SJALVSTANDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

The class of distance-hereditary graphs, the Hamiltonian problems
and a linear time algorithm

av

Mattias Timonen

2013 - No 15

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

The class of distance-hereditary graphs, the Hamiltonian
problems and a linear time algorithm

Mattias Timonen

Sjalvstindigt arbete i matematik 30 hogskolepoing, Grundniva
Handledare: Jorgen Backelin

2013

Abstract

This paper deals with graphs and graph algortitamsolving the Hamiltonian Problems. We
consider the class of distance-herditary gragrsyhich there exist linear time algorithms
for determining whether a given distance-hereditaaph is Hamiltonian or not. We present
such an algorithm. We also give a new idea on xitence of Hamiltonian cycle in graphs

that are not trivially non-hamiltonian. We give agorithm, based on this new idea, for
solving the Hamiltonian Problem on graphs with maxm degree gerater than one. Each
algorithm is exemplified.

Sammanfattning

Denna uppsats behandlar grafer och grafalgoritomariéser hamiltonproblemen. Vi beaktar
klassen av distans-hereditara grafer, for vilkafiheis linjartidsalgortimer som avgoér om en
given distans-hereditar graf ar hamiltonsk ellée.ivi presenterar en sadan algoritm. Vi ger
ocksa en ny infallsvinkel pa existensen av hamilylder i grafer som inte ar trivialt icke-
hamiltonska. Vi visar en algoritm som baseras péndaya infallsvinkel som Ioser
hamiltonproblemen péa grafer vars maximala nodgremistiger ett. Varje algoritm
exemplifieras.

Acknowledgments

I would like to thank my supervisor Jorgen Baakédr his dedication throughout the
process of writing this paper.

CONTENTS

. INTRODUCTION 1

. GRAPH THEORETICAL BASICS

21. DEFINITIONSAND NOTATION 3

. PROBLEMS, ALGORITHMSAND COMPLEXITY
31. PROBLEMS

3.L1. Decision problem et nenens 2

3.1.2. Instanceof aproblem 5
3.2. ALGORITHMSCOMPLEXITY AND EFFICIENCY

B2L AIGOrItNMS e seeeeeseene 5

3.2.2. Complexity and efficiency 6

3.23. Pand NP 6

. DISTANCE-HEREDITARY GRAPHS

AL DEFINITION e 7
4.2. CONSTRUCTION OF A DISTANCE-HEREDITARY
GRAPH
42.1. Onevertexextensons 7
4.3. MORE ABOUT DISTANCE-HEREDITARY GRAPHS
431 TheoremsL2and3 ... 8
432. Proofof theorem® 8
433. Proofoftheorem3_ 10
434, Theorem 5with preliminaries_ 12
435. Proofoftheoremb_____ 13
. COGRAPHS
51. DEFINITION AND FEATURES OF COGRAPHS 16

. DETERMINING WHETHER A GRAPH ISDISTANCE-

HEREDITARY OR NOT
6.1. RECOGNITIONALGORITHMS

6.1.1. Distance hereditary-graph recognition algorithm 17
6.1.1.1. Algorithm 1, Prune-dhg(G)..................oorrrererre. 18
6.1.1.2. Algorithm 2, Prune-cograph(G,j).................coooouu..c..... 19
6.1.1.3. Timinganalysisof prune-dhg and prune-cograph__ 19

6.1.2. Cograph- recognition algorithm_______ 20

6.1.2.1. Cograph-Recognition(G) 20

6.1.2.2. Procedure MARK(x)

6.1.2.3. Theorem7
6.1.2.4. Proof of theorem 7
6.1.25. Function FIND-LOWEST

6.1.2.6.

21
22

22

23

7. FORMATION OF A DISTANCE-HEREDITARY GRAPH
FROM TWO OF THAT KIND

7.1.
7.2.

7.3.
7.4.
7.5.

7.6.
1.7.

8.1.

9.1
9.2
9.3.

Timing analysis of MARK (x) and FIND-LOWEST 24

ONE-VERTEX EXTENSION ORDERING ... 26
ONE-VERTEX EXTENSION TREE, ET(G)
7.2.1. Construction of ET(G) ... 26
7.2.2. Featuresof theET(G). ... 26
TWIN-SET e seee e see e e sena 27
A FEW LEMMASWITH PROOFS . .., 27
FROM OLD TO NEW DEFINITION OF DISTANCE-
HEREDITARY GRAPHS e 31
THE DECOMPOSITION TREE, DT(G) ..o 32
A TWIN-SET THEOREM WITH PROOF ... 33
8. ASOLUTIONTO THE HAMILTONIAN PATH-
PROBLEM ON DISTANCE-HEREDITARY GRAPHS
Prer@qUISItES oo eeeeseeeseseees e eee s seneens 34
8.1L.1. Theorem OWith proof . ..o 35
812 TheoremM 10, .o seeeeeeeseens 37
8.1.3. Proof of theorem 10, . ..o 37
8LA. TheOreM 1L e eneeeens 45
8.1.5. Proof of theorem 11 . e 45
816. ThEOreM 12 e eee 46
9. THEOTHER HAMILTONIAN PROBLEMS
The 2HP problem and the IHP problem 47
TheHamiltonian cycleproblem 47
TREOTEM L3 e eeeeee e eeeesee e eeees a7
10.A SOLUTION TO THE HAMILTONIAN CYCLE
PROBLEM ON GRAPHSWITH d,,;, = 2
10.1. k-PARTITIONAROUND AVERTEX s 48
10.1.1. Lemma 48
10.2. THEOREM 15. A NECESSARY AND SUFFICIENT
CONDITION FORHAMILTONICITY o 49
10.2.1. Theorem 15 49

10.2.2. Proof of theorem 15 49

10.2.3. On thenumber of vertices and lengths of cycles 50

10.3. ALGORITHM CYCLE-k-PARTITION RECOGNITION 51

10.3.1. Algorithm SingleSour ceCycleSearch(v;), SSCS(vj) 52
10.3.1.1. ProcedureBacktrack(T, vj)............cccoovomrererererererrnnnee. o4
10.3.2. Algorithm Match-k-cycles ..., 54
11. CONCLUSION AND DISCUSSION, oo 56
REFERENCES et sses s 57
APPENDICES
APPENGIX L. eeeeeeeeessssssss e eessssssssssssssss e eesneee 58
Al.1l. One-vertex-extension
APPENGIX 2. eeeeeeeeessessss e eesssssssssssssss e sesseee 60
A2.1. One-vertex-extension tree
A2.2 Twin Set
APPENGIX 3. eeeeeeeeesssesssss e sssssssssssssas e seeneee 61

A3.1 Construction of a distance-heredtiary graph from two other ones

Appendix 4. 62

A4.1 Determining whether G isdistance-hereditary or not
A4.2. The Decomposition Tree
A4.2.1 The Constants of the Decomposition Tree
Appendix 5. 75

A5.1 Cycle-k-partition recognition

A persistent theme i graph theory has been a desire to determine, in
some reasonable sense, which graphs have Hamiltonian circuits and
which have not, 1.e, we want necessary and sufficient conditions for a
graph to have a Hamiltonian circuit. Of course, such necessary and
suthcient conditions must be of a psychologically satistactory kind, and
we should not, for example, want a theorem which merely said, perhaps
m a shghtly disguised form, that a graph has a Hamiltonian circuit if and
only if 1t has a Hamiltonian circuit. ... Crispin Nash-Williams (1975)

1. INTRODUCTION

The Hamiltonian problems include the Hamiltoniathpy Hamiltonian cycle, the 1HP and 2HP
problems. The first two are to determine whetherdtexist a Hamiltonian path respectively cycle
in a given graph, and find it if it exists. The 1HBpectively 2HP is to determine whether there
exists a Hamiltonian path starting at a ventexespectively starting at a vertexand ending at a
vertexw and find such paths if they exist. These problamswell known to be NP-complete for
general graphs. Thus, for general graphs therésaxtsknown deterministic algorithms that run in
linear time for solving any of these problems. Thist have inspired mathematicians and computer
scientists to study special classes of graphsdamdlop algorithms applicable on them (Hung and
Chang for example that are referred to in this pafg®me of them do indeed solve the
Hamiltonian problem in linear time. The author lostpaper was inspired to study Hamiltonian
graphs in order to find out what (not trivially)stinguishes them from others. This led to the
contents of section 10.

The aim of this paper is to gain some insightedsaving a graph problem and design an
algorithm that solves that problem. We shall presdmear-time algorithm for the Hamiltonian
problems on distance-hereditary graphs and itg¢tieal foundation. These insights should be of
help as we also aim to uniquely characterize Hamigin graphs and describe an algorithm based
on this characterization, or theoretical foundatfane wants. We show this algorithm’s being
correct for one instance of the Hamiltonian cyalegtem.

Given a distance-hereditary graph and the tagkdoout whether it has a Hamiltonian path or
cycle, there are essentially three stages oneochasrk through. The first stage is to determine a
pruning sequence, which is found by a linear tilgerithm. Secondly one needs the so called
decomposition tree, and we shall see how it istcoa®d with the aid of the pruning sequence, also
in linear time. The decomposition tree is finalged in a recursive program to find the numbers
K1(G),k,(G), f(GL), f(Gr) in linear time for the distance-hereditary graphatd. That is the last
stage, and once those numbers are computed fetade-hereditary graph one easily (in constant
time, actually) can determine whether it is Hanmiém or not. Each stage in the procedure, and
each step, will be explained and performed on t@alce-hereditary graph.

Moreover, we are going to see how distance-hemgdgraphs are defined, what characterizes them
and also how they can be constructed in two somieghfiarent ways. One, the older definition, is
based on adding one new vertex at the time umiagertex-extensions, and in the new recursive
definition, one forms a distance-hereditary grajimftwo pairs. Each such pair is a distance-
hereditary graph together with its twin-set. lofdnterest to see the connection, or the leap,
between the old, original way if one wants, andribe way to construct a distance-hereditary
graph. This connection is essentially the so calleetvertex-extension treET (G), and the
information it provides about the structure of diste-hereditary graphs.

The structure of this paper is such that in sac®ieve state assumptions and recall basic defirstio
from graph theory, whilst some specialties willdefined in addition to their appearance in the.text
The idea is that, when reading, these not so stdrodencepts will be close at hand. Section 3 deals
briefly with concepts from computer science althotigs paper is a mathematical one. Therefore
we shall remind ourselves about some basic confepisthat area such as: "problem”,

"algorithm” and "complexity”. In section 4 we detloroughly with the class of distance-hereditary
graphs. First they will be defined of course, tinpresent the "old” way of constructing distance
hereditary graphs usirane-vertex-extensions, followed by a few theorems and proofs. In secfon
we define cographs. Section 6 is devoted to therighgn that is used to determine whether a graph
is distance-hereditary or not. We present a digtdnereditary graph recognition algorithm. In
Section 7 we present the “new” definition of distethereditary graphs by presenting the concept
of one-vertex-extension ordering, on which both the above mentiongaining sequence and the
one-vertex-extension tree relies. The one-vertex-extension tree is the fatiod of the concept of

1

twin-set which is an essential part of the new definitiordistance hereditary graphs. We give
proofs of a number of lemmas dealing with the oedex extension tree. Having done that we are
ready for the new recursive definition of distahegeditary graphs. We then present the
decomposition tree, used in the program presented in next sectionid@e8tis devoted to the
lemmas and theorems that leads to the progranmi@ing «, (G), x,(G) andf(G) in order to
determine whether the distance-hereditary grapiaadl has a Hamiltonian path or not. Section 9
deals briefly with the extension of the solutiorttoid Hamiltonian path problem to 1HP, 2HP and
the Hamiltonian cycle problems. In Section 10 wérte a way to partition graphs, and present a
necessary and sufficient condition for Hamiltoryigit general graphs based on that partition. It is
followed by a few corollaries. We present an alidpon (non-linear though) for solving the
Hamiltonian Cycle problem on general graphs basethe N&S-condition.

2. GRAPH THEORETICAL
BASICS

2.1. Definitions and Notation

We assume that the reader is familiar with thecephof graphs in terms of vertices (or nodes) and
edges. All graphs in this text are non-empty, sevgid finite. Below will be stated a few necessary
graph theoretical concepts that will be used ia tékt, or needed to explain others.

G = (V,E): denotes a graph with vertex $etind edge sdi. Vertices are denoted by small letters
u,v 0rvy, v, An edge between two, thus adjacent, verticasdv is denoted byv. The size
or cardinality of a graphg|, is equal to number of vertices@n
E(A, B) : a set of edges between verticegliand vertices ifB, whereA andB are sets of vertices.
Chord: achord is an edge that joins two vertices of a cycleg(@ath) but is not an edge of the
cycle (or the path) itself.

Clique: aclique of a graphg, is its maximal complete subgraphf
Closed neighborhood: the closed neighborhood, N[x], of a vertexv, is the neigbourhood of and
v itself.

Cograph: complement-reducible graph See section 5
Complete graph: a graph in which all vertices are pairwise adjaceoalled scomplete graph and
the complete graph anvertices is denoted L¥j,.

Connected graph: a graph is said to mnnected if there is a path between any two vertice§ in

Cycle: if vy = vy in a pathvyeyvyey... ex—1Vk ,then the path is @ycle. A chord-free cycleis an
induced cycle in a graph. We often denote a cyglgsbvertex sequence and wride= vyv; ... vy

Diameter: the greatest distance between two vertices is calledthe diameter of G.

Distance: thedistance d(u, v) of two vertices inG is the length of a shortest path framio v in G.
The distance between two vertices in different congmts of a disconnected graph is infinite.

Distance layout: all verticesv;, in G, such thatl (u, v;) = d.

Finite graph: if the number of vertices in a graghs finite, then we say that tlgeaph isfinite.
Else it is infinite.

Induced subgraph: if ' < G andG’ contains every edgev of E with u,v € V', thenG' is an
induced subgraph @. We letG[V'] denote theinduced subgraph.

Inner face: a bounded region in a plane graph, see Diestéttbmicalities.

Join of graphs: the joinG = G’ + G” of two graphgz’ andG” with disjoint vertex setg” andl/”
respectively and edge sétsandE” respectively is the union of tl® andG” together with all
edges joining”’ andV”.

Length of a cycle: thelength of a cycle is the number of edges or the numbeedifces as they
are the same.

Length of a path: thelength, [(u, v) of a pathvyeqv;e; ... ex_1vk ISk, 1.€. the number of edges.

Long cycle: if the length of a cycle is at ledstthen we say that it islang cycle.

Neighborhood: theneighborhood, N (v), of a vertex is the set of vertices that are adjatethe
vertexv.

Parent(v): if, in a rooted tree with roat, and an edgev, it holds thatd (v, v) = d(vy, u) + 1
then we say that is theparent of v in T and we denote p(v). If d(vy,v) = d(vy,u) +1inT we
say thatu is anancestor of v in T.

Path: apath is a non-empty graph = (V, E) of the formV = {v,, vy, ..., V4 },

E = {vyvy, v1Vy, ..., Vk_1 Vi }. We can leg; = v;v;,, and thus writéf = {ey, ey, ..., €2, €x—1}- IN

a path allv; are distinct, ale; are distinct andy,andv, are called end vertices. A path is usually
denoted byP. We can writeP = vyegvi€; ... ex_1Vx OF P = vyvq, ., Uy, P =19 — v — - — 1
whence the edges are implicit in the latter caslse, we can denote a path with start ventgand
end vertexy;, in an intuitive manner by,Pv; or P,

oVk*

3

Path cover: apath cover of a graphG is a set of disjoint paths such that they togetoatain all
the vertices of;.

P,: a path on four vertices, i.e. of lendgth

Plane graph: a graph drawn in the plane such that no edges.dfos technicalities, see Diestel.
Root: sometimes it is convenient to consider one verfextree as special; such a vertex is then
called theroot of this tree. A tree with a root israoted tree. Choosing a roae, in a tree imposes a
partial ordering oV (T) by lettingr < h, if v, is on a patlvyeyv, e, ... ep_1v, Of the tree.
Subgraph: asubgraph ¢' = (V',E"), denoted:’ € G, is a graph for which’ < V andE’ C E.
Stable Set: astable set of vertices is a set of vertices that are pairmise-adjacent.

Tree: a connected graph that has no cycles is caltestand is usually, and here, denoféd
Union of graphs: the unionG = G’ U G” of two graphgs’ andG” with disjoint vertex setg’ and

V” respectively and edge sétsandE” respectively is the graph with vertex set” U V”’and edge
SetE’ U E”

Domino, Gem and House: Three forbidden subgraphs in a distance-heredgayh.

Diomine Jem Housze

3. PROBLEMS, ALGORITHMSAND COMPLEXITY
3.1. PROBLEMS
3.1.1. Problems, Decision Problem and Solution to the Problem

A decision problem in the sense that is used hasenothing to do with human ambivalence before
choosing “between a rock and a hard place”, buighi#e a precise meaning which we will learn
just after we have learned what a problem is, (@dbic p.23):

A problem consists of two things: a question to be answered, and a solution to be found.

If the question has a "yes” or "no” answer then the problem is a decision problem.

The solution can be a requirement to be fulfilled, a best possible situation or a structure to be

found.
A decision problem may be: "can the vertices gfaph be orderef,, ..., v,) so thaty; andv;,,
are adjacent iif for1 < i <n—1?", or it may be this: "can the vertices of a grégghordered in
some way(vy, ..., V), SO that forl <i < n — 1we have that; andv;,, are adjacent, and we also
have thaty,, andv, are adjacent, i?”". Those questions are seeking the yes- or no-@answ
whether there is a particular structure, namelyaemHhtonian path respectively a Hamiltonian cycle
in a graphz and hence the Hamiltonian Path- and Hamiltoniacl€groblems are decision
problems.

3.1.2. Instance of a Problem

Suppose we have a problem, the Hamiltonian Gadbdlem say, a graph at hand and some
knowledge about it, the adjacency matrix for examphd we will be satisfied when we have a
correct answer to whether our graph has a Hamdto@iycle or not, then we have iastance of a
problem. In more general and slightly formal terms one gay (Gould p. 15):

A graph problem can be posed in terms of a number of parameters. When specifying the
parameters in addition to the description of the problem and what 1s meant by a solution,
then one have an mstance of a problem. The description may typically be in the form of the
graph structure: adjacency matrix, degree sequence.

In this paper an instance of a problem will foamwple be a given distance-hereditary graph
together with a particular tree representation, glgira decomposition treeT (G): given this
distance-hereditary graph and DT (G), does it have a Hamiltonian path?

3.2.ALGORITHMSAND COMPLEXITY
3.2.1. Algorithms

What is an algorithm? In a sufficiently deep seih€an be thought of as an instruction, and in
particular an instruction to a computer on howdmpute the solution to a problem. There are
further concepts associated with algotihms sudtass anddeterminism (Golumbic pp.23,26):

Take into consideration the current values of afiables and the location of the instruction to be
executed, that is thetate of the algorithm. If for each state, executionkad tnstruction determines

at most one new state, then the algorithofeierministic. It explores the alternatives one at the time
so to sayNondeterministic algorithms may allow several new states and foh e&ov state it
branches off and explores all alternatives simeitasly.

Later on in this paper we will state a numberlgbathms and present them in pseudocode, which
is a way of expressing the computer logic in almosbitwise, ordinary language.

5

3.2.2. Complexity and Efficiency

The efficiency of algorithms is measuredspace complexity or time complexity. Space complexity

is not an issue to the extent that time complasitgue to the powerful storage capacity of modern
computers and computer environments, so we'll |gaatethat.

Time complexity however, despite the computatiggmaler of computers today, is still a concern.
This measure is relative and not measured in timis,uand there are a couple of reasons why such
an absolute measure would be impractical, (Goul@)pcomputational speed of computers differ
and programmers vary in skills. This may effecttihvee in seconds or minutes it takes for the
algorithm to be performed. Therefore it is of higheerest to study the relative time it takes to
carry out an algorithm, more specificly in termglod number of elementary computational steps
involved in the algorithm. Taking into consideratithe worst-case scenario one gets the upper
bound for the complexity of the algorithm.

How do we express this relative time measure tiAeiudction f, usually of the size of the

problem (the number of vertices for example), egpes the complexity of the algorithihh One

says that the functiofi runs in time0 (f (n)), if there exists an implementation«f such that for
some constant > 0, A terminates after at mosf (m) computational steps for all instances of size
m.

3.2.3. TheClasses Pand NP

A decision problem is in the claBsif there exists a deterministic algorithm thaves the
problem in polynomial time. Herbert S Wilf statésst(Wilf p.106):

We say that a decision problem belongs to the class P if there is an algorithm A and a number
¢ such that for every mstance | of the problem the algorithm A will produce a solution i time
0(B®), where B is the number of bits in the mput string that represents 1.

To put it more briefly, P is the set of easy decision problems.

For each of the problems in that class there &st(polynomial time) algorithm that provides a
solution.

A decision problem is in the clad® if an answer that is claimed to be correct is eassheck.

Also if a nondeterministic algorithm solves a perlin polynomial time, then the problem is in the
classNP. If, in each state of a non-deterministic altjor, the "correct” choice is made for the
next sate, then computing time is polynomial. Htead all possible choices are to be made, then a
nondeterministic algorithm becomes deterministid geguires an exponential number of
elementary computational steps.

Problems in the clagéP can be classified according to reducibility, acewt that can be
described by the following (similar to “the teaketprinciple”): if one is given a pen, a rubber and
blank sheet of paper and is asked to draw a graprovertices with no edges on the paper, then
one makes ten dots on the paper. If one is giv@reat of paper with five dots and is asked to do
the same thing one is tempted to draw five dotthermpaper. But then one would have solved
another problem, so instead one can reduce thégpndb the first one by erasing the five given
dots and draw ten new ones.

Consider two problem$ andT. T is quickly reducibleto S, if for every instancét” of T we can
convert it inp(m)-time (p is a polynomial) to §”, an instance of in such a way that they have the
same answer - "yes” or "no”.

A decision problem ia/P-hard if all problems in the clas8P are quickly reducible to it.

An NP-hard problem irNP is NP-complete. FONP -complete problems only exponential time
algorithms are known. The best known lower boundgalynomial functions, though. If a
polynomial time algorithm should be proved to exastone of them, then there exists one for each
of them.

4. DISTANCE-HEREDITARY GRAPHS
4.1. DEFINITION

A description of distance hereditary graphs esftillowing (Bandelt and Mulder p.182):
a distance-hereditary graphis a connected graph in which every induced path 1s 1sometric.
That 1s, the distance of any two vertices in an induced path equals their distance n the graph.
So any connected induced subgraph of a distance hereditary graph inherits its distance
function from G, where the distance function gives the length of a shortest path between two
vertices.

Rephrasing it even more intuitively one can say tiha distance between any two vertigesndy

in G, is the same in any induced subgraph that contaamsly.

Distance-hereditary graphs are also known undenaingecompl etely separable graphs. In this

paper we will only refer to this class of graphslessance-hereditary graphs.

The definition is theoretically appealing in itmglicity. In practice however, it may be difficult

and tedious to check the condition using the difimion other than small graphs. For instance
checking that a path on a small number of vertiselstance hereditary is easy, but as the number
of vertices grows and cycles appears, the chectapiglly becomes tedious. In this paper we will
discuss recursive methods to construct distanceditary graphs and algorithmic methods to
determine whether a given graph is distance hexgdar not.

4.2. CONSTRUCTION OFA DISTANCE-HEREDITARY GRAPH
4.2.1. One-vertex extensions

We shall now present the concept of one-vertegresion. It is pretty much what it sound like;
extending a graph by adding one vertex at the tatllepugh following some particular rules while
doing so. Consider the induced subgrépk- (V',E") of G = (V' U {x},E), and a vertex' in G'.
If G' were extendetb G by adding a new vertex such that:
i) N(x) = {x'}, we say that we were attaching a pendant vertexc' and denote the
extension by (P)x’
ii) N(x) = N(x"), we say that' andx are false twins, and denote the extension by
x(F)x'
iii) N[x] = N[x'], we say that’ andx are true twins, and denote the extension by
x(T)x'

The last two operations are also referred to atieglvertices (Bandelt and Mulder) among other
names, but in this paper they will be referredsdadse-twin operation respectively true-twin
operation, whilst the first one will be referreda® a pendant operation. Any of the operations
above can of course act on any kind of graph, eyt &re of particular interest in the theory of
distance hereditary graphs. It is so because tiose one-vertex extensions are such that, using
them and only them as we shall see in theoremdwhaell finite distance-hereditary graphs can be
obtained. See aldppendix 1 for examples of each operation.

4.3 MORE ABOUT DISTANCE-HEREDITARY GRAPHS
Below we present a few theorems and proofs of séolewing the authors giving them. The first
theorem, theorem 1 given and proved by Bandelt\nder, relates a graph’s being distance-

hereditary to the one-vertex-extensions. We shiagfllp present the proof of this theorem. In

7

theorem 2 given by Chang, Hsieh and Chen, willthted that there is an order in which the
extensions are employed and that this orderingwibgenerate a distance-hereditary graph.
Theorem 3, given by Hammer and Maffray, gives almemof characteristics of distance-hereditary
graphs, and states that these properties are égptivaG’s being a distance-hereditary graph.
Hammer and Maffray does not use the term “distdrazeditary graph”, instead they talk about
“completely separable graphs”, a notion based avidam Functions. Note that statement (d) of
theorem 3 is proved in the establishment of they’dhpart of theorem 1 in which is shown that
every distance-hereditary gra@lcontains a pair of twins @wo pendant vertices (and hence a
[one] pendant vertex). This is a connection betwlertwo theorems. This also proves theorem 2.
The proof of theorem 3 is partially given here, atiterwise given by Hammer and Maffray.
Finally, theorem 5, preceded by theorem 4 and anlanall of which are given and proved by
Bandelt and Mulder, gives a few conditions thatreeessary and sufficient for a graph’s being
distance-hereditary. This theorem is also fundaaieatthe linear time algorithm that is used to
determine whether a given graph is distance-hengdar not. The theorem is followed by a
presentation of its proof.

431 Theoremsl1,2and 3

Theorem 1 (Bandelt and Mulder p.188):
A connected graph G, |G| = 2, 1s a distance-hereditary graph if and only if it 1s obtained from
K, by a sequence of one-vertex-extensions: pendant, false-twin and true-twin operations, where
K, 1s the complete graph on two vertices.

Remark: a graph, |G| = 2, is distance-hereditary but not connected if abgained fronk; by a
sequence of one-vertex-extensions starting witilseftwin operationlo see this consider
N[v;] andN[v,] when adding, to G = {v,} by a false-twin operation.

