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Abstract

The aim of this report is to make an easier access to mathematical
control theory by working on certain types of problems which have eco-
nomical relevance, illustrated by completely solving some problems after
presentation of Pontryagin’s Maximum Principle with various end point
conditions and discussion on under what conditions this principle is also
sufficient for optimal solution.
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1 Introduction

1.1 A historical view of Mathematical Control Theory

Control theory was famous among mathematicians during World War II for the
benefit of fire-control systems and electronics. But already in the early Ro-
man time, control mechanisms were used for engineering in the field of feedback
control when they kept water by using several combinations of valves. Later
in 1769, James Watt was known to be the one who came up with the famous
steam engines. This theory applied in different areas. In 1868, James Clerk
Maxwell, Scottish physicist and mathematician, performed the first mathemat-
ical analysis of the stability properties of the steam engine. After his work
went on public, the increment of the interest in control theory has resulted in
more and more research in control and its applications. The theory of feed-
back amplifiers was developed by the scientists at Bell Telephone Laboratories
in 1930s. Nowadays there are mainly two approaches in optimal control the-
ory. One is the Optimality Principle, also called dynamic programming intro-
duced by Richard Bellman and the other is Pontryagn’s Maximum (Minimum)
Principle by the Russian mathematician L. Pontryagin. The so-called modern
control theory can be dated back to the end of 1950s or beginning of 1960s by
a Swiss mathematician Rudolf Kalman who invented the celebrated Kalman
filter, based on linear-quadratic Gaussian optimal control. Kalman introduced
the basic control theoretic concepts known as reachability, controllability, and
their dual concepts, constructibility and observability which are central in all
kinds of control problems. Kalman has also brought research of control theory
into the study of algebraic analysis. Perhaps the main distinction between clas-
sical and modern control theory is the treatment of single- input/single-output
and multi-input/multi-output. Mathematics behind such a treatment is linear
algebra.

So what is mathematical control theory? We cite the answer from Sontag’s
book [4]

Mathematical control theory is the area of application-oriented math-
ematics that deals with the basic principles underlying the analysis
and design of control systems. To control an object means to influ-
ence, engineers build devices that incorporate various mathematical
techniques.

Nowadays, mathematicians and scientists utilize control theory in broad fields
such as biology, engineering, programming and economy.

1.2 Formulation of a simple control problem

In this report, we concentrate on the study of control theory in economical
applications. The topics cover the calculus of variations and the theory of
differential equations.
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The simplest problem in the calculus of variation, where the function x(t) is
real-valued, continuous and differentiable for t ∈ [t0, t1], is

max

∫ t1

t0

f(t, x(t), x′(t))dt,

subject to
x(t0) = x0

where x(t) is the state variables, x0 is fixed, and the prime ′ denotes the deriva-
tive of a function of t, and f : R → R is continuous. This problem can be
transformed to the following control problem by letting u(t) = x′(t).

max

∫ t1

t0

f(t, x(t), u(t))dt,

subject to
x′(t) = u(t), x(t0) = x0,

where x(t) is a state variable and u(t) is a control function defined for t ∈ [t0, t1].
In control applications the values of the state at the terminal time x(t1) = x1,
can be free, or it can be fixed, or mixture of partial free components and partial
fixed components at the terminal time. Later in this report we shall present
various constraints on the state variables at the terminal time.
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2 Basic Control Theory in Economical Terms

We begin by considering a system with a real value state variable, x(t), where
t represents time. The state variables of the system describe, for example, the
stock of goods present in the economy. During the process, the value of function
x(t) may not work as you wanted to achieve the goal, thus we have to control the
system by using a control function, u(t). During the operation of the system,
the rate of change over time (in the value of x(t)) can be controlled since it
may depend on that variable t or some other variables. For example the flow of
goods consumed at any instant.

The rate of change of the state variable is defined by the derivative of the
function x(t). Let t0 be an initial time such that x(t0) = x0 is given. Thus the
pattern of x(t) can be represented by a differential equation

x′(t) = g(t, x(t), u(t)), x(t0) = x0 (1)

where the initial point is fixed with the given x0. If the control function u(t) is
defined for t ≥ t0, then there is a unique solution for (1).

Assume that there is a real valued function f depending on variables t, x(t),
and u(t), i.e. f : [t0, t1]×R×R→ R. The value of this function f(t, x(t), u(t))
can be measured by the integral under the expected time-period, [t0, t1], as
follows ∫ t1

t0

f(t, x(t), u(t))dt. (2)

The integral in (2) is called the objective or the criterion and in economic
analysis this introduces the benefits produced under each period of continuous
time of f controlled by u(t). Different control function depends on its own
time-period which leads to particular value in the objective (2). Note that the
terminal time t1 is not necessarily fixed.

The basic problem in this section is that we want to study the maximiza-
tion of the integral (2) which satisfies the differential equations (1) and the
constraints imposed on x(t1). For instance, the capital stock aggregation over
time, because the consumption path of the economy determines net investment.
Hence the aim of the controlling system is usually to contribute to a given
objective.

Example 2.1: Optimal control problems

• The values of all the relevant variables determine the electricity consump-
tion of household at any time, and we want to minimize the total electricity
consumption so that monthly earning covers within a given time period.

• Capital stock (the values of consumption) and time, may determine the
welfare of a company at each instant. Assume that there is a given specific
values of the stock at the beginning and the end, then the objective is to
maximize total welfare over a fixed time horizon.

�
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Example 2.2: Consider the optimal control problem in Economic growth

max

∫ T

0

(1 − s)f(k)dt, K′ = sf(k), k(0) = 0, k(T ) ≥ kT , 0 ≥ s ≥ 1

where we have the real capital stock of a country k = k(t), its production
function f(k) and s = s(t) is the control variable with s ∈ [0, 1], i.e. s is the
fraction of production set aside for investment. The quantity (1− s)f(k)
is the flow of consumption per unit of time. The constant k is the capital
stock, hence the initial and terminal capital stock is k0 respectively kT .
The condition k(T ) ≥ kT means that we wish to leave a capital stock of
at least kT to those who live after time T . So in this problem we wish
to maximize the integral of this quantity over the planning horizon [0,T],
i.e. to maximize total consumption over the period [0,T].

�

Example 2.3: The optimal control problem in Oil extraction

Let x(t) be the amount of oil in a reservoir at time t. Assume that K is
amount of oil at the beginning time t = 0, so x(0) = K. Let u(t) be the
rate of extraction, then for each time t > 0 gives a different of the amount
of oil

x(t)− x(0) = −
∫ t

0

u(τ)dτ

or

x(t) = K −
∫ t

0

u(τ)dτ,

where
x′(t) = −u(t), x(0) = K. (3)

Hence x(t), is the amount of oil which left at time t, equals to the different
of the initial amount K distracts by the total amount extracting during
the time [0, t].

Moreover, assume that the cost per unit of time, denoted by C, depends
on the variables t, x and u, so C = C(t, x, u). Further p(t) is the market
price of oil at the time t. The instantaneous profit of time t is then

φ(t, x(t), u(t)) = p(t)u(t)− C(t, x(t), u(t))

where pu is the sale revenue per unit of time at t. Now if the discount
rate is denoted by r, the total discounted profit over time t ∈ [0, T ] can be
calculated as follows

4



∫ T

0

[p(t)u(t)− C(t, x(t), u(t))]e−rtdt (4)

where x(T ) ≥ 0 and u(t) ≥ 0.

There may be the following types of control problems

• Fixed terminal time:
Find the rate of extraction u(t) ≥ 0 that maximizes (4) subject to
(3) and x(T ) ≥ 0 over an extraction period [0, T ].

• Free terminal time:
Find the rate of extraction u(t) ≥ 0 and the optimal terminal time
T that maximizes (4) subject to (3) and x(T ) ≥ 0.

�
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3 Control Problems in Simple Cases

In this section, let us consider control problems where the control variable and
the terminal state have no restrictions, i.e. the values of u(t) are in −∞,∞)
and x(t1) is free, thus we have the following problem:

max

∫ t1

t0

f(t, x(t), u(t))dt, u ∈ (−∞,∞) (5)

subject to
x′(t) = g(t, x(t), u(t)), (6)

t0, t1, x(t0) = x0, x0 fixed, x(t1) free, (7)

where the function g : [t0, t1]×R×R→ R, and the control function is defined on
the interval [t0, t1]. A pair of a state variable and a control function (x(t), u(t)) is
called an admissible pair, and we call such a pair that maximizes the integral in
(5) for an optimal pair (x∗(t), u∗(t)). The solution of the differential equation
defined by (6), together with any given control function u ∈ (−∞,∞) will
usually be uniquely established for the whole time interval [t0, t1].

With the constraint from (6) for t ∈ [t0, t1] there is a co-state variable p(t) ∈
R, also called the adjoint function, p = p(t) whose values are in R. This can be
compared with Lagrange multiplier in constrained optimization problems, but
here it is a function of t and it is processed through the Hamiltonian function
defined by

H(t, x, u, p) = f(t, x, u) + pg(t, x, u) (8)

For more details it will be presented later.

