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Abstract

In the field of numerical analysis to solve Ordinary Differential Equations
(ODEs), Runge-Kutta (RK) methods take a sequence of first order approxima-
tions of the ODE and weights them in a linear combination for each time step.
Given existence and uniqueness criteria, the numerical solution can therefore
approximate the theoretical solution to a great deal of accuracy. The point of
interest when constructing these methods is thus to ensure convergence. In or-
der to do this, one compares the Taylor expansions of the "true" solution with
that of the numerical. One matches the two up to and including the order of a
particular derivative, we gain a RK method of that order. The strive for higher
orders makes this matching difficult, and this paper concerns the derivation of
the conditions required to construct a method of a certain order. This is done
by connecting the Taylor expansions with rooted trees. From this, we also get
a partial result on the compact relation:

Theorem. A Runge-Kutta method is of order p if and only if

∑
j bjΦj(ttt) =

1
γ(ttt)

for all trees ttt of order ≤ p.
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Introduction

In the theory of Ordinary Differential Equations (ODE), early emphasis of study
was finding solutions in the form of elementary functions. To do this, methods were
pioneered by the likes of Newton and Leibeniz. However, it was soon to be found
that most ODEs were if not difficult, impossible to solve by the means at hand.
This should come as no surprise, as taking the derivatives of elementary functions
produce elementary functions. However taking integrals of elementary functions do
not guarantee an elementary primitive function. Resultantly it was in the early
19th century that solutions as the focal point of study was abandoned. The work
of Cauchy, who in his strive for making rigorous error estimates in series solutions
and Euler’s polygon method allowed the statements "Does a solution exist?" and
"Is the solution unique?" to be answered. To a mathematician, mere knowledge
of the existence and uniqueness of a solution might provide a great deal of insight,
without knowing the actual solution. However, due to the immense importance of
ODEs in the applied sphere of mathematics, this would be unacceptable to any
physicist, chemist or yet even Wall Street analysts - they need their solutions! Given
the existence and uniqueness criteria and this urge for finding a solution, numerical
methods have a been a solid bridge between the two.

In this paper we examine the popular Runge-Kutta (RK) schemes to provide a nu-
merical solution. These have proved their effectiveness for little over over a hundred
years and are still a source of mathematical exploration. The structure of the paper
hints at the historical progress in the development of the Runge-Kutta method. We
begin with a treatment of ODEs, with an emphasis on transformations into systems.
We then treat existence theory in brief, acquainting ourselves with the general condi-
tions and proof of the Picard and Lindelöf theorem. The first numerical method we
study in detail is the Euler method, examining its derivation and convergence. The
Runge-Kutta method is then introduced. By a careful analysis of its derivation and
connection to Taylor series we define the order conditions - the set of equations that
the coefficients of the RK method have to satisfy in order to guarantee convergence
to the "true" solution. We thereby proceed to lend the rest of the paper to the task
of proving the order conditions using a beautiful connection between series solutions
and trees.

As most mathematical exploration is based on accumulated knowledge and commu-
nal effort, the results and proofs of the first sections involve many well known results
regarding ODEs, one step methods and tensors. The proofs presented are written
from my own knowledge and synthesis of ideas, but are by no means original or
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contrasting to traditional treatments. The section on the derivation follows mainly
from Harier’s [7] treatment of the topic, which is not completely self contained. Re-
sultantly, the addition of Lemma 4 (due to Butcher [2]) has allowed the independent
proof of theorem 7, which is my own.

We assume the reader knows some basic notions of topology (including definitions
of open sets, metric spaces, norms etc.) and some elementary notions of multilinear
maps and tensors (we provide a brief summary in section 6). Topics from analysis
such as convergence and the Weierstrass M-test are also assumed. The emphasis on
theoretical results of convergence has diminished the important treatments of im-
plementation and stability analysis. For the novice reader, some elementary notions
have been presented in the appendix to showcase the strengths and weaknesses of
the methods when implemented.
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1 Ordinary Differential Equations

In general terms, a differential equation is an equation relating some function y(t) to
one or more of its derivatives. These are related by binary and unitary operations.
They depend on one or more independent variables, coefficients from different fields
such as that of the real or complex numbers, raised to a power and the list goes on.
A familiar example is a function which is equal to its derivative:

y(t) =
dy(t)

dt
. (1)

Notation. The convention in this paper will be to write the n’th derivative of y(t)
with respect to t as y(n). Furthermore when y(t) ∈ R and y′(t) = f(t, y(t)) we will
often omit t and write y′ = f(t, y).

For what concerns this thesis we are primarily going to work over the real numbers,
R, and we move to the following definition of an ODE.

Definition 1. (Ordinary Differential Equation)
Let Ω be a open set in R × Rn and let F be a function F : Ω → Rn. Then, an Or-
dinary Differential Equation (ODE) is the equation F (t, y, y(1), . . . , y(n)) = 0. If we
can write the previous equation as y(n) = F (t, y, y(1), . . . , y(n−1)) this is called explicit
of order n, otherwise it is called implicit of order n.

Example. F (t, y) = y′.
This equation models the velocity of an object in classical kinematics. It is worth
to note that this seemingly simple encapsulation of the rate of change of position y
with respect to time would be the springboard for the understanding of the universe.
Momentum and energy are two pillars which rests on the understanding of this equa-
tion. It is therefore interesting that it turned out to model velocity incompletely after
Einstein’s special theory of relativity.
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Example. y′′ = −( k
m)y or F (t, y, y′, y′′) = y′′ + ( k

m)y.
This equation is often referred to as Hooke’s Law, or the spring law. As it models
particles under the action of springs. The constant ( k

m) is the ratio of the spring con-
stant (stiffness) to the mass of the particle under its action. Its application ranges
from macroscopic objects to the fundamental structures of atomic interactions. Un-
derstanding this equation provides models of heat transfer in solids, to the underpin-
nings of space itself in Quantum Field Theory.

Example. y′′ − 2ty′ + 2py = 0 or F (t, y, y′, y′′) = y′′ − 2ty′ + 2py.
The famous Schrödinger equation of Quantum Mechanics can be written in this form,
which is called the Hermite equation. The solutions of this equation gives rise to the
quantised nature of the Harmonic oscillator (a solution to Hookes Law above). It
gives deep insights into the structure of nature on small scales.

When we speak of solutions to the differential equation we mean the function y(t) :
R → Rn such that if this function is substituted into the given equation, equality
occurs. Of course, we can ask ourselves, is y(t) "the" solution or does it solve the
equation only up to an arbitrary function of t? If it does, is it unique? In order to be
sure about the answer to these questions one must usually introduce an initial con-
dition (t0, y0) ∈ Ω together with the ODE. Here, y0 is interpreted as a vector when
we work in higher dimensions. This is known as an Initial Value Problem (IVP) and
its implications will be discussed at a later stage.

Example. Let y′ = 2t + e2t be the ODE with initial condition t = 0 and y(0) = 1
By method of separating variables we write in Leibniz notation

dy

dt
= 2t+ e2t

dy = (2t+ e2t)dt.

Where dy and dt are the differentials of y(t) and t respectively. Taking an integral
we get

y(t) = 1
2(t

2 + e2t) + C

where C is a real valued constant. Using the initial values y(0) = 1, we have 1 = 1
2+C

and so we get C = 1
2 . Therefore,

y(t) = 1
2(t

2 + e2t + 1).
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Example. (Hooke’s Law) We have already in passing emphasised the fundamental
nature of this law and its solution . Let ( k

m) ∈ R and we study

y′′ + ( k
m)y = 0.

If we call k
m = a2 and use the characteristic polynomial we get the equation:

r2 + a2 = 0.

This has the following solutions r = ai and r = −ai.Then y(t) = c1eiat+ c2e−iat with
c1, c2 ∈ R, which is a Simple Harmonic Oscillator1 with natural frequency a.

If a given ODE is of order n > 1 we can transform the equation to a system of first
order equations. For instance, consider a second order equation of the form:

y′′ = f(t, y, y′) (2)

together with the initial conditions y(t0) = y0 and y′(t0) = y′0.
We can indeed transform this into a first order linear system through a series of
substitutions. If we set y = y1 and y2 = y′ then y′2 = y′′. Equation (4) therefore
becomes:

y′2 = f(t, y1, y2).

This defines a linear system as the following lemma explicates.
Lemma 1. Any explicit ODE of order n can be transformed to a first order system
of differential equations.

Proof. Suppose that an n-th order ODE is solved for the n-th derivative: we write
this in the form y(n) = F (t, y, y(1), . . . , y(n−1)). Then we convert it into a system by
this proposed scheme of variables yi = y(i−1).

For 1 ≤ i ≤ n,






y1 = y

y2 = y(1)

...
yn = y(n−1).

This gives the system






y′1 = y2
y′2 = y3
...
y′n = F (t, y1, y2, . . . , yn).

If we think of y′ = F (t, y) as a first order system with i’th component Fi(t, y) = yi+1

for i < n and Fn(t, y) = Fn(t, y1, y2, . . . , yn).
1For a treatment of a wide range of applications of the simple harmonic oscillator we refer to[6].
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To be more explicit, let Ω be an open set in R × Rn and let F be a nice2 function
F : Ω → Rn. If y′(t) = F (t, y(t)) This means that

y(t) =




y1(t)

...
yn(t)



 and y′(t) =




y′1(t)

...
y′n(t)



,

and so one has:



y′1(t)

...
y′n(t)



 =




f1(t, y(t), . . . , yn(t))

...
fn(t, y(t), . . . , yn(t))



 . (3)

Example. We consider the ODE y(3)+2y(2)− y(1)− 2y = 0, where F : R×R4 → R.
We convert this into an ODE system by our scheme of changing variables.

y′1 = y(1) = y2
y′2 = y(2) = y3

y′3 = y(3) = 2y + y(1) − 2y(2) = 2y1 + y2 − 2y3.

So y′ = Ay with the matrix



0 1 0
0 0 1
2 1 −2



 .

When we consider the domain Ω ⊂ R × Rn, we consider a variable t and n other
variables that depend on t i.e. y1(t), ..., yn(t). We can get rid of this separation and
consider all variables with equal importance. In this way F will not depend on the
variable t.

Definition 2. A first order system of ODEs is called autonomous if each component
of the system doesn’t explicitly depend on the variable t:

y′(t) = f(y1(t), . . . , yn(t)).

2We consider "nice" a function F such that y′(t) = F (t, y(t)) has a solution. We will specify
what we need in section 2. But for this example one can consider that F has sufficiently many
derivatives to write our system.
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Lemma 2. Any first order ODE system can be written as an autonomous system.

Proof. We consider an n dimensional, non-autonomous ODE system of the following
form:




y′1(t)

...
y′n(t)



 =




f1(t, y(t), . . . , yn(t))

...
fn(t, y(t), . . . , yn(t))



 .

We augment the dimension to n + 1 by introducing the variable y0(t) = t. This
allows us to consider the equivalent system, which has no explicit dependence on t:





y′0(t)
y′1(t)

...
yn(t)′




=





1
f1(y0(t), y(t), . . . , yn(t))

...
fn(y0(t), y(t), . . . , yn(t))




.

We have now learnt that it is possible to regard an arbitrary ODE of any order as a
system of first order autonomous ODEs. This generalisation allows us to construct
general solution methods for first order equations that work for a vast number of
problems of even higher order. Before any such methods are constructed, we must
be familiar with the existence and uniqueness of the solutions of an ODE.
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2 Existence and Uniqueness Theorems

As we said in passing, a solution (if it exists) together with initial conditions of
an ODE, ensures that the solution is unique. If there are no initial conditions we
must regard the solution as a family of solutions, up to arbitrary constants. In this
section we determine the existence and uniqueness theorems for ODE’s defined on
F : R × R → R. When we continue our study of systems in later sections, these
theorems and their assumptions have to be formulated to apply for higher dimen-
sions. This poses no issue as the ideas presented here naturally generalise to higher
dimensions. For instance, by introducing norms in place of absolute values3.

Definition 3. Lipschitz condition Let (X, dx) and (Y, dy) be two metric spaces. A
function f : X → Y is called Lipschitz continuous if there exists a positive real
constant, such that for all x1, x2 ∈ X, dy(f(x1), f(x2)) ≤ Kdx(x1, x2). This is called
a Lipschitz condition and K is called the Lipschitz constant.

What is deduced from the Lipschitz condition is that if we map two points in X to Y
the difference in the values does not get arbitrarily large. In the subsequent theorems
we deal with the normal euclidean metric which we denote by absolute values.

Theorem 1. (Picard and Lindelöf ’s Existence and Uniqueness theorem)
Let f(x, y) be a bounded continuous function of x, y in a region R ⊂ R2 and let
(x0, y0) be an interior point of R. Furthermore, assume that for all pairs of points
(x, s) and (x, t) in R, f(x, y) satisfies a Lipschitz condition:

|f(x, s)− f(x, t)| ≤ K|s− t|.

Then there exists an open interval I = (x0 − h, x0 + h) with h a positive number on
which there is a unique continuous function y(x) which solves the IVP

dy
dx = f(x, y) and y(x0) = y0.