Theorem 2 (Chang et al. p345):

A graph G 1s a distance-hereditary graph if and only if it has a one-vertex-extension-ordering.

Remark: A one-vertex-extension orderiiga set of nodes together with an ordering that
constitutes the order in which the vertices arachitd to the graph. See section 7.

Theorem 3. Based on Hammer and Maffray theorem 4.2:
The following five properties are equivalent
(@) G 1s a distance hereditary graph
(b) G contains none of house, gem, domino, chordless cycle of length = 5 (long cycle) as an
mduced subgraph
(¢) Every long cycle of G has at least two crossing chords
(d) Every induced subgraph of G has a pair of twins or a pendant vertex
(e) Given any two vertices u and v of G, all chordless paths from u to v have the same length

4.3.2. Proof of Theorem 1

In the following, we refer to Bandelt and Muldet88-191. The proof of the if-part is rather short

so we present it below. When it comes to the olRpart, there are a number of cases and subcases.
The proof in its whole is quite long, so we willlptriefly present the conclusion in each case and
we refer to Bandelt and Mulder for details.

The "if” part of the theorem, that is: @f is obtained fronk, by a series of one-vertex-extensions,
thenG is distance hereditary is proved by inductiontoanumber of vertices in the following way
(Bandelt and Mulder p.188):

Let G be a distance-hereditary graph with at least two vertices. Any graph obtained from G by

8

attaching a pendant vertex is, evidently, again a distance hereditary graph. Let G’ be obtained
from G by adding a twin x to a vertex x of G. Any induced path in G’ containing at most one
of x and x' is isometric by induction hypothesis. If both x and x' are in an induced path P of
G', then either P has length 1 (if x and x” are adjacent, i.e. if x" is a true twin to x) or P has
length 2 (if x" is a false twin to x). In either case P, trivially, is isometric. Therefore, G’ is
distance hereditary.

The "only if” part, that is, iiG is distance hereditary théhis obtained fronk, by a series of one-
vertex-extensions, is proved by starting with tbiéofving assertiontet G be a distance hereditary
graph with n = 3 vertices. Assume that every distance hereditary graph with at least two and at most

n — 1 vertices contains either a pair of twins or two pendant vertices (Bandelt and Mulder p.188). To
prove that; contains either a pair of twins or two pendantiges the authors distinguish a number
of cases. We present the assertion of each casthésgvith a very brief description of the proof.

Case 1(Bandelt and Mulder p.188):

G contains at least two pendant vertices which 1s the trivial case and there 1s nothing to prove.

Case 2 (Bandelt and Mulder p.188):
G contains exactly one pendant vertex z’, which is attached to the vertex z, say.
To prove this they consider the vertex-deletdaysaphG — z’, which contain®ne pendant vertex
or none. In either case, by the induction hypo@siontains a pair of twins.

Case 3 (Bandelt and Mulder p.188):
G has no pendant vertices, but for some vertex z of G, the vertex-deleted subgraph G — z has
at least two pendant vertices. Let u’, v’ be two pedant vertices of G- z; say, u’ is attached to u
and v’ to v. They distinguish two subcases.
Case 3.1(Bandelt and Mulder p.188):
The vertices u’ and v’ belong to the same component of G - z.
They show that the two pendant vertices must taelaed to the same vertex, i.e that v, in
G- z, by showing that the converse implies one of thbifilden subgraphs - z, whereG-z is
distance-hereditary by induction hypothesis. Thayctude thatt = v and that this implies that
u', v’ is a pair of twins irG.
Case 3.2 (Bandelt and Mulder p.189):
All pendant vertices of G- z belong to different components of G- z.
To prove that - z contains at least two pendant vertices, Bandelvahder argues that is a cut-
vertex and hence the removal splitinto disconnected subgraphs. They further argaetkie
componen# containingu’ has at least two vertices, is a distance-hergdifaph containing
exactly one pendant vertex and hence by hypothesisg a pair of twing, x'. They settle the case
by showing a number of outcomes depending on tjaeeancy relation betweenandx, x'.

Case 4 (Bandelt and Mulder pp.189-191):

G has no pendant vertices, and for every vertex z of G, the subgraph G- z contains at most
one pendant vertex.

G- z contains by hypothesis a pair of twins and onetw@show that this implies that so do

Bandelt and Mulder argues that the pair of twiné #x cannot involve a pendant vertex and that
the pendant vertex cannot be attached to any ofdtieees in the pair of twins. Then by way of
contradiction, they assume tiatdoesnot contain a pair of twins, and argue thas thus adjacent

to exactly one vertex of a pair of twimsx’ in G- z.

They letz be a vertex i and have maximum degree and theylet' be a pair of twins G- z
such that is adjacent ta’ but not tou. The following argument of case 4 is subdividei ifvo

9

main subcases, one where the pair of twins in G- z are adjacent and one where they are not. In
either way, Bandelt and Mulder show that for eadbcase this will lead to a contradiction either by
violating the maximality assumption anthe existence of forbidden subgraphs (see the8rbn

or the existence of troublesome pairs of twins. Sinategy is to investigate adjacency relations
betweerz and pairs of twins, adjacency relations betweearplas of pairs of twins and the
interrelations between all three entities. For itketeee Bandelt and Mulder pages 189-191)

In this manner Bandelt and Mulder have proved thstence of either a pair of twins or two
pendant vertices in any distance-hereditary grapatdeast two vertices. They conclude that
(Bandelt Mulder p.191):
we can decompose G according to the one-vertex-extensions until we finally arrive at the graph
K,
and thus they have settled the proof of theorem 1.

4.3.3. Proof of Theorem 3

The theory behind theorem 4.2 in Hammer Maffrayased on Boolean functions and a property
thereof called separablity (Hammer and Maffray jp.8Bat is outside the scope of this paper,
therefore we give proofs in terms of graph theoetttoncepts where the authors do not. First we
give a proof of that proper{g) is equivalent to the gragkis being distance hereditary, i.e. t{et

is equivalent tde). Using Theorem 1 we argue tl{a} is equivalent t¢d). Then we give an outline
for the proof of the implicatiofg)=(b). Hammer and Maffray show thé@t)=(c) and finally, we
give a proof of the implicatio(c)=(€), and we are done.

(a)e(e) (Backelin and Timonen): First we prove the impiica (a)=(e). Assume that is a
distance-hereditary graph, thate {u,, v} is a chord-free path i and that has length
dp(u,v). P is an induced subgraph 6f SinceG is distance-hereditary we have tha(u, v) =
d;(u,v), and in every induced subgraphthe distance betweenandv is the same, and
therefore all chord-free paths framto v has the same length.

To prove thafe)=(a), we assume th&t is a connected graph, aAdis a connected subgraph®f
We also assume thit(u, v) is the length of any shortest path from u to ¢irP is chord-free (else
there would be a shorter path). Finally we assuraelf; (u, v) is the length of a shortest path from
utovin H. This path is chord-free for the same reasonsWmi have that the distance between
any two vertices i, is the same in any induced connected subgha@nd hencé is distance-
hereditary by definition.

(a)<(d): The equivalence follows from Theorem 1 and itsobr

(2=(b): to show that a distance hereditary graph doesamiin any of the forbidden subgraphs
as an induced subgraph is a fairly straight forneercise done by considering the subgrdph
x, whereH is one of the house, domino, gem or long cycld,\aherex is a vertex of highest
degree. By removing in the house, gem or domino it is obvious thatgaths of length two on
three verticesP = {v, x, w} with x not on any endpoint, the remaining paths frotow in H is
not of length two.

If H is the long cycle, we have thatAf= {v, x, w} as above, the removal ofwill result in a path
of lengthn — 1 > 3. Thus the distance betweerandw in H — x > 2.

Thus the removal of from H as explained above results in a change of dissdme®veen two
vertices in the subgrapt — x, and hence they cannot exist as induced subghdistance
hereditary graph.

(b)=(c), we follow Hammer and Maffray who use inductionfgrwherek is the length of a long
cycleC of G, (Hammer and Maffray p.89):

10

If kK = 5, then C must have two crossing chords, otherwise its vertices would induce a
pentagon, a house or a gem. If k = 6, either the vertices of € induce a hexagon or a domino,
which are forbidden, or € has two non-triangular chords and they necessarily cross each other,
or it contains a cycle of length 5 and thus two crossing chords by the induction hypothesis. If
k = 7, the cycle C must have a chord since G contains no long chordless cycle. This chord
divides C n two shorter cycles, one of which has length at least 5. By the induction hypothesis
this subcycle of C has two crossing chords, which in turn are crossing chords of C.

(c)=(e)We give a proof for the implication (Backelin anienbnen):

The distance between the verticeandv in a graph is, by definition, the minimum lengtheo

path fromu tov: d(u,v) = min{l(u,v)}. d(u,v) is also equal to the minimum length of a chord-
free path between andv.

We want to show that for any chord-free path betweandv [(u,v) = d(u,v), and we will do so
by induction ord (u, v).

The statement is true fai(u, v) < 1, that is for graphs on identical or adjacent eedi

We assume, for sonmie> 1, that ifd(u, v) < k, it holds that every chord free path betwaesmndv
has lengthl (u, v). Now we want to show that this holds whéf, v) = k + 1.

LetP = u-x; — ... — x;—v be a shortest path betweemandv, with distanced, (u,v) = k + 1,
and letQ = u-y, — ... — y,—v be any chord free path betweeandv with distancel, (u, v) =
n+ 1.

We want to show that = k. We get two cases:
Case 1. There exists a vertex = x; = y;. We have thatl,(u, v) = i < k. By hypothesis
do(u,v) =i.Alsodp(w,u) < k and by hypothesié, (w,u) = dy(u,v) < k. Hencen = k.

Case 2. There is no vertew = x; = yj, i.e.
P{u,v}in Qu,v}={x;— .. —x;30{y; — ... =y} =20.
2<k+1<nu-x; —:—x,-v- Yy, ——y;-uis along cycle which we know has two
crossing chords.
Leti be the smallest index such that there is a crgssiordy; — x;.
Claim 1: Forx; it holds thatj > 2.
Proof: Sincey; — x; is a crossing chord, there is a chgyd— x;’ being crossed. Sinéés minimal
we have that < i’. In order to preserve the crossing condition th&/es us no other possibility
than thatj > j’, thusj > 2.
Claim 2: The smallest such that there is a crossing chgyd- x; isi = 1.
Proof: assumé > 1. Sincex; € {x,, ..., x }, u-y; — -+ —y;-x; — - — x; —u is along cycle
and thus has a crossing chord frggv < i which contradicts our assumption. Herce 1.

Now assume that; — x; is the last chord from,.

Claim 3: The greatest such that there is a crossing chgyd- x; isj = 2.

Proof: u-y; — x; is chord-free and(u, x;) = 2. [u-x; — - -x; => dp(u, x;) = 2] &[j = 2],
since we have by assumption that all chord-freegpiomz to z’, have the same length as the
shortest path from to z’ whend(z, z’) < k.

Whenz = y; andz’ = v we have thay,- x,- ... — x;— v isthe shortest path fromy to v, and
hence has the same length as the chord freeypath - ... — y,,- v. Hencek = n.

11

4.3.4 Theorem 5 with preliminaries

Theorem 5, stated and proved by Bandelt and Muilsiéne foundation for the linear-time

algorithm which is used to determine whether a lgiagistance-hereditary or not. We shall present
the theorem and its proof. Before we do that, wal ginesent the definition of a few concepts,
theorem 4 and a lemma. The proof of theorem 4 igtednhere but is given by the authors.

Definition 4.3.4.2 (Bandelt and Mulder p.184):
The interval function, I (u, v), for a graph G and for any pair u, v of vertices in G, 1s defined,
by I(u,v) = {x|xisavertex of G on some shortest (u,v) - path}.

The following theorem is an extension of theorem 3.
Theorem 4. (Bandelt and Mulder p.194):
Let G be a connected graph with distance function d and interval function I. Then the
following conditions are equivalent:
(@) G 1s distance-hereditary
(b) For any two vertices © and v with d(u, v) = 2, there is no induced (u, v)-path of length
greater than 2.
(¢) The gem, the domino, the house and the long cycles are not induced subgraphs of G,
(d) The gem, the domino, the house and the long cycles are not isometric subgraphs of G,
(¢) The gem, the domino, the house and the long cycles are not induced (or 1sometric)
subgraphs of G, and I(u, v) N I(v,w) = {v} = d(u,w) = d(u,v) + d(v,w) — 1,
() the gem 1s not an induced subgraph of G, and for any three vertices u, v, w at least two of
the following inclusions hold: I(u,v) € I(u,w) U I(v,w),I(u,w) € I(u,v) U
I(v,w),I(v,w) € I(u,v) UI(uw)
(g) for any four vertices u, v, w, x at least two of the following distance sums are equal:
d(u,v) +dw,x), d(u,w) + d(v,x), d(u,x) + d(v,w),
(h) G satisties condition (g), and if in (g) the smaller distance sums are equal, then the largest
one exceeds the smaller ones by at most 2.

A graphG can be decomposed iflevels with respect to the distance from a fixed vertelevel is
the set of vertices on a particular distaricdrom a particular vertex:

Definition 4.3.4.1 (Bandelt and Mulder p.200):
The k:th level with respect to u, 1s defined by

N (w) = {x|x is a vertex of G with d(u,x) = k}

Each such level in a distance-hereditary graphbeaviewed as a building stone of such a graph,
provided, as we shall see in theorem 5 below, &aa contains no paths of length 3 as induced
subgraphs.

Definition 4.3.4.3. (Bandelt and Mulder p.200):
The k: th internal level of any interval, I(u, v), 1s the intersection of the interval function and
the k: th level, denoted Ny (u, v).

Lemma 4.3.4.4. (Bandelt and Mulder p.200):
Let G be a distance-hereditary graph. Then for any two vertices u and v, and for any integer i
with 0 < i < d(u,v), every vertex in N;(u, v) 1s adjacent to all vertices in N;; 1 (u, v).

Theorem 5. (Bandelt and Mulder p.201):

Let G be a connected graph, and let u be any vertex of G. Then G 1s distance-hereditary 1if and

12

only if G satisfies the following five conditions, for any integer k > 1:

(@) if v, w are two vertices in the same component of N (u), then
N@) N Ng—1(w) = N(w) N Ny_1(u),

(b) there is no induced path of length 3 (i.e no P, as an induced subgraph) in Ny (u).

(0) 1if a vertex v of Ny (u), has neighbors x and y i two distinct components X and Y of
Nj._1(u), then v is adjacent to all vertices in X and Y, and

N(x) N Nz (w) = N(y) N N2 (u)

(d) if v, w are vertices in different components of Ny (u), then N(v) N N,_;(u), and N(w) N
Nj._1(u), are either digjoint, or one of the two sets 1s contained in the other.

(e) 1if a vertex v of Ny (u), is adjacent to two vertices x and y in the same component of
Nj._1(u),, then the vertices of this component which are not adjacent to v are adjacent to
either both x and y, or none.

4.3.5 Proof of Theorem 5

The following proof is given by Bandelt and Muld€&hey first prove the only if part(Bandelt and
Mulder p. 201-203):
Let G be distance-hereditary. To prove 4(a) it suffices to show that the assertion holds for any
two adjacent vertices v, w in Ny, (u). From condition (e) of theorem 4 they infer that there is
some neighbor x of v and w in Nj,_; (1). Suppose that there exists a neighbor y of v in
Ny _1 (u) which is not adjacent to w. Then by Lemma 1, one can find a common neighbor z
of x and y i Ni_,(u). Then v,w, x, y, z induce one of the forbidden subgraphs - house,
gem or domino - which is a contradiction. Hence (a) is true.

Assume that P 1s an induced path of length 3 in Ni.(u). Then by (a), there exists a vertex x in
Ny _; (1) adjacent to all vertices in P. Hence P and x induce a gem, which is forbidden. This
proves (b).

For x and y, given as in (c) one can find a vertex z in Nj,_, (1) adjacent to both x and y, by
the Lemma. Then x, v, y, z induce a 4 — circuit in G. If w is some vertex in Ny _; (u)
adjacent to one of x and y, then by (a), also w 1s adjacent to z. Since the house may not occur
m G, it follows that w and v are adjacent, proving the first part of (c). Finally, note that, by the
Lemma, every neighbor of x in Nj_,(w) 1s also adjacent to y. This settles (c).

Next, given u, w as in (d), let x be a common neighbor of v and w in Ny _; (u), and let y and
Z be vertices in Ny_;(u) such that y is adjacent to v but not to w, and z is adjacent to w but
not to v. Then, by (a) and (c), there exists a vertex t in Nj,_, (1) adjacent to all three verices
x,y and z. Then the subgraph induced by {t, v, w, x, y, z} contains one of the forbidden
subgraphs as an induced subgraph, whence one 1s done.

Finally, to prove (d) let x and y be neighbors of v within the same component of Nj,_; (w).
From (a) one knows that there exists a vertex z in Nj_, (1) adjacent to all vertices of this
component. Let t be a vertex of the latter adjacent to x but not to v. If t and y re not
adjacent, then {t, v, x, y, z} would induce one of the forbidden subgraphs.

13

This concludes the “only 1f” part.

Conversely, let G satisfy conditions (a) through (e). Bandelt and Mulder show by induction on
k that the subgraph Gy of G induced by all levels N;(u) with i < k does not contain any C,,,

n = 5, or any of the forbidden subgraphs house, gem or domino as an induced subgraph. For
k < 1 this is trivial by (b). So let k = 2. By hypothesis, one only have to consider
configurations touching Ny (u). First they prove two simple facts, (A) and (B) below, which are
used i the sequel.

(A)If P =v —w — x — yis an induced path in Gj, such that the internal vertex x 1s in Ny (u),
then v is also in Ny (u), and w,y are in Ny_q(w).
Proof: This is seen as follows. By (b) at least one vertex of P belongs to Nj,_; (u). Then by (a)
there cannot be any edge of P in Ny, (u). Hence w and y are in Nj,_; (w). If v is in Nj_,(u),
then either (a) or (c) is violated, depending on whether w and y are in the same component of
Ny _,(u) or not. If v 1s in Nj,_; (u), then either (e) or (c) is violated.

B) If Q =v—w—x —y—zisapath in G, with no chords except possibly vz such that A has
an internal vertex in Ny (1), then v, x, z are in Ny (u) and w, y are in Nj,_; (u).
Proof: By (A), the vertices of Q are alternatively in Ny_; (u) and Ny, (w). If v, x, z are in
Ny _1(u), then either (a) or (d) is violated, depending on whether w and y are in the same
component of Ni (1) or not.
Now, from (B) and (a) they infer that there 1s no induced C,, n = 5 in G. Note that the
domino contains two induced paths of length 4. If this graph were induced i Gy, then at least
one of the two paths would violate the conclusion of (B)
To prove that the graphs house and gem does not occur in G, Bandelt and Mulder consider
induced paths of length 3 touching Ny (1) such that the end vertices are at distance 2 in Gy.
By (A) and (a) there are only five possibilities for such paths. Figure 4.3.5.1- 4.3.5.5,
llustrating the cases (1)-(5). In the figures v € N (u) and w € Nj_4 (u) indicating the levels.
Let z be a common neighbor of v and y.

Case 1.

Figure 4.3.5.1 (Bandelt and Mulder p.203)
It follows from (a) that z is in Nj,_; (u). But then either (e) or (c) is violated.

Case 2. The vertices v and y belong to different components of Nj (1) by (a).

Figure 4.3.5.2 (Bandelt and Mulder p.203)
Hence z is in Nj_4 (1). This however, together with (e) violates (d).

Case 3. It follows from (a) that z is in Ny_; (u), conflicting with (e).

14

Figure 4.3.5.3 (Bandelt and Mulder p.203)

Case 4. Similarly to Case 3, z is in Nj,_; (u). But this violates either (e) or (c).
(D]

Figure 4.3.5.4 (Bandelt and Mulder p.203)

Case 5. Either (a) or (c) 1s not satisfied.

Figure 4.3.5.5 (Bandelt and Mulder p.203)

Now, in view of Theorem 4, the proof 1s completed. [

15

5 COGRAPHS
Complement-reducible graphs

5.1 DEFINITION AND FEATURES OF COGRAPHS

In this section we will become familiar with caghs. They have been discovered and studied
under various names by different authdisx —graphs” (Jung), P,- restricted grahps” (Corneil,
Lerchs and Burlinham), “Hereditary Dacey graphgir(fer), and “2-parity graphs” (Burlet and
Uhry) are names and authors given on the cogragé pa en.Wikipedia.org/cograph.

In this paper we will use the name cograph, ashed later on become acquaintances ¢ograph
recognition algorithm given by Corneil, Perl ane\8art.

There are a number of characteristics that arevalgut to a graph’s being a cograph. The
following conditions are found in wolfram.mathwari@dorneil et al., Mandelt & Mulder and
Chuang-Chieh Lin. Some conditions are the saméoloiulated differently, others are unique.

We will be concerned with the cotree later on ia tixt, thus first and foremost, (Corneil et al. p.
927):
Cographs have two remarcable properties:
1) Cographs are precisely the class of graphs that does not have a path of length three, that 1s a
path containing exactly four vertices, as an induced subgraph.
2) They can be uniquely represented by a tree, a so called cotree.
The cotree consists of internal nodes and leaves. The internal nodes are labelled 0 or 1. The
root is always labelled 1 thus being a (1) node. The labelling of internal nodes are such that
(0) nodes and (1) nodes alternate along every path, through the tree, starting from the root.
The leaves in the cotree T, correspond to the vertices of the graph G. Two vertices x and y
are adjacent in G 1f and only 1f the unique path from x to the root of the tree meets the unique
path from y to the root of the tree at a (1) node..

(Chuang-Chieh Lin):
The internal nodes, (0) -nodes respectively (1) nodes of a cotree corresponds to union
respectively join operations.

Moreover, one can state a number of equivalendiions so that if a graph satisfies one of them it
is a cograph and thus indeed satisfies all of taathWolfram Mathworld presents the
following(mathworld.wolfram.com/Cograph):

1. G can be constructed from isolated vertices by disjoint union and graph join operations.

2. G 15 the disjoint union of distance-hereditary graphs with diameter at most 2.

3. In every induced subgraph H of G, the intersection of any maximal clique and

any maximum independent set contains precisely one vertex

4. Every nontrivial subgraph of G has at least one pair of twins

5. The graph complement of every nontrivial connected subgraph of G 1s disconnected

6. Every connected subgraph of G has diameter at most 2.

7. G does not contain the path graph P, as an induced subgraph

Chuang-Chieh Lin states and proves the following:being a cograph implies condition 4.
4)=(3), (3=(7), (7)=(5) and finally that (5) implies thd&t is a cograph. In this paper we will be
concerned mainly with condition (7). Bandelt andlter (Bandelt and Mulder p. 193) states the
conditions (1), (2) and (7) and also gives the door
G can be obtained from the one-vertex graph by a sequence of vertex splittings (i.e. twin
operations).
In the appendix we will construct cotrees when gipgl the cograph recognition algorithm.

16

6 DETERMINING WHETHER A GRAPH
|SDISTANCE-HEREDITARY OR NOT

Recall theorem 1, 2 and 3.d. They really say #mesthing but one can take this a bit further by
explaining that this property has an actual mearttagmer and Maffray gives the explanation:
given a distance hereditary gra@h|G| = n, there is an indexing of the vertices and a list o
"words” on the formw; Pv;, v;Fv; andv;Tv;, with their respective meanings;:is a pendant vertex
attached ta;, v; is a false twin ta;, v; is a true twin tay;, for1 < i <n and j < i. This means
that the graplé induced by vertices,, ..., v; is obtained from the subgraghinduced by vertices
vy, ..., Vi1 by makingy; either a pendant, a false twin or a true twim;tdr his list of words is

called apruning sequence (Hammer and Maffray p.90-91). Thus we have thgtia@hé is a
distance-hereditary graph if and only if it hasraning sequence by Theorem 1 and Theorem 3.d.

We will use a linear time distance-hereditary gragcognition algorithm, first introduced by
Hammer and Maffray. However, Damiand, Habib and,Raund that there was an error in the

their algorithm such that although the graph carstai domino or a house, it will answer "yes, the
graph is distance-hereditary” if one starts witlhegree 3 vertex. This is corrected by Damiand.et al
In the algorithm one also employs a cograph reitiognalgorithm given by Corneil, Perl and
Stewart We present the algorithm in this section and dennatesit in Appendix 4.

6.1 RECOGNITION ALGORITHMS

In this section we present the linear-time algonitiised to determine whether a given graph is
distance-hereditary or not. As mentioned abovegaaph recognition algorithm is employed,
which in turn calls the proceduMARK (x) and the functioIND — LOWEST.

Clearly, each subalgorithm, procedure and functimployed during the quest for the overall
purpose of the algorithm must also run in at miogtar time. We shall see that this is the caseeas w
present time complexity analysis for each and drieem.

6.1.1. Distance-Hereditary Graph Recognition Algorithm

Now, recall theorem 5 with its five conditions.eltistance-hereditary graph recognition algorithm
is based on this theorem. This will be clearer wiverpresent the proof of the algorithms
correctness.

The linear time algorithm for recognizing a dista-hereditary graph calls a number of algorithms
such that there is algorithms, procedures and fometwvithin the algorithm for different purposes.
The working order is simplified as follows: Fincettiistance layouts, L; ,(i is the distance from the
starting vertex) of the input grapl& = (V, E), then find the connected components of each such
level. Check if each connected component in theadce layout are free from induced paths of
length 3, i.e. whether they are cographs or nat iBhdone by employing the cograph recognition
algorithm of Corneil et al.’s. Now, since cogragaine distance-hereditary they have a pruning
sequence. Hence we get a pruning sequence anst &élkéex” ofL;, to which we contract the
distance layout at hand — this means the otheicesrof each connected componeni cére
removed from the graph during the pruning. Forrdraaining vertices af;, one first determines
which are pendant vertices to any vertex in a degdayoutl;_,, that is one distance unit closer to
the starting vertex. For the others, those of higheer degree one needs to check that the closer
distance level is a cograph too, since, if the iaing vertices are twins or pendants to vertices in
the closer level — that must also be a cographii®grem 5(b)) in order to still have the possipilit
of G being a distance-hereditary graph.

We shall now present each algorithm in the ordevhich they are first employed. First, to get an

17

overview, only stated in terms of input and outpid its main task. Thereafter fully described in
pseudo code. We will later, in Appendix 4, givetat and successful application of the algorithm.

