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ABSTRACT. In this paper we will study the creation of strange non-chaotic attractors, the invariant,
attracting graph of a nowhere continuous measurable ψ : T→ [0,1], in certain families of quasi-
periodically forced quadratic maps

Φα,β : T× [0,1]→ T× [0,1]

: (θ ,x) 7→ (θ +ω,cα,β (θ) · x(1− x)),

where ω is a Diophantine irrational, and cα,β (θ) : T→ [ 3
2 ,4] is a prescribed family of maps.

The same model was studied by Bjerklöv in [2] for β = 1, where it was shown to possess a
strange non-chaotic attractor for a certain critical value of α = αc. There it was also shown that
inf
θ∈T

ψ(θ) = 0.

In this paper, we will show that, whenever 0≤ β < 1, the attractor for that same value of α = αc
is the invariant, attracting graph of a continuous measurable ψ : T→ [0,1]. Moreover, for the value
α = αc, we will establish asymptotic bounds on the minimum distance δ (β ), as β goes to 1, from
the attractor to the repelling set T×{0,1}; more precisely, we show that there are a δ > 0, and
constants 0≤ a1 ≤ a2 such that

a1(1−β )≤ δ (β )≤ a2(1−β )

whenever 1−δ ≤ β ≤ 1.
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1. INTRODUCTION

A (smooth) continuous dynamical system is essentially a smooth flow1 f t(x) : R×X → X on
a smooth manifold2 X . The field of dynamical systems was born out of a desire to understand
the long-term behaviour of a physical system governed by certain laws. It is often of interest
to consider also discrete systems, where f (x) : X → X , such as when looking at the state of a
continuous system at discrete time-intervals. One can easily reduce a continuous system to a
discrete one by setting, for some τ > 0,

F(x) =
τ∫

0

f t(x)dt.

An important part in studying dynamical systems is classifying the invariant sets. A set A is
invariant if f t(A)⊆ A for all t in R ( f (A)⊆ A, when the system is discrete). The orbit of a point x
in X is the set

{ f t(x) : t ∈ R} ({ f n(x) : n≥ 0}).
An invariant set is simply a collection of orbits. Of particular interest among the invariant sets

are the so-called attracting sets, and repelling sets. An attractor is an attracting set containing
no smaller attracting set. In [10], Milnor discusses alternative definitions of attractors. We will
consider the following one:

Definition 1.1 (Attracting set). A closed invariant subset A is called an attracting set if it satisfies:
• the realm of attraction ρ(A), the set of points x in X such that the orbit of x eventually

stays in A, has positive measure (in the sense of Lebesgue).
An attracting set A is called an attractor if it satisfies:

• there is no strictly smaller closed invariant set A′ ⊂ A such that ρ(A′) coincides with ρ(A)
up to a set of measure zero.

An attracting set is one which attracts nearby orbits. A repelling set repells (sends away) almost
every orbit coming close to it. A repellor is similarly an indecomposable repelling set. Knowing
the attractors and the repellors in a system, and what they look like, gives a lot of information
about the long-term behaviour of the system.

Another important concept is that of chaos, where the central idea is a sensitive dependence on
initial conditions (orbits of nearby points will likely diverge). We will not be directly concerned
with chaos, but will be interested in nonchaotic systems. Actually, the (strange) attractors we
will be interested in will exhibit behaviour somewhere on the boundary between chaotic and
non-chaotic systems, usually having some sensitivity to initial dependence (see [6]).

In recent decades, it has become apparent that an attractor can have a strange geometry. Such
attractors are called strange attractors. One of the earliest uses of the term is in the article [13],
by Ruelle and Takens in 1971, where a possible connection is made between the appearance
of turbulence in fluids and the existence of strange attractors in such systems. There is no

1A global solution to a differential equation.
2A generalized smooth surface.
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clear definition of what constitutes a strange attractor, but the term has been used to describe
attractors with strange geometrical properties, such as a noninteger fractal dimension or nowhere
differentiability. In [11, 12], the notion of strange attractors is discussed in more detail.

Following the article by Ruelle and Takens, the existence of strange attractors were discussed
in the context of chaotic systems, such as the Hénon map, and the Lorenz system. Perhaps it was
believed initially that strange attractors were connected to chaos; however soon enough, in the
article [7] from 1984, the notion of strange nonchaotic attractors was introduced. The authors of
that article presented numerical evidence of a strange attractor which was nonchaotic, that is, the
dynamics considered on the attractor as an isolated system is not chaotic.

In the article [9], Keller proved rigorously the existence of strange nonchaotic attractors in a
class of systems, called pinched (will be explained below). The model in [7] was a special case of
that class.

We will be interested in a type of systems called quasiperiodically forced. The motivation for
considering such systems arise from physics. A simple example consists of two forces acting
linearly on an object with periodically varying amplitudes, where their respective periods are
incommensurate3. In [5], this physical connection is discussed at more length.

Having seen that quasiperiodicity is of physical relevance, it becomes interesting to study such
systems from a mathematical viewpoint. A way to model a one-dimensional quasiperiodically
forced system (as a discrete system), is to let

Φ : T×X → T×X : (θ ,x) 7→ (θ +ω,g(θ) · f (x)),

where T is the circle (R\Z), ω is irrational, and g is called the forcing map. A system where
T×{0} is invariant is called pinched if the forcing map is 0 for at least one θ (and hence every
orbit going through such a θ will get stuck at 0).

Quasiperiodically forced systems are very interesting, since they provide many examples of
strange nonchaotic attractors. In fact, in accordance with [1, 2], we make the following definition:

Definition 1.2 (Strange nonchaotic attractor). Let

Φ : T× [0,1]→ T× [0,1] : (θ ,x) 7→ (θ +ω,g(θ) · f (x)),

where ω is irrational. The graph of a measurable function ψ : T→ [0,1] is a called a strange
attractor for the system if

• it is invariant, that is Φ(θ ,ψ(θ)) = (θ +ω,ψ(θ +ω)), for a.e. θ ;
• it is discontinuous (almost) everywhere; and
• it attracts the orbits of a set of points of positive measure.

In [2] Bjerklöv proved the existence of a strange nonchaotic attractor in a non-pinched system.
In a later article [3] by the same author, it was shown that the attractor is dense in a "regular"
surface.

In the article [8] Haro and de la Llave made numerical studies of a family of quasiperiodic
hyperbolic system4, where the expanding and contracting directions where merged for certain

3The ratio of the respective frequencies, ω1
ω2

, is irrational; that is, their periods will never align, but they will
repeatedly get closer and closer to aligning; the resulting force is quasiperiodic.

4At each point there is an expanding direction, and a contracting one
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critical parameter values. This caused the attracting set and the repelling set to merge at certain
points. They found numerical evidence suggesting that the minimum distance between the
attracting and repelling sets was asymptotically linear in the parameter, when the parameter was
sufficiently close to the critical value. In [4] Bjerklöv and Saprykina analytically proved the claim
for certain models.

In this paper, we will establish similar asymptotic behaviour for the system considered in [2].
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2. OUR MODEL

In the article [2], the existence of a strange nonchaotic attractor for the following quasi-
periodically forced quadratic map, for a particular α , was established:

Φα : T× [0,1]→ T× [0,1] : (θ ,x) 7→ (θ +ω,cα(θ) · p(x)),

where ω is a (Diophantine, see further down) irrational number,

p(x) = x(1− x)

is the quadratic (or logistic) map, and cα(θ) is a smooth forcing map. The map cα(θ) was
fashioned to be ≈ 3

2 , except at two peaks 0 and α ≈ ω , where cα(θ) "suddenly" hits 4. The
expression used for cα(θ) was

cα(θ) =
3
2
+

5
2

(
1

1+λ (cos2π(θ −α/2)− cosπα)2

)
,

where λ is assumed to be sufficiently large, in order for the peaks to be narrow. Below (fig. 1) is a
figure showing what the graph of c(θ) might look like. In this paper, we will introduce another
parameter β to the system, where the peaks are scaled down by that constant, and study what
happens to the attractor as the parameter is perturbed.
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FIGURE 1. The graph of c(θ).

In order to understand this particular choice of cα(θ), we have to make a brief detour into
the dynamics of the quadratic map. Consider the map fω : T× [0,1]→ [0,1] : (θ ,x) 7→ (θ +
ω, 3

2x(1−x)). By using the results in section 3, it is possible to show that every (θ ,x) ∈ T× (0,1)
will converge to T×{1

3}, and that this is an attractor if ω is irrational.
Actually, it is possible to show that, as long as the forcing map is within a small ε > 0 of 3

2 (the
actual ε may even vary for different θ ), there will be an attractor (θ ,ψ(θ)), where ψ(θ)≈ 1

3 is
continuous.
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We can see that, for every θ ∈ T,

fω(θ ,1) = fω(θ ,0) = (θ +ω,0).

The set T×{0,1} is not only invariant, but is actually a repelling set. It is true that the subset
T×{0} is a repellor (indecomposable repelling set), but since x = 1 is mapped directly to x = 0,
we will be interested in the whole set T×{0,1}.

So, our cα was made to be cα(θ) ≈ 3
2 , except when θ is very close to 0 and α . Note that

p(x) = x(1−x) is symmetric around the maximum 1
4 at x = 1

2 , and so in order to "hit" the repellor,
we want orbits to tend to x = 1

2 at the second peak α .
In order to produce the strange attractor, the α was tweaked to a critical value αc, whereby

the limits of certain orbits would enter the chain (αc−ω,≈ 1
3) 7→ (αc,

1
2) 7→ (αc +ω,1) 7→

(αc + 2ω,0), causing the attractor to "merge" with the repelling set T×{0,1} (and hence get
stuck at the repellor T×{0}).

The strange attractor that was found has been approximated in simulations, and is shown below
(fig. 2). Note that, for ease of visualization, the value of α used in fig. 1 is different from the one
producing the strange attractor in fig. 2.

Also note that the effect of the peaks are felt one step later in the attractor. This is simply
because

Φ(θ ,x) = (θ +ω,c(θ) · x(1− x)),

and so the effect of the peak is seen in the next iteration. The last thing to note is that, as we
choose λ larger, the peaks of c(θ), and hence also the peaks of the attractor, will become more
narrow, and the parts around ≈ 1

3 will become flatter.
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FIGURE 2. The strange attractor.

The conclusion we come to is that, what is producing the strange attractor is the "merging" of
the attractor and the repelling set T×{0,1} at a dense set of values of θ .
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Now, let β ∈ [0,1]. The extended system we will be interested in is given by

Φα,β : T× [0,1]→ T× [0,1] : (θ ,x) 7→ (θ +ω,cα,β (θ) · p(x)),
where

cα,β (θ) =
3
2
+β

5
2

(
1

1+λ (cos2π(θ −α/2)− cosπα)2

)
.