Theorem 3.1: The Maximum Principle

Suppose that (x∗(t), u∗(t)) is an optimal pair for problem (5)-(7). Then there
exists a non-zero continuous function p(t) such that, for each t in [t0, t1],

p(t1) = 0 and p′(t) = −H
′

x(t, x∗(t), u∗(t), p(t)) (9)

and
u = u∗(t) maximizes H(t, x∗(t), u, p(t)), for u in (−∞,∞). (10)

Note that (i) the optimality condition for (10) is

H
′

u(t, x∗(t), u∗(t), p(t)) = 0, (11)

where H ′· is the partial derivatives of H with respect to ·.
(ii) The condition p(t1) = 0 is called a transversality condition. When the

adjoint variable vanishes at the terminal time, it means that x(t1) is free.
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Theorem 3.2: Mangasarian

If the requirements in Theorem 3.1 are given together with the following re-
quirement, a sufficient condition,

H(t, x, u, p(t)) is concave in (x, u) for each t in [t0, t1], (12)

then (x∗(t), u∗(t)) is optimal solution that satisfies (6),(10)and (9).

Remark: When the optimal problem is to minimize the objective in (5), we
can solve the problem the same as it is to maximize the negative corresponding
(original) objective function. The other alternative is that we can reformu-
late the maximum principle for the minimization problem: an optimal control
(x∗(t), u∗(t)) minimizes the Hamiltonian (8). The sufficient condition for this is
a convexity of H(t, x, u, p) with respect to x, u.

From now on keep it in mind that the optimal problem can have a concavity
and a convexity of of H(t, x, u, p) with respect to x, u. But most of the problems
in this paper refer to the maximum problem that extends from Theorem 3.1 and
Theorem 3.2.

3.1 Necessary Condition

Let us study in more details Theorem 3.1. Why is the condition in this theorem
a necessary condition for problem (5)-(7)? That is to ask: why is the condition
satisfied provided (x∗(t), u∗(t)) is a maximizing solution for t ∈ [t0, t1]? The
explanation is illustrated in this subsection.

Consider Lagrange multiplier and assume that the function p(t) is a single
Lagrange multiplier (since we now associate with a single constraint.). Let
p(t) be a continuously differentiable function of t ∈ [t0, t1]. For any functions
x(t), u(t) satisfying (6) and (7), we have p(t)g(t, x(t), u(t)) = p(t)x′(t) and hence

∫ t1

t0

f(t, x(t), u(t))dt =

∫ t1

t0

[f(t, x(t), u(t)) + p(t)g(t, x(t), u(t))− p(t)x′(t)]dt

(13)
The integration of the last term in the right side of (13) by part gives

−
∫ t1

t0

p(t)x′(t)dt = −p(t1)x(t1) + p(t0)x(t0) +

∫ t1

t0

p′(t)x(t)dt. (14)

Substituting (14) into (13), we have∫ t1

t0

f(t, x(t), u(t))dt =

∫ t1

t0

[f(t, x(t), u(t)) + p(t)g(t, x(t), u(t)) + x(t)p′(t)]dt

−p(t1)x(t1) + p(t0)x(t0). (15)
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Since a control function u(t), t ∈ [t0, t1], together with the condition (6) and (7),
determines the path of the corresponding state variable x∗(t), t ∈ [t0, t1], it also
determines the value of (15).

Let h(t) be a fixed modification in the control u(t). Suppose that u∗(t)
is a optimal control, h(t) is a fixed function and γ is a parameter. A one-
parameter family of comparison controls is then u∗(t)+γh(t). Now let y(t, γ), t ∈
[t0, t1], represent the state variable that satisfies (6) and (7) with control function
u∗(t) + γh(t), t ∈ [t0, t1]. Furthermore assume that y(t, γ) is a smooth function
for both arguments, t and γ. Thus the optimal path x∗(t) occurs when γ = 0

y(t, 0) = x∗(t), y(t0, γ) = x0.

Suppose that u∗, x∗ and h are fixed. Rewrite the integral in (5) with the
control function u∗(t) + γh(t) and state y(t, γ). We have a function of a single
parameter γ as

J(γ) =

∫ t1

t0

f(t, y(t, γ), u∗(t) + γh(t))dt.

Reformulating and using (15) give

J(γ) =

∫ t1

t0

[f(t, y(t, γ), u∗(t)+γh(t))+p(t)g(t, y(t, γ), u∗(t)+γh(t))+y(t, γ)p′(t)]dt

−p(t1)y(t1, γ) + p(t0)y(t0, γ). (16)

The function J(γ) has its maximum value when γ = 0, because we have the
optimal control as u∗. Differentiating (16) with respect to γ and inserting the
value γ = 0,

J ′(γ) =

∫ t1

t0

[(f ′x + pg′x + p′)y′γ + (f ′u + pg′u)h]dt− p(t1)y′γ(t1, 0), (17)

Since γ = 0, we have yγ(t0, γ) = 0 for all γ. Then the function has value along
(t, x∗, u∗) and the last term in (16) is independent of γ. Until now function p(t)
is assumed to be differentiable. Let p(t) satisfies the linear differential equation,

p′(t) = −[f ′x(t, x∗, u∗) + p(t)g′x(t, x∗, u∗)], with p(t1) = 0. (18)

Combining (18) with (17), it is necessary that

J ′(γ) =

∫ t1

t0

[f ′u(t, x∗, u∗) + pg′u(t, x∗, u∗)]hdt = 0. (19)

Since the function h(t) is arbitrary we can choose h(t) = f ′u(t, x∗, u∗)+pg′u(t, x∗, u∗).
Then we have

8



∫ t1

t0

[f ′u(t, x∗, u∗) + pg′u(t, x∗, u∗)]2dt = 0. (20)

Eventually, this implies that

f ′u(t, x∗, u∗) + pg′u(t, x∗, u∗) = 0, t ∈ [t0, t1]. (21)

Summary: If the function (x∗(t), u∗(t)) maximize (5) subject to (6) and (7)
for t ∈ [t0, t1], then there is a continuously differentiable function p(t) such that
(x∗, u∗) and p simultaneously satisfy the state equation

x′(t) = g(t, x(t), u(t)), x(t0) = x0, (22)

the multiplier equation

p′(t) = −[f ′x(t, x(t), u(t)) + p(t)g′x(t, x(t), u(t))], p(t1) = 0, (23)

and the optimality condition

f ′u(t, x(t), u(t)) + p(t)g′u(t, x(t), u(t)) = 0. (24)

Note that the multiplier equation in (23) is also known as the auxiliary, adjoint,
costate or influence equation.

There is an easier way to memorize all this, by the Hamiltonian

H(t, x(t), u(t)) = f(t, x, u) + p(t)g(t, x, u), (25)

as follows:
(24):

H ′u = f ′u + pg′u = 0 (26)

(23):
−H ′x = −(f ′x + pg′x) = p′(t) (27)

(22):
H ′p = x′(t) = g(t, x, u). (28)

3.2 Sufficient Condition

In the calculus of variation, when the integrand f(t, x, x′) is concave in x and
x′ the necessary condition is also sufficient for optimality. What happens when
functions of x, u in the optimal control problem are both concave? The results
are similar.

Suppose functions f(t, x(t), u(t)) and g(t, x(t), u(t)) are both differentiable
and concave functions of x, u, consider the problem

9



max

∫ t1

t0

f(t, x(t), u(t))dt, u ∈ (−∞,∞) (29)

subject to
x′(t) = g(t, x(t), u(t)), x(t0) = x0. (30)

Suppose also that the functions x∗, u∗ and p satisfy the necessary conditions

f ′u(t, x, u) + pg′u(t, x, u) = 0, (31)

p′(t) = −(f ′x(t, x, u) + pg′x(t, x, u)), (32)

p(t1) = 0, (33)

and the constraint (30) for t ∈ [t0, t1]. Now let x(t) and p(t) be continuous
functions with

p(t) ≥ 0, (34)

for all t if g(t, x, u) is concave in x or u. Thus a solution of the problem (29) with
constraint (30) is (x∗(t), u∗(t)). If the functions f and g are both concave in
(x, u) then the necessary conditions (30)-(33) are also sufficient for optimality.

