorem 6 (Damiand et al. p.108). Algorithm 1, prune-dhg(G), computes a pruning
sequence of �	I��	� is a distance-hereditary graph. It runs in L(+P).

Proof (Damiand et al. pp.108-109). If the computed sequence is a pruning sequence,
then � is a distance-hereditary graph (Theorem 3(d)). So we just have to prove the
converse. During the I: Uℎ loop 1, all the vertices of the sets }l for I < o ≤ 1 have been

removed. By theorem 5(a), each connected component of �[}*] is a module. Since
�[}*] is a cograph (theorem 5(b)), twins in �[}*] are also twins in �. Thus, in loop 2,

20

we can contract each connected component MM of �[}*] and build a pruning sequence
of �[MM] with Algorithm 2. At this step }* is a stable set. Thus (loop 5), the remaining
vertices of }* with inner degree 1 can be removed as pendant vertices.
Now by theorem 5(d), the neighborhood of two distinct vertices of }* are either
disjoint or one these neighborhoods (ordering the vertices with respect to their inner
degree produces such a linear extension). Let � be the first vertex in this ordering. Let
� and � be two distinct vertices of �*'�(�).. By theorem 5(d), �*(�) = �*(�). If �
and � are in distinct connected component cc(u) and cc(v) of }*'�, then �*'
(�) =
�*'
(�) (Theorem 5(c)). Moreover, MM(�) and MM(�) are included in �*'�(�).
Finally, if � and � are in the same connected component cc of }*'�, theorem 5(d)
shows that �*'
(�) = �*'
(�) and by theorem 5(e), if � in cc is not adjacent to
�	then � is adjacent to both � and � or none of them. Therefore, �*'�(�) is a
module. Since it is contained in }*'�, �[�*'�(�)] is a cograph. Twins in	�[�*'�(�)]
are twins in �: �*'�(�) can be contracted into a single vertex and compute a pruning
sequence of �[�*'�(�)]. Respecting the linear extension of neighborhoods, the
previous argument can be applied to all remaining vertices of }*. That ends the proof
of the correctness of the theorem.
They now give some ideas for the complexity issues. Computing the distance layouts
can be done in �(+ P) via a breadth first search. Each connected component of
�[}*] can be contracted into a sinlge vertex in �(|�[}*]|). Sorting the vertices of }*
with respect to their inner degree can also be done in linear time using som bucket
sort. For each distance layout, the global complexity of contracting �*'�(�) into y is
�(|	�[}* ∪ }*'�]|). Thus, the whole complexity is �(+ P).

6.1.2. Algorithm 3, Cograph-Recognition(�)

 This algorithm is given by Corneil, Perl and Stweart. We follow the authors and present the main
frame of the cograph-recognition algorithm first and then specify procedure {�|!(�) that is called
in step 2.1 and function XQ�J − }L~�S� that is called in step 2.4. As to {�|!(�) there follows
a theorem in which concepts derived from {�|!(�) is used to state equivalence conditions for an
extended cograph to be a cograph too. The iterations, each and every one of them, of the cograph-
recognition algorithm essentially consists of an efficient implementation of that theorem.

6.1.2.1 Cograph-Recognition(�)

(Corneil et al. p928-932).

The algorithm is incremental in the sense that the vertices are processed one by one.
We begin on the cotree for two vertices in step 1 and incorporate the remaining
vertices one by one.
Given a graph � = (�, �) with vertices arbitrarily indexed ��, , �" this algorithm
determines whether or not � is a cograph and constructs the cotree � of �, if � is a
cograph.

1. Initialize

Create a new (1) node |
 1.1 IfIfIfIf (��, �
) ∈ �(�)
 ThenThenThenThen add ��, �
 as children of |
 ElseElseElseElse create a new (0) node �;
 add � as a child of |;
 add �� and �
 as children of �

21

2. (iteratively incorporate ��, … , �" into �)
ForForForFor � � ��, … , �" DoDoDoDo

 2.1 CallCallCallCall procedure MARK(x)MARK(x)MARK(x)MARK(x)
 2.2 IfIfIfIf all nodes of � were marked and unmarked
 ThenThenThenThen add � as a child of |
 gotogotogotogoto endloop
 2.3 IfIfIfIf no nodes of � mere marked
 ThenThenThenThen ifififif)(|) = 1
 thenthenthenthen add � as a child of the only child of |
 elseelseelseelse create a new (1) node | with one child(and a new (0) node)
 and two grandchildren: � and the old root;
 gotogotogotogoto endloop
 2.4 � � FINDFINDFINDFIND----LOWESTLOWESTLOWESTLOWEST
 2.5 Let �	(�) denote the set of children of u which were (were not) marked
 ifififif 0[�%0(�) = 0(= 1)
 then if then if then if then if |�| = 1	(|�| = 1)
 thenthenthenthen ifififif w ∈ �	(in	�) is a leaf
 thenthenthenthen add a new (1) node ((0) node) in place of �
 and make w and � children of this new node
 elseelseelseelse add � as a new child of �

elseelseelseelse remove all elements of � from � and add them as children of a
new node W with 0[�%0(W) 	= 	0[�%0(�)

 ifififif � is a (0) node
 thenthenthenthen add a new (1) node as a child of �;
 children of this new (1) node are � and W
 elseelseelseelse remove � from its parent and add	W in its place;
 add a new (0) node as a child of W;
 children of this new (0) node are � and W
 endloopendloopendloopendloop

EEEEnd nd nd nd COGRAPHCOGRAPHCOGRAPHCOGRAPH----RECOGNITIONRECOGNITIONRECOGNITIONRECOGNITION

6.1.2.2 Procedure MARK(�)

We shall not only present the procedure {�|!(�) but also set it into context by presenting a
theorem in which output from the procedure i used. This theorem states two conditions, containing
concepts derived from the output of {�|!(�), that are equivalent to � + � being a cograph, where
� is a cograph with cotree �. Following the theorem there are a number of conclusions drawn that
will be used in the XQ�J − }L~�S� function.

 Some notation that is used in the procedure(Corneil et al. pp. 928-929):

)(�) denotes the number of children of � in � and P)(�) is the current number
of children of w which have been both ”marked” and ”unmarked”. For all nodes �,
the value of P)(�) is initially set to 0 and reset to 0 when w is unmarked.

 MarkMarkMarkMark all leaves of � which are adjacent to	�
 For eachFor eachFor eachFor each marked node � of � with)(�) = P)(�) Do
 unmark �;
 P)(�)�0;
 iiiiffff � ≠ | thenthenthenthen

22

 mark (�) where � is the parent of �;
 P)(�)�P)(�)	+ 	1;

insert � at the head of a linked list of marked and unmarked children
of �

 endendendend
 IfIfIfIf any vertex remains marked and)(|) 	= 	1 TTTThenhenhenhen mark	|;

EEEEnd MARKnd MARKnd MARKnd MARK. . . .

6.1.2.3. Theorem 7

Now suppose we have worked through {�|!(�). The following notation, theorem and proof are
given by (Corneil et al. p. 929):

Let { denote the set of internal nodes of � which remain marked, and let � be a node
in { with lowest level in the tree and let � be a node in {\8�9 with lowest level. We

say a marked (1) node � is properly marked if and only if P)(�) =)(�)– 1. A
legitimate alternating path in a marked cotree is a path of adjacent alternating properly
marked (1) nodes and unmarked (0) nodes, the extreme point of which are	(1)
nodes.

Note that the root has the lowest level, and that a legitimate alternating path is directed from higher
to lower levels.

Theorem 7 (Corneil et al. p. 929):
 If � is a cograph with cotree � then � + � is a cograph if and only if

(1)(1)(1)(1) { is empty or
(2)(2)(2)(2) (a)(a)(a)(a)	{\8�9 consists of exactly the (1) nodes of a (possibly empty) legitimate

alternating path which ends at | and
(b)(b)(b)(b) � is either a (0) node whose parent is �, or � is a (1) node whose
grandparent, if it exists, is �.

6.1.2.4. Proof of Theorem 7

Proof (Corneil et al. pp. 929-930):
Only if: If the conditions of theorem 7 do not hold, then we have at least one of the
following conditions:

 (I)	 {\8�9 contains a (0) node
 (II) There exists a (1) node in {\8�9 which is not properly marked
 (III) There exists � ≠ | in {\8�9 such that the grandparent of	� is not in {\8�9
 (I�) The vertices of {\8�9 do not lie on one path to |
 (�) �	is a (0) node whose parent is not �

 (�I) � is a (1) node which has a grandparent which is not �

By definition, any vertex in { has been marked but not unmarked, and this implies
there is at least one descendant leaf adjacent to � and at least one not adjacent to �.
Using this fact, it is fairly straightforward to show that any of the above six conditions
implies the existence of an induced 7u in the graph � + �. As an example, we
demonstrate an induced 7u in � + � if condition (I) is found to be true. The following
notation is used: for any internal node � of �,)%V(�) denotes the set of descendants
of �, that is, the leaves of the subtree of � rooted at �. Let � be a (0) node in	{\8�9
and let � be the lowest common ancestor of � and � in �. Note the possibility that
� = �. There are four cases to be considered, depending on the labels (0) or (1) of �
and �.

 C[V%	1 � and � are both (0) nodes.

23

Proof:Proof:Proof:Proof: there is an induced 7u on vertices �, M, �,) if � and M are adjacent in � + �, or
on �, M, [, � if � and M are not adjacent, where; [∈)%V(�) and is adjacent to �;
� ∈)%V(�) and is not adjacent to �; M ∈)%V(5[C% U(�))\)%V(�);) ∈)%V(�) and
is adjacent to �. If	� = �, we require that) ∈)%V(�)\)%V(�), where � is the child of
� on the � − � path. ([V%V	2, 3	and	4 follow similarly.

 Remark: This fairly straightforward way of showing the existence of an induced 7u requires that
one have in mind that vertices are adjacent in a cograph � iff their unique path towards | in the
cotree meets at a (1)-node. We give M[V%	2 with some intended clarifications:
([V%	2. � is a (1) node and � is (0) node, otherwise as in case 1 where M is not adjacent to �. M is
not adjacent to any of the vertices: � is a (1) node, therefore M is a descendant of a (0) node since
the sign of internal nodes in a cotree alternates. � is adjacent only to [since they meet at �, [is
adjacent to � by assumption and so is). Hence), �, [, � induces a 7u. If M is adjacent to (only) �,
then), �, [, � and M, �, [, � induces 7u.

If:If:If:If: we complete this part of the proof by constructing �’, the cotree repsresenting
� + �.
1. If { is empty, then � can be added as a child of the root if � + � is connected, or as
a child of the only child of the root in the case where � + � and G are both
disconnected. If � + � is disconnected but � is connected the root of � and � both
become children of the only child of a new root.
2. There is a lowest marked node � ∈ {. Let � be the children of � which were
marked and subsequently unmarked by procedure {�|!. Similarly, let � be the
children of � which were not marked by {�|!. The fact that � ∈ { implies that
|�| ≥ 1 and |�| ≥ 1. To construct �’ there are two cases to consider.
([V%	1. �	is a	(0) node. In this case, the elements of � and � are either leaves or (1)
nodes. If |�| = 1 and � ∈ � is a leaf, then we add a new (1) node in place of � and
make � and � children of this node. If |�| = 1 and � ∈ � is a (1) node then we
simply add � as a new child of �. If |�| > 1 then we remove all elements of � from �
and add a new (1) node in their place. Children of this new node are � and a new (0)
node with elements of � as children.
([V%	2. �	is a	(1) node. The proof follows exactly as in M[V%	1, except that � is
examined instead of �, and the roles of (0) nodes and (1) nodes are reversed.
To see that �’ is an accurate representation of � + �, we observer that the alterations

to � correctly reflect adjacencies of � with vertices in the subtree rooted at �, and the
fact that we have a legitimate alternating path from � to | guarantees that all other
adjacencies of � are correctly represented. Adjacencies among vertices of � remain
unchanged as required.

6.1.2.5. Function FIND-LOWEST

 (Corneil et al. pp. 931-932):
The following notation is used: � is the lowest marked vertex so far examined; �
denotes the lowest marked (1) node examined before �; W is a marked (1) node
which is not properly marked or a marked (0) node if either exists in �. Whenever
the procedure finds that � + � is not a cograph, an accompanying comment indicates
which of the conditions I − �I from the proof of the theorem holds. When this occurs
it is assumed that the entire algorithm is terminated.

 1. (initialize and check root.)
 W � �

 IfIfIfIf | is not marked

24

 thenthenthenthen � + � is not a cograph /* (iii)
 elseelseelseelse do

 ifififif P)(|) ≠)(|)– 1 thenthenthenthen y � |;
 unmark |;
 P)(|)�	0;
 � � � � |
 EEEEndndndnd

 2. Choose an arbitrary marked vertex � and follow the path from	� to �, checking for
a legitimate alternating path and unmarking vertices along the path.

 WhileWhileWhileWhile there are marked vertices remaining in � DoDoDoDo
 choose an arbitrary marked vertex �	
 2.1 IfIfIfIf W ≠ �
 ThenThenThenThen � + � is not a cograph by (Ms). I) or (Ms). II)
 IfIfIfIf label(�) = 1
 Then doThen doThen doThen do

 ifififif m)(�) ≠)(�)– 1
 thenthenthenthen W	�	�
 ifififif parent(�) is marked
 thenthenthenthen � + �	is not a cograph by (Ms . I) and (Ms). �I)
 elseelseelseelse U	� parent(parent(�))
 endendendend
 else doelse doelse doelse do	W	�	�;
 	U	� parent(�)
 end
 unmark �;
 P)(�)	�	0
 2.2 whilewhilewhilewhile U ≠ � dodododo
 ifififif U = | thenthenthenthen � + � is not a cograph (Ms). I�)
 ifififif U is not marked
 thenthenthenthen � + � is not a cograph by (Ms). III) or (Ms). �) or (Ms). �I)
 ifififif P)(U) ≠)(U) − 1
 thenthenthenthen � + � is not a cograph by (Ms). II)
 ifififif parent(U) is marked
 thenthenthenthen � + � is not a cograph by (Ms). I)
 unmark	U;
 P)(U)	�	0
 endendendend
 2.3 �	�	�
 endendendend (step 2)
 EEEEnd FINDnd FINDnd FINDnd FIND----LOWESTLOWESTLOWESTLOWEST

6.1.2.6 . Timing analysis of ����(�) and ����− ������

 In this section follows the timing analysis for the algorithm (Corneil et al. pp. 933-934):

 The algorithm relies on a time bound of �()%z(�)) for the iteration adding � to �, where
)%z(�) is the degree of � in � + �.
Since all internal nodes of �, except possibly the root, have at least two children, we know

that the {�|!(�) procedure will examine only �()%z(�)) nodes. For each of these nodes,

25

the processing is done in constant time, and thus the time bound for procedure {�|!(�) is
�()%z(�)). It is clear that |{|	 is also bounded by �()%z(�)), and since XQ�J − }L~�S�
examines each marked node once in constant time, the time for this function is L(|{|) 	=
	�()%z(�)).
 All but one of the tree alterations can be done in constant time. The only cases which may
require more than constant time are those where the lowest marked node is a (0)	node ((1)
node) which has two or more children which have been marked and unmarked (not been
marked). In both cases, we are careful to move the children which were both marked and
unmarked, since the cardinality of this set is �()%z(�))whereas the cardinality of the set of
children which were not marked is not similarly bounded. In procedure {�|!(�) we have
maintained a linked list of the children which were marked and subsequently unmarked, and
hence, they can be accessed in time bounded by �()%z(�)). Therefore, all of the tree
modifications can be done in �()%z(�)) time. Thus, we have the required bound for each
iteration, implying an overall time bound of �(P +) for the entire cograph-recognition
algorithm. This together with the linear time bound for the distance-hereditary graph
recognition algorithm (theorem 6), we do indeed get an overall time bound of �(P +)

26

7. FORMATION OF A DISTANCE-HEREDITARY GRAPH
 FROM TWO OF THAT KIND

 The authors Chang, Hsieh and Chen give a new recursive definition of distance-hereditary graphs,
using the concept of twin-set and consider a distance-hereditary graph as being recursively
constructed by applying the pendant, false twin and true twin operations on distance-hereditary
graphs not restricted to consist of a single vertex.
 This is made possible through their gaining some insights about distance-hereditary graphs and the
representation of such graphs in the so called one-vertex-extension tree (Chang et al. p. 345) which
is directly based on the one-vertex-extension ordering (Chang et al. p. 345). Before revealing this
new recursive definition we will need quite some prerequisites which is given below, following
Chang, Hsieh and Chen (see also appendix 2).

7.1. ONE-VERTEX-EXTENSION ORDERING

 As mentioned above, a one-vertex-extension ordering is a set of nodes together with an ordering
that constitutes the order in which each vertex is added to the graph by twin or pendant operations.
Exactly as with the pruning sequence, the one-vertex-extension ordering �* = 8�# < … < �*9
(Chang et al. p. 345) means that the distance-hereditary graph �, induced by the set of vertices
�#, … , �* is obtained from the subgraph �′ of �, induced by the set of vertices �#, … , �*'� making
�* either a pendant or a twin to �l , 1 ≤ o < I. It is merely a reformulation of the pruning sequence.
Neither the pruning sequence nor the one vertex extension ordering is unique, since there may be
different sequences of one-vertex extensions leading to the same distance hereditary graph.

7.2. ONE-VERTEX-EXTENSION TREE, ��(�)

7.2.1. Construction of ��(�)

 We learn from (Chang et al. p.345) that the one-vertex-extension tree, ��(�) with respect to the
one-vertex-extension ordering of �, � = 8�# < … < �"9 is constructed as follows:
 Let �� be the root, and for 1 ≤ o < I ≤ follow the one-vertex-extension ordering so that if a
vertex �* is one of I7o, IXo and	I�o to vertex �l then it is a child of �l. Order the children of a node
as they are ordered in the one-vertex-extension ordering. In this way ��(�) becomes a rooted
ordered tree.

Notice now that when picturing the tree in one's mind or drawing the tree with the root ”at the top”
of the picture, downwards along a path through the tree, indices are strictly increasing (this is the
imposed partial ordering). We think of the first child of a vertex in ��(�) as the leftmost one, and
add the others in increasing order to the right. Notice here that we can have lower indices at the
same distance from �� to the right in another branch of the tree.

7.2.2. Features of the ��(�)

We present the features of the one-vertex-extension tree, ��(�), following (Chang et al. pp. 345-
346):

Let �l be a parent to �* in ��(�),	o < I. We denote by �l�* an edge in ��(�). We call it a

7-edge or a �- respectively an X-edge if �* is a pendant vertex attached to �l , or a true

respectively a false twin to �l .
 If � is connected, then ���
 is either a 7- or �-edge, (recall Remark under theorem 1).
 For two vertices �* and �l which are siblings of each other in ET(G) and I < o, we say that �*

27

is to the left of �l , respectively �l is to the right of �*. If o is the maximum (respectively

minimum) number such that �l is a child of �*, we say that �l is the rightmost (respectively

leftmost) child of �*.
��[I] denotes the subtree of ��(�) rooted at node �* 	and induced by �* and all of its
descendants.
Suppose ��� < ��� < ⋯ < ��� < ��� � < ⋯ < ��? are children of �* and ��� is not the

rightmost child of �* . Then ��[I, Vl] denotes the subtree of �* with respect to node ��� ,
which is the subtree rooted at �* and induced by �* 	, ��� , ��� � , … , ��? and all decendants of

��� , ��� � , … , ��? .

�(I) and �(I, Vl) denote the sets of vertices in ��[I] respectively ��[I, Vl].
�(I, Vl) − �(Vl) is denoted by �(I, Vl) and ��[I, Vl]	denotes the corresponding subtree.

We use �[I] instead of �[�(I)]	as a simplification. Similarly we let �[I, Vl] = �[�(I, Vl)] and

�[I, Vl] = �[�(I, Vl)].

7.3. TWIN-SET

 We present the concept of twin set closely following (Chang et al. pp. 345-346):
The twin set �S(I) of a subtree, ��[I] rooted at �*, is the set of vertices that are descendants
of �* and such that they can be reached from �* through twin edges only. |�S(I)| ≥ 1 since �*

itself is in the twin-set.
The twin-set of �* with respect to node ���, denoted �S(I, Vl) is the set of nodes that are both

in ��[I, Vl] and �S(I), i.e. �SqI, Vlr = �S(I) ∩ ��[I, Vl]. Similarly �S(I, Vl) is the set of

vertices that are both in ��[I, Vl]	and �S(I), that is �SqI, Vlr = �S(I) ∩ ��[I, Vl].
The twin set of �, �S(�), is the set of vertices that can be reached from the root �� of ��(�)

through twin edges only.