Algorithm 1:Prune-dhg(G) (Damiand et al.)

Input: agraph ¢ = (V,E).

Output: a pruning sequence if f G is a distance-hereditary graph.
Compute the distance layouts, L;, of G.

Algorithm 2: Prune-cograph (G) (Damiand et al.)

Input: a graph G = G(L;)

Output: a pruning sequence and its last vertex iff G (L;) 1s a cograph.
Compute a cotree of G (L;) using cograph recognition algorithm

Algorithm 3: Cograph-Recognition (Cornell et al.)
Input: a graph G(L;);
Output: a cotree iff G(L;) 1s a cograph

Procedure: MARK (x)
Input: a cograph G = (V, E), a cotree T and vertex x to be added to G
Output: marked and unmarked leaves and internal nodes of the cotree T.

Function: Find L owest
Input: the cotree with marked and unmarked leaves and internal nodes.

Output: the lowest marked vertex of T if G + x 1s a cograph.

Algorithm 4: Verification Step (Damiand et al.)

Input: A graph ¢ = (V,E) and a list of words, S = [vjXvi ... vkXvl], where X 1s either P, F or T.
Output: "T'rue” iff S 1s a pruning sequence.

Below follows the more detailed descriptions of #hgorithms in pseudocode.

6.1.1.1. Algorithm 1, Prune-dhg(G)
(Damiand et al. p.108):
Input: a graph ¢ = (V,E).
Output: a pruning sequence iff G 1s a distance-hereditary graph.
1. Begn
1.1 j € 1; compute the distance layouts Lq , .., Lj from an arbitrary starting vertex v.
2.0 Fori =k downto 1 Do
2.1 For each connected component cc of G[L;] Do
2.1.1 z < Prune-cograph(G|cc], j);
contract cc nto z;
J&€j + lecl — 1
sort the vertices of G[L;] by increasing inner degree;
For each vertex x of L; with inner degree 1 Do
let y be the only neighbor of x;
o(j)€<x and s; €< (xPy);
j€i+ 1
Ifi # 1 Then
For each x in L; taken in increasing inner degree order Do
y € Prune-cograph(G[N;_1(x)],));
contract N;_; (x) mto y;
1€j + N ()] = 1

18

o(j) € x and s5;€ (xPy);
j<i+ 1
End

6.1.1.2. Algorithm 2, Prune-cograph(G, j)
(Damiand et al. p.107):
Input: a graph G
Output; A pruning sequence (S, o) and the last vertex of the pruning sequence if and only if G is a
cograph;
Begin
Call cograph-recognition(G) algorithm to compute a cotree T of G.
Let A be the nodes of T having only leaves as descendant;
While A # @ Do
Pick an arbitrary node N in A;
Pick an arbitrary son x of N;
For Each son y # x of N Do
If N 1s a 1-node
Then o(j') =yand s;" € (yTx);
Else 0(j) = y and s;" € (yFx);
JE€i+ L
Replace N by x in T;
If x 1s the root of T Then Return; x 1s the last vertex of the pruning
sequence;
If father(N) has only leaves as descendant Then
add father(N) to 4;
End,

6.1.1.3. Timing Analysis of Algorithm 1, Prune-dhg(G) and Algorithm 2, Prune-cograph(G, j)

We shall here present a theorem and its proof giyeldamiand et al. The theorem states that the
algorithm Prune-dh@r) actually computes a pruning sequencag i$ distance-hereditary, and also
the converse, that is, if it computes a pruningiseqe thert is distance hereditary. Moreover, the
theorem states that the algorithm run®{m + m). The latter statement, however, does depend on
the use of a proper linear time cograph recogngigorithm. The one we present and use here is
the one given by Corneil, Perl and Stewart whitérlavill be shown to run in linear time. First we
do need a new definition for the proof of theorer\@ closely follow Damiand, Habib and Paul
through the definition, the theorem and the proof.

Definition 6.1.1.3.1 is based on Damiand et al. definition 4. A setaticesM of a graph: is a
module iff for any x andy in M, N(x)\M = N(y)\M. A moduleM is aprime module iff any subset
S, such thatS| # 1 andS # M, of M is not a module. A moduld is astrong module iff for any
moduleM’ eitherM' is a subset a¥f or M is a subset a¥f’.

Theorem 6 (Damiand et al. p.108\lgorithm 1, prune-dhg(G), computes a pruning
sequence of G if f G 1s a distance-hereditary graph. It runs in O(n + m).

Proof (Damiand et al. pp.108-109}.the computed sequence is a pruning sequence,
then G 1s a distance-hereditary graph (Theorem 3(d)). So we just have to prove the
converse. During the i: th loop 1, all the vertices of the sets L; for i < j < k have been
removed. By theorem 5(a), each connected component of G[L;] 1s a module. Since
G[L;] is a cograph (theorem 5(b)), twins in G[L;] are also twins in G. Thus, in loop 2,

19

we can contract each connected component cc of G[L;] and build a pruning sequence
of G[cc] with Algorithm 2. At this step L; 1s a stable set. Thus (loop), the remaining
vertices of L; with inner degree 1 can be removed as pendant vertices.

Now by theorem 5(d), the neighborhood of two distinct vertices of L; are either
disjoint or one these neighborhoods (ordering the vertices with respect to their inner
degree produces such a linear extension). Let x be the first vertex in this ordering. Let
u and v be two distinct vertices of N;_; (x).. By theorem 5(d), N;(u) = N;(v). If u
and v are in distinct connected component cc(u) and cc(v) of L;_q, then N;_,(u) =
N;_,(v) (Theorem 5(c)). Moreover, cc(u) and cc(v) are included in N;_; (x).
Finally, if u and v are in the same connected component cc of L;_1, theorem 5(d)
shows that N;_,(u) = N;_,(v) and by theorem 5(e), if w in cc is not adjacent to

x then w 1s adjacent to both u and v or none of them. Therefore, N;_;(x) 1s a
module. Since it 1s contained in L;_q, G[N;_;(x)] is a cograph. Twins in G[N;_; (x)]
are twins in G: N;_;(x) can be contracted into a single vertex and compute a pruning
sequence of G[N;_1(x)]. Respecting the linear extension of neighborhoods, the
previous argument can be applied to all remaining vertices of L;. That ends the proof
of the correctness of the theorem.

They now give some ideas for the complexity 1ssues. Computing the distance layouts
can be done in O(n + m) via a breadth first search. Fach connected component of
G[L;] can be contracted mnto a sinlge vertex in O(|G[L;]|). Sorting the vertices of L;
with respect to their inner degree can also be done in linear ime using som bucket
sort. For each distance layout, the global complexity of contracting N;_;(x) into y is
O(| G[L; U L;_1]])- Thus, the whole complexity 1s O(n + m).

6.1.2. Algorithm 3, Cograph-Recognition(G)

This algorithm is given by Corneil, Perl and Stwe@e follow the authors and present the main
frame of the cograph-recognition algorithm firstldhen specify procedurdARK (x) that is called

in step 2.1 and functioRIND — LOWEST that is called in step 2.4. As MARK (x) there follows

a theorem in which concepts derived fréfdRK (x) is used to state equivalence conditions for an
extended cograph to be a cograph too. The iteigteach and every one of them, of the cograph-
recognition algorithm essentially consists of dicieit implementation of that theorem.

6.1.2.1 Cograph-Recognition(G)

(Corneil et al. p928-932).
The algorithm is incremental in the sense that the vertices are processed one by one.
We begin on the cotree for two vertices in step 1 and incorporate the remaining
vertices one by one.
Given a graph G = (V, E) with vertices arbitrarily indexed vy,, v, this algorithm
determines whether or not G 1s a cograph and constructs the cotree T of G, if G 1s a
cograph.

1. Initialize
Create a new (1) node R
1.1 If (v, v,) € E(G)
Then add vy, v, as children of R
Else create a new (0) node N;
add N as a child of R;
add v; and v, as children of N

20

2. (iteratively incorporate vy, ..., v, into T)
For x < vs,...,v, Do
2.1 Call procedure MARK (x)

2.2 If all nodes of T were marked and unmarked
Then add x as a child of R
goto endloop
2.3 If no nodes of T mere marked

Then ifd(R) =1
then add x as a child of the only child of R
else create a new (1) node R with one child(and a new (0) node)
and two grandchildren: x and the old root;
goto endloop
2.4 u < FIND-LOWEST
2.5 Let A (B) denote the set of children of u which were (were not) marked
if label(u) = 0(=1)
thenif |[A| =1 (|B| = 1)
thenif w € A (in B) is a leaf
then add a new (1) node ((0) node) in place of w
and make w and x children of this new node
else add x as a new child of w
else remove all elements of A from u and add them as children of a
new node y with label(y) = label(u)
if uis a (0) node
then add a new (1) node as a child of u;
children of this new (1) node are x and y
else remove u from its parent and add y in its place;
add a new (0) node as a child of y;
children of this new (0) node are x and y
endloop

End COGRAPH-RECOGNITION
6.1.2.2 Procedure MARK (x)

We shall not only present the procedM@RK (x) but also set it into context by presenting a
theorem in which output from the procedure i ugdds theorem states two conditions, containing
concepts derived from the outputM#RK (x), that are equivalent @ + x being a cograph, where
G is a cograph with cotre@ Following the theorem there are a number of amichs drawn that
will be used in th&"IND — LOWEST function.

Some notation that is used in the procedure(Coeteil. pp. 928-929)
d(w) denotes the number of children of w in T and md(w) 1s the current number
of children of w which have been both "marked” and "unmarked”. For all nodes w,
the value of md(w) is initially set to 0 and reset to 0 when w 1s unmarked.

Mark all leaves of T which are adjacent to x
For each marked node u of T with d(u) = md(u) Do
unmark u;
md(u) €0;
if u # R then

21

mark (W) where w 1s the parent of u;
md(w)<md(w) + 1;
msert U at the head of a linked list of marked and unmarked children
of w
end
If any vertex remains marked and d(R) = 1 Then mark R;
End MARK.

6.1.2.3. Theorem 7

Now suppose we have worked throdgARK (x). The following notation, theorem and proof are
given by (Corneil et al. p. 929):
Let M denote the set of internal nodes of T which remain marked, and let & be a node
i M with lowest level in the tree and let f be a node in M\{a} with lowest level. We
say a marked (1) node y 1s properly marked if and only if md(y) = d(y)-1. A
legitimate alternating path 1 a marked cotree 1s a path of adjacent alternating properly
marked (1) nodes and unmarked (0) nodes, the extreme point of which are (1)
nodes.
Note that the root has the lowest level, and tHagdimate alternating path is directed from highe
to lower levels.

Theorem 7 (Corneil et al. p. 929)

If G 1s a cograph with cotree T then G + x 1s a cograph 1if and only 1f

(1) M 1s empty or

(2) (@ M\{a} consists of exactly the (1) nodes of a (possibly empty) legitimate
alternating path which ends at R and
(b) a 1s either a (0) node whose parent is 5, or a 1s a (1) node whose
grandparent, 1if it exists, 1s f5.

6.1.2.4. Proof of Theorem 7
Proof (Cornell et al. pp. 929-930):
Only if: If the conditions of theorem 7 do not hold, then we have at least one of the
following conditions:
(i) M\{a} contains a (0) node
(it) There exists a (1) node in M\{a} which 1s not properly marked
(iii) There exists ¥ # R in M\{a} such that the grandparent of y is not in M\{a}
(iv) The vertices of M\{a} do not liec on one path to R
(v) aisa (0) node whose parent is not 8
(vi) ai1sa (1) node which has a grandparent which 1s not 8

By definition, any vertex in M has been marked but not unmarked, and this implies
there 1s at least one descendant leaf adjacent to x and at least one not adjacent to x.
Using this fact, it 1s fairly straightforward to show that any of the above six conditions
mmplies the existence of an induced P, in the graph G + x. As an example, we
demonstrate an induced P, in G + x if condition (i) 1s found to be true. The following
notation is used: for any internal node 8 of T, des(8) denotes the set of descendants
of 0, that 1s, the leaves of the subtree of T rooted at 8. Let y be a (0) node in M\{a}
and let § be the lowest common ancestor of @ and y in T. Note the possibility that
6 = y. There are four cases to be considered, depending on the labels (0) or (1) of
and 6.

Case 1 a and 6 are both (0) nodes.

22

Proof: there 1s an induced P, on vertices b, ¢, x, d if x and ¢ are adjacent in G + x, or
on b, c,a,x if x and ¢ are not adjacent, where; a € des(a) and is adjacent to Xx;

b € des(a) and 1s not adjacent to x; ¢ € des(parent(a))\des(a); d € des(y) and
1s adjacent to x. If § = y, we require that d € des(y)\des(8), where 8 is the child of
y on the a — y path. Cases 2,3 and 4 follow similarly.

Remark: This fairly straightforward way of showitige existence of an induc@g requires that
one have in mind that vertices are adjacent ingaagh¢ iff their unique path toward® in the
cotree meets at@)-node. We givease 2 with some intended clarifications:

Case 2. a is a (1) node and is (0) node, otherwise as in case 1 wheienot adjacent t@. c is
not adjacent to any of the verticesis a (1) node, thereforeis a descendant of a (0) node since
the sign of internal nodes in a cotree alterndtés.adjacent only ta since they meet at, a is
adjacent toc by assumption and sods Henced, x, a, b induces &,. If c is adjacent to (onlyjy,
thend, x, a, b andc, x, a, b inducespP,.

If: we complete this part of the proof by constructing T, the cotree repsresenting
G+ x.

1. If M 1s empty, then x can be added as a child of the root if G + x 1s connected, or as
a child of the only child of the root in the case where G + x and G are both
disconnected. If G + x 1s disconnected but G 1s connected the root of T and x both
become children of the only child of a new root.

2. There 1s a lowest marked node @ € M. Let A be the children of @ which were
marked and subsequently unmarked by procedure MARK. Similarly, let B be the
children of a@ which were not marked by MARK . The fact that « € M implies that
|A| = 1 and |B| = 1. To construct T’ there are two cases to consider.

Case 1. a1s a (0) node. In this case, the elements of A and B are either leaves or (1)
nodes. If |A] = 1 and a € A is a leaf, then we add a new (1) node in place of a and
make a and x children of this node. If |A| = 1 and a € A 1s a (1) node then we
simply add x as a new child of a. If |A| > 1 then we remove all elements of A from «a
and add a new (1) node in their place. Children of this new node are x and a new (0)
node with elements of A as children.

Case 2. ais a (1) node. The proof follows exactly as in case 1, except that B is
examined instead of 4, and the roles of (0) nodes and (1) nodes are reversed.

To see that T’ 1s an accurate representation of G + x, we observer that the alterations
to T correctly reflect adjacencies of x with vertices in the subtree rooted at a, and the
fact that we have a legitimate alternating path from « to R guarantees that all other
adjacencies of x are correctly represented. Adjacencies among vertices of G remain
unchanged as required.

6.1.2.5. Function FIND-LOWEST

(Corneil et al. pp. 931-932):
The following notation 1s used: u 1s the lowest marked vertex so far examined; w
denotes the lowest marked (1) node examined before u; y is a marked (1) node
which 1s not properly marked or a marked (0) node if either exists in T. Whenever
the procedure finds that G + x 1s not a cograph, an accompanying comment indicates
which of the conditions i — vi from the proof of the theorem holds. When this occurs
it 1s assumed that the entire algorithm is terminated.

1. (initialize and check root.)
y&< A
If R 1s not marked

23

then G + x 1s not a cograph /* (in)

else do

ifmd(R) # d(R)-1 theny € R;
unmark R;

md(R) € 0;

u<cw<E<R

End

2. Choose an arbitrary marked vertex u and follow the path from u to w, checking for
a legitimate alternating path and unmarking vertices along the path.
While there are marked vertices remaining in T Do
choose an arbitrary marked vertex u
2.1 Ify+4A
Then G + x 1s not a cograph by (cond. i) or (cond. ii)
If label(u) = 1
Then do

ifmd(u) #d(u)-1

theny €u

if parent(u) is marked
then G + x is not a cograph by (con.i) and (cond. vi)
else t €< parent(parent(u))

end

elsedoy €u;

t € parent(u)
end

unmark u;
md(u) €0
2.2 whilet # wdo

if t = R then G + x is not a cograph (cond. iv)

if t 1s not marked

then G + x 1s not a cograph by (cond. iii) or (cond.v) or (cond. vi)
ifmd(t) #d(t) -1

then G + x 1s not a cograph by (cond. ii)

if parent(t) is marked

then G + x 1s not a cograph by (cond. i)

unmark t;
md(t) €0
end
2.3 w €u
end (step 2)
End FIND-LOWEST

6.1.2.6. Timing analysisof MARK(x) and FIND — LOWEST

In this section follows the timing analysis foethlgorithm (Corneil et al. pp. 933-934):

The algorithm relies on a time bound of O(deg(x)) for the iteration adding x to T, where
deg(x) 1s the degree of x In G + x.

Since all internal nodes of T, except possibly the root, have at least two children, we know
that the MARK (x) procedure will examine only O(deg(x)) nodes. For each of these nodes,

24

the processing 1s done in constant time, and thus the time bound for procedure MARK (x) 1s
O(deg(x)). Itis clear that |[M| 1s also bounded by O(deg(x)), and since FIND — LOWEST
examines each marked node once in constant time, the time for this function 1s O(|M]) =
O(deg(x)).

All but one of the tree alterations can be done in constant time. The only cases which may
require more than constant time are those where the lowest marked node is a (0) node ((1)
node) which has two or more children which have been marked and unmarked (not been
marked). In both cases, we are careful to move the children which were both marked and
unmarked, since the cardinality of this set is O(deg(x))whereas the cardinality of the set of
children which were not marked is not similarly bounded. In procedure MARK (x) we have
maintained a linked list of the children which were marked and subsequently unmarked, and
hence, they can be accessed in time bounded by O(deg(x)). Therefore, all of the tree
modifications can be done in O(deg(x)) time. Thus, we have the required bound for each
iteration, implying an overall time bound of O (m + n) for the entire cograph-recognition
algorithm. This together with the linear time bound for the distance-hereditary graph
recognition algorithm (theorem 6), we do indeed get an overall time bound of O(m + n)

25

7. FORMATION OF A DISTANCE-HEREDITARY GRAPH
FROM TWO OF THAT KIND

The authors Chang, Hsieh and Chen give a newsigewlefinition of distance-hereditary graphs,
using the concept dWin-set and consider a distance-hereditary graph as lsemgsively
constructed by applying the pendant, false twintanel twin operations on distance-hereditary
graphs not restricted to consist of a single vertex

This is made possible through their gaining sonseghts about distance-hereditary graphs and the
representation of such graphs in the so caliedvertex-extension tree (Chang et al. p. 345) which
is directly based on thane-vertex-extension ordering (Chang et al. p. 345). Before revealing this
new recursive definition we will need quite somerpguisites which is given below, following
Chang, Hsieh and Chen (see also appendix 2).

7.1. ONE-VERTEX-EXTENSION ORDERING

As mentioned above, a one-vertex-extension orgesia set of nodes together with an ordering
that constitutes the order in which each verteadided to the graph by twin or pendant operations.
Exactly as with the pruning sequence, the-vertex-extension ordering V; = {v, < ... < v;}

(Chang et al. p. 345) meaniat the distance-hereditary gra@hinduced by the set of vertices

vy, ..., V; iS Obtained from the subgraghof G, induced by the set of verticesg, ..., v;_; making

v; either a pendant or atwintp, 1 < j < i. It is merely a reformulation of the pruning sequenc
Neither the pruning sequence nor the one verteaenskin ordering is unique, since there may be
different sequences of one-vertex extensions |lgadinhe same distance hereditary graph.

7.2. ONE-VERTEX-EXTENSION TREE, ET(G)
7.2.1. Construction of ET(G)

We learn from (Chang et al. p.345) that the-vertex-extension tree, ET (G) with respect to the
one-vertex-extension ordering 6fV = {v, < ... < 1.} is constructed as follows:

Letv; be theroot, and forl < j < i < n follow the one-vertex-extension ordering so thiaa i
vertexv; is one ofiPj, iFj andiTj to vertexv; then it is a child of;. Order the children of a node
as they are ordered in the one-vertex-extensioariomgl In this wayET (G) becomes aooted
ordered tree.

Notice now that when picturing the tree in one'adnor drawing the tree with the root "at the top
of the picture, downwards along a path throughttbe, indices are strictly increasing (this is the
imposed partial ordering). We think of the firstldiof a vertex inET (G) as the leftmost one, and
add the others in increasing order to the rightidédchere that we can have lower indices at the

same distance fromy to the right inanother branch of the tree.

7.2.2. Featuresof the ET(G)

We present the features of the one-vertex-extens@nET (G), following (Chang et al. pp. 345-
346}
Let v; be a parent to v; in ET(G), j < i. We denote by v;v; an edge in ET(G). We call it a
P-edge or a T- respectively an F-edge 1if v; 1s a pendant vertex attached to vj, or a true
respectively a false twin to v;.
If G 1s connected, then v, v, 1s either a P- or T-edge, (recall Remark under theorem 1).
For two vertices v; and v; which are siblings of each other n ET(G) and i < j, we say that v;

26

is to the left of v}, respectively v; is to the right of v;. If j is the maximum (respectively
minimum) number such that v; is a child of v;, we say that v; is the rightmost (respectively
lefimosd child of v;.

ET[i] denotes the subtree of ET(G) rooted at node v; and induced by v; and all of its
descendants.

Suppose v, < v, <o+ < v, < Vs, < < U are children of v; and Vs, 1s not the

rightmost child of v; . Then ETTi, s;] denotes the subtree of v; with respect to node Us;»

which 1s the subtree rooted at v; and induced by v; , Us;s Vs, wees Usy and all decendants of

Usjs Vsjpys woes Vs

V(i) and V (i, s;) denote the sets of vertices in ET[i] respectively ETi, s;].

V(i,s;) — V(sj) is denoted by Vg (i, s;) and ETg[i, s;] denotes the corresponding subtree.
We use G[i] instead of G[V (i)] as a simplification. Similarly we let G[i, s;] = G[V (i, s;)] and
Grli,s;] = Gr[V (i, s))].

7.3. TWIN-SET

We present the concept of twin set closely follmy\iChang et al. pp. 345-346):

The twin set TS (i) of a subtree, ET[i] rooted at v;, is the set of vertices that are descendants
of v; and such that they can be reached from v; through twin edges only. |TS(i)| = 1 since v;
itself 1s in the twin-set.

The twin-set of v; with respect to node Vs, denoted TS(i, s;) is the set of nodes that are both
in ET[i,s;] and TS(i), i.e. TS(i, Sj) = TS(i) N ET[i, s;]. Similarly TSg({, s;) is the set of
vertices that are both in ETg[i, s;] and TS (i), that is TSR(i, Sj) = TS(i) N ETg[L, s;].

The twin set of G, TS(G), 1s the set of vertices that can be reached from the root v; of ET(G)
through twin edges only.

7.4.AFEW LEMMASWITH PROOF.

In this section we present lemnias.2 — 7.4.7 given by Chang, Hsieh and Chen. We give proofs
7.4.3 — 7.4.7. We also give a lemna4.1, with proof, which is useful when proving lemmas

7.4.3 — 7.4.7. We usep(v) = u to denote that is the parent of in ET(G). By N(v) we mean the
neighborhood of in G.

Lemma 7.4.1: Assume thaby,, h > 1, is a vertex irET (G) of G with one-vertex-extension
orderingV = {v; < ... < v,}. Also lety, € V(h) andvs € V(1)\V (h) and assume that € Nv;)
(or equivalentlyv, € N(v,.))

(@) If r > s, then there exists a vertex such that' < r, v’ # vg, v.'v, is a twin edge and
vs € N(v,1).

Proof of (a): We have that > s > 1, so there must be a fathernitg sayv,’. Clearlyr’ < r.

Now {v,’, v} € N(v,) when one-vertex-extension orderiig= {v, < ... < v,.}. Sincev, & V(h)
by assumptiony, is not a descendant tg, therefore neither is its ancestogr, sov,’ ¢ V(h) and
thusv,’ # v;.

Since{v,’,v;} © N(v,.) we conclude that, is not a pendant vertex attached;tq hence a twin.
v,'v, is therefore a twin edge BT (G) andN[v,]\{v/, v.} = N[v,']\{v,", v} which implies that
vs € N(v,) if vg € N(v,1).

It is easily seen that those relations between,. andv, will not change when

27

the one-vertex-extension orderilig= {v; < ... < v,},n > k.

(b) Ifs>r>=1 andp(vy) =v; # v, or vs' # v;
Then there exists a verteyx such thas’ < s, vy’ # v,, the edgey,’v is a twin edge and, €
N(v,").

Proof of (b) (Backelin and Timonen): We have tlsat- r > 1, so there must be a fathentpo, say
vg. s’ < s clearly.

Now {vy’, v} € N(vs) when one-vertex-extension orderiig= {v; < ... < vs}. vs € V(h) i.e.vg IS
a descendant tg, and so is any ancestoy’ to v, for whichs’ > h. Thusv,’ € V(h)U{v;}. If

vg! # v; thenvg’ € V(h) and sincev, € V(h) we have thaty’ # v,., otherwise we have by
assumption that,’ = v; # v,

Now, since{v,’, v} € N(v,) we conclude that is not a pendant vertex attached:¢g hence a
twin. The edgey,'v; is therefore a twin edge BT (G) andNg[vs]\{vs", vs} = Nglvs']\

{vs’, vs}which implies thav,- € N(v;) if v, € N(vg/)[]

Next we present lemmas given by Hung and Changwengive proofs for each and every one.

Lemma 7.4.2 (Chang et al. p.346)he subtrees ET[i] and ET[i, h] of a one-vertex-extension tree of
a distance-hereditary graph are also one-vertex-extension trees of the subgraphs G[i] and G|[i, h]
respectively.

Lemma 7.4.3 (Chang et al. p.346puppose vy, is a child of v; in ET(G) and v;vy, is a P edge. Then
the following two statements hold. (i) Every vertex in V' (h) is adjacent to nly vertices in V (h) U
TSg(i,h),1.e. N[V (h)] € V(h) UTSg(i, h). (ii) every vertex in V(h) — TS(h) is adjacent to only
vertices in V(h), 1.e. Ng[V(h) — TS(h)] € V(h).