The rest of this section is devoted to the proof of this theorem, via a series of
propositions. We begin with introducing the Picard iterates.

3For a treatment of Existence and Uniqueness for systems we refer to [7].
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Since we are dealing with an IVP of the form:
dy
dx = f(x, y) and y(x0) = y0.

We write a possible solution y(x) from the fundamental theorem of calculus:

y(x) = y0 +

∫ x

x0

f(s, y(s)) ds. (4)

Conversely, if y(x) is a continuous function which satisfies this integral equation,
then y(x) is a solution of the IVP. As a result, y(x) is a solution of the IVP if and
only if it is a continuous solution of (4). Since the function y(x) occurs on the LHS
and inside the integrand, we can think of the right hand side of equation (4) as an
operator on functions. That is, it takes in a function y(x) as an input, and produces
another function as an output. If we call this operator Π, then we can write this idea
down as follows:

Π[y(x)] = y0 +

∫ x

x0

f(s, y(s)) ds.

The operator takes y(x), forms the new function f(s, y(s)) in the "dummy" variable
s and returns the integral from x0 to x, producing a new function of x, to which
it adds the constant y0. It becomes clear then, that the input functions y(x) which
solve the IVP are left unchanged by the operator:

Π[y(x)] = y(x).

This motivates our definition of the Picard iterates.

Definition 4. Given the aforementioned IVP, we define a sequence of functions
recursively with n a positive integer, according to the Picard Iteration scheme:

y0(x) = y0

yn+1(x) = y0 +

∫ x

x0

f(s, yn(s)) ds.

Alternatively, in the operator notation: yn+1(x) = Π[yn(x)].
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Example. Consider the first ODE introduced in this paper. dy
dt = y with the initial

condition y(0) = 1. Then the sequence of Picard iterates can be computed to,

y0(x) = 1

y1(x) = 1 +

∫ x

0

ds = 1 + x

y2(x) = 1 +

∫ x

0

1 + s ds = 1 + x+
x2

2
...

yn(x) = 1 + x+
x2

2
+ · · ·+ xn

n!
.

Since
∑∞

0
xn

n! = ex, the sequence of Picard iterates converge to a solution y(x) = ex

when limn→∞ yn(x).

Turning to the proof of the Picard and Lindelöf theorem, we construct a suitable
interval, on which the Picard iterates converge to the unique solution of the IVP,
given the conditions of the theorem. Since we assume that the function f(x, y) is
bounded in the region R, there exists a positive real number M for which we can
write:

|f(x, y)| < M .

It was also assumed that (x0, y0) was an interior point of R, as such we construct a
rectangle Ω with the dimensions |x − x0| ≤ h and |y − y0| ≤ Mh for some positive
number h, such that Ω lies within R. It is worth to note that the interval I is one
side of this rectangle without the endpoints.

Proposition 1. For every x in [x0−h, x0+h] with h real and positive, the function
yn(x) remains in Ω for all n.

Proof. Knowing that (x, y0) ∈ Ω, for all x in [x0 − h, x0 + h], together with the first
Picard iterate y0(x) = y0 being a constant function - a straight line parallel with the
x-axis, we use this as our basis of induction. Then, assuming that (x, yn−1(x)) ∈ Ω,
we conclude that:

yn(x) = y0 +

∫ x

x0

f(s, yn−1(s)) ds

yn(x)− y0 =

∫ x

x0

f(s, yn−1(s)) ds.
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If we impose the condition of the function f(x, y) being bounded, the inequality;

|yn(x)− y0| = |
∫ x

x0
f(s, yn−1(s)) ds| < M |x− x0| ≤ Mh,

ensures that (x, yn) ∈ Ω. The theorem holds for every n ∈ N by induction.

Lemma 3. The difference between two successive Picard iterations in the rectangle
satisfy:

|yn(x)− yn−1(x)| < MKn−1

n! |x− x0|n.

Proof. From the previous proposition, the base case of our induction will be:

|y1(x)− y0| = |
∫ x

x0

f(s, y0(s)) ds| < M |x− x0|.

Assume the lemma holds up to n− 1, then we write:

yn(x)− yn−1(x) =

∫ x

x0

f(s, yn−1(s))− f(s, yn−2(s)) ds.

We know from the Lipschitz condition that:

|
∫ x

x0

f(s, yn−1(s))− f(s, yn−2(s)) ds| ≤ K

∫ x

x0

|yn−1(s)− yn−2(s)| ds,

but by the inductive hypothesis the RHS will satisfy the lemma and so:

|yn(x) − yn−1(x)| ≤ MKn−1

(n−1)!

∫ x

x0
|s− x0|n−1 ds = MKn−1

n! |x− x0|n.

Proposition 2. For each x in [x0−h, x0+h] the sequence yn(x) converges uniformly.

Proof. We have a sequence of functions each of which remain in the rectangle, further-
more the difference between each iteration satisfies lemma (3). We use the Weirstrass
M-test to conclude uniform convergence on the interval.

We have therefore proved, that on the interval [x0−h, x0+h], the sequence of Picard
iterates converge to a continuous function y(x) on this interval. In addition, this
function lies in Ω.
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Proposition 3. The limit of the sequence satisfies the initial value problem.

Proof. We have proved uniform convergence of yn(x) on our interval of interest,
furthermore the Lipschitz condition is satisfied in Ω:

|f(x, yn(x))− f(x, y(x))| ≤ K|yn(x)− y(x)|

Because of uniform convergence of the RHS, there exists an index m such that for
all x in [x0 − h, x0 + h],

|yn(x)− y(x)| < ε

K
when n > m. Therefore, when n > m:

|f(x, yn(x))− f(x, y(x))| < ε.

Resultantly f(x, yn(x)) converges uniformly to the continuous function f(x, y(x))
and we can conclude that:

y(x) = lim
n→∞

yn(x) = y0 + lim
n→∞

∫ x

x0

f(s, yn−1(s)) ds

= y0 +

∫ x

x0

lim
n→∞

f(s, yn−1(s)) ds

= y0 +

∫ x

x0

f(s, y(s)) ds.

Since f(x, y(x) is a continuous function on [x0 − h, x0 + h], this together with the
above expression implies that dy

dx = f(x, y) on the open interval I in the theorem
conditions. It also follows that:

y(x0) = y0 +

∫ x0

x0

f(s, y(s)) ds = y0.

Which is exactly the nature of the solution to the IVP.

So far, this constitutes a proof of the existence of a solution to the IVP. This solution
is also unique, as the last proposition guarantees.
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Proposition 4. The function y(x) is the unique function satisfying the IVP.

Proof. Assume that there exists another particular solution of the IVP, g(x) such
that:

dg

dx
= f(x, g(x))

g(x0) = y0

g(x) = y0 +

∫ x

x0

f(s, g(s)) ds.

Then we can express the difference between the two particular solutions as:

|y(x)− g(x)| ≤
∫ x

x0

|y(s)− g(s)| ds.

Since the two functions stem from two respective rectangles Ω and Ω′ both which
are contained within the region R. Since one side of the two respective rectangles is
the compact set of points [x0 − h, x0 + h], it is ensured that |y(x) − g(x)| attains a
maximum µ on this interval. Resultantly:

|y(x)− g(x)| ≤
∫ x

x0

f(s, y(s))− f(s, g(s)) ds

|y(x)− g(x)| ≤ K

∫ x

x0

|y(s)− g(s))| ds

|y(x)− g(x)| ≤ Kµ|x− x0|.

If we continue integrating this expression, we can better the approximations of the
upper bound of the difference in the two functions over the interval. Each new
approximation yields a sequence:

Kµ|x− x0|, K
2

2! µ|x− x0|2, K
3

3! µ|x− x0|3, . . . , K
n

n! µ|x− x0|n, . . .

which tends to zero. It follows that

y(x)− g(x) = 0, y(x) = g(x).
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With this understanding of the conditions of existence and uniqueness, one can speak
of solutions to a ODE in a confident manner. As this does not necessarily mean
that it is possible find the solution by means of elementary functions, we proceed
to introduce the concept of a numerical method. In the next section we propose
some general definitions of methods and clarify what it means for a method to be
convergent, as we wish to assure that the numerical method "approximates" the true
solution to desired accuracy. Since the existence of a unique solution can only be
guaranteed on the interval I, all numerical methods must therefore be used within
such an interval, as its the only region in which we posses a "hunting licence".
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3 Taylor series and numerical methods.

One particular result which stems from the fruits of calculus is the Taylor series. The
implications of the work of Taylor (although he was not alone) can arguably be com-
pared to that of the revolution brought about by Newton, albeit not as immediate.
In a most general sense, given a complicated problem satisfying a set of assumptions,
the Taylor series allows us to consider instead a sequence of "easier" problems. Re-
sultantly topics in analysis, perturbation theory and particularly numerical analysis
makes frequent use of Taylor series.

In perturbation theory one considers for example a "difficult" problem such as finding
the real roots of the function f(x) = x5+x−1. Where the difficulty lies in the famous
theorem of Abel. By introducing a perturbation ε to the problem and compute a
perturbed solution x(ε) as a formal power series (by assumption), we can often reduce
the difficult problem to matching the unperturbed solution as a power-series to the
perturbed solution.

f(x) = x5 + εx− 1 (5)

x(ε) =
∞∑

n=0

anε
n. (6)

When ε = 0 the only real root is 1, and the first coefficient is therefore a0 = 1. The
problem we seek the solution for corresponds to ε = 1, if this epsilon is within some
radius of convergence of this series in a nontechnical sense, then we can approximate
the solution to our desired accuracy by truncating the series. In many of these
problems, the power series in question is often a Taylor series.
Viewing the problem of solving equation (5) from a numerical point of view we can
consider, for example the Newton-Raphson method for finding roots of equations. By
taking a single variable function f(x) : R → R with an educated guess of a root x0,
we can compute a sequence of approximations of the root {x0, x1, . . . , xn} recursively
with n a positive integer.

x0 = Guess (7)

xn+1 = xn −
f(xn)

f ′(xn)
f ′(xn) '= 0. (8)
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It is in our interest for this sequence of numbers to converge to the root of the
equation. However the main point of address is the question of accuracy, i.e. under
what assumptions can we quantify the difference between the true and numerical
solution? and furthermore, will this allow the sequence of approximated roots to
converge? In answer of this question,we begin with our guess of the solution x0 and
denote by x" the unknown true solution. Then the perturbation h = x"−x0 together
with the assumption of the function being sufficiently smooth (C2 to be precise) and
f ′(x0) '= 0 allows us to take the Taylor expansion of the first order, to derive:

f(x") = 0

f(x") = f(x0 + h)

f(x0 + h) ≈ f(x0) + hf ′(x0)

h ≈ − f(x0)

f ′(x0)

x" ≈ x0 −
f(x0)

f ′(x0)
.

This scheme is a special case of a general class of root-finding methods called House-
holder methods. In order to ensure that these methods work, one considers the true
root x" and computes a Taylor expansion in a neighbourhood of this root for some
small deviation, which is our guess x0. This allows us to compute a new, more
accurate guess for the solution depending on the order of terms of the expansion.
The subtle point here, is that by assuming f(x) ∈ C2 we can use the properties of
Taylor expansions to make a quantified statement about the difference between the
true and numerical solution4. The property of interest comes from Taylor’s theorem
itself.

4A theorem of Kantorovich[12] provides a bound on the difference between the root f(x!) = 0
and approximated root xn after n iterations, leading to a sequence which converges to zero in the
limit as n gets large.
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Theorem 2. Suppose f(x) : R → R is a real valued function on [a, b] which is n-
times continuously differentiable such that f (n)(x) exists for every x in (a, b). If α
and β are distinct points in the interval we define the Taylor polynomial as:

P (x) =
∑n−1

k=0
f (k)(α)

k! (x− α)k.

Then there exists a point χ between α and β such that

f(β) = P (β) + f (n)(χ)
n! (β − α)n.

The theorem tells us that a sufficiently smooth function can be approximated by a
polynomial of degree n−1 and that we can estimate the error if we know the bounds
of |f (n)(x)|. In later sections Taylor polynomials (or expansions) of a single variable
function are computed with respect to vector valued functions (as will be clear from
context). As for computing Taylor expansions of vector valued functions the formula
becomes almost indistinguishable from the single variable case, provided we use the
derivative defined in section 6. We refer to [2] for details. Before we get too exited
and blindly apply the theorem, we must consider some shortcomings.
Example. Consider the function:

f(x)=

{
e−

1
x2 for x '= 0

0 for x=0

It is a C∞ function and all the derivatives evaluated at x = 0 are zero, and thus the
Taylor series converges to a function which is identically zero, but only represents
the function f(x) at a single point. The repercussion is that we must take great care
of which neighbourhoods we choose to take our expansion in.

3.1 One-step methods

Having acquainted ourselves with the Taylor series and importantly the error term,
we return to the topic of solving ODEs. In general, a numerical method to solve
an IVP is an approximation of the exact flow map of the differential equation, at
chosen points of evaluation. As such, there is always an element of error in the
numerically generated solution. For the method is to be useful, we must be able to
control this error, at least on short enough time steps (as we explain in this section).
The reason as to why we introduced the Taylor series is that it gives us this control
for Runge-Kutta methods. To make this precise we need to introduce the concepts of
one step methods, local and global errors, convergence and order. For this discussion
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we consider the IVP with:

f : R× R → R
y′ = f(t, y) y(t0) = y0.