7.4. A FEW LEMMAS WITH PROOF.

 In this section we present lemmas 7.4.2 − 7.4.7 given by Chang, Hsieh and Chen. We give proofs
7.4.3 − 7.4.7. We also give a lemma 7.4.1, with proof, which is useful when proving lemmas
7.4.3 − 7.4.7. We use 5(�) = � to denote that � is the parent of � in ��(�). By �(�) we mean the
neighborhood of � in �.

Lemma 7.4.1: Assume that �G , ℎ > 1, is a vertex in ��(�) of � with one-vertex-extension
ordering � = 8�� < … < �"9. Also let �F ∈ �(ℎ) and �� ∈ �(1)\�(ℎ) and assume that �F ∈ ���)
(or equivalently �� ∈ �(�F))

(a) If C > V, then there exists a vertex �F′ such that C′ < C, �F′ ≠ ��, �F′�F	 is a twin edge and
�� ∈ �(�F′).

Proof of (a): We have that	C > V > 1, so there must be a father to �F, say �F′. Clearly C′ < C.
Now 8�F′, ��9 ⊆ 	�(�F) when one-vertex-extension ordering � = 8�� < … < �F9. Since �F ∉ �(ℎ)
by assumption, �F is not a descendant to �G, therefore neither is its ancestor �F′, so �F′ ∉ �(ℎ) and
thus �F′ ≠ ��.
Since 8�F′, ��9 ⊆ 	�(�F) we conclude that �F is not a pendant vertex attached to �F′, hence a twin.
�F′�F is therefore a twin edge in ��(�) and �[�F]\8�F′, �F9 = �[�F′]\8�F′, �F9 which implies that
�� ∈ �(�F) if �� ∈ �(�F′).
It is easily seen that those relations between �F′, �F and �� will not change when

28

the one-vertex-extension ordering � = 8�� < … < �"9, > 1.

 (b) If V > C ≥ 1 and 5(�G) = �I	 ≠ 	�F	sC		��′ ≠ �*
Then there exists a vertex ��′ such that V′ < V, ��′ ≠ �F, the edge ��′�� is a twin edge and �F ∈
�(��′).

Proof of (b) (Backelin and Timonen): We have that V > C ≥ 1, so there must be a father to �� , say
vs'. V′ < V clearly.

Now 8��′, �F9 ∈ �(��) when one-vertex-extension ordering � = 8�� < … < ��9. �� ∈ �(ℎ) i.e. �� is
a descendant to �G and so is any ancestor ��′ to ��, for which V′ ≥ ℎ. Thus ��′ ∈ �(ℎ)¢8�I9. If
��′ ≠ �* then ��′ ∈ �(ℎ) and since 	�F ∉ �(ℎ) we have that ��′ ≠ �F, otherwise we have by
assumption that ��′ = �* ≠ �F .	
Now, since 8��′, �F9 ∈ �(��) we conclude that�� is not a pendant vertex attached to ��′, hence a
twin. The edge ��′�� is therefore a twin edge in ��(�) and ��[��]\8��′, ��9 = 	��[��′]\
8��′, ��9which implies that �C ∈ �(��) if �F ∈ �(��′)�

Next we present lemmas given by Hung and Chang and we give proofs for each and every one.

Lemma 7.4.2 (Chang et al. p.346): The subtrees ��[I] and ��[I, ℎ] of a one-vertex-extension tree of
a distance-hereditary graph are also one-vertex-extension trees of the subgraphs �[I] and �[I, ℎ]
respectively.

Lemma 7.4.3 (Chang et al. p.346): Suppose �G is a child of �* in ��(�) and �*�G is a 7 edge. Then
the following two statements hold. (I) Every vertex in �(ℎ) is adjacent to nly vertices in �(ℎ) ∪
�S(I, ℎ), i.e. �e[�(ℎ)] ⊆ 	�(ℎ) ∪ �S(I, ℎ). (II) every vertex in �(ℎ) − �S(ℎ) is adjacent to only
vertices in �(ℎ), i.e. �e[�(ℎ) − �S(ℎ)] ⊆ �(ℎ).

Proof (Backelin and Timonen): We consider the following statements.
 	� = ”�*�G is a 7-edge in ��[�]”
			�� = ”∀�� ∈ �(ℎ) and �F ∈ �(�V), �F ∈ �(ℎ) ∪ �S(I, ℎ)”
	¬�� = ”∃�� ∈ �(ℎ) and �F ∈ �(��)\(�(ℎ)	¢	�S|(I, ℎ))”
			�
 = 	”∀	�� ∈ �(ℎ)\�S(ℎ)	and �F ∈ �(��), �F ∈ �(ℎ).
 ¬�
 = ”∃�� ∈ �(ℎ)\�S(ℎ) and �F ∈ �(��)\�(ℎ).
To prove that � ⇒ � is equivalent to prove that assuming � and ¬� ⇒⊥

First we prove that statement (I) hold.
Assume � and ¬	��.Define Ω = 8(��, �F)	|	�� ∈ �(ℎ), �F ∈ �(��)\(�(ℎ) ∪ �S(I, ℎ))9. Assume Ω
is not empty. Then there is 8��, �F9 ∈ Ω	such that V + C is the smallest sum of indices.
 Remark: This sum should be the sum of	V = ℎ, ℎ is the lowest index in �(ℎ), and some lowest C.

First let C > V. By lemma 7.4.1(a) 	C′ < C, �F′ ≠ ��, �F′�F is a twin edge and �� ∈ �(�F′). Also by
assumption �F ≠ �* since �* ∈ �S(I, ℎ). Now we have	(��, �F′) ∈ Ω. But V + C′ < V + C so we
have that for any sum V + C of indices in	Ω, there is a smaller sum V + C′	of indices in Ω. That
contradicts the assumption that Ω is nonempty in which case there would be a smallest sum of
indices.

Next consider V > C. We have by assumption that �F ∈ �S(I, ℎ) and hence �I ≠ �F
Applying Lemma 7.4.1(b) for V > C and �G ≠ �F we have that �F ∈ �(��′) ⇒ (��′, �F) ∈ Ω.
But V′ + C	 < 	V + C	 =	⊥. This settles the accuracy of statement (I).
Next we prove that condition (II) holds. As above, assume � and ¬�

Define Ω = 8(��, �F)	|	�� ∈ �(ℎ)\�S(ℎ)	, �F ∈ �(��)\�(ℎ)9	

29

Assume Ω is nonempty. Then there is (��, �F) ∈ Ω	such that V + C is the smallest sum of indices.
Remark: Such a sum must be the sum of some r and the lowest index in �(ℎ)\�S(ℎ) wich would be
held by the first pendant vertex attached to �G.

First let C > V.
By lemma 7.4.1(a) C′ < C, �F′ ≠ �� , �F′�F is a twin edge and �� ∈ �(�F′) ⇒ (��, �F′) ∈ Ω. But
V′ + C < V + C =⊥

Now let V > C, Since V > 1 there is 5(��) = ��′	, �� ∈ �(ℎ)\�S(ℎ) by assumption so we know that
V > ℎ	and therefore	�(��) = ��′ ≠ �I. Now applying 7.4.1(b) for V > C and 5(��) = ��′ ≠ �I gives
at hand that �F ∈ �(��′) ⇒ (��′, �F) ∈ Ω. But V′ + C < V + C =⊥
If ��′ = �G and �F ∈ �(��) we would have ���G being a twin edge and therefore �� ∈ �S(ℎ) which
again is on the contrary to our assumption. This settles the accuracy of statement (II). �

Lemma 7.4.4	(Chang et al. p.346): Suppose �G is a child of �* in ��(�) and the type of edge �*�G is
�. Then, in graph �the twin set of ��[ℎ] and the twin set of ��[I, ℎ] form a join (i.e. each vertex in
��[ℎ] is adjacent to each vertex in ��[I, ℎ]).

Proof (Backelin and Timonen): We consider the statements:
 �		 = ”[�*, �G] is a �-edge in ��[�]”
 		� = 	”∀�� ∈ �S(ℎ) and �F ∈ �S(I, ℎ) ∶ �F ∈ �(��)”
¬	� = ”∃�� ∈ �S(ℎ) and �F ∈ �S(I, ℎ)	s.t.	�F ∉ �(��)”
To prove that � ⇒ � is equivalent to prove that assuming � and ¬� ⇒⊥
We define	Ω = 8(��, �F)	|�� ∈ �S(ℎ) and �F ∈ �S(I, ℎ)	V. U. �F ∉ �(��)9. Assume �	and ¬� i.e. �
and	Ω is not empty. Then there is (��, �C) ∈ Ω such that V + C is the smallest sum of indicies. This
sum should be V + C = ℎ + I since ℎ is the lowest index in �S(ℎ) and	I is the lowest index in
�S(I, ℎ)

To prove this first let V > ℎ	
We have that	V	 > ℎ > 1 since �ℎ has a father �I. The parent of �� is ��′. Since �� ∈ �S(ℎ) so is ��′
and ��′�� is a twin edge. This implies that �F ∉ �(��) ⇒ �F ∉ �(��′). Hence (��′, �F) ∈ Ω but	V′ <
V	so that V′ + C < V + C for all indices of V > ℎ which contradicts our assumption about the sum
V + C.This holds regardless of C′s being greater or smaller than	V. If C < V, and �F ∉ �(��) then it is
easily seen that �F ∉ �(��′). If C > V we will have �F ∈ �(�F′) for some C′ < V	such that �F′ ∉
�(��)	by assumption. And since �F ∈ �S(I, ℎ), �F′�F = twin edge and thus �F ∉ �(��).

Next let C > I.	
We have that	C > I ≥ 1 and thus there is a father	�F′ to �F	and also �F′ ∈ �S(I, ℎ), V + C′ < V + C ,
�F′�F is clearly a twin edge which implies that �� ∉ �(�F) ⇒ �� ∉ �(�F′)	for a couple (��, �F′) ∈
	Ω. This holds regardless of s's being greater or smaller than	C.
 If V < C and �� ∉ �(�F) then it is easily seen that �� ∉ �(�F′). If V > C we will have �� ∈ �(��′)
for some V′ < C such that	��′ ∉ �(�F)	by assumption. And since �� ∈ �S(ℎ), ��′�� is a twin edge
and thus �� ∉ �(�F). Now we know that	V = ℎ	and C = I so that	V + C = ℎ + I must be the smallest
sum of indices in Ω. But since �*�G	 is a �-edge, �* ∈ �(�G) and so (�*, �G) ∉ Ω.	

Corollary 7.4.5 (Chang et al. p.346): Suppose �G is a child of �* in ��(�) and �*�G is a 7 edge.
Then, in graph �the twin set of ��[ℎ] and the twin set of ��[I, ℎ] form a join.

Proof (Backelin and Timonen): The very same argumentation holds for �*�G	is a	7-edge, in which
case also �* ∈ �(�G). Remark: if �*�G is an X-edge, �* 	and �G are not adjacent.

30

Lemma 7.4.6 (Chang et al. p.347): Suppose �* is a node in ��(�). Then �e[�* − �S(I)] ⊆ �(I),
i.e. vertices in �(I) except those in the twin set of �* are adjacent to only vertices in the subtree of
��(�) rooted at �*.

Proof (Backelin and Timonen): We consider the statements:	
			� = ”�* is a node in ��(�).
			�	 = ”∀�� ∈ �(I)\�S(I)	and �F ∈ �(��);	�F ∈ �(I)”
	¬� = ”∃�� ∈ �(I)\�S(I) and �C ∈ �(��);	�F ∉ �(I)” 	
To prove that � ⇒ � is equivalent to prove that assuming � and ¬� ⇒⊥

Define Ω = 8(��, �F)	|	�� ∈ �(I)\�S(I)	and		�F ∈ �(��), �F ∉ �(I)9	
Assume Ω is nonempty. Then there is (��, �F) ∈ Ω	s.t. V	 + 	C is the smallest sum of indices.

First assume C > V. By lemma 7.4.1(a)	C′ < C, �C′ ≠ ��, �F′�F is a twin edge and �� ∈ �(�F′) =>
	(��, �F′) ∈ Ω. But V′ + C < V + C =⊥	

Next assume V > 	C. Since �� ∉ �S(I) we know that V > ℎ so we have that 5(��) = ��′ ≠ �*.
lemma 7.4.1.(a) implies �C ∈ �(��′) ⇒ (��′, �F) ∈ Ω. But V′ + C < V + C =⊥

Lemma 7.4.7 (Chang et al. p.347): Suppose �G is a child of �* in ��(�) and �*�G is an X edge.
Then, �[I, ℎ] is not connected, and in graph � no vertex in �(ℎ) is adjacent to any vertex in �(I, ℎ).

Proof (Backelin and Timonen): Let �’ be the distance-hereditary subgraph of G, with one-vertex
extension 8��, … , �* 	, �G9, where �* and �G are false twins. Hence in �’, �eª(�*) = �eª(�G),
whereas in ��(�) the edge �*�G is an X-edge and there are no right siblings to	�G.

Let � = �eª(�*) = �eª(�G). We have that neither �* nor �G is contained in �. The set � is a subset
of �(�’) and contains vertices in �(�’)\�(I, ℎ).

In order to prove that no vertex in �(ℎ) is adjacent to any vertex in �[I, ℎ], we want to show that
any vertex in �(ℎ) has neigbhors only in �(ℎ) ∪ � and any vertex in �(I, ℎ) has neighbors only in
�(I, ℎ) ∪ �.

We will use induction to prove that any vertex in �(ℎ) has neighbors only in �(ℎ) ∪ �.

Let �(ℎ) = 8��, �
, … 9, where	�« is ordered by increasing vertex index, whence �� = �G.

Let	[∈ 	 81, … , |�(ℎ)|9 and let �(«) be the induced subgraph on ��, … , �* , �G, ��, … , �«. Thus
�’ = �(�). We shall prove that �e(¬)q�lr ∈ �(ℎ) ∪ � for o ∈ 81,… , [9.
We have that �eª(��) = 	�eª(�G) 	= �. Thus the assertion holds for [= 1.

Assume that for [< |�(ℎ)| and �l ∈ 8��, … , �«9 it holds that �e(¬)q�lr ∈ �(ℎ) ∪ �. Note that
�(«:�) is the extension of �(«) by attaching the vertex �«:� to a vertex �, 1 ≤ � < [+ 1, by a
one-vertex extension. We have three cases.

 Case 1. If �«:� is a pendant vertex to �, then �e(¬ �)(�«:�) = � ∈ �(ℎ).

Case 2. If �«:� is a true twin to xb, then �e(¬ �)(�«:�) = �e(¬ �)[�]. By induction
hypothesis we have that �e(¬ �)[�] ∈ � ∪ �(ℎ) ∪ �.

Case 3. If �«:� is a false twin to �, then �e(¬ �)(�«:�) = �e(¬ �)(�). By induction
hypothesis we have that �e(¬ �)(�) ∈ �(ℎ) ∪ �.

31

Hence any such vertex �«:� is a child of � in ��(�(«:�)) and will thereby be contained in �(ℎ)
although not contained in �. �«:� may have as neighbors the vertex � , vertices in � or vertices in
�(ℎ), that is �e(¬ �)(�l) ∈ �e(¬)q�lr ∪ 8�«:�9. Thus it holds that any vertex in �(ℎ) has neighbors
only in � ∪ �(ℎ).

Now, let �’ be the distance-hereditary subgraph of �, with one-vertex extension
8��, … , �* 	, �G , ��, … , �«9, where �*	and	�G are false twins, and��, … , �« ∈ � ∪ �(ℎ).

We will again use induction to prove that any vertex in �(I, ℎ) has neighbors in �(I, ℎ) ∪ � only,
and hence no neighbors in �(ℎ) .

Let �(I, ℎ) = 8�*, W�, W
, … 9, where W$ is ordered by increasing vertex index. Let M	 ∈
	81, … , |�(I, ℎ)|9 and let �(R) be the induced subgraph on ��, … , �* 	, �G , ��, … , �« , W�, … , WR. Thus,
with previously used notation, �’ = �(�). We shall prove that �e(®)(W$) ∈ �(I, ℎ) ∪ �	for	1 ∈
81,… , M9.

We have that �eª(�*) = � and also that W� is a child of �* in ��(�(�)). W� is either a pendant
vertex, a true twin- or a false twin to �*. If W� is a pendant vertex to �* then �eª(W�) = �* ∈
�(I, ℎ) ≠ �(ℎ). In the other two cases, where W� is a false twin respectively a true twin to �* it
holds that �eª(W�) = �(�*) = � ≠ �(ℎ) respectively �eª(W�) = �[�*] ∈ �(I, ℎ) ∪ � ≠ �(ℎ).
Thus the assertion holds for M = 1.

Assume that for	M < |�(I, ℎ)| and W$ ∈ 8W�, … , WR9 it holds that �e(®)(W$) ∈ �(I, ℎ) ∪ �. Again,
note that �(R:�) is the extension of �(R) by attaching the vertex WR:� to a vertex W¯, 1 ≤) < M + 1,
by a one-vertex extension. We have three cases.

 ([V%	1. If WR:� is a pendant vertex to W¯, then �e(® �)(WR:�) = W¯ ∈ �(I, ℎ).

([V%	2. If WR:� is a true twin to W¯, then �e(® �)(WR:�) = �e(® �)[W¯]. By induction
hypothesis we have that �e(¬ �)[W¯] ∈ �(I, ℎ) ∪ �.

([V%	3. If WR:� is a false twin to W¯, then �e(® �)(WR:�) = �e(® �)(W¯).. By induction
hypothesis we have that �e(® �)(W¯) ∈ �(I, ℎ) ∪ �.

Hence any such vertex WR:� is a child of W¯ in ��(�(R:�)) and will thereby be contained in �(I, ℎ)
although not contained in �. yc+1 may have as neighbors the vertex W¯, vertices in � or vertices in
�(I, ℎ), that is �e(® �)(W$) ∈ 	�e(®)(W$) ∪ 8WR:�9. Thus it holds that any vertex in �(I, ℎ) has
neighbors only in �(I, ℎ) ∪ � and hence no neighbors in	�(ℎ).Since �, the only common
neighborhood of vertices in �(ℎ) and vertices in �(I, ℎ) is not contained in �(I, ℎ) it follows that
�(I, ℎ) is disconnected

7.5. FROM OLD TO NEW DEFINITION
OF DISTANCE-HEREDITARY GRAPHS

 Closely following Chang, Hsieh and Chen we will here present the very leap from the old to the
new definition. Then we present Chang et al.’s new definition of distance-hereditary graphs stated
as in Hung and Chang. In the next section we present the decomposition tree. First we recall a few
key concepts from above. A distance-hereditary graph has a one-vertex-extension ordering, from
which one can obtain a one-vertex-extension tree. This tree reveals information about the distance
hereditary graph, and using the lemmas presented above one can make a few observations and
conclusions.

32

 With the definitions from the section 7.2.1- 7.2.3 Chang et al. define the twin-set �S(1) of �. They
also show that one can partition the vertex set into four disjoint sets (Chang et al. p.347):

�(2) − �S(2), �S(2), �(1,2) − �S(1,2), and �S(1,2). We can consider that � is
formed from �[2] and �[1,2] according to the type of edge ���
 , that is the type of edge
between the root and the first child of the root, in ��(�). If ���
 is 7 or � we have by lemma
7.4.1 and 7....4.2 that � is formed by connecting every vertex in �S(2) to all vertices in
�S(1,2). If the edge ���
 is of type 7, then �S(�) = �S(1,2). If the edge ���
is of type �,
then �S(�) = �S(2) ∪ �S(1,2). If the edge ���
is of type X we have by lemma 7....4.7 that
�[2]	and �[1,2] are not connected, i.e. � is the union of �[2] and �[1,2]. �S(�) =
�S(2) ∪ �S(1,2)

This is the very leap from the one-vertex-extensions to the formation of a distance hereditary graph
from two others that may have more than one vertex.

Now that all prerequisites are settled it is time to present the recursive definition of distance-
hereditary graphs. This definition is actually a definition of pairs: (�, �S(�)), the distance-
hereditary graph together with its twin-set. The reader is also referred to Appendix 3.

 Definition 7.5.1 (Chang et al. p347, with the notation from Hung and Chang p.414):

 The class of distance-hereditary graphs can be defined by the following recursive definition:
1) A graph consisting of a single vertex is a distance-hereditary graph with the twin set 8�9.
2) If �� and � are distance-hereditary graphs then the union � of �� and �is a distance-
hereditary graph and �S(�) = �S(��) ∪ �S(�). Then � is formed from �� and � by a
false-twin operation. This is denoted � = ��(X)� .
3) If �� and � are distance-hereditary graphs, then the graph obtained from �� and � by
connecting every vertex of �S(��) to all vertices of �S(�) is a distance-hereditary graph and
�S(�) = �S(��) ∪ �S(�). We say that � is formed from �� and GR by a true-twin
operation. This is denoted � = ��(�)� .