In the original article [2] the model was studied for the value β = 1, where it was shown that
there exists a critical α = αc (the index c is for critical) such that the system possesses a strange
nonchaotic attractor. The purpose of this paper is to study what happens to the attractor when
α = αc is fixed, but β is varied close to 1.

We think of the λ > 0 as some sufficiently large constant, depending only on ω .
An example of what the graph of c(θ) might look like for β = 0.5 can be seen in fig. 3. The

corresponding attractor can be seen in fig. 4. The figure suggests that the attractor is continuous,
and in fact, as we will show, the attractor is continuous when 0≤ β < 1.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-0.4 -0.2  0  0.2  0.4

x

θ

FIGURE 3. The graph of c(θ) when β = 0.5.

Since the strange attractor appears when the minimum distance between the attractor and the
repelling set is 0, it would be interesting to see how this distance depends on the parameter β . In
fig. 5, we have plotted this minimum distance as obtained in the simulations. The graph seems to
suggest that the distance is asymptotically linear as β approaches 1.

For technical reasons (see lemma 3.1 for the consequences of this assumption), we will assume
that ω ∈ T is an irrational number satisfying the Diophantine condition

inf
p∈Z
|qω− p|> κ

|q|τ
for all q ∈ Z\{0}, (DC)κ,τ

for some κ > 0,τ ≥ 1 (note that it is sufficient to consider only q∈Z+= {1,2,3, . . .} by symmetry
in p ∈ Z). This is no severe restriction, since (Lebesgue) almost every irrational ω satisfies the
Diophantine condition, for at least some κ > 0, and τ ≥ 1. Indeed, let D be the set of all
Diophantine irrationals in [0,1). Then the complement Dc is included in the decomposition
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FIGURE 4. The continuous (!) attractor when β = 0.5.
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FIGURE 5. The minimum distance as a function of β , when β is close to 1.

Dc ⊂
∞⋃

q=1
Dq, whereDq = {ω ∈ [0,1) : |qω− p| ≤ κ

qτ , for every p ∈ Z,κ > 0,τ > 1}. By a quick

rearrangement, we obtain

Dq = {ω ∈ [0,1) : |ω− p
q
| ≤ κ

qτ+1 , for every p ∈ Z,κ > 0,τ > 1},

and so Dq is the set of irrationals ω such that the smallest distance from ω to a rational with
denominator q is smaller than κ

qτ+1 for every κ > 0,τ > 1. Now, since ω ∈ [0,1), it is sufficient to
consider only p = 0,1, . . . ,q−1, and so the set Dq can be covered by q intervals of length 2 κ

qτ+1

(notice that the length is maximized as τ decreases), so it has a cover of total length 2 κ

qτ . Hence



8

there is a cover of Dc of total length
∞

∑
q=1

2
κ

qτ
= 2κ

∞

∑
q=1

1
qτ

< 2κ ·S,

where κ > 0 is arbitrary, and
∞

∑
q=1

1
qτ converges to some S, since τ > 1. Hence, the complement Dc

has zero measure. Since inf
p∈Z
|qω− p| is invariant under ω 7→ ω +n for n ∈ Z, the complement of

all Diophantine irrationals is
⋃

n∈Z
Dc +n, which has zero measure (a countable union of null sets

is a null set, just choose covers ε

2n ).
We mentioned that the system is non-chaotic. This can be established by looking at the

Lyapunov exponents. Let the following two-dimensional dynamical system be given:

Φ : T× [0,1]→ T× [0,1] : (θ ,x) 7→ (θ +ω,c(θ) · p(x)), (2.1)

where ω is fixed. The Lyapunov exponents at a point (θ0,x0) measure the long-term effect of
slightly perturbing the initial points. There is a good treatment of this case in the book [5]. Let
(θ0,x0)+ (εθ ,εx) be a small perturbation of the initial point (θ0,x0). We will use the notation
(δθn,δxn) for the perturbation of the n-th iterate (in particular, (δθ0,δx0) = (εθ ,εx)). Using the
short-hand (θn,xn) = Φn(θ0,x0), then the perturbation of the n-th iterates can be calculated by(

δθn
δxn

)
=

(
∂xn
∂x0

∂xn
∂θ0

∂θ0
∂x0

∂θn
∂θ0

)(
δθ0
δx0

)
=

(
∂xn
∂x0

∂xn
∂θ0

0 1

)(
δθ0
δx0

)
,

and since the Jacobian matrix is upper-triangular, the eigenvalues will be ∂xn
∂x0

, and ∂θn
∂θ0

, in the

x-direction and the θ -direction, respectively. The derivative ∂xn
∂x0

simply measures the rate at which
the n-th iteration of x0 changes, when we perturb x0 from a particular value x0 = x. Above, we
have used the fact that

∂θn

∂θ0
=

∂ (θ0 +nω)

∂θ0
= 1.

Now the Lyapunov exponents γx, and γθ are defined as

γx(θ0,x0) = lim
n→∞

1
n

log
∣∣∣∣∂xn

∂x0

∣∣∣∣
γθ (θ0,x0) = lim

n→∞

1
n

log
∣∣∣∣∂θn

∂θ0

∣∣∣∣ ,
whenever the limits exist. In our case, at least γθ is well-defined and equal to 0. In case the first
limit doesn’t exist, we define the upper Lyapunov exponent

γx(θ0,x0) = limsup
n→∞

1
n

log
∣∣∣∣∂xn

∂x0

∣∣∣∣ .
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As we can see, the Lyapunov exponents measure the average separation/contraction of nearby
orbits. The system is said to be nonchaotic if the (upper) Lyapunov exponents are non-positive
(≤ 0) for almost every point (θ0,x0). Later, we will see that this is the case for us.

By δα(β ) we mean the minimum distance between the attractor ψβ below, and the repelling
set T×{0,1}, where α is fixed. We are now ready to state the main theorem of this paper.

Main Theorem. Assume that ω satisfies the Diophantine condition (DC)κ,τ for some κ > 0 and
τ ≥ 1. Then for all sufficiently large λ > 0, there is a parameter value α = αc such that the
following holds for the map Φα,β :

i) When β = 1, there is a strange attractor, the graph of a nowhere continuous measurable
function ψ : T→ [0,1], which attracts points (θ ,x), for a.e. θ ∈ T, and every x ∈ (0,1).

ii) When 0≤ β < 1, there is a curve, the graph of a C1 function ψ : T→ [0,1], which attracts
every point (θ ,x) ∈ T× (0,1).

iii) The (minimum) distance δαc(β ) between the attractor and the repelling set, considered as a
function of β , is asymptotically bounded by linear functions as β → 1, that is

a1(1−β )≤ δαc(β )≤ a2(1−β ),

for some constant 0≤ a1 ≤ a2 as β → 1.
iv) The system (and hence the attractor) is nonchaotic for 0 ≤ β ≤ 1, since γx(θ0,x0) <

1
2 log(3/5)< 0 for (almost, when β = 1) every θ ∈ T and for every x ∈ (0,1).

This theorem extends the results obtained in [2] by introducing the parameter β , showing that
there is an attractor for 0≤ β ≤ 1 (β = 1 is proved in that article), and that it is continuous (even
C1) whenever 0≤ β < 1. Moreover, the bounds on the asymptotics of the distance are new.

The proof of the theorem is arranged in three parts, and the proofs are quite technical. The
first one (section 3) is a collection of numerical results we will use in the later parts, and are not
important for the flow of ideas in the latter parts. However, throughout the latter sections there
will be a large emphasis on products of derivatives, as in lemma 3.9.

In section 4, the induction, the idea is to look at successively smaller scales around the peaks.
Orbits with the same θ -coordinate can be shown to contract with time by looking at the appropriate
scale, as long as 0≤ β < 1. This is done by following the orbits until they enter the peaks, and
then showing that if we are looking at the appropriate scale, it will just return to a "good" state
after some relatively short time.

In section 5 the results on the rate of contraction are used to prove the main theorem, which is
done through various bounds on derivatives of the attracting curve. There is a correspondence
between each proposition in this section and a statement in the main theorem.
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3. SOME PREPARATIONS AND LEMMAS FOR LATER

The reason for choosing a Diophantine ω is that we then get a lower bound on the number of
iterations required by the map θ 7→ θ +ω to return to a small interval of T (lemma 3.1). This is a
very important assumption used in our techniques.

Lemma 3.1. If ω ∈ T satisfies the Diophantine condition (DC)κ,τ , and I ⊂ T is an interval of
length ε > 0, then

I∩
⋃

0<|m|≤N

(I +mω) = /0

with N = [(κ/ε)1/τ ]5.

Proof. Let I = [a,a+ ε] (the argument is similar when the interval is not closed). Suppose that
0 < |m| ≤ N, then

inf
p∈Z
|mω− p|> κ

|m|τ
≥ κ

((κ/ε)1/τ)τ
= ε.

However, if I∩ (I +nω) 6= /0 for some n, then there are 0≤ δ1,δ2 ≤ ε , such that

a+δ1 = a+nω +δ2 mod 1
⇔

δ1 = nω +δ2 mod 1
⇔

nω +(δ2−δ1) ∈ Z.
Since (δ2−δ1) ∈ [−ε,ε],

inf
p∈Z
|nω− p| ≤ ε,

and so |n|> N. �

We will fix, for the remainder of this paper, the following notation.

Φα,β : T× [0,1]→ T× [0,1] : (θ ,x) 7→ (θ +ω,cα,β (θ) · p(x)),
where β ∈ [0,1], ω is a Diophantine irrational number,

p(x) = x(1− x)

is the quadratic map, and

cα,β (θ) =
3
2
+β

5
2

(
1

1+λg(θ ,α)2

)
,

where

g(θ ,α) = cos2π(θ −α/2)− cosπα.

The constant λ will be assumed sufficiently large throughout this paper. We will often suppress
the parameters α,β in our notation whenever they can be understood from context.

5[x] denotes the integer part of x.
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Given (θ0,x0), we will use the notation

(θn,xn) = Φ
n(θ0,x0), n≥ 0.

We will introduce a few intervals and constants of importance later in the induction. We let

I0 = [−λ
−1/7,λ−1/7];

A0 = [ω−λ
−2/5/2,ω−2λ

−2/3].

The interval I0 contains most of the θ where c has its first peak, and is the first zooming interval
in the induction. The interval A0 is where some of the interesting values of α lie. In particular
αc ∈ A0. There is one more such interesting interval, situated slightly to the right of ω , but to
keep derivatives positive, we have chosen to focus on the left side of the peak at 0. Needless to
say, the same techniques apply to the other interval, except that some constants might have to be
tweaked.

The constants are

M0 = [λ 1/(14τ)];

K0 = [λ 1/(28τ)],

where [x] denotes the integer part of x. They have been chosen to be M0 ≈
√

N, and K0 ≈ N1/4,
where N is the minimal return time to I0 in lemma 3.1.

Also, given an interval I, and a θ0 ∈ T, we denote by N(θ0; I) the smallest non-negative integer
N such that θN = θ0 +Nω ∈ I. Note that N(θ0; I) = 0 if θ0 ∈ I.