Noting that as we proceed to solve systems, the ideas presented here should apply
component-wise, as we will proceed to do in later sections.

Definition 5. In order to compute a numerical solution to the IVP, we consider a
subdivision of the time interval [t0, T ] we wish to solve over. By taking T−t0

n = h we
choose the points of evaluation to be ti = ti−1 + h for i = 1 . . . n.
Notation. When we write the numerical solution at the point tn we will always use
lower subscripts, yn. For the analytical solution we will use y(tn).

Definition 6. A one-step method is a numerical method of the IVP, which succes-
sively computes a new point of approximation from a previous point of approximation.

yn+1 = yn + hφ(tn, yn, h).

Where φ is called the increment, or step function.

In the next section we will explicitly state the form of this function, but in the general
case we assume that this function is continuous in all its arguments and is sufficiently
smooth, allowing us to compute its Taylor approximation.

Definition 7. Local discretisation error τi at the point ti is defined as the difference
between the analytical and numerical solution at this point. Assuming that both were
exact prior to the beginning of the step.

y(ti)− yi = τi.
Remark. In the litterature, the local discretisation error is sometimes referred to as
truncation error. An equivalent formulation of the local error is sometimes expressed
by taking:

τi+1 = y(ti + h)− yi − hφ(ti, y(ti), h)

τi+1

h
=

y(ti + h)− yi
h

− φ(ti, y(ti), h).

Since its in our interest for the local error to vanish as we make h → 0, we see
that:

lim
h→0

τi+1

h
= y′(ti)− φ(ti, y(ti), 0). (9)
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Therefore the local error vanishes if and only if:

y′(ti) = φ(ti, y(ti), 0)

f(ti, y(ti)) = φ(ti, y(ti), 0).

This leads to the following definition:

Definition 8. The one step numerical method of the IVP is said to be consistent
with the differential equation if the local error can be made arbitrarily small. That
is, for any ε > 0 there exists a positive h(ε) such that |τi| < ε for 0 < h < h(ε), and
any two points (ti, y(ti)), (ti+1, y(ti+1)).

By virtue of Taylor’s theorem, if the true solution y(t) is sufficiently smooth, we
express the solution as a polynomial with the error term being some constant times
a power of h which is the degree. We denote this term by O(hp).5

y(ti + h) = y(ti) + y′(ti)h+ · · ·+O(hp+1)

yi+1 = y(ti) + φ(ti, y(ti), h).

If we can take a Taylor expansion of the step function and match these to the terms
of y(ti + h) up to the term with hp, the local error reduces to:

y(ti + h)− yi+1 = O(hp+1).

Definition 9. The numerical method is said to have order of accuracy p, if

|τi| ≤ Khp+1 p ≥ 1.

A mere knowledge of the local error is not sufficient for our purposes, as it does not
take into account that with each step of computation, we have already made an error
in the approximation of the points we use for the next step. As a result the error is
carried along the computation, leading to an error at the final step which is different
from the local error.

Definition 10. The global error en is the difference between the true and numerical
solution after n points of evaluation.

y(tn)− yn = en.
5For details on big O notation we refer to [11] page 81.
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For the concept of convergence of a numerical method, there is no one accepted
definition, and different authors use different ways to ensure convergence. It is how-
ever necessary for the global error to disappear as we take smaller step sizes. It
turns out that under certain assumptions we can put an upper bound on the global
error of a one step method in terms of the local error, as the following theorem shows.

Theorem 3. Given the one step method with a step function φ(t, y, h) which is
continuous with respect to its arguments, and satisfies a Lipschitz condition with
respect to y such that the Lipschitz constant is L. Then the global error en after n
computations satisfies:

|en| ≤ eL(tn−t0)|e0|+
eL(tn−t0) − 1

hL
τ.

Where τ = maxi=0...n |τi|.

Proof. Taking the definition of the one step method,

yn+1 = yn + hφ(tn, yn, h)

and subtracting this from the local error, then by algebraic manipulation we get:

en+1 = τn+1 + en + h(φ(tn, y(tn), h)− φ(tn, yn, h))

|en+1| ≤ |τn+1|+ |en|+ h|φ(tn, y(tn), h)− φ(tn, yn, h)|.

By the Lipschitz condition this reduces to:

|en+1| ≤ |τn+1|+ |en|+ hL|en|
|en+1| ≤ |τn+1|+ (1 + hL)|en|.

We can then replace the local error by τ = maxi=0...n |τi|, and recursively compute,

|e1| ≤ (1 + hL)|e0|+ τ
...

|en| ≤ (1 + hL)n|e0|+
[(1 + hL)n − 1)]

hL
τ.

The last inequality relies on the fact that zn−1
z−1 = zn−1 + zn−2 + · · · + z + 1. From

definition 5 and the fact that 1 + hL ≤ ehL, it follows that:

|en| ≤ eL(T−t0)|e0|+
[eL(T−t0) − 1)]

hL
τ.
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We have implicitly assumed that the analytical solution exists over the interval in
question. If we wish to make this precise we can assume the conditions of the Pi-
card and Lindelöf theorem, that is we are working within some rectangle with Ω
as before.The essence of Theorem 3 suggests that if the local error approaches zero
as h → 0 then the global error "converges to zero" assuming that e0 → 0 when h
approaches zero. Indeed, if the method is consistent, then we can be sure this is the
case, as the following theorem shows.

Theorem 4. If the analytical and numerical solutions of the IVP lie within some
Ω as with the Picard and Lindelöf existence and uniqueness theorem. Together with
the step function satisfying the Lipschitz and consistency conditions,and uniformly
continuous. Then if the approximations yn that are generated for tn = t0 + nh are
made with successively smaller values of h than h0, the numerical solution converges
to the analytical solution of the IVP in the sense that:

|y(tn)− yn| → 0 as h → 0 and tn → t ∈ [t0, T ].

Proof. Taking h = T−t0
N with the positive integer N sufficiently large as to ensure

that h ≤ h0. By virtue of the initial conditions e0 = 0, the theorem of the global
error for n = 1, . . . , N reduces to:

|en| ≤
eL(tn−t0) − 1

hL
τ.

Where τ = maxi=0,...,n−1 |τi|. Since we are assuming consistency, we rewrite the local
error for n = 0, 1, . . . N − 1 as:

τn+1

h
= [

y(tn + h)− y(tn)

h
− f(tn, y(tn))] + [φ(tn, y(tn), 0)− φ(tn, y(tn), h)].

Applying the mean value theorem, there exists an α ∈ [tn+1, tn] such that the left
bracket reduces to y′(α) − y′(tn). The consistency condition implies that y′(t) is
uniformly continuous on [t0, T ] since φ(t, y(t), 0) is. Therefore, for every ε > 0 there
exists a h1(ε) making:

|y′(α)− y′(tn)| ≤ ε
2 for h < h1(ε).

Similarly for φ, which is uniformly continuous there exists a h2(ε) such that:

|φ(ti, y(ti), 0)− φ(ti, y(ti), h)| ≤ ε
2 for h < h2(ε).
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Proceeding as in any classic epsilon-delta type proof we let h(ε) = min(h1(ε), h2(ε))
and conclude that,

|τn|
h

≤ ε

for h < h(ε). Therefore |y(tn)− yn| → 0 as h → 0.
Writing:

|y(t)− yn| ≤ |y(t)− y(tn)|+ |y(tn)− yn|,

it becomes clear that since tn → t ∈ [t0, T ] when h → 0, by uniform continuity of y
the numerical solution converges to the solution of the IVP.

We have shown that a one step method of solution to the IVP which satisfies consis-
tency and Lipschitz conditions and uniform continuity will become arbitrarily close
to the solution of the IVP as we reduce the step size h. For the remainder of this
essay we assume that the ODEs we examine satisfy the conditions of existence and
uniqueness. That is, we consider bounded continuously differentiable functions which
satisfy a Lipschitz condition. Furthermore we assume that both the differential equa-
tion and its solution are sufficiently smooth to take the Taylor series of desired order.
Before we turn to the general Runge-Kutta methods, we introduce the Euler method
as a special case of these as to illustrate the ideas of this section.
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4 The Euler Method

The numerical method to solve the IVP devised by Euler, enjoys great historical
importance as an early method of solving ODEs6. It is commonly a "first choice"
method when approaching a new problem, as it is relatively simple to compute. If
the method fails its task, then one might proceed to compute the solution with a
more elaborate method. But for many purposes, the Euler method provides a great
deal of insight.
Given a first order ODE or a system of first order ODEs with a given initial condition
t = t0 we know the value of the function at this point, i.e. the slope. Given any
t ≥ t0 we can approximate the function at t by the method of linear interpolation.
We estimate y′(t) by f(t, y(t)) ≈ f(t0, y(t0)) for t ∈ [t0, t0 + h] where h is a posi-
tive value. If we integrate the differential equation from t0 to t0 + h and use the
fundamental theorem of calculus, one gets

y(t0 + h)− y(t0) =
∫ t0+h

t0
f(t, y(t))dt.

If we approximate the integral with a rectangle (that is, assume f(t, y(t)) ≈ f(t0, y(t0)))
∫ t0+h

t0
f(t, y(t))dt ≈ hf(t0, y(t0)).

Combining the two expressions and using the old approximations one gets a scheme:





y1 = y0 + hf(t0, y0)
...
yn = yn−1 + hf(tn−1, yn−1).

This is the Euler method, and since yn = yn−1+hf(tn−1, yn−1), this should remind us
of the discussion of the step function in the previous section. By design, this function
is the ODE itself, and since we assume that this function is Lipschitz as to ensure
existence and uniqueness, the step function satisfies this as well. We will use these
properties to prove convergence in due course. For now we take this for granted and
acquaint ourselves with the computational aspect of the method. We begin with a
definition.

Definition 11. The Euler polygon is a linear operator Pn(y0, y1, . . . , yn) that from
the defined recursion yields the piecewise linear interpolating function ỹ, which is
linear in each interval [tn, tn+1] and ỹ(tn) = yn.

6The method was originally introduced in Euler’s work of 1768 [5].
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Figure 1: The Euler polygon and analytical solution for the logistic equation on
t = [0, 10], settling down to the value y = 1.

Example. The Logistic Equation

y′ = y(1− y).

This ODE is a special case of the Logistic Equation It is non-linear, with a wide
range of uses in applied mathematics, especially predator-prey models in biology. If
the reader is familiar with the concept of carrying capacity of an ecological system,
the shape of the solution is the so called sigmoid curve. Furthermore, in the discrete
case it can be viewed as a recurrence relation that whilst simple in appearance, gives
rise to chaotic behaviour.

With t = 0 and y(0) = 1
10 , we pick the step size h = 1.

y1 = y0 + f(t0, y0)
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y1 =
1
10 + f(0, 1

10) =
1
10 +

9
100 = 19

100 .

In Figure 1, the Euler polygon ỹ is plotted together with the exact solution (which
will not be discussed here). The Matlab code was generated from the function in the
appendix.
Example. Consider the system defined on Ω = R× R2

y′1 =
3

2
− 1

10
y1 +

3

40
y2 (10)

y′2 = 3 +
1

10
y1 −

1

5
y2 (11)

with the initial conditions y1(0) = 25, y2(0) = 15. Let Y ′ and Y (0) denote:

Y ′ =

[
y′1
y′2

]
Y (0) =

[
25
15

]

Y ′ =

[
3
2 −

1
10y1 +

3
40y2

3 + 1
10y1 −

1
5y2

]
.

We set h = 0.1 and apply the Euler method to get;

Y1 =

[
25
15

]
+ (0.1)

[
3
2 −

1
10(25) + ( 3

40)(15)
3 + 1

10(25)−
1
5(15)

]
=

[
25.0125
15.25

]
(12)

Y2 =

[
25.0125
15.25

]
+ (0.1)

[
3
2 −

1
10(25.0125) +

3
40(15.25)

3 + 1
10(25.0125)−

1
5(15.25)

]
=

[
25.03
15.50

]
. (13)

Having come to grasp the computational procedure of the Euler method, we turn
to convergence, and proceed as outlined in the previous section. By theorem 4, it
is sufficient for us to show consistency, since the step function by construction is
Lipschitz and thus uniformly continuous.

Proposition 5. The Euler method converges to the true solution if f is Lipschitz
and C2.

For the proof of this proposition, we consider a subdivision of the interval of interest
into integral portions T−t0

n = h as to yield the set of points of evaluation of the
method

{t0, t1 . . . tn} ⊂ R.
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Where ti = ti−1 + h. Since the ODE is C2 we take the Taylor expansion of the
analytical solution:

y(ti + h) = y(ti) + hf(ti, y(ti)) +
f ′(α)

2
h2, (14)

for some α ∈ [ti, ti+1]. Recalling the definition of the local error,

τi+1 = y(ti+1)− yi+1

y(ti + h)− yi+1 =
f ′(α)

2
h2.