4) If �� and � are distance-hereditary graphs, then the graph �, obtained from �� and � by
connecting every vertex of �S(��) to all vertices of �S(�) is a distance-hereditary graph and
�S(�) = �S(��). In this case we say that � is formed by a pendant operation. This is
denoted � = ��(7)� .

 Note that with the notation from the partitioning of �(�) above we have, perhaps a bit confusing,
that �� = �[1,2] and � = �[2]	.
 The graphs obtained from a true twin respectively a pendant operation are isomorphic, having
different twin sets only.
 If � = ��(X)� , then � is disconnected for any �� and � in the new definition, whereas with the
old definition only extending !� by a false twin operation will result in a disconnected distance
hereditary graph.
 A distance-hereditary graph in “the old sense” has a twin-set, as seen in the derivation of ��(�).

7.6. The decomposition tree, ��(�)

 Definition 7.6.1. (Chang et al. p347, with the notation from Hung and Chang p.414):

The decomposition tree J�(�) of a distance-hereditary graph � consisting of a single vertex �
is a tree of one node labeled by �. If � is formed from �� and � by a false-twin (respectively
true-twin, pendant) operation, then the root of the decomposition tree J�(�) is a node
labeled by X (respectively �, 7) with the roots of J�(��) and J�(�) being the left and right

33

children of the root of J�(�), respectively.

 Given the one-vertex-extension tree ��(�) of �one recursively constructs the decomposition tree,
J�(�), of � in the following way:
The root is a vertex labeled by the type of edge from the root of ��(�) to its first child, i.e. the type
of edge	���
 in ��(�). Next, determine �(1,2) and �(2) in ��(�). The conclusions derived
above allows us to consider � as being formed from �[1,2] and �[2] according to the type of
edge ���
 in ��(�). Let �� = �[1,2] and � = �[2]. By lemma 2, the subtrees ��(��) and
��(�) are also one-vertex-extension trees of the sub graphs �� and � respectively. Thus there is
a decomposition tree J�(��) and a decomposition tree J�(�). This will be demonstrated in the
appendix.

.7.7 A Twin Set Theorem with proof

 Here we will state a theorem and give its proof, followed by a corollary and a remark on forbidden
subgraphs in twin-sets of distance-hereditary graphs.

Theorem 8. A twin-set of a distance-hereditary graph can not induce a 7u as a subgraph.

Proof: Assume that � is a distance-hereditary graph with twin-set ��, . . , �u such that this twin-set
induces a 7u. Assume that �� is a distance-hereditary graph on one vertex ��	(hence �S(��) = ��),
and that � = ��(�)� . Then � is a distance-hereditary graph and the first level with respect to ��,
��(��) consists of an induced path of length 3, which by condition (ii) of theorem 4 is impossible
for a distance-hereditary graph. �

 Corollary: Using twin-set operations, it is impossible to create a path of length three, such that all
four vertices belong to the twin-set.

 Remark 1: the graph constructed above by a true-twin operation is readily seen to be the gem – a
forbidden subgraph in any distance-hereditary graph.
 Remark 2: in the same way, one can deduce the set of forbidden subgraphs (and thereby impossible
to construct with twin- and pendant operations) induced by the twin-set of a distance-hereditary
graph emanating from the overall forbidden subgraphs of distance-hereditary graphs, namely the
house, the domino and the long cycles.

 	

34

8. A SOLUTION TO THE HAMILTONIAN PATH-PROBLEM ON
DISTANCE-HEREDITARY GRAPHS

 Before presenting the recursive program for determining whether a given distance-hereditary has a
Hamiltonian path or not we do need some definitions of concepts that are used for doing so. We also
need a few lemmas and theorems. They are presented in this section. All lemmas, theorems and
proofs thereof presented below are given by Hung and Chang. We shall present the proofs of the
main theorems: theorems 9, 10 and 11 as given by Hung and Chang, whence the interested reader is
referred to Hung and Chang for proofs of the lemmas.

8.1 PREREQUISITES FOR THE SOLUTION TO HAMILTONIAN PROBLEMS ON
DISTANCE-HEREDITARY GRAPHS

 In the definitions below it is assumed that � = (�, �) is a distance-hereditary graph and either
� = ��(7)�, � = ��(X)� or � = ��(�)� . �� and � denotes the vertex sets of �� and �
respectively.

Definition 8.1.1 (Hung and Chang p.416):

 The first and the last vertices that are visited by the path 7, are called the path-start and path-
end of 7, respectively. Both of them are end vertices of 7. For a path 7 of a graph, we allow
that the path-start and path-end of 7 are the same only in the case when 7 contains exactly
one vertex.

 Definition 8.1.2 (Hung and Chang p.416):

A path cover 7(of a graph � is a set of pairwise vertex-disjoint paths of	� such that all vertices
are visited by exactly one path in 7(. A minimum path cover of	� is a path cover of	� of
minimum cardinality.

 Definition 8.1.3 (Hung and Chang p.416):

For a path cover PC of G, the end vertices not in TS(G)are called free vertices of PC. The free
number of PC in	G is the number of free vertices, and is denoted τ(G, PC). For simplicity we
shall in this paper denote it τ.
Defineτµ(G, PC) = |8v	|	v	is	an	end	vertex	of	a	path	in	PC, v ∉ TS(G)	and	v ∈ Vµ9|. That is,
v is a free vertex in	G that origins from the left graph Gµ when forming G. τÅ(G, PC) is defined
in the same way, and in this paper τµand τÅ will be used in the obvious way.

 Definition 8.1.4 (Hung and Chang p.416):

A path of	� is called a twin-set path or, in this paper a proper twin set path, if both its end
vertices are in �S(�). A path of	� is called a semi-twin-set path if exactly one of its end
vertices is in �S(�).

A path cover 7(is called a twin-set-path cover of	� if the following holds:
(a)(a)(a)(a) every path in 7(is either a semi- or a proper twin-set path.
(b) at most two paths in	7(are semi-twin-set paths.

Notice that a path on one vertex is either a proper twin set path or not a twin set path, since the start
and the end vertices are the same and thus cannot be in different sets.

 Definition 8.1.5 (Hung and Chang p.416):

 �(�) denotes the minimum free number of a twin-set path cover of �. If	� has no
twin-set path cover, then �(�) is undefined. A twin-set path cover 7(of	� with Æ = �(�) is

35

called a minimum-free-number twin-set path cover of	� if �(�) is defined.

 Definition 8.1.6 (Hung and Chang p.416):

Let ¢ be a subset of �(�), and let 7 be a path in �. A subpath 7′ of 7 is called a ¢-subpath
of 7 if 7′ visits vertices in ¢ only. Such a ¢-subpath is ¢-maximal if it is not a proper subpath
of any ¢-subpath of 7. For 7(denote by ¢(7() the set of all	¢-maximal subpaths of all paths
in 7(.

 Proposition 8.1.7 (Hung and Chang p.417):

Assume that 7(is a twin-set path cover of a distance-hereditary graph �. Then,

Æ�(�, 7() = Æq�� , ��(7()r	and	Æ(�, 7() ≥ Æq� , �(7()r.	

Lemma 8.1.8 (Hung and Chang p.419):

Assume that	� is formed from �� and � by one of a false-twin operation, a true-twin
operation, and a pendant operation, and that 7(is a twin-set path cover of �. Then, ��(7()
and �(7() are twin-set path covers of ��and � respectively and Æ(�, 7() ≥ �(��) +
�(�)

8.1.1 Theorem 9 with proof

 Theorem 9 (Hung and Chang p.419):

Assume that � = ��(X)� or � = ��(�)�.
Then the following two statements hold:

(a)(a)(a)(a) � has a twin-set path cover if and only if both �� and � have twin-set path covers, and
	�(��) + �(�)≤2.

(b)(b)(b)(b) If	� has a twin-set path cover, then �(�) = 	�(��) + �(�).

 Proof (Hung and Chang p.419):

We first prove statement 9(a). Suppose that 7(is a twin-set path cover of �. By definition,
Æ(�, 7() ≤ 2. By Lemma 8.1.8,	��(7() and �(7() are twin-set path covers of �� and �
respectively, and Æ(�, 7() ≥ �(��) + �(�). Thus 	�(��) + �(�) ≤ 2. This proves the
only if part of 9(a).	
 Suppose that both �� and � have twin-set path covers and	�(��) + �(�) ≤ 2. Then, ��

and � have minimum-free-number twin-set path covers 7(� and 7(, respectively.
Let	7(= 	7(� ∪ 7(. Then, Æ(�, 7() 	≤ 	2 since Æ(�, 7() = �(��) + �(�) and
	�(��) + �(�) ≤ 2.
Hence, 7(is clearly a twin-set path cover of	� and hence,	� has a twin-set path cover. This
proves the if part of statement 1.
Next we prove statement 2. Suppose	� has a twin-set path cover. By statement (i) both �� and
� have twin-set path covers and hence, �� and �have minimum-free-number twin-set path
covers 7(� and 7(, , , , respectively. By definition, Æ(�� , 7(�) = �(��) and , Æ(� , 7() =
�(�).
Thus Æ(�, 7(� ∪ 7() = Æ(�� , 7(�) + Æ(� , 7() = �(��) + �(�).
 By Lemma 8.1.8, 7(� ∪ 7(is a minimum-free-number twin-set path cover of �,

 and �(�) = �(��) + �(�). This prove statement 9(b). �

 Lemma 8.1.9 (Hung and Chang p.419):

Assume that	� is formed from �� and � by either a false-twin operation or a true-twin
operation. If 7(is a minimum-free-number twin-set path cover of �, then ��(7() and
�(7() are twin-set path covers of �� and �, respectively.

36

 Lemma 8.1.10 (Hung and Chang p.420):
 Assume that	G is formed from Gµ and GÅby a false-twin operation, PC is a twin-set path cover
of	G of size p with τ free vertices, and that PCµ and PCÅ are minimum-free-number twin-set

path covers of Gµ and GÅrespectively, where |Vµ(PC)| ≥ |PCµ| ≥ |Vµ(PC)|– τqGµ, Vµ(PC)r +
	f(Gµ) and |VÅ(PC)| ≥ |PCÅ| ≥ |VÅ(PC)|– τqGÅ, VÅ(PC)r + f(GÅ). Then, there exists a

minimum-free-number twin-set path cover PCÇ of	G of size pÇ such that p ≥ pÇ ≥ p– τ + f(G).

 Lemma 8.1.11 (Hung and Chang p.420):

Assume that	G is formed from Gµ and GÅ by a true-twin operation and that	PC is a twin-set
path cover of G.
Then, |Vµ(PC)| + |VÅ(PC)| ≥ |PC| ≥
	max81, τ(G, PC), |Vµ(PC)|– |VÅ(PC)| + τÅ(G, PC), |VÅ(PC)|– |Vµ(PC)| + τµ(G, PC)9.

 Lemma 8.1.12 (Hung and Chang p.421):

Assume that	G is formed from Gµ and GÅ by a true-twin operation, PCµ and PCÅ are
minimum-free-number twin-set path covers of Gµ and GÅ respectively, and that τ =
τqGµ, Vµ(PC)r + τ(GÅ, VÅ(PC)) ≤ 2. Then, for any number k, where	|PCµ| + |PCÅ| ≥ k ≥
max81, τ, |PCµ|– |PCÅ| + τ(GÅ, PCÅ), |PCÅ|– |PCµ| + τ(Gµ, PCµ)9, there exists a twin-set path
cover PC of	G of size k such that VL(PC) = PCµ, VÅ(PC) = PCÅ,	and	τ(G, PC) = τ .

 Lemma 8.1.13 (Hung and Chang p.422):

Assume that	G is formed from Gµ and GÅ by a true-twin operation, PC is a twin-set path cover
of	G of size p with τ free vertices, and that PCµ and PCÅ are minimum-free-number twin-set

path covers of Gµ and GÅ respectively, |Vµ(PC)| ≥ |PCµ| ≥ |Vµ(PC)|– τqGµ, Vµ(PC)r + f(Gµ)
and |VÅ(PC)| ≥ |PCÅ| ≥ |VÅ(PC)|– τqGÅ, VÅ(PC)r + f(GÅ). Then, there exists a minimum-

free-number twin-set path cover PCÇ of	G of size pÇ such that p ≥ pÇ ≥ p– τ + f(G).

 Lemma 8.1.14 (Hung and Chang p.423):

Assume that	G is formed from Gµ and GÅ by a pendant operation and that PC is a twin-set

path cover of G. Then, |PC| = |Vµ(PC)|– |VÅ(PC)| + τÅ(G, PC)	and	|Vµ(PC)|– |VÅ(PC)| ≥
τµ(G, PC) ≥ f(GL).	

 Lemma 8.1.15 (Hung and Chang p.423):

Assume that	� is formed from �� and � by a pendant operation, 7(� and 7(are minimum-
free-number twin-set path covers of �� and � respectively, Æ(�� , 7(�) + Æ(� , 7() ≤ 2, and

that |7(�|– |7(| ≥ Æ(�� , 7(�). Then	� has a twin-set path cover 7(satisfying the following
conditions:

(a)(a)(a)(a) ��(7() = 7(� , �(7() = 7(;
(b)(b)(b)(b) exactly one of the following two conditions holds:

2.1 Æ(�, 7() = Æ(�� , 7(�) + Æ(� , 7()	[)	|7(| = |7(�|– |7(| + Æ(� , 7();
2.2	Æ(�� , 7(�) = Æ(� , 7() = 0|7(�| = |7(|, |7(| = 1,	and	Æ(�, 7() = Æ(�, 7() = 1.	

 Lemma 8.1.16 (Hung and Chang p.424):

Assume that	� is formed from �� and � by a pendant operation, 7(is a twin-set path cover
of	� of size p with Æ free vertices, and that 7(� and 7(are minimum-free-number twin-
set path covers of �� and � respectively, where

|��(7()| ≥ |7(�| ≥ |��(7()|– Æq�� , ��(7()r + 	�(��) and |�(7()| ≥ |7(| ≥
|�(7()|– Æq� , �(7()r + �(�). Then, there exists a twin-set path cover 7(Ë of	� of size

37

5Ë satisfying the following conditions:

1)1)1)1) ��q7(Ër = 7(� ,	and	�(7(Ë) = 7(,

2)2)2)2) 5 ≥ 	5Ë ≥ 5– Æ + Æq�, 7(Ër,
3)3)3)3) Æq�, 7(Ër ≤ Æ,

4)4)4)4) exactly one of the following two conditions holds:
(a)(a)(a)(a) Æ(�, 7(Ë) = 	�(��) + �(�),

(b)(b)(b)(b) �(��) = �(�) = 0, 5Ë = 1,	and		Æq�, 7(Ër = Æq�, 7(Ër = 1.

We shall now state one of the main theorems of this section. It contains a recursive definition
of the numbers ��(�) and �
(�) which are the maximum, respectively minimum size of twin-
set path cover of �.

8.1.2. Theorem 10

 Theorem 10 (Hung and Chang p.425):

Assume that either � = ��(7)�, � = ��(X)� or � = ��(�)� .
Then the following statements hold:

(1)(1)(1)(1) if	� has a minimum-free-number twin-set path cover of size 5, then	� has a minimum-

free-number twin-set path cover 7(Ë of size 5 such that ��q7(Ër and �q7(Ër are

minimum-free-number twin-set path covers of �� and � respectively.

(2)(2)(2)(2) If	� has a twin-set path cover of size 5 with free number Æ, then	� has a minimum-

free-number twin-set path cover of size 5Ë such that5 ≥ 5Ë ≥ 5– Æ + �(�).

(3)(3)(3)(3) Suppose	� has a twin-set path cover. Then, there exists two numbers	��(�) and
�
(�) such that	� has a minimum-free-number twin-set path cover of size 1, if and
only if ��(�) ≥ 1	 ≥ �
(�). Moreover, the values of ��(�) and �
(�) are as
determined recursively as follows:

(a)(a)(a)(a) if � = ��(X)� , then ��(�) = ��(��) + ��(�)	and	�
(�) = �
(��) +

�
(�).

(b)(b)(b)(b) if � = ��(�)�, then ��(�) = ��(��) + ��(�) and �
(�) = P[�81, �(�),	
�
(��) − ��(�) + �(�), �
(�) − ��(��) + �(��)9.

(c)(c)(c)(c) if � = ��(7)�, then ��(�) = P[�81, ��(��) − �
(�) + �(�) + 	�(�|)9

and �
(�) = P[�81, 	�(��) + �(�), �
(��) − ��(�) + �(�)}.

(4)(4)(4)(4) Suppose � = ��(7)�. Then	� has a twin-set path cover if and only if the following
three conditions are satisfied:
(a)(a)(a)(a) both �� and �have twin-set path covers.
(b)(b)(b)(b) b) 	�(��) + �(�) ≤ 2.
(c)(c)(c)(c) ��(��) − �
(�) ≥ �(��).

(5)(5)(5)(5) If � = ��(7)� and	� has a twin-set path cover, then �(�) = �(��) + �(�) if

��(��) − �
(�) ≥ 0; and �(�) = P[�(1, �(�)9 otherwise.

8.1.3. Proof of theorem 10

 Following Hung and Chang we present the proof of theorem 10 (Hung and Chang pp.426-434):

38

This theorem is proved by using induction on the number of vertices of �. Clearly, statement
2 and 3 (except the recursive definition) hold true if the number of vertices is one.
In this case let 	��(�) = 	�
(�) = 1 and �(�) = 0. by induction hypothesis, all statements
hold true for graphs with the number of vertices smaller than �. Hence, all statements hold
true for �� and �. We will prove statement (1) by using the induction hypothesis of statement
(2). By induction hypotheses of statement (2) and statement (3), we prove statement (2). We
will prove statement (4) by using statement (1) and the induction hypothesis of statement (3).
By statement (1), statement (4), and the induction hypothesis of statement (3), we prove
statement (3). We will prove statement (5) by using statement (4) and the proof of statement
(3). These statements in this theorem are closely related and we shall prove the theorem as a
whole. In the following, we will prove all statements hold true for �.

 Proof of Proof of Proof of Proof of statement (1)statement (1)statement (1)statement (1). By Lemma 8.1.9, the statement is true if	� is formed from �� and
�by either a false twin operation or a true-twin operation. In the following, assume	� is
formed from �� and �by a pendant operation. Consider the following two cases:

 Case 1: �(�) = 0. Let	7(be any minimum-free-number twin-set path-cover of �. Clearly

Æ�(�, 7() = 0	and	Æ(�, 7() = 0. By proposition 2.2,Æ�(�, 7() = Æq�� , ��(7()r and

Æ(�, 7() ≥ Æ(� , �(7()). Therefore, Æq�� , ��(7()r = Æ(� , �(7()) = 0

andhence,	��(7() and �(7() are minimum-free-number twin-set path covers of �� and �
respectively.
Case 2: �(�) ≥1. Let 7(be any minimum-free-number twin-set path cover of	� of size 5 with
Æ free vertices. By induction hypothesis of statement (2), there exist minimum-free-number
twin-set path covers 7(� and 7(of �� and �respectively such that |��(7()| ≥ |7(�| ≥
|��(7()|– Æq�� , ��(7()r + �(��) and |�(7()| ≥ |7(| ≥ |�(7()|– Æq� , �(7()r +
�(�). By Lemma 8.1.16 there exists a twin-set cover 7(Ë of	� of size 5Ë such that

��q7(Ër = 7(� ,	and	�(7(Ë) = 7(, 5 ≥ 	5Ë ≥ 5– Æ + Æq�, 7(Ër, Æq�, 7(Ër ≤ Æ, and

exactly one of the following two conditions holds:

(M. 1.1) Æq�, 7(Ër = �(��) + �(�),
(M. 1.2) �(��) = �(�) = 0, 5Ë = 1, [)		Æq�, 7(Ër = Æq�, 7(Ër = 1.
If condition (c.1.1) holds, then 7(Ë is a minimum-free-number twin-set path cover of	� by

Lemma 8.1.8. If condition (c.1.2) holds, then 7(Ë is a minimum-free-number twin -set path

cover of	� by Lemma 8.1.8 since Æq�, 7(Ër = 1 and �(�) ≥ 1. In all the above two subcases

7(Ë is a minimum-free-number twin-set path cover of	� and hence Æq�, 7(Ër = Æ. Since	5 ≥
	5Ë ≥ 5– Æ + Æq�, 7(Ër and Æq�, 7(Ër = Æ, we have 5Ë = 5. Therefore 7(Ë is a minimum-

free-number twin-set path cover of	� of size 5 with that ��q7(Ër and �(7(Ë), are minimum-

free-number twin-set path covers of �� and � respectively.
 By arguments given in the above two cases, this statement holds when	� is formed from ��

and � by a pendant operation. This completes the proof of statement (1).