Proof (Backelin and Timonen): We consider the followingtesments.
A ="v;v, Is aP-edge INET[G]”
By ="Vv; € V(h) andv, € N(vy),v, € V(h) UTSg(i, h)”

—B; = "3vs € V(h) andv, € N(v;)\(V(h) U TSR(i, h))”
B, = "V vg € V(W)\TS(h) andv, € N(v), v, € V(h).

=B, ="3v; € V(h)\TS(h) andv, € N(vs)\V (h).

To prove thad = B is equivalent to prove that assumihi@nd—-B =1

First we prove that stateme(i) hold.

Assumed and— B,.DefineQ = {(v,, v,) | vs € V(h), v, € N(v5)\(V(h) U TSg(i, h))}. AssumeQ
is not empty. Then there {8, v,.} € Q such thak + r is the smallest sum of indices.

Remark: This sum should be the suns ef h, h is the lowest index iif (h), and some lowest

Firstletr > s. By lemma 74.1(a) r' < r, v, # v, v.'v, is a twin edge and; € N(v,."). Also by
assumptiorny, # v; sincev; € TSk (i, h). Now we hav€v,, v,/) € Q. Buts + r' < s +r so we
have that for any sum+ r of indices inQ, there is a smaller susm+ ' of indices inQ. That
contradicts the assumption tlfais nonempty in which case there would be a smadla® of
indices.

Next consides > r. We have by assumption thate T'S; (i, h) and hencey; # v,
Applying Lemma 7.4.1(b) fas > r andv,, # v, we have thatv, € N(vy") = (v/,v,) € Q.
Buts'+r < s+ r = L. This settles the accuracy of statem@it

Next we prove that conditiofii) holds.As above, assumé and—B,

DefineQ = {(vg, v) | vg € V(R)\TS(h) , v, € N(vs)\V(h)}

28

Assume) is nonempty. Then there (8s, v,) € Q such thak + r is the smallest sum of indices.
Remark: Such a sum must be the sum of some r aldwrest index itV (h)\TS (h) wich would be
held by the first pendant vertex attacheajo

First letr > s.
By lemma7.4.1(a)r’' < r,v,’ # v, v,'v, is a twin edge and; € N(v,") = (v, v,/) € Q. But
sS'+r<s+r=1

Now lets > r, Sinces > 1 there isp(vg) = v’ , vs € V(R)\TS(h) by assumption so we know that
s > h and thereforg (vy) = vg’ # v;. Now applying 7.4.1(b) fos > r andp(vs) = vy’ # v; gives
at hand that,, € N(vy’) = (v, v,) € Q. Buts'+r<s+r =1

If vy = v, andv, € N(v,;) we would have,v,, being a twin edge and therefarge TS(h) which
again is on the contrary to our assumption. Thidesethe accuracy of statemei). 0

Lemma 7.4.4 (Chang et al. p.346puppose vy, is a child of v; in ET(G) and the type of edge v;vy, is
T. Then, in graph Gthe twin set of ET[h] and the twin set of ETg[i, h] form a join (i.e. each vertex in
ET[h] is adjacent to each vertexAiTy[i, h]).

Proof (Backelin and Timonen)\Ve consider the statements:

A ="[v;,v,]is aT-edge inET[G]”

B = "Vv, € TS(h) andv, € TSg(i,h) : v, € N(vy)”
— B ="3v, € TS(h) andv, € TSg(i,h) s.t.v, & N(vy)”
To prove thatd = B is equivalent to prove that assumii@nd—-B =1
We defineQ) = {(v,, v,) |vs € TS(h) andv, € TSg(i,h) s.t.v, & N(vg)}. Assumed and—B i.e. A
andQ is not empty. Then there (&,, v,-) € Q such that + r is the smallest sum of indicies. This
sum should be + r = h + i sinceh is the lowest index if'S(h) andi is the lowest index in
TSg(i,h)

To prove this first let > h

We have that > h > 1 sincevy, has a fathep;. The parent of isv,'. Sincev; € TS(h) S0 isvy’
andv,'v, is a twin edge. This implies that € N(v,) = v, € N(v,’). Hence(vy', v,) € Q buts’ <
s so thats’ + r < s + r for all indices ofs > h which contradicts our assumption about the sum
s + r.This holds regardless ofs being greater or smaller thanf r < s, andv, € N(v,) then it is
easily seen that, ¢ N(v,"). If r > s we will havev, € N(v,’) for somer’ < s such that,’ ¢

N (vg) by assumption. And sinag € TSi(i, h), v,'v, = twin edge and thus, & N(vy).

Next letr > i.

We have that > i > 1 and thus there is a father to v, and alsas,’ € TSg(i,h),s +1' <s+r,
V', IS clearly a twin edge which implies that¢ N (v,) = vs € N(v,7) for a couplevs, v,7) €

Q. This holds regardless of s's being greater otlenthanr .

If s < r andvg € N(v,) then itis easily seen thaf ¢ N(v,/). If s > r we will havev; € N (v)

for somes’ < r such thavy’ € N(v,) by assumption. And sinag € TS(h), vs'v, is a twin edge
and thusy; € N(v,.). Now we know that = h andr = i so thats + r = h + i must be the smallest
sum of indices iM). But sincev;v,, is aT-edge,v; € N(v;,) and sQ(v;, vy,) € Q.

Corollary 7.4.5 (Chang et al. p.346%uppose vy, is a child of v; in ET(G) and v; vy, is a P edge.
Then, in graph Gthe twin set of ET[h] and the twin set of ETg[i, h] form a join.

Proof (Backelin and Timonen)rhe very same argumentation holds#gw, is aP-edge, in which
case alsw; € N(vy,). Remark: ifv;v, is anF-edge,v; andv,, are not adjacent.

29

Lemma 7.4.6 (Chang et al. p.347%uppose v; is a node in ET(G). Then Ng[V; — TS(i)] € V (i),
L.e. vertices in V(i) except those in the twin set of v; are adjacent to only vertices in the subtree of
ET(G) rooted at v;.

Proof (Backelin and Timonen)\Ve consider the statements:
A ="v; isanode irET(G).
B ="Vv, € V(D)\TS(i) and v, € N(v,); v, € V(i)”
—B ="3v, € V()\TS(i) and v € N(vs); v, & V(i)"
To prove thad = B is equivalent to prove that assumii@nd—-B =1

DefineQ = {(v,, v) | vg € V(D)\TS(i) and v, € N(vy), v, & V (i)}
Assume() is nonempty. Then there (s, v,-) € Q S.t.s + r is the smallest sum of indices.

First assume > s. By lemma 7.4.1(a)’ < r, v, # vg, v,'v, IS @ twin edge and; € N(v,’) =>
(vs,) € Q. Buts'+r <s+r =1

Next assume > r. Sincevg & TS(i) we know that > h so we have thai(vy) = vy’ # v;.
lemma 7.4.1.(a) implies,- € N(v’) = (vs,v,) € Q. Buts'+r <s+r =1

Lemma 7.4.7 (Chang et al. p.347puppose vy, is a child of v; in ET(G) and v;vy, is an F edge.
Then, G[i, h] 1s not connected, and in graph G no vertex in V' (h) 1s adjacent to any vertex in Vz (i, h).

Proof (Backelin and Timonen)et G’ be the distance-hereditary subgraph of G, with\aréex
extension{vy, ..., v; , v, }, Wherev; andv, are false twins. Hence @i, N,/ (v;) = Ny (vy),
whereas IrET (G) the edgev; vy, is anF-edge and there are no right siblings4o

LetA = N/ (v;) = Ny (vy). We have that neither, norv,, is contained il. The se#d is a subset
of V(G") and contains vertices W G)\V (i, h).

In order to prove that no vertexi(h) is adjacent to any vertex W [i, h], we want to show that
any vertex iV (h) has neigbhors only ii(h) U A and any vertex ifz (i, h) has neighbors only in
Ve (i, h) U A.

We will use induction to prove that any vertexX/i(h) has neighbors only ii(h) U A.
LetV(h) = {x4, x5, ... }, wherex, is ordered by increasing vertex index, whenge- vy,.

Leta € {1,...,|V(h)|} and letG® be the induced subgraph o) ..., v;, vp, X1, ..., Xq. Thus
G’ = GM. We shall prove thaV .« (x;) € V(h) U A forj € {1, ..., a}.
We have thal ;s (x;) = Ng (vy) = A. Thus the assertion holds for= 1.

Assume that fon < |V (h)| andx; € {xy, ..., x4} it holds thatV () (xj) € V(h) U A. Note that

G @+ js the extension af (¥ by attaching the vertex,,, to a vertexy,, 1 < b <a+1, by a
one-vertex extension. We have three cases.

Case 1. I, is a pendant vertex tq,, then N+ (Xq+1) = X, € V(h).

Case 2. lfx,44 is a true twin to then N a+1)(Xq+1) = N;@+n[xp]. By induction
hypothesis we have thal .+1[x,] € x, UV (h) U A.

Case 3. Ifx, 44 is a false twin to,, then N+ (Xg41) = Nsw@+n(xp). By induction
hypothesis we have thai .+ (xp) € V(h) U A.

30

Hence any such vertey,, ; is a child ofx, in ET(G@*V) and will thereby be contained ¥i(h)
although not contained . x,,, may have as neighbors the verigx vertices in4 or vertices in
V(R), that iSN +1) (%) € Ny (x;) U {x441}. Thus it holds that any vertex (k) has neighbors
onlyinAuV(h).

Now, letG’ be the distance-hereditary subgraplt pivith one-vertex extension
{vy, ...,V ,Vp, X4, ..., Xq }, Wherev; andv,, are false twins, ang, ...,x, € AU V(h).

We will again use induction to prove that any veitelVy (i, h) has neighbors ifi; (i, k) U A only,
and hence no neighborslth) .

LetVx (i, h) = {v;, y1, Y2, - }, Wherey, is ordered by increasing vertex index. te€
{1, ..., |Vx(i,)|} and letG(©) be the induced subgraph o ..., v; , v, X1, ..., Xg, V1,) Ye. THUS,
with previously used notatio; = G™. We shall prove tha¥ .« (yx) € Vi (i,h) U Afork €

{1,..,c}.

We have thal./(v;) = A and also thay, is a child ofv; in ET(G™). y, is either a pendant
vertex, a true twin- or a false twin tp. If y, is a pendant vertex tq thenN.(y,) = v; €

Vr (i, h) # V(h). In the other two cases, whergis a false twin respectively a true twinupit
holds thatV;/ (y;) = N(v;) = A # V(h) respectivelyW,(y,) = N[v;] € Vg(i,h) U A = V(h).
Thus the assertion holds for= 1.

Assume that for < |Vz(i, h)| andyy € {y, ..., ¥} it holds thatV .« (yx) € Vr(i, h) U A. Again,

note thatz ¢*1) is the extension af(©) by attaching the vertex.,, to a vertexy;, 1 < d < ¢ + 1,
by a one-vertex extension. We have three cases.

Case 1. If y.,, is a pendant vertex iy, then N+ (Vc+1) = Ya € Vr(i, h).

Case 2. If y ., is a true twin toyg, then N c+1) (Vc+1) = Nge+n[yq]. By induction
hypothesis we have thal . +1)[y4] € Vr(i, h) U A.

Case 3. If y.,, is afalse twin tg,, then N+ (Yc+1) = N+ (¥q).. By induction
hypothesis we have thal .c+1 (y4) € Vz(i,h) U A.

Hence any such vertex_ , is a child ofy, in ET(G“*Y) and will thereby be contained ¥ (i, h)
although not contained . y.+1 may have as neighbors the verjgx vertices inA or vertices in
Vr(i, h), that isN .+ (¥k) € Ny (Vi) U {yc+1}- Thus it holds that any vertex W (i, h) has
neighbors only iz (i, h) U A and hence no neighborsliiih).SinceA, the only common
neighborhood of vertices in(h) and vertices iz (i, h) is not contained i& (i, h) it follows that
G (i, h) is disconnected

7.5.FROM OLD TO NEW DEFINITION
OF DISTANCE-HEREDITARY GRAPHS

Closely following Chang, Hsieh and Chen we wiltdhgresent the very leap from the old to the
new definition. Then we present Chang et al.’s definition of distance-hereditary graphs stated
as in Hung and Chang. In the next section we ptekerdecomposition tree. First we recall a few
key concepts from above. A distance-hereditarylytegs a one-vertex-extension ordering, from
which one can obtain a one-vertex-extension traes ffee reveals information about the distance
hereditary graph, and using the lemmas presen@eeaine can make a few observations and
conclusions.

31

With the definitions from the section 7.2.1- 7.Zhang et al. define the twin-s€£(1) of G. They
also show that one can partition the vertex setfiotir disjoint sets (Chang et al. p.347):
V(2) —TS(2),TS(2), Vg(1,2) — TSr(1,2), and TSi(1,2). We can consider that G 1s
formed from G[2] and Gg[1,2] according to the type of edge v, v, , that 1s the type of edge
between the root and the first child of the root, in ET(G). If v;v, is P or T we have by lemma
7.4.1 and 7.4.2 that G 1s formed by connecting every vertex in TS(2) to all vertices in
TSg(1,2). If the edge v,v, is of type P, then TS(G) = TSg(1,2). If the edge v, v,is of type T,
then TS(G) = TS(2) U TSg(1,2). If the edge v, v,is of type F we have by lemma 7.4.7 that
G[2] and Gg[1,2] are not connected, i.e. G is the union of G[2] and Gx[1,2]. TS(G) =
TS(2) UTSz(1,2)

This is the very leap from the one-vertex-extensitanthe formation of a distance hereditary graph
from two others that may have more than one vertex.

Now that all prerequisites are settled it is timg@tesent the recursive definition of distance-
hereditary graphs. This definition is actually dimigon of pairs: (G, TS(G)), the distance-
hereditary graph together with its twin-set. Thader is also referred to Appendix 3.

Definition 7.5.1 (Chang et al. p347, with the notation from Hung @tdng p.414):
The class of distance-hereditary graphs can be defined by the following recursive definition:
1) A graph consisting of a single vertex is a distance-hereditary graph with the twin set {v}.
2) If G}, and Ggare distance-hereditary graphs then the union G of G and Ggis a distance-
hereditary graph and TS(G) = TS(G,) U TS(Gg). Then G 1s formed from G; and Gg by a
false-twin operation. This 1s denoted G = G, (F)Gg.
3) If G; and Gg are distance-hereditary graphs, then the graph obtained from G; and Gy by
connecting every vertex of TS(G}) to all vertices of TS(Gg) is a distance-hereditary graph and
TS(G) =TS(G,) UTS(Gr). We say that G is formed from G; and Gkby a true-twin
operation. This 1s denoted ¢ = G (T)Gp.
4) If G and Gg are distance-hereditary graphs, then the graph G, obtained from G and G by
connecting every vertex of TS(G,) to all vertices of TS(Gg) is a distance-hereditary graph and
TS(G) = TS(Gy). In this case we say that G is formed by a pendant operation. This is
denoted G = G (P)Gg.

Note that with the notation from the partitioniofg/ (G) above we have, perhaps a bit confusing,
thatG; = Gy[1,2] andGy = G[2] .

The graphs obtained from a true twin respectiaghendant operation are isomorphic, having
different twin sets only.

If G = G, (F)Gg, thenG is disconnected for any;, andGy in the new definition, whereas with the
old definition only extending(; by a false twin operation will result in a discected distance
hereditary graph.

A distance-hereditary graph in “the old sense” &asin-set, as seen in the derivatiorE®G).

7.6. The decomposition tree, DT (G)
Definition 7.6.1. (Chang et al. p347, with the notation from Hung @héng p.414):

The decomposition tree DT (G) of a distance-hereditary graph G consisting of a single vertex v
1s a tree of one node labeled by v. If G 1s formed from G; and Gy by a false-twin (respectively
true-twin, pendant) operation, then the root of the decomposition tree DT (G) 1s a node
labeled by F (respectively T, P) with the roots of DT (G;) and DT (Gg) being the left and right

32

children of the root of DT (@), respectively.

Given the one-vertex-extension ti&B(G) of Gone recursively constructs the decomposition tree,
DT (G), of G in the following way:

The root is a vertex labeled by the type of edgefthe root oET(G) to its first child, i.e. the type
of edgev, v, in ET(G). Next, determin&(1,2) andV (2) in ET(G). The conclusions derived
above allows us to considéras being formed frorGg[1,2] andG|[2] according to the type of
edgev,v, in ET(G). Let G, = Gg[1,2] andGr = G[2]. By lemma 2, the subtreéd’(G;) and

ET(Gg) are also one-vertex-extension trees of the suthgi@, andGy respectively. Thus there is

a decomposition treBT (G;) and a decomposition tréd (Gg). This will be demonstrated in the
appendix.

7.7 A Twin Set Theorem with proof

Here we will state a theorem and give its proolipfved by a corollary and a remark on forbidden
subgraphs in twin-sets of distance-hereditary gsaph

Theorem 8. A twin-set of a distance-hereditary graph canindtice aP, as a subgraph.

Proof: Assume that is a distance-hereditary graph with twin-sgt.., v, such that this twin-set
induces &,. Assume thag; is a distance-hereditary graph on one vestethencel S(G,) = u,),
and that = G, (T)Gg. ThengG is a distance-hereditary graph and the first lexti respect ta,,
N, (u,) consists of an induced path of length 3, whicledydition (ii) of theorem 4 is impossible
for a distance-hereditary graph.

Corollary: Using twin-set operations, it is impii®s to create a path of length three, such tHat al
four vertices belong to the twin-set.

Remark 1: the graph constructed above by a trugdperation is readily seen to be the gem — a
forbidden subgraph in any distance-hereditary graph

Remark 2: in the same way, one can deduce thef gmtidden subgraphs (and thereby impossible
to construct with twin- and pendant operationshuoetl by the twin-set of a distance-hereditary
graph emanating from the overall forbidden subgsagfidistance-hereditary graphs, namely the
house, the domino and the long cycles.

33

8.ASOLUTIONTO THE HAMILTONIAN PATH-PROBLEM ON
DISTANCE-HEREDITARY GRAPHS

Before presenting the recursive program for deitarg whether a given distance-hereditary has a
Hamiltonian path or not we do need some definitioinsoncepts that are used for doing so. We also
need a few lemmas and theorems. They are presiarntad section. All lemmas, theorems and
proofs thereof presented below are given by Hurig@mang. We shall present the proofs of the
main theorems: theorems 9, 10 and 11 as given lmgldod Chang, whence the interested reader is
referred to Hung and Chang for proofs of the lemmas

8.1 PREREQUISITESFOR THE SOLUTION TO HAMILTONIAN PROBLEMSON
DISTANCE-HEREDITARY GRAPHS

In the definitions below it is assumed tldat (V, E) is a distance-hereditary graph and either
G =G, (P)Gr, G = G,(F)Gg orG = G, (T)Gg.V, andVy denotes the vertex sets@fandGy
respectively.

Definition 8.1.1 (Hung and Chang p.416):
The first and the /fast vertices that are visited by the path P, are called the path-start and path-
end of P, respectively. Both of them are end vertices of P. For a path P of a graph, we allow
that the path-start and path-end of P are the same only in the case when P contains exactly

one vertex.

Definition 8.1.2 (Hung and Chang p.416):
A path cover PC of a graph G 1s a set of pairwise vertex-disjoint paths of G such that all vertices
are visited by exactly one path in PC. A munimum path cover of G 1s a path cover of G of
minimum cardinality.

Definition 8.1.3 (Hung and Chang p.416):
For a path cover PC of G, the end vertices not in TS(G)are called free vertices of PC. The free
number of PC in G is the number of free vertices, and is denoted T(G, PC). For simplicity we
shall in this paper denote it T.
Definet, (G, PC) = |{v | vis an end vertex of a path in PC,v € TS(G) and v € V;.}|. That is,
V is a free vertex in G that origins from the left graph Gy, when forming G. Tg(G, PC) is defined
i the same way, and in this paper T and tg will be used n the obvious way.

Definition 8.1.4 (Hung and Chang p.416):
A path of G 1s called a twin-set path or, n this paper a proper twin set path, if both its end
vertices are in TS(G). A path of G is called a semi-twin-set path if exactly one of its end
vertices is in TS(G).
A path cover PC 1s called a twin-set-path cover of G 1f the following holds:
(@) every path in PC 1s either a semi- or a proper twin-set path.
(b) at most two paths in PC are semi-twin-set paths.

Notice that a path on one vertex is either a propar set path or not a twin set path, since thet st
and the end vertices are the same and thus caemotdifferent sets.

Definition 8.1.5 (Hung and Chang p.416):
f(G) denotes the minimum free number of a twin-set path cover of G. If G has no
twin-set path cover, then f(G) 1s undefined. A twin-set path cover PC of G with T = f(G) is

34

called a minimum-free-number twin-set path cover of G if f(G) 1s defined.

Definition 8.1.6 (Hung and Chang p.416):
Let U be a subset of V(G), and let P be a path in G. A subpath P’ of P is called a U-subpath
of P if P’ visits vertices in U only. Such a U-subpath is U-maximalif it is not a proper subpath
of any U-subpath of P. For PC denote by U(PC) the set of all U-maximal subpaths of all paths
m PC.

Proposition 8.1.7 (Hung and Chang p.417):
Assume that PC 1s a twin-set path cover of a distance-hereditary graph G. Then,

7,(G,PC) = ©(G,, V,(PC)) and 15 (G, PC) = 1(Gg, Vr(PC)).

Lemma 8.1.8 (Hung and Chang p.419):
Assume that G 1s formed from G and Gg by one of a false-twin operation, a true-twin
operation, and a pendant operation, and that PC is a twin-set path cover of G. Then, V;,(PC)
and Vz(PC) are twin-set path covers of G and Gg respectively and 7(G, PC) = f(G,) +
f(Gg)

8.1.1 Theorem 9 with proof

Theorem 9 (Hung and Chang p.419):
Assume that G = G (F)Gg or G = G (T)Gg.
Then the following two statements hold:
(@) G has a twin-set path cover if and only if both G} and Gy have twin-set path covers, and
f(GL) + f(Gr)<2.
(b) If G has a twin-set path cover, then f(G) = f(G.) + f(Gg).

Proof (Hung and Chang p.419):
We first prove statement 9(a). Suppose that PC 1s a twin-set path cover of G. By definition,
7(G,PC) < 2. By Lemma 8.1.8, V; (PC) and Vz(PC) are twin-set path covers of G, and Gg
respectively, and 7(G, PC) = f(G.) + f(Gg). Thus f(G;) + f(Gg) < 2. This proves the
only if part of 9(a).
Suppose that both G} and Gg have twin-set path covers and f(G.) + f(Gg) < 2. Then, G,
and Gi have minimum-free-number twin-set path covers PC; and PCg, respectively.
Let PC = PC, U PCg. Then, 7(G,PC) < 2 since ©(G,PC) = f(G,) + f(Gg) and
f(GL) + f(Gg) < 2.
Hence, PC 1s clearly a twin-set path cover of G and hence, G has a twin-set path cover. This
proves the if part of statement 1.
Next we prove statement 2. Suppose G has a twin-set path cover. By statement (1) both G; and
Gg have twin-set path covers and hence, G; and Ggrhave mimimum-free-number twin-set path
covers PC; and PCyg, respectively. By definition, T(G;, PC,) = f(G,) and , T(Gg, PCg) =
f(GR).
Thus (G, PC, U PCR) = ©(Gy, PC,) + t(Gg, PCR) = f(G.) + f(GR).
By Lemma 8.1.8, PC;, U PCg1s a minimum-{ree-number twin-set path cover of G,

and f(G) = f(G.) + f(Gg). This prove statement 9(b). []

Lemma 8.1.9 (Hung and Chang p.419):
Assume that G 1s formed from G and Gy by either a false-twin operation or a true-twin
operation. If PC is a minimum-free-number twin-set path cover of G, then V;(PC) and
Vi (PC) are twin-set path covers of G} and G, respectively.

35

Lemma 8.1.10 (Hung and Chang p.420):
Assume that G 1s formed from G, and Ggby a false-twin operation, PC 1s a twin-set path cover
of G of size p with T free vertices, and that PC;, and PCg are minimum-free-number twin-set
path covers of Gy, and Ggrespectively, where |V, (PC)| = |PC.| = |VL(PC)|- ‘E(GL, VL, (PC)) +
f(Gp) and |VR(PC)| = |PCg| = |VR(PC)|—‘E(GR, VR(PC)) + f(GR). Then, there exists a
minimum-free-number twin-set path cover PCs of G of size pf such that p = pf = p-1 + f(G).

Lemma 8.1.11 (Hung and Chang p.420):
Assume that G 1s formed from G, and Gg by a true-twin operation and that PC 1s a twin-set
path cover of G.
Then, |[VL,(PC)| + |[VR(PC)| = |PC| =
max{1, ©(G, PC), |VL(PC)|- |[VR(PC)| + tr(G, PC), |VR(PC) |- |VL(PC)| + T.(G, PC)}.

Lemma8.1.12 (Hung and Chang p.421):
Assume that G 1s formed from G, and Gg by a true-twin operation, PC;, and PCg are
minimum-free-number twin-set path covers of G;, and Gy respectively, and that T =
(G, VL(PC)) + t(Gg, VR (PC)) < 2. Then, for any number k, where |[PCy| + |PCg| > k >
max{1, t, |PCy |- |PCr| + T(Gg, PCR), |PCgr|- |PCy| + T(Gy, PC.)}, there exists a twin-set path
cover PC of G of size Kk such that VL(PC) = PC, VR (PC) = PCg, and 1(G,PC) = .

Lemma 8.1.13 (Hung and Chang p.422):
Assume that G 1s formed from Gy, and Gg by a true-twin operation, PC 1s a twin-set path cover
of G of size p with T free vertices, and that PCy, and PCgr are minimum-free-number twin-set

path covers of Gy, and Gy respectively, |V, (PC)| = |PCy| = |VL(PC)|-t(Gy, VL.(PC)) + f(GyL)
and |VR(PC)| = |PCg| = |VR(PC)|—T(GR, VR(PC)) + f(GR). Then, there exists a minimum-
free-number twin-set path cover PC¢ of G of size pf such that p = pf = p-1 + f(G).

Lemma 8.1.14 (Hung and Chang p.423):
Assume that G 1s formed from G, and Gg by a pendant operation and that PC 1s a twin-set
path cover of G. Then, |PC| = |V, (PC)|-|VR(PC)| + tr(G, PC) and |V, (PC)|- |[VR(PC)| =
t.(G,PC) = f(GL).