In passing, we should mention that this is the reason as to why some refer to the
local error as truncation error. We could finish here, and refer to the theorems of
the last section, but for clarity we continue by bounding the global error in terms of
the local error.

|y(ti+1)− yi+1| = |y(ti)− yi + hf(ti, y(ti))− hf(ti, yi) + τi|
|y(ti+1)− yi+1| ≤ |y(ti)− yi|+ h|f(ti, y(ti))− f(ti, yi)|+ |τi|
|y(ti+1)− yi+1| ≤ |ei|+ hL|ei|+ |τi|

|ei+1| ≤ |ei|(1 + hL) + |τi|.

Picking K = maxt∈[t0,T ] |f ′(t, y(t))| such that |τ | = K
2 h

2 we write recursively:

|en+1| ≤ |en|(1 + hL) + |τ |
≤ |en−1|(1 + hL)2 + (1 + (1 + hL)|τ |
...

≤ |e0|(1 + hL)n+1 +
(1 + hL)n+1 − 1

(1 + hL)− 1)
|τ |.

Since we know that at the initial conditions, the true and numerical solutions coin-
cide, e0 = 0 then we can examine en, noting that hn = T − t0.

|en| ≤ (1 + hL)n − 1

hL
τ

|en| ≤ eLhn − 1

hL
τ

|en| ≤ eL(T−t0) − 1

2L
Kh.
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The global error after n steps of the Euler method is bounded by a real constant
times the step size. From the discussion of the last section, the Euler method is
consistent with order of accuracy 1, and we have provided an explicit bound on the
global error, and so the method is said to converge. As we turn our attention to
general Runge Kutta methods, ensuring convergence in the manner presented here
would prove tedious and unnecessary, instead we prove consistency. This is done
through the order conditions.

"Det var i andra dimensionen så jag
tog Euler metoden . . . tills en röst i
mitt huvud sa: Du ska prova
Runge-Kuttan,"

From the song Runge-Kuttan, lyrics
and music by Mathias Lundgren.
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5 Runge-Kutta Methods

As we saw in the section on the Euler method, the idea was to take the initial value
problem and propagate the solution forward by a sequence of small time steps. With
each step the slope of the numerical solution is computed from the current position,
and as such a one-step method. The numerically computed points of solution will
therefore make an error at the first step, where the next derivative is evaluated
and so the error accumulates as the method proceeds through the sequence of time
steps. Theoretically, we are not too worried about this error, since we did indeed
prove that this method converges to the true solution when the step size h goes to
zero. Practically however, the aim of applying a numerical method to an ODE is to
compute the numerical solution quickly and accurately. If we want an accurate Euler
solution to an ODE we have to compromise between increasing accuracy (smaller h)
and calculating more time-steps.

Before the advent of electronic computers, one can imagine the distraught faces
of the "computers" as they were told "we need better accuracy - halve the step
size". It was C.Runge who tackled this problem in his 1895 paper[13] by introducing
the idea of multiple evaluations of the derivative at each time step. Together with
Heun (1900), new methods were developed which applied the Euler method with
one or two additionally introduced steps. It was Kutta (1901)[8] who provided the
scheme of what we today call a Runge-Kutta method, with its characteristic feature
of evaluating the function a number of times at each step and using a weighted linear
combination of the evaluations to provide increased accuracy and efficiency.

A numerical method is a Runge-Kutta method of its scheme satisfies the definition
set forth by Kutta. There are many such methods and because of the advantages of
some of them, a few are particularly famous. The most famous example is that of
the classical Runge Kutta method or RK4, but also includes the now familiar Euler
method.

Let dy
dt = f(t, y(t)) be our ODE in explicit form, defined on the open set Ω ⊂ R×Rn

with initial conditions y(t0) = y0, where y(t) = (y1(t), y2(t), ...yn(t)) ∈ Rn.

We are interested in a numerical approximation of the continuously differentiable
solution y(t) of the IVP over a given interval for t0 ≤ t ≤ T . We form a partition of
the interval into segments of equal length h which we call step size, T−t0

n = h.
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Definition 12. The family of explicit Runge Kutta (RK) methods of s stages is given
by the scheme:

yn+1 = yn + h
s∑

i=1

biki.

Where ki are the stages of the method

k1 = f(tn, yn)

k2 = f(tn + c2h, yn + ha21k1(tn, yn))

k3 = f(tn + c3h, yn + h(a31k1(tn, yn) + a32k2(tn, yn)))
...

ks = f(tn + csh, yn + h
s−1∑

j=1

asjkj).

The aij, bi, ci are real coefficients specifying the constructed method.

This scheme specifies the family of Runge Kutta methods. If we choose s ∈ N we get
an s-stage Runge Kutta method. Each step of the method consists of a yn added to a
linear combination of the s stages of the computation. This linear combination uses
the coefficients bi, ci and aij together with the step size to provide the new point yn+1

in Rn. As such, we consider the RK methods one step methods, since no additional
knowledge from the current position is required. The step function takes the form
of:

φ(t, y, h) =
s∑

i=1

biki.

For the method to be consistent, we take h to be zero. It becomes immediately clear
that we must impose the condition that

∑s
i bi = 1. It turns out, that in order to

provide a specific Runge-Kutta method the coefficients determine its exact nature.
Not all choices of these provide a method, indeed they obey a set of constraints
stemming from our desire to correspond the method to the Taylor series of the true
solution. To illustrate this point we consider the simplest Runge-Kutta method, the
Euler method.
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We pick a step size h and compute a 1-stage Runge Kutta method for the IVP.

yn+1 = yn + h
1∑

i=1

ciki = yn + hb1k1 (15)

y1 = y0 + hb1f(t0, y(t0)). (16)

By the Taylor expansion of the true solution we get.

y(t0 + h) = y(t0) + hy′(t0) +O(h2) = y0 + hf(t0, y(t0)) +O(h2).

If b1 = 1 the method is identical as that of the Euler method. This should be of
little surprise as we begin at an initial point and use only one computation of the
derivative (slope) at this point with a weight b1. Since there is only one step, we have
a trivial linear combination. We have already proved that this method converges, its
global error is in proportion to h and so we call it a first order RK method, as the
next definition clarifies.

Definition 13. A Runge-Kutta method has order p if:

|y(t0 + h)− y1| ≤ Khp+1 for a positive real constant K

This occurs when the Taylor series for the exact solution of y(t0+h) and y1 coincide
to the term hp. By comparison of the method to the Taylor expansions of the true
solution we specify values for our coefficients and also learn how the local error be-
haves. A RK method has order p if the local truncation error behaves like O(hp+1).
Indeed, we are assuming that both the exact and the numerical solution possesses a
Taylor expansion in our desired neighbourhood in the first place. For the remainder
of this paper, we take this assumption for granted.

Definition 14. The order conditions are the equations that the coefficients of the
RK method have to satisfy to be of order p.

Therefore, proving the order conditions, ensures that the RK method is convergent.
Since this implies that the method is consistent of some order, and by construction,
satisfies the assumptions of the theorems of section 3. This will be done in the sub-
sequent sections, and herby proceed to familiarise the reader with some RK methods
of low order.
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0
c2 a21
c3 a31 a32
...
cs as1 as2 . . . as,s−1

b1 b2 . . . bs

Table 1: Butcher Tableau

If we want to compute an s-stage RK method, it is often common to place the
coefficients of the method in a Butcher tableau: Where the c column determines
the times where the stage is computed, and the b row is the weights of the linear
combinations. Since the methods we examine are explicit the tableau is strictly
lower triangular, that is: aij = 0 unless i > j. It is also custom to impose that ci
satisfies:

ci =
∑

j

aij.

If this condition is satisfied, the derivation of the order conditions may be considered
for the autonomous case only7. To help the reader we compute a Runge-Kutta
2-stage method.

k1 = f(t0, y0) (17)
k2 = f(t0 + c2h, y0 + ha21k1(t0, y0)) (18)

y1 = y0 + h
2∑

i=1

biki = y0 + hb1k1 + hb2k2. (19)

We assume that the exact solution has a Taylor expansion, given by:

y(t0 + h) = y0 + hf(t0, y0) +
1
2
df
dt (t0, y0)h

2 +O(h3).

We rewrite this in terms of the total derivative rule to get:

y0 + hf(t0, y0) +
1
2 [

∂f
∂t (t0, y0) +

∂f
∂y (t0, y0)f(t0, y0)]h

2 +O(h3).

It is our task to equate y1 = y0 + hb1k1 + hb2k2 with the Taylor expansion of the
exact solution to arrive at the order conditions.

7We will take this condition for granted, but the interested reader is referred to page 143 of
Harier. As an historical note, Kutta simply assumed this condition in his work.
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This is done by calculating a Taylor series for k2.

k2 = f(t0 + c2h, y0 + ha21k1(t0, y0)) (20)

k2 = f(t0, y0) + c2h
∂f

∂t
(t0, y0) + a21h

∂f

∂y
(t0, y0)f(t0, y0) +O(h3). (21)

Thus the numerical solution y1 = y0+hc1k1+hc2k2 can be written on the form;

y1 = y0+hb1f0+hb2[f(t0, y0)+c2h
∂f

∂t
(t0, y0)+a21h

∂f

∂y
(t0, y0)f(t0, y0)]+O(h3). (22)

We take the difference between the numerical and exact solutions to specify the
coefficients.
[y0 + hf(t0, y(t0)) +

1
2
df
dt (t0, y(t0))h

2]
−[y0+hb1f(t0, y(t0))+hb2[f(t0, y0)+c2h

∂f
∂t (t0, y0)+a21h

∂f
∂y (t0, y0)f(t0, y0)]] = 0.

This equation is satisfied if:

b1 + b2 = 1

b2a21 =
1

2

c2b2 =
1

2
.

Notice that we get a set of three algebraic polynomial equations with four unknowns,
these are the order conditions. We thereby proceed to solve these by parametrizing
and present the second order method in the Butcher tableau. If we choose b1 = 0
and b2 = 1, the tableau looks like:

0
1
2

1
2

0 1
.

Taking the coefficients we write the numerical method as:

y1 = y0 + hf(t0 +
h
2 , y0 +

h
2f(t0, y0)).

This is the midpoint method, one of the first RK methods to be developed by Runge
in 1895. The first RK methods that were constructed had geometrical interpretations
stemming from quadrature problems. In this case by considering Gauss midpoint
formula and extending it to the IVP. This is not the only second order method as
we can parametrise by b1 =

1
4 and proceed to solve the equations.
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0
2
3

2
3
1
4

3
4

y1 = y0 + h1
4f(t0, y0) + h3

4f(t0 +
2
3 , y0 +

2h
3 f(t0, y0)).

We recall from definition that a RK method is of order p, if the taylor series coincide
up to and including p. The computed methods are of order 2, since we can match
up to the second derivatives. By adding additional stages of the method, we can
match higher derivatives of the true solution. In the case of three stages, we can
construct order 3 methods, and proceeding to 4 stages we can create an order 4
method. Arguably, one of the most popular RK methods is sometimes referred to
as "the" Runge Kutta method. It has become so popular that it is an essential part
of every scientist or engineer’s bag of tricks (or desktop application for that matter).
For many problems the method is both fast and accurate for adequate step sizes
(being of order 4), and when implemented in computer code requires little or no
understanding of the computation involved. By taking a method of 4 stages:

y1 = y0 + h(b1k1 + b2k2 + b3k3 + b4k4).

To provide a fourth order method, the coefficients must match up to the 4th order
term of the taylor expansion of the true solution. This procedure is an exercise in
the rules of differential calculus, and the computation becomes very tedious. Indeed
Kutta himself did provide the order conditions for the fourth order, but without any
comments. "The" Runge-Kutta method (RK4) results from a particular parametri-
sation which results in the tableau.

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

2
6

2
6

1
6

Example. In the appendix we showcase the methods presented in this section by
graphing the numerical solutions to the IVP corresponding to Hooke’s law.

As we allow for higher and higher orders of our RK method, at each step we must
compute successively higher and more complicated expressions for the derivatives.
These will be increasingly difficult to match to the Taylor series as to determine the
order conditions. Initially it seems as the order of the method is the number of stages
of the method, this is indeed true for orders up to 4, but not in general. The number
of stages required to construct a method of any order is still an open problem.
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Order 1 2 3 4 5 6 7 8 9
Min number of stages 1 2 3 4 6 7 9 11 11

Table 2: Orders versus Stages

This was shown by the work of Butcher, who in addition provided a new method
in terms of trees to calculate the derivatives of the true and numerical solutions of
the IVP. The relation between rooted trees and taking derivatives of compositions of
functions was first explored by A.Caley in 1857[3]. In turn we calculate the Taylor
series for both the true and numerical solutions using Butcher’s abstraction and arrive
at the order conditions without the term by term matching used in this section. To
bridge the gap between the derivatives and the trees, tensor notation provides a clear
and convenient correspondence. The next section introduces this notation before we
turn to derive the order conditions in terms of rooted trees.
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6 Derivation of the order conditions

We have already discussed how the order conditions for the RK methods arise, and
we saw how the derivatives quickly increase in their complexity as we strive for
RK methods of higher order. In this section we combine the theory of trees with the
tensor notation to present a graphical representation of the derivatives. If we also use
the set of labelled trees, together with some functions on this set, we derive the order
conditions without resorting to extensive computations and tedious bookkeeping.
Due to the difficulties of making a short and concise treatise on Tensors, the next
few pages are by no means self contained and many proofs are omitted. The reader
not familiar with the ideas presented is referred to any good text on multilinear
algebra and/or tensors, such as [10].