Proof of statement (2).Proof of statement (2).Proof of statement (2).Proof of statement (2). Assume 7(is a twin-set path cover of	� of size p with Æ free vertices.
By Lemma 8.1.8, �(7() and �(7() are twin-set path covers of �� and � respectively. By
induction hypothesis of this statement, there exist minimum-free-number twin-set path-covers
7(� and 7(of �� and � respectively, such that

|��(7()| ≥ |7(�| ≥ |��(7()|– Æq�� , ��(7()r + �(��) and |�(7()| ≥ |7(| ≥
|�(7()|– Æq� , �(7()r + �(�). By lemmas 8.10 and 8.13 this statement is true if � is

formed from �� and � by either a false-twin operation or a true-twin operation. In the
following, assume	� is formed from �� and � by a pendant operation. By Lemma 8.1.16,
there exists a twin-set path cover 7(Ë of	� of size 5Ë such that

39

��q7(Ër = 7(� ,	and	�(7(Ë) = 7(, 5 ≥ 5Ë ≥ 5– Æ + Æq�, 7(Ër, Æq�, 7(Ër ≤ Æ, and

exactly one of the following two conditions holds:
(M. 2.1) Æ(�, 7(Ë) = �(��) + �(�),
(M. 2.2) 	�(��) = �(�) = 0, 5Ë = 1,	and		Æq�, 7(Ër = Æq�, 7(Ër = 1.
Consider the following four cases:
([V%	1. Condition (c.2.1) holds. In this case, 7(Ë is a minimum-free-number twin-set path

cover of	� and 5 ≥ 5Ë ≥ 5– Æ + �(�) since Æq�, 7(Ër = �(�) by Lemma 8.1.8. Hence, this
statement is true in this case.

 ([V%	2. Condition (c.2.2) holds and �(�) = 1. This statement is clearly true in this case.

([V%	3 Condition (c.2.2) holds, �(�) = 0, and there exists a minimum-free-number twin-set
path cover 7(Ë∗ of	� of size 1. Let 7(Ë be 7(Ë∗. Then, this statement holds since |7(Ë∗| =
5Ë = 1 and Æ(�, 7(Ë∗) = �(�) = 0.

([V%	4 Condition (c.2.2) holds,	�(�) = 0, and all minimum-free-number twin-set path covers
of	� are of size greater than 1. Since the only path in 7(Ë starts from a vertex in the twin-set of

�� and ends at a vertex of in the twin-set of �, we have that |��q7(Ër| = |�q7(Ër| and

��q7(Ër and �(7(Ë) are minimum-free-number twin-set path covers of �� and

�respectively. Let 7(Í be a minimum-free-number twin-set path cover of �. By assumption,

|7(Ë| > 1and Æq�, 7(Ër = �(�) = 0. By Lemma 8.1.14 |7(Í| = |��(7(Í)| − |�(7(Í)| +
	Æ(�, 7(Í) = |��(7(Í)| −	 |�(7(Í)| > 	1 and hence |��(7(Í)| > |�(7(Í)|. By
proposition 8.7 Æ�(�, 7(Í) = Æ(�� , ��(7(Í)) and Æ�(�, 7(Í) ≥ Æ(� , �(7(Í)). Since
�(�) = Æ(�, 7(Í) = 	 Æ�(�, 7(Í) + Æ(�, 7(Í) = 0, 0 ≥ Æ(�� , ��(7(Í)) + Æ(� , �(7(Í))
and hence Æq�� , ��(7(Í)r = Æ(� , �(7(Í)) = 0. Hence, ��(7(Í) and �(7(Í) are

minimum-free-number twin-set path covers of �� and � respectively. There are the following
two subcases:

([V%	4.1	|�(7(Í)| < |�q7(Ër|. Since |��q7(Ër| − 1 = |�q7(Ër| − 1 ≥ |�(7(Í)|	and

both �(7(Í) and �q7(Ër are minimum-free-number twin-set path covers of �, there exists

a minimum-free-number twin-set path cover of � of size |��q7(Ër| − 1 by induction
hypothesis of statement (3).

([V%	4.2 |�(7(Í)| ≥ |�q7(Ër|. Since	|��(7(Í)| > |�(7(Í)| ≥ |�q7(Ër| = |��q7(Ër|,
we have |��(7(Í)| ≥ |�q7(Ër| + 1. since both ��(7(Í) and ��q7(Ër are minimum free-

number twin-set path covers of ��, there exists a minimum-free-number twin-set path cover of

�� of sizeÎ�q7(ËrÎ + 1 by induction hypothesis of statement (3).

In both the above two subcases, we can obtain a Hamiltonian path of	� starting from a vertex
in the twin set of �� and ending at a vertex in the twin set of ��. Hence, we have a minimum-
free-number twin-set path cover of	� of size 1, a contradiction.
By arguments given in the above four cases, this statement holds when	� is formed from ��

and � by a pendant operation. This completes the proof of statement (2).

Since statement (4) will be used to prove statement (3) in case that	� is formed from �� and
� by a pendant operation, we prove statement (4) before statement (3) in the following.

Proof of statement (4). Proof of statement (4). Proof of statement (4). Proof of statement (4). We first prove the only if part of this statement. Suppose	� has a twin-
set path cover. By Lemma 8.1.8 both �� and �and have twin-set path covers and 	�(��) +
�(�) ≤ 2. Hence, condition (a) and condition (b) of this statement are satisfied. Since	� has
at twin-set path cover,	� has a minimum-free-number twin-set path cover. By statement (1),	�

40

has a minimum-free-number twin-set path cover 7(such that ��(7() and �(7() are
minimum-free-number twin-set path covers of �� and �respectively. By Lemma
8.1.14. |�}	(7()| − |�|(7()| ≥ �(�}). By induction hypothesis of statement (3), ��(��) ≥
|��(7()| ≥ �
(��) and ��(�) ≥ |�(7()| ≥ �
(�). Thus ��(��) − �
(�) ≥
|��(7()| − |�(7()| ≥ �(�}) and hence condition (c) of this statement is satisfied. This
proves the only if part of this statement. Next, we prove the if part of the statement. By
induction hypothesis of statement (3), there exist minimum-free-number twin-set path-covers
7(� and 7(of �� and �respectively such that |7(�| = ��(��) and |7(| = �
(�). Since
��(��) − �
(�) ≥ 	�(��), |7(�| − |7(| ≥ �((��) = Æ(�� , 7(�) . Clearly Æ(�� , 7(�) +
	Æ(� , 7() = �(��) + �(�) ≤ 2. By Lemma 8.1.15	� has a twin-set path cover and hence,
the if part of this statement holds true. This completes the proof of statement 4.

Proof of statement (Proof of statement (Proof of statement (Proof of statement (3333)))). By assumption,	� has a twin-set path cover. Hence,	� has a minimum-
free-number twin-set path cover. Suppose	7(is a minimum-free-number twin-set path cover
of	� of size 1. We have three cases:	� is formed from �� and �by a false-twin operation, a
true-twin operation and a pendant operation.

 ([V%	1:	� is formed from �� and �by a false-twin operation.

 We first prove the only if part of this statement in this case. Since all vertices in �� are not
adjacent to any vertex in �,	|7(| = 1 = |��(7()| + |�(7()|. By Lemma 8.1.9, ��(7()
and�(7() are minimum-free-number twin set path covers of �� and �	respectively. By
induction hypothesis of this statement, we have

 ��(��) ≥ |��(7()| ≥ �
(��) (eq. 1)
 ��(�) ≥ |�(7()| ≥ �
(�) (eq. 2)

Combining (eq.1) and (eq.2), we get ��(�) = ��(��) + ��(�) ≥ �
(��) + �
(�) =
	�
(�). This proves the only if part of statement (3) of theorem 9 in case that	� is formed
from �� and �	by a false-twin operation.
Next we prove the if part of this statement in this case. Suppose ��(�) = ��(��) +
��(�) ≥ 1 ≥ �
(��) + �
(�) = 	�
(�). Then there exist two numbers, 1�and 1 such
that ��(��) ≥ 1� ≥ �
(��), ��(�) ≥ 1 ≥ �
(�),	and	1 = 1� + 1 . By induction
hypothesis of this statement, there exist minimum-free-number twin-set path covers 7(� and
7(of �� and �, respectively such that |7(�| = 1� and |7(| = 1. Clearly Æ(�, 7(� ∪
7() = Æ(�� , 7(�) + Æ(� , 7() = �(��) + �(�) ≤ 2	and	7(� ∪ 7(is a twin-set path
cover of �. By theorem 9, �(�) = �(��) + �(�). Thus, for ��(�) ≥ 1 ≥ �
(�), there
exist a minimum-free-number twin-set path cover of	� of size 1. This proves the if part of
statement (3) of theorem 9 in case that	� is formed from �� and �	by a false-twin operation.

 Case II:	� is formed from �� and �	by a true-twin operation.

By Lemma 8.1.9, ��(7() and �(7() are minimum-free-number twin-set path covers of ��

and �	respectively. By induction hypothesis of this statement we have ��(��) ≥ |��(7()| ≥
�
(��) and ��(�) ≥ |�(7()| ≥ �
(�). By Lemma 8.1.11, ��(�) = ��(��) +
��(�) ≥ |��(7()| + |�(7()| ≥ |7(| ≥ 	P[�81, Æ(�, 7(), |��(7()| − |�(7()| +
Æ(�, 7(), |�(7()| − |��(7()| +	Æ�(�, 7() ≥ 	P[�81, �(�), �
(��)– ��(�) +
�(�), �
(�)– ��(��) + �(��)9 = �
(�).. This proves the only if part of statement (3) of
theorem 10 in case that	� is formed from �� and �	by a true-twin operation.	

We next prove the if part of this statement in this case by showing that the following statement
holds: for any number 1, where ��(�) = ��(��) + ��(�) ≥ 1 and

41

1 ≥ P[�81, �(�), �
(��)– ��(�) + �(�), �
(�)– ��(��) + �(��)9 = �
(�), there
exists a minimum-free-number twin-set path cover of	� of size 1. By theorem 9, �(�) =
�(��) + �(�).

Consider the following cases:

([V%	1. ��(��) + ��(�) ≥ 1 ≥ �
(��) + �
(�). There exist two numbers, 1�and 1such
that ��(��) ≥ 1� ≥ �
(��), ��(�) ≥ 1 ≥ �
(�),	and	1 = 1� + 1 . By induction
hypothesis of this statement, there exist minimum-free-number twin-set path covers 7(� and
7(of �� and �	 respectively such that |7(�| = 1� and |7(| = 1. Clearly Æ(�, 7(� ∪
7() = Æ(�� , 7(�) + Æ(� , 7() = �(��) + �(�) ≤ 2. By theorem 9, 7(� ∪ 7(is a
minimum-free-number twin-set path cover of	� of size 1.
([V%	2.

�
(��) + �
(�) ≥ 1 ≥ P[�81, �(�), �
(��)– ��(�) + �(�), �
(�)– ��(��) +
�(��)9 = �
(�). In this case there are three subcases:
([V%	2.1 �
(��) ≥ ��(�). In this subcase, ��(��) ≥ �
(��) ≥ ��(�) ≥ �
(�). Thus we
have

 �
(�)– ��(��) + �(��) ≤ �(��) + �(�) = �(�) (eq.3)

 ��(�)– �
(��) + �(�}) 	≤ �(��) + �(�) = �(�) (eq.4)

By induction hypothesis of this statement, there exist minimum-free-number twin-set path
covers 7(� and 7(of �� and �	respectively such that	|7(�| = �
(��) and |7(| = ��(�).
By Lemma 8.1.12, for any number 1, where |7(�| + |7(| ≥ 1 ≥ P[�81, �(�), |7(�| −
|7(| + �(�), |7(| − |7(�| + �(��)9, there exists a minimum-free-number twin-set path
cover of	� of size 1. That is, for any number 1, where

�
(��) + ��(�) ≥ 1 ≥ P[�81, �(�), �
(��)– ��(�) + �(�), ��(�)– �
(��) + �(��)
there exists a minimum-free-number twin-set path cover of	� of size 1. By eqs (eq.3) and

(eq.4)P[�81, �(�), �
(��)– ��(�) + �(�), ��(�)– �
(��) + �(��) =
P[�81, �(�), �
(��)– ��(�) + �(�), �
(�)– ��(��) + �(��) = 	�2(�). Hence, for any
number 1, where �
(��) + ��(�) ≥ �
(��) + �
(�) ≥ 	1	 ≥ 	 �
(�), there exists a
minimum-free-number twin-set path cover of	� of size 1.
([V%	2.2 �
(�) ≥ ��(��). By symmetry, we can prove this subcase by arguments similar to
those for proving Case 2.1
([V%	2.3 Neither �
(��) ≥ ��(�) nor �
(�) ≥ ��(��). In this subcase,

�
(��)– ��(�) ≤ 0	and	�
(�)– ��(��) ≤ 0. Hence, we have

 �
(��)– ��(�) + �(�) ≤ 	�(�) (eq.5)

 �
(�)– ��(��) + �(��) ≤ 	�(�) (eq.6)

By eqs (eq.5) and (eq.6), �
(�) = max81, �(�)9. By induction hypothesis of this statement,
there exist minimum-free-number twin-set path covers 7(� and 7(of �� and � respectively
such that ��(��) ≥ |7(�| ≥ �
(��)	and	��(�) ≥ |7(| ≥ �
(�). If �
(��) ≥ �
(�),
then ��(�) ≥ �
(��) ≥ �
(�) and hence, we can obtain minimum-free-number twin-set
path covers 7(� and 7(of �� and � respectively such that	|7(�| = |7(| = �
(��).
Similarly, we can obtain the minimum-free-number twin-set path covers 7(� and 7(of ��

and � respectively such that |7(�| = |7(| = �
(�) if �
(��) ≤ �
(�). In any case, we
can obtain the minimum-free-number twin-set path covers 7(� and 7(of �� and �	
respectively such that |7(�| = |7(| and |7(�| + |7(| ≥ �
(��)+	�
(�). By Lemma
8.1.12, for any number 1, where |7(�| + |7(| ≥ 1 ≥ 8P[�81, �(�), |7(�| − |7(| +
�(�), |7(| − |7(�| + �(��)9 = 	P[�81, �(�)9 = �
(�), there exists a minimum-free-

42

number twin-set path cover of	� of size 1. Hence, for any number 1, where |7(�| + |7(| ≥

�
(��)+	�
(�) ≥ 1 ≥ �
(�), there exists a minimum-free-number twin-set path cover of	�
of size 1.
By arguments given in the above cases, the if part of statement (3) of theorem 10 holds true in

case that	� is formed from �� and �	by a true-twin operation.

 ([V%	3 is formed from �� and �	by a pendant operation.

By assumption,	� has a twin-set path cover and hence,	� has a minimum-free-number twin-
set path cover. By statement (1), assume	7(is a minimum-free-number twin-set path cover
of	� with �}	(PC) and VR (PC) being minimum-free-number twin-set path covers of �� and
�	respectively. By statement (4) we have

 	�(��) + �(�) ≤ 2 (eq.7)
 ��(��) − �
(�) ≥ �(��) (eq.8)

 We first prove the following five claims which are used in proving statement (3) in this case.

Claim 1. Claim 1. Claim 1. Claim 1. |7(| = 1 or Æ(�, 7() = �(�).

Proof.Proof.Proof.Proof. By definition Æ(�, 7() ≥ �(�|) and |7(| ≥ 1. Assume, by contradiction, that
|PC| > 1 and Æ(�, 7() > �(�|). Since �(7() is a minimum-free-number twin-set path
cover of � and Æ(�, 7() > �(�) = Æ(� , �(7()), there exists a path 7� in	7(having an
end vertex in the twin set of ��, and the other end vertex in the twin set of �. Let 7
 be
another path in	7(other than 7�. By definition, 7
 has an end vertex in the twin set of ��.
Without loss of generality, assume the path-end of 7� is in the twin set of � and the path-start
of 7
 is in the twin set of ��. Then, 7 = 7�7
 is a path having at least one end vertex in the
twin set of ��. Clearly, (7(\{7�, 7
}) ∪ {7} is a twin-set path cover of	� with less free vertices
than 7(, a contradiction. Thus, |7(| = 1 or Æ(�, 7() = �(�)

Claim 2.Claim 2.Claim 2.Claim 2. If Æ(�, 7() ≥ �(�), then|7(| = 1, �(��) = �(�) = 0,	Æ(�, 7() = 1 and
��(��) = �
(�).
 	
Proof.Proof.Proof.Proof. By claim 1, |7(| = 1 or Æ(�, 7() = �(�). Since Æ(�, 7() ≥ �(�), we have
|7(| = 1. Let 7 be the only path in 7(. By definition, 7 has one end vertex in the twin set of
��. Without loss of generality, assume that the path-start of 7 is in the twin set of ��. Consider
the following three cases:

 ([V%	1 The path-end of 7 is in ��. Clearly, Æ(�, 7() = �(�) = 0. A contradiction.
([V%	2 The path-end of 7 is in � but not in the twin set of �. It is easy to see that
Æ(�, 7() = �(�) = 1 in this case, a contradiction.

 ([V%	3 The path-end of 7 is in the twin set of �. In this case, Æ(�, 7() = 1 and
�(��) + �(�) = 0. By Lemma 8.1.14, |7(| = 1 = |��(7()| − |�(7()| + Æ(�, 7() and
hence = |��(7()| = |�(7()|. By assumption, ��(7() and �(7() are minimum-free-
number twin-set path covers of �� and �	respectively. By induction hypothesis of statement
(3), 	��(��) ≥ |��(7()| ≥ �
(��)	and	��(�) ≥ |�(7()| ≥ �
(�). By eq (eq.8)
��(��) ≥ �
(�). Assume, by contradiction, that ��(��) > �
(�). Then, there exist
minimum-free-number twin-set path covers 7(� and 7(of �� and �, respectively, such that
|7(�| − |7(| = 1. we then can construct from 7(� and 7(a new twin-set path cover of	�
without any free vertex, a contradiction. Therefore, ��(��) = �
(�)

Claim 3. Claim 3. Claim 3. Claim 3. If ��(��) = �
(�) and �(��) = �(�) = 0, then |7(| = 1 and Æ(�, 7() = 1.

43

 Proof. Proof. Proof. Proof. By induction hypothesis of statement 3),	��(��) ≥ |��(7()| ≥ �
(��)	and	��(�) ≥
|�(7()| ≥ �
(�). Since ��(��) = �
(�), we have |��(7()| ≤ |�(7()|. By Lemma
8.1.14, |��(7()| ≥ |�(7()|. Hence, |��(7()| = |�(7()|. By Lemma 8.1.14, |7(| =
|��(7()| − |�(7()| + Æ(�, 7(). Hence, |7(| = Æ(�, 7() = 1

Claim 4. Claim 4. Claim 4. Claim 4. ��(��) − �
(�) + Æ(�, 7() = P[�81, ��(��) − �
(�) + ��)9.

 Proof. Proof. Proof. Proof. By eqn (s.3.8), ��(��) − �
(�) ≥ �(��) ≥ 0. There are the following two cases:

 ([V%	1. ��(��) − �
(�) > 0. In this case, Æ(�, 7() = �(�) by claim 2. Thus,
��(��) − �
(�) + Æ(�, 7() = ��(��) − �
(�) + �(�) > 1.
([V%	2. ��(��) − �
(�) = 0. Since ��(��) − �
(�) ≥ �(��) and ��(��) = �
(�), we
have �(��) = 0. Suppose that �(�) ≠ 0. Then 	Æ(�, 7() = �(�) by Claim 2 and hence
��(��) − �
(�) + Æ(�, 7() = ��(��) − �
(�) + �(�) = �(�) ≥ 1. Thus, ��(��) −
�
(�) + Æ(�, 7() = �(�). On the other hand, suppose that �(�) = 0. By Claim 3,
|7(| 	= 	1 and Æ(�, 7() = 1. Hence, ��(��) − �
(�) + Æ(�, 7() = 1.

Claim 5. Claim 5. Claim 5. Claim 5. �(�) = �(��) + �(�)	if	��(��) − �
(�) > 0;	and	�(�) = P[�81, �(�)9

otherwise.

 Proof. Proof. Proof. Proof. By (eq.8), ��(��) − �
(�) ≥ �(��) ≥ 0. There are the following two cases:
([V%	1.	��(��) − �
(�) > 0. By Claim 2, Æ(�, 7() = �(�). By proposition 8.7,

Æ�(�, 7() = Æq�� , ��(7()r. Since	7(is a minimum-free-number twin-set path cover of	�

and ��(7() is a minimum-free-number twin-set path cover of ��, we have �(�) =
Æ(�, 7() = Æ�(�, 7() + Æ(�, 7() = Æq�� , ��(7()r + Æ(�, 7() = �(��) + �(�).