Lemma 8.1.15 (Hung and Chang p.423):

Assume that G 1s formed from G; and Gg by a pendant operation, PC; and PCg are minimum-
free-number twin-set path covers of G and Gy respectively, (G, PC;) + 1(Gg, PCg) < 2, and
that |[PC.|-|PCg| = 1(Gy, PCL,). Then G has a twin-set path cover PC satisfying the following
conditions:

(@) V,(PC) = PC,,Vx(PC) = PCg;

(b) exactly one of the following two conditions holds:

2.17(G,PC) = 1(G,, PCy) + ©(Gg, PCg) and |PC| = |PC.|- |PCg| + ©(Gg, PCy);

2.2 1(G, PC) = 1©(Gg, PCg) = 0|PC,| = |PCg|,|PC| = 1,and ©(G,PC) = t3(G,PC) = 1.

Lemma 8.1.16 (Hung and Chang p.424):
Assume that G 1s formed from G; and Gi by a pendant operation, PC 1s a twin-set path cover
of G of size p with t free vertices, and that PC; and PCgx are minimum-free-number twin-
set path covers of G and Gy respectively, where

V.(PO)| = |PCy| = [V, (PO)|-T(GL, Vi(PO)) + f(Gy) and [VR(PC)| = |PCq| 2
[Vr(PC)|- T(GR, Vx(PC)) + f(Gg). Then, there exists a twin-set path cover PCy of G of size

36

py satistying the following conditions:
1) V,(PCs) = PC,, and Vx(PCs) = PCy,
2 p= pr=p-1+71(G,PC),
3) ©(G,PCs) <,
4) exactly one of the following two conditions holds:
@ 7(G,PCr) = f(GL) + f(Gr),
) f(G,) = f(Gg) =0, py = 1,and 7(G, PC;) = (G, PCy) = 1.

We shall now state one of the main theorems of this section. It contains a recursive definition
of the numbers k4 (G) and k,(G) which are the maximum, respectively minimum size of twin-
set path cover of G.

8.1.2. Theorem 10

Theorem 10 (Hung and Chang p.425):
Assume that either G = G (P)Ggr, G = G (F)Gg or G = G (T)Gp.
Then the following statements hold:
(1) 1if G has a minimum-free-number twin-set path cover of size p, then G has a mmimum-
free-number twin-set path cover PCr of size p such that V}, (P Cf) and Vp (PC f) are
minimum-free-number twin-set path covers of G; and G respectively.

(2) If G has a twin-set path cover of size p with free number 7, then G has a mmimum-
free-number twin-set path cover of size pr such thatp = py = p-7 + f(G).

(8) Suppose G has a twin-set path cover. Then, there exists two numbers x; (G) and
K, (G) such that G has a minimum-free-number twin-set path cover of size k, if and
only if k,(G) = k = k,(G). Moreover, the values of k;(G) and k,(G) are as
determined recursively as follows:

(a) fG = GL(F)GR , then Kl(G) = KI(GL) + KI(GR) and Ky (G) = Ky (GL) +
K2 (GR).

(b) if G = G (T)Gg, then k1 (G) = k1(Gy) + k1 (Gr) and Kk, (G) = max{1, f(G),
12 (GL) — k1(Gg) + f(GR), k2 (Gr) — K1 (GL) + f(GL)}-

(0) if G = G, (P)Gg, then k1 (G) = max{1,k,(G,) — k,(Gg) + f(Gr) + f(GR)}
and 1,(G) = max{l, f(G,) + f(Gg), k2(GL) — k1 (Gg) + f(GR)}-

(4) Suppose G = G (P)Gg. Then G has a twin-set path cover if and only if the following
three conditions are satisfied:
(@ both G and Gghave twin-set path covers.
) b) f(G)+ f(Gr) < 2.
(© K1(GL) — K2(Gr) = f(GL).

(b If G = G, (P)Grand G has a twin-set path cover, then f(G) = f(G,) + f(Gg) if
k1(Gy) — Kk,(Gg) = 0; and f(G) = max(1, f(Gg)} otherwise.

8.1.3. Proof of theorem 10

Following Hung and Chang we present the proohebtem 10 (Hung and Chang pp.426-434):
37

This theorem 1s proved by using induction on the number of vertices of G. Clearly, statement
2 and 3 (except the recursive definition) hold true if the number of vertices 1s one.

In this case let k;(G) = k,(G) = 1 and f(G) = 0. by induction hypothesis, all statements
hold true for graphs with the number of vertices smaller than G. Hence, all statements hold
true for G and Gg. We will prove statement (1) by using the induction hypothesis of statement
(2). By induction hypotheses of statement (2) and statement (3), we prove statement (2). We
will prove statement (4) by using statement (1) and the induction hypothesis of statement (3).
By statement (1), statement (4), and the induction hypothesis of statement (3), we prove
statement (3). We will prove statement (5) by using statement (4) and the proof of statement
(8). These statements n this theorem are closely related and we shall prove the theorem as a
whole. In the following, we will prove all statements hold true for G.

Proof of statement (1). By Lemma 8.1.9, the statement 1s true 1if G 1s formed from G and
Ggrby either a false twin operation or a true-twin operation. In the following, assume G 1s
formed from G; and Gzby a pendant operation. Consider the following two cases:

Case 1: f(G) = 0. Let PC be any minimum-free-number twin-set path-cover of G. Clearly
7,(G,PC) = 0 and 7 (G, PC) = 0. By proposition 2.2,7, (G, PC) = t(G,, V,(PC)) and
Tr(G, PC) = T(Gg, Vg (PC)). Therefore, T(Gy, V,(PC)) = ©(Gg, Vr(PC)) = 0

andhence, V;, (PC) and Vx(PC) are minimum-free-number twin-set path covers of G; and Gg
respectively.

Case 2: f (G) =1. Let PC be any minimum-free-number twin-set path cover of G of size p with
T free vertices. By induction hypothesis of statement (2), there exist minimum-free-number
twin-set path covers PC;, and PCg of G and Ggrespectively such that |V, (PC)| = |PC,| =

[V, (PC)|-7(Gy, V,(PC)) + f(GL) and |Vg(PC)| = |PCg| = |[Vr(PC)|-7(Gg, Vr(PC)) +
f(Gg). By Lemma 8.1.16 there exists a twin-set cover PCs of G of size pf such that

V,(PCr) = PCy, and Vg(PCy) = PCg,p = py = p-7 +17(G, PCf), (G, PCs) < 7, and
exactly one of the following two conditions holds:

(c.1.1) ©(G, PCy) = f(GL) + f(Gg),

(c.1.2) f(G,) = f(Gg) = 0,pf = 1,and ©(G, PC;) = 1(G, PCy) = 1.

If condition (c.1.1) holds, then PCfis a minimum-free-number twin-set path cover of G by
Lemma 8.1.8. If condition (c.1.2) holds, then PCf is a minimum-free-number twin -set path
cover of G by Lemma 8.1.8 since T(G, PCf) = 1and f(G) = 1. In all the above two subcases
PCf 1s a minimum-free-number twin-set path cover of G and hence T(G, PC f) = 7. Sincep =
pr=p-T+ T(G, PCf) and T(G, PCf) = 7, we have py = p. Therefore PCr 1s a minimum-
free-number twin-set path cover of G of size p with that V;, (PCf) and Vg (PCf), are minimum-
free-number twin-set path covers of G and Gy respectively.

By arguments given in the above two cases, this statement holds when G 1s formed from G,
and Gg by a pendant operation. This completes the proof of statement (1). [

Proof of statement (2). Assume PC is a twin-set path cover of G of size p with T free vertices.
By Lemma 8.1.8, V3 (PC) and Vz(PC) are twin-set path covers of G; and Gy respectively. By
mduction hypothesis of this statement, there exist mmimum-free-number twin-set path-covers
PC; and PCyof G and Gg respectively, such that

VL(PO)| = |PCy| 2 |V, (PO)|-T(Gy, VL (PO)) + f(GL) and [Ve(PC)| = |PCgl| 2
|[Vr(PC)|- T(GR, Vg (PC)) + f(Gg). By lemmas 8.10 and 8.13 this statement is true if G 1s
formed from G; and G by either a false-twin operation or a true-twin operation. In the
following, assume G 1s formed from G; and Gy by a pendant operation. By Lemma 8.1.16,
there exists a twin-set path cover PCr of G of size ps such that

38

V.(PCr) = PCy, and Vg(PCy) = PCg, p = py = p-7 + 7(G, PCy), 7(G, PCy) < 7, and
exactly one of the following two conditions holds:

(c.2.1) 7(G, PCr) = f(GL) + f(Gr),

(c.2.2) f(G,) = f(Gg) = 0,p; = 1,and t(G, PCy) = 1x(G, PC;) = 1.

Consider the following four cases:

Case 1. Condition (c.2.1) holds. In this case, PCs is a minimum-free-number twin-set path
cover of G and p = pr = p-7 + f(G) since T(G, PCf) = f(G) by Lemma 8.1.8. Hence, this

statement 1s true n this case.
Case 2. Condition (c.2.2) holds and f(G) = 1. This statement is clearly true in this case.

Case 3 Condition (c.2.2) holds, f(G) = 0, and there exists a minimum-free-number twin-set
path cover PCs+ of G of size 1. Let PCs be PCg+. Then, this statement holds since |PCs+| =
pr = land (G, PCs+) = f(G) = 0.

Case 4 Condition (c.2.2) holds, f(G) = 0, and all minimum-free-number twin-set path covers
of G are of size greater than 1. Since the only path in PC starts from a vertex in the twin-set of
G, and ends at a vertex of in the twin-set of Gg, we have that |V}, (PCf)| = |Vy (PCf)| and

43 (P Cf) and Vg (PCy) are minimum-free-number twin-set path covers of G and
Ggrespectively. Let PCgr be a minimum-free-number twin-set path cover of G. By assumption,
|PC¢| > 1land ©(G, PC) = f(G) = 0. By Lemma 8.1.14 |PCg| = |V, (PCg)| — [Vr(PCp)| +
Tr(G,PCr) = |V,(PCr)| — |Vr(PCg)| > 1 and hence |V, (PCg)| > |Vx(PCg)|. By
proposition 8.7 7, (G, PCr) = (G, V,(PCg)) and t.,(G, PCr) = T(Gg, Vg (PCF)). Since
f(6) =1(G,PCr) = 7,(G, PCf) + (G, PCp) = 0,0 = 7(G, V,(PCr)) + T(Gg, Vr(PCF))
and hence T(GL, VL(PCF)) = 7(Gg, Vg (PCr)) = 0. Hence, V,(PCg) and Vi (PC) are
minimum-free-number twin-set path covers of G; and Gp respectively. There are the following
two subcases:

Case 4.1 |Vg(PCp)| < |Vg(PCy)|. Since |V, (PCF)| — 1 = |Vg(PCs)| — 1 = [Vg(PCr)| and
both Vz(PCr) and Vg (PCf) are minimum-free-number twin-set path covers of G, there exists
a minimum-free-number twin-set path cover of Gy of size |V, (P C f)| — 1 by induction
hypothesis of statement (3).

Case 4.2 |Vg(PCg)| = |Vr(PCf)|. Since |V, (PCp)| > |Vr(PCr)| = [Vr(PCr)| = [V, (PC)I,
we have |V, (PCp)| = |Vg (PCf)| + 1. since both V,(PCy) and V}, (PCf) are minimum free-
number twin-set path covers of G, there exists a mmimum-free-number twin-set path cover of
G, of sizelVR (PCf)l + 1 by induction hypothesis of statement (3).

In both the above two subcases, we can obtain a Hamiltonian path of G starting from a vertex
in the twin set of G, and ending at a vertex in the twin set of G;. Hence, we have a minimum-
free-number twin-set path cover of G of size 1, a contradiction.

By arguments given 1n the above four cases, this statement holds when G 1s formed from G,
and Gg by a pendant operation. This completes the proof of statement (2). [

Since statement (4) will be used to prove statement (3) in case that G 1s formed from G; and
Gg by a pendant operation, we prove statement (4) before statement (3) in the following.

Proof of statement (4). We first prove the only if part of this statement. Suppose G has a twin-
set path cover. By Lemma 8.1.8 both G and Ggand have twin-set path covers and f(G) +

f(Gg) < 2. Hence, condition (a) and condition (b) of this statement are satisfied. Since G has
at twin-set path cover, G has a minimum-free-number twin-set path cover. By statement (1), G

39

has a minimum-free-number twin-set path cover PC such that V; (PC) and Vz(PC) are
minimum-free-number twin-set path covers of G and Ggrespectively. By Lemma

8.1.14.|VL (PC)| — |VR(PC)| = f(GL). By induction hypothesis of statement (3), k;(G,) =
[VL(PC)| = k2(GL) and k1 (Gg) = |VRr(PC)| = K2(Gg). Thus k1 (GL) — Kkz(Gg) =

[VL.(PC)| — |Vg(PC)| = f(GL) and hence condition (c) of this statement is satisfied. This
proves the only if part of this statement. Next, we prove the if part of the statement. By
mduction hypothesis of statement (3), there exist minimum-free-number twin-set path-covers
PCj and PCyof G} and Ggrespectively such that |PC; | = k1 (G,) and |PCg| = k,(Gg). Since
k1(GL) — k2(Gr) = f(GL), |PCL| — |PCg| = f((GL) = T(Gy, PCy) . Clearly T(G, PCL) +
T(Gg, PCR) = f(G) + f(Gr) < 2. By Lemma 8.1.15 G has a twin-set path cover and hence,
the 1f part of this statement holds true. This completes the proof of statement 4. [I

Proof of statement (3). By assumption, G has a twin-set path cover. Hence, G has a minimum-
free-number twin-set path cover. Suppose PC is a minimum-free-number twin-set path cover
of G of size k. We have three cases: G 1s formed from G and Ggby a false-twin operation, a
true-twin operation and a pendant operation.

Case 1:G is formed from G and Gg by a false-twin operation.

We first prove the only if part of this statement in this case. Since all vertices in V are not
adjacent to any vertex in Vg, |PC| = k = |V, (PC)| + |Vx(PC)|. By Lemma 8.1.9, V; (PC)
andVg (PC) are minimum-free-number twin set path covers of G; and Gg respectively. By
iduction hypothesis of this statement, we have

k1(GL) = |V,(PC)| = k(GL) (eq. 1)
Kk1(Gr) = |Vr(PC)| = K, (Gg) (eq. 2)

Combining (eq.1) and (eq.2), we get k1 (G) = k1 (G,) + k1 (Gg) = k,(G,) + ko (Gg) =

K, (G). This proves the only if part of statement (3) of theorem 9 in case that G is formed
from G and Gy by a false-twin operation.

Next we prove the if part of this statement in this case. Suppose k;(G) = k,(G,) +

kK1(Ggr) = k = k,(G) + k,(Gg) = k,(G). Then there exist two numbers, k;and kg such
that k1 (G) = ki = Kk,(G1),k1(Gg) = kg = Kk,(Gr), and k = k; + kg. By induction
hypothesis of this statement, there exist mimimum-free-number twin-set path covers PC; and
PCrof G and Gg, respectively such that |PC;| = k;and |PCg| = kg. Clearly (G, PC, U
PCR) = 1(G, PCy) + 1(Gg, PCR) = f(G,) + f(Gg) < 2 and PCy U PCy is a twin-set path
cover of G. By theorem 9, f(G) = f(G.) + f(Gg). Thus, for k;(G) = k = k,(G), there
exist a minmmum-free-number twin-set path cover of G of size k. This proves the if part of
statement (3) of theorem 9 in case that G 1s formed from G; and Gy by a false-twin operation.

Casell: G isformed from G, andGy by a true-twin operation.

By Lemma 8.1.9, V, (PC) and Vi (PC) are minimum-free-number twin-set path covers of G,
and Gg respectively. By induction hypothesis of this statement we have x4 (G,) = |[V,(PC)| =
K,(G.) and k;(Gg) = |Vx(PC)| = k,(Gg). By Lemma 8.1.11, k,(G) = k,(G,) +

k1(Gg) = |[VL(PC)| + |[Vg(PC)| = |PC| = max{1, ©(G,PC),|V,(PC)| — |[Vr(PC)| +
Tr(G, PC), |[VR(PCO)| — [VL(PC)| + 7,(G, PC) = max{], f(G),k2(GL)- K, (GR) +

f(Gr), k2 (Gr)-K,1(GL) + f(GL)} = k3(G).. This proves the only if part of statement (3) of
theorem 10 1n case that G 1s formed from G and Gy by a true-twin operation.

We next prove the if part of this statement 1n this case by showing that the following statement
holds: for any number k, where k;(G) = k,(G,) + k1 (Gg) = k and

40

k = max{1, f(G), k2(G)-k1(Gr) + f(Gr), k2(Gr)-K1(GL) + f(GL)} = K2 (G), there

exists a minimum-free-number twin-set path cover of G of size k. By theorem 9, f(G) =

f(GL) + f(Gr).
Consider the following cases:

Case 1. k1(GL) + k,(Gg) = k = k,(GL) + K, (Gg). There exist two numbers, k;and kzsuch
that k1 (G) = ki = k,(G1),k1(Gg) = kg = Kk,(Gr), and k = k; + kg. By induction
hypothesis of this statement, there exist mimimum-free-number twin-set path covers PC; and
PCrof G and Gg respectively such that |PC;| = k; and |PCg| = kg. Clearly (G, PC, U
PCR) = 1(G, PCy) + ©(Gg, PCR) = f(Gy) + f(Gr) < 2. By theorem 9, PC;, U PCg is a
minimum-free-number twin-set path cover of G of size k.

Case 2.

Ko (GL) + K,(Ggr) = k = max{1, f(G),k,(G,)-1,(Gr) + f(Gr), k2 (Gr)-K,(GL) +
f(G)} = k2(G). In this case there are three subcases:

Case 2.1 k,(GL) = k1 (Gg). In this subcase, 1 (G,) = k,(GL) = k1 (Ggr) = k;(Gg). Thus we
have

12 (Gr)-11(GL) + f(GL) < f(GL) + f(Gr) = f(G) (eq.3)
K1(Gr)-K2(GL) + f(GL) < f(GL) + f(Gr) = f(G) (eq.4)

By induction hypothesis of this statement, there exist minimum-free-number twin-set path
covers PCpand PCgof G, and Gy respectively such that |PCy| = k,(G,) and |PCg| = k1 (Gg).
By Lemma 8.1.12, for any number k, where |PC.|+ |PCgr| = k = max{1, f(G),|PC;| —
|PCg| + f(Gg), |PCr| — |PCy| + f(GL)}, there exists a minimum-free-number twin-set path
cover of G of size k. That is, for any number k, where

K2(GL) + 11(Gg) = k = max{1, f(G),k2(GL)-k1(Gr) + f(GR), k1 (Gr)-K2(GL) + f(GL)
there exists a mimimum-free-number twin-set path cover of G of size k. By eqs (eq.3) and
(eq.-Hymax{l, f(G), kz(GL)-Kk1(Ggr) + [(Gr), k1(Gr)-K2(GL) + f(GL) =

max{1, f (G), kz(GL)-k1(Ggr) + f(Gr), k2(Gr)-K1(GL) + f(GL) = K2(G). Hence, for any
number k, where k,(G;) + k;(Gg) = k,(G,) + k,(Ggr) = k = k,(G), there exists a
minimum-free-number twin-set path cover of G of size k.

Case 2.2 k,(Gg) = k,(G.). By symmetry, we can prove this subcase by arguments similar to
those for proving Case 2.1

Case 2.3 Neither k,(G1) = k1(Gg) nor k,(Gg) = k1(GL). In this subcase,

K,(G)-K1(Gg) < 0 and k,(Gg)-k,(G,) < 0. Hence, we have

K2 (GL)- 11 (Gr) + f(Gr) < f(G) (€q.5)
K2(Gr)-K1(GL) + f(GL) < f(G) (eq.6)

By eqs (eq.5) and (eq.6), k5 (G) = max{1, f(G)}. By induction hypothesis of this statement,
there exist minimum-free-number twin-set path covers PCy and PCg of G and Gy respectively
such that k,(G;) = |PC;| = k,(G,) and k1 (Gg) = |PCr| = k,(Gg). If k,(GL) = k,(GR),
then 1, (Gg) = k,(GL) = Kk, (Gg) and hence, we can obtain minimum-free-number twin-set
path covers PCj and PCg of G; and Gy respectively such that |[PC;| = |PCg| = k,(G).
Similarly, we can obtain the minimum-free-number twin-set path covers PC; and PCg of G,
and Gy respectively such that |PC,| = |PCr| = k,(Gg) if k,(GL) < k,(Gg). In any case, we
can obtain the minimum-free-number twin-set path covers PC; and PCy of G and Gg
respectively such that |PC;| = |PCg| and |PC,| + |PCg| = k,(G.)+ k,(Gg). By Lemma
8.1.12, for any number k, where |PC,| + |PCgr| = k = {max{1, f(G), |PC;| — |PCg| +
f(GR), |PCg| — |PC,| + f(GL)} = max{], f(G)} = k,(G), there exists a minimum-{ree-

41

number twin-set path cover of G of size k. Hence, for any number k, where |PC, |+ |PCg| =
K, (GL)*+ K2(Ggr) = k = Kk, (G), there exists a minimum-free-number twin-set path cover of G
of size k.

By arguments given 1n the above cases, the if part of statement (3) of theorem 10 holds true in
case that G 1s formed from G and Gy by a true-twin operation.

Case 3 is formed from Gy and Gg by a pendant operation.

By assumption, G has a twin-set path cover and hence, G has a minimum-free-number twin-
set path cover. By statement (1), assume PC 1s a mimimum-free-number twin-set path cover
of G with VL (PC) and Vi (PC) being minimum-free-number twin-set path covers of G, and
Gg respectively. By statement (4) we have

f(G) +f(Gr) <2 (eq.7)
k1(G) — K2 (Ggr) = f(GL) (eq.8)

We first prove the following five claims which are used i proving statement (3) n this case.
Claim 1. |PC| =1 or tx(G, PC) = f(Gg).

Proof. By definition 73 (G, PC) = f(GR) and |PC| = 1. Assume, by contradiction, that
|PC| > 1 and 73(G, PC) > f(GR). Since Vx(PC) is a minimum-{ree-number twin-set path
cover of Ggand Tz (G, PC) > f(Gg) = 1(Gg, Vg(PC()), there exists a path P; in PC having an
end vertex in the twin set of G, and the other end vertex in the twin set of Gg. Let P, be
another path in PC other than P;. By definition, P, has an end vertex in the twin set of Gj.
Without loss of generality, assume the path-end of P; 1s in the twin set of G and the path-start
of P,1s in the twin set of G. Then, P = P; P,1s a path having at least one end vertex in the
twin set of Gy. Clearly, (PC\{P;, P2}) U {P} 1s a twin-set path cover of G with less free vertices
than PC, a contradiction. Thus, |PC| = 1 or 7x(G, PC) = f(Gg) 1

Claim 2. If 73(G, PC) = f(Gg), then|PC| =1, f(G,) = f(Gg) = 0,7x(G,PC) = 1 and
Kk1(GL) = Ky (GR).

Proof. By claim 1, |PC| = 1 or 1x(G, PC) = f(Gg). Since 17x(G, PC) = f(Gg), we have
|PC| = 1. Let P be the only path in PC. By definition, P has one end vertex in the twin set of
G1. Without loss of generality, assume that the path-start of P 1s in the twin set of G. Consider
the following three cases:

Case 1 The path-end of P is in V. Clearly, Tz (G, PC) = f(Gg) = 0. A contradiction.

Case 2 The path-end of P 1s in Vi but not in the twin set of Gg. It is easy to see that
Tr(G,PC) = f(Gg) = 1 in this case, a contradiction.

Case 3 The path-end of P is in the twin set of Gg. In this case, Tz(G, PC) = 1 and

f(G,) + f(Gg) = 0. By Lemma 8.1.14, |PC| = 1 = |V, (PC)| — |Vg(PC)| + 18 (G, PC) and
hence = |V, (PC)| = |Vg(PC)|. By assumption, V; (PC) and Vx(PC) are minimum-free-
number twin-set path covers of G, and Gy respectively. By induction hypothesis of statement
3), ,1(GL) = |V, (PC)| = k,(GL) and k1 (Gg) = |[Vr(PC)| = k2(Gr)- By eq (eq.8)

k1(GL) = K, (Gg). Assume, by contradiction, that x; (G,) > k,(Gg). Then, there exist
minimum-free-number twin-set path covers PC; and PCx of G and Gg, respectively, such that
|PC;| — |PCg| = 1. we then can construct from PCjand PCg a new twin-set path cover of G
without any free vertex, a contradiction. Therefore, k1 (G,) = k,(Gg)l0

Claim 3. Ile(GL) = KZ(GR) and f(GL) = f(GR) = 0, then |PC| =1 and TR(G, PC) =1.

42

Proof. By induction hypothesis of statement 3), k1 (G,) = |V, (PC)| = k5(G.) and k1 (Gg) =
[VR(PC)| = K,(Gg). Since k,(GL) = k5(Gg), we have |V, (PC)| < |Vx(PC)|. By Lemma
8.1.14, [V, (PC)| = |Vx(PC)|. Hence, |V, (PC)| = |Vg(PC)|. By Lemma 8.1.14, |PC| =

IV, (PC)| = [Va(PC)| + tx(G, PC). Hence, |PC| = t5(G,PC) =1 1

Claim 4. k1 (G) — k,(Gg) + Tx(G, PC) = max{1,k,(G,) — k,(Gg) + fGgr)}.

Proof. By eqn (5.3.8), k1 (G,) — k3(Gg) = f(G.) = 0. There are the following two cases:
Case 1. k;(G;) — k,(Gg) > 0. In this case, Tx (G, PC) = f(Gg) by claim 2. Thus,

Kk1(GL) — K2 (Ggr) + (G, PC) = k1(G) — k2(Gg) + f(Gr) > 1.

Case 2. KI(GL) - KZ(GR) = 0. Since Kl(GL) - KZ(GR) = f(GL) and Kl(GL) = KZ(GR)’ we
have f(G.) = 0. Suppose that f(Gg) # 0. Then 7z(G,PC) = f(Gg) by Claim 2 and hence
11(GL) — K2(Gr) + Tr(G, PC) = k1(GL) — k2 (Gg) + f(Gr) = f(Gg) = 1. Thus, k;(GL) —
K,(Gg) + tx (G, PC) = f(Gg). On the other hand, suppose that f(Gg) = 0. By Claim 3,
|PC| = 1 and TR(G, PC) =1. HCHCC, Kl(GL) - KZ(GR) + TR(G, PC) =1. [

Claim 5. f(G) = f(G,) + f(Gg) if k1(GL) — k2(Gg) > 0; and f(G) = max{1, f(Gr)}

otherwise.