Proof: Suppose the solution (x∗(t), u∗(t)) and p satisfy (30)-(33). Let the
function (x, u) satisfies (30). Let f∗, g∗ be defined for (t, x∗, u∗) and f, g defined
for the path (t, x, u). We have to show that

I :=

∫ t1

t0

(f∗ − f)dt ≥ 0, (35)

Because of the concavity of (x, u) in f we get

f∗ − f ≥ (x∗ − x)f∗x
′ + (u∗ − u)f∗u

′, (36)

and it follows as

I ≥
∫ t1

t0

[(x∗ − x)f∗x
′ + (u∗ − u)f∗u

′]dt =

=

∫ t1

t0

[(x∗ − x)(−pg∗x
′ − p′) + (u∗ − u)(−pg∗u

′)]dt =

=

∫ t1

t0

p[g∗′ − g − g∗x
′(x∗ − x)− g∗u

′(u∗ − u)]dt =

≥ 0. (37)

10



The explanation of (37) is that the second line in (37) is a substitution of f∗x
′ by

(32) and substitution of f∗u
′ by (31). Then integrate by part the term involving

p′ to get the third line and finally the last line is due to the concavity of x
and u in g(t, x, u). From (37) we see that if p is positive then the value in the
last square bracket in (37) must be positive. Since g is assumed to be concave
(convex) in x, u, the last bracket will instead be equal to zero. Thus p satisfies
(34). But if the function g is linear (not concave/convex) in x, u, the function
p can have any sign.

Furthermore, if the function f is concave, g is convex and p ≤ 0, then it
follows that the necessary conditions will also be sufficient for optimality. To
prove that, follow the same process as above: It will lead to a negative p and
coefficients in the next last line, which gives a positive product.

�

Example 3.1: Solve the problem

max

∫ T

0

[1−tx(t)−u(t)2]dt, x′(t) = u(t), x(0) = x0, x(T ) free, u ∈ R

where x0 and T are given positive constants.

Solution: Let f(t, x, u) = 1− tx(t)− u(t)2, hence the Hamiltonian is

H(t, x, u, p) = f + px′ = 1− tx(t)− u(t)2 + pu.

Since H ′u = −2u+ p ≥ 0, by using Theorem 3.1 we have that the control
u = u∗(t) maximizes H(t, x∗(t), u, p(t)) for u if and only if it satisfies
H ′u = 0 and this gives u∗(t) = 1

2p(t). From (10) and (9), p′(t) = −H ′x = t,
p(T ) = 0. In this problem H ′′xx = 0, H ′′uu = −2 < 0 and H ′′xxH

′′
uu −

(H ′′xu)2 = 0 ⇐⇒ H is concave in x and u. Integrating p′(t) yields p(t) =
1
2 t

2 + C. The terminal condition p(T ) = 1
2T

2 + C = 0 gives C = − 1
2T

2.
Combining these two functions p(t) and p(T ), we have

p(t) = −1

2
(T 2 − t2) and then u∗(t) = −1

4
(T 2 − t2).

Integrating u∗(t),

x∗(t) = x0 −
1

4
T 2t+

1

12
t3.

We have now found the solution pair (x∗(t), u∗(t)) that satisfies all given
conditions.

�
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Example 3.2: A macroeconomic control problem
Consider the simple macroeconomic problem. Consider the state function
y(t) of the economy over the course of a planning period [0, T ]. The state
is to be steered toward the desire level ŷ, independent of t, by mean of
the control u(t), where y′(t) = u(t). Using control is costly, thus we have

to minimize the integral
∫ T
0

[(y(t)− ŷ)2 + c(u(t))2]dt with y(T ) = ŷ and c
being a positive constant. Denote now the difference between the original
state variables and the target level by y(t)− ŷ = x(t). Let, at the terminal
time, the target value of x be free and u(t) = x′(t). So we have the control
problem as follows

min

∫ T

0

(x2 + cu2(t))dt, x′(t) = u(t), x(0) = x0, x(T ) free

where u(t) ∈ R and c > 0 and x0 and T are given.

Solution: Corresponding to the given problem, it is equivalent to max-

imize −
∫ T
0

[x(t)2 + c(u(t))2]dt. The Hamiltonian is

H(t, x, u, p) = −x2 − cu2 + pu,

so
H ′x = −2x and H ′u = −2cu+ p.

The necessary condition H ′u = 0 gives that

−2cu∗(t) + p(t) = 0.

Thus u∗(t) = p(t)/2c. The differential equation for p(t) is

p′(t) = −H
′

x(t, x∗(t), u∗(t), p(t)) = 2x∗(t). (38)

Since x′∗(t) = u∗(t) so
x′∗(t) = p(t)/2c. (39)

Insert (39) into the derivative of (38) with respective to t we have

p′′(t) = 2x′∗(t) = p(t)/c.

The general solution for the homogeneous differential equation is

p(t) = Aert +Be−rt where r = 1/
√
c.

The boundary conditions p(T ) = 0 and p′(0) = 2x∗(0) = 2x0 gives

p(T ) = AerT +Be−rT = 0 and p′(0) = r(A−B) = 2x0

12



which yields A = 2x0e
−rT /r(erT +e−rT ) and B = −2x0e

rT /r(erT +e−rT ),
hence

p(t) =
2x0
r

e−r(T−t) − er(T−t)

erT + e−rT
,

u∗(t) =
p(t)

2c
=
x0
cr

e−r(T−t) − er(T−t)

erT + e−rT
,

and

x∗(t) =
1

2
p′(t) = x0

er(T−t) + e−r(T−t)

erT + e−rT
.

Note that H(t, x, u, p) = −x2 − cu2 + pu is concave in (x, u) since H ′′xx =
−2 < 0, H ′′uu = −2c < 0 where c is given as a positive constant and
H ′′xxH

′′
uu − (H ′′xu)2 = 4c − 0 > 0. This satisfies Mangasarian’s theorem

so the last expressions for u∗(t) and x∗(t) are the pair solution for this
problem.

�
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4 Regularity Conditions

Assume that the control function u(t) has values in the fixed subset U ⊂ R. We
call U as the control region. Normally in applied economics the control functions
can vary in different ways. In example 2.3 about oil extraction, we have seen
that the value of the control function was restricted to u(t) ≥ 0. Nothing is
extraneous for explanation (the oil can not pump back into the reservoir.) and
the control region in this case is then U = [0,∞). The important thing here is
that the control region can be a closed set, for example u(t) can have the value
at the boundary of U .

Regularity conditions for the control function u(t) include continuous in
most of the economical literature. It is of no exception in this report the control
function is given to be continuous for all problems that we deal with except the
last one where the control is of the form

u(t) =

{
1 for t in [t0, ti]
0 for t in (ti, t1]

which at time t = ti exhibits a jump, thus u(t) is discontinuous and in this case
u(t) is called piecewise continuous.

Assume that there is a function u(t). If this function has one-sided limits
from both above and below at one point of discontinuity, ti, where the function
is also defined of this point. Then this function has a finite jump at the point ti.
In each finite interval, if a function has at most a finite number of discontinuities
then this function is piecewise continuous with a finite jump at each point of
discontinuity. At a point of discontinuity ti, if the value of u(ti) is a left-limit
of u(t) at ti then u(t) is called for left-continuous. Furthermore, if the control
function is defined in the interval [t0, t1] of time, then the assumption on u(t) is
that it is continuous at both ends.

So when u = u(t) has discontinuities, what should the explanation for the
solution of x′(t) = g(t, x, u) be? Well, at the point where u(t) is discontinuous,
the continuous function x(t) is not differentiable, but it does have a derivative
in the other points that satisfies the equation.

Up to now we have not put any restrictions on the functions f(t, x, u) and
g(t, x, u). Let assume from now on that functions f , g and their first-order par-
tial derivatives with respective to x and u are continuous in (t, x, u).

4.1 Theorems about finding possible global solutions

We close this section with a short summary on how to find a possible global
solutions. There are essentially three results that can be used:

4.1.1 Necessary conditions

This condition is given in the theorems of Pontryagin’s Maximum Principle and
it provides candidates to an optimal control. Rigorously speaking, this condition

14



does not guarantee that there is a solution for the maximization problem.

4.1.2 Sufficient conditions

This condition in the theorem gives a sufficiency result, which was originally de-
veloped by Mangasarian. The requirements in this type of condition involve con-
cavity/convexity of functions. Assume that we have a state variable x∗(t) and
an adjoint variable p(t). If a control function u∗(t) satisfies the sufficient condi-
tions then the solution of the maximization problem is given by (x∗(t), u∗(t)).
But this condition is not necessary for solving the problem. Even if the suffi-
cient conditions are not satisfied, in many control problems, there are optimal
solutions.

4.1.3 Existence

The use of the existence theorem goes as follows: At first find all the possible
solutions by using the necessary conditions. Thereafter examine those possible
solutions. The optimal solution is the one that gives the largest value of the
objective function. This theorem ensures that the given conditions solve the
maximization problem.
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5 Interpretations in Economical Terms

5.1 A general interpretation in Economics

What is the meaning of the multiplier in economics? In control problems the
multiplier p(t) is the marginal valuation of the associated state variables at t,
and it has an economically meaningful interpretation.

Consider

max

∫ t1

t0

f(t, x(t), u(t))dt, (40)

subject to
x′(t) = g(t, x(t), u(t)), x(t0) = x0. (41)

Let V (x0, t0) denote the maximum of (40) where x0 represents an initial state
at initial time t0. If p(t) is the marginal valuation of the state variable at t then
it also constitutes the definition of the derivative of V with respect to x. That
is,

Vx(x(t), t) = p(t), t0 ≤ t ≤ t1,

where Vx = V ′x.