 ([V%	2. ��(��) − �
(�) = 0. in this case, �(��) = 0. By proposition 2.2

Æ�(�, 7() = Æq�� , ��(7()r. Since ��(7() is a minimum-free-number twin-set path cover of

��, we have Æq�� , ��(7()r = �(��) = 0. Hence, �(�) = Æ(�, 7() = Æ�(�, 7() +
Æ(�, 7() = Æ(�, 7(). Suppose �(�) ≠ 0. Then, Æ(�, 7() = �(�) by Claim 2.
Hence, �(�) = �(�). On the other hand, suppose that �(�) = 0. By Claim 3, we have
|7(| = 1 and Æ(�, 7() = 1. Hence, �(�) = Æ(�, 7() = 1.
By arguments given in the above two cases, �(�) = �(��) + �(�) if ��(��) − �
(�) > 0;
and �(�) = P[�81, �(�)9 if ��(��) − �
(�) = 0

Based upon the above claims, we prove statement (3) of Theorem 10 in case that	� is formed
from �� and �	by a pendant operation in the following.
(Only if part of ([V%	3) We now prove the only if part of statement (3) in case that	� is
formed from �� and �	by a pendant operation by showing that the following statement holds:
if	� has a minimum-free-number twin-set path cover of size 1, then
��(�) = 	P[�81, ��(��) − �
(�) + 	�(�)9 ≥ 1 ≥
P[�81, �(��) + �(�), �
(��)– ��(�) + �(�)9 = �
(�)
By statement (1), assume that	7(is a minimum-free-number twin-set path cover of	� of size 1
with ��(7()	 and �(7()	 are minimum-free-number twin-set path covers of �� and
�	respectively.By Lemma 8.1.14, we have

 |7(| = |��(7()| − |�(7()| + Æ(�, 7() (eq.9)

By induction hypothesis of statement (3) we have

 ��(��) ≥ |��(7()| ≥ �
(��) (eq.10)
 ��(�) ≥ |�(7()| ≥ �
(�) (eq.11)

44

Combining (eq.9) - (eq.11) we get

 ��(��) − �
(�) + Æ(�, 7() ≥ |7(| ≥ �
(��)– ��(�) + Æ(�, 7(). (eq.12)

Since Æ(�, 7() ≥ �(�), we have |7(| ≥ �
(��)– ��(�) + �(�). Clearly, |7(| ≥ 1 and

|7(| ≥ �(��) + �(�). Thus |7(| ≥ P[�81, �(��) + �(�), �
(��)– ��(�) + �(�)9.
By (eqn.12) and Claim 4, P[�81, ��(��) − �
(�) + �(�)9 ≥ |7(|. This proves the only if
part of statement (3) of Theorem 10 in case that	� is formed from �� and �	by a pendant
operation.
(If part of ([V%	3) We next prove the if part of statement (3) in case that	� is formed from ��

and �	by a pendant operation by showing that the following statement holds: if	� has a twin-
set path cover and ��(�) = P[�81, ��(��) − �
(�) + �(�)9 ≥ 1 ≥ P[�81, �(��) +
�(�), �
(��)– ��(�) + �(�)9 = �
(�), then	� has a minimum-free-number twin-set path
cover of size 1.
In the following, we prove that there exists a minimum-free-number twin-set path cover of	�

of size 1. By statement (4), ��(��) − �
(�) ≥ �(��) ≥ 0. Consider the following two cases:

 ([V%	1. ��(��) − �
(�) = 0 and �(�) = 0. In this case, �(��) = 0,

since ��(��) − �
(�) ≥ �(��). It is easy to see that

�
(��)– ��(�) ≤ ��(��) − �
(�) = �
(�)– ��(��) ≤ 	0.
Therefore, 	��(�) = 	�
(�) = 1 = 1. By induction hypothesis of statement (3), there exist
minimum-free-number twin-set path covers 7(� and 7(of �� and �	 respectively such that
|7(�| = ��(��)	and	|7(| 	= �
(�). Since �(��) = 0, we have Æ(�� , 7(�) = 0. Hence,
Æ(�� , 7(�) + Æ(� , 7() ≤ 2 and |7(�| − |7(| ≥ Æ(�� , 7(�). By Lemma 8.1.15, we can
construct from 7(� and 7(a twin set path cover	7(of	� of size 1 such that Æ(�, 7() = 1.
By Claim 5,	7(is a minimum-free-number twin-set path cover of �.
([V%	2. ��(��) − �
(�) > 0or �(�) > 0. clearly, ��(�) = ��(��) − �
(�) + �(�|) .
Since ��(��) − �
(�) ≥ 	�(�}) , we have

 ��(��) − �
(�) + �(�|) ≥ �(��) + �(�) (eq.13)

 Since ��(��) ≥ �
(��) and ��(�) ≥ �
(�), we have

 ��(��) − �
(�) + �(�|) ≥ �
(��)– ��(�) + �(�) (eq.14)

By (eq.1.3) and (eq.14), and ��(�) ≥ 1, we get ��(�) ≥ �
(�). Thus we have

 ��(��) − �
(�) + �(�|) ≥ 1 ≥ P[�81, �(��) + �(�), �
(��)– ��(�) + �(�|)9
 (eq.15)

Since ��(��) ≥ �
(��) and ��(�) ≥ �
(�), the following statement holds: for any
number 1, where

��(��) − �
(�) + �(�|) ≥ 1 ≥ P[�81, �(��) + �(�), �
(��)– ��(�) + �(�|)9, there
exist 1� and 1 such that��(��) ≥ 1� ≥ �
(��), ��(�) ≥ 1 ≥ �
(�), and 1 = 1� − 1 +
�(�). By induction hypothesis of statement (3), there exist minimum-free-number twin-set
path covers 7(� and 7(of �� and � of size 1� and 1 respectively. Clearly, 1� − 1 ≥
�(��). Furthermore, 1 = 1� − 1 ≥ 1 if �(�) = 0. Hence, �(�) ≠ 0 or 1� ≠ 1 . By
Lemma 8.1.15, we can construct from 7(� and 7(a twin-set path cover	7(of	� of size 1

45

such that Æ(�, 7() = �(��) + �(�). By Claim 5,	7(is a minimum-free-number twin-set
path cover of �.
By arguments given in the above two cases, the if part of statement (3) of theorem 10 holds
true in case that	� is formed from �� and �	by a pendant operation. This completes the
proof of statement (3).

Proof of statement (5) Proof of statement (5) Proof of statement (5) Proof of statement (5) By statement (4), both �� and �	have twin-set path covers, �(��) +
�(�) ≤ 2, and ��(��) − �
(�) ≥ �(��). Following Claim 5 in the proof of statement (3),
the statement holds true.

 Now that theorem 10 is proved, we shall proceed with showing how to decide whether a distance-
hereditary graph has a Hamiltonian path. To our help we shall present a couple of lemmas and a
corollary, and end up in theorem 11 that states an equivalence condition for the existence of a
Hamiltonian path in a distance-hereditary graph. This theorem is also fundamental and will be
proved.

 Lemma 8.17 (Hung and Chang p.434):

Assume	� is formed from �� and �	by a true-twin operation and �(��) + �(�) = 2.
Then,	� has a Hamiltonian path if and only if there exist minimum-free-number twin-set path
covers 7(� and 7(of �� and �, respectively, such that |7(| = |7(�| − �(��) + 1.

 Corollary 8.18 (Hung and Chang p.435):

Assume	� is formed from �� and � by a true-twin operation and �(��) + �(�) = 2.
Then,	� has a Hamiltonian path if and only if there exist minimum-free-number twin-set path
covers 7(� and 7(of �� and �, respectively, such that |7(�| = |7(| − �(�) + 1.

 Lemma 8.19 (Hung and Chang p.435):

Assume	� is formed from �� and �	by a true-twin operation and	� has a Hamiltonian path.
Let 7 be a Hamiltonian path of	� with maximum number of end vertices in the
twin set of	� and	7(= 879. Then, ��(7() and �(7() are minimum-free-number twin-set
path covers of �� and �	respectively.

8.1.4. Theorem 11

 Theorem 11 (Hung and Chang p.436):

Assume	� is formed from �� and �	by a true-twin operation. Then,	� has a Hamiltonian
path if and only if (1)	�(��) + �(�) ≤ 1 and �
(�) = 1 or (2) �(��) + �(�) = 2 and

P[�81, �
(��)– ��(�) + �(�), �
(�)– ��(��) + �(��)9 = 1.

8.1.5 Proof of theorem 11

 Proof (Hung and Chang pp.436-437):
Only if part: Suppose	� has a Hamiltonian path. We consider a Hamiltonian path 7 of	� with
maximum number of end vertices in the twin set of �. Let	7(= 879. By definition,	7(is a
twin set path cover of �. By lemma 8.19 ��(7() and �(7() are minimum-free-number twin-
set path covers of �� and �	respectively. There are two cases:
([V%	1. 7 has at least one end vertex in the twin set of �. Then,	7(is a twin-set path cover of
�. By theorem 9, �(�) = �(��) + �(�). By statement (3) of theorem 10, �(�) = �(��) +
�(�) ≤ 1 and �
(�) = 1.

([V%	2. Neither of the two end vertices of 7 is in the twin set of �. Since	Æq�� , ��(7()r =
	�(��))	and	Æq� , �(7()r = �(�), we have �(��) + �(�) = 2. By statement (3) of

46

theorem 10, we have

��(��) ≥ |��(7()| ≥ �
(��) (eq.16)
 ��(�) ≥ |�(7()| ≥ �
(�) (eq.17)

By lemma 8.17 |7(| = |7(�|– �(��) + 1. By (eq.16) and (eq.17),

1 = |�(7()|– |��(7()| + �(��) ≥ �
(�)– ��(��) + �(��). On the other hand, |7(�| =
|7(�| − �(�) + 1. By (eq.16) and (eq.17), 1 = |��(7()|– |�(7()| + �(�) ≥
�
(��)– ��(�) + �(�). Therefore, P[�81, �
(��)– ��(�) + �(�), �
(�)– ��(��) +
�(��) }=1.

 If part:
([V%	1. �(��) + �(�) ≤ 1 and �
(�) = 1. By definition, there exists a path cover of	� of
size 1. Hence,	� has a Hamiltonian path.

([V%	2. �(��) + �(�) = 2 and P[�81, �
(��)– ��(�) + �(�), �
(�)– ��(��) +
�(��) }=1. There are the following two subcases;

([V%	2.1. ��(��) ≥ ��(�). Since 1 ≥ �
(��)– ��(�) + �(�), ��(�)– �(�) + 1 ≥
�
(��). Suppose that ��(��) ≥ ��(�)– �(�) + 1. Let 1 = ��(�) and 1� =
1– �(�) + 1 ≥ �
(��). By statement (3) of theorem 10, there exist minimum-free-number
twin-set path covers 7(� and 7(of �� and �, respectively, such that
|7(�| = 1�	and	|7(| = 1. By corollary 8.18	� has a Hamiltonian path. On the other hand,

suppose that ��(�)–�(�) + 1 ≥ ��(��). Since ��(��) ≥ ��(�), we have �(�) = 0,

�(��) = 2, and ��(��) = ��(�). Since 1 ≥ �
(�)– ��(��) + �(��), ��(��) ≥ �
(�) +
�(��)– 1 ≥ �
(�) + 1.Let 1� = ��(��) and 1 = 1� − 1. Then, ��(�) > 1 ≥
�
(�). By statement (3) of theorem 10, there exist two twin-set path covers 7(� and 7(of
�� and �, respectively, such that |7(�| = 1�	and	|7(| = 1. By corollary 8.18,	� has a
Hamiltonian path.

([V%	2.1. ��(��) < ��(�). Since, 1 ≥ �
(�)– ��(��) + �(��), ��(��)– �(��) + 1 ≥
�
(�). Let 1� = ��(��) and 1 = 1� − �(��) − 1. Then ��(�) > 1 ≥ �
(�). By
theorem 10, there exist minimum-free-number twin-set path covers 7(� and 7(of �� and �,
respectively, such that |7(�| = 1�	and	|7(| = 1. By Lemma 8.17,	� has a Hamiltonian
path.

 By Theorems 9 and 10, we have a recursive program for computing �(�), ��(�) and �
(�)
in linear time using the decomposition tree J�(�) of a distance-hereditary graph �. By
theorem 11, whether	� has a Hamiltonian path can be determined in constant time if
�(��), �(�), ��(��), �
(��), ��(�) and �
(�) are given. Hence, we conclude the
following theorem:

 Theorem 12 (Hung and Chang p.437):

The Hamiltonian path problem on distance-hereditary graphs can be solved in L(P +)
time.

47

9 THE OTHER HAMILTONIAN PROBLEMS

 Hung and Chang show the reduction of the 2`7, 1`7 and Hamiltonian cycle problems on
distance-hereditary graphs to the Hamiltonian path problem on the same class of graphs. We present
the reduction techniques for	2`7 and 1`7 problems respectively the Hamiltonian cycle problems
(Hung and chang p.438):

9.1 The ÏÐ@ problem and the ÑÐ@ problem

To find a Hamiltonian path starting at vertex � and ending at vertex � is known as the 2`7
problem. Given a distance-hereditary graph � = (�, �) where �, � ∈ �, and the wish to solve
the 2`7 problem, the process is as follows: one add two pendant vertices �’ and �’ to � and �
respectively in order to obtain the distance hereditary graph �’ = (�’, �’) = (� ∪ 8�’, �’9, � ∪
8��’, ��’9). Now, � has a Hamiltonian path from � to � if and only if �’ has a Hamiltonian
path. Thus the 2`7 problem can be solved in linear time with this reduction technique.
Similarly one can reduce the 1`7 problem, which is to find a Hamiltonian path starting at
vertex �, by adding a pendant vertex �’ to �. � has a Hamiltonian path starting at �’ if and
only if �’ has a Hamiltonian path

9.2 The Hamiltonian cycle problem

In order to solve the Hamiltonian cycle problem on a given distance-hereditary graph
� = (�, �) one add a vertex �’ as a false twin to a vertex � in � to obtain �’, that is �(�’) =
�(�) in �’. Then � has a Hamiltonian cycle if and only if �’ has a Hamiltonian path starting
at vertex � and ending at vertex �’.

9.3 Theorem 13

Theorem 13 (Hung and Chang p.438):

The 1`7, 2`7 and Hamiltonian cycle problem on distance-hereditary graphs can be solved
in L(P +) time.

48

10 A SOLUTION TO THE HAMILTONIAN CYCLE PROBLEM

In this part we will give, as to knowledge of the author’s of this papers, a new idea regarding the
existence of Hamiltonian cycles in a graph �. We shall give a necessary and sufficient condition for
Hamiltonicity. This theorem is based on the introduced concept of 1-partitioning around a vertex in
a graph �. Before we prove the theorem we will give a lemma with proof. We also give an
algorithm, based on that condition, that give a “yes” or “no” answer to the problem of a graph’s
being Hamiltonian. Also one can find at least one Hamiltonian cycle if it exists.
 We will later on state a theorem on summation of cycles in a 1-partition of a graph, followed by a
few corollaries and a conjecture.

10.1 Ò-PARTITION AROUND A VERTEX

Definition 10.1: We say that a connected graph � = q�(�), �(�)r with	(|�(�)|, |�(�)|) = (,P)
is 1-partitioned around �# and that ��, … , �$ is a 1-partition of �,where degree)(�#) =) ≥ 2 and
1 =) − 1, if the following conditions are satisfied for some ordered 1-tuple of subgraphs
(��, … , �$) of � and some order ��, … , �$:� of �(�#):

1. ⋃ �(�*)
$
*Ô� = 	�(�)

2. �* ∩ �*:� = (8�#, �*:�9, 8�#�*:�9) for 1 ≤ I ≤ 1 − 1 when 1 ≥ 2
3. �(�*) ∩ �[�#] = 8�#, �*, �*:�9 for 1 ≤ I ≤ 1,	
4. �* ∩ �*:F = (8�#9, ∅) for 1 ≤ I ≤ 1 − 2 and some	C > 1 such that I + C ≤ 1, when

1 ≥ 3

Remark: each �* is not necessarily an induced subgraph of �.
Theorem 14: Assume ��, … , �$ is a 1-partition around �# in �. Then the following holds:
 = ∑*Ô�

$ |�*| − 1 + 1 − ∑*Ô�
$ ∑lÔ*:�

$ |�* ∩ �l| + q$
r (eq.10.1)

Proof: ∑*Ô�
$ |�*| sums the number of vertices in each subgraph. However, this means that �# is

counted 1 times, henc e the term (−	1), whence to have exactly one �# the term 1 is necessary.
Moreover, that sum also includes the number of vertices in pairwise intersections of the subgraphs
and hence the term −∑*Ô�

$ ∑lÔ�
$ |�* ∩ �l|, in which �# is counted, and therefore also subtracted, once

for every pair. Therefore the number of pairs,	q$
r, has to be added in order count �# exactly once.

10.1.1 Lemma 10.1

We shall give a lemma with proof. This lemma consists of two parts depending on the length of a
cycle (. In part (a) , |(| > 3 and in part (b) , |(| = 3, and is then used in the proof of theorem 15.

 Lemma 10.1(a): Suppose (, |(| > 3, is a chord-free cycle where �, �, W are vertices in (and
�[�] = 8�, �, W9, and consider a path 7 with vertex set � = 8�, �, W9. Then 7 is an induced subpath
of (with ordering 7 = W − � − �, � ∉ �(W), and there exists a chord-free path from W to � not
containing �.
Proof: Let 7 = � − W − � (or 7 = � − � − W)be a path in (. Since both �	and W ∈ �(�) there is a
chord �� in 7 and hence in (. But (is chord-free and therefore such 7 cannot exist in (. On the
other hand, if 7 = W − � − � is a subpath of the chord-free cycle (we have that there is no edge
�W, and hence there must be a path 7Ö× from � to W along (. Since (is chord-free, so is 7Ö×.
 Lemma 10.1(b): If (, |C| = 3, is a cycle where �, �, W are vertices in (and �[�] = 8�, �, W9, then
any order of the vertices �, �	and	W defines a path in (.
Proof: This is easily seen or verified by trying all cases.

49

10.2. THEOREM 15, A NECESSARY AND SUFFICIENT CONDITION FOR

HAMILTONICITY

The following theorem states a necessary and sufficient condition for a graph to be Hamiltonian.

10.2.1 Theorem 15

Theorem 15: Let �	 = 	 q�(�), �(�)r be a graph. Then the following three conditions are
equivalent:

1) �	 is Hamiltonian
2) ∀	�# ∈ �(�) there exists a 1-partition around �#, where each subgraph is a cycle.
3) ∃	�# ∈ �(�) such that there exists a 1-partition around �#, where each subgraph is a cycle.

We begin by proving that a Hamiltonian cycle implies a 1-partition where each part is a cycle, i.e.
that 1) ⇒ 2).

10.2.2 Proof of theorem 15

 Proof: Assume there is a Hamiltonian cycle	(in	�, and that)(�#) ≥ 2. Without loss of generality
we can let (= �#��…�"'��#.
 First consider the case when vertex �# has degree)(�#) = 2, hence 1 = 1. In this case the
Hamiltonian cycle (is trivially the only part in a 1-partition.
 Next assume that vertex �# has degree)(�#) =) = 1 + 1 ≥ 3. Let	�′ be a subgraph of � where
�e_(�#) = 8��, … , �¯9, where �� = ��, �¯ = �$:� = �"'� and �« = �*¬ where 1 < I« < ⋯ < − 1.
Consider �_ = (�, �(() ∪ 8M«9), [= 2,… ,) − 2 where the edges M« = 8�#�«9	are those indicent
to �# in � but not contained in (. Those edges are chords of (in �_.
The two neighbors of �# that (except �# itself) are the first respectively last vertices along the
closed path (are �� and �$:� in �_, i.e. �� and �"'�.
Let 7« be the path between �« and �«:�, [= 1, … ,) − 1. Hence we have 7�, … , 7̄ '�. We can thus
write (= �#��7��
7
��…�¯'
7̄ '
�¯'�7̄ '��¯�# with chords �#�* , I = 2,… ,) − 1. Hence
there are subcycles
(� = 8�#��7��
�#9, (
 = 8�#�
7
���#9, … , (¯'
 = 8�#�¯'�7̄ '
�¯'
�#9, 	(¯'� =
8�#�¯'
7̄ '��¯�#9 all of which are chord-free in �_ (but generally not in �).
 We shall here show that ((�, … , ($) is a 1-partition around �# in �, by checking the conditions of
the definition:
 Condition (1): We have that ⋃ �((*)

$Ô¯'�
*Ô� = 	�(�_) = �(�) and thus condition 1 is satisfied.