The "contracting" region C is given by

C = [1/3−1/100,1/3+1/100],

and corresponds to the values of x where there is strong contraction, as long as θ 6∈ I0∪ (I0 +ω).
This is the desirable place to be, and the whole induction step is devoted to showing that orbits
spend almost all their time in this region.

Below is a list of a number of important numerical lemmas from [2]. We refer to that article, in
case the proof has been omitted here, but rest assure they can all be verified by straight-forward
computations.

Lemma 3.2 ( [2, Lemma 2.1]). Let P(x) = (3/2+ ε)x(1− x). If |ε|> 0 is sufficiently small, then
P(C) ⊂C, where C is the interval [1/3− 1/100,1/3+ 1/100]. Moreover, 0 < P′(x) < 3/5 for
every x ∈C.

Lemma 3.3 ( [2, Lemma 2.2]). Let P be as in the previous lemma. If 1/100≤ x≤ 99/100, then
1/100 < P(x) < 2/5, provided that |ε| > 0 is sufficiently small. Furthermore, under the same
assumptions on ε , P(x)< 2/5, for every x ∈ [0,1].

Lemma 3.4 ( [2, Lemma 2.3]). Assume that |ε1|, |ε2|, . . . , |ε20|< ε . Let Pi(x) = (3/2+εi)x(1−x)
(i = 1, . . . ,20). Then P20 ◦ P19 ◦ · · · ◦ P1(x) ∈ [1/3− 1/100,1/3 + 1/100] = C, for every x ∈
[1/100,99/100], provided that |ε|> 0 is sufficiently small.

Lemma 3.5 ( [2, Lemma 2.4]). If P(x) = ax(1−x) (a≥ 3/2), then P(x)≥ 5
4x for all x ∈ [0,1/10].
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The following lemmas will ascertain that the perturbations of the constant in the quadratic map
c(θ)p(x) will be small when θ 6∈ I0∪ (I0 +ω).

If the proof of a statement in the following lemma is omitted, it may be proved in a similar way
as the other statements, and those proofs can all be found in [2].

Lemma 3.6. For all sufficiently large λ > 0 the following hold for α ∈ A0:
a) c(A0−ω,α)) [2,3].
b) |∂θ cα(θ)|, |∂β cα(θ)|< 1/

√
λ for every θ 6∈ I0∪ (I0 +ω).

c) For any 0≤ δ ≤ 1, {θ : c(θ)≥
(3

2 +β
5
2

)
(1−δ )}∩(I0+ω)⊆ [α−

√
δλ−1/4,α+

√
δλ−1/4].

Proof. The first statement can be found in the article.
For the function g(θ ,α) = cos2π(θ −α/2)− cosπα we have

g(θ ,α) = (2π sinπα)θ +O(θ 2) as θ → 0

g(θ ,α) = (2π sinπα)(θ −α)+O((θ −α)2) as θ → α

Since |I0|= 2λ−1/7

As θ ∈ I0, we have

|g(θ ,α)|= |(2π sinπα)θ +O(θ 2)|
≤ |const| · |θ |+ |O(θ 2)|

≤ |const| ·λ−1/7 + |const(λ )| · |λ−2/7|

≤ |const(λ )| · |λ−1/7|

≤ const ·λ−1/7

where the dependence of const(λ ) on λ is purely one of distance from θ ∈ I0 to 0, which decreases
with λ , and so const(λ ) is uniformly bounded by some constant b, for sufficiently large λ . For
θ ∈ I0 +ω , a similar argument holds, and we may choose some constant b > 0 such that

g−1([−bλ
−1/7,bλ

−1/7])⊂ I0∪ (I0 +ω).

Now, differentiating c with respect to β yields, for θ 6∈ I0∪ (I0 +ω),

∂β c(θ ,α) =
5
2

(
1

1+λg(θ ,α)2

)
<

5
2

(
1

1+λb2λ−2/7

)
<

1√
λ
.

For the last statement, we calculate the Taylor series at θ = α , to obtain

c(θ) =
3
2
+β

5
2
−10βλπ

2 sin2(πα)(θ −α)2 +βλO((θ −α)3)

So,

c(θ)≥
(

3
2
+β

5
2

)
(1−δ )
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implies that

βλ
(
10π

2 sin2(πα)(θ −α)2 +O((θ −α)3)
)
≤
(

3
2
+β

5
2

)
δ

Now, c(α±
√

δλ−1/4)<
(3

2 +β
5
2

)
(1−δ ), since

βλ

(
10π

2 sin2(πα)δλ
−1/2 +O(δ 3/2

λ
−3/4)

)
=
(

10π
2 sin2(πα)βλ

1/2 + ·βO(δ 1/2
λ

1/4)
)

δ

>

(
3
2
+β

5
2

)
δ

when λ > 0 is large (independent of δ ). Since c is smaller further away from the peak at α , we
are done. �

In the proof of the following lemma, the idea is that we can use the above lemmas about
P(x) = (3

2 + ε)x(1− x) as long as θ 6∈ I0∪ (I0 +ω), since |cα(θ)− 3
2 | < 1/

√
λ < ε when λ is

sufficiently large.

Lemma 3.7 ( [2, Lemma 3.2]). Provided that λ > 0 is sufficiently large, the following statements
hold:

• If θ0 6∈ I0∪ (I0 +ω), and x0 ∈C, then x1 ∈C, and |c(θ0)p′(x0)|< 3/5.
• If θ0, . . . ,θ19 6∈ I0∪ (I0 +ω), and x0 ∈ [1/100,99/100], then x20 ∈C.

Lemma 3.8 ( [2, Lemma 3.3]). If θ0 ∈T, x0 ≥ 1/100, and if x−1 ∈ (0,1/100)∪(99/100,1), then
x2 ∈ [1/100,99/100].

We will now establish bounds on the partial derivatives ∂θ xn, and ∂β xn. Applying the product
rule and the chain rule, we obtain

∂xn+1 = (∂c(θn)) · p(xn)+ c(θn) · p′(xn) ·∂xn,

where ∂ denotes partial differentiation with respect to either θ or β . We find inductively that

∂xn+1 = (∂c(θn)) · p(xn)+∂x0

n

∏
j=0

c(θ j) · p′(x j)+
n

∑
k=1

(
∂θk−1 p(xk−1)

n

∏
j=k

c(θ j) · p′(x j)

)
.

It will be very important in section 4 to keep good control on products such as
n
∏
j=0

c(θ j) · p′(x j).

They will also come into play when approximating derivatives in section 5.
The following lemma is an adaptation of [2, Lemma 3.5].

Lemma 3.9. Assume that x0 ∈ [0,1], ∂θ x0 = ∂β x0 = 0, and
T
∏
j=k
|c j p′(x j)| < (3/5)(T−k+1)/2 for

every k ∈ [0,T ], where T > 10logλ is an integer. Assume moreover that |∂θ ck|, |∂β ck|< 1/
√

λ

for k ∈ [T −10logλ ,T ]. Then |∂θ xT+1|, |∂β xT+1|< λ−1/4 provided that λ is sufficiently large.

Proof. Exactly as in the proof of [2, Lemma 3.5]. �
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The following lemma is a restatement of [2, Lemma 3.4] to include the parameter β , and is
used in the proof of the main theorem to give a lower bound on how long it takes x0 to return to C
after having come really close to the peaks in the θ -direction.

Lemma 3.10. Let α ∈ A0, and β ∈ [0,1] be fixed. Set

JM = {θ : c(θ ,α)≥
(

3
2
+β

5
2

)(
1− (4/5)M)}∩ (I0 +ω).

Then, For all sufficiently large λ > 0, the following hold for M ≥ 10:
Given θ0 ∈ (I0−ω)\(JM − 2ω), and x0 ∈ [ 1

100 ,
99

100 ], there is a 3 ≤ k ≤ M− 7 such that xk ∈
[ 1

100 ,
99

100 ].
Given θ0 ∈ I0\(JM−ω), and x0 ∈C, there is a 2≤ k ≤M−7 such that xk ∈ [ 1

100 ,
99

100 ].
Given θ0 ∈ (I0 +ω)\JM, and x0 ∈ [ 1

100 ,
99

100 ], there is a 1≤ k ≤M−7 such that xk ∈ [ 1
100 ,

99
100 ].

The return time to the "good" region [1/100,99/100] is bounded by M−7 regardless of the
value of β .

Proof. Suppose that θ0 ∈ (I0−ω)\(JM− 2ω), and x0 ∈ [1/100,99/100]. Then by lemma 3.3,
1/100 < x1 < 2/5 (note that x1 ∈ C), and so 1/100 < x2 < 4p(2/5) = 24/25 < 99/100. In
particular, this means that the first case subsumes the last two cases, and so the lemma follows if
we can prove the first statement. For the next iterate, we obtain

1/100≤ c(θ)p(1/100)= c(θ)p(99/100)< x3 <

(
3
2
+β

5
2

)(
1− (4/5)M) p(1/2)< 1−(4/5)M.

If x3 ≤ 99/100, we just choose k = 3 and are done. Suppose instead that 99/100 < x3, and set
y3 = 1− x3, having the bounds (4/5)M < y3 < 1/100. We will make use of the simple relation
p(x) = p(1− x), to conclude that x4 = c(θ3)p(x3) = c(θ3)p(y3). Thus, we obtain

(5/4)(4/5)M < x4 < 99/100,

since c(θ)p(y3)< 4p(1/100)< 99/100, and more generally, for 4≤ k≤M (since θk 6∈ I0∩ (I0+
ω)),

(5/4)k(4/5)M < xk,

unless for some k, xk ≥ 1/100 (implying that xk ∈ [1/100,99/100]. Choosing k = M−7, we get

1/100 < (4/5)7 < xk < 2/5,

whence the statement follows. �

Keep in mind that c(θ)≤ (3
2 +β

5
2) for every θ , and hence c(θ)< 4 when β < 1.

Lemma 3.11. For all sufficiently large λ > 0, we have the following lemma. Let α ∈ A0, and
β ∈ [0,1) be fixed. Set

JM = {θ : c(θ ,α)≥
(

3
2
+β

5
2

)(
1− (4/5)M)}∩ (I0 +ω).
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Then, assuming that M ≥ 10, there is a constant (integer) MC = MC(β ), depending only on β ,
such that:
Given θ0 ∈ (JM−2ω), and x0 ∈ [ 1

100 ,
99

100 ], there is a 3≤ k ≤MC such that xk ∈ [ 1
100 ,

99
100 ].

Given θ0 ∈ (JM−ω), and x0 ∈C, there is a 2≤ k ≤MC such that xk ∈ [ 1
100 ,

99
100 ].

Given θ0 ∈ JM, and x0 ∈ [ 1
100 ,

99
100 ], there is a 1≤ k ≤MC such that xk ∈ [ 1

100 ,
99

100 ].