6.1 Multilinear maps, Tensors and Einstein notation

Definition 15. A collection of real vector spaces V1, V2, . . . , Vk and W , with a map
T : V1 × V2 × · · ·× Vk → W , is called multilinear if it is separately linear on each of
its variables. i.e. For each vi and v′i in Vi and scalars α, β in R the map satisfies:

T (v1, . . . , vi−1,αvi + βv′i, . . . vk) = αT (v1, . . . , vi−1, vi, . . . vk)

+ βT (v1, . . . , vi−1, v
′
i, . . . vk).

Example. Consider the map f : Rn × Rn → R, defined by the usual "dot" product.
Such that for (v, w) ∈ Rn × Rn,

v · w =
n∑

i=1

viwi.

This defines a multilinear map (which we call bilinear by virtue of the single cartesian
product), since:

(αv + βv′) · w = α
n∑

i=1

viwi + β
n∑

i=1

v′iwi

= α(v · w) + β(v′ · w)

For scalars α and β, and the same argument holds for w.
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Definition 16. For an n-dimensional vector space V and its dual V ", denote by
(V )l the l fold cartesian product V1 × V2 × · · · × Vl. Then, for the two non negative
integers k, l we define the vector space V k

l to consist of all multilinear maps:

T : (V )l × (V ")k → R.

These are called tensors of type (k, l) over V . We often refer to these tensors accord-
ing to their rank: rank(T ) = k + l.

Resultantly, a tensor T ∈ V k
l has rank k + l and acts on a set of l vectors and a

set of k dual vectors. Since we posses a basis {ei}ni=1 of V , there is a corresponding
induced basis of V ", {f j}nj=1. Together they determine a basis for V k

l . We claim
that this is a vector space since, we can use the component-wise addition and scalar
multiplication inherited from multilinear maps. As such we consider the tensor T as
a multidimensional array of scalars, where the rank is the number of indexes, and
using the basis for the vector space we can evaluate the tensor on a set of vectors
and dual vectors.

To any T ∈ V k
l , we associate a set of scalars in R, which we index with upper

and lower indices. Since each index ranges from 1 . . . n we have a total of nk+l com-
ponents of the tensor. We define these components by evaluating T on the relevant
basis vectors.

T (e(i1), . . . e(il), f
(j1), . . . , f (jk)) = T (j1)...(jk)

(i1)...(il)
.

The evaluation of T on a general set of vectors with s = 1 . . . l and p = 1 . . . k:

vs =
n∑

i=1

visei

αp =
n∑

j=1

αp
jf

j.

Takes the following form from multi linearity:

T (v1, . . . , vl,α
1, . . . ,αk) =

n∑

i1=1

· · ·
n∑

il=1

n∑

ji=1

· · ·
n∑

jk=1

T (j1)...(jk)
(i1)...(il)

vi11 . . . vill α
1
j1 . . .α

k
jk
.

The extensive summation signs become cumbersome, and are therefore treated ac-
cording to the Einstein summation convention. The idea is to omit the summation
and regard it as implied whenever there is a match between a pair of upper and lower
indexes in the tensor.

T (v1, . . . , vl,α
1, . . . ,αk) = T (j1)...(jk)

(i1)...(il)
vi11 . . . vill α

1
j1 . . .α

k
jk
.
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We clarify these ideas in brief by considering examples of tensors of small rank. It is
customary to regard rank zero tensors as the underlying field (R).

Example. Taking T ∈ V 0
1 we get a type (0, 1) tensor. These are the linear maps

f : V → R, and thus constitutes the vector space V ". (0, 1) tensors are therefore dual
vectors.
Example. Conversely, taking T ∈ V 1

0 we get a type (1, 0) tensor - also of rank one,
but this is a linear map g : V " → R. Since this itself is a vectorspace we get the
dual of the dual V "" which without further exposition is isomorphic to V . We can
therefore consider type (1, 0) tensors as vectors.
Example. Consider the linear maps T : V × V " → R, they constitute rank two
tensors of type (1, 1). With the knowledge that the vector spaces are n-dimensional,
we write an arbitrary vector v ∈ V using the basis {ei}ni=1 as: v = [v1 . . . vn]T .
The linear function ( in V ", has the induced basis {(j}nj=1, and we write ( = [(1, . . . , (n].
From the familiar vector arithmetic:

((v) = [(1, . . . , (n]




v1
...
vn



 = (1v1 + · · ·+ (mvm = (ivi.

Where the last term implies a summation, according to the Einstein convention.
Example. It is often advantageous to construct a general "inner product" tensor.
This allows us to quantify the notion of "distance" through a norm and as such,
develop a metric space. Taking a tensor g of the form (0, 2), we consider the bilinear
map g : V × V → R, which satisfies:

g(v, v) ≥ 0 (23)
g(v, w) = g(w, v) (24)

Where property (1) is positive definite, that is g(v, v) = 0 only for v = 0. Property
(2) is called symmetry. These properties determine an inner product on the space
V . The bilinear map has an n× n matrix representation, which is acquired through
evaluation of the function on the basis vectors.

gij = g(ei, ej).

By the requirement of symmetry of the map:

gij = g(ei, ej) = g(ej, ei) = gji,
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the matrix must be symmetric. The evaluation of this tensor on two vectors v, w with
the basis {ei}ni=1 takes the form from ordinary matrix multiplication:

[v1, . . . , vn]





g11 g12 . . . g1n
g21 g22 . . . g2n

...
gn1 gn2 . . . gnn








w1

...
wn



 .

Which according to the Einstein convention reduces to:

g(v, w) = gijv
iwj.

If we let the components of gij be the identity matrix, we get the usual dot product.
We can however define other symmetric matrices for the tensor to construct an inner
product. In the theory of Special Relativity, the "metric" is formed from this inner
product, with the relaxation of the condition of being positive definitive, by the matrix:

gij =





−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 .

In the example where we paired a vector and a dual vector to arrive at the relation
(ivi, which produces a scalar when the sum is taken (implied by Einstein convention),
we say that we have contracted the tensor. This is a generalised form of trace
operation where we can match vectors with dual vectors to reduce the rank of the
tensor.
Definition 17. The contraction operation on a type (p, q) tensor produces a type
(p − 1, q − 1) tensor. This is done by naturally pairing one vector space Vi and
its dual V "

j which produces a scalar after summation. The general procedure for
contracting, is to identify one upper and one lower index in the tensor, setting them
equal and taking the sum.
Example. The Riemann Curvature tensor Rµ

ανβ (ignoring its input arguments) can
be contracted by setting ν equal to µ and performing a sum. The result

Rαβ = Rµ
αµβ,

is called the Ricci tensor. Which is one of the cornerstones of the Einstein Field
Equations of General Relativity.
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Definition 18. The symmetric group on the k elements {1 . . . k} is denoted by Sk

and constitutes all permutations of this set. σ(i) denotes the value of the map on the
i-th element. We say that a tensor is symmetric if it is unaffected by any permutation
of its arguments.

T (vσ(1), . . . vσ(k)) = T (v1, . . . vk).

Since the components of the tensor are determined by the basis vectors, a symmetric
tensor will be a symmetric array of coefficients, as the example of the metric tensor
showed.
Example. The source of the gravitational field is the energy and momentum of par-
ticles in space-time. This requires specification of energy density, which relies on
the Stress-Energy Tensor T . This is a rank 2 tensor, defined as the flux of the α
component of four-momentum across the surface defined by constant xβ. This tensor
is symmetric since interchanging the arguments produces the same result. Using the
dx notation common to General Relativity:

Tαβ = T (dxα, dxβ) = T (dxβ, dxα) = T βα.

The interested reader should consult [14] for details and proof of this fact.

Since it is in our interest to take the derivatives of multivariate functions when we
compute the derivatives of the IVP in order to find the Taylor expansion, we intro-
duce multivariate derivatives as multilinear maps. Then, taking the k-th derivative
produces a symmetric tensor of order k, which will allow us to connect the tensor no-
tation introduced in this section with the trees in the next. To do this, the notion of
a derivative for higher dimensions is presented over general vector spaces. However,
it is worthwhile to devote special attention to the function, f : Rn → R,

f(y) ∈ R and y ∈ Rn.
Definition 19. Let V and W be normed vector spaces, with norms || ||V and || ||W
respectively. Furthermore, Ω is an open subset of V . A function f : Ω → W is called
differentiable at y in V if there exists a continuous linear map T : V → W such that:

lim
h→0

||f(y + h)− f(y)− T (h)||W
||h||V

= 0

In this form over general normed vector spaces, this definition is usually referred to
as the Frechet8 derivative, and like the single variable derivative, the map T is unique
and we adopt the notation Df(y) to mean the derivative of f at y.

8The Frechet derivative conceptualises the derivative on Banach spaces, that is - complete
normed vector spaces. We are interested in Rn and R which under the appropriate norms be-
come Banach spaces. However, the need for completeness is not necessary here.
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In order to consider the higher derivatives such as D(Df(y)) (if they exist), we fall
into the realm of multilinear maps. We justify this statement in brief by considering
the linear maps as vector space homomorphisms, denoted by Hom(·, ·). We identify
that if f is differentiable for every y in Ω, we get a linear map:

Df(y) : V → W.

Therefore we get a map into a new vector space Hom(V,W ) according to:

Df : Ω → Hom(V,W ).

If this map in turn is differentiable, we continue the process assuming differentiability
at each step:

D2f : Ω → Hom(V,Hom(V,W ))
...

Dkf : Ω → Hom(V,Hom(V, . . . Hom(V,W )︸ ︷︷ ︸
k times

) . . . )︸ ︷︷ ︸
k times

.

It turns out that this vector space of k homomorphisms is isomorphic to k lin-
ear maps9. As a consequence, we may identify the two isomorphic vector spaces
and therefore consider the k-th derivative Dkf(y) of a function f : Ω → W as a
multilinear map with k arguments, writing Dkf(y)(v1, ..., vk), with vi in V . Re-
calling the properties of tensors, we associate the k-th derivative with the tensor
Dkf(y) : V k → R. The basis for V is denoted by {ei}ni=1 as before. From the dis-
cussions we know that the coefficients of the tensor are determined by the values on
its basis vectors, when V = Rn and Ω is an open subset of Rn these take the from
according to the theorem:
Theorem 5. Let f : Ω → R be a k-times differentiable function. Then for each y in
Ω, the coefficients of the tensor Dpf(y) with p = 1 . . . k are given by:

ai1...ik =
∂kf(y)

∂yik . . . ∂yi1
.

9Omitting the proof, this is a fundamental result of tensors and multilinear maps. The reader is
referred to the literature for the details. Particularily [9], where information on Banach spaces can
be found as well.

43



Proof. The theorem will be proved by induction on the order of the derivative. This
is done by proving that:

Dkf(y)(v1, . . . , vk) =
n∑

i1

n∑

i2

· · ·
n∑

ik

∂kf(y)

∂yik . . . ∂yi1
vi11 v

i2
2 . . . vikk

holds for p = 1 . . . k.
The basis case constitutes p = 1: Assuming some familiarity with elementary vec-
tor calculus Df(y)(v) is the directional derivative of f in the direction of v at y.
Therefore we can express:

Df(y)(v) = ∇f(y) · v.

Where ∇ is the gradient operator and · is the dot product. Computing this expression
yields,

Df(y)(v) =
n∑

i

∂f(y)

∂yi
vi.

This proves the case p = 1. Assuming then, that the theorem holds for p = 1, 2, . . . , s
where s < k. Let F (y) = Dsf(y)(v1, . . . , vs), then by hypothesis the function F :
Ω → R is differentiable:

DF (y)(vs+1) = Ds+1f(y)(v1, . . . , vs, vs+1).

The left hand side is the directional derivative in the direction of vs+1. Taking the
gradient of this function and the dot product with this vector gives:

DF (y)(vs+1) = ∇F (y) · vs+1 =
n∑

i

∂F (y)

∂yi
vis+1.

Combining this expression with the induction hypothesis gives the desired result

Ds+1f(y)(v1, . . . , vs+1) =
n∑

i1

n∑

i2

· · ·
n∑

is+1

∂s+1f(y)

∂yis+1 . . . ∂yi1
vi11 v

i2
2 . . . vis+1

s+1 .

The theorem is true by induction.
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Theorem 6. If f : Ω → R is a Ck map. Then for all y in Ω, the multilinear map is
symmetric.

Proof. In the case of f being a C2 map, the symmetry refers to the equality of the
mixed partial derivatives of D2f(y), this is the well known Schwarz theorem. Taking
this theorem for granted we use this as our basis case for inducting on k. Therefore
assume the theorem up to k − 1, that is:

Dk−1f(y)(vσ(2), . . . , vσ(k)) = Dk−1f(y)(v2, . . . , vk). (25)

Let g(y) = Dk−2f(y)(v3, . . . , vk), then by assumption g2 and we apply Schwarz the-
orem to conclude:

D2g(y)(v1, v2) = D2g(y)(v2, v1)

Dkf(y)(v1, v2, . . . , vk) = Dkf(y)(v2, v1, . . . , vk).