 Condition (2): Consider the intersection (* ∩ (*:� = 8�#�*7*�*:��#9 ∩ 8�#�*:�7*:��*:
�#9 =
(8�*:�,�#9, 8�*:��#9). This satisfies condition 2.
 Condition (3): Consider the intersection (* ∩ �[�#] = 8�#�*7*�*:��#9 ∩ 8�#, ��, … �$:�9 =
(�#, ��, �*:�)	since	I = 1, … , 1 + 1 =). This satisfies condition 3.
 Condition (4): Consider, for C > 1, the intersection
(* ∩ (*:F = 8�#�*7*�*:��#9 ∩ 8�#�*:F7*:F�*:F:��#9 = (8�#9, ∅). Condition 4 is thus satisfied and
this settles the if-part.
2) ⇒ 3) is trivial.

Next we prove 3) ⇒ 1), that is, if ��, … , �$ is a 1-partition of � and each �* is a cycle, then � is
Hamiltonian.
First consider the case when 1 = 1 . Then trivially �� is a Hamiltonian cycle in �.
Next let 1 ≥ 2.
Assume (�, (
, . . , ($ is a 1-partition around �# in � where each part is a cycle and �(�#) =

50

8��, �
, … , �$:�9. Then by definition we have ⋃ �((*)
$
Ô� = 	�(�) by condition 1, (∩ (*:� =

(8�#, �*:�9, 8�#�*:�9) by condition 2. By condition 3 we have (* ∩ �[�#] = 8�#, �* , �*:�9. By
condition 4 we have that (* ∩ (*:F = (8�#9, ∅) when C > 1. Without loss of generality we can
consider the subgraph �′ where (�, (
, . . , ($ are chord-free. Each cycle can be written
(*=�#�*��…�l�*:��#, 1 < o < |(*| − 3.
By condition 3 and lemma, we can start a walk at �# along (� first meeting �� at distance 1 from
�#, until we arrive at �
 by following the subpath 7Ø�Ø� = ����…�|ÙÚ|'��
 of (�, where 7Ø�Ø�
contains all vertices of (� but �#. From �
 we could, by condition 2, follow the edge �
�# to �#.
However, by condition 3 and lemma we can instead follow the subpath 7Ø�ØÛ of (
 and continue
from �
 and reach ��. Also by condition 4, this is the only choice if we do not walk back along (�
or return to �# through �
�# . Similarly when 1 ≥ 3: instead of returning to �# at each �* 	for	1 <
I ≤ 1, we can continue along every path 7ØÚØÚ �until we reach �$:� which is the last neighbor of �#.
We close the path into a cycle by returning to �# from the last vertex �$:� in ($.
Thus we have started at �#, walked through all vertices of (�, … , ($ (exactly once). Hence the 1-
partition has a Hamiltonian cycle, and since by assumption, ⋃ �((*)

$
*Ô� = 	�(�) there is a

Hamiltonian cycle in �.
 Moreover, by the arbitrary choice of �# we have shown that if there is a	1-partition around �# with
)(�#) ≥ 2 such that � has a Hamiltonian cycle, then there is a	1-partition around all vertices � with
)(�) ≥ 2 in � such that there is a Hamiltonian cycle. ∎

10.2.3. On the number of vertices and lengths of cycles

Theorem 16. Let (�, … , ($ be cycles. If (�, … , ($ is a 1-partition around �# of a graph � with
vertices, then

∑ |(*| − 2(1 − 1) = $
*Ô� (eq.10.2)

Proof: Induction on 1. ∎

Corollary 1. For a cycle (of maximum length in a 1-partition of a graph �, the following
condition holds: |(| ≤ −)(�#) + 2.

Proof: By letting all cycles but one be of shortest possible length, i.e. |(*| = 3 for 1 = 1,… , (1 −

1) we can write (eq.10.2) as 3(1 − 1) + |($| − 2(1 − 1) = ⇔ |($| = − (1 − 1) = −
()(�#) − 1 − 1) = −)(�#) + 2. ∎

Remark: this is a theoretical upper bound and lacks significance for large and small)(�#).
However, by a clever choice of �#	in some graphs the length of a longest cycle in a 1-partition can
be strictly less than −)(�#) + 2. The graph in figure 10.1 shows such a case. We have a 1-
partition around �# = �� with)(�#) = 6, 1 = 5, and (� = ��, C,], (
 = ��,], W, (� = ��, W, �, ��,
(u = ��, ��, �, � and (Ý = ��, �, �, V. We see that = 10,)(��) = 6 and hence −)(�#) + 2 =

6, but the longest cycle in the 1-partition around �� in � is of length four.

51

 � fig 10.1

Corollary 2. If a connected plane graph � on vertices with)Þ*" ≥ 2 satisfies the following two
conditions:(I) is odd,(II) every induced cycle in � is of even length, then � is not Hamiltonian.

Proof: since every induced cycle in � is of even length, so is any cycle in any 1-partition of cycles
of �. By theorem 4 the cycles sums up to an even number which is violated by condition 1. Hence
condition 1 and condition 2 are mutually exclusive in a plane Hamiltonian graph. ∎

Remark: the Herschel graph which is known to be non-hamiltonian has = 11 vertices whence
every induced cycle is of length 4.

Corollary 3. If there exist two induced cycles in � that have at least three vertices in common in a
plane graph � with)Þ*" ≥ 2, then � is not Hamiltonian.
Proof: If � is Hamiltonian then there exists a 1-partition of � where each part is a cycle. Then if
there exists two cycles (* and (*:� such that �((* ∩ (*:�) = 8�#, ��, … , �l , �*:�9 for some vertex
�$, 1 ≤ 1 ≤ o which is absurd in view of condition 2 of the definition of 1-partition ∎

Conjecture 1: Given a set of cycles (= 8(�, … , ($9. Then (is a 1-partition of a graph � with
vertices, and hence � is Hamiltonian if and only if

∑*Ô�
$ ∑lÔ*:�

$ |(* ∩ (l| =
($'�)($:�)

 (eq.10.3)

Putting (eq.10.1)=(eq.10.2), algebraic manipulations will yield (eq.10.3)

10.3 ALGORITHM CYCLE-Ò-PARTITION RECOGNITION

 This algorithm finds a 1-partition around �# of cycles in a graph �. In order to do so, we first need
to find a set of cycles starting from an arbitrary �#. By corollary 1 we need not find a cycle of
length greater than	 −)(�#) + 2, hence what we are looking for is all cycles starting at �# and has
length at most −)(�#) + 2. This is done by Algorithm SingleSourceCycleSearch(�l). Next we
need to match the cycles together in a number of combinations based on the definition of 1-partition
and some results given above. We do that in Algorithm “Match-k-cycles”.
 This algorithm is probably exponential in the worst case, but experience suggests that on small
graphs one can expect to find a solution in reasonable time. Moreover, there may be graphs with
particular qualities such that the algorithm runs efficiently. Such qualities could be for example
diameter and/or density under certain constraints or any other graph invariant with or without
constraints. This is subject to further research.

52

10.3.1 Algorithm SingleSourceCycleSearch(3�), SSCS(3�)

 This algorithm finds all paths between the neighbors 8��, … , �¯(=>)9 of a chosen vertex �#. In each
loop I, the algorithm finds every path from �* to �l, 1 ≤ I < o ≤)(�#) . When all paths from �* to
�l are found one do not want to find them again in backwards order. Therefore in the next loop,
where we search for paths from �*:� to �l one can reduce the graph at hand with �* (thus a fewer
number of computational steps is needed as each loop is completed). Any such path is easily seen to
be a subpath of a cycle starting and ending at �# since �* and �l are neighbors of �#.

X� = 8forbidden vertices through the I: Uℎ-loop, �# and �*9,
X
 = 8vertices already on the path9,Whenever a vertex is removed from X
 it is put back to its
origin.	�# = �(�#) = 8��, … , �¯>9 for some ordering of �(�#). �� = �(\(X� ∪ X
 ∪ �#), this
changes dynamically as vertices are moved in and out of X
. � = �� ∪ �#. � = 8	a tree rooted
at	�#9, whenever we write	�l:� ↦ � we mean that �l:� is added as a child of �l. }¯à = 8vertices on

distance)á from	�# in	�*9, �â
ã = ä�#, ��, … , �¯àå - the first � vertices of the �: Uℎ branch of �*, the

superscript index of �â
ã changes when a vertex is added to �â

ã. æ = 8the set of cycles found in
SSCSearch(�)9.

We use left arrows to assign a value [to a variable �, � ← [. We use right arrows from bar to
indicate that a variable � becomes an element in a set S, � ↦ S. Whenever we switch between
routines by “call subroutine” or “go to algorithm step x” the current routine, which we leave, is
stopped.

Input: � = (�, �)	with (|�|, |�|) = (,P), all vertices are labeled.
Output: all cycles in � starting from a vertex �# with degree)(�#) =)# ≥ 3 with length at most
 −) + 2.
1. Initialize

� ← 1; � ← 1; C ← 1;)á ← 1;	�â
¯à ← ∅; X�, X
 ← ∅;	�# ← ∅; �� = �\(X� ∪ X
 ∪ �#);

I ← 1;	}¯à ← ∅ for)á = (1,… . (−) + 2);
2. Choose any vertex � with degree)(�) ≥ 3 and �# ← �, order �(�#)	in an arbitrary order
8��, … , �¯>9 and 	�# ← 8��, … , �¯>9;
3. �# ↦ X�;
4. �* ← �#;
5. For I = 1,… , ()# − 1) Do

 Input =(�\∪è
é'� ��);		�# ← 8��, … , �¯>9\(∪è

é'� ��);
remove � s.t.)e\∪èéê�Øë(�) = 1 from �\∪è

é'� ��;
6. �* ↦ �* as a child of �#;

7. �#, �* ↦ �â
ã;

8. �* ↦ }¯à;
9. �* ↦ X�;	
10. �l ← �*;
11. If �(�l) ∩ � ≠ ∅ ;
 Choose � ∈ �(�l)|	� ∉ X

12. �l:� ← �;
13.)á ←)á + 1;
14. If)á = −) + 2 then
 Go to Backtrack(�, �);
 End If;

53

15. �l ↦ X
;
16. �l:� ↦ �*;

17. �l:� ↦ �â
ã;

18. �â
ã:� ← �â

ã;
19. If)á ≥ 2 then
20. If	�l:� ∈ �# Then
21. For all � ∈ }¯à ∩ X
|� ∉ �#	
22. Remove w from X
;
 End For;
 Else
23. For all � ∈ }¯à ∩ X

24. Remove	� from X
;

End for;
End If;

25. �l:� ↦ }¯à;
 EndIf
26. If �l:� ∈ �#

27. (F ← �â
ã;

28. (F ↦ æ;
29 C ← C + 1; �l:� ↦ X
;
30. Backtrack to �l;
31.)á ←)á − 1;
32. If �(�l) ∩ � ≠ ∅ Then
33. � = � + 1;

34. �â
ã ← �â'�

ã:�\8	� ∈ (∪ÞÔ¯à:�
"'¯:� }Þ)9;

EndIf
35. Go to SSCS (�l) step 11;
 End If
36. Else If �l:� ∈ �� then
37. o + 1 ← o;
38. Go to SSCS (�l) step 11;
 End If
39. Else If �q�lr ∩ � = ∅
40. If �l=�* Then
41. � ← � + 1;

42. �â
ã ← �#;

43. }¯à ← ∅,)á = (1,… . (−) + 2);
44. X
 ← ∅;
45. I ← I + 1;
46. Go to SSCS(�l) step 4;

End If
47. Go to Backtrack(�, �l);

End If
48. End For
End Algorithm SSCS(v)

54

10.3.1.1 Procedure Backtrack(�, 3�)
Backtrack(�, 3�);

1. �l'� ← 5áÚ(�l);
2. If �l'� = �# then
3. � ← � + 1;

4. �â
ã ← �#;

5. }¯à ← ∅,)á = (1,… . (−) + 2);
6. X
 ← ∅;
7. I ← I + 1;
8. Go to sscs(�) step 4;
 End If;
9.)á ←)á − 1;
10. For all � ∈ 8(}¯à:� ∪ }¯à:
) ∩ X
9; Do
11. If	� ∉ �áÚ(�l'�) Then
12. Remove � from X
;

End If;
 End For;
13. For all � ∈ 8MáÚq�l'�r9 Do
14. � ↦ X
; //vertices that were removed from X
 in step 20 or step 22 of sscs may be available in backtrack

 End For;
15. If �q�l'�r ∩ � ≠ ∅
16. � = � + 1;

17. �â
ã ← �â'�

ÖÔì«�í	�íîFï¯	*"¯ïÖ\(∪ÞÔ¯à:�
"'¯:� }Þ);

18. �l'� ↦ �â
ã;

19. o ← o − 1;
20. Go to SingleSourceCycleSearch(�l) step 11;

End if
21. ElseIf �q�l'�r ∩ � = ∅
22. o ← o − 1;
23. Go to Backtrack(�*, �l) step 1;

End If;

10.3.2 Algorithm Match-Ò-cycles

 When algorithm SSCS(�l) is done, there is a set of cycles 8�â
ã9 starting and ending at �#. We want

to test them for being parts of a 1-partition of �. The worst case is, when there is no further
information and, either when there is no Hamiltonian cycle in �, or when there exists exactly one –
which we find in the very last set of checked combinations of cycles. We will in those cases have
checked all combinations of 1	cycles among all � cycles and test each combination against the
definition of 1-partition. However, there are some “pruning” information to be obtained. By
theorem 4, there is a limit to which of the cycles we need to test together, namely 1 cycles,	(*, I =
1, … , 1, that sum up to	 + 2(1 − 1) under the constraint 3 ≤ (* ≤ −) + 2 (by corollary 1). For
instance, say that we have = 11, 1 = 3, then + 2(1 − 1) = 15. All partitions of 15 into three
parts are the following: (3,3,9), (3,4,8), (3,5,7), (3,6,6,), (4,4,7), (4,5,6), (5,5,5). Therefore, in that
case, we would want to test all triplets of cycles ((*� , (*� , (*Û) whose lengths matches the
partitioning of the number 15 into three parts against the definition of a 1-partition.
More generally stated in pseudo-pseudo code:
Input: (= 8Uℎ%	V%U	s�	MWM0%V	�s�)	I 	SS(S%[CMℎ(�)9

55

Output: A Hamiltonian cycle if and only if there is one
For all 1-tuples (|(*�|, . . , |(*?|) from the output of algorithm SSCS(�l), corresponding to a partition
of the number (−)(�#) + 2) into 1 parts,
Do Check each 1-tuples ((*� , . . , (*?) against the definition of 1-partition
 If the 1-tuple ((*� , . . , (*?) satisfies the conditions of 1-partition
 Then � is Hamiltonian and has a Hamiltonian cycle

("ò = �#�*�7*��*� , … , �*?7*?�*? ��# for 1 ≤ 5 ≤ �, � is the number of tested 1-

tuples ((*� , . . , (*?).

56

11 CONCLUSIONS AND DISCUSSION

 We have seen what distance-hereditary graphs are; what characterizes them and how they are
constructed. We have also seen how to solve the Hamiltonian problem, on this class of graphs, in
linear time using a linear program for computing “the constants of the J�(�)”. We have learned
that given those constants of a graph and its decomposition tree, we can solve the problem in
constant time. Moreover have we given a characterization of Hamiltonian graphs and presented an
algorithm that is based on that very characterization.

 The achievement of finding a linear-time algorithm for the Hamiltonian problem, albeit for a
special class of graphs, is both interesting and admirable. Not at least in the context of the vast and
rigorous theoretical foundation it relies on. Also, in view of the problem itself belonging to the
class of NP-complete problems one must appreciate that there is a solution in linear time at all.
Furthermore, in view of the algorithm presented in chapter 10, it is striking that the effort put in to
find and describe the theoretical foundation seems to stand in reversed proportion to the efficiency
of the algorithm. A lot of theory yields an efficient algorithm, not so much theory yields a much less
or even inefficient algorithm. It holds in this case anyway.

As to the theory of distance-hereditary graphs one could, as attempted in theorem 8, study the very
twin set. Outstanding questions regarding theory of Hamiltonian graphs as given in chapter 10, are
quite a few. Given the knowledge of this substructure, is there a way to give a meaningful recursive
definition of this class of graphs similarly to what is done with distance-hereditary graphs and
cographs for example. Can one use the summation rule of theorem 16 to define a (Abelian) group in
a meaningful way and why would that be of interest? Attempts have been made. By giving a
corresponding formula for the number of edges: ∑ |(*| − (1 − 1) = P$

*Ô� and consider condition 2
of the definition as a group operation denoted ⊕. Then for 1 = 2 it holds that for
��with	(|�|, |�|) = (�, P�) and �
with	(|�|, |�|) = (
, P
) it holds that �� ⊕�
 = (� +
 −

2,P� +P
 − 1). Since it is effectively addition of numbers the operation is commutative and
associative and there is an identity element (2, 1). So far so good, if one also think of the operation
of actually put two graphs together – which also is a graph and hence the closure condition holds.
However, this means trouble when we come to the inverse element: it is found to be	(4 − , 2 − P)
for any graph with (|�|, |�|) = (,P). For > 4,P > 2 we have a negative number of vertices
and edges. Could one define graphs in a meaningful way with such characteristics? Would group
theory be applicable or other fields of algebra. Far fetched,yes, but so must for example the finding
of quaternion algebra also have been…

Moreover, outstanding questions on cycle-1-partiton recognition algorithm are quite a few: does it
solve the problem for all instances of the problem? What exactly is the order of its time complexity?
What ways are there to refine the given one? Are there other search-algorithms of higher efficiency
given the knowledge of this substructure in Hamiltonian graphs? On which graphs does it perform
at its best? In average? What is the optimal choice of start vertex? Those are questions to be
answered.

57

 REFERENCES

Backelin and Timonen; Jörgen Backelin Supervisor, Meetings and discussions (2008-2013)

Bandelt and Mulder: H.J. Bandelt, H.M. Mulder, Distance-hereditary graphs. J. Combin. Theory Ser. B 41 (1986)
pp.182-208.

Chang et al.: M.S. Chang, S.Y. Hsieh, G.H. Chen: Dynamic Programming on Distance-Hereditary Graphs, Lecture
Notes in Computer Science, Vol. 1350, Springer, Berlin/New York, 1997, pp.344-353

Chuang-Chieh Lin: Joseph Chuang-Chieh Lin: Talk on Computation Theory Laboratory, Department of Computer
Science and Information Engineering, National Chung Cheng University, Taiwan. November 17, 2009 Supervisor:
Professor Maw-Shang Chang. The notes from the talk are available on the following web page:
http://idv.sinica.edu.tw/josephcclin/paper/cographs.pdf (2013-05-28)

Corneil et al.: D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (4)
(1985) 926-934.

Damiand et al.: G. Damiand, M. Habib, C. Paul: A simple paradigm for graph recognition: application to cographs and
distance-hereditary graphs, Theoretical Computer Science 263 (2001) pp. 99-111

Golumbic: Martin C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, First edition, Academic Press, New
York, 1980

Gould: Ronald J. Gould, Graph Theory, Benjamin/Cummings Publishing Co., Menlo Park, CA, 1988

Hammer and Maffray: P.L. Hammer, J. Maffray, Completely Separable graphs, Discrete Appl. Math. 27 (1990) pp.85-
99

Wolfram Mathworld: http://mathworld.wolfram.com/about/author.html, http://mathworld.wolfram.com/Cograph.html
(2013-05-28)

with subreferences:
• Brandstadt, A.; Le, V. B.; Spinrad, J. P. Graph Classes: A Survey. Philadelphia, PA: SI-

AM, 1999.

• Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. New York: Springer-Verlag, p. 435,
1989.

• Corneil, D. H.; Lerchs, H.; and Stewart Burlingham, L. "Complement Reducible
Graphs." Discr. Appl. Math. 3, 163-174, 1981.

• Sloane, N. J. A. Sequence A000084/M1207 in "The On-Line Encyclopedia of Integer Se-
quences."

• Weisstein, E. W. "Re: Cographs." Oct. 9,
2003a. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0310&L=graphnet&P=R743.