Proof. One satisfying, but not necessarily the smallest possible, value of MC is the following:

MC =
log 1

150Vβ (1−Vβ )

log 5
4

+4,

where Vβ = 3
8 +β

5
8 . At the end of the proof, we will show that this constant is sufficient.

As in the previous proof, note that

1/100≤ x1 ≤ 2/5, 1/100≤ x2 ≤ 99/100.

The difference is now that we get

1/100≤ x3 ≤ (
3
8
+β

5
8
) =Vβ ,

and if x3 > 99/100, setting y3 = 1− x3 gives 1−Vβ ≤ y3 < 1/100. Since θ3 6∈ I0∪ (I0 +ω), we
get

3
2

Vβ (1−Vβ )≤ x4 ≤ 2/5.

As before, if xk < 1/100, for k ≥ 3 then by induction we get

xk+1 ≥ (5/4)xk ≥ (5/4)k−4 3
2

Vβ (1−Vβ ).

Thus, to get a lower bound on the constant needed, we solve

1
100
≤
(

5
4

)k−4 3
2

Vβ (1−Vβ ),

whose solution is

k ≥
log 1

150Vβ (1−Vβ )

log 5
4

+4.

That is, it is sufficient to set MC ≥
log 1

150V
β
(1−V

β
)

log 5
4

+4, for the proof to hold. �

Remark. The preceding lemma is a complement to the one above it to include the effect in the
x-direction of reaching the peaks in the θ -direction. Now the behaviour is crucially dependent
on the value of β , and the return time is not necessarily uniformly bounded for β < 1 (not even
necessarily defined for β = 1). In [2] it was shown that there is a value for α = αc ∈ A0 such
that there is no such MC(β ) when β = 1, and this is what causes the attractor to be strange (some
orbits get stuck at T×{0}).
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4. THE INDUCTION

4.1. Base case. Recall the set I0 we considered in the previous section. Here we will show that
we have control on orbits as long as θk 6∈ I0 ∪ (I0 +ω). The inductive step then shows what
happens inside I0∪ (I0 +ω).

Proposition 4.1. Let α ∈ A0 be fixed. There is a λ1 > 0 such that if λ ≥ λ1, then the following
hold:

(i)0 If β ∈ [0,1], x0,y0 ∈C, and θ0 6∈ I0∪ (I0 +ω), then, letting N = N(θ0; I0), and ξi ∈ {txi +
(1− t)yi : t ∈ [0,1]} be an arbitrary point between xi and yi, for every i ∈ [0,N− 1], the
following hold:

N−1

∏
i=k
|c(θi)p′(ξi)|< (3/5)N−k for all k ∈ [0,N−1]; (4.1)

k−1

∏
i=0
|c(θi)p′(ξi)|< (3/5)k for all k ∈ [1,N]; (4.2)

xk ∈C for all k ∈ [0,N]; and (4.3)

|xk− yk|< (3/5)k|x0− y0|, for all k ∈ [1,N]. (4.4)

(ii)0 If β ∈ [0,1], and x0 ∈ [1/100,99/100], and θ0 6∈ I0∪ (I0 +ω), then

xk ∈ [1/100,99/100] for all k ∈ [0,N].

Proof. By assumption, θi 6∈ I0∪ (I0 +ω) for every i ∈ [0,N−1]; by lemma 3.7 it is immediate
that xi ∈C for i ∈ [0,N], which in particular implies (ii)0.

It follows that xi,yi ∈ C, and hence ξi ∈ C for every i ∈ [0,N − 1], and so by lemma 3.7,
|c(θi)p′(ξi)|< 3/5 for every i ∈ [0,N−1], giving us that both

N−1

∏
i=k
|c(θi)p′(xi)|< (3/5)N−k,

for every k ∈ [0,N−1], and
k−1

∏
i=0
|c(θi)p′(xi)|< (3/5)k,

for every k ∈ [1,N].

By the mean value theorem there are points ξi ∈ {txi + (1− t)yi : t ∈ [0,1]}, for each i ∈
[0,N−1], such that

|xk− yk|=
k−1

∏
i=0
|c(θi)p′(ξi)| · |x0− y0|
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for every k ∈ [1,N]. Together with (4.2), this implies that

|xk− yk|=
k−1

∏
i=0
|c(θi)p′(ξi)| · |x0− y0|< (3/5)k|x0− y0|.

�

4.2. Inductive step. The inductive step works by zooming in on intervals In ⊂ I0, and showing
that we have a good control on orbits as long as θk 6∈ In∪ (In +ω). At some point we must ask
ourselves what happens to orbits when they enter In. This is highly dependent on α and β , but the
point is that, for suitable In, we will retain control throughout the interval In as long as β < 1.

We will begin by introducing some notation. Suppose that we are given intervals I0, . . . , In, and
constants K0, . . . ,Kn,M0, . . . ,Mn. We then define the sets

Θn =
n⋃

i=0

Mi⋃
m=−Mi

(Ii +mω),Θ−1 = T\(I0∪ (I0 +ω)),

Gn =
n⋃

i=0

3Ki⋃
m=0

(Ii +mω),G−1 = /0,

Bn = {β : MC(β )≤ 2Kn−7},

where MC(β ) is the constant in lemma 3.11.
The motivation for introducing this notation will be apparent in the induction. We see that, for

every n≥ 0, the following hold

Θn ⊆Θn−1

Gn−1 ⊆ Gn

Bn ⊆ Bn+1, and
∞⋃

n=0

Bn = [0,1)

The ideas behind the respective sets are:

• The set Θn consists of the points θ ∈ T that are far away from each of the intervals
I0, . . . , In. Starting with a θ0 ∈Θn gives us some "breathing room" before we get close to
the peaks.
• The set Gn consists of the points θ which have recently visited one of the intervals. The

idea is that, if we hit the peak at I0, but stay away from In+1, then expansion in the
x-direction will stop shortly after we leave Gn (at most 20 iterations after), giving us a
comparatively long (very much so) time for contraction before we hit the peaks again.
• The set Bn is the set of β for which it is necessary only to zoom as far as to the n-th scale

(the interval In). That is, we get sufficiently good estimates on the contraction even if we
only consider the intervals up to In. The conditions imposed on β are connected to the
upper bound on the return time estimates in lemma 3.11.
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Proposition 4.2. Let α ∈ A0 be fixed. There is a λ1 > 0 such that if λ ≥ λ1, then the following
hold:

Suppose that for some n ≥ 0, we have constructed closed intervals I0 ⊃ I1 ⊃ ·· · ⊃ In, and
chosen integers M0 < M1 < · · ·< Mn and K0 < K1 < · · ·< Kn, satisfying

|Ik|= (4/5)Kk−1, Kk ∈ [(5/4)Kk−1/(4τ),2(5/4)Kk−1/(4τ)], for k = 1,2, . . . ,n; (4.5)

Mk ∈ [(5/4)Kk−1/(2τ),2(5/4)Kk−1/(2τ)], for k = 1,2, . . . ,n; and (4.6)

In ⊇ [α− (4/5)Kn ,α +(4/5)Kn]. (4.7)

Assume further that the following holds:

(i)n If β ∈ [0,1], x0,y0 ∈C, and θ0 ∈Θn−1, then, letting N = N(θ0; In), and ξi ∈ {txi +(1−
t)yi : t ∈ [0,1]} be an arbitrary point between xi and yi, for every i ∈ [0,N − 1], the
following hold:

N−1

∏
i=k
|c(θi)p′(ξi)|< (3/5)(1/2+1/2n+1)(N−k) for all k ∈ [0,N−1]; (4.8)

k−1

∏
i=0
|c(θi)p′(ξi)|< (3/5)(1/2+1/2n+1)k for all k ∈ [1,N]; (4.9)

xk 6∈C for some k ∈ [0,N]⇒ θk ∈ Gn−1; and (4.10)

|xk− yk|< (3/5)(1/2+1/2n+1)k|x0− y0|, for all k ∈ [1,N], (4.11)
20⋃

k=0

(In +(2Kn + k)ω)⊆Θn−1, In−Mnω ∈Θn−1. (4.12)

(ii)n If β ∈ [0,1], x0 ∈ [1/100,99/100], and θ0 6∈ I0∪ (I0 +ω), then

xk 6∈ [1/100,99/100] and k ∈ [0,N(θ0; In)]⇒ θk ∈ Gn−1.

(iii)n If β ∈ [0,1], x0 ∈C, and θ0 6∈ In, then, letting N = N(θ0; In)

xN ∈C. (4.13)

Then there is a closed interval In+1 ⊂ In, and integers Mn+1,Kn+1 satisfying (4.5 - 4.7)n+1 such
that (i− iv)n+1 hold.

Moreover, under the same assumptions, the following holds:

(iv)n If β ∈ Bn, x0,y0 ∈C, and θ0 ∈ In∪ (In +ω), then, letting N = N(θ0; In),

θ2Kn+k ∈Θn−1, for every k ∈ [0,20]; and (4.14)
x2Kn+20 ∈C. (4.15)
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Proof. Lemma 3.1 gives minimal return times{
[(κ(4/5)Kk−1)1/τ ] := Nk k ≥ 1
[(2κλ 1/7)1/τ ] := N0 k = 0

Nk to the respective intervals Ik. The constants Mk,Kk have been chosen to be Mk ≈
√

Nk,Kk ≈√
Mk. By choosing λ sufficiently large, we see that Nk�Mk� Kk.
In particular, lemma 3.1 implies that

Ik∩
⋃

0<|m|≤10Mk

(Ik +mω) = /0, (4.16)

for every k = 0,1, . . . ,n. Also, since 3Ki < Mi,

3Ki⋃
m=0

(Ii +mω)⊂
Mi⋃

m=−Mi

(Ii +mω)

for every k = 0,1, . . . ,n, implying that

Θn∩Gn = /0, (4.17)

for n ≥ −1. Moreover, since In ⊂ Ik (k = 0,1, . . . ,n− 1), and (Ik−ω)∩
( 3Kk⋃

m=0
(Ik +mω)

)
for

k = 0,1, . . . ,n−1, we get that

(In−ω)∩Gn = /0. (4.18)

Constructing the interval In+1:
Let

In+1 = [α− (4/5)Kn/2,α +(4/5)Kn/2].

We have the inclusion

J2Kn = {θ : c(θ)≥ (
3
2
+β

5
2
)(1− (4/5)2Kn)} ⊆ [α− (4/5)Kn

λ 1/4 ,α +
(4/5)Kn

λ 1/4 ]⊆ In+1.

This means, in particular, that by lemma 3.10, as long as θk 6∈
1⋃

m=−1
(In+1 +mω), we have good

control on the contraction.

Choosing the constants Kn+1, and Mn+1:
See [2, Proposition 4.2], where it is also shown that they satisfy (4.12)n+1.