Proof: Let x∗ and u∗ be the optimal state and the optimal control function
for (40) and let the p(t) be the corresponding multiplier. Consider an initial
state x0 + h where h is a number close to zero. Suppose u∗ is a continuous
function of t.

For a continuously differentiable multiplier function p(t) and the differential
equation for x,

V (x0, t0) =

∫ t1

t0

f(t, x∗, u∗)dt =

=

∫ t1

t0

[f(t, x∗, u∗) + g(t, x∗, u∗)p− px′]dt. (42)

Integrating the last term along (t, x∗, u∗) by parts and using the assumption
that x, u are optimal for this problem give

V (x0, t0) =

∫ t1

t0

(f∗ + pg∗ + p′x∗)dt− p(t1)x∗(t1) + p(t0)x∗(t0). (43)

Similarly,

V (x0 + h, t0) =

∫ t1

t0

fdt =
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=

∫ t1

t0

(f + pg + p′x)dt− p(t1)x(t1) + p(t0)[x(t0) + h]. (44)

Subtracting,

V (x0 + h, t0)− V (x0, t0) =

∫ t1

t0

[f(t, x, u)− f(t, x∗, u∗)]dt =

=

∫ t1

t0

(f + pg + p′x− f∗ − pg∗ − p′x∗)dt

+p(t0)h− p(t1)x(t1)− x∗(t1)]. (45)

Using Taylor series for the integrand around (t, x∗, u∗)

V (x0 + h, t0)− V (x0, t0) =

∫ t1

t0

[(f∗x + pg∗x + p′)(x− x∗)+

+(f∗u + pg∗u))(u− u∗)]dt+ p(t0)h− p(t1)[x(t1)− x∗(t1)] +Rn (46)

where Rn is a reminder term. For optimal x∗, u∗, p the necessary conditions
(22), (23) and (24) hold. Now let p be the multiplier that satisfies the necessary
conditions for (40) i.e.

p′ = −(f∗x + pg∗x), f∗u + pg∗u = 0 p(t1) = 0

Hence (46) is reduced to

V (x0 + h, t0)− V (x0, t0) = p(t0)Th+Rn. (47)

Now divide (47) by the parameter h and then let h approach zero, we have

limh→0[V (x0 + h, t0)− V (x0, t0)]/h = Vx(x0, t0) = p(t0). (48)

It is now proved that the limit exists for the initial time t0 but not for all t.
Since p(t) is the marginal valuation of the associated state variable at time t
then the problem must be modified optimally thereafter.

Note that any portion of an optimal is itself optimal on an optimal path
using Bellman’s optimality principle. Let t̂ be any time such that t0 ≤ t̂ ≤ t1.
Suppose we follow the solution x∗, u∗ of (40) for the period t0 ≤ t ≤ t̂, then stop
and reconsider the next time period from t̂ forwards:

max

∫ t1

t̂

f(t, x, u)dt

subject to x′(t) = g(t, x, u), x(t̂) = x∗(t̂).

(49)
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The same solution x∗, u∗ to (40) for time t̂ ≤ t ≤ t2, must be a solution for
(49). Suppose that this is not true. Then there is a larger value than x∗, u∗ for
(49) where t̂ ≤ t ≤ t2. The value of (40) can then be improved by following
x∗, u∗ on the path from an initial time to t̂. Thereafter continue to follow the
value from t̂ to t1, in other words integrate in (49) (since this coincides on
t̂ ≤ t ≤ t2). But this is a contradiction, therefore x∗ and u∗, where t̂ ≤ t ≤ t2,
must solve (49). Combining (48) to (49), yields that

Vx(x(t̂), t̂) = p(t̂).

This shows that the derivative exists and that it is the marginal valuation of
the state variable at t̂. But t̂ is arbitrary, so for any t, t0 ≤ t ≤ t1,

Vx(x(t), t) = p(t), t0 ≤ t ≤ t1

is the marginal valuation of the state variable at t, whenever this derivative
exists. The proof is now complete.

�

Now consider t1 where p(t1) = 0, when there is no salvage term, and p(t1) =
α′(x1), when there is a salvage term. This will be discussed in the last section.
Let x be the stock of an asset and f(t, x, u) be the current profit. Hence

p(t1)x(t1) = p(t0)x(t0) +

∫ t1

t0

(x′p+ xp′)dt =

= p(t0)x(t0) +

∫ t1

t0

(d(xp)/dt)dt.

Since p(t) represents the marginal valuation of the state variable at t. The
equation above implies that the value of the terminal stock of assets equals the
value of the original stock plus the change in the value of assets over the control
period [t0, t1]. And the explanation of

d(xp)/dt = x′p+ xp′

is that the total rate of change in the value of assets (on the left side) equals to
the value of additions (reductions) in the stock of assets (first term on the right
side) add the change in the value of existing assets (second term on the right
side). This leads to the changes in amount of assets and even the change in the
value of all assets. From (44) the rate at which the total value enhances is

f + pg + xp′ = H + xp′ where H = f + pg. (50)

The explanations of the equality in (50);
f(t, x, u) - the current cash flow, pg - the change in state variable (note that
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pg = px′), and xp′ - the change valuation in current assets (the capital gain).
Thus (50) represents the contribution rate at t toward the total value. Choose
u(t) to maximize H and hence to satisfy

∂H/∂u = f ′u + pg′u = 0, t0 ≤ t ≤ t1,

∂2H/∂u2 = f ′′uu + pguu ≤ 0.

We choose x to maximize (50)

fx + pgx + p′ = 0.

Finally this implies that the problem

max
x,u

[H(t, x, u, p(t)) + p′(t)Tx]

has x = x∗(t), u = u∗(t) as a solution for all t0 ≤ t ≤ t1.

5.2 Adjoint variables (Shadow prices)

For many years economists have realized that the adjoint can be interpreted
as the shadow price, which we have seen in the proof in 5.1. Let us summa-
rize about this adjoint variable again. Suppose that (x∗(t), u∗(t)) is a solution
for the problem in (5)-(6) with a unique adjoint function p(t). Let V be the
corresponding value of the objective function

V (x0, x1, t0, t1) =

∫ t1

t0

f(t, x∗(t), u∗(t))dt (51)

where V depends on x0, x1, t0 and t1. So the function V is called the optimal
value function.

At the time t0, suppose x0 is differentiable then the interpretation of p(t) at
the time t = t0 is

∂V (x0, x1, t0, t1)

∂x0
= p(t0) (52)

which represents the marginal change in the optimal value function as x0 in-
creases. Note that the value of p in (52) is defined only at the initial time t0. For
an arbitrary t ∈ [t0, t1] the value of p is determined by using the jump function
v = x(t+)− x(t−) for t ∈ [t0, t1] and x(t) is assumed to be differentiable every-
where. The function V will then depend on v. Suppose now that (x∗(t), u∗(t))
is the optimal solution for this problem when v = 0. Hence V is differentiable
with respective to v at v = 0. This implies that the first-order approximate
change in the value function in (51) with respective to an unit jump increase in
x(t), is the adjoint variable p(t) and we have
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∂V (x0, x1, t0, t1)

∂v
|v=0 = p(t) (53)

as a shadow price. If we consider small time interval [t, t + ∆t] thus ∆x ≈
g(t, x, u)∆t and according to the Hamiltonian H = f(t, x, u) + pg(t, x, u) we
have

H∆t = f(t, x, u)∆t+ pT g(t, x, u)∆t ≈ f(t, x, u)∆t+ pT∆x

where the maximum principle gives u to maximize H at each given time. Note
that f∆t is the instantaneous profit earned during time [t, t+∆t] and p∆t is the
contribution to the total profit produced by an extra profit ∆x at the terminal
time of this period.

Consider the optimal value function (51) of problem (5)-(7) again. Let
H∗(t) = H(t, x∗(t), u∗(t), p(t)). Since the function V is differentiable with re-
spect to x0, x1, t0 or t1, we have

∂V

∂x0
= p(t0),

∂V

∂x1
= −p(t1),

∂V

∂t0
= −H∗(t0),

∂V

∂t1
= H∗(t1). (54)

The economical explanations of the equations in (54):
(for this capital accumulation interpretation in subsection)

∂V/∂x0: The initial capital stock x0 increase by one unit the total profit will
increase by approximately p(t0).
∂V/∂x1: It is similar to the first one, but the effect of the state at time t1 will
have opposite sign compared with the effect of state at the time t0. It means
that increasing the capital decreases the total profit by approximately p(t1)
since the capital will be left at the end.
∂V/∂t0: The planning period t0 extends, leads to shorter period and it decreases
the total profit.
∂V/∂t1: The planning period t1 extends, time period will be longer which yields
the increasing in the total profit.

Example 5.1: Use the problem in Example 3.1 to show that the equality in (52)
is true.