Proof. By (eq.8), k,(G,) — k,(Gg) = f(G.) = 0. There are the following two cases:

Case 1. k,(GL) — k(Gg) > 0. By Claim 2, 7z (G, PC) = f(Gg). By proposition 8.7,
7,.(G,PC) = T(GL, V., (PC)) Since PC is a minimum-free-number twin-set path cover of G
and V; (PC) is a minimum-free-number twin-set path cover of G, we have f(G) =

(G, PC) = 7,(G, PC) + 1x(G, PC) = ©(G,, V,(PC)) + 1x(G, PC) = f(G,) + f(Gg).
Case 2. k,(G) — k,(Gg) = 0. in this case, f(G,) = 0. By proposition 2.2

7,(G,PC) = T(GL, V,(PC)) Since V; (PC) is a minimum-free-number twin-set path cover of
G, we have T(G,, V,(PC)) = f(G,) = 0. Hence, f(G) = (G, PC) = 7,(G,PC) +
Tr(G,PC) = 1x(G, PC). Suppose f(Gg) # 0. Then, 7x(G, PC) = f(Gg) by Claim 2.
Hence, f(G) = f(Gg). On the other hand, suppose that f(Gz) = 0. By Claim 3, we have
|PC| = 1 and t4(G, PC) = 1. Hence, f(G) = t3(G,PC) = 1.

By arguments given in the above two cases, f(G) = f(G.) + f(Gg) if k1 (G,) — k,(Gg) > 0;
and f(G) = max{1, f(Gr)} il k;(GL) — K2(Gg) = 0 0

Based upon the above claims, we prove statement (3) of Theorem 10 in case that G 1s formed
from G and G by a pendant operation in the following.

(Only if part of Case 3) We now prove the only if part of statement (3) in case that G 1s
formed from G; and Gg by a pendant operation by showing that the following statement holds:
if G has a mmimum-free-number twin-set path cover of size k, then

k1(G) = max{1,k.(G,) — Kk, (Gg) + f(Gr)} =k =

max{1, f(G,) + f(Gr), k2(GL)-k1(Gg) + f(Gr)} = K2(G)

By statement (1), assume that PC is a minimum-free-number twin-set path cover of G of size k
with V, (PC) and Vx(PC) are minimum-free-number twin-set path covers of G; and

Gg respectively.By Lemma 8.1.14, we have

|PC| = [V,(PO)| — [Vr(PO)| + (G, PC) (€q.9)
By induction hypothesis of statement (3) we have

k1(GL) = |V, (PC)| = k,(GL) (eq.10)
k1(Ggr) = |VR(PC)| = k,(GR) (eq.11)

43

Combining (eq.9) - (eq.11) we get
K1(GL) — K2 (Ggr) + TR(G, PC) = |PC| = k3(GL)-Kk1(Gg) + TR(G, PC). (eq.12)

Since Tz (G, PC) = f(Gg), we have |PC| = k,(G,)- k1 (Gg) + f(Gg). Clearly, |PC| = 1 and
|PC| = f(GL) + f(Gg). Thus |PC| = max{1, f(G.) + f(Gg), k2(G)- k1 (Gr) + f(Gr)}-
By (eqn.12) and Claim 4, max{1, x,(G,) — k,(Gg) + f(Gg)} = |PC]|. This proves the only if
part of statement (3) of Theorem 10 in case that G 1s formed from G; and Gy by a pendant
operation.

(Ifpart of Case 3) We next prove the if part of statement (3) in case that G 1s formed from G,
and Gy by a pendant operation by showing that the following statement holds: if G has a twin-
set path cover and k4 (G) = max{1, k;(G,) — k,(Gg) + f(Gr)} = k = max{1, f(G,) +
f(Gr), k2(GL)-K1(Gr) + f(GRr)} = k2(G), then G has a minimum-free-number twin-set path
cover of size k.

In the following, we prove that there exists a minimum-free-number twin-set path cover of G
of size k. By statement (4), k1 (G) — k5 (Gg) = f(G.) = 0. Consider the following two cases:

Case 1. k;(G) — k5(Gg) = 0 and f(Gg) = 0. In this case, f(G,) = 0,

since k1 (GL) — k,(Gg) = f(GL). It is easy to see that

12 (GL)- 11 (Gr) < K1(GL) — K2 (Gg) = K2 (Gr)-K1(GL) < 0.

Therefore, 1;(G) = k,(G) = 1 = k. By induction hypothesis of statement (3), there exist
minimum-free-number twin-set path covers PC; and PCgof G; and Gi respectively such that
|PC;| = k1(G.) and |PCg| = k3(Gg). Since f(G,) = 0, we have ©(G,, PC,) = 0. Hence,
(G, PC) + ©(Gg, PCg) < 2 and |PC;| — |PCg| = 7(Gy, PC;). By Lemma 8.1.15, we can
construct from PC; and PCg a twin set path cover PC of G of size 1 such that (G, PC) = 1.
By Claim 5, PC 1s a minimum-free-number twin-set path cover of G.

Case 2. k,1(G) — k,(Gg) > Oor f(Gg) > 0. clearly, k¥, (G) = k,(G,) — k,(Gg) + f(GR) .
Since k1(GL) — k3 (Gg) = f(GL) , we have

k1(GL) — k2(Gr) + f(Gr) = f(GL) + f(Gg) (eq.13)

Since k1(G.) = k,(G,) and k1 (Gg) = Kk, (Gg), we have

k1(GL) — k2 (Gr) + f(GR) = K2(GL)- K1 (Gg) + f(GR) (eq.14)

By (eq.1.3) and (eq.14), and x,(G) = 1, we get k;(G) = k,(G). Thus we have

k1(G) — 12(Gr) + f(Gg) = k = max{1, f(G,) + f(Gg), k2(GL)- K, (Ggr) + f(G(R)}I)
eq.15

Since k1 (G,) = k,(Gy) and k1 (Gg) = k,(Gg), the following statement holds: for any
number k, where

k1(G) — K2 (Gr) + f(Gg) = k = max{1, f(G,) + f(Gg), k2(G)- K1 (Gr) + f(Gg)}, there
exist k; and kg such thatre; (G,) = k;, = k,(GL),k1(Ggr) = kg = k,(Gg),and k = k; — kg +
f(Gg). By induction hypothesis of statement (3), there exist minimum-free-number twin-set
path covers PC; and PCgof G and Gy of size k; and kg respectively. Clearly, k; — kg =
f(GL). Furthermore, k = k; — kg = 11if f(Gg) = 0. Hence, f(Gg) # 0 or k; # kg . By

Lemma 8.1.15, we can construct from PCj and PCg a twin-set path cover PC of G of size k

44

such that T(G, PC) = f(G.) + f(Gg). By Claim 5, PC is a minimum-free-number twin-set
path cover of G.

By arguments given in the above two cases, the if part of statement (3) of theorem 10 holds
true n case that G 1s formed from G; and Gy by a pendant operation. This completes the
proof of statement (3). [

Proof of statement (5) By statement (4), both G; and G have twin-set path covers, f(G;) +
f(Gr) < 2,and k,(G;) — k,(Gg) = f(G). Following Claim 5 in the proof of statement (3),
the statement holds true. [

Now that theorem 10 is proved, we shall procedtl slhowing how to decide whether a distance-
hereditary graph has a Hamiltonian path. To oup laed shall present a couple of lemmas and a
corollary, and end up in theorem 11 that statescarivalence condition for the existence of a
Hamiltonian path in a distance-hereditary graphs Tireorem is also fundamental and will be
proved.

Lemma8.17 (Hung and Chang p.434):
Assume G is formed from G and Gg by a true-twin operation and f(G.) + f(Gg) = 2.

Then, G has a Hamiltonian path if and only if there exist minimum-free-number twin-set path
covers PCy and PCy of G and Gg, respectively, such that |PCg| = |PCy| — f(G) + 1.

Corollary 8.18 (Hung and Chang p.435):
Assume G is formed from G and Gy by a true-twin operation and f(G;) + f(Gg) = 2.
Then, G has a Hamiltonian path if and only 1f there exist minimum-free-number twin-set path

covers PCy and PCy of G} and Gg, respectively, such that |PC;| = |PCr| — f(Gg) + 1.

Lemma 8.19 (Hung and Chang p.435):
Assume G 1s formed from G and Gy by a true-twin operation and G has a Hamiltonian path.
Let P be a Hamiltonian path of G with maximum number of end vertices in the
twin set of G and PC = {P}. Then, V;(PC) and Vx(PC) are minimum-free-number twin-set
path covers of G and Gg respectively.

8.1.4. Theorem 11

Theorem 11 (Hung and Chang p.436):
Assume G 1s formed from G and Gy by a true-twin operation. Then, G has a Hamiltonian

path if and only if (1) f(G,) + f(Gg) < 1 and k,(G) = 1 or (2) f(G,) + f(Gg) = 2 and
max{1,k;(G.)-K1(Gr) + f(Ggr), k2 (Gg)-k1(GL) + f(GL)} = 1.

8.1.5 Proof of theorem 11

Proof (Hung and Chang pp.436-437):
Only if part: Suppose G has a Hamiltonian path. We consider a Hamiltonian path P of G with
maximum number of end vertices in the twin set of G. Let PC = {P}. By definition, PC 1s a
twin set path cover of G. By lemma 8.19 V, (PC) and Vi (PC) are minimum-free-number twin-
set path covers of G and Gg respectively. There are two cases:
Case 1. P has at least one end vertex in the twin set of G. Then, PC 1s a twin-set path cover of
G. By theorem 9, f(G) = f(G,) + f(Gg). By statement (3) of theorem 10, f(G) = f(G.) +
f(Ggr) < 1and k,(G) = 1.
Case 2. Neither of the two end vertices of P 1s in the twin set of G. Since T(GL, V,(PC)) =
f(G.)) and T(GR, Vg (PC)) = f(Gg), we have f(G.) + f(Gg) = 2. By statement (3) of

45

theorem 10, we have

k1(GL) = |V, (PC)| = k,(GL) (eq.16)
k1(Gr) = [VR(PC)| = k,(GR) (eq.17)

By lemma 8.17 |PCg| = |PCy|- f(GL) + 1. By (eq.16) and (eq.17),

1 = |Vr(PO)|-|VL(PO)| + f(GL) = k(Gr)-K1(GL) + f(GL). On the other hand, |PC;| =

|PC.| — f(Gg) + 1. By (eq.16) and (eq.17), 1 = [V, (PC) |- [Vg (PC)| + f(Gg) =

;2((63)}— K1(Gg) + f(Gg). Therefore, max{1, k;(G,)- k1 (Gg) + f(Gg), k2(Gr)-K1(GL) +
G,) =1.

Ifpart:

Case 1. f(G,) + f(Gg) < 1 and k,(G) = 1. By definition, there exists a path cover of G of
size 1. Hence, G has a Hamiltonian path.

Case 2. f(G) + f(Gg) = 2 and max{1, k;(G)- k1 (Gg) + f(Gg), k2(Gr)-k1(GL) +
f(Gy) }=1. There are the following two subcases;

Case 2.1. k1(Gy) = k1(Gg). Since 1 = k,(G1)-k1(Ggr) + f(Gr), k1 (Gr)-f(Ggr) +1 =

K, (G). Suppose that k1 (G;) = K,1(Gg)- f(Gg) + 1. Let kg = k1(Gg) and k;, =

kr-f(Ggr) + 1 = k,(G). By statement (3) of theorem 10, there exist minimum-free-number
twin-set path covers PCy and PCgof G and Gg, respectively, such that

|PCy| = k; and |PCg| = kg. By corollary 8.18 G has a Hamiltonian path. On the other hand,
suppose that k1 (Gg)- f(Gg) + 1 = k1(GL). Since k,(GL) = k1 (Gg), we have f(Gg) =0,
f(GL) = 2,and k;(GL) = Kk1(Gg). Since 1 = k5 (Gr)-K1(GL) + f(GL), k1 (GL) = K2(Gg) +
f(GL)-1 = Kk,(Gg) + 1.Let k; = k,(G) and kg = k;, — 1. Then, k;(Gg) > kg =
K,(Gr). By statement (3) of theorem 10, there exist two twin-set path covers PC; and PCg of
G, and Gg, respectively, such that |PC;| = k;, and |PCgr| = kg. By corollary 8.18, G has a
Hamiltonian path.

Case 2.1. k1(Gy) < k1(Gg). Since, 1 = k,(Ggr)-11(G) + f(G.), k1 (G)-f(G) +1 =
K,(Gr). Letk;, = k;(G.) and kg = k; — f(G,) — 1. Then k;(Gg) > ki = k,(Gg). By
theorem 10, there exist minimum-free-number twin-set path covers PC; and PCg of G; and G,
respectively, such that |[PC;| = k;, and |PCgr| = kg. By Lemma 8.17, G has a Hamiltonian
path. [

By Theorems 9 and 10, we have a recursive program for computing f(G), k1 (G) and k,(G)
in linear time using the decomposition tree DT (G) of a distance-hereditary graph G. By
theorem 11, whether G has a Hamiltonian path can be determined in constant time 1f
f(GL), f(Gr), k1(GL),Kk,(GL), k1(Gr) and K, (GR) are given. Hence, we conclude the
following theorem:

Theorem 12 (Hung and Chang p.437):
The Hamiltonian path problem on distance-hereditary graphs can be solved in O(m + n)
time.

46

9THE OTHER HAMILTONIAN PROBLEMS

Hung and Chang show the reduction of 2tk&?, 1HP and Hamiltonian cycle problems on
distance-hereditary graphs to the Hamiltonian patiolem on the same class of graphs. We present
the reduction techniques f2HP and1HP problems respectively the Hamiltonian cycle proide
(Hung and chang p.438):

9.1 The2HP problem and the 1HP problem

To find a Hamiltonian path starting at vertex u and ending at vertex v i1s known as the 2HP
problem. Given a distance-hereditary graph G = (V, E) where u, v € V, and the wish to solve
the 2HP problem, the process is as follows: one add two pendant vertices ©’ and v’ to u and v
respectively in order to obtain the distance hereditary graph ¢ = (V',E’) = (VU {u’,v'},E U
{uv’, vv'}). Now, G has a Hamiltonian path from u to v if and only if ¢’ has a Hamiltonian
path. Thus the ZHP problem can be solved m linear time with this reduction technique.
Similarly one can reduce the 1HP problem, which 1s to find a Hamiltonian path starting at
vertex U, by adding a pendant vertex ©’ to u. G has a Hamiltonian path starting at v’ if and
only if G’ has a Hamiltonian path

9.2 The Hamiltonian cycle problem
In order to solve the Hamiltonian cycle problem on a given distance-hereditary graph
G = (V,E) one add a vertex U’ as a false twin to a vertex u in G to obtain G’, thatis N(u') =

N(u) in G’. Then G has a Hamiltonian cycle if and only if G" has a Hamiltonian path starting
at vertex u and ending at vertex u’'.

9.3 Theorem 13

Theorem 13 (Hung and Chang p.438):

The 1HP, 2HP and Hamiltonian cycle problem on distance-hereditary graphs can be solved
in O(m + n) time.

a7

10A SOLUTION TO THE HAMILTONIAN CYCLE PROBLEM

In this part we will give, as to knowledge of thélzor’s of this papers, a new idea regarding the
existence of Hamiltonian cycles in a graph/Ne shall give a necessary and sufficient condiftimn
Hamiltonicity. This theorem is based on the introelll concept ok-partitioning around a vertex in
a graphG. Before we prove the theorem we will give a lemmith proof. We also give an
algorithm, based on that condition, that give as"ya “no” answer to the problem of a graph’s
being Hamiltonian. Also one can find at least or@aritonian cycle if it exists.

We will later on state a theorem on summation afeyin ak-partition of a graph, followed by a
few corollaries and a conjecture.

10.1 k-PARTITION AROUND A VERTEX

Definition 10.1: We say that a connected graphk= (V(G), E(G)) with ([V(G)|, |[E(G)|) = (n,m)
is k-partitioned arouna, and thatz,, ..., G, is ak-partition of G,where degred(v,) = d = 2 and
k = d — 1, if the following conditions are satisfied for serardered:-tuple of subgraphs

(G4, ..., Gy) of G and some ordery, ..., Uy, of N(vy):

UL,V (G) = V(6)

G;NGiy1 = {vo, Uiz}, {vouip}) for1 <i < k—1 whenk > 2

V(G) N N[vyl ={vy, uj,uj41} for1 <i <k,

G;NGiyr = ({vp},0) for1 <i <k —2andsome >1 suchthai +r < k, when
k>3

HponNPE

Remark: eacld; is not necessarily an induced subgraph .of

Theorem 14: AssumeG,, ..., G IS ak-partition arounds, in G. Then the following holds:

n =36l —k+1-35 a6 n Gl + (5) (e9.10.1)

Proof: ¥¥ . |G;| sums the number of vertices in each subgraph. Mewthis means that, is

countedk times, henc e the ter(s- k), whence to have exactly omg the term 1 is necessary.
Moreover, that sum also includes the number oficestin pairwise intersections of the subgraphs
and hence the termy,_, ¥'%_,|G; N G;|, in whichv, is counted, and therefore also subtracted, once

for every pair. Therefore the number of pa(@ has to be added in order cowgtexactly once.

10.1.1 Lemma 10.1

We shall give a lemma with proof. This lemma cotsstd two parts depending on the length of a
cycleC. In part (a), |C| > 3 and in part (b)|C| = 3, and is then used in the proof of theorem 15.

Lemma 10.1(a): Suppos€&, |C| > 3, is a chord-free cycle whetex, y are vertices i€ and

N[v] = {v, x,y}, and consider a pathwith vertex seV = {v, x,y}. Then P is an induced subpath
of C with orderingP =y —v — x, x € N(y), and there exists a chord-free path frpito x not
containingv.

Proof: LetP =v—y —x (orP = v — x — y)be a path ir€. Since bothx andy € N(v) there is a
chordvx in P and hence iit'. But C is chord-free and therefore suéhcannot exist ir€. On the
other hand, iP = y — v — x is a subpath of the chord-free cy€lave have that there is no edge
xy, and hence there must be a pgthfromx toy alongC. SinceC is chord-free, so iB,,.
Lemma 10.1(b): If C,|C| = 3, is a cycle where, x, y are vertices it andN|[v] = {v, x, y}, then
any order of the verticag x andy defines a path if.

Proof: This is easily seen or verified by trying all case

48

10.2. THEOREM 15, A NECESSARY AND SUFFICIENT CONDITION FOR
HAMILTONICITY

The following theorem states a necessary and siiticondition for a graph to be Hamiltonian.

10.2.1 Theorem 15

Theorem 15: LetG = (V(G),E(G)) be a graph. Then the following three conditiores ar
equivalent:
1) G is Hamiltonian

2) Vv, € V(G) there exists &-partition aroundr,, where each subgraph is a cycle.
3) I v, € V(G) such that there existskapartition arounds,, where each subgraph is a cycle.

We begin by proving that a Hamiltonian cycle implag-partition where each part is a cycle, i.e.
thatl) = 2).

10.2.2 Proof of theorem 15

Proof: Assume there is a Hamiltonian cyélen G, and thati(v,) = 2. Without loss of generality
we can letC = vyv; ... v,_1 7.

First consider the case when vertgxhas degred(v,) = 2, hencek = 1. In this case the
Hamiltonian cycleC is trivially the only part in &-partition.

Next assume that vertex has degred(v,) = d = k + 1 = 3. LetG’ be a subgraph @ where
Ng,(vo) = {uy, ..., uq}, Whereu; = vy, ug = ugyq = vp—g andu, = v;, wherel <i, <--<n-1.
ConsiderG’ = (V,E(C) U {c,}), a =2,...,d — 2 where the edges, = {v,u,} are those indicent
to v, in G but not contained if. Those edges are chordsCoin G'.

The two neighbors af, that (excepv, itself) are the first respectively last verticésng the
closed patitC areu; anduy,; inG', i.e.v; andv,_;.

Let P, be the path betweer, andu,.,,a =1, ...,d — 1. Hence we havé,, ..., P;_;. We can thus
write C = vou PyuyPyus ... ug_oPy_ouq_1Py_1ugqvo With chordsvyu;, i = 2, ...,d — 1. Hence
there are subcycles
Gy = {vous Pyusvo}, G = {woup Pyusvol, .., Ca—z = {Vota—3Pa—2ua—2v0}, Ca—q =
{voug_2Py_1uqv,} all of which are chord-free i@’ (but generally not irt).

We shall here show thaty(..., C) is ak-partition around, in G, by checking the conditions of
the definition:

Condition (1): We have that*=2~v(¢;) = V(G") = V(G) and thus condition 1 is satisfied.
Condition (2): Consider the intersectiaf) N C;y1 = {Vou; Piuiz1Vo} N {VoUis1Piy1Uiz2Vo} =
({ui+1,v0} {ui+1v0}). This satisfies condition 2.

Condition (3): Consider the intersectiaf) N N[vy] = {vou; Piuiz1Vo} N {vg, Uy, oo Upp1} =
(vo, uq, uj41) Sincei = 1, ...,k + 1 = d. This satisfies condition 3.

Condition (4): Consider, forr > 1, the intersection
Ci N Ciyr = {woui Pty 4100} N {VoUiyrPisrUirrs1Vo} = ({vo}, @). Condition 4 is thus satisfied and
this settles the if-part.

2) = 3) is trivial.

Next we prove3) = 1), that is, ifG,, ..., G is ak-partition of G and eaclt; is a cycle, theit is
Hamiltonian.

First consider the case whin= 1 . Then triviallyG, is a Hamiltonian cycle ig.

Next letk > 2.

AssumeC;, C,, .., Cy is ak-partition arounds, in G where each part is a cycle aki¢v,) =

49

{uy, Uy, ..., Ug41}. Then by definition we havg¥_, V(C;) = V(G) by condition 1C; N C;yq =
({vo, uis1} {vou;+1}) by condition 2. By condition 3 we haten N[v,] = {vy, u;, u;4+1}- By
condition 4 we have th@; N i, = ({vp}, ®) whenr > 1. Without loss of generality we can
consider the subgragh where(,, C,, .., C; are chord-free. Each cycle can be written
Ci=voU;vy ... VU1V, 1 < j < |G| — 3.

By condition 3 and lemma, we can start a walk@ahlongC; first meetingu, at distance 1 from
v, until we arrive ati, by following the subpat®, ,,, = u v, ... v|¢,-3u, Of C;, wherep, ,,,
contains all vertices af; butv,. Fromu, we could, by condition 2, follow the edgegv, to v,.
However, by condition 3 and lemma we can insteddvicthe subpattp,,,,, of C; and continue
from u, and reachu;. Also by condition 4, this is the only choice iéwlo not walk back along;
or return tov, throughu,v, . Similarly whenk > 3: instead of returning to, at eachy; for 1 <

[<k, we can continue along every pdh, . until we reachy,,; which is the last neighbor of.
We close the path into a cycle by returninggdrom the last vertex; ., in Cy.

Thus we have started &, walked through all vertices of;, ..., C;, (exactly once). Hence the
partition has a Hamiltonian cycle, and since byagstion,U%, V(C;) = V(G) there is a
Hamiltonian cycle inG.

Moreover, by the arbitrary choice of we have shown that if there igkgartition around,, with
d(vy) = 2 such thats has a Hamiltonian cycle, then there fs-partition around all vertices with
d(v) = 2 in G such that there is a Hamiltonian cycle. [

10.2.3. On the number of vertices and lengths of cycles

Theorem 16. LetC,, ..., C; be cycles. ICy, ..., Cj, is ak-partition arounds, of a graphG with n
vertices, then

ilCl =2k =1) =n (€9.10.2)
Proof: Induction onk. [

Corollary 1. For a cyclel of maximum length in &-partition of a grapld, the following
condition holds:|C| < n —d(vy) + 2.

Proof: By letting all cycles but one be of shortest polssiength, i.e|C;| =3 fork =1, ..., (k —
1) we can write (€q.10.2) &k — 1)+ |C| —2(k—1)=no |Cil=n—(k—1)=n—
(d(wy)—1-1) =n—d(vy) + 2. [

Remark: this is a theoretical upper bound arzkdaignificance for large and smalld (v,).
However, by a clever choice of in some graphs the length of a longest cyclekrpartition can
be strictly less than — d(v,) + 2. The graph in figure 10.1 shows such a case. \We ak-
partition aroundry, = u; withd(vy) = 6,k =5, andC; = uy, 1,2z, C, = uy,2,y, C3 = Uy, y, X, Uy,
C, = uq,v1,v,wandCs = uy,w,u, s. We see that = 10, d(u;) = 6 and hencer — d(vy) + 2 =
6, but the longest cycle in thkepartition aroundy, in G is of length four.

50

G - fig10.1

Corollary 2. If a connected plane graghonn vertices withd,,,;;, = 2 satisfies the following two
conditions(i) n is odd(ii) every induced cycle iG is of even length, thefi is not Hamiltonian.

Proof: since every induced cycle this of even length, so is any cycle in dpartition of cycles
of G. By theorem 4 the cycles sums up to an even numbieh is violated by condition 1. Hence
condition 1 and condition 2 are mutually excludiva plane Hamiltonian graph. |

Remark: the Herschel graph which is known to be mamiltonian has = 11 vertices whence
every induced cycle is of length 4.

Corallary 3. If there exist two induced cycles @hthat have at least three vertices in common in a
plane graplG with d,,,;,, = 2, thenG is not Hamiltonian.

Proof: If G is Hamiltonian then there existkgartition ofG where each part is a cycle. Then if
there exists two cycle§ andC;.; such thatV (C; N C;yq) = {vo, x4, ..., Xj, U;41} fOr some vertex

x,, 1 < k < j which is absurd in view of condition 2 of the dhtiion of k-partition |

Conjecture 1: Given a set of cycle§ = {C,, ..., Ci}. ThenC is ak-partition of a graplt: with n
vertices, and hendg is Hamiltonian if and only if

k—-1)(k+1
KTk alCn gl =D (eq.10.3)

2

Putting (eq.10.1)=(eq.10.2), algebraic manipulatioil yield (eq.10.3)

10.3ALGORITHM CYCLE-k-PARTITION RECOGNITION

This algorithm finds &-partition arounds, of cycles in a grapls. In order to do so, we first need
to find a set of cycles starting from an arbitragy By corollary 1 we need not find a cycle of
length greater tham — d(v,) + 2, hence what we are looking for is all cycles stgratv, and has
length at most — d(v,) + 2. This is done by Algorithm SingleSourceCycleSe@argh Next we
need to match the cycles together in a number mbarations based on the definitioniepartition
and some results given above. We do that in AlgoritMatch-k-cycles”.