Verifying (i)n+1
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We want to prove that, for N = N(θ0; In+1),
N−1

∏
i=k
|c(θi)p′(xi)|< (3/5)(1/2+1/2n+2)(N−k) for all k ∈ [0,N−1]; (4.19)

k−1

∏
i=0
|c(θi)p′(xi)|< (3/5)(1/2+1/2n+2)k for all k ∈ [1,N]; (4.20)

xk 6∈C for some k ∈ [0,N]⇒ k ∈ Gn−1; and (4.21)

|xk− yk| ≤ (3/5)(1/2+1/2n+1)k|x0− y0|, for all k ∈ [1,N]. (4.22)

We will designate, by (4.19)[T ]-(4.22)[T ], the corresponding statements with N replaced by an
integer T > 0.

Begin by dividing the interval [0,N] into parts

0 < s1 < s2 < · · ·< sr = N,

where the sl are the times when θsl ∈ In (and θk 6∈ In for k 6= si for any i, and 0≤ k ≤ N). It might
very well be the case that r = 1 (i.e. we never visit any of the bigger intervals Ii ⊃ In before we
visit In).

By the induction hypothesis, (4.20)[s1] holds. Hence, if r = 1, we are done. Suppose instead
that r > 1, and that (4.20)[sl] holds for k ∈ [1,sl], where 1≤ l < r.

Proceeding as in the verification of (iii)n+1 below, we obtain that θsl+2Kn+20 ∈ Θn−1, and
xsl+2Kn+20 ∈C. Hence

k−1

∏
i=sl+2Kn+20

|c(θi)p′(ξi)|< (3/5)(1/2+1/2n+1)(k−sl+2Kn+20) < (3/5)(1/2+1/2n+2)(k−sl+2Kn+20)

(4.23)

for k ∈ [sl +2Kn+20+1,sl+1]. since |c(θ)p′(x)| ≤ 4 < (5/3)3 for every pair (θ ,x), we obtain
the following bounds, for k ∈ [sl +1,sl +2Kn +20]

k−1

∏
i=sl

|c(θi)p′(ξi)|< (5/3)3k.

Hence, for k ∈ [sl +1,sl +2Kn +20], we have

k−1

∏
i=0
|c(θi)p′(ξi)|< (3/5)(1/2+1/2n+1)sl · (5/3)3(k−sl) ≤ (3/5)(1/2+1/2n+1)sl−3k.

If we can show that (1/2+1/2n+1)sl−3k > (1/2+1/2n+2)(sl + k), we obtain the inequality,
for k ∈ [sl +1,sl +2Kn +20],

k−1

∏
i=0
|c(θi)p′(ξi)|< (3/5)(1/2+1/2n+2)(sl+k). (4.24)
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This follows, since sl ≥ Nn > K2
n , and Kn� 8 ·2n+2, for λ large enough, by the inequality

(1/2+1/2n+1)sl−3k− (1/2+1/2n+2)(sl + k)> 1/2n+2Nn−4k (4.25)

> 1/2n+2K2
n −8Kn−160 = Kn(1/2n+2Kn−8)−160 > 0. (4.26)

Combining (4.23) and (4.24), we obtain, for k ∈ [1,sl+1], that

k−1

∏
i=0
|c(θi)p′(ξi)|< (3/5)(1/2+1/2n+2)k.

By induction, (4.20)[N] holds, as was to be shown.
The statement (4.19)[N] is proved in a similar fashion as above, but instead one assumes that

sl−1

∏
i=k
|c(θi)p′(xi)|< (3/5)(1/2+1/2n+2)(sl−k)

holds for k ∈ [0,sl−1], where 1≤ l < r. One then uses (4.26) to show that

sl+1−1

∏
i=k
|c(θi)p′(xi)|< (3/5)(1/2+1/2n+2)(sl+1−k)

holds for k ∈ [sl,sl+1−1].
In order to verify (4.22)[N], let k ∈ [1,N] be given. By the mean value theorem, there is for

every i = 0,1, . . . ,k−1, a ξi between xi and yi, such that

|xi+1− yi+1| ≤ |c(θi)p′(ξi)| · |xi− yi|.

By induction, we see that

|xk− yk| ≤
k−1

∏
i=0
|c(θi)p′(ξi)| · |x0− y0|< (3/5)(1/2+1/2n+2)k.

To verify (4.10)n+1, we divide the interval [0,N] as above. Now, (4.21)[s1] holds, and we
suppose that (4.21)[sl] holds for some 1≤ l < r. We know that θsl+k ∈ Gn for k ∈ [0,2Kn +19].
Argue as in the proof of (iii)n+1 below, that θsl+2Kn+20 ∈Θn−1, and xsl+2Kn+20 ∈C. Apply (4.10)
again, to obtain (4.21)[sl+1]. By induction, (4.10)n+1 holds.

Verifying (ii)n+1
As above, we begin by dividing the interval [0,N] into parts

0 < s1 < s2 < · · ·< sr = N,

where the sl are the times when θsl ∈ In.
By the induction hypothesis, the following holds:

xk 6∈ [1/100,99/100] and k ∈ [0,s1]⇒ θk ∈ Gn−1 ⊂ Gn.
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Suppose that for some 1≤ l < r, we have for every k ∈ [1,sl] that

xk 6∈ [1/100,99/100]⇒ θk ∈ Gn.

Since (In−ω)∩Gn = /0, we see that xsl−1 ∈ [1/100,99/100], and so there is a 3≤ k ≤ 2Kn−7
such that xsl+k ∈ [1/100,99/100] by lemma 3.10. Arguing as in the proof of (iii)n+1 below, we
see that θ2Kn ∈Θn−1, and x2Kn ∈ [1/100,99/100]. Hence, by (ii)n, we have

xk 6∈ [1/100,99/100] and k ∈ [2Kn,s1]⇒ θk ∈ Gn−1 ⊂ Gn.

Of course, since θk ∈ Gn for 0≤ k ≤ 3Kn, we see that

xk 6∈ [1/100,99/100] and k ∈ [0,s1]⇒ θk ∈ Gn−1 ⊂ Gn.

By induction, (ii)n+1 holds.

Verifying (iii)n+1:
Let 0≤ s1 < s2 < · · ·< sr =N be the return times to In. If s1 = 0, then by assumption, xs1 = x0 ∈C.
If s1 > 0, then the induction hypothesis implies that xs1 ∈C. If r = 1, then we are done.

Suppose instead that we have proved that, for some 1 ≤ l < r we have xsl ∈C. Since θsl ∈
In\In+1, applying lemma 3.10, we get a 3≤ t ≤ 2Kn−7 such that xsl+t ∈ [1/100,99/100].

If θsl+t 6∈ I0∪ (I0 +ω), then by (ii)n, xsl+k 6∈ [1/100,99/100] implies that θsl+k ∈Gn−1. Since,
by (4.12), θsl+2Kn+i ∈Θn−1 (i = 0,1, . . . ,20), (4.17) implies that xsl+2Kn ∈ [1/100,99/100], and
so xsl+2Kn+20 ∈C by lemma 3.7.

If, however, θsl+t ∈ I0 ∪ (I0 +ω), then assume that this t is the smallest such time. Now,
xsl+t−1 6∈ [1/100,99/100] by our assumption on t, and by lemma 3.8, xsl+t+2 ∈ [1/100,99/100].
Since θsl+t+2 6∈ I0∪ (I0 +ω), we may proceed as in the above paragraph to obtain xsl+2Kn+20 ∈C.

In any case, we have θsl+2Kn+20 6∈ In, and xsl+2Kn+20 ∈C, and so (iii)n applies again, to con-
clude that xsl+1 ∈C. Using induction, we obtain our conclusion.

Verifying (iv)n:
Since K ∈ Bn, lemma 3.10 and lemma 3.11 together imply that there is a 1≤ t ≤ 2Kn−7 such
that

xt ∈ [1/100,99/100].

Suppose that this t is the smallest such number. If θt 6∈ I0∪ (I0 +ω), invoking (ii)n, and noting
that θ2Kn+k ∈Θn−1 for k ∈ [0,20], and Θn−1∩Gn−1 = /0, we obtain that

x2Kn ∈ [1/100,99/100];

using (lemma about return to C) we see that x2Kn+20 ∈C, and θ2Kn+20 ∈Θn−1.

If θt ∈ I0∪ (I0 +ω), then as in the proof of (iii)n+1 above, by lemma 3.8 implies that xt+2 ∈
[1/100,99/100]. Since θt+2 6∈ I0∪ (I0 +ω), we just refer to the argument in the above paragraph,
and conclude that the statement (iv)n holds true. �

Corollary 4.3. By proposition 4.1, (i− iii)0 hold, where (iii)0 just corresponds to (4.3), and so
by proposition 4.2 (i− iv)n hold for every n≥ 0.
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5. PROOF OF MAIN THEOREM

In this section we will use the same notation as in section 4. Throughout this section we will
assume that λ is sufficiently large for every result in the previous sections to hold.

5.1. Constructing the attractor. Here we show that, for every 0≤ β < 1, there is an attractor
which is the graph of an invariant continuous (actually C1) function ψβ : T→ (0,1).

Lemma 5.1. Suppose that β ∈ Bn for some n ≥ 0 is fixed (that is, β ∈ [0,1)). If θ0 ∈ T, and
x0 ∈ (0,1), then there is a t ≥ 0, such that θt ∈Θn−1, and xt ∈C.

Proof. First of all, the assumption on β means that β ∈ [0,1). Since 0 < c(θ)< 4 for every θ ∈ T
when 0≤ β < 1, it follows that xk ∈ (0,1) for every k ≥ 0 (0 < xi < 4p(1

2) = 1).
Suppose that x0 6∈ [1/100,99/100]. Then, by lemma 3.5, there is an s > 0 such that xs ∈

[1/100,99/100]. Let s be the smallest such integer.
If θs 6∈ I0∪ (I0 +ω), then by (ii)n,

xk 6∈ [1/100,99/100] and k ∈ [s,N(θs; In)]⇒ θs+k ∈ Gn−1.

Let N = N(θs; In), then θs+N ∈ In. By (4.12), θs+N+2Kn+i ∈ Θn−1 for i = 0,1, . . . ,19, and since
Θn−1∩Gn−1 by (4.17), xs+N+2Kn+20 ∈C by lemma 3.7.

If θs ∈ I0∪ (I0 +ω), then since s was the smallest such integer, xs−1 6∈ [1/100,99/100], and so
by lemma 3.8, xs+2 ∈ [1/100,99/100]. Now the same argument as above applies.