Solution: The object function was
∫ T
0

[1 − tx(t) − (u(t))2]dt, and the

solution for this problem was x∗(t) = x0− 1
4T

2t+ 1
12 t

3, u∗(t) = − 1
4 (T 2−

t2), with p(t) = − 1
2 (T 2 − t2). By using (51) we get

V (x0, x1, 0, T ) =

∫ T

0

[1− tx∗(t)− (u∗(t))2]dt =

20



=

∫ T

0

[1− t(x0 −
1

4
T 2t+

1

12
t3)− (−1

4
(T 2 − t2))2]dt.

By using Leibniz’s formula

F (x) =

∫ v(x)

u(x)

f(x, t)dt

=⇒ F ′(x) = f(x, v(x))v′(x)− f(x, u(x))u′(x) +

∫ v(t)

u(t)

∂f(x, t)

∂x
,

we get
∂V (x0, T )

∂x0
=

∫ T

0

−tdt = −1

2
T 2 = p(t0).

Solving for the function p(t) in Example 3.1, when the initial time t = 0,
satisfies that p(0) = − 1

2 (T 2−0) which gives the same value as p(t0) above.
So we have shown that the equality (52) is true.

�
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6 The Standard Type of Problems

In this section we consider a more realistic state variable at the terminal time
in the following standard end-constrained problem.

6.1 The Pontryagin maximum principle

The problem is

max

∫ t1

t0

f(t, x(t), u(t))dt, u ∈ U ⊆ Rm (55)

x′(t) = g(t, x(t), u(t)), x(t0) = x0 (56)

with one of the following terminal conditions

(i) x(t1) = x1, (ii) x(t1) ≥ x1, (iii) x(t1) free (57)

where the numbers t0, t1, and x0, x1 ∈ Rn are fixed and U is a fixed control
region. For the control function u ∈ U , a pair (x(t), u(t)) is called an admissible
pair if it satisfies (56) and (57). A pair that maximizes the integral in (55) is
called an optimal pair.

As in the basic control problem, to deduce the Maximum principle we go
through the same procedure as in the problem with end state free. Thus we need
to form the modified objective functional in (17), where we see that if the final
state is fixed, i.e., x(t) has a specified value at the terminal time t1 as stated
in (i) there is no variation for xi(t1), that is, y′γ(t1, 0) = 0, thus the terminal
condition for p(t) is unconstrained. It seems that all we need to do for the
maximum principle is to change the boundary condition of p at t1 to the state
variable x at t1. However, there are cases where the problem is ill-conditioned.
Let us study the following problem

x′(t) = u2(t),

x(0) = 0, x(1) = 0.

We want to maximize the functional

J =

∫ 1

0

u(t)dt.

Clearly we can solve the equation for x by integrating both sides of the equation
x′(t) = u2(t), that gives

x(t) =

∫ t

0

u2(s)ds.
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It is evident that x(0) = 0, and

x(1) =

∫ 1

0

u2(t)dt.

But x(1) = 0 so u(t) = 0. Thus the solution is u = 0. However this solution
does not satisfy the necessary conditions of the maximum principle if we follow
the above argument. This can be seen as follows:

H(t, x, u, p) = u+ pu2.

The optimality condition for the Hamiltonian is

Hu = 1 + 2pu = 0 i.e. u = −1/2p

and the costate equation is
p′ = −Hx = 0

giving that p is a constant without any boundary constraint. Now we see that
this constant u is either non-zero or infinity (if p = 0). So this u cannot be
the solution of the given problem because then it does not satisfy the boundary
conditions for x. However, if we modify the Hamiltonian to

H(t, x, u, p) = p0f(t, x, u) + pg(t, x, u)

with p0 ≥ 0 we see that the solution satisfy the necessary conditions with p0 = 0
after the similar computation.

This example gives us some hints how to reformulate the Pontryagin’s Maxi-
mum Principle. In the light of previous argument we make a ”small” correction
for the necessary conditions by modifying the Hamiltonian function to

H(t, x, u, p) = p0f(t, x, u) + pT g(t, x, u) (58)

where p0 ∈ R. So if p0 6= 0 in (58) we can divide the equation in (58) by p0 to
get the Hamiltonian with p0 = 1.

Theorem 6.1: The maximum principle: Standard end constraints

Let x∗(t), u∗(t) ∈ U be an optimal solution to the problem terminal connstraints
in (55)-(57). Then there is an adjoint trajectory p(t) and a constant p0 ≥ 0 with
(p0, p) 6≡ 0 such that

1. The control u∗(t) maximizes H(t, x∗, u, p(t)) where u ∈ U , i.e.

H(t, x∗(t), u, p(t)) ≤ H(t, x∗, u∗(t), p(t)) for all u ∈ U,∀t ∈ [t0, t1] (59)

2.
p′(t) = −H

′

x(t, x∗(t), u∗(t), p(t)) (60)
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3. For each terminal conditions in (57), there is a corresponding transversal-
ity condition on p(t1) as follows:

(i’) p(t1) no condition

(ii’) p(t1) ≥ 0, with p(t1) = 0 if x∗(t1) > x1 (61)

(iii’) p(t1) = 0.

Note:

• The conditions of the optimal problem do not change when p0 = 0 thus
when p0 = 0 the inequality in (59) can be formulated as

p(t)T g(t, x∗(t), u, p(t)) ≤ p(t)T g(t, x∗, u∗(t), p(t)), for all u ∈ U.

Under the condition x(t1) is free, by (61)(iii′) we have p(t1) = 0, but
p0 6= 0 and p1 6= 0 then p(0) = 1 for this condition.

• The inequality in (61)(ii′) is reversed when the condition in (57) is (ii).

Next we consider the control problem defined by (55)-(57) with the scalar
state x and the scalar control u.

Theorem 6.2: Mangasarian

Suppose that (x∗(t), u∗(t)) is an admissible pair with a corresponding adjoint
function p(t) such that the conditions (i)-(iii) in Theorem 6.1 are satisfied with
p0 = 1. Suppose also that H(t, x, u, p(t)) is concave in (x, u) for every t ∈ [t0, t1]
and the control region is convex. Then (x∗(t), u∗(t)) is an optimal pair.

Theorem 6.3: The maximum principle with a variable final time

Suppose that (x∗(t), u∗(t)) is defined on the time interval [t0, t
∗
1] and that

it is an admissible pair that solve the problem (55)-(57) with free t1 ∈ (t0,∞).
Then all the conditions in the maximum principle in Theorem 6.1 are satisfied
on [t0, t

∗
1] and in addition

H(t∗1, x
∗(t∗1), u∗(t∗1), p∗(t∗1)) = 0. (62)

Example 6.1: a) Solve the control problem

max

∫ T

0

(x− 1

2
u2)dt, x′ = u, x(0) = x0, x(T ) free u ∈ R.

b) Compute the optimal value function V (x0, T ) and verify the equality
in (54) for this problem.
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Solution: a) The Hamiltonian is

H(t, x, u) = x− 1

2
u2 + pu.

Applying the maximal principle yields the following

H ′u = −u+ p = 0 (63)

H ′′uu = −1 < 0 (64)

p′ = −H ′x = −1. (65)

Note that the inequality in (64) satisfies the maximum principle.
From (63) we have

u∗(t) = p(t) (66)

and according to (65) p′ = −1 and p(T ) = 0, hence the integration yields

p(t) = −t+ c1, c1 is constant, =⇒ c1 = T

=⇒ p(t) = −t+ T. (67)

Since x′∗ = u∗, substituting (67) in (66) gives

x′∗(t) = u∗(t) = −t+ T,

by integrating, this implies that

x∗(t) = − t
2

2
+ Tt+ c2, c2 is a constant.

Together with condition x(0) = x0 = 0 we have c2 = 0. Hence

x∗(t) = Tt− t2

2
,

u∗(t) = T − t. (68)

�

b) Compute the optimal solution (68) and inserting into V (x0, T ) we get

V (x0, T ) =

∫ T

0

(x0 −
1

2
(T − t)2)dt =

[
x0t−

t3

6

]T
0

= x0T −
T 3

6
.

The equality in (54) verifies as follow

∂V

x0
= T ⇐⇒ p(t0) = T − 0 = T

∂V

x1
= 0 ⇐⇒ p(t1) = −T + T = 0

∂V

t0
not function of t0 ⇐⇒ p(t0) not function of t0

∂V

T
= x0 +

T 2

2
=
T 2

2
⇐⇒ p(t0) =

T 2

2
. �
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Example 6.2: Solve the control problem

max

∫ T

0

(x− t3 − 1

2
u2)dt, x′ = u, x(0) = x0, x(T ) free u(t) ∈ R.

and determine the value of T .

Solution: a) The Hamiltonian equation is

H(t, x, u) = x− 1

2
u2 + pu.