• Weisstein, E. W. "Cographs <=> Series-Parallel Networks." Oct. 23,
2003b. http://listserv.nodak.edu/scripts/wa.exe?A2=ind0310&L=graphnet&P=R1929

Wikipedia: Cographs http://en.wikipedia.org/w/index.php?title=Cograph&oldid=552342134

with subreferences:
• Jung, H. A. (1978), "On a class of posets and the corresponding comparability

graphs", Journal of Combinatorial Theory, Series B 24 (2): 125–133

• Corneil, D. G.; Lerchs, H.; Burlingham, L. Stewart (1981), "Complement reducible
graphs", Discrete Applied Mathematics 3 (3): 163–174,

• Sumner, D. P. (1974), "Dacey graphs", J. Austral. Math. Soc. 18 (04): 492–502

• Burlet, M.; Uhry, J. P. (1984), "Parity Graphs", Topics on Perfect Graphs, Annals of Dis-
crete Mathematics 21, pp. 253–277.

Wilf: Herbert S. Wilf, “Algorithms and Complexity”, internet edition 1994
 http://www.math.upenn.edu/~wilf/AlgComp3.html (2013-05-28)

58

 Appendix 1

A1.1 One-vertex-extensions

 We shall use the one-vertex-extension operations in order to construct a distance hereditary graph,
but first let us recall the set of rules for the operations:

Consider the induced subgraph �′ = (�′, �′) of � = (�′	¢8�9, �), and a vertex �′ in �′. If �′ were
extended to � by adding a new vertex � such that:

I) �(�) = 8�′9, we say that we were attaching a pendant vertex � to �′	and denote the
extension by �(7)�′

II) �(�) 	= �(�′), we say that �′ and � are false twins, and denote the extension by
�(X)�′

III) �[�] = �[�′], we say that �′ and	� are true twins, and denote the extension by
�(�)�′

 We start with !
(which by theorem 3.iv contains a pair of twins or a pendant vertex and hence
either �
(7)��or �
(�)��, the complete graph on two vertices �� and �
 and we shall employ the
one-vertex-extensions in the following (random) order: we begin with a false twin operation,
followed by a pendant operation and ending with another false twin operation.

 fig 1.1
To this graph we add the vertex v� as a false twin to v� (i.e. they have the common open
neighborhood)...

 fig 1.2
…followed by the addition of another pendant vertex vu to v
, thus v
 is its only neighbor…

 fig 1.3
… and we finish the construction of �� by adding, vÝ as a false twin to v
:

59

 �� fig 1.4
�� is a distance hereditary graph.

Next an example with the following order of operations, starting from K
:
True twin, pendant, false twin and finally another true twin operation.

We begin with !
on vertices �� and �
…

 fig 1.5

…and add u�being a true twin to u�…

 fig 1.6
…then make uu a pendant vertex attached to u�…

 fig 1.7
…followed by uÝ being a false twin to u�, having the same open neighborhood as u�…

 fig 1.8
…and we finish by attaching uö by at true twin to u�…

60

 �
 fig 1.9
..giving us �
, a distance hereditary graph.

Appendix 2

A2.1 One-vertex-extension tree

 We shall here use the definition and instruction given in section 7.2 to build a one-vertex-extension
tree for each of the graphs in fig 1.4 and fig 1.9 respectively.

Let v� be the root, and for 1 ≤ o < I ≤ 	 follow the one-vertex-extension ordering so that if a
vertex v÷ is one of	I7o, IXo and	I�o to vertex vø then it is a son to vø. Order the sons of a node as they
are ordered in the one-vertex-extension ordering. Let vø be a parent to v÷ in ��(�), j<i. We denote
by vøv÷ an edge in ��(�). We call it a 7-edge, or a �- respectively an X-edge if v÷ is a pendant
vertex attached to vø, or a true respectively a false twin to vø.
 If � is connected, then v�v
 is either a 7- or �-edge.

From the graphs above we have the respective one-vertex-extension orderings:
�(G�) = 8v�, . . , vÝ9 and �(G
) = 8u�, . . , uö9. We begun with !
 in both graphs and for �� we now
assume that �
(7)��, and in �
 that �
(�)��, giving us the respective lists of “words”, or pruning
sequences in reverse: �
(7)��, ��(X)��, �u(7)�
and �Ý(X)�
 respectively �
(�)��, ��(�)��,
�u(7)��, �Ý(X)�� and �ö(�)��. Thus we have the following one-vertex-extension trees, T�
respectively T
, associated with the graphs G� and G
 respectively. We mark the edges with 7, � or
X depending on what relation the son has to it’s parent.

�� �

fig 2.1 fig 2.2

A2.2 Twin Set

We see that in �� (fig 2.1) only �� can be reach from the root v� (which is always in the twin set)
through a (false) twin edge and thus the twin set of ��, �S(G�) = 8��, ��9. In �
 (fig 2.2) we have

61

that all vertices but �u can be reached from u1 through twin edges and thus �S(G
) =
8��, �
, ��, �Ý, �ö9.

Appendix 3

In this appendix we shall use the new recursive definition of distance-hereditary graphs in order to
construct one from two other ones – namely those given in fig 1.4 and fig 1.9 of appendix 1.

A3.1 Construction of a distance-hereditary graph from two other ones
Consider the graphs given in appendix 1, �� and �
. Recall the set of operations used to form a
distance-hereditary graph from two other ones given in section 7.5.1:
1) A graph consisting of a single vertex is a distance-hereditary graph with the twin set {v}.
2) If , �� and � are distance-hereditary graphs then the union � of �� and � is a distance-
hereditary graph and �S(�) = �S(��) 	∪ 	�S(�). Then � is formed from �� and � by a false-
twin operation. This is denoted � = ��(X)�.
3) If �� and � are distance-hereditary graphs, then the graph � obtained from �� and �by
connecting every vertex of �S(��)	 to all vertices of �S(�) is a distance-hereditary graph and
�S(�) = �S(��) 	∪ 	�S(�). We say that � is formed from �� and �by a true-twin operation.
This is denoted � = ��(�)�.
4) If �� and �are distance-hereditary graphs, then the graph G, obtained from �� and � by
connecting every vertex of �S(��)	 to all vertices of �S(�)	 is a distance-hereditary graph and
�S(�) = 	�S(�). In this case we say that	� is formed by a pendant operation. This is denoted
� = ��(7)� .

 Now, let �� and �
 be �� and �. We make the nodes in each graph who are not in their respective
twin sets slightly darker.

�� = �� �
 = �

 fig 3.1 fig 3.2

We shall employ the twin set operation on �� and �
 to form �, a distance hereditary graph.
Since � = ��(�)� we attach every vertex in �S(��)	 to every vertex in �S(�) and �S(�) =
�S(��) 	∪ 	�S(�), seen in the figures as the vertices not shadowed.

62

� = ��(�)� fig 3.3

Appendix 4

A4.1 Determining whether � is distance-hereditary or not

Given � above, we “know” that it is a distance hereditary graph since it is constructed from two
other ones. Despite our knowledge about the graph, we shall work through all the algorithms from
determining wether it is distance-hereditary or not, to the one where we solve the Hamiltonian
problem on that graph.

 First we employ the algorithm “Prune dhg(G). Our input is the graph � = (�, �) with adjacency
matrix	{

v1 v2 v3 v4 v5 u1 u2 u3 u4 u5 u6

v1 1 1 1 1 1 1 1

v2 1 1 1

v3 1 1 1 1 1 1 1

v4 1 1

v5 1 1 1

u1 1 1 1 1 1 1

u2 1 1 1 1 1 1

u3 1 1 1 1 1 1

u4 1 1

u5 1 1 1 1 1 1

u6 1 1 1 1 1 1

 fig 4.1

We begin by computing the distance layouts from starting vertex ��. Thus }� is the neighborhood of
��: }� = 8�
, �Ý, ��, �
, �Ý, �ö9, }
 	= {��, �u, �u}.
Set o�1, I�2
The connected components of �(}
) are the three graphs on one vertex, namely ��, �uand �u.
There will be no cograph-pruning on one vertex graphs (they are cographs thouhg), contracted they
are already so we sort the vertices of �(}
) by increasing inner degree, I)(�):	I)(��) = 7, I)(�u) =
2, I)(�u) = 2.
 None have inner degree 1 so we go to next if-statement, checking that I ≠ 1	(I = 2) so that for
each � in}
 taken in increasing inner degree we employ the prune-cograph algorithm

63

We set	� = �u. Checking the graph on �u’s neighbors in }�: �[��(�)] = �[��(�u)] is the
disconnected graph on two vertices, namely �Ý and ��.

 �[��(�u)] fig 4.2

 Prune-cograph algorithm on	� = (8�Ý,��9, 8ø9) yields:
Compute cotree �	of �. We need algorithm cograph-recognition(�):
First we create a new (1)	 s)%,	|.
Since[�Ý,��] is not in �(�), create a new	(0)	 s)%	�, and add � as a child of | and we add �� and
�Ý as children of �. Then there are no vertices to iteartively incorporate into �.

The cotree � of the cograph �[��(�u)]:

cotree � fig 4.3

We now let Α be the set of nodes of � having only leaves as descendants, Α = 8�9
Now Α ≠ ∅ so we pick an arbitrary node � in	Α, that is the only element �, of Α. We also pick an
arbitrary son � of �, ��. For each son W ≠ � one wants to find their relation, false or true twins. �
is a (0)	 s)%, so we set û(1) ��Ý, V� = �ÝX��.
o�o + 1 = 1 + 1 = 2.	
Replacing � by � and loop once more, we replace | by	� = �� and return �� which is the last
vertex of the pruning sequence. We contract ��(�u) into �� and we set û(2)��4, V
 = �u7��.
Now the distance layouts are }� = 8�
, �Ý, ��, �
, ��, �Ý, �ö9, }
 = 8��, �u, �u9.

Next we look at � = 	�u.		�[��(�)] = �[��(�u)] is the disconnected graph on two vertices, �
 and
�Ý. In the same way as above we have that	û(3)��Ý, 	V� = �Ý(X)�
, û(4)��u, Vu =	�u(7)�
.
Now the distance layouts are }� = 8�
, �Ý, ��, �
, ��, �Ý, �ö9, }
 = 8��, �u, �u9 .

Now the only remaining vertex in}
 is � = ��. Note that �Ý and �Ý were in ��(��), but they were
deleted from the graph when contracting ��(�u) and ��(�u) above, and hence now I)(��) =
	|��(��)| = 5.

Thus � = ��.
The graph �∗ = �[(��(��)] is the disconnected graph on five vertices:

 fig 4.4

64

 We employ prune-cograph(�∗, o = 5) and start with cograph-recognition (�∗) to compute a cotree
� of �∗:
Initialization with �
 and �
 gives us the cotree �∗

�∗ fig 4.5

1) We add �� into �∗
2.1We call procedure {[C1(�) where � = ��.

Mark(u�)

 Begin by marking all leaves adjacent to x = u�: we mark u
.
Round 1 Step 1, we unmark u
 since d(u
) = md(u
) = 0. md(u
) is already 0

 Step 2, u
 ≠ R so we mark w = N which is the parent of u�.
 Step 3, we set md(N) = md(N) + 1 = 1

Round 2 step 2 ∄v: md(v) = d(v)
 End
 There is a marked vertex and d(R) = 1 so we mark R

End Mark.

The following table and tree is obtained, the stars in the tree indicates that the vertex has been
marked, and brackets around stars indicates that the veretx has been unmarked. See fig4.6 below.

 Table 1, markings

 Fig 4.6

 Now, we are back in cograph-recognition(�∗):
Neither all nodes, nor no nodes were marked and unmarked so we jump to step 2.4 and call FIND-
LOWEST, F-L.
We make a few notes: we have that P)(|) =)(|) − 1, hence | is properly marked. W is a
marked (0)-node	�. Also, we set up a table to keep track of identities of vertices �, W, |, �	and	U.
The information is used in step 2 of F-L.

1) Initialization: W�Λ (nil value). We note that | is marked, thus we might have a cograph.
However,	P)(|) =)(|) − 1 so we unmark R, set md(|) to 0 (if needed) and set � = � =
|. End.

 �
 �
 � |

)(�) 0 0 2 1

mark | |

unmark |

P)(�) |

65

Table 2, identities after initialization of F-L.
 � W | � U

1 Λ

1.1 � = | Λ R

We choose � since this is the only marked vertex left after initialization of F-L where we unmarked
|. We note that W = � and hence � might be a cograph. Label � is 0 so we
do	W��, U�parent(�) = |. We unmark � and set md(�)=0. The table of identities now looks as
follows:

Table 3, identities at end of each step
 � W | � U

2 � Λ

2.1 � = | Λ |

2.3 � = | � | |

 2.2) is skipped since U = � = |.
 2.3) set ���, |��

End step 2
END FIND-LOWEST.

 Again, back in cograph-recognition(�∗) we perform step 2.5. � = 8�
9, � = 8��}, label � is 0. �

in � is a leaf so we add a new 1-node in place of �
 and make �
 and �� (the veretx we were about
to add to � when we begun the cograph-recognition algorithm) children of this node. We thus end
up with the following cotree:

Fig 4.7

Iteratively incorporating �� and �ö as above we will end up with the cotree having
�
, ��, �
, ��	and	�ö as leaves, where �
 is the child of �, all others are children of �
 as follows:

 fig 4.8

 Now we have found out that the graph �∗ = �[(��(� = ��)] is a cograph. We started with prune-
dhg(�), who calls prune-cg(�) which in turn calls cograph-recognition(�) with subroutines

66

{[C1(�) and Find-Lowest. Cograph recognition returns a cotree iff � is a cograph. The cograph is
also a distance-hereditary graph. Prune-cograph yields a pruning-sequence, which we are about to
find now:

	� = 8�
9, we choose � = ��.
Now looping through choosing each son W ≠ �� of �
 we get the following.
�
 is a 1-node.
W = �ö, û(5) = �ö, 	VÝ = �ö���.	
W = ��, û(6) = ��, 	Vö = �����.	
W = �
, û(7) = �
, 	V� = �
���.

 We replace �
 by � = �� which gives us the cotree with | as a root, � (a 0-node) as an internal
node with �
 and u1 as its only children. We thus add � to �.

 We choose �, and we choose � = �
.
The only son W ≠ �
 of N is �� and since � is a 0-node we have	û(8) = ��, V� = ��(X)�
.
Replacing	� by �
 yields a cotree with 	| as the root and �
 as its only child. There is no son
W ≠ �
 and thus no more words to the pruning sequence is produced in the loop. We replace	| by
�
 in �. Now �
 is the root so we return �
 as the last vertex of the pruning sequence.

End cograph-recognition.

We are now back in Prune-dhg(G) in step 2.1.1 and we have from above that W��u. We contract
�∗ into �u. Now the distance layouts are }� = 8�
, �Ý, ��, �
, ��, �Ý, �ö9, }
 = 8��, �u, �u9 . The
only connected component of }
 is the vertex ��. It has inner degree 1 so we let y��
 the only
neigbor of ��. û(9) = ��, 	V� = ��(7)�
.
Now also �� is deleted from the distance layouts, leaving only �
 in }�and ��, the starting vertex, as
the remaining vertices. �
 has inner degree 1.
We let	� = �
 and W = ��, its only neighbor and û(10) = �
, 	V�# = �
(7)��
We’re done!

 The pruning sequence, i.e. the order in which the vertices are added using one of pendant-, true
twin- or false twin-operation, is the following (note that the algorithm yields the sequence in
backwards so that the word labelled	V�# is the starting operation, followed by 	V� and so on):
�
7��, ��7�
, ��X�
, �
���, �����, �ö���, �u7�
, �ÝX�
, �u7��, �ÝX��.

Let us try to recreate the graph we started with:
 �
7�� ��7�
 ��X�

Fig4.9 fig 4.10 fig 4.11

67

�
��� �����

 fig 4.12 fig 4.13

 �ö��� �u7�

fig 4.14 fig 4.15

 �ÝX�

fig 4.16

�u7�� fig 4.17

 �ÝX�� fig 4.18

68

The ”new” graph,	�∗, emanating from our pruning-sequence, see fig 4.19 below;

�∗

 fig 4.19

The original graph � (fig 3.3) on which we employed thealgorithm prune-dhg(�):

 �

 fig 4.20
It is easlisy seen that hey are isomorphic by comparing their respective adjacency matrixes.

 The one-vertex-extention tree ��(�∗) of the graph �∗ (fig 4.21) is given by the prining sequence.
We see that the twin set of �∗ consists of the vertex �� only.
 ��(�∗)

 fig 4.21

A4.2 The Decomposition Tree

In the following, we let �∗ = �. Given the one-vertex-extension tree we construct the
decomposition tree, J�(�), of � by letting the root be a vertex labeled by the type of edge from the

69

root of ��(�) to its first child, here the edge �
�� is a 7-edge. We find that �(1,2) =
��	and	�(2) = �[�
] i.e. �
and all of its descendants. Thus � = ��(7)�=�[1,2](7)�[2] =
��(7)�[�
]. The twin set of � is the twin set of ��;	�S(�) = �S(��) = �S(�[1,2]) = ��. The
Decomposition tree J�(�) of � now consists of a root labeled 7 and its two children, J�(��) and
J�(�) being �� and �[�
] respectively.

J�(�) = ��(7)�

 fig 4.22

Next, consider ��(�[2]) = ��(�(�)):

 ��(�[2]) = ��(�(�))

 fig 4.23

We have that �(�)(2) = ��, �(�)

[1,2] = �(�)\8��9 and the type of edge from the root to its first
child, i.e. the type of edge �
��, is 7. We thus conclude that the subgraph �(�)of � is formed from
�(�)

�	and �(�)
 by a pendant operation, where �(�)

� = 	�(�)
[1,2] = �(�)\8��9 = �(
) and

�(�)
 = �(�)[2] = ��. The decomposition tree,	J�(�), now consists of a root labeled P, with two

children, �� and a node labeled P. The latter have two children, �� and �(�)[2]. 	�Sq�(�)r =
�Sq�(�)

�r = 	�S(�(�)
[1,2]) = �S(�(
)).

J�(�) fig 4.24

We proceed with ��(�
): fig 4.25

70

 We have that �(
)(2) = �[��] = 8�� and all of its desecendants}, �(
)
[1,2] = 8�
, �u, �Ý9 and

the type of edge from the root to its first child, i.e. the type of edge �
��, is X. We thus conclude
that the subgraph �(
)of � is formed from �(
)

�	and �(
)
 by a false twin operation, where

�(
)
� = �(
)

[1,2] (i.e. the graph with vertex-set 8�
, �u, �Ý9) and �(
)
 = �(
)[2] = �[��] (i.e.

the graph on the set of vertices consisting of �� and all of its descendants). The decomposition
tree,	J�(�), now consists of a root labeled P, with two children, �� and a node labeled P. The latter
have two children, a node labeled X and ��. The node labeled X have two children: �(
)

� =
	�(
)

[1,2] and and �(
)
 = �(
)[2] = �[��] . We have that �Sq�(
)r = �Sq�(
)

�r ∪
	�S(�(
)

[1,2]).

 J�(�)

 fig 4.26
 Working our way through the subgraphs �(
)

[1,2] and �(
)[2] in this manner we eventually end
up with the following decomposition tree J�(�) of the distance hereditary graph �, see fig 4.27
below:

J�(�)

 fig 4.27

71

A4.2.1 The Constants of the Decomposition Tree

Theorem 9 and theorem 10 yields a recursive program for computing the maximum and the
minimum cardinalities, ��(�) and �
(�) respectively, of the minimum-free-number twin-set path
covers (mfn-tspc) of G and the free number �(�) in linear time using the decomposition tree of our
distance-hereditary graph, �, if � has a twin-set path cover. These constants are used in theorem
11 to state necessary and sufficient conditions for a distance-hereditary graph � to have a
Hamiltonian Path.

 We shall consider the label of each internal node of J�(�) as stating the type of operation used to
form a distance hereditary graph from two other ones, namely the children of each internal node,
where a child being an internal node represents a subgraph on at least two vertices, and a child
being a leaf in	J�(�) is a subgraph on one node.
Note that in this section, vertices in the twin set of a graph are shadowed (as opposed to appendix
3).

The following table is used to keep track of events: table 4.1

I – the level of
internal nodes
in DT(G) where
level 1 is max
distance from
the root.

�
The
distance-
hereditary
graph at
hand (in the
rows)

∃	UV5M:”there exists
 a twin-set path
cover”

��(�)
maximum
cardinality
of mfn-
tspc of �

�
(�)
minimum
cardinality
of mfn-
tspc of �

�(�)
Free
number
of tspc
of �

�S(�)
The
twin
set of
�

�� The left
graph

“there exists a twin-
set
 path cover” is True
or False for ��

� The right
graph

“there exists a twin-
set
 path cover” is True
 or False for �

�(*)

= ��(∙)�

Type of
operation,
(∙) =
7, �	or	X,
used to form
�(*) from
�� and �.