If x0 ∈ [1/100,99/100], and θ0 6∈ I0 ∪ (I0 +ω), just apply the above arguments. If instead
θ0 ∈ I0∪ (I0 +ω), then if x2 ∈ [1/100,99/100], it follows by the previous sentence; if however
x2 6∈ [1/100,99/100], just invoke the lemma for y0 = x2 6∈ [1/100,99/100]. �

Lemma 5.2. Let n≥ 0 be arbitrary. If β ∈ Bn, θ0 ∈Θn−1, and x0,y0 ∈C, then for each k > 1

|xk− yk|< (3/5)k/2|x0− y0|.
Moreover, if 0≤ β < 1 is fixed, θ0 ∈ T, and x0,y0 ∈ (0,1), then

|xk− yk|< const(x0,y0) · (3/5)k/2|x0− y0|, (5.1)

where the constant depends only on x0,y0 (hence the constant is independent of k, and is uniform
with respect to θ ). Actually, as long as y0,x0 are in a (any) fixed closed subinterval of (0,1), the
constant is uniformly bounded .

Proof. For the first statement, let 0 < s1 < s2 < · · · be the times when θsl ∈ In. By (4.11)

|xk− yk|< (3/5)(1/2+1/2n+1)k|x0− y0|< (3/5)k/2|x0− y0|,

for k ∈ [1,s1]. Suppose that |xk− yk| < (3/5)(1/2+1/2n+1)k|x0− y0| holds for k ∈ [1,sl]. Since
β ∈ Bn, (iv)n implies that θsl+2Kn+20 ∈Θn−1, and xsl+2Kn+20 ∈C. Since |c(θ)p′(x)|< 4 for every
θ ∈ T and x ∈ [0,1], it follows that

|xk− yk|< 4k · (3/5)(1/2+1/2n+1)sl |x0− y0|< (3/5)(1/2+1/2n+1)sl−3k|x0− y0|,
for k ∈ [s1 +1,sl +2Kn +20]. Proceeding exactly as in the proof of (i)n+1, proposition 4.2, we
obtain the first statement.
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For the second one, assume that n≥ 0 is such that β ∈ Bn. By lemma 5.1 there are times s, t ≥ 0
such that θs,θt ∈ Θn−1 and xs,yt ∈C. Let r = max{s, t}, then θr ∈ Θn−1. By (4.10) and (4.17)
xr,yr ∈C.

Now, for every k ≥ r, we have

|xk− yk|< 4r · (3/5)(k−r)/2|x0− y0|= (4r · (5/3)r/2) · (3/5)k/2|x0− y0|,
where the maximal constant is independent of θ0 and k. �

By (5.1), orbits (outside T×{0,1}) with the same θ -component converge to each other, and
we obtain the following corollary.

Corollary 5.3. If there is an invariant curve in T× (0,1), it is an attractor, it is unique and
attracts every point (θ ,x) ∈ T× (0,1).

Corollary 5.4. For every x0 ∈ (0,1), and every θ0 = θ ∈ T, the Lyapunov exponent in the
x-direction is strictly negative since∣∣∣∣∂xk

∂x0

∣∣∣∣< const(x0) · (3/5)k/2

for every k > 0, where the constant is uniform in k.

Proof. We have for small enough h > 0 that x0 +h,x0 ∈ (0,1). Considering xn(x0) as a function
of x0, we have ∣∣∣∣∂xk

∂x0

∣∣∣∣= ∣∣∣∣limh→0

xk(x0 +h)− xk(x0)

h

∣∣∣∣
<

∣∣∣∣∣limh→0

const(x0,x0 +h) · (3/5)k/2|x0 +h− xk(x0)|
h

∣∣∣∣∣
= const(x0) · (3/5)k/2.

�

Proposition 5.5. Let 0≤ β < 1; then there is an invariant curve attracting every point (θ ,x) ∈
T× (0,1). This curve is given as the graph of a continuous invariant function

ψ
β : T→ (0,1). (5.2)

Proof. Suppose that β ∈ Bn. Let θ0 = θ ∈ T, and let 0≤ t1 < t2 < .. . be the times when θ−tk ∈ In.
Set for every k ≥ 1

ψk(θ) = π2 ◦Φ
tk(θ0− tkω,

1
3
).

By (iv)n, x−tk ∈C implies that x−t+2Kn+20 ∈C; in addition, we have θ−t+2Kn+20 ∈Θn−1. Hence,
we will have

Φ
tk({θ−tk}×C)⊆ {θ0}× Jtk

where |Jtk | ≤ (3/5)(t−2Kn−20)/2.
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Let m > tk, and x−m ∈C. Either θ−m 6∈ In, or θ−m ∈ In. In the first case, the next time s ≥ tk
that θ−s ∈ In, x−s ∈C by (iii)n. Therefore x−tk ∈C by (iii− iv)n. Hence Js ⊆ Jtk , and so

Φ
m({θ−m}×C)⊆ {θ0}× Js ⊆ {θ0}× Jtk .

In the second case, by the above argument we will also have x−t ∈C, and so

Φ
m({θ−m}×C)⊆ {θ0}× Jm ⊆ {θ0}× Jt .

Hence, for every m1,m2 > tk
|ψm1(θ)−ψm2(θ)| ≤ |Jtk | −−−→k→∞

0

uniformly in θ ; thus ψn converges to a continuous function ψβ for β ∈ [0,1). �

For any fixed β ∈ [0,1) we will write

ψ
β
n , and ψ

β (5.3)

for the corresponding functions defined above, to show their dependence on the parameter β .

5.2. The minimum distance between the attractor and the repelling set.

Lemma 5.6. If θ0 ∈ Θn for some n ≥ 0, and x0 ∈ C, then |∂β xN |, |∂θ xN | < 1
λ 1/4 , where N =

N(θ0; I0).

Proof. Recall that K0 = λ 1/28, and so K0� 10logλ if λ is large. Since θ0 ∈Θn, it follows that
N = N(θ0; I0)≥M0� K0. Thus θk 6∈ I0∪ (I0 +ω) for k = 0,1, . . . ,K0, . . . ,N.

Using (4.8) to control the products, and lemma 3.6 to control the derivatives of c, lemma 3.9
implies that |∂β xN |, |∂β yN | ≤ λ−1/4. �

In [2, Proposition 4.2, (ii)n], the following lemma is implicit:

Lemma 5.7. There is an α = αc ∈ A0 such that, if x0 = x ∈C, and letting θ0 = αc−Mnω , we
have the following:

xMn −−−→n→∞

1
2
.

Now, the measurable ψ1(θ) : T→ [0,1] constructed in that article (for β = 1) was only defined
for almost every θ ∈ T, and in particular was never explicitly defined for θ = αc. However,
the above lemma will serve to show that ψβ (αc)→ 1

2 as β → 1. This will be needed when we
establish the asymptotics of the distance between the attractor and the repelling set as β → 1.

Below we will show that β 7→ ψβ is continuous with respect to β , but since ψβ is not well-
defined for every θ when β = 1, we may only conclude that it is continuous for β ∈ [0,1). We
will however need to show that lim

β→1
ψβ (αc) =

1
2 , and we will accomplish this by using the above

lemma.

Lemma 5.8. For every ε > 0, there is a δ > 0 such that |ψβ (αc)− 1
2 |< ε whenever β ∈ [1−δ ,1).
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Proof. Note that, for β < 1,

ψ
β (αc) = lim

n→∞
xMn,

where θ0 = αc−Mnω , and x0 = x ∈ C. Since xMn(β ) = π2 ◦Φ
Mn
β
(θ0,x0) is continuous with

respect to β , for β in [0,1] we obtain, after invoking lemma 5.7, that for every ε > 0

|ψβ (αc)−
1
2
|= lim

n→∞
|xMn(β )− xMn(1)+ xMn(β )−

1
2
|< ε

if β ∈ [1−δ ,1] for δ > 0 small enough. �

We first start off by mentioning that the minimum distance is not obviously well-defined for
β = 1 if α = αc, if we take ψ1 : T→ (0,1) to be as in [2]. It is however shown there that for
almost every starting value θ0, and every x0 ∈ (0,1), inf

k≥0
xk = 0, even though xk > 0 for every

k ≥ 0. Thus, we define the minimum distance to be 0 when β = 1. Later, we will see that this is
the value obtained by continuous extension of the distance function δαc(β ) to β = 1.

In order to prove the asymptotics of the distance, we must first show that ψβ (θ) is C1 (continu-
ously differentiable) with respect to both θ and β . Since the functions ψβ are defined by limits
of smooth functions, we must show that the respective derivatives of those functions converge
uniformly.

Proposition 5.9. For every β ∈ [0,1), and α ∈ A0, the functions β 7→ ψβ (θ) and θ 7→ ψβ (θ)
are both continuously differentiable considered as one-variable functions in each of the separate
variables β and θ , respectively.

Moreover, for every fixed 0≤ β < 1

|∂β ψ
β (θ)−∂β ψ

β (φ)|< 2
λ 1/4 +O(|θ −φ |),

and for every fixed θ ∈ T

|∂θ ψ
β (θ)−∂θ ψ

β̃ (θ)|< 2
λ 1/4 +O(|β − β̃ |).

Proof. We will be needing a few inequalities, valid for every θ ∈ T, and x,y ∈ [0,1]. The first one
is:

|p(x)− p(y)|= |x(1− x)− y(1− y)|= |(x− y)(1− x)− y(x− y)|
= |x− y| · |1− x− y| ≤ |x− y|.

The second one is:

|p′(x)− p′(y)|= |(1−2x)− (1−2y)|
= 2|y− x|= 2|x− y|.

The third one is, for arbitrary a,b ∈ R:

|p′(x)a− p′(y)b|= |(p′(x)− p′(y))a− p′(y)(a−b)| ≤ 2|x− y| · |a|+2|a−b|.
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Since ∂β c(θ), and ∂θ c(θ) are both bounded (they are continuous on a compact set), the maxi-
mum norms ‖∂β c‖,‖∂θ c‖ and ‖c‖ are all bounded (henceforth, ‖ · ‖ shall denote the maximum
norm).

Let θ = θ0 ∈ T. Using the above inequalities, and letting ψ
β
n (θ0) = x0, ψ

β
m(θ0) = y0, we obtain

|∂β ψ
β
n (θ0)−∂β ψ

β
m(θ0)|= |∂β c(θ0) · p(x0)+ c(θ0) · p′(x0)∂β x0−∂β c(θ0) · p(y0)+ c(θ0) · p′(y0)∂β y0|

≤ |∂β c(θ0)| · |p(x0)− p(y0)|+ |c(θ0)| · |p′(x0)∂β x0− p′(y0)∂β y0|
≤ ‖∂β c‖ · |x0− y0|+‖c‖ · ‖∂β c‖ · |x0− y0|+2|∂β x0−∂β y0|

≤ ‖∂β c‖ · |ψβ
n (θ0)−ψ

β
m(θ0)|+ |x0− y0|+‖c‖ · ‖∂β c‖ · |ψβ

n (θ0)−ψ
β
m(θ0)|

+2|∂β x0−∂β y0|.

The same inequality also holds when ∂β is replaced with ∂θ . Now, the first two terms vanish

uniformly in the limit, since ψ
β
n converges uniformly for every β . The last term also vanishes

uniformly, but some care is needed to show this.