Applying the maximal principle yields the following

H ′u = −u+ p = 0 (69)

H ′′uu = −1 < 0 (70)

p′ = −H ′x = −1 (71)

H∗(T ) = x∗ − T 3 − 1

2
u∗2 + pu∗ = 0. (72)

Note that the inequality in (70) satisfies the maximum principle.
Equation (69) gives

u∗(t) = p(t) (73)

and according to (71) p′ = −1, p(T ) = 0 and hence by the same process
as in Example 6.1 we have

x∗(t) = Tt− t2

2
,

u∗(t) = T − t. (74)

Furthermore, apply p(T ) = u∗(T ) = 0 in (72) then

H∗(T ) = x∗(T )− T 3 − 1

2
u∗2(T ) + p(T )u∗(T ) =

= T 2 − T 2

2
− T 3 = 0,

which gives T = T ∗ = 1
2 , hence the solutions are

x∗(t) =
1

2
(t− t2) and u∗(t) =

1

2
− t.

�
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6.2 Control problems with fixed initial and final states

In this section we sketch a proof of the Maximum principle for the optimal
problem with a state variable specified at both the initial and the terminal
time. The aim is to show how to deal with vector-valued functions involved in
control problems and how to derive the optimality condition (59).

We consider the optimization problem

max

∫ t1

t0

f(t, x(t), u(t))dt, (75)

subject to
x′(t) = g(t, x(t), u(t)), (76)

x(t0) = x0, x(t1) = x1, t0, t1 fixed, (77)

u ∈ U ⊂ Rm,
where f : Rn×Rm → R and g : Rn×Rm → Rn are continuous and continuously
differeiable with respect to x.

Sketch of the proof: Without loss of generality we assume that the functions
f and g do not explicitly dependent on t. The reason is as follows. We can
introduce a new variable y = t and stack it with x as x̃ = (y, xT )T . Then the
problem can be reformulated as

max

∫ t1

t0

f(x̃(t), u(t))dt,

subject to
x̃′(t) = g̃(x̃(t), u(t)),

x̃(t0) = x̃0, x̃(t1) = x̃1, t0, t1 fixed,

u ∈ U ⊂ Rm,
where g̃ = (1, gT )T , x̃0 = (t0, x

T
0 )T and x̃1 = (t1, x

T
1 )T . Accordingly we defined

H(x, u, p) = f(x, u) + pT g(x, u).
Suppose that (x∗, u∗) is an optimal solution for the problem (75)-(77) with

the objective value G∗, and (x, u) is any feasible solution of the same problem
with the objective value G. Now we shall compute ∆G = G−G∗ to derive the
necessary condition in the Maximum Principle.

By integration by part

∆G =

∫ t1

t0

[f(x, u) + pT g(x, u) + xT p′ − f(x∗, u∗)− pT g(x∗, u∗)− (x∗)T p′]dt.

+ p(0)T (x(t0)− x∗(t0))− p(t1)T (x(t1)− x∗(t1))

=

∫ t1

t0

[H(x, u, p)−H(x∗, u∗, p) + xT p′ − (x∗)T p′]dt

+ p(0)T (x(t0)− x∗(t0))− p(t1)T (x(t1)− x∗(t1)).
(78)
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Set δx = x− x∗, δu = u− u∗. Then

∆G =

∫ t1

t0

[H(x∗+δx, u∗+δu, p)−H(x∗, u∗+δu, p)+H(x∗, u∗+δu, p)−H(x∗, u∗, p)−(x∗)T p′]dt

+p(0)T δx(t0)− p(t1)T δx(t1).

Suppose that ”(x, u) is sufficiently close to (x, u)” (roughly speaking). Then
Taylor series around (x∗, u∗ + δu) yields

∆G =

∫ t1

t0

[(Hx(x∗, u∗ + δu, p) + (p′)T )δx+H(x∗, u∗ + δu, p)−H(x∗, u∗, p)]dt

+ p(0)T δx(t0)− p(t1)T δx(t1) +O(ε)

=

∫ t1

t0

[(Hx(x∗, u∗, p) + (p′)T )δx+ (Hx(x∗, u∗ + δu, p)−Hx(x∗, u∗, p))δx

+ (H(x∗, u∗ + δu, p)−H(x∗, u∗, p))]dt

+ p(0)T δx(t0)− p(t1)T δx(t1) +O(ε)

=

∫ t1

t0

[(Hx(x∗, u∗, p) + (p′)T )δx+ (H(x∗, u∗ + δu, p)−H(x∗, u∗, p))]dt

+ p(0)T δx(t0)− p(t1)T δx(t1) +O(ε).

where O(ε) is the higher order of ε with sufficiently small ε. The last line follows
by noting that both δx and the integral of Hx(x∗, u∗ + δu, p) − Hx(x∗, u∗, p)
are of order ε. Now since the initial and the final states are fixed we have
δx(t0) = δx(t1) = 0. Thus

∆G =

∫ t1

t0

[(Hx(x∗, u∗, p)+(p′)T )δx+(H(x∗, u∗+δu, p)−H(x∗, u∗, p))]dt+O(ε)

Now choose p(t) to make the first term on the right hand side of the previous
equation vanish. As before we require p(t) to satisfy the adjoint equation

p′(t) = −(Hx)(x∗, u∗)T = −[fx(t, x∗, u∗) + (gx(t, x∗, u∗))T p(t)].

However, there is no boundary conditions for p. Hence

∆G =

∫ t1

t0

[(H(x∗, u∗ + δu, p)−H(x∗, u∗, p))]dt+O(ε).

If u∗ is optimal it follows that for all t

H(x∗, u∗ + δu, p) ≤ H(x∗, u∗, p)

for all v = u∗ + δu ∈ U . To verify this, suppose that for some t there were a
v ∈ U with

H(x∗, u∗ + δu, p) > H(x∗, u∗, p).
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Then we could change the function u∗ so as to make the integrand in the last
integral positive over a small interval (say of width ε) containing this t. The
integral itself would be positive (and of order ε). Hence ∆G would be positive,
contradicting the fact that the function u produces the maximal objective value.

Note that if the problem has unconstrained control and/or the Hamiltonian
is not linear in u, we can reduce the optimality condition for the Hamiltonian
to

H ′∗u = fu(t, x∗, u∗) + (gu(t, x∗, u∗))T p = 0.

To see this we can Taylor expand H(x, u, p) at (x∗, u∗) in the first step of
computation of ∆G. Then

∆G =

∫ t1

t0

[(Hx(x∗, u∗, p))T δx+ (Hu(x∗, u∗, p))T δu]dt+O(ε).

To account for the degenracy situation discussed in the beginning of this
section we introduce a constant p0 into the Hamiltonian

H(x, u, p) = p0f(x, u) + pT g(x, u).

These degeneracy situations (where the terminal constraint is overwhelmingly
imposeing) correspond to p0 = 0. In these cases the objective does not enter
the conditions. Nevertheless, in well-formulated problems, p0 > 0 and without
loss of generality we may set it to 1. Therefore, in practice, we always try to
apply the maximum principle with p0 = 1. We shall give an example to show
why.

A more natural way to see how p0 enters the procedure is demonstrated as
follows. Introduce a new variable y(t) =

∫ t
t0
f(x(s), u(s))ds. Then y(t0) = 0

and y(t1) is free. Let

x̃(t) =

(
y
x

)
, g̃ =

(
f
g

)
.

This leads to the following equivalent problem

max y(t1),

subject to
x̃′(t) = g̃(x̃(t), u(t)), u ∈ U

with

x̃(t0) =

(
0
x0

)
and x̃(t1) ∈ R× {x1}.

As before we introduce an extended muliplier p̃ = (p0, p
T )T . Do the same

calculation we shall see that H(x, u, p̃) = p0f + pT g. The rest calculation
is formally the same except that the final state constraints are mixed. The
Maximum Principle for this problem is discussed in the last section.

Note finally that all arguments above are not mathematically precis and
have to be justified. So it is not a rigorous proof. Such a proof, however, is
much involved and we are going to omit it.

Now we give some more examples.
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Example 6.3: Optimal Consumption
Find a function c(t) that maximize

J =

∫ 1

0

ln[c(t)4s(t)]dt (79)

subject to
s′ = 4s(t)(1− c(t)), s(0) = 1, s(1) = e2. (80)

Solution: The Hamiltonian of the problem is

H = ln 4 + ln c+ ln s+ p(4s(1− c)).

Applying the maximal principle yields the following equations

∂H

∂c
=

1

c(t)
− 4p(t)s(t) = 0, (81)

p′(t) = −∂H
∂s

= − 1

s(t)
− 4p(t)(1− c(t)), (82)

s′(t) =
∂H

∂p
= 4s(t)(1− c(t)). (83)

From (81) we have c = 1/4ps. Substituting this c in (82) and (83) we
obtain a differential equations as follows

p′ = −1

s
− 4p

(
1− 1

4ps

)
= −4p

and

s′ = 4s

(
1− 1

4ps

)
= 4s− (1/p).

The first differential equation yields

p(t) = p(0)e−4t, (84)

then substituting (84) into the second equation gives

s′ = 4s− e4t/p(0).