Furthermore, for any permutation σ ∈ Sk−1 acting on the set {2, . . . , k}, equation
(25) holds and we can write

Dkf(y)(v1, . . . , vk) = D(Dk−1f(y)(v2, . . . , vk))(v1)

= D(Dk−1f(y)(vσ(2), . . . , vσ(k)))(v1)

= Dkf(y)(v1, vσ(2), . . . , vσ(k)).

Since the whole symmetric group Sk can be generated from the all permutations
which leave 1 unchanged and the transposition of 1 and 2, the theorem is proven.

We have shown that the derivatives can be expressed as multilinear maps (or tensors)
according to theorem 5, we alleviate ourselves from the use of the summation signs
by adopting the Einstein convention, to produce:

∂kf(y)

∂yik . . . ∂yi1
vi11 v

i2
2 . . . vikk .

Noting that it is possible to pair the upper and lower indices in this expression, we
can perform the contraction operation on each pair to produce a scalar, which is
the nature of the expression - as the tensor maps to R. This is the notation used
throughout the derivation of the order conditions, and its application will become
clear over the next few pages.
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6.2 Derivation

From the previous discussions on ODEs, without loss of generality, assume that we
have an autonomous system:





y′0(t)
y′1(t)

...
yn(t)′




=





1
f1(y0(t), y(t), . . . , yn(t))

...
fn(y0(t), y(t), . . . , yn(t))




.

Which is defined by f : Rn+1 → Rn+1 on the domain Ω ⊂ Rn+1, with the initial
conditions y(t0) = y0 where t0 ∈ R and y0 ∈ Rn.

Remark. We change the notation from y′i = fi(y0(t), y1(t), . . . , yn(t)) to superscripts,
which we write with capital letters. This is to make the connection with the tensor
notation of the last section, and thus the J component will be written as:

(yJ)′ = fJ(y0, . . . , yn) ∈ R.

We proceed to compute the derivatives of the exact solution for each component yJ

in this notation, to do this we represent our system by:

dy(t)

dt
= f(y(t)). (26)

Let us assume that this differential equation satisfies the conditions of existence and
uniqueness, together with being sufficiently smooth to take the Taylor expansion of
desired order. Supposing that the true solution y(t) also possesses derivatives of
ample order we calculate the Taylor expansion of this solution at t0. Recalling that
we examine the true solution for a small deviation h from t0, and the numerical
solution y1 located at t0 + h.

Since the differential equation is a multivariate function, taking the derivatives of yJ
with respect to t relies on taking partial derivatives and sums according to the chain
rule. The tensor notation provides a convenient way to express this if we let

fJ
K = ∂fJ

∂yK .

As we continue to take derivatives, we consider the number of independent indexes
"attached" to the function as the rank (disregarding J), and we can use this to
"contract" the indices much in the same way as with tensors. The first few derivatives
clarifies this idea.
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The first derivative
yJ(t0)

(1) = fJ(y(t0)) = fJ(y0) = fJ
0 (27)

is only indexed by J , as such we call it rank 0 (being a scalar). The elegance of
this notation is particularly illustrated for the second and higher order derivatives.
Employing the chain rule we get:

yJ(t0)(2) = fJ(y)(1)y(1)|y=y0

Writing this in summation form as required yields:

yJ(t0)
(2) =

∑

K

fJ
K(y)(y

K)
(1)

∣∣∣∣
y=y0

=
∑

K

fJ
K(y)f

K(y)

∣∣∣∣
y=y0

. (28)

Here fJ
K(y) is interpreted in this notation as a tensor of rank 1 and fK(y) as a tensor

of rank 1. In this case we perform the contraction operation on the tensor with one
vector to get the scalar yJ(t0)(2). This occurs for each derivative by the nature of
the chain rule, where the number of upper indexes should equal the number of lower
indexes to perform this contraction. That is, the k-th derivative requires k vectors
to perform the contraction. From now on every evaluation will be in y = y0.
When taking the next derivative, an additional complication occurs in the form of
the product rule. It produces two separate sums where we add an additional index L
which we sum over. Together with the chain rule this produces the expression:

yJ(t0)
(3) =

∑

KL

fJ
KLf

LfK +
∑

KL

fJ
Kf

K
L fL. (29)

For the first summand, a rank two tensor is contracted by two vectors. The second
summand produces a scalar after two successive contractions. It is not immediately
clear what will happen as we continue taking higher derivatives, the complexity
quickly grows as we combine the rules of differential calculus. Furthermore, the
tensor notation will not of itself lead to a more compact form of computing the
derivatives. Instead, we introduce the aforementioned objects called trees to provide
an abstraction, this will not necessarily simplify the computations, but allows the
exact and numerical solutions of our system to be compared without the matching
of individual derivatives employed in previous sections.
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Definition 20. A tree ttt is an undirected graph in which any two vertices are con-
nected by exactly one simple path. We denote it with ttt = (V,E) where V is the set
of vertices and E is the set of edges. Any connected graph without cycles is a tree.

Example.
......

We label the vertices of the tree in the sense that if A = {i, j, k, l, ...} is our alphabet
and ttt = (V,E) then, if there is a function φ : V → A, we acquire a labelled tree.

Example.
..j.

k

.

l

Definition 21. The number of vertices of the tree ttt is called the order of the tree
and is denoted by | ttt |= q.

Definition 22. Let A be our alphabet with an imposed ordering of the indices
{j < k < l < m . . . }. We let Aq be the subset consisting of the first q indices. Then
a rooted labelled tree of order q is the son-father mapping:

ttt : Aq\{j} → Aq.

Where {j} is the root of the tree, and all elements k ∈ Aq\{j} satisfy t(k) < k.
We call this a son-father mapping since k is the son of t(k).

Therefore the tree defined by the map ttt will consist of sons, fathers, grandfathers all
the way to the patriarch of the dynasty j. The set of all these mappings, is the set
of all labelled trees of order q,which we call LTq.
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Example. Let the alphabet be A = {j < k < l}, then the son-father mapping
t : A3\{j} → A3 defines:

ttt =

{
t(l) = k

t(k) = j
−→

..j.

k

.

l
, ttt =

{
t(l) = j

t(k) = j
−→

..j.

k

.

l
.

Definition 23. For a labelled tree ttt ∈ LTq we call

F J(ttt)(y) =
∑

K,L,...

fJ
K...(y)f

K
... (y)f

L(y) . . .

the corresponding elementary differential. We sum over the q−1 indicies from Aq\{j}
which we denote with capitals K,L . . . . Inside the summation we take the product of
q f(y)’s with the upper indexes being the vertices of the tree and the lower index on
each f denotes the sons of the upper index.

To clarify this concept, we compute some elementary differentials corresponding to
trees of small order with A = {j, k, l,m, ...} our ordered alphabet. For simplicity,
we assume that LT0 is the empty tree ∅ and its elementary differential is yJ . In the
case of LT1the tree only has one vertex j, and as such the elementary differential is
simply fJ .

..j → fJ .

The next possible tree has two vertices and the associated elementary differential is
that with respect to the second vertex k, which has no sons.

..j.

k
→ fJ

Kf
K .

When the tree has three vertices (2 excluding root) we have two possible trees, each
with its own differential and the order in which we index is irrelevant by symme-
try.

..j.

k

.

l
→ fJ

KL(f
KfL).

..j.

k

.

l
→ fJ

K(f
K
L fL).
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..j.

l

.

m

.

k

..j.

k

.

l

.

m

..j.

k

.

m

.

l

..j.

k

.

l

.

m
..j.

k

.

l

.

m

..j.

k

.

l

.

m

Table 3: The six trees of LT4

A final example with four vertices should now be clear how to compute.

..j.

l

.

m

.

k

→ fJ
KL(f

L
MfMfK).

As the order of the trees q increases, we get a larger collection of different trees. This
is because we can take each tree of order q − 1 and choose where to put the new
vertex (the son) to get a tree of order q. For trees with q = 4, we begin with two
trees, each with three vertices. Since we can connect the new vertex to a total of 3×2
other vertices, we have the six trees of table 3. Some of the trees in this table look
very similar, apart from the labelling of the vertices. If we can permute the labels
of a tree (disregarding the root) ttt1 ∈ LTq to correspond to the labels of ttt2 ∈ LTq we
regard the two trees as being identical. Indeed, if there exists a permutation,

π : Aq → Aq

where π(ttt1) = ttt2 and the root maps to itself, this defines an equivalence relation
amongst the trees in LTq.

Proof. Clearly ttt1 ∼ ttt1, by the identity permutation.
ttt1 ∼ ttt2 =⇒ ttt2 ∼ ttt1 by inverse permutation.
ttt1 ∼ ttt2 and ttt2 ∼ ttt3 =⇒ ttt1 ∼ ttt3 by composition of permutations.

The crucial point however, is the fact that the trees for which this permutation holds,
all have the same elementary differential. Since the permutation simply rearranges
the labels - the elementary differential will look the same with a mere exchange of
labels.
Definition 24. Two trees are in the same equivalence class ttt ∼ ttt′ if and only if the
two trees have the same elementary differential. The set Tq = LTq/ ∼ is the partition
of the labelled rooted trees into equivalence classes according to this relation.
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Definition 25. Let α(ttt) denote the number of elements in the equivalence class of
ttt ∈ Tq. It is the number of permutations of the labelling of the vertices.

By now, it should be clear that we can construct elementary differentials from our
trees. If we return to our problem of calculating the derivatives of the true solution,
we can see that the expressions where fJ

K = ∂fJ

∂yK match our notation for the elemen-
tary differentials. It is therefore natural for us to try to write the exact solution in
terms of the elementary differentials and trees. In the cases of the first and second
derivatives of the true solution, it is clear from the preceding discussion, that these
are equal to the elementary differentials of all trees of order 1 and 2 respectively. In
each of these cases |LT1| = |LT2| = 1. Examining the third derivative of the exact
solution, which was expressed as:

yJ(t0)
(3) =

∑

KL

fJ
KLf

LfK +
∑

KL

fJ
Kf

K
L fL.

There are two labelled trees in LT3 and each corresponding to one of the sum-
mands.

..j.

k

.

l
→ fJ

KL(f
KfL)

and

..j.

k

.

l
→ fJ

K(f
K
L fL).

In the case of the fourth derivative, the exact solution of (yJ(t0))(4) looks as fol-
lows:
∑

KLM

fJ
KLMfLfKfM + 3

∑

KLM

fJ
KLf

K
L fLfM +

∑

KLM

fJ
Kf

K
LMfLfM +

∑

KLM

fJ
Kf

K
L fL

MfM .

This corresponds to taking the elementary differentials of trees of order 4. The six
trees of LT4 were expressed in the previous table, and using their structure we can
present the exact solution as:

y(4)(t0) = F J( ..j.

k

.

l

.

m
)(y0) + 3F J( ..j.

l

.

m

.

k

)(y0) + F J(

..j.

k

.

l

.

m )(y0) + F J(

..j.

k

.

l

.

m )(y0)
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The elementary differential with the coefficient 3, should be of no surprise. If we
recall table 3, there were 3 different trees which corresponded to this differential.
The rest of them were representatives of their own class. This suggests that we
can take successively higher derivatives, as we move to trees of higher order. The
examples up to order 3 suggest that if we want to get a certain derivative, all we
need to do is go to the known elementary differentials previous to the one we want
and "contract" it by adding new vertices to our labelled trees. We illustrate this in
the case of the third derivative of the true solution, we can take its derivative by
adding new vertices to the labelled trees as follows; Taking the first summand, we
add a new label M for each possible way to add the label m to the corresponding
tree.

∑

KL

fJ
KLf

LfK →






∑

KLM

fJ
KLMfLfKfM (1)

∑

KLM

fJ
KLf

L
MfMfK (2)

∑

KLM

fJ
KLf

LfK
MfM (3)

∑

KL

fJ
Kf

K
L fL →






∑

KLM

fJ
KMfMfK

L fL (4)

∑

KLM

fJ
Kf

K
LMfMfL (5)

∑

KLM

fJ
Kf

K
L fL

MfM (6)

The trees 2,3,4 all correspond to the same elementary differential, so we group them
together with a real coefficient, in this case 3. and we yield the expression for y(4)(t0).
This coefficient is α(ttt), the number of elements in the equivalence class of ttt. This
leads us to the first of the two main theorems to prove the order conditions.

Theorem 7. The exact solution of the autonomous ODE system satisfies

(yJ)(q)|y=y0 =
∑

t∈LTq

F J(ttt)(y0) =
∑

t∈Tq

α(t)F J(ttt)(y0).

We prove this theorem by induction on q, to do this we need to introduce a lemma
adapted from Butcher [2].
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Lemma 4. Let Aq = Aq−1∪{z} be a subset of the ordered alphabet A, with cardinality
q. Each member of Aq−1 is strictly less than z. Let ttt be a member of LTq−1.
Then the derivative of the elementary differential

d
dtF (ttt)(y(t))

is the sum of F (ttt′)(y(t)) over all trees ttt′ ∈ LTq such that the subtree formed by
removing z from the set of vertices is ttt.