Let t ≥ 0 be such that, θ−t ∈ I0. Let n1,n2 > t +K0, so that θ−n1,θ−n2 ∈Θ0. Let x−n1,y−n2 =
1
3 ∈C, then by lemma 5.6, |∂β x−t |, |∂β y−t |< 1

λ 1/4 .

|∂β x0−∂β y0|= |∂β c(θ−1)(p(x−1)− p(y−1))+∂β x−t

−1

∏
j=−t

c(θ j) · p′(x j)−∂β y−t

−1

∏
j=−t

c(θ j) · p′(y j)

+
−1

∑
k=−t+1

∂β c(θk−1)

(
p(xk−1)

−1

∏
j=k

c(θ j) · p′(x j)− p(yk−1)
−1

∏
j=k

c(θ j) · p′(y j)

)
|

≤ ‖∂β c‖ · |x−1− y−1|+ |∂β x−t |
−1

∏
j=−t

2c(θ j) · |x j− y j|

+ |∂β y−t−∂β x−t |
−1

∏
j=−t
|c(θ j) · p′(y j)|

+‖∂β c‖ ·
−1

∑
k=−t+1

(
−1

∏
j=k

2c(θ j) · |x j− y j|+‖∂β c‖ ·
−1

∑
k=−t+1

|xk−1− yk−1|
−1

∏
j=k
|c(θ j)p′(y j)|

)
We may t as large as we want, since every orbit of the circle rotation is dense when ω is

irrational. Everything term converges uniformly as n1,n2→ ∞. Letting n = min{n1,n2}, the first
term is

‖∂β c‖ · |x−1− y−1| ≤ ‖∂β c‖ · const · (3/5)(n−1)/2,

where the constant is uniform. The second term is

|∂β x−t |
−1

∏
j=−t

2c(θ j) · |x j− y j| ≤
8

λ 1/4 · const ·
−1

∏
j=−t

(3/5)(n+ j)/2|x−n− y−n| ≤ (3/5)(n−1)/2,
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where the constant is again uniform. The third term is

2
λ−1/4

−1

∏
j=−t
|c(θ j) · p′(y j)| ≤ (3/5)(t−1)/2.

The last terms are similarly shown to be uniformly convergent. Also, note that the exact same
argument works for the derivative with respect to θ , since we only used the bounds on the partial
derivatives for θ ∈ Im in lemma 3.9. �

We have the following bounds on the partial derivatives ∂β considered as functions in the
variable θ :

|∂β ψ
β (θ +ω)−∂β ψ

β (φ +ω)|= |∂β c(θ) · p(ψβ (θ))+ c(θ)p′(ψβ (θ))∂β ψ
β (θ)

−∂β c(φ) · p(ψβ (φ))+ c(φ)p′(ψβ (φ))∂β ψ
β (φ)|

= |∂β c(θ) ·
(

p(ψβ (θ))− p(ψβ (φ))
)
+
(
∂β c(θ)−∂β c(φ)

)
p(ψβ (φ))

+ c(θ)p′(ψβ (θ))
(

∂β ψ
β (θ)−∂β ψ

β (φ)
)

+
(

c(θ)p′(ψβ (θ))− c(φ)p′(ψβ (φ))
)

∂β ψ
β (φ)|

≤ ‖∂β c‖ · |ψβ (θ)−ψ
β (φ)|+‖∂θ ∂β c‖ · |θ −φ | · |ψβ (φ)|

+‖c‖ · |ψβ (θ)| · 2
λ 1/4

+
(
‖c‖ ·2|ψβ (θ)−ψ

β (φ)|+ |c(θ)− c(φ)| · |ψβ (φ)|
)
· 1

λ 1/4 .

Every term except for the second last one, ‖c‖ · |ψβ (θ)| · 2
λ 1/4 , is seen to be uniformly convergent

to 0 as |θ −φ | → 0.

Remark. Why do we have to include so many steps when analysing the term |∂β x0−∂β y0|, instead
of proceeding like:

|∂β x0−∂β y0|= |∂β c(θ−1)(p(x−1)− p(y−1))+ c(θ−1)p′(x−1)∂β x−1− c(θ−1)p′(y−1)∂β y−1|
= |∂β c(θ−1)||(1+ x−1− y−1)(y−1− x−1)+ c(θ−1)(p′(x−1)(∂β x−1−∂β y−1)

+ c(θ−1)(p′(x−1)− p′(y−1))∂β y−1|
≤ 2∂β c(θ−1)|y−1− x−1|+ c(θ−1)

(
|∂β x−1−∂β y−1|+2|y−1− x−1| · |∂β y−1|

)
≤ const · |y−1− x−1|+ c(θ−1)|∂β x−1−∂β y−1|?

This is because |∂β x−1−∂β y−1|< 2
λ−1/4 is the best possible direct approximation. We need to

study the iterations right before the last step in more detail, in order to establish convergence. The
"correct" version shows that the early effects of not having the same starting value is negligible in
the long run, and that once the contraction is strong enough, the derivatives will be almost equal
for the last few iterations.
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We also have a practical way of expressing the derivatives as the limit

∂β ψ
β (θ) = lim

n
∂β ψ

β
n (θ) = lim

n
∂β c(θ−1) · p(x−1)+ c(θ−1)p′(x−1)∂β x−1.

The last term is of order 1
λ−1/4 , and in general negligible in comparison to the first one.

Lemma 5.10. There is a δ > 0, such that λ 1/7 ≤ ∂θ ψβ (θ +ω)≤ λ for every θ ∈ A0, for every
1−δ ≤ β < 1.

Proof. By [2, Lemma 3.1, c)], λ 1/6 < ∂θ cα,β=1(θ)< λ for every α ∈ A0, and θ ∈ A0. Since c
is smooth for all parameter values, ∂θ c is continuous in β , and so by continuity, there is a δ > 0
such that

λ
1/6 ≤ ∂θ cα,β (θ)≤ λ

for every β ∈ [1−δ ,1), and α,θ ∈ A0.
Now, let x−1 = x ∈C, and θ−1 = θ − (Mn+1)ω ∈A0− (Mn+1)ω ∈Θn. Then θMn ∈A0, and

xMn−1 ∈C, and so

3
10

<
3
2
· p(1/3+1/100)≤ xMn ≤ 4p(1/3+1/100)< 95/100.

By lemma 5.6, |∂θ xMn|< λ−1/4, and since

∂θ xMn+1 = (∂θ c(θ)) · p(xMn)+ c(θ) · p′(xMn) ·∂θ xMn,

assuming that λ is very large, we obtain after some straight-forward computations that

λ
1/7 < ∂θ xMn < λ ,

if β ∈ [1−δ ,1). �

Lemma 5.11. Let αc ∈ A0 be the αc in [2], that is, lim
β→1

ψβ (αc) =
1
2 for the parameter value

α = αc, and hence lim
β→1

ψβ (αc +ω) = 1. Then there are

• a monotonically decreasing sequence of positive {εn}, converging to 0,
• and a corresponding monotonically decreasing sequence of sets An contained in A0, with

limit lim
n→∞
An = {αc},

such that, if β ∈ En = {1≥ β ≥ 1−εn}, then the point on the attractor closest to the repelling set
T×{0,1} lies in An. Furthermore, this point corresponds to a maximum of ψβ , and is closer to 1
than 0.

Proof. By proposition 4.2, we see that ψβ (I0)⊆C for 0≤ β < 1. Recall that

ψ
β (θ) = cα,β (θ −ω)p(ψβ (θ −ω)).

This gives us the following bounds when θ ∈ I0 +ω , valid for every 0≤ β < 1,
3
10

<
3
2
· p(1/3+1/100)≤ ψ

β (θ)≤ 4p(1/3+1/100)< 99/100. (5.4)
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Recall that A0 ⊂ I0 +ω . Since, by lemma 3.6, cα,β (A0−ω) ) [2,3] for αc ∈ A0, and every
1−δ ≤ β ≤ 1 for some small δ > 0 by continuity of c with respect to β , there are θ ∈ A0 such
that

ψ
β (θ)≤ 2p(1/3+1/100)< 1/2−1/100,

and

ψ
β (θ)≥ 3p(1/3−1/100)> 1/2+1/100.

Since ψ is continuous, there is a θh(β ) ∈ A0 (let this be the one closest to αc if there are more
than one) such that ψβ (θh(β )) = 1/2, for every 1−δ ≤ β < 1, if δ > 0 is sufficiently small.

It is necessarily true that θc(β )−−−→
β→1

αc. Suppose, to derive a contradiction, that it were not

true. Then there would be a δ > 0, and an open interval A= [α−η ,α +η ] such that 1
2 6∈ A for

every 1−δ ≤ β < 1. Let δ be at least as small as the one in lemma 5.10. Then for θ ∈A, we see
that, by the mean value theorem

|ψβ (θ)−ψ
β (αc)| ≥ λ

1/7|θ −α|> 0

for every 1−δ ≤ β < 1. This means that there is an ε > 0 such that ψβ (A)⊂ (0, 1
2−ε]∪ [1

2 +ε,1)
for every 1−δ ≤ β < 1. This would of course imply that

lim
β→1

ψ
β (αc) 6=

1
2
.

Hence θc(β ) converges to αc as β → 1.
We will show that the maximum of ψβ (θ), when θ ∈ I0 +2ω , is assumed for some critical

θc(β ), converging to αc as β → 1. Let δ (β ) be such that

cαc,β (θh(β )) =

(
3
2
+β

5
2

)
(1−δ (β )) .

Since θh(β )→ αc as β → 1, and c is continuous, it follows that δ (β )→ 0. Now, we invoke
lemma 3.6, to obtain the set inclusion

{θ ∈ I0 +ω : cα,β (θ)≥
(

3
2
+β

5
2

)
(1−δ (β ))} ⊆ [αc−

√
δ (β )λ−1/4,αc +

√
δ (β )λ−1/4] =Ac(β ).

We will argue that the maximum will be attained for some θc(β ) ∈ Ac(β ). Suppose that θ ∈
(I0 +ω)\Ac(β ), then

ψ
β (θh(β )) =

(
3
2
+β

5
2

)
(1−δ (β )) · p(1

2
)> c(θ) · p(1

2
)≥ ψ

β (θ).

Hence the conclusion follows. Also note that the Ac(β ) are monotone decreasing in β , and
converge to {αc}. From this, we may extract a sequence as in the statement. The only part left is
showing that the minimal distance is attained in this set. This however can be established rather
quickly.
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We see that for θ ∈ I0 +2ω , using the bounds on ψβ (θ −ω), we have

1/100≤ 95/2000 =
3
2

p(95/100)≤ ψ
β (θ −ω).

Since we may choose the maximum value of ψβ (θc(β )) as close to 1 as we want, by choosing β

closer to 1, the minimal distance in I0 +2ω is attained at a point in Ac(β ). Now, by lemma 3.3,
the maximum value for θ ∈ I0 +3ω is

ψ
β (θ)< 2/5.