Move all s terms to the left-hand side, thereafter multiply the equation by
integrating factor e−4t. Then

s′e−4t − ase−4t = −1/p(0),

where the left-hand side of the equation is the derivative of se−4t. Inte-
grating this we get the general solution

se−4t = −t/p(0) + C, C is a constant.
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According to (80) C = 1 and p(0) = −1/(e−2 − 1) w 1.156. Hence the
solution is

s(t) = e4t − 0.865te4t. (85)

Substituting (84) and (85) in (81) we obtain

c(t) =
1

4.624− 4t
(86)

which describes the increasing of the consumption ration during the given
time (to reach the maximum).

�

Example 6.4: Solve the control problem

max

∫ T

0

(−9− 1

4
u2)dt, x′ = u, x(0) = x0, x(T ) = 16 u(t) ∈ R.

and determine the value of T .

Solution: a) The Hamiltonian equation is

H(t, x, u) = −9− 1

4
u2 + pu.

Applying the maximal principle yields the following

H ′u = −1

2
u+ p = 0, (87)

H ′′uu = −1

2
< 0 satisfies the maximum principle, (88)

p′ = −H ′x = 0, p(T ) no condition, (89)

H∗(T ) = −9− 1

4
u∗2(T ) + p∗(T )u∗(T ) = 0. (90)

From equation (87) we have u∗ = 2p. According to (89) p = c1, where c1
is a constant. Since x′∗ = u∗ then x′∗ = 2c1, the integration yields

x∗(t) = 2c1t+ c2,

and the fixed values

x∗(0) = c2 = 0, x∗(T ) = 2c1T + c2 = 16,
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so c1 = 16/2T , c2 = 0. Hence x∗(t) = 16t/T and we obtain that u∗ =
16/T . According to (90) we have

H∗(T ) = −9− 1

4
(
16

T
)2(T ) +

16

2T
(
16

T
)(T ) = 0 =⇒ T =

8

3
.

Thus the solution is

x∗(t) =
16t

T
=

16t

8/3
= 6t,

u∗(t) ≡ 6.

�

As the previous example shows it is sometimes necessary to have p0 in the
Hamiltonian. This is crucial in non-linear control systems. However if the
system is linear then we can almost always assume that p0 = 1. This can be
illustrated by the following LQ control with fixed end condition:

Minimize

J =

∫ t1

0

u(t)2dt subject to

{
ẋ(t) = Ax(t) +Bu(t)

x(0) = x0, x(t1) = 0.

Assume that the system is completely controllable. We start by maximizing the
Hamiltonian

H(p̃, x, u) = −p0u2 + p′(Ax+Bu).

There are two cases: p0 = 0 an p0 6= 0.
Case 1: p0 = 0.
If this is the case, we have arg minuH(p̃, x, u) = arg minu[p′(Ax + Bu)] = ±∞
unless p′B = 0. It is however, impossible to have u = ±∞ on a nonzero
time interval since then the cost would be infinite, which clearly cannot be the
minimum since we know that the system can be driven to origin with finite
energy expenditure. The other alternative p(t)′B = 0 for t ∈ [0, t1] is also
impossible. To see this we note that the adjoint equation

ṗ(t) = −A′p(t)

has the solution p(t) = e−A
′tp(0). Hence, in order for p(t)′B = 0 for t ∈ [0, t1]

we need

p(0)′B = 0

ṗ(0)′B = 0

...

p(n−1)(0)′B = 0

⇔



p(0)′B = 0

p(0)′AB = 0

...

p(0)′An−1B = 0

⇔ p(0)′[B,AB, ..., An−1B] = 0.

If the system is assumed to be completely controllable or (A,B) is control-
lable, then the matrix [B,AB,An−1B] has full rank, which implies that p(0) = 0.
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(See e.g. [4].) However, then p(t) = 0 and p̃(t) = 0 which contradicts the the-
orem. This leads to the conclusion that p0 = 0 is impossible for a controllable
system. Since the controllability is generic for linear system ([4]) we can say
that this case is almost neglectible.

Case 2: p0 = 1. Now we assume that the system is completely controllable.
We have that u(t) = 1

2B
′p maximizes the Hamiltonian. The adjoint equation is

ṗ(t) = −A′p(t)

which has the solution p(t) = e−A
′tp(0), x(0) = x0. By the variation of constants

formula we obtain

x(t1) = eAt1x0 −
1

2

∫ t1

0

eA(t1−s)BB′e−A
′sdsp(0)

= eAt1x0 −
1

2
W (t1, 0)e−A

′t1p(0)

where the reachability Grammian is

W (t1, 0) =

∫ t1

0

eA(t1−s)BB′eA
′(t1−s)ds.

In our case the system is controllable and therefore W (t1, 0) is positive definite
and thus invertible. We can solve for p(0), which gives

p(0) = −2eA
′t1W (t1, 0)−1eAt1x0.

This gives the optimal control

u(t) =
1

2
B′e−A

′tp(0) = −B′eA
′(t1−t)W (t1, 0)−1eAt1x0

and the optimal cost becomes (after some calculations)

J∗ = x′0e
A′t1W (t1, 0)−1eAt1x0.

6.3 Control problems with inequality at the endpoint

Sometimes the terminal value of the state variable is generalized to be not
less/more than some fixed constant. This section is about the optimal problems
with bounded constraints on the endpoint.

In general, the economical problems in the control applications often have
lower bound constraint in the inequality final state value. For instance, the
cosmetic firm is required not to leave the firm until the stock of cosmetic x(t1)
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is higher than a lower bound xL. Let us consider a problem with a lower bound
constraint:

max

∫ t1

t0

f(t, x(t), u(t))dt, u ∈ U ⊆ R (91)

subject to x′(t) = g(t, x(t), u(t)), (92)

x(t0) = x0, x(t1) ≥ xL, t0, t1 fixed. (93)

Theorem 6.3.1: For the problem (91) with (92)-(93) the following conditions
are necessary,

p(t1) ≥ 0, x(t1)− xL ≥ 0, p(t1)T [x(t1)− xL] = 0. (94)

Proof: Assume that there is a solution for the problem (91). Let V be equal
to the integral of f(t, x, u) in (91) with x(t1) = x1 and let x∗ be a solution to
V ∗(xL) with the constraint,

x(t1)− xL ≥ 0.

The necessary condition that characterizes x∗ is

∂V ∗

∂x1
≤ 0, x∗1 − xL ≥ 0, (

∂V ∗

∂x1
)[x∗1 − xL] = 0. (95)

The condition (95) together with the partial differential equation of the optimal
value function V w.r.t. x1 in (54) imply the condition (94) in Theorem 6.3.1. �
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7 The Maximum Principle and The Calculus of
Variations

In this section let us study the relation between optimal control theory and the
calculus of variations. Using the maximum principle it is possible to extend the
calculus of variations. A problem in calculus of variations is

max

∫ t1

t0

F (t, x(t), x′(t))dt, x(t0) = x0,

 (a) x(t1) = x1
(b) x(t1) ≥ x1
(c) x(t1) free

, (96)

where the condition x(t1) can be one of (a) − (c). The problem has no other
constraints. Let u(t) = x′(t). Then it is unconstrained. Together with the
Hamiltonian H(t, x, u, p) = p0F (t, x, u) + pu we can transform to this problem
to a control problem. Since u ∈ R, a necessary condition for the maximum is

H ′u(t, x∗(t), u∗(t), p(t)) = p0F
′
u(t, x∗(t), u∗(t)) + p(t) = 0, (97)

for (p0, p(t)) 6= (0, 0). We write F ′u for ∂F/∂u. In (97) we have p0 6= 0 thus we
can take p0 = 1. As we have seen before the Hamiltonian gives the differential
equation for p(t) as

p′(t) = −H ′x(t, x∗(t), u∗(t), p(t)) = −F ′x(t, x∗(t), u∗(t)). (98)

Now differentiating p(t) in (97) with respect to t gives

d

dt
(F ′u(t, x∗(t), u∗(t))) + p′(t) = 0. (99)

Combining (98), (99) and u∗ = x′∗ we have

F ′x(t, x∗, x′
∗
)− d

dt
(F ′x′(t, x∗, x′

∗
)) = 0. (100)

as an Euler equation. We write F ′x′ for ∂F/∂ẋ. Furthermore, (97) yields

p(t) = −F ′x′(t, x∗, x′
∗
). (101)

With respect to (x, u), the concavity of F (t, x, x′) is equivalent to the con-
cavity of the Hamiltonian. In the maximum principle the Hamiltonian has its
maximum at u∗(t) for t ∈ [t0, t1]. If F is in C2 then H ′u = 0 implies F ′x′ = 0.
And H ′′uu ≤ 0 implies F ′′x′x′ ≤ 0 (In the calculus of the variation, this is called
the Legendre condition).