This algorithm is probably exponential in the warase, but experience suggests that on small
graphs one can expect to find a solution in redslertane. Moreover, there may be graphs with
particular qualities such that the algorithm rufigiently. Such qualities could be for example
diameter and/or density under certain constraineg other graph invariant with or without
constraints. This is subject to further research.

51

10.3.1 Algorithm SingleSour ceCycleSearch(v;), SSC(v;)

This algorithm finds all paths between the neigklay, ..., ug ()} of a chosen vertex,. In each
loopi, the algorithm finds every path fromtou;, 1 < i <j < d(v,) . When all paths from; to

u; are found one do not want to find them again aokiwards order. Therefore in the next loop,
where we search for paths fram,; tou; one can reduce the graph at hand witfthus a fewer
number of computational steps is needed as eaphdammpleted). Any such path is easily seen to
be a subpath of a cycle starting and ending, &inceu; andu; are neighbors aof,,.

F, = {forbidden vertices through thieth-loop, v, andu;},

F, = {vertices already on the pafWWhenever a vertex is removed fra@iit is put back to its
origin. Ay = N(vp) = {1y, ..., uq,} for some ordering aV (v,). A; = V(\(F; U F, U A,), this
changes dynamically as vertices are moved in ahdfdy. A = A, U A,. T = { a tree rooted
atvy}, whenever we write; ., » T we mean that;,, is added as a child of. Ly, = {vertices on

distanced, fromwvg inT;}, BS = {v,, v, ., Vg, } - the firstp vertices of thex: th branch off;, the

superscript index off changes when a vertex is adde@fo C = {the set of cycles found in
SSCSeargw)}.

We use left arrows to assign a valu® a variablec, x < a. We use right arrows from bar to
indicate that a variable becomes an element in a Sek — S. Whenever we switch between
routines by “call subroutine” or “go to algorithrtep x” the current routine, which we leave, is
stopped.

Input: G = (V, E) with (|V], |E|) = (n,m), all vertices are labeled.
Output: all cycles inG starting from a vertex, with degreed(v,) = d, = 3 with length at most
n—d+ 2.
1. Initialize

a1« 1;re1;dy « 1;B§T <@, F;,F, « 0;Ay « 0; A, =V\(F, UF, U Ay);

i< 1,Lg, «@fordy =(1,...(n—d +2);
2. Choose any vertexv with degreei(v) > 3 andv, < v, orderN(v,) in an arbitrary order
{ug, ..., ug y and Ay « {uy, ..., uq };
3.1y P Fi;
4, Tl' < Dy,
5.Fori=1,..,(dy—1) Do

Input =(G\Ug " ug); Ag {uy, ..., ugy N(UG " us);
removex S.t.dg, -1, (¥) = 1 from G\U5 ! ug;

6. u; ~ T; as a child ofv,;
7. Vo, U; P Bf;

8. u; = LdT;

9. u; — Fi;

10. v«

1. HWN@w)NA+0,;
Choose w € N(v))|w € F,

12. Vjigr €< W;
13. dr < dr +1;
14. If dp =n—d + 2 then
Go to BacktracKT,w);
End If;

52

15. vj o Fy;

16. Vg1 P Tj;
17. V41~ BE;
18. BE* < BF:
19. If dr = 2 then
20. If 41 € Ay Then
21. Forallw € Ly, NFlw & A
22. Remove w fronk,;
End For;
Else
23. Forall we Ly NF,
24, Removev from F,;
End for;
End If;
25. Vjig1 P Lgg;
EndIf
26. If 'Uj+1 € AO
27. C, < BY;
28. G, » C;
29 rer+1v,, 0 F;
30. Backtrack ta;;
31. dr «dr — 1,
32. If N(vj) N A # @ Then
33. a=a+1;
34. BE « BET\{v € (UL, L)
EndIf
35. Goto SSCS ¢;) step 11,
End If
36. Elself vj,, € A; then
37. Jj+1«j;
38. Goto SSCS ¢;) step 11,
End If
39. ElselfN(vj))nA=90
40. If vj:ui Then
41. a<—a+1l;
42. Bf “« vy,
43, Lo, < @,dr=(1,...(n—d + 2);
44. F, « @;
45, i<—i+1;
46. Goto SSCSy;) step 4,
End If
47. Go to BacktracKT, v;);
End If
48. End For

End Algorithm SSCS(v)

53

10.3.1.1 Procedure Backtrack (T, v;)
Backtrack (T, v;);
vj-1 < pr,(v));
If vi_1 = v, then
a—a+1;
Bf “« Vg,
Ly, <« @,dr=(1,...(n—d + 2),
Fz — Q);
i—i+1;
Goto sscsp) step 4;
End If;
0. dr < dr —1;
10. For all w € {(Lg;+1 Y Lap+2) N F,}; DO

ONO OA WD P

11. Ifw & Nr,(vj_1) Then
12. Removew from F,;
End If;
End For;
13. For all w € {cr,(v;_1)} Do
14. w = FZ ; [Ivertices that were removed frafn in step 20 or step 22 of sscs may be availab@aktrack
End For;
15, IfN(vj_) NA=0
16. a=a+1,
17. Bf - Bglcfiaststored index\(u?n_:dd;%l-l Ln);
18, vj_y ~ BE;
19. jeij—-1
20. Goto SingleSourceCycleSear@h) step 11;
End if
21 Elself N(vj;)nA=0
22. jeij—-1
23. Go to BacktracKT;, v;) step 1;
End If;

10.3.2 Algorithm M atch-k-cycles

When algorithm SSC$) is done, there is a set of cyc{ég} starting and ending at,. We want
to test them for being parts okgpartition ofG. The worst case is, when there is no further
information and, either when there is no Hamiltonigcle inG, or when there exists exactly one —
which we find in the very last set of checked camalibns of cycles. We will in those cases have
checked all combinations &fcycles among alt cycles and test each combination against the
definition of k-partition. However, there are some “pruning” im@tion to be obtained. By
theorem 4, there is a limit to which of the cyales need to test together, nameglgycles,C;, i =

1, ..., k, that sum up ta + 2(k — 1) under the constraidt< C; <n —d + 2 (by corollary 1). For
instance, say that we haxne= 11, k = 3, thenn + 2(k — 1) = 15. All partitions of15 into three
parts are the following:3,3,9), (3,4,8), (3,5,7), (3,6,6,), (4,4,7), (4,5,6), (5,5,5). Therefore, in that
case, we would want to test all triplets of cydl€g, C;,, C;,) whose lengths matches the
partitioning of the number 15 into three parts agathe definition of &-partition.

More generally stated in pseudo-pseudo code:

Input: C = {the set of cycles found in SSCSearch(v)}

54

Output: A Hamiltonian cycle if and only if there is one
For all k-tuples(|C, |,..,|C;, |) from the output of algorithm SSGS%J, corresponding to a partition
of the numberrf — d(v,) + 2) into k parts,
Do Check eaclk-tuples(C;,, .., C;,) against the definition dgé-partition
If thek-tuple (C;,, .., C;,) satisfies the conditions @fpartition
Then G is Hamiltonian and has a Hamiltonian cycle
Cn, = Vol Pry Uy, oo Uy Py Uiy, Vo for1 <p < N, N is the number of tested-
tuples(Cy,, .., Cy,)-

55

11 CONCLUSIONSAND DISCUSSION

We have seen what distance-hereditary graphsvéiag;characterizes them and how they are
constructed. We have also seen how to solve thdltéamn problem, on this class of graphs, in
linear time using a linear program for computinige‘constants of thRT (G)”. We have learned
that given those constants of a graph and its dposition tree, we can solve the problem in
constant time. Moreover have we given a charaeoiz of Hamiltonian graphs and presented an
algorithm that is based on that very characteopati

The achievement of finding a linear-time algoritfonthe Hamiltonian problem, albeit for a

special class of graphs, is both interesting amdir@dble. Not at least in the context of the vast an
rigorous theoretical foundation it relies on. Alsoview of the problem itself belonging to the

class of NP-complete problems one must apprediatehere is a solution in linear time at all.
Furthermore, in view of the algorithm presentedhapter 10, it is striking that the effort put o t
find and describe the theoretical foundation seenssand in reversed proportion to the efficiency
of the algorithm. A lot of theory yields an effigiealgorithm, not so much theory yields a much less
or even inefficient algorithm. It holds in this eagnyway.

As to the theory of distance-hereditary graphsaméd, as attempted in theorem 8, study the very
twin set. Outstanding questions regarding theonyarhiltonian graphs as given in chapter 10, are
quite a few. Given the knowledge of this substrietis there a way to give a meaningful recursive
definition of this class of graphs similarly to whsidone with distance-hereditary graphs and
cographs for example. Can one use the summatierofuheorem 16 to define a (Abelian) group in
a meaningful way and why would that be of interégt@mpts have been made. By giving a
corresponding formula for the number of eddes:, |C;| — (k — 1) = m and consider condition 2

of the definition as a group operation denaf@dThen fork = 2 it holds that for

G,with (|V|,|E]) = (ny, my) andG,with (V|, |E]) = (n,, m,) it holds thatG; & G, = (ny + n, —

2, my + m, — 1). Since it is effectively addition of numbers thgeacation is commutative and
associative and there is an identity element (2Sa)far so good, if one also think of the operatio
of actually put two graphs together — which alsa graph and hence the closure condition holds.
However, this means trouble when we come to thersevelement: it is found to p¢ — n, 2 — m)

for any graph with(|V|, |E]) = (n,m). Forn > 4,m > 2 we have a negative number of vertices
and edges. Could one define graphs in a meaniagfylwith such characteristics? Would group
theory be applicable or other fields of algebra.fe&ched,yes, but so must for example the finding
of quaternion algebra also have been...

Moreover, outstanding questions on cykhpartiton recognition algorithm are quite a fewedat
solve the problem for all instances of the probléffitat exactly is the order of its time complexity?
What ways are there to refine the given one? Agectibther search-algorithms of higher efficiency
given the knowledge of this substructure in Hamim graphs? On which graphs does it perform
at its best? In average? What is the optimal choictart vertex? Those are questions to be
answered.

56

REFERENCES

Backelin and Timonen; Joérgen Backelin Supervisagetihgs and discussions (2008-2013)

Bandelt and Mulder: H.J. Bandelt, H.M. Mulder, Riste-hereditary graphs. J. Combin. Theory Ser. BL4&6)
pp.182-208.

Chang et al.: M.S. Chang, S.Y. Hsieh, G.H. Chemayic Programming on Distance-Hereditary Graphsture
Notes in Computer Science, Vol. 1350, Springerlig@tew York, 1997, pp.344-353

Chuang-Chieh Lin: Joseph Chuang-Chieh Lin: TallComputation Theory Laboratory, Department of Coraput
Science and Information Engineering, National ChGhgng University, Taiwan. November 17, 2009 Suigerv
Professor Maw-Shang Chang. The notes from theatalavailable on the following web page:
http://idv.sinica.edu.tw/josephcclin/paper/cograpt$ (2013-05-28)

Corneil et al.: D.G. Cornell, Y. Perl, L.K. Stewaktlinear recognition algorithm for cographs, SIAMComput. 14 (4)
(1985) 926-934.

Damiand et al.: G. Damiand, M. Habib, C. Paul: mglie paradigm for graph recognition: applicatiorcégraphs and
distance-hereditary graphs, Theoretical Comput@amse 263 (2001) pp. 99-111

Golumbic: Martin C. Golumbic, Algorithmic Graph Téwy and Perfect Graphs, First edition, Academis&rélew
York, 1980

Gould: Ronald J. Gould, Graph Theory, Benjamin/Cung® Publishing Co., Menlo Park, CA, 1988

Hammer and Maffray: P.L. Hammer, J. Maffray, Contglie Separable graphs, Discrete Appl. Math. 27 () 9%.85-
99

Wolfram Mathworld:http://mathworld.wolfram.com/about/author. htrhttp://mathworld.wolfram.com/Cograph.html
(2013-05-28)

with subreferences:

e Brandstadt, A.; Le, V. B.; Spinrad, J. P. GraphsGés: A Survey. Philadelphia, PA: SI-
AM, 1999.

* Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. N¥ark: Springer-Verlag, p. 435,
1989.

e Corneil, D. H.; Lerchs, H.; and Stewart Burlinghdm;Complement Reducible
Graphs." Discr. Appl. Math. 3, 163-174, 1981.

« Sloane, N. J. A. Sequence A000084/M1207 in "TheL{dwe-Encyclopedia of Integer Se-
quences."

* Weisstein, E. W. "Re: Cographs." Oct. 9,
2003a. http://listserv.nodak.edu/scripts/wa.exe 1A@3310&L=graphnet&P=R743.

e Weisstein, E. W. "Cographs <=> Series-Parallel Neks." Oct. 23,
2003b. http://listserv.nodak.edu/scripts/wa.exe1A26310&L=graphnet&P=R1929

Wikipedia: Cographsttp://en.wikipedia.org/w/index.php?title=Cograph&io=552342134
with subreferences:
e Jung, H. A. (1978), "On a class of posets and tineesponding comparability

graphs” Journal of Combinatorial Theory, Series B 24 (2): 125-133

e Cornell, D. G.; Lerchs, H.; Burlingham, L. Stewgk981), "Complement reducible
graphs" Discrete Applied Mathematics 3 (3): 163—-174,

e Sumner, D. P. (1974), "Dacey graph%"Austral. Math. Soc. 18 (04): 492-502

e Burlet, M.; Uhry, J. P. (1984), "Parity Graph¥gpics on Perfect Graphs, Annals of Dis-
crete Mathematic21, pp. 253-277.

Wilf: Herbert S. Wilf, “Algorithms and Complexity'internet edition 1994
http://www.math.upenn.edu/~wilf/AlgComp3.hti{#013-05-28)

57

Appendix 1
A1l.1 One-vertex-extensions

We shall use the one-vertex-extension operatioasder to construct a distance hereditary graph,
but first let us recall the set of rules for theedions:

Consider the induced subgragh= (V',E") of G = (V' U{x},E), and a vertex' in G'. If G’ were
extendedo G by adding a new vertex such that:
i) N(x) = {x'}, we say that we were attaching a pendant vertex:' and denote the
extension by (P)x’
ii) N(x) = N(x"), we say that’ andx are false twins, and denote the extension by
x(F)x'
iii) N[x] = N[x'], we say that’ andx are true twins, and denote the extension by
x(T)x'

We start withK, (which by theorem 3.iv contains a pair of twinsagsendant vertex and hence
eitherv, (P)v,or v,(T)v,, the complete graph on two vertiagsandv, and we shall employ the
one-vertex-extensions in the following (random)esrdve begin with a false twin operation,
followed by a pendant operation and ending withtlagofalse twin operation.

@ @ fig 1.1

To this graph we add the vertex as a false twin te; (i.e. they have the common open
neighborhood)...

2 ® fig 1.2

...followed by the addition of another pendant vestgxo v,, thusv, is its only neighbor...

fig 1.3
.. and we finish the construction 6f by addingys as a false twin te,:

58

o W3,
(i)
W
G, 2 7 fig 1.4

G, 1s a distance hereditary graph.

Next an example with the following order of opevas, starting fronk,:
True twin, pendant, false twin and finally anottrele twin operation.

We begin withK,on verticesu; andu,...

(3 3

fig 1.5

...and addusbeing a true twin ta, ...

Ki
fig 1.6

...then makeu, a pendant vertex attachedup..

@\%.
& = fig 1.7

...followed byug being a false twin ta;, having the same open neighborhoodas.

fig 1.8
...and we finish by attachingy by at true twin tais...

59

G
..giving usG, a distance hereditary graph.

fig 1.9

Appendix 2
A2.1 One-vertex-extension tree

We shall here use the definition and instructiomeig in section 7.2 to build a one-vertex-extension
tree for each of the graphs in fig 1.4 and figre§pectively.

Letv; be the root, and far < j < i < n follow the one-vertex-extension ordering so tifed
vertexv; is one ofiPj, iFj andiTj to vertexv; then it is a son te;. Order the sons of a node as they
are ordered in the one-vertex-extension orderiegvibe a parent te; in ET (G), j<i. We denote

by vjv; an edge irET (G). We call it aP-edge, or &'- respectively ai-edge ifv; is a pendant

vertex attached to;, or a true respectively a false twinto

If G is connected, then v, is either aP- or T-edge.

From the graphs above we have the respective anexvextension orderings:

V(Gy) = {vq,..,vs} andV(G;,) = {uy,..,us}. We begun wittK, in both graphs and fa¥; we now
assume that, (P)v,, and inG, thatu,(T)u,, giving us the respective lists of “words”, or pig
sequences in reverse;(P)vy, v3(F)vy, vy (P)v,andvs (F)v, respectivelyu, (T)uq, us(T)uq,

uy (P)uq, us(F)u, andug(T)us. Thus we have the following one-vertex-extensrees,T;
respectivelyT,, associated with the grapis andG, respectively. We mark the edges wWit{f" or
F depending on what relation the son has to it'spar

fig 2.1 fig 2.2

A2.2 Twin Set

We see that iff; (fig 2.1) onlyv; can be reach from the root (which is always in the twin set)
through a (false) twin edge and thus the twin $e6 g TS(G;) = {v4, v3}. In T, (fig 2.2) we have

60

that all vertices but, can be reached from ul through twin edges anditbi(s,) =
{u1, up, us, us, ug}.

Appendix 3

In this appendix we shall use the new recursivendiein of distance-hereditary graphs in order to

construct one from two other ones — namely thogengin fig 1.4 and fig 1.9 of appendix 1.
A3.1 Construction of a distance-hereditary graph from two other ones

Consider the graphs given in appendixG1andG,. Recall the set of operations used to form a

distance-hereditary graph from two other ones ginesection 7.5.1:

1) A graph consisting of a single vertex is a disehereditary graph with the twin set {v}.

2) If , G, andGy are distance-hereditary graphs then the uGioh G, andG; is a distance-

hereditary graph anflS(G) = TS(G,) U TS(Gg). ThenG is formed fromG, andG, by a false-

twin operation. This is denotetl= G, (F)Gg.

3) If G, andGy are distance-hereditary graphs, then the géaphtained fromz, andGzby

connecting every vertex @15(G,) to all vertices ofTS(Gg) is a distance-hereditary graph and

TS(G) =TS(G,) U TS(Gg). We say that is formed fromG, andGgby a true-twin operation.

This is denotedc = G, (T)Gp.

4) If G, andGrare distance-hereditary graphs, then the graptbtajred fromG; andGy by

connecting every vertex dfS(G,) to all vertices of"'S(Gg) is a distance-hereditary graph and

TS(G) = TS(Gg). In this case we say thétis formed by a pendant operation. This is denoted

G =G, (P)Gg .

Now, letG; andG, be G, andG;. We make the nodes in each graph who are notinrspective
twin sets slightly darker.

G, =G, G, = Gg
s V3
fre)
2 G
fig 3.1 fig 3.2

We shall employ the twin set operation®@pandG, to formG, a distance hereditary graph.
SinceG = G, (T)Gg we attach every vertex IfS(G,) to every vertex iTS(Gg) andTS(G) =
TS(G,) U TS(Gg), seen in the figures as the vertices not shadowed.

61

G = G, (T)Gg fig 3.3
Appendix 4

A4.1 Determining whether G isdistance-hereditary or not

GivenG above, we “know” that it is a distance hereditgrgph since it is constructed from two
other ones. Despite our knowledge about the graplshall work through all the algorithms from
determining wether it is distance-hereditary or, imthe one where we solve the Hamiltonian
problem on that graph.

First we employ the algorithm “Prune dhg(G). Ouut is the grapld = (V, E) with adjacency
matrix M

Vi Vz V3 Vg Vs U; Uz U3z Ug Us Ug

Vi 1 1 1 1 1 1 1

v, 1 1 1

V3 1 1 1 1 1 1 1

7 1 1

vs 1 1 1

up 1 1 1 1 1 1

u, 1 1 1 1 1 1

us 1 1 1 1 1 1

Ug 1 1

us 1 1 1 1 1 1

ug 1 1 1 1 1 1
fig4.1

We begin by computing the distance layouts frontisigvertexv;. ThusL, is the neighborhood of
V31 Ly = {v3, Vs, Uy, Uy, Us, Ug}, Ly = {v1, Vg, Ug}.

Setj €1,i €2

The connected components@(L,) are the three graphs on one vertex, namghy,andu,.

There will be no cograph-pruning on one vertex bsafthey are cographs thouhg), contracted they
are already so we sort the vertice%:6f.,) by increasing inner degrgd (v): id(v,) = 7,id(v,) =
2,id(uy) = 2.

None have inner degree 1 so we go to next if+stad, checking that+ 1 (i = 2) so that for
eachx inL, taken in increasing inner degree we employ thegaograph algorithm

62

We setx = u,. Checking the graph an,’s neighbors in.;: G[N;(x)] = G[N;(u,)] is the
disconnected graph on two vertices, namglhandu, .

G[N, ()] TN fig 4.2

Prune-cograph algorithm @¢h= ({us u,}, {¢}) yields:

Compute cotre& of G. We need algorithm cograph-recognit{Gn:

First we create a ne@l) node, R.

Sincdus uy] is not inE(G), create a ne0) node N, and adadV as a child ok and we adad; and
ug as children olN. Then there are no vertices to iteartively incogp® intoT .

The cotred” of the cograple [N, (uy)]:

@/ L fig 4.3

We now letA be the set of nodes Bfhaving only leaves as descendants; {N}

Now A # @ so we pick an arbitrary nodéin A, that is the only elemet, of A. We also pick an
arbitrary sonx of N, u,. For each sog # x one wants to find their relation, false or truénsvN
is a(0) node, so we sep(1) €us, s; = ugFu;.

j€Ei+1=1+1=2.

ReplacingN by x and loop once more, we replaRdy x = u; and returru; which is the last
vertex of the pruning sequence. We contMgctu,) intou, and we seb(2) €u4, s, = usPu,.
Now the distance layouts akg = {v,, vs, Uy, Uy, U3, Us, Ug}, Ly = {vq, V4, Uys}

cotreeT

Next we look atx = v,. G[N;(x)] = G[N;(v,)] is the disconnected graph on two vertiegsand
vg. In the same way as above we have i) €vs, s; = vs(F)v,, p(4) €y, sS4 = V(P)V,.
Now the distance layouts ake = {v,, vs, Uy, Uy, U3, Us, Ug}, Ly = {v1, Vs, Us} -

Now the only remaining vertex iR isx = v,. Note thatus andvs were inN; (v;), but they were
deleted from the graph when contractmdgu,) andN, (v,) above, and hence nad(v;) =
|N;(v)| = 5.

Thusx = v,.
The graph¢* = G[(N;(v,)] is the disconnected graph on five vertices:

We employ prune-cograp&i*,j = 5) and start with cograph-recognitio*) to compute a cotree
T of G*:
Initialization withv, andu, gives us the cotreg*

/

T @ @ fig 4.5

1) We addu, intoT*
2.1We call procedur®ark(x) wherex = u,.

Mark(u,)
Begin by marking all leaves adjacenkte u;: we marku,.
Round 1 Step 1, we unmauk sinced(u,) = md(u,) = 0. md,) is already 0O
Step 2u, # R so we markw = N which is the parent af;.
Step 3, we sahd(N) =md(N) +1 =1
Round 2 step 2v: md(v) = d(v)
End
There is a marked vertex ad@R) = 1 so we marlR
End Mark.

The following table and tree is obtained, the sitathie tree indicates that the vertex has been
marked, and brackets around stars indicateshbatdretx has been unmarked. See fig4.6 below.

Table 1, markings

v, N | R *

U

dlv) |0 |0 [2 |1
I
I

mark | "‘
unmark /
md (v) | & o

Fig 4.6

Now, we are back in cograph-recognitiGny.

Neither all nodes, nor no nodes were marked anchdged so we jump to step 2.4 and call FIND-
LOWEST, F-L.

We make a few notes: we have that(R) = d(R) — 1, henceR is properly markedy is a
marked(0)-nodeN. Also, we set up a table to keep track of idegginf vertices:, y, R, w andt.

The information is used in step 2 of F-L.

1) Initialization: y €A (nil value). We note that is marked, thus we might have a cograph.
Howevermd(R) = d(R) — 1 so we unmark R, set ri) to O (if needed) and set=w =
R. End.

64

Table 2, identities after initialization of F-L.

u y R w t
1 A
1.1 |w=R |A R

We chooseV since this is the only marked vertex left aftetiatization of F-L where we unmarked
R. We note thay = A and henc& might be a cograph. Labhlis 0 so we

doy €N, t <parenfN) = R. We unmarkV and set md{)=0. The table of identities now looks as
follows:

Table 3, identities at end of each step

u y R w t
2 N A
2.1 w=R A R
23 | w=R | N R R
2.2) is skipped since= w = R.
2.3) seww €u, R €N
End step 2

END FIND-LOWEST.

Again, back in cograph-recognitid@hi() we perform step 2.%1 = {u,}, B = {v;}, label N is 0.u,

in A is a leaf so we add a new 1-node in place,cind maket, andu, (the veretx we were about
to add tol' when we begun the cograph-recognition algorithindoen of this node. We thus end
up with the following cotree: @

)
Fig 4.7 (=D

(ug (u

Iteratively incorporatingi; andu, as above we will end up with the cotree having
vy, Uq, Uy, U3 @Ndu, as leaves, wheng, is the child of N, all others are children @f, as follows:

D

/

¢ &
¢ &0

fig 4.8

Now we have found out that the gra@h= G[(N,(x = v;)] is a cograph. We started with prune-
dhg(G), who calls prune-ad@r) which in turn calls cograph-recogniti@) with subroutines

65

Mark(x) and Find-Lowest. Cograph recognition returns aeeofff G is a cograph. The cograph is
also a distance-hereditary graph. Prune-cograpldsya pruning-sequence, which we are about to
find now:

A = {N,}, we choose = u,.

Now looping through choosing each spe u,; of N, we get the following.
N, is a 1-node.

y =us, p(5) = Ug, S5 = ugTus.

y =us3,p(6) = us, s¢ = uzTuy.

Y =uz, p(7) = Uy, s7 = uTuy.