Since ψβ (θc(β )) ≥ 9/10 is the maximum in I0 + 2ω , the minimum value in I0 + 3ω will be
attained at the point θc(β )+ω , then by lemma 3.5

ψ
β (θ +ω) = c(θ +ω)p(ψβ (θc(β ))) = c(θ +ω)p(1−ψ

β (θc(β )))≥
5
4

ψ
β (θc(β )).

Since, by the same argument, the x-coordinate is increasing if 0 < x < 1/10 as long as θ 6∈
I0 +(I0 +ω), the minimal distance must be attained for θc(β ) ∈ Ac(β ). �

Definition 5.12. The minimum distance between the attracting curve ψβ and the repelling set
T×{0,1}, for a fixed α , as a function in β is denoted by

δα(β ),

and is defined for at least 0≤ β < 1.

Proposition 5.13. The distance δαc(β ) is asymptotically bounded, as β → 1, from both sides by
linear functions. Specifically,

a1(1−β )≤ δ (β )≤ a2(1−β ), (5.5)

where 0 < a1 ≤ a2 are constants, when β is sufficiently close to 1.

Proof. Suppose that α = αc, and β is in E0 from lemma 5.11. Then the minimum distance
between the attractor and the repelling set is attained for some θ(β ) ∈ A0, and this minimum
distance is furthermore to the point 1; hence the distance, for a fixed β ∈ E0, will be given by the
expression

δαc(β ) = 1−ψ
β (θ(β )).

Also, θ(β ) converges to αc +ω as β → 1, and we will set A(β ) to be the smallest interval
containing both αc +ω and θ(β ). It follows that the length |A(β )| → 0 as β → 1.

Since ∂β ψβ (θ) is continuous with respect to β for every θ ∈ T, it is integrable. Also, since
|∂β ψβ (αc +ω)−∂β ψβ (θ)|< 2

λ 1/4 +O(αc +ω−θ) by proposition 5.9, we obtain the following
inequalities, valid for every θ ∈ A(β )

∂β ψ
β (αc +ω)− 2

λ 1/4 +C(αc +ω−θ)< ∂β ψ
β (θ)< ∂β ψ

β (αc +ω)+
2

λ 1/4 +C(αc +ω−θ),
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where C ≥ 0 is some constant. Now, |ψβ (αc)− 1
2 |< ε , for some ε = ε(β )> 0 converging to 0

as β goes to 1, and so

∂β ψ
β (αc +ω) = ∂β c(αc) · p(ψβ (αc))+ c(αc)p′(ψβ (αc))∂β ψ

β (αc)

=
5
2
· p(ψβ (αc))+4|ε| ·

(
∂β c(αc−ω) · p(ψβ (αc−ω))+ c(αc)p′(ψβ (αc))

1
λ 1/4

)
−−−→
β→1

5
2
· 1

4
=

5
8
.

Hence, for β sufficiently close to 1, αc +ω−θ is to the order of some ε converging to 0 as β

approaches 1, and so

0 < ψ
β (αc +ω)− 2

λ 1/4 +C(αc +ω−θ).

Thus we obtain two constants 0 < b1 ≤ b2, both approximately equal to 5
8 , up to 2

λ 1/4 + ε , where
ε converges to 0 as β → 1, such that b1 ≤ ∂β ψβ (θ)≤ b2, for every θ ∈ A(β ) and β close to 1.
Integrating, we obtain for every β ≤ β̃ < 1 that

b1(β̃ −β )≤
β̃∫

β

∂β ψ
K(θ)dK ≤ b2(β̃ −β ),

where

β̃∫
β

∂β ψ
K(θ)dK = ψ

β̃ (θ)−ψ
β (θ).

Using the mean value theorem we obtain, for some θ̃ between θ and αc +ω , that

ψ
β̃ (θ) = ∂θ ψ

β̃ (θ̃)(θ − (αc +ω))+ψ
β̃ (αc +ω) = ψ

β̃ (αc +ω)+∂θ ψ
β̃ (θ̃)(θ − (αc +ω)).

Thus, in particular, recalling that λ 1/7 ≤ ∂θ ψ β̃ (θ)≤ λ for θ in our interval,

ψ
β̃ (αc +ω)+λ

1/7(θ − (αc +ω))≤ ψ
β̃ (θ)≤ ψ

β̃ (αc +ω)+λ (θ − (αc +ω)).

We must now show how the distance θ(β )− (αc +ω) is related to 1−β . By the mean value
theorem there is a θ̃ between θ(β ) and αc such that

ψ
β (θ(β ))−ψ

β (αc) = ∂θ ψ
β (θ̃)(θ(β )−αc)

and so

θ(β )−αc =
ψβ (θ(β ))−ψβ (αc)

∂θ ψβ (θ̃)
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Using the mean value theorem, and noting that lim
β̃→1

ψ β̃ (αc) = lim
β̃→1

ψ β̃ (θ(β )) = 1
2 by continuity,

ψ
β (θ(β ))−ψ

β (αc) = lim
β̃→1

ψ
β̃ (αc)−∂β ψ

β̃1(αc)(1−β )− lim
β̃→1

ψ
β̃ (θ(β ))+∂β ψ

β̃2(θ(β ))(1−β )

=
(

∂β ψ
β̃2(θ(β ))−∂β ψ

β̃1(αc)
)
(1−β ).

So we obtain

θ(β )−αc =

(
∂β ψ β̃2(θ(β ))−∂β ψ β̃1(αc)

)
(1−β )

∂θ ψβ (θ̃)
= O(1−β ).

Hence, for every β < β̃ < 1 sufficiently close to 1,

b1(β̃ −β )+O(1−β )≤ ψ
β̃ (αc +ω)−ψ

β (θ)≤ b2(β̃ −β )+O(1−β ).

Taking limits as β̃ → 1, we obtain, for some a1 ≤ a2,

a1(1−β )≤ 1−ψ
β (θ)≤ a2(1−β ).

Recalling that δαc(β ) = 1−ψβ (θ(β )), and 0 < δαc(β ) for β < 1, we may choose 0 ≤ a1 =

inf
β<1

δαc(β )
1−β

, to obtain

a1(1−β )≤ δαc(β )≤ a2(1−β ),

asymptotically as β → 1, for 0≤ a1 ≤ a2. �

Remark. An easier approach would be to directly compute the integral
1∫

β

∂β ψ
K(θ(K))dK = 1−ψ

β (θ(β )).

However, that would require ∂β ψK(θ(K)) to be absolutely continuous, requiring in particular the
continuity of ∂β ψK(θ) with respect to θ , which is beyond the results in the present paper (we
haven’t proved mixed continuity of the derivatives!).

We now restate the main theorem, which follows from corollary 5.4 and propositions 5.5, 5.9
and 5.13,

Main Theorem. Assume that ω satisfies the Diophantine condition (DC)κ,τ for some κ > 0 and
τ ≥ 1. Then for all sufficiently large λ > 0, there is a parameter value α = αc such that the
following holds for the map Φα,β :

i) When β = 1, there is a strange attractor, the graph of a nowhere continuous measurable
function ψ : T→ [0,1], which attracts points (θ ,x), for a.e. θ ∈ T, and every x ∈ (0,1).

ii) When 0≤ β < 1, there is a curve, the graph of a C1 function ψ : T→ [0,1], which attracts
every point (θ ,x) ∈ T× (0,1).
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iii) The (minimum) distance δαc(β ) between the attractor and the repelling set, considered as a
function of β , is asymptotically bounded by linear functions as β → 1, that is

a1(1−β )≤ δαc(β )≤ a2(1−β ),

for some constant 0≤ a1 ≤ a2 as β → 1.
iv) The system (and hence the attractor) is nonchaotic for 0 ≤ β ≤ 1, since γx(θ0,x0) <

1
2 log(3/5)< 0 for (almost, when β = 1) every θ ∈ T and for every x ∈ (0,1).
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LIST OF NOTATION

α The alignment parameter of the peaks in the forcing map c(θ), page 10
αc The critical value α = αc in [2] for which lim

n→∞
π2 ◦ΦMn(αc−Mnω, 1

3) =
1
2 , page 25

δα(β ) The minimum distance between the attractor and the repelling set T×{0,1}, for a fixed
α , as a function of β , page 31

� x� y means that x is much larger than y, in the sense that x ≥Cy for every constant C
that is at least as large as we will need in any of our inequalities involving both quantities,
page 19

β The scaling parameter of the peaks in the forcing map c(θ), page 10
λ Controls how narrow the peaks are, and is assumed to be very large, page 10
T The circle R\Z, page 2
A0 A0 = [ω−λ−2/5/2,ω−2λ−2/3], page 11
Φα,β (θ ,x) Φα,β : T× [0,1]→ T× [0,1] : (θ ,x) 7→ (θ +ω,cα,β (θ) · p(x)), page 10
π1 Projection onto the first coordinate, page 11
π2 Projection onto the second coordinate, page 11

Θn Θn =
n⋃

i=0

Mi⋃
m=−Mi

(Ii +mω), for n≥ 0,Θ−1 = T\(I0∪ (I0 +ω)), page 17

θn Short-hand notation for the projection onto the first coordinate θn = π1Φn(θ0,x0), or the
n-th iterate of θ0, page 11

Bn Bn = {β : MC(β )≤ 2Kn−7}, page 17
c(θ) c(θ) = cα,β (θ) =

3
2 +β

5
2

(
1

1+λ (cos2π(θ−α/2)−cosπα)2

)
is the forcing map in Φ, page 10

g(θ ,α) g(θ ,α) = cos2π(θ −α/2)− cosπα , page 10

Gn
n⋃

i=0

3Ki⋃
m=0

(Ii +mω), for n≥ 0,G−1 = /0, page 17

I0 I0 = [−λ−1/7,λ−1/7], page 11
Ik Zoomed in interval at step k, page 18
K0 K0 = [λ 1/(28τ)], K0 ≈ N1/4 where N is the minimal return time to I0 in lemma 3.1, page 11
Kk Kk ≈

√
Mk ≈ N1/4

k , where Nk is the minimal return time to Ik, as in lemma 3.1, page 18
M0 M0 = [λ 1/(14τ)], M0 ≈

√
N where N is the minimal return time to I0 in lemma 3.1, page 11

MC(β ) An upper bound on the time it takes for an orbit to re-stabilize after coming close to the
peaks, page 15

Mk Mk ≈
√

Nk, where Nk is the minimal return time to Ik, as in lemma 3.1, page 18
N(θ0; I) N(θ0; I) is the smallest non-negative integer N such that θN = θ0 +Nω ∈ I, page 11
Nk The minimal return time to Ik given by lemma 3.1, page 19
p(x) The quadratic map p(x) = x(1− x), which is symmetric around the maximum 1

4 at x = 1
2 ,

page 10
xn Short-hand notation for the projection onto the second coordinate xn = π2Φn(θ0,x0), or

the n-th iterate of x0, page 11
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