Proof. In the case where we only have one element j (the root), we get A2 = {j, z}.
Then ttt ∈ LT1 has the corresponding elementary differential fJ(y(t)). Taking the
time derivative yields:

d
dtf

J(y(t)) = fJ
Zf

Z .

Which is precisely the sum of the single tree in LT2 where ttt ∈ LT1 is obtained after
removing the vertex z. This provides the base of our induction proof. Continuing,
we let Aq = {j} ∪ B1 ∪ · · · ∪ Bk ∪ {z}. Where the lemma holds for {j} ∪ B1 ∪ {z},
{j} ∪ B1 ∪B2 ∪ {z} all the way to Bk, with each a disjoint subset of Aq.

By assumption, if ttt ∈ LTq−1 then ttt can be expressed as the combination of the
trees ttti ∈ LTqi joined with the root j. The elementary differential of this tree can
therefore be expressed as:

F (ttt)J(y(t)) = fJ
J1J2...Jk

(fJ1
... . . . )(f

J2
... . . . ) . . . (f

Jk
... . . . ).

Where fJi
... . . . denotes the elementary differential with respect to the tree tititi and

labels in the set Bi. Taking the time derivative of this expression corresponds to a
summation of E0 + E1 + . . . Ek terms. Where:

E0 = fJ
J1J2...JkZ

(fJ1
... . . . ) . . . (f

Jk
... . . . )(f

Z)

Ei = fJ
J1J2...Jk

(fJ1
... . . . ) . . . (

d

dt
fJi
... . . . ) . . . (f

Jk
... . . . ).

E0 is evaluated to F J(ttt1ttt2 . . . tttkttt0)(y(t)), with the same combination of trees to the
root, and in addition ttt0, which is the label z. For each term Ei is the sum of all
terms on the form of d

dtF
Ji(ttti)(y(t)), which is F Ji(ttti)(y(t)) replaced by a sum of

terms of the form F (uuui)(y(t)), where uuui is formed from ttti by adding an additional
leaf labelled by z. The lemma follows by combining all these terms contributing to
the derivative.
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The proof of theorem 7 is now straightforward.

Proof. We prove this theorem by induction on q. It has already been seen that the
theorem holds for q = 0, 1, 2, 3, 4 and as such we assume that the theorem holds for
q = 0, 1, . . . q − 1. The first step is to note that we can go from LTq−1 to all of LTq by
adding a new vertex {q} to every possible vertex of all the trees in LTq−1. Secondly,
we can derive the elementary differentials of LTq from LTq−1. We do this by taking
each tree in LTq−1 and its corresponding elementary differential. For simplicity we
consider ttt ∈ LTq−1 with the corresponding elementary differential F J(ttt)(y0). For
each addition of the vertex {q} to ttt we produce a new elementary differential from
the old one which corresponds to a tree in LTq, as we showed in the lemma.

Since we assume the theorem holds up to q − 1, we know that:

(yJ)(q−1)|y=y0 =
∑

ttt∈LTq−1

F J(ttt)(y0).

If we take the derivative with respect to t, we know that differentiating an elemen-
tary differential corresponds to adding a new summation index to each elementary
differential, i.e adding the new vertex in each possible place, and taking their sum.
This becomes the sum of the elementary differentials of all the trees of LTq. Since
we have already shown the cases up to q = 4, the theorem is true by induction. We
can group the equivalence classes together by α(ttt) without loss of generality to yield
the second equality.

We have finally used all this cumbersome notation, trees and heart wrenching deriva-
tives to arrive at a compact result. We now turn to the second phase of the derivation
of the order conditions, the Taylor expansion of the numerical solution. We wish to
write the numerical solution much in the same way that we did for the exact i.e. we
wish to find a correspondence to the trees. Indeed this is possible through a famous
formula for the derivatives of composite functions, Faa Di Bruno’s formula. We will
not prove this lemma, but merely state that the form in which we express it, satisfies
its assumptions.
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We consider the same autonomous system that we used to derive the exact solution.
Taking the Runge-Kutta scheme and for each stage ki we would normally write:

ki = f(tn + cih, yn + h
∑i−1

j=1 aijkj).

Since the system is autonomous, and to simplify our calculations we will write ki =
f(gi) where;

gJi = yJ0 +
i−1∑

j=1

aijhf
J(g1j , . . . , g

n
j ) i = 1 . . . s (30)

yJ1 = yJ0 +
s∑

j=1

bjhf
J(g1j , . . . , g

n
j ). (31)

We must compare the Taylor series of yJ1 with the exact solution. We proceed to
compute the derivatives of yJ1 and gJi with respect to h, evaluated at h = 0. Upon
inspection of the two preceding equations they are both of the form hφ(h), if we take
the derivatives and evaluate at h = 0 we can make use of Leibniz formula,

(hφ(h))(q) = q(φ(h))(q−1). (32)

Then

(gJi )
(0)
∣∣
h=0

= yJ0

(gJi )
(1)
∣∣
h=0

=
∑

j

aijf
J
∣∣
y=y0

.

We compute the second derivative from Leibniz formula, we must therefore compute
fJ(gj) first.

(fJ(gj))(1) =
∑

K fJ
K(gj)(g

K
j )(1).

Here, the notation from the previous section becomes important. We let fJ
K denote

the partial derivative ∂fJ

∂yK . If we remember the chain rule, the derivatives can be
written as a sum over the partial derivatives. Furthermore, we use this notation as
it naturally gives the connection with the labelled trees.

(gJi )
(2)
∣∣
h=0

= 2
∑

j,k

aijajk
∑

K

fJ
Kf

K
∣∣
y=y0

.

Continuing taking derivatives with the appropriate substitutions;

(gJi )
(3)
∣∣
h=0

= 3
∑

j,k,l

aijajkajl
∑

KL

fJ
KLf

KfL + 6
∑

j,k,l

aijajkakl
∑

KL

fJ
Kf

K
L fL.
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We can see in the expression for the third derivative, that there is a correspondence
between the indices ajk in the same way that the upper and lower indices are linked
on the derivatives. This connection suggests that we view the derivatives graph-
ically, considering labelled trees. Before we make this leap, we must make some
definitions.
Definition 26. Let ttt be a tree with the root j. We denote the elementary weight by

Φj(ttt) =
∑

k,l...

ajka... . . .

the sum over the remaining q − 1 indices k, l . . . where all fathers stand two by two
with their sons as indices.
Example. Given the tree ttt in LT5 of the form:

..j.

p

.

k

.

l

.

m

Then the elementary weight:

Φj(ttt) =
∑

k,l,m,p

ajpajkakmakl.

Definition 27. LSq is the set of special labelled trees. These are the trees with no
ramifications except at the root.
Example.

..j.

k

.

l

.

p

.

m

.

n

.

o

Lemma 5. (Faa di Bruno’s formula) For q ≥ 1

(fJ(g))(q−1) =
∑

uuu∈LSq

∑

K1,...Km

fJ
K1,...Km

(g)(gK1)δ1 . . . (gKm)δm .

uuu is a special labelled tree of order q and m is the number of its branches. Each δi
are the number of vertices on these branches. For the lemma to hold, these positive
integers must satisfy the constraint q = 1 + δ1 + · · · + δm which is satisfied by the
nature of the trees in LSq.
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Definition 28. For ttt ∈ LTq let γ(ttt) be the positive integer obtained when we multiply
the order of the tree (q) with all orders of the trees obtained after removing the roots
in succession from ttt.
Example.

..j.

k

.

o

.

p

.

q

.

l

.

m

.

n

The tree is of order 8, removing the root of ttt gives two trees, each of order 4 and 3
respectively. Removing their roots gives trees of order 1. Therefore γ(ttt) = 8× 4× 3.

Combining these ideas we proceed to prove the second of our two necessary theorems.

Theorem 8. The derivatives of gJi satisfy

(gJi )
(q)|h=0 =

∑

ttt∈LTq

γ(ttt)
∑

j

aijΦj(ttt)F
J(ttt)(y0).

The numerical solution yj1 satisfies

(yJ1 )
(q)|h=0 =

∑

ttt∈LTq

γ(ttt)
∑

j

bjΦj(ttt)F
J(ttt)(y0).

Proof. Noting that the form of the two expressions are very similar, we proceed to
prove this for gJi only. Once again we proceed by an induction proof on q. From the
previous discussion, we used Leibniz’s formula and with its aid we can assume that:

(gJi )
(q)|h=0 = q

∑
j aij(f

J(gj))(q−1)|y=y0 .

From Faa Di Bruno’s formula we can express this as a rather complicated expression
using LSq and LTδi . This allows us to use the induction hypothesis with δi < q to
rewrite the sum as:
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(gJi )
(q)|h=0 = q

∑

uuu∈SLq

∑

ttt1∈LTδ1

· · ·
∑

tttm∈LTδm

γ(ttt1) . . . γ(tttm)

∑

j

aij
∑

k1

ajk1Φk1(ttt1) · · ·
∑

km

ajkmΦkm(tttm)

∑

K1,K2,...,Km

fJ
K1,K2,...,Km

(y0)F
K1(ttt1)(y0)

Km(tttm)(y0).

If we can create a bijective correspondence from each collection (uuu, ttt1, . . . , tttm) with
uuu ∈ LSq and ttti ∈ LTδi to the set LTq. Then the expressions in the equality can be
reduced to functions of ttt in LTq of the form

γ(ttt) = qγ(ttt1) . . . γ(tttm) (33)
F J(ttt)(y) =

∑

K1,K2,...,Km

fJ
K1,K2,...,Km

(y0)F
K1(ttt1)(y0)

Km(tttm)(y0) (34)

Φj(ttt) =
∑

k1,...km

ajk1 . . . ajkmΦk1(ttt1) . . .Φkm(tttm). (35)

Taking this statement for granted now allows us to express (gJi )
(q)|h=0 as the sum

over LTq, of the following form:

(gJi )
(q)|h=0 =

∑
ttt∈LTq

γ(ttt)
∑

j aijΦj(ttt)F J(ttt)(y0).

By the similarity of the formulas, we can simply replace bj with aij, and we yield the
expression for the numerical solution for the first RK step:

(yJ1 )
(q)|h=0 =

∑
ttt∈LTq

γ(ttt)
∑

j bjΦj(ttt)F J(ttt)(y0).

For the case where q = 1 the formula predicts:

(yJ
1 )

(1) =
∑

ttt∈LT1
γ(ttt)

∑
j bjΦj(ttt)F J(ttt)(y0).

Which by the trivial nature of the tree functions involved gives
∑

j

bjf
J(y0), (36)

which was calculated previously, and the theorem is true by induction.
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The bijection required can be constructed if we take the collection (uuu, ttt1, . . . , tttm),
replacing the branches of uuu with ttt1, . . . , tttm.

With the derivatives of the true and numerical solution expressed in terms of trees,
the Runge-Kutta order conditions now becomes a matching of the derivatives and
we have proved our main result:

Theorem 9. A Runge-Kutta method is of order p if

∑
j bjΦj(ttt) =

1
γ(ttt)

for all trees ttt of order ≤ p.

This can be made into an if and only if statement, given that the elementary differ-
entials are independent. The proof of this is beyond the scope of this paper, but the
interested reader should consider the following proof sketch,

Proof. By showing that for every ttt ∈ Tq there exists a system of differential equa-
tions such that the elementary differential F J(ttt)(y0) of this tree at the initial point
evaluates to 1. For all other trees, their elementary differentials at the initial point
evaluate to 0.

Whenever we can satisfy the order conditions, we place a bound of the local error
of the method in terms of the Taylor series. As a result of the theorems in section
3, we guarantee convergence of the method constructed, and one may happily apply
the method to a wide range of problems. Should the method fail its task when
implemented, one might have encountered a stiff equation. Tackling such difficulties
would be the topic of another paper.

"Prova Runge-Kuttan . . . den är
bra! applicera och må bra!"

From the song Runge-Kuttan, lyrics
and music by Mathias Lundgren.

59



Appendix

This appendix provides a brief illustration of the implementation of Runge-Kutta
methods constructed in section 5. The paper has dealt mainly with the order of
convergence, in theory this is essential for a qualitative approximation, but does not
give the complete story. Given some differential equation we wish to solve, it is not
enough to simply pick a working method and a small enough step size to guarantee
a good approximation. There are essentially two answers to this, one practical and
one theoretical.

• Cost:
The smaller the step size, the more computational steps have to be made to
cover the whole interval of approximation. Therefore there is a tradeoff between
accuracy and number of computations - a serious concern when implementing
by hand, but also by computer. The computers used for calculation have finite
precision in their arithmetic and limitations on running time, as a result the
step size must adhere to physical realities and not theoretical results. It is
commonplace in applications to place a bound on the total error in the com-
putation (truncation, accumulation from roundoff etc) and have a subroutine
in the algorithm ensuring the limit is not exceeded, and if it is, reduce the
step size accordingly, this is called adaptive step size. In some problems this
restriction on the total error makes the cost of computation unfeasible (usually
stiff problems). We can picture this by thinking of a solution curve with long
periods where the derivative is rather constant and short periods where the
derivative changes rapidly. Had we implemented RK4 with a relatively large
step size (constant), we could have obtained an accurate approximation over
the long time period, but when the derivative changes rapidly the step size is
too large for good accuracy. A naive approach is then to use a step size small
enough to conquer this difficult section, but then we have paid too much for
the "easy" section. A compromise seems necessary, but a final caveat is that
even for an adaptive method, the "difficult" section might force the computer
to make the step size impractically small. The explicit Runge-Kutta methods
are by no means "universal solvers" for these types of problems, and emphasis
in recent years have been the adaptation of RK methods which can handle such
difficulties (often implicit)10.