Example 7.1: Solve the problem by illustrating the use of the Euler’s equation.

max

∫ T

0

e−2t ln c(t)dt ẋ(t) = 3x− c, x(0) = x0, x(T ) = xT
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Solution: Formulate this as a problem in the calculus of variation, by
substituting 3x− ẋ into c(t) in the integral, then we have to maximize∫ T

0

e−2t ln(3x− ẋ)dt (102)

subject to x(0) = x0 and x(T ) = xT . We apply Euler’s equation

∂F

∂x
− d

dt
(
∂F

∂ẋ
) = 0 where F = e−2t ln(3x− ẋ)

to (102). It becomes

e−2t3

3x− ẋ
=

d

dt
(− e−2t

3x− ẋ
) =

=
2e−2t

3x− ẋ
+
e−2t(2ẋ− ẍ)

(3x− ẋ)2
,

which yields a second-order linear differential equation as following,

ẍ− 4ẋ+ 3s = 0. (103)

Transform (103) into a system of two first-order linear differential equa-
tions we have (

ẏ
ẋ

)
=

(
4 −3
1 0

)(
y
x

)
,

where y = ẋ and ẏ = ẍ. The eigenvalues of the matrix are 1 and 3 so the
solution is,

x(t) = Ae3t +Bet.

According to x(0) = x0 and x(T ) = xT , the constants A and B can be
determined:

x0 = A+B, xT = Ae3T +BeT =⇒

=⇒ A = (xT e
−3T − x0e−2T )/(1− e−2T ),

B = (x0 − xT e−3T )/(1− e−2T ).

Compute A and B in (103) we can get the final solution. Note that by
solving this problem with control theory it will give the same solution.

�
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8 Multiple Endpoint Conditions

The control problems in this section cover the optimal problems with several
state and control variables with fixed/free value of the state variable at the end
point, a free value of the upper limit of integration. It can contain an arbitrary
number of functions and even a salvage term from a single problem.

Consider the standard end-constrained problems that seek for the vector
functions x(t) = (x1(t), x2(t), ..., xn(t)) with n state variables and control func-
tion u(t) = (u1(t), u2(t), ..., um(t)) with m controls, defined on a time interval
[t0, t1] to

max

∫ t1

t0

f(t,x(t),u(t))dt+ ψ(t1,x(t1)) (104)

subject to the constraints

dx1(t)

dt
= g1(t,x(t),u(t))

... (105)

dxn(t)

dt
= gn(t,x(t),u(t))

we can rewrite theses condition as x′ = g(t,x(t),u(t)), and

xi(t0) = x0i , i = 1, 2, ..., n (x0 = (x01, ..., x
0
n) is a given point in Rn) (106)

xi(t1) = x1i , i = 1, 2, ..., l (107)

xi(t1) free, i = l + 1, ..., r (108)

xi(t1) ≥ 0, i = r + 1, ..., s (109)

K(xn+1, .., xn, t1) ≥ 0 at t1 (110)

where 1 ≤ l ≤ r ≤ s ≤ n, and K is assumed to be a continuous and differentiable
function. The problem (104)-(110) can be solved if it satisfies the conditions
below.

Necessary Conditions:

a). State equations:

x′ = x′i = gi(t,x(t),u(t)) = g, i = 1, ..., n

b). Adjoint (auxiliary, costate or multiplier) equations:

p = p′i = −

∂f
∂x

+

n∑
j=1

pj
∂gj
∂x

 , i = 1, ..., n.

37



c). Optimality conditions:

I). ∂f
∂uj

+
∑n
k=1

pk∂gk
∂uj

= 0, j = 1, ...,m.

II). H(t,x∗,u,p) is maximized by u = u∗.

d). Transversality conditions:

I). pi(t1) = ∂ψ
∂xi

if xi(t1) is free;

II). xi(t1) ≥ 0, pi(t1) ≥ ∂ψ
∂xi

,

xi(t1)[pi(t1)− ∂ψ
∂xi

] = 0:

III). pi(t1) = ∂ψ
∂xi

+ p ∂K∂xi
,

i = l, ..., n, p ≥ 0, pK = 0,
if K(xl(t1), .., xn(t1)) ≥ 0 is required;

IV). pi(t1) = ∂ψ
∂xi

+ p ∂K∂xi
, i = l, ..., n,

if K(xl(t1), .., xn(t1)) = 0 is required;

V). f +
∑n
i=1 pigi + ψt = 0 at t1 if t1 is free;

VI). f +
∑n
i=1 pigi + ψt ≥ 0 at t1, with strict equality in case t1 < T ,

if T − t1 ≥ 0 is required;

VII). pi(t1) = ∂2ψ
∂xi

+ p ∂K∂xi
, i = l, ..., n,

f +
∑n
i=1 pigi + ψt + p ∂K∂xi

= 0, p ≥ 0,K ≥ 0, pK = 0 at t1 if
K(xl(t1), .., xn(t1)) ≥ 0 is required.

We close this report by an example which includes a salvage term and its
solution contains a piecewise continuous control. The discontinuity occurs typ-
ically when the Hamiltonian is linear in u.

Example 8.1: The optimal investment plan of a production facility.
Let the facility operate from initial time t = 0 until terminal time T . Let
P be the production rate and I be the investment rate for such 0 ≤ I ≤ I,
in other words, suppose I to be positive and bounded above. Assume that
the facility is salvaged at a price proportional to its production rate at
that time. The corresponding objective is

J = βP (T ) +

∫ T

0

[P (t)− I(t)]dt,
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where β > 0. Suppose the production rate of the facility decreases at a rate
proportional to the production rate at the time at which no investment
occurs, but that investment tends to increase the production rate. The
production rate and the investment rate give the following equation

Ṗ = −αP + γI, P (0) = P0,

where α > 0, γ > 0.

Solution: The optimal problem above is to

max βP (T ) +

∫ T

0

[P (t)− I(t)]dt, 0 ≤ I ≤ I

subject to
Ṗ = −αP + γI, P (0) = P0,

where α > 0, γ > 0 and β > 0. With function p(t) as an adjoint variable
for the time [0, T ], the Hamiltonian is

H(t, P (t), I(t), p(t)) = P (t)− I(t) + p(−αP + γI)

= P (1− αp) + I(pγ − 1),

which has the necessary condition

ṗ = −H ′P = αp− 1, p(T ) = β,

the first-order differential equation above with p(T ) = β yields

p(t) = eαtp(0) +
1

α
(1− eαt). (111)

Computing t = T in (111) we get

β = eαT p(0) +
1

α
(1− eαT ),

thus

p(0) = e−αT (β − 1

α
(1− eαT )).

It follows that the adjoint function is

p(t) = (β − 1

α
)eαt−T +

1

α
. (112)

According to the maximum condition for each t ∈ [0, T ], I∗(t) must max-
imize the Hamiltonian H subject to I ∈ [0, I]. Only the term I(pγ − 1)
depending on I(t) so,

I∗(t) =

{
0 if pγ − 1 < 0,
I if pγ − 1 > 0.
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In the case where pγ − 1 < 0, we have H = P (1 − αp) + 0 = P (1 − αp)
and the necessary condition reads as follows:

H ′I = 0, p′ = −H ′P = αp− 1, p(T ) = 0.

For the case where pγ − 1 > 0, we have H = P (1 − αp) + I(pγ − 1) and
the necessary condition gives:

H ′
I

= pγ − 1, p′ = −H ′P = αp− 1, p(T ) = 0.

Assume that we want to determine the range of γ, for 0 ≤ t ≤ T , related
to α and β for such that the optimal facility is constant. Let the optimal
facility be constant. By using the condition 0 ≤ I ≤ I, we have case 1:

I = 0 =⇒ γp < 1 =⇒ γ(β − 1

α
)eαt−T +

1

α
< 1 =⇒

=⇒ (β − 1

α
+

1

α
) < 1 =⇒ γ <

1

β
.

case 2:

I = I =⇒ γp > 1 =⇒ γ > ((β − 1

α
)eαt−T +

1

α
)−1 > 1/

1

α
= α.

From case 1 and case 2, we conclude that when α < γ < 1/β the facility
is constant, where 0 < t < T .

Now let us consider the case when the optimal policy contains a switch,
which means that γp − 1 = 0. Computing the function p(t) from (112),
we have

γ(β − 1

α
)eαt−T +

1

α
= 1

thus the switch time can be determined by solving t. We have

ts = T − 1

α
ln

1/α− β
1/α− 1/γ

,

as the switch time.

Finally let consider the problem when the facility were to operate from
time T on without any further investment, the corresponding facility is∫ ∞

T

P (t)dt, (113)

where I = 0, and it yields that Ṗ = −αP . By using a first-order differen-
tial equation together with the condition that the initial production rate
P (0) = P0, we get

P (t) = e−αtP0. (114)
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Inserting (114) in (113), we get the facility as following∫ ∞
T

e−αtP0dt = − 1

α
e−αt

∫ ∞
T

P0dt =
1

α
e−αTP0 =

P (T )

α
,

which produces a terminal revenue.

�

From the final example, we can see that this problem illustrates many
economical perspectives. This is only one of the simple problems that
our knowledge from this paper will be sufficient enough to solve. In the
real economical world there are much more advanced and complicated
problems where mathematical control theory play an important role.
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