We replaceV, by x = u; which gives us the cotree withas a rootN (a 0-node) as an internal
node withv, and ul as its only children. We thus addo A.

We choos&V, and we choose = v,.

The only sory # v, of N isu; and sincéV is a 0-node we hayg8) = uy, sg = uy (F)v,.
ReplacingV by v, yields a cotree withR as the root and, as its only child. There is no son
y # v, and thus no more words to the pruning sequengeduced in the loop. We replaReby
v, inT. Now v, is the root so we retunn, as the last vertex of the pruning sequence.

End cograph-recognition.

We are now back in Prune-dhg(G) in step 2.1.1 amthawe from above that€v,. We contract

G* into v,. Now the distance layouts alg = {v,, ¥ttt tbgrttsrtg), Ly = {Vir¥ptg} - The
only connected component bf is the vertex;. It has inner degree 1 so we l&y, the only
neigbor ofv;. p(9) = v4, sg = v, (P)v,.

Now alsov, is deleted from the distance layouts, leaving anlyn L;andvs, the starting vertex, as
the remaining vertice,, has inner degree 1.

We letx = v, andy = vs, its only neighbor and(10) = v,, s;o = v, (P)v;

We're done!

The pruning sequence, i.e. the order in whichvéréices are added using one of pendant-, true
twin- or false twin-operation, is the following (teothat the algorithm yields the sequence in
backwards so that the word labelkgg is the starting operation, followed Iy and so on):

U, Pv3, 01 PUy, u Foy, uyTuq, usTuqg, ugTuq, VPV, V5FUy, Uy Puy, usFu,.

Let us try to recreate the graph we started with:
v,Pv3 v, Pv, uFv,

L
(13 (3

2 W @ ()

Fig4.9 fig 4.10 fig 4.11

66

The "new” graph(*, emanating from our pruning-sequence, see fig Bel8w;

fig 4.19

The original grapl@ (fig 3.3) on which we employed thealgorithm pridiey ¢):

fig 4.20
It is easlisy seen that hey are isomorphic by camgdheir respective adjacency matrixes.

The one-vertex-extention tréd (G*) of the graphG* (fig 4.21) is given by the prining sequence.
We see that the twin set 6f consists of the vertex; only.
ET(G")

A4.2 The Decomposition Tree

In the following, we leG* = G. Given the one-vertex-extension tree we consthect
decomposition tred)T (G), of G by letting the root be a vertex labeled by theetgpedge from the

68

root of ET(G) to its first child, here the edggv; is aP-edge. We find thal, (1,2) =

v andV(2) = V[v,] i.e.v,and all of its descendants. Theis= G (P)Gr=Gg[1,2](P)G[2] =
v3(P)G[v,]. The twin set ofG is the twin set o&;; TS(G) = TS(G,) = TS(Gg[1,2]) = v3. The
Decomposition tre®T (G) of G now consists of a root label@dand its two childrenDT (G,) and
DT (Gg) beingv; andG[v,] respectively.

DT(G) = G,(P)Gr
v fig 4.22

Next, consideET (G[2]) = ET(G™):

ET(G[2]) = ET(GW)

We have that D (2) = v;, VV;[1,2] = VW\{v,} and the type of edge from the root to its first
child, i.e. the type of edge,v,, is P. We thus conclude that the subgra$® of G is formed from
G, andGWy by a pendant operation, whe?€V, = M [1,2] = 6W\{r,} = ¢@ and

¢, = 6W[2] = v,. The decomposition treBT (G), now consists of a root labeled P, with two
children,v; and a node labeled P. The latter have two childreandG ®[2]. TS(¢W) =
TS(GW,) = TS(GW [1,2]) = TS(G?).

DT(G)

We proceed WItlET (G?):

69

We have tha¥V @ (2) = V[u,] = {u; and all of its desecendantsyf,®[1,2] = {v,, v,, vs} and

the type of edge from the root to its first chilé, the type of edge,u,, isF. We thus conclude
that the subgrapti®of G is formed fromG®, andG®; by a false twin operation, where

G@, = 6@L[1,2] (i.e. the graph with vertex-sit,, v,, vs}) andG @, = G@[2] = G[u,] (i.e.

the graph on the set of vertices consisting,0dnd all of its descendants). The decomposition
tree,DT(G), now consists of a root labeled P, with two claliw; and a node labeled P. The latter
have two children, a node labelBdandv,. The node labeled have two childrenG @, =
GPg[1,2] and andz P, = 6P [2] = G[w] . We have thafS(6®) = TS(6¢@,) u

TS(G@ [1,2]).

DT(G)

fig 4.26

Working our way through the subgraphi$’;[1,2] andG ®[2] in this manner we eventually end

up with the following decomposition trée'(G) of the distance hereditary graghsee fig 4.27
below:

DT(G)

fig 4.27

70

A4.2.1 The Constants of the Decomposition Tree

Theorem 9 and theorem 10 yields a recursive progoacomputing the maximum and the
minimum cardinalitiesk, (G) andk, (G) respectively, of the minimum-free-number twingath
covers (mfn-tspc) of G and the free numpéF) in linear time using the decomposition tree of our
distance-hereditary grap@, if G has a twin-set path cover. These constants ak ustheorem

11 to state necessary and sufficient condititorsa distance-hereditary graphto have a
Hamiltonian Path.

We shall consider the label of each internal naid®T (G) as stating the type of operation used to
form a distance hereditary graph from two otherspnamely the children of each internal node,
where a child being an internal node representdbgraph on at least two vertices, and a child
being a leaf iDT(G) is a subgraph on one node.

Note that in this section, vertices in the twin set of a graph are shadowed (as opposed to appendix

3).

The following table is used to keep track of evetable 4.1

i —the level of G 3 tspc:"there exists | k. (G) K,(G) f(G) | TS(G)
internal nodes | The a twin-set path maximum | minimum | Free The
in DT(G) where| distance- cover” cardinality| cardinality| number| twin
level 1 is max | hereditary of mfn- of mfn- of tspc | set of
distance from | graph at tspc ofG | tspcofG |ofG G
the root. hand (in the

rows)

Gy The left “there exists a twin-
graph set

path cover” is True
or False foiG,

Gr The right “there exists a twin-
graph set

path cover” is True
or False foiG,

G® Type of “there exists a twin-
_ i operation, set
= G.()Gr ()= path cover” is True
P,TorF, or False forG®
used to form
G® from
G, andGg.

We begin at level 1 ddT(G) and considen; and us as being two graphs used to form a distance-
hereditary graplG(l) using false-twin operation.

71

table 4.2

1 G 3 tspc f(&) k1 (G) K, (G) TS(G)
Gy, Uyp True 0 1 1 Uy
(uqitself) | by by definition | by definition
definition
Gg Us True 0 by 1 1 Us
(us definition by definition | by definition
itself)
G G, (F)Gg| Trueby |0 2 2 Uy U us
thm 9 bythm 9.2 | by thm 10.1 by thm 10.3.a
C
¢ ®g408
table 4.3
2 G 3 tspc f(&) k1 (G) K, (G) TS(G)
GL G(l) True 2 2 TS(G(l))
Gr Uy True 1 1 Uy
G(z) GL(P)GR True 0 1 1 TS(G(l))
by thm by thm 10.5; | by thm by thm
10.4; since 10.3.c 10.3.c
a)3 tspc of | kx(GL) —
G,and G, | ¥1(Gr) >
b)f(6)+ | Owe
f(GR)LS 2 have f(G) =
o)k, (GL) — f(GL) + f(Gp)
k1(Gr) =
f(G)
(1
a)
(us]
G fig 4.29
Table 4.4
3 G 3 tspc f(&) K. (G) K, (G) TS(G)
GL G(Z) True 1 1 TS(G(Z))
Gr Ug True 1 1 Ug
¢® G,(T)Gg | True by 0 2bythm | 1by TS(GP) U ug
thm 9.1 by thm 10.2 | 10.3.b thm10.3.
b

72

G® fig 4.30
Table 4.5 a
4a 3 tspc f(&) k. (G) K, (G) TS(G)
Gy Vs True 0 1 1 Vs
Gr (2 True 0 1 1 (2
G ¢ G,(F)Ggr | True 0 2 2 v, U vg
Table 4.5 b
4b G 3 tspc f(&) K. (G) K, (G) TS(G)
GL 6(3) True 0 2 1 TS(G(3))
Gr Uz True 0 1 1 Uz
G(4b) GL(T)GR True 0 3 1 TS(G(3)) U us
G “4a)
@
Table 4.6 a
5a G 3 tspc f(&) k. (G) K, (G) TS(G)
Gy G“® True 0 2 2 Ts(G“Y)
Gr Uy True 0 1 1 Uy
G52 G,L(P)Gg True 0 1 1 TS(G(4a))

73

Table 4.6b

5b G 3 tspc (&) | x(G) K, (G) TS(G)
GL G(4b) True 0 3 1 TS(G(4b))
Gr Uy True 0 1 1 Uy
G 5D G.(T)Gg| True 0 4 1 TS(G(4a)) U,
GGD G (5Db)
)
(o)
2 fig 4.32
Table 4.7
6 G Atspc | f(G) | k1 (G) | ky(G) TS(G)
GL G(Sa) True 0 1 TS(G(Sa))
Ggr G 5P True 0 1 TS(G(Sb))
G® G (F)Gr True | 0O 2 | 756y uTsGO?)
G®
s
fre)
2 fig 4.33
Table 4.8
7 G 3 tspc f(&) k1 (G) K, (G) TS(G)
GL 6(6) True 0 5 2 TS(G(6))
Gg 2] True 0 1 1 2]
G(7) GL(P)GR True 0 4 1 TS(G(6))

74

G

fig 4.34
Table 4.9
8 G 3 tspc f(&) k. (G) K, (G) TS(G)
Gy, V3 True 0 1 1 V3
GR G(7) True 0 4 1 TS(G(7))
G® G, (P)Gg True 1 1 1 V3
G®
fig 4.35.

Now by theorem 9 and theorem 10 we have recursioatyputedx,(G) = 1, k,(G) =1, f(G,) =

0 andf(Gg) = 0. By theorem 11 we have th&® has a Hamiltonian path if and only if:

either

Q) f(G) + f(Gg) <1 andk,(G) =1, or

(2) f(GL) + f(Gr) = 2 and maxl, x,(G,) — k1 (Gr) + f(Gr), k2 (Gr) — k1 (GL) + f(GL)} = 1.

We have that (1) is true, and hence the distanoedfiary graptG ® has a Hamiltonian path
(which is easily confirmed by visual inspection!).

75

Appendix 5

In this section we shall give an example of atainse of the cyclé-partition recognition. We
shall also give examples on the outcome from cyepartition recognition on other instances.

In this first example, we shall work with the ghap of figure 5.1. We keep track of events in table
5.1 and in table 5.2. In table 5.1 columns givesta¢us of each parameter after each time we
process algorithms step 11. We get there either afbhewi-loop starts or when we are instructed to
go there. Lined throuhg signs, likein the table is supposed to describe the dynaraigsrtex is
lined through when moved from a set.

We will also grow trees accordingly to the prodegd and the paths found in the algorithm

SSCSY;) as we also keep track of the paths we discoveeﬁst. This is for visualization
purpose.

fig. 5.1

We initialize and in step 1 we set a value to peters, and sets are assigned the empty set as its
only element. In initialization step 2 we choose tertexr to be ourv, andN (vy) = {v,s,t,w}is
set to{uy, u,, us, us} and we setd, = {uq, u,, us, uy} . Also, in step 4, we root the first trég at

vy, and add the vertax, as a child of,. We have thus a new labeling of the gr&pland a tree
rooted atv, (see figure 5.2).

76

Table 5.1

Loop | initializati i=1 i=1 i=1 i=1 i=1 i=1 |i i=1
[on =
Numb rs=1 rs =2 rs =3 rs=4|rs=5|rs=6|r{7backtrack
er of = to v,
re-
startso
f (step
11)
a 1 1 2 2 %3 3 4
r 1 1 2 2 3 3 4
dr 1 2 32, 3 3 4 5,4 %321
B 1 2 2 3 43 4 5
F; Vo, Uq Vo, Uq Vo, Uq Vo, Uq Vo, Uq Vo, Uq Vo, Uq V4 Vo, Uq
u
F, Z, Uy Z, g Z,Y, Uz | Z,Y, %z | X,¥,Z,U ¥, Y, Z, %5
g, Yz Uz
Ay | ¥, U, U3, Ug Up, U3, Uq Up, Uz, g Up, U3, Uy | Up, ¥z, Ug Up, Uz, Ug 7, Uz, Uy Hy, Uz, YUy,
Up, U3, Uy
Aq x,Y,Z X, ¥,z X,Y,Z X, Y,z X, %% | X,3%% | ¥ % % 3,2 X,y
Bg Bll = Blz 313 = {vo, Uy, Bg Bg = B3y = B35 =
{vo, us} = {vo, Uy z,Us} = {vo, Uy, vour, | vouy, | {vouy,
.2} B} z,y} z,y,u3} | zy,x} | 2,y,%u,)
= {vo, Uy, 2} B3 By
= {vo, Uy, = {vo, Uy,
z,y} z,y,x}
C C, =B} C, Cs
= B} = B3
Vj_q
in/out
vj Uy u/z | z/z z [y y/ly y/ x/x
in/out x
Vi1 z Uy y Usz X Uz
Table 5.2 Vertices at distande from v, in Ty
dp =1 dp=2 | dr=3]| dy=4]| d; =5
Lg, Uq z Uy,y Uz ,X U,

Note that when we say “moweto S” we actually mean “create a copywodnd insert in S”

When all values in the initialization steps 1-1@dane, we begin with the subroutine first iteration
at step 11. We havg = u, andN(v;) N A = z # @, so we have but one choicewf Step 12

Vi < w =z Weseldr « dy +1=2instep 13. Acheck in step 14: if we have coméaa
away fromv, as the length of a longest cycle ik-@partition we start backtracking since we need
not cycles of greater length, this is not the cas®& sincen —d +2 =8 —4 + 2 = 6. Step 15-17,
we move u, to F, Set “flexible” set of forbidden vertices, expahe tree byadding the vertex as a
child of u; in T; and at the end df]. We are still in the same branch Bf so we change only the
superscript oB%; BFZZ « BS=!. We have gone far enough by the if-statementeipi€ ancz does
not belong tad,, butL,, = L, is empty so there is nothing to remove in stepr224. Thus we
insertz into L, at step 25. Agairg does not belong ta, so we skip the steps 27-35. We note that
z € A; and switch index fromi + 1 toj, thus havingy; = z instead ofv;,; = z andv; = u, after

77

step 37 (hence “outgoin@’; = z). Next, step 38 throws us back to step 11 withimgo; = z.
The treel; now looks as follows in fig 5.3.
T
vy

)

D fig53

This is the second time we are in step 11. We noovieom step 11 witly; = z. As it happens we
choosew = u, betweenu, andy, vj,; «w = uy; dr < 3, (skip step 14), moveto F,, addu, to
T, as a child o and toB? which we index ta3# and we’re done to step 18. Now, in step 20-22,
u, € Apso we remove from,; = L; all vertices that are in both; andF, but are not i, (This
is of importance when backtracking). Buytis empty so nothing happens. We insgrin L, at step
25.

Now in step 26-29, again sinag € A4,, we sel’, « Bf i.e.C; = {vy,uq,2,u,} and store; inC.
We increase cycle index< r + 1 = 2 and moveu, to F,. Step 30-31 says we backtrackjo= z
and decreasé; < d — 1=3-1=2. Now in step 32, we check if there are arajlable vertices to
explore in the neighborhood of there is the vertex so we do create a new brancijrby
increasing the branch index= a + 1 = 2 in step 33 and in step 34 we remove all vertiges o
further distance fronw, in the tree from the current branch. This is prapans for extending the
branch. Now, we go back to step 11 again. Searoodur = 2 for the current sate of the algorithm
before we start at step 11 a third time. Note that z and the vertey has not been explorefihe
treeT; now looks as follows in fig 5.4.

Vg

()
L2

7,% figs4

Third time at SSC&{ step 11. Step 11-13,is the only available vertex, thug,; < y and

dr < dy + 1=3. Skip 14. Step 15-18:We moydo F, (is already there) and adyg,; =y as a
child of z in T; and inserty in Bf whose superindex increases. Step 19,23 and Xk tied
removal ofu, from F, (in case there is a path thereto frgjn We inserty into L; by step 25. The
steps 26-35 are skipped, instead wevsgt = y tov; = y and again, we go back to step 11. The

columnrs = 3 gives the state of the algorithm before procesBmg step 11 a fourth tim&; now
looks as in figure 5.5.

AP

()
L2)

7,% ®figss

Fourth time att sscg(=y) step 11-13N(y) = {x, u3}. We choose; and sev;,; = uz, dr = 4.

Skip step 14y is inserted irF, at step 15y, is added as a child ¢fin T; and inserted irBf for
which we change indices. Hence we have come tol&ap, = 4 > 2, perform step 20 since
uz € Ay. L, is empty so there will be no removal frdin Next step 25u; is inserted intd.,. Steps 26-
34: store the cycle just found and increase cyalex, inseru into F, backtrack toy and decreasé;

by 1 tod; = 3 and remove vertices of greater distance thenr8 th@ root inT; from Bf, and
indexBf as a new branch. Step 35: go to step 11.

78

vy

()
L2

)
T, & fig5.6

Step 11 a fifth timeb; = y, v;,; = x, dr = 4, we addy to F,, we addx as a child of in T; and
insertx into B3. Step 19, 23 and 24; we remavgfrom F, . insertx into L,. Skip 26-35.Set new
index forv;,; = x tov; = x, go to step 11.

V)

(2)
& o
T, % (©fg57

Step 11 once agaimj = x, vj;; = u,, dr = 5, we addx to F,, we addu, as a child of inT; and
insertu, into B which is set taB3. Step 19-22: nothing sindg is empty. Inserts, to Ls. Steps
26-31:u, € Ay, we store?f as a cycl&’;, increase tor = 4, insert :u, into F,. Backtrack to

v; = x, decreasedr to dr = 4. Step 32N(x) N A # @ is false so we go to step 11. first we have a

glance atT; in fig 5.8.
Vg

)
W
&

T, @/ fig 5.8

Step 11, seventh time; = x. N(x) N A = @. Therefore we do not enter the if-statement gt $&
but instead go to step 39. Now, this time# u; so we go straight to step 47 wher we are directed
to BacktrackT, v;).

Backtrack(T;, x).

Step 1, the parent afin T, is set tov;_,, thusv;_; = y. We jump to step 9 whet, < dr — 1 =
3. Now, step 10 -12, check if there are verticeE,ithat also are on the same level in the tree as the
children and grandchildren gfbut not themselves being neither children normarefy. If there
are such vertices, remove them frénwe are backtracking through the tree now, aedetimay
be vertices left in the forbidden set from thegess of growing the tree. Thus, we remaydrom
F,.

Next move, step 13-14: all childrenpfire made unavailable so that we do not brancto affem
again. We thus insett; into F, again. We check if there are any possibilitiegrofving a new
branch from this state in step 15: there is notyegump to step 21 and sgt= y and go to step 1
of BacktracKT;, v;) with parameter§; = T; andv; = y.

Through the backtracking procedure we want to gaavew branch if and only if there is a uniquely
new branch to grow — therefore, at each stateawvercan branch off, we make sure that all
vertices in the neighborhood of_, in T; are inF,. Otherwise we would get stuck in an eternal
loop. We also make sure that vertices that arexyotored in the current branch are made available
— step 11 of Backtracky, v;).

79

We continue the procedure: Backtréfk y) step 1: the parent ofin T, isz, so we set;_; = z.
We jump to step 9 and s@t = 2. Step 10-12: All vertices ih; andL, that are also i, but are
not neighbors of in T;, that isu; andx, are removed fronf,. Step 13-14: make sure that bgtland
u, is inF, — we thus insent, in F,. There are no available neighborszaof G so we set; = z,
and go to

BacktracKTy, z) step 1w;_; = u,, step Xy = 1. Step 10-12: we remove, andy from F,. All
children ofu, inT; are inserted int®, in step 13-14. Step 15-20 are skipped. Wevsetu, and
go to step 1 of Backtra€k;, v;).

Now, step 1 of Backtra¢;, u,): v;_; = v,. Step 2-8: we prepare for néxioop by increasing
since next branch will necessarily be unique stgnivithv,u, in a whole new tree. We start
building branches from the beginniBﬁ < vy, We empty alL,,'s since they will have different
elements when building the next tree. We eniptipecause we want to have all vertices available
from the start (except,), and finallyi < i + 1 = 2. Then we go to step 4 of SS@§(In table 5.1
is now the state of the algorithm just before pnefiag step 2-8.

Now that we are in step 4 of SS@gJ(the following happens: We root a new tige= T, since

i = 2. Step 5: we remove all previously used neighbbug avhich in this instance and state of the
algorithm is equivalent ta;. Also, u, is removed frond,. As it may happen, when we delete a
neighboru; of vy, a vertexx € N; (u;) can end up withls ¢, .;(x) = 1. The point is that we do not
want unnecessary information as input into theralgm. Now, for the second loop, we thus have
the following input grapl& ® = G\{u;}

G®

fig 5.9

Moreover,T, will grow as follows in fig 5.10 below.

fig 5.10

In the third, and final loop, we will have the falVing input grapt¢® = G\{u,, u,} in whichx
will have degree one and is thus removed. We thdsue withG ®” = G\{u,, u,, x} which will be
the actual input graph in the third loop,see figbuEl.

80

G® = G\{us, u,} GBN = G\{uq,uy, x} fig 5.11

The treel; will grow as follows:

Vo
Vo @
AT 7

e
The set of cycles found in this particular ins&o€ the Hamiltonian cycle problem is the
following: C = {Cy, C,, C3, C4, Cs, Co} WhereCy = vyu,zuy, C, = vouyzyus, andCs; = vyuzyxu,
were found in the first loo;, = vou,xyu; and Cs = vyu,xyzu, is to be found in loop two and
Ce = vouzyzu, Will be found in the third and last loop. The aloge values of each cycle is:

|Cll = 4! |CZ| = 5! |C3| = 6! |C4-| = 5! |CS| = 6! |C6| =4

We want to match the cycles in the proper commnab find out whethe€ is Hamiltonian or not,
i.e. which, if there are any, combinations of cgdleC satisfies the conditions of beindca
partition.

Note here that the enumeration of cycle€ iis not the enumeration of the cycles in khgartition.
We have by theorem 16 thef_,|C;| = n + 2(k — 1). Here we wan|C; | + |C;,| +| C;,| =8 +

2(3 — 1) = 12. Partitioning of 12 into 3 parts where the smalie®f size 3 yields the following
triples: (3,3,6), (3,4,5), (4,4,6). With our setaytles only the last partitioning is possiblertatch.
This is done with the combinations, C5, C or C;, Cs, Cs. The vertex set of the intersection

V(C; N C3) = {v,,uy,z} violates both condition 2 and 3 of the definitgince it should be either

only {v,} or {v,, u;} for someu; € N(v,). Likewise doed’(C; N Cs) = {vy, uy, z}. Hence our
graph is not Hamiltonian.

% fig 5.12

Consider the sunki_; 3%,; ~:1C; N C;|. We havelC; N C3|+|C; N Cs| +[C3NCs| =3 +3+3 =
9. We also havéC; N Cs|+|C; N Cgl + |Cs N Cg] =3+ 3 + 4 =10. We havek = 3 and thus
w 2;5 = 5. None of the combinations of cycles satisfy thesuation condition of

conjecture 1, and hence none fs-partition and thereforé is not Hamiltonian.

Now, consider the grapi, which is the grapwith two new edgesi, x andusu, (the number of
vertices is the same as@n as well as the neighborhoodwgy).

81

G' fig 5.13

We claim without proof, that the algorithm yielihgee additional (to the ones founddpcycles
in the first loop, and one additional in the thiodp. In the second loop there are no additional
cycles since there are no new neighbors,obr any of its neighbors iG — u,, also no cycle
starting withvyu, will contain the edge betweeny andu, since the algorithm backtracks when
hitting anyu;.

The additional cycles from loop 1 are enumeratading from 7 here in the example, which is
incorrect in the sense that the algorithm enumeridie cycles in the order it finds them. Those
found in loop 1 would have indices from 1 to 6. Tiesv cycles coming from loap= 1 are the
following: C,; = vou,xu,, Cg = vouxyus, Cy = vyu;xyzu, and the additional one from the third
loop isC;p = vousuy.

Now we havd(,| = 4, |C,| =5, [C5| = 6, |C4|l =5, |Cs| = 6, [Cs| = 4, |C7| = 4, |Cg| =5,

|Cy| = 6 and ,|Co| = 3. There is a possibility to match (3,4,5) and @),4We check the
combinationC, = vyu,zyus, C; = vou,xu, andC,, = vyusu, Which in terms of absolute values
matches the partition (3,4,5) of the number@2n C; = ({vy, u1}, {vous}), C2 N Cip =

({vo, us}, {vous}) which is fine so far. This requires that andC,, has only the vertex, in
common — which is easily verified. Thus conditi@and 4 are satisfied. Next we chétlC,) N
Nvo] = {vg, uq,uz} , V(C;) N N[vy] = {vy, uy, uz}, V(Ci0) N N[vo] = {vy, us, us}. Condition 3 is
satisfied. Now, finally we look at the union of thertex sets (condition vy, uy, z, y, us} U

{vo, us, x, uy} U {vg, us, us} = {vg, uy, uy, uz, uys, x, v, z} = V(G). Thus all conditions of the
definition of k-partition are satisfied, and hengeis Hamiltonian. We can also determine a
Hamiltonian cycle that is constituted by this paoti. SinceC, has an edge in common with both
C, andC;,, we cannot start our walk aloiy. We start av, and walk alond’; until we meet the
common vertex ofC; andC, which isu,. Next we continue our walk alor@y until we meet the
common vertex of, andC;, which isu;. We complete our walk alorng,, first tou, and we
close the walk into a cycle by a final step fragto v,. Thus, a Hamiltonian paifiin G has the
following sequence of vertice§: = vy u,xu, zyusu,v,, see fig 5.14 where we also give e
partition aroundy, in G, ¢' = (¢'y,C’,, C’'3) whereC'; = C,,'C, = C, andC'; = Cy

fig 5.14

Also we havgC, N C,|+|C, N Cipl +|C, N Cipl =24+14+2=5 andw = 22—5 =5.By
conjecture 1 this implies thét, €, andC,, constitutes &-partition and hencg’ is Hamiltonian.

83