“there exists a twin-
set
path cover” is True
 or False for �(*)

 We begin at level 1 of J�(�) and consider �� and �Ý as being two graphs used to form a distance-

hereditary graph �(�) using false-twin operation.

72

table 4.2
1 � ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �� True

(��itself)

0

by

definition

1

by definition

1

by definition

��

� �Ý True

(�Ý

itself)

0 by

definition

1

by definition

1

by definition

�Ý

�(�) ��(X)� True by

thm 9

0

by thm 9.2

2

by thm 10.1

2

by thm 10.3.a

�� ∪ �Ý

 �(�) fig 4.28

table 4.3
2 � ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �(�) True 0 2 2 �S(�(1))
� �u True

0 1 1 �u

�(
) ��(7)� True

by thm

10.4;

a)∃	UV5M of 	
�� and �

b)�(��) +
�(�) ≤ 2

c)�
(��) −
��(�) ≥
�(�)

0

by thm 10.5;

since

�
(��) −
��(�) >
0	we

have	�(�) =
�(�}) + �(�|)

1

by thm

10.3.c

1

by thm

10.3.c

�S(�(1))

 �(
) fig 4.29

Table 4.4
3 � ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �(
) True 0 1 1 �S(�(2))
� �ö True

0 1 1 �ö

�(�) ��(�)� True by

thm 9.1

0

by thm 10.2

2 by thm

10.3.b

1 by

thm10.3.

b

�S(�(2)) ∪	�ö

73

�(�) fig 4.30

Table 4.5 a
4a ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �Ý True

0

1

1

�Ý

� �
 True

0 1 1 �

�(u«) ��(X)� True 0 2 2 �
 ∪ �Ý

Table 4.5 b
4 b � ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �(�) True 0 2 1 �S(�(3))
� �� True

0 1 1 ��

�(u) ��(�)� True

0 3 1 �S(�(3)) ∪	��

 �(u«) �(u)

 fig 4.31

Table 4.6 a
5a � ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �(u«) True 0 2 2 �S(�(4[))
� �u True

0 1 1 �u

�(Ý«) ��(7)� True

0

1 1

�S(�(4[))

74

Table 4.6b
5b � ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �(u) True 0 3 1 �S(�(4�))
� �
 True

0 1 1 �

�(Ý) ��(�)� True

0

4 1

�S(�(4[)) ∪ �

�(Ý«) �(Ý)

fig 4.32

Table 4.7
6 � ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �(Ý«) True 0 1 1 �S(�(5[))
� �(Ý) True

0 4 1 �S(�(5�))

�(ö) ��(X)� True

0

5 2

�S(�(5[)) ∪ �S(�(5�))

�(ö)

fig 4.33

Table 4.8
7 � ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �(ö) True 0 5 2 �S(�(6))
� �� True

0 1 1 ��

�(�) ��(7)� True

0

4 1

�S(�(6))

75

�(�)

 fig 4.34

Table 4.9
8 � ∃	UV5M �(�) ��(�) �
(�) �S(�)

�� �� True

0 1 1 ��

� �(�) True 0 4 1

�S(�(7))

�(�) ��(7)� True

1

1 1

��

 �(�)

 fig 4.35.

Now by theorem 9 and theorem 10 we have recursively computed ��(�) = 1, �
(�) = 1, �(��) =
0 and �(�) = 0. By theorem 11 we have that �(�) has a Hamiltonian path if and only if:
 either
(1) �(��) + �(�) ≤ 1 and �
(�) = 1, or

(2) �(��) + �(�) = 2 and max81, �
(��) − ��(�) + �(�), �
(�) − ��(��) + �(��)9 = 1.

We have that (1) is true, and hence the distance-hereditary graph �(�) has a Hamiltonian path
(which is easily confirmed by visual inspection!).

76

Appendix 5

 In this section we shall give an example of an instance of the cycle-1-partition recognition. We
shall also give examples on the outcome from cycle-1-partition recognition on other instances.
 In this first example, we shall work with the graph � of figure 5.1. We keep track of events in table
5.1 and in table 5.2. In table 5.1 columns give the status of each parameter after each time we
process algorithms step 11. We get there either after a new I-loop starts or when we are instructed to
go there. Lined throuhg signs, like W, in the table is supposed to describe the dynamics, a vertex is
lined through when moved from a set.
 We will also grow trees accordingly to the proceedings and the paths found in the algorithm

SSCS(�l) as we also keep track of the paths we discover in sets �â
ã. This is for visualization

purpose.

 � fig. 5.1

 We initialize and in step 1 we set a value to parameters, and sets are assigned the empty set as its
only element. In initialization step 2 we choose the vertex C to be our �# and �(�#) = 8�, V, U, �9 is
set to 8��, �
, ��, �u9 and we set �# = 8��, �
, ��, �u9 . Also, in step 4, we root the first tree �� at
�#, and add the vertex �� as a child of �#. We have thus a new labeling of the graph �, and a tree
rooted at �# (see figure 5.2).

�: ��:

 fig 5.2.

77

Table 5.1
Loop

I
initializati

on

I = 1 I = 1 I = 1 I = 1 I = 1 I = 1 I
=

I = 1

Numb

er of

re-

startso

f (step

11)

 CV = 1 CV = 2 CV = 3 CV = 4 CV = 5 CV = 6 CV
=

7 backtrack

to �#

� 1 1 2 2 2, 3 3 4

C 1 1 2 2 3 3 4

)á 1 2 3, 2, 3 4 ,3 4 5,4 4,3,2,1

� 1 2 2 3 4,3 4 5

X� �#,	�� �#,	�� �#,	�� �#,	�� �#,	�� �#,	�� �#,	�� �#
,

��

�#,	��

X
], �u], �u], W, ��], W, ��	 �, W,], �
 �, W,], �
,

	�
,	��,	�u

	�# ��, �
, ��, �u �
, ��, �u �
, ��, �u �
, ��, �u �
, ��, �u �
, ��, �u �
, ��, �u �
, ��, �u,

�
, ��,	�u

�� �, W,] �, W,] �, W,] �, W,] �, W,] �, W,] �, W,] �, W,],	�, W

�â
ã

 ��� =
8�#, ��9

��

= 8�#, ��

,]9

��� = 8�#, ��,
],�49

�

= 8�#, ��,]9

�
�

= 8�#, ��,
], W9

�
u =

8�#, ��,
], W,�39
���

= 8�#, ��,
], W9

��u =

8�#, ��,
], W, �9

��Ý =

8�#, ��,
], W, �, �
9
�uu

= 8�#, ��,
], W, �9

æ (� = ��
� (

= �
u
 (�

= ��
Ý

�l'�

in/out

�l

in/out

�� �� /]]/z] / W W /	W W /	
�

�/�

�l:�] �u W �� � �

Table 5.2 Vertices at distance)á from �# in ��
)á = 1)á = 2)á = 3)á = 4)á = 5

}¯à ��] �u,W ��	,� �

 Note that when we say “move � to S” we actually mean “create a copy of � and insert in S”
When all values in the initialization steps 1-10 is done, we begin with the subroutine first iteration
at step 11. We have �l = �� and �q�lr ∩ � =] ≠ ∅, so we have but one choice of �. Step 12
�l:� ← � =]. We set)á ←)á + 1 = 2 in step 13. A check in step 14: if we have come as far
away from �# as the length of a longest cycle in a 1-partition we start backtracking since we need
not cycles of greater length, this is not the case now since −) + 2 = 8 − 4 + 2 = 6. Step 15-17,
we move �� to X
 Set “flexible” set of forbidden vertices, expand the tree by adding the vertex] as a
child of �� in �� and at the end of ���. We are still in the same branch of �� so we change only the

superscript of �â
ã; �âÔ�

ãÔ
 ← �âÔ�
ãÔ�. We have gone far enough by the if-statement in step19 and] does

not belong to �#, but }¯à = }
 is empty so there is nothing to remove in step 22 or 24. Thus we
insert] into }
 at step 25. Again,] does not belong to �# so we skip the steps 27-35. We note that
] ∈ �� and switch index from o + 1 to o, thus having �l =] instead of �l:� =] and �l = �� after

78

step 37 (hence “outgoing” �l =]). Next, step 38 throws us back to step 11 with ingoing �l =].
The tree �� now looks as follows in fig 5.3.
 ��

 fig 5.3

This is the second time we are in step 11. We move on from step 11 with �l =]. As it happens we
choose � = �u between �u and W, �l:� ← � = �u;)á ← 3, (skip step 14), move] to X
, add �u to
�� as a child of] and to ��
 which we index to ��
 and we’re done to step 18. Now, in step 20-22,
�u ∈ �#so we remove from }¯à = }� all vertices that are in both }� and X
 but are not in �# (This
is of importance when backtracking). But }� is empty so nothing happens. We insert �u in }� at step
25.

Now in step 26-29, again since �u ∈ �#, we set (F ← �â
ã i.e. (� = 8�#, ��,], �u9 and store (� in æ.

We increase cycle index C ← C + 1 = 2 and move �u to X
. Step 30-31 says we backtrack to �l =]
and decrease)á ←)á − 1=3-1=2. Now in step 32, we check if there are any available vertices to
explore in the neighborhood of]: there is the vertex W so we do create a new branch in �� by
increasing the branch index � = � + 1 = 2 in step 33 and in step 34 we remove all vertices on
further distance from �# in the tree from the current branch. This is preparations for extending the
branch. Now, we go back to step 11 again. See column VC = 2 for the current sate of the algorithm
before we start at step 11 a third time. Note that �l =] and the vertex W has not been explored. The
tree �� now looks as follows in fig 5.4.

 �� fig 5.4

 Third time at SSCS(]) step 11. Step 11-13, W is the only available vertex, thus �l:� ← W and
)á ←)á + 1=3. Skip 14. Step 15-18:We move] to X
 (is already there) and add �l:� = W	 as a

child of] in �� and insert W in �â
ã whose superindex increases. Step 19,23 and 24 yields the

removal of �u from X
 (in case there is a path thereto from W). We insert W into }� by step 25. The
steps 26-35 are skipped, instead we set �l:� = W to �l = W and again, we go back to step 11. The
column CV = 3 gives the state of the algorithm before processing from step 11 a fourth time.	�� now
looks as in figure 5.5.

�� fig 5.5

Fourth time att sscs(�l = y) step 11-13; �(W) = 8�, �39. We choose �� and set �l:� = ��,)á = 4.

Skip step 14. W is inserted in X
 at step 15, �� is added as a child of W in �� and inserted in �â
ã for

which we change indices. Hence we have come to step 19:)á = 4 ≥ 2, perform step 20 since
�� ∈ �#. }u is empty so there will be no removal from X
. Next step 25: ��	is inserted into }u. Steps 26-
34: store the cycle just found and increase cycle index, insert ��	into X
 backtrack to W and decrease)á

by 1 to)á = 3 and remove vertices of greater distance then 3 from the root in �� from �â
ã, and

index �â
ã as a new branch. Step 35: go to step 11.

79

 �� fig 5.6

Step 11 a fifth time! �l = W, �l:� = �,)á = 4, we add W to X
, we add � as a child of W in �� and
insert	� into ��u. Step 19, 23 and 24; we remove ��	from X
	. insert � into }u. Skip 26-35.Set new
index for �l:� = � to �l = �, go to step 11.

 �� fig 5.7

Step 11 once again: �l = �, �l:� = �
,)á = 5, we add � to X
, we add �
 as a child of � in �� and
insert	�
 into ��u which is set to ��

Ý. Step 19-22: nothing since }Ý is empty. Insert �
 to }Ý. Steps

26-31: �
 ∈ �#, we store �â
ã as a cycle (�, increase C to C = 4, insert : �
 into X
. Backtrack to

�l = �, decrease)á	to)á = 4. Step 32: �(�) ∩ � ≠ ∅ is false so we go to step 11. first we have a
glance at �� in fig 5.8.

�� fig 5.8

Step 11, seventh time, �l = �. �(�) ∩ � = ∅. Therefore we do not enter the if-statement at step 12,
but instead go to step 39. Now, this time, �l ≠ �l so we go straight to step 47 wher we are directed
to Backtrack(�, �l).

Backtrack (��, �).
Step 1, the parent of � in �� is set to �l'�, thus �l'� = W. We jump to step 9 where)á ←)á − 1 =
3. Now, step 10 -12, check if there are vertices in X
 that also are on the same level in the tree as the
children and grandchildren of W but not themselves being neither children nor parents of W. If there
are such vertices, remove them from X
: we are backtracking through the tree now, and there may
be vertices left in the forbidden set from the process of growing the tree. Thus, we remove �
 from
X
.
 Next move, step 13-14: all children of W are made unavailable so that we do not branch off to them
again. We thus insert �� into X
 again. We check if there are any possibilities of growing a new
branch from this state in step 15: there is not, so we jump to step 21 and set �l = W and go to step 1
of Backtrack(�*, �l) with parameters �* = �� and �l = W.

Through the backtracking procedure we want to grow a new branch if and only if there is a uniquely
new branch to grow – therefore, at each state where we can branch off, we make sure that all
vertices in the neighborhood of �l'� in �* are in X
. Otherwise we would get stuck in an eternal
loop. We also make sure that vertices that are not explored in the current branch are made available
– step 11 of Backtrack(�*, �l).

80

We continue the procedure: Backtrack(��, W) step 1: the parent of W in �� is], so we set �l'� =].
We jump to step 9 and set)á = 2. Step 10-12: All vertices in }� and }u that are also in X
 but are
not neighbors of] in ��, that is �� and �, are removed from X
. Step 13-14: make sure that both W and
�u is in X
 – we thus insert �u in X
. There are no available neighbors of] in � so we set �l =],
and go to
 Backtrack(��,]) step 1: �l'� = ��, step 9)á = 1. Step 10-12: we remove �u and W from X
. All
children of �� in �� are inserted into X
 in step 13-14. Step 15-20 are skipped. We set �l = �� and
go to step 1 of Backtrack(�*, �l).
Now, step 1 of Backtrack(��, ��): �l'� = �#. Step 2-8: we prepare for next I-loop by increasing �
since next branch will necessarily be unique starting with �#�
 in a whole new tree. We start

building branches from the beginning �â
ã ← �#, we empty all }¯à ’s since they will have different

elements when building the next tree. We empty X
 because we want to have all vertices available
from the start (except �#), and finally I ← I + 1 = 2. Then we go to step 4 of SSCS(�l). In table 5.1
is now the state of the algorithm just before preforming step 2-8.

Now that we are in step 4 of SSCS(�l) the following happens: We root a new tree �* = �
 since
I = 2. Step 5: we remove all previously used neighbors of �# which in this instance and state of the
algorithm is equivalent to ��. Also, �� is removed from �#. As it may happen, when we delete a
neighbor �* of �#, a vertex � ∈ �e(�*) can end up with)e\8ØÚ9(�) = 1. The point is that we do not
want unnecessary information as input into the algorithm. Now, for the second loop, we thus have
the following input graph �(
) = �\8�*9
�(
)

fig 5.9

Moreover, �
 will grow as follows in fig 5.10 below.

 fig 5.10

In the third, and final loop, we will have the following input graph �(�) = �\8��, 	�
9 in which �
will have degree one and is thus removed. We thus end up with �(�_) = �\8��, �
, �9 which will be
the actual input graph in the third loop,see figure 5.11.

81

�(�) = �\8��, 	�
9 �(�_) = �\8��, �
, �9 fig 5.11

The tree �� will grow as follows:

fig 5.12

 The set of cycles found in this particular instance of the Hamiltonian cycle problem is the
following: æ = 8(�, (
, (�, (u, (Ý, (ö9 where (� = �#��]�u, (
 = �#��]W��, and (� = �#��]W��

were found in the first loop, (u = �#�
�W�� and (Ý = �#�
�W]�u is to be found in loop two and
(ö = �#��W]�u will be found in the third and last loop. The absolute values of each cycle is:
|(�| = 4, |(
| = 5, |(�| = 6, |(u| = 5, |(Ý| = 6, |(ö| = 4
 We want to match the cycles in the proper combination to find out whether � is Hamiltonian or not,
i.e. which, if there are any, combinations of cycles in	æ satisfies the conditions of being a 1-
partition.
Note here that the enumeration of cycles in æ is not the enumeration of the cycles in the k-partition.
We have by theorem 16 that ∑ |(*| = $

Ô� + 2(1 − 1). Here we want Î(�Î + Î(*�Î + Î	(*ÛÎ = 8 +
2(3 − 1) = 12. Partitioning of 12 into 3 parts where the smallest is of size 3 yields the following
triples: (3,3,6), (3,4,5), (4,4,6). With our set of cycles only the last partitioning is possible to match.
This is done with the combinations (�, (�, (ö or (�, (Ý, (ö. The vertex set of the intersection
�((� ∩ (�) = 8�#	, ��,]9 violates both condition 2 and 3 of the definition since it should be either
only 8�#9 or 8�#, �*9 for some �* ∈ �(�#). Likewise does �((� ∩ (Ý) = 8�#, �u,]9. Hence our
graph is not Hamiltonian.

Consider the sum ∑*Ô�

$ ∑l�*,l�*
$ |(* ∩ (l|. We have |(� ∩ (�|+|(� ∩ (ö| + |(� ∩ (ö| = 3 + 3 + 3 =

9. We also have |(� ∩ (Ý|+|(� ∩ (ö| + |(Ý ∩ (ö| = 3 + 3 + 4 = 10. We have 1 = 3 and thus
($'�)($:�)

=
∗Ý

= 5. None of the combinations of cycles satisfy the summation condition of

conjecture 1, and hence none is a 1-partition and therefore � is not Hamiltonian.

Now, consider the graph �′, which is the graph �with two new edges: ��� and ���u (the number of
vertices is the same as in �, as well as the neighborhood of �#).

82

�′ fig 5.13

 We claim without proof, that the algorithm yields three additional (to the ones found in �) cycles
in the first loop, and one additional in the third loop. In the second loop there are no additional
cycles since there are no new neighbors of �
 or any of its neighbors in � − ��, also no cycle
starting with �#�
 will contain the edge between �� and �u since the algorithm backtracks when
hitting any �*.
 The additional cycles from loop 1 are enumerated starting from 7 here in the example, which is
incorrect in the sense that the algorithm enumerates the cycles in the order it finds them. Those
found in loop 1 would have indices from 1 to 6. The new cycles coming from loop I = 1 are the
following: (� = �#����
, (� = �#���W��, (� = �#���W]�u and the additional one from the third
loop is (�# = �#���u.

 Now we have |(�| = 4, |(
| = 5, |(�| = 6, |(u| = 5, |(Ý| = 6, |(ö| = 4, |(�| = 4, |(�| = 5,
|(�| = 6 and , |(�#| = 3. There is a possibility to match (3,4,5) and (4,4,6). We check the
combination (
 = �#��]W��, (� = �#����
 and (�# = �#���u which in terms of absolute values
matches the partition (3,4,5) of the number 12. (
 ∩ (� = (8�#, ��9, 8�#��9), (
 ∩ (�# =
(8�#, ��9, 8�#��9) which is fine so far. This requires that (� and (�# has only the vertex �# in
common – which is easily verified. Thus conditions 2 and 4 are satisfied. Next we check �((
) ∩
�[�#] = 8�#, ��, ��9 , �((�) ∩ �[�#] = 8�#, ��, �
9, �((�#) ∩ �[�#] = 8�#, ��, �u9. Condition 3 is
satisfied. Now, finally we look at the union of the vertex sets (condition 1): 8�#, ��,], W, ��9 ∪
8�#, ��, �, �
9 ∪ 8�#, ��, �u9 = 8�#, ��, �
, ��, �u, �, W,]9 = �(�). Thus all conditions of the
definition of 1-partition are satisfied, and hence �′ is Hamiltonian. We can also determine a
Hamiltonian cycle that is constituted by this partition. Since (
 has an edge in common with both
(� and (�#, we cannot start our walk along (
. We start at �# and walk along (� until we meet the
common vertex of (� and (
 which is ��. Next we continue our walk along (
 until we meet the
common vertex of (
 and (�# which is ��. We complete our walk along (�#, first to �u and we
close the walk into a cycle by a final step from �u to �#. Thus, a Hamiltonian path (in � has the
following sequence of vertices: (= �#�
���]W���u�#, see fig 5.14 where we also give the 3-
partition around �# in �′, (′ = ((′�, (′
, (′�) where (′� = (�, ′(
 = (
 and (′� = (�#

 � (′ = ((′�, (′
, (′�) fig 5.14

83

Also we have |(� ∩ (
|+|(� ∩ (�#| + |(
 ∩ (�#| = 2 + 1 + 2 = 5 and
($'�)($:�)

=
∗Ý

= 5. By

conjecture 1 this implies that (
, (� and (�# constitutes a 1-partition and hence �′ is Hamiltonian.