10This is treated in the second volume of [7]
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• Stability:
The theory of stability in dynamical systems is deep and as such any short
treatment can only encompass a small part of the theory. For in depth treatises
we refer to [7] [2]. To describe the subject in a few sentences we consider the
following mechanical system. A small mass is constrained to move along inner
wall of a one meter inclined cylinder. We pick an initial condition for the mass’
motion corresponding to some placement of the mass at the top of the inclined
cylinder and a position on the circle making its base. It is intuitive that an
initial condition on the bottom of the circle gives a straight line, and a solution
corresponding to a slightly perturbed initial condition will oscillate around
the non perturbed. On the other hand, the initial condition diametrically
opposite, gives a straight line motion - but solutions corresponding to this
initial condition perturbed, do not remain "close" to the original solution.
When approximating solutions with one step methods, analysing the stability of
the approximated solution becomes important since if the solution is unstable,
the errors made in one step of computation, will bring the next step further
from the true solution, and the computation ultimately fails to describe the
differential equation. There are numerous ways to deal with this issue, and
modern methods are often designed with stability considerations in mind.

We discuss these considerations and implementation procedures as we examine two
related oscillatory systems, Simple Harmonic Motion and the Van Der Pol equa-
tion.
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Simple Harmonic Motion

In this section we discuss some elementary stability issues and accuracy of the meth-
ods of section 5, whilst solving the equation for Hooke’s law for a particle under
spring action presented in section 1. Consider the linear system:

dy

dt
= Ay.

Assuming that the n × n matrix A has a basis of eigenvectors, the general solution
would be of the form:

y(t) =
n∑

i=1

Cie
λitvi,

where λi are the eigenvalues of A, and vi the corresponding eigenvector and Ci are
constants. Since such a linear system only possesses one equilibrium point (the
origin). We can analyse its stability by looking at the eigenvalues of A. If the
eigenvalues are all negative, the origin is stable,as the solution will remain close
to the origin as time goes to infinity. Other restrictions can be placed upon the
eigenvalues, to guarantee different types of stability, but will not be dealt with here.
It is important to note that we examine stability for linear systems in this way, for
non-linear equations the analysis is different. However, linearisation theorems for
equilibrium points reduce much non-linear stability theory to the linear case, and for
many purposes suffices. Since we are interested in how our one-step methods handle
stability issues we consider approximating this system with the Euler method.

yn+1 = yn + hAyn
yn+1 = (I + hA)yn.

We expand the last line in the eigenbasis to yield:

(I + hA)(an1v1 + . . . annvn). (37)

Since each vi is an eigenvector we compactly write:

yn+1 =
n∑

i=1

ani (1 + hλi)vi.

We can also express yn+1 as:

yn+1 =
n∑

i=1

an+1
i vi.
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Upon combining these equations we get:

an+1
i = (1 + hλi)a

n
i .

From this expression we see that the origin is a stable point of approximation if:

|1 + hλi| ≤ 1 i = 1 . . . n.

We call the set of such points in the complex plane (the eigenvalues may be complex)
the region of stability for Euler’s method. The implication is that, in order to
provide a stable approximation, one must consider not only the step size, but also the
eigenvalues of the system itself. Resultantly, there are eigenvalues for which Euler’s
method cannot be stable, regardless of the step size. For such problems, a different
method should be chosen, for which the eigenvalues do lie in its region of stability.
For higher order RK methods applied to this linear system we may write:

yn+1 = Ψ(hλ)yn.

Where if the method is explicit Ψ(hλ) is a polynomial function - the stability func-
tion, for which the origin is stable if |Ψ(hλ)| ≤ 1. Since the explicit Runge-Kutta
methods in this paper are constructed to coincide with the Taylor polynomial of cor-
responding degree, it is clear that second order methods will have a stability function
1 + hλ + (hλ)2

2 , and so forth for higher order methods. The set of points satisfying
|Ψ(hλ)| ≤ 1 increases with order, but since such polynomials are unbounded, no
explicit RK method can have a stability region covering the whole complex plane,
and therefore the correct choice of method becomes paramount. We now turn to
the problem proposed at the beginning of this section, approximating a second order
linear equation. We will consider the eigenvalues of the system and comment on
stability.

d2y

dt2
= −(

k

m
)y

k

m
∈ R. (38)

We impose that the particle is displaced one meter from its equilibrium position at
the initial time t = 0. Furthermore we assume that the particle at this time has zero
velocity.

y(0) = 1

dy(0)

dt
= 0.
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We saw that the solution to this equation, without imposing the initial conditions
were:

y(t) = c1eiat + c2e−iat.

Where the c1, c2 are two real constants. The eigenvalues ±ia are obtained from the
characteristic equation of the ODE. By the nature of the initial conditions, we reduce
to:

c1 + c2 = 1

c1 = c2

c1 = c2 =
1

2
.

Factoring we can express this as:

c1(e
iat + e−iat).

Rewriting in polar form of complex numbers and using the properties of even and
odd functions we reduce the exact solution to

y(t) = cos(t). (39)

For simplicity we have assumed that a = 1, That is, the ratio of the mass and spring
constants are equal to one. We make a note of the imaginary eigenvalues ±i as we
proceed to solve this equation numerically. Transforming this second order equation
into a first order system by a change of variables;

dy

dt
= v

dv

dt
= −y.

We investigate the solutions on the time interval [0, 50], using the Matlab computa-
tional software, for each of the methods presented in the section on Runge Kutta
methods. To implement these we construct algorithms using a specific Runge Kutta
scheme and save these as a function, which matlab calls. The results are then plotted
against the analytic solution.
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Figure 2: Analytic versus Euler solution

Euler Method:
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Even with a generous step size of 0.1, as time increases, the numerical solution
predicts a larger amplitude of oscillation. Apart from being notably different to the
analytical solution, this would physically correspond to a violation of energy conser-
vation. As such we would have to compute with yet a smaller step size, or revert our
attention to the higher order methods which clearly give better approximations, even
for larger step sizes. However, this only improves our approximation locally. Over
large time intervals, no reduction in step size helps due to stability considerations
of Euler’s method. The eigenvalues of the problem are purely imaginary, and the
stability region of Euler’s method does not contain the imaginary axis, exept the
origin. Resultantly, we must use a different method for large intervals.
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Matlab Code

function [ tout, yout ] = euler( F, t_beg, t_end, h, Y_0 )

tout = [t_beg];
yout = [Y_0(:)’];

for t=t_beg:h:t_end
Y_0 = Y_0 + h*F(t, Y_0);
tout = [tout; t+h];
yout = [yout; Y_0(:)’];

end

end

f = @(t, Y) -Y(1);
F = @(t, Y) [Y(2); f(t, Y)]; %Functions from ODE and system.
Y_0 = [1; 0]; %Initial condition.

t_beg = 0;
t_end = 50; % Defines the time interval we wish to solve over [0,50]

hold all; % Plots analytical and Euler solutions on same graph.

t = t_beg:0.001:t_end;
plot(t, cos(t));
legends = {’analytic solution’}; % Plots analytical solution with label.

%Calling the Euler method and plotting.

for h = [0.1]; % Stepsize.
[tout, yout] = euler(F, t_beg, t_end, h, Y_0);
plot(tout, yout(:,1),’:’);
legends = [legends {strcat(’euler h=’, num2str(h))}];

end

legend(legends);

66



0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

 

 
analytic solution
Midpoint method h=0.3

Figure 3: Analytic versus Midpoint solution
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With the midpoint method, we see that the use of a second order method provides a
more accurate approximation to the problem, the large oscillations of Eulers method
have been reduced over the interval. However, we have only provided a more accurate
solution locally, since the stability region of the midpoint method does not include
±i. If we were to extend the interval, similar behaviour to Euler’s method would be
seen.
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function [ tout, yout ] = midpoint( F, t_beg, t_end, h, Y_0 )

% Follows the same design structure as the euler function, but implements
% second order runge kutta instead.

tout = [t_beg];
yout = [Y_0(:)’];

for t=t_beg:h:t_end
k1 = F(t, Y_0);
k2 = F(t + 0.5*h, Y_0 + 0.5*h*k1);
Y_0 = Y_0 + h*k2 ;
tout = [tout; t+h];
yout = [yout; Y_0(:)’];

end

end
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Figure 4: Analytic versus second order solution
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function [ tout, yout ] = custtwo( F, t_beg, t_end, h, Y_0 )

tout = [t_beg];
yout = [Y_0(:)’];

for t=t_beg:h:t_end
k1 = F(t, Y_0);
k2 = F(t + (2/3)*h, Y_0 + (2/3)*h*k1);
Y_0 = Y_0 + h*((1/4)*k1 + (3/4)*k2);
tout = [tout; t+h];
yout = [yout; Y_0(:)’];

end

end
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Figure 5: Analytic versus RK4 solution
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The RK4 method provides an excellent approximation to the analytical solution,
which does not diverge over the interval. The reason for this is that the stability
polynomial of RK4 contains the imaginary line for small enough step sizes, making
the method stable for this problem.
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function [ tout, yout ] = rk4( F, t_beg, t_end, h, Y_0 )

tout = [t_beg];
yout = [Y_0(:)’];

for t=t_beg:h:t_end
k1 = F(t, Y_0);
k2 = F(t + 0.5*h, Y_0 + 0.5*h*k1);
k3 = F(t + 0.5*h, Y_0 + 0.5*h*k2);
k4 = F(t + h, Y_0 + h*k3);
Y_0 = Y_0 + 1/6*h*(k1 + 2*k2 + 2*k3 + k4);
tout = [tout; t+h];
yout = [yout; Y_0(:)’];

end

end
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Van der Pol Equation

In this section we examine the Van der Pol equation, named after Balthazaar Van
der Pol who studied it in the early twentieth century. When applied to electrical
circuits its form reminds us of the damped and/or driven harmonic oscillator in
mechanics and is one of the early systems discovered involving analogue computation.
The equation represents a non-linear oscillating system often used to test numerical
methods, but also possesses a wide range of useful applications, ranging from over-
clocking your iphone to heart beats.

y′′ − µ(1− y2)y′ + y = 0 (40)

When µ = 0 the equation reduces to Hooke’s law, a second order linear equation for
which the dynamics of the explicit Runge-Kutta methods constructed in the paper
were analysed in the previous section. We saw that the quality of the approximations
relied on both step size and the method chosen, in particular the only stable method
was RK4. For µ being non-zero the problem becomes much more intractable, consider
for instance:

y′′ + βy′ + y = 0 (41)

The damped oscillator, for which solutions corresponding to β > 0 are decaying
oscillations and exponentially growing solutions for β < 0. We interpret this as the
"damping/boosting" factor which either add or remove energy from the system. Van
der Pol had the insight to take this damping term and replace it with the non-linear
expression y′(1 − y2)µ. The effect of this replacement is that, depending on the
absolute value of y and the sign of µ, this term governs the resulting growth/decay
behaviour. The importance of this term is governed by the magnitude of µ, as we
shall see in the following computations (positive case only). For large values, we are
able to illustrate an example of a stiff system and its problems relating to cost. In
order to make this precise, linearisation and stability analysis would be required. We
therefore argue loosely that, as can be seen from subsequent plots, large values of µ
give rise to alternating slow and fast transients in the derivative, which can bee seen
after turning the equation into a two dimensional system and evaluating its Jacobian
at (0, 0):

[
0 1
−1 µ

]
.
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From analysis of this matrix one can deduce that large values of µ, give rise to
large rates of change in the solution, and the eigenvalues are real and positive so
that the "steady state solution" (0, 0) is unstable. These features characterise a stiff
equation, although no precise mathematical definition exists. We will show that for
small values of µ, Euler and RK4 provide good local approximations, but for higher
values other methods have to be employed. It should also be noted that the Van der
Pol equation satisfies Lienard’s Theorem and therefore has a unique limit cycle for
which all non-zero initial conditions settle to, this is in stark contrast to Hooke’s law,
where different initial conditions give concentric circles in phase space. The Matlab
script can be copied into an .m file, allowing the file to run will successively show
each method applied to the problem. From this one can get an appreciation for the
large running time for some of the algorithms and also experiment with a change the
parameters to the problem. Only a few graphs are presented here.
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Figure 6: Van der Pol solution by "ode23" with µ = 1.

After writing the equation as a system by introducing the auxiliary variable v = y′

and specifying initial conditions as [2, 0]T (as can be seen in Matlab code). We ap-
proximate the solution for small values of µ. The behaviour is not drastically different
from the harmonic oscillator. Both Euler’s method and RK4 are able to make good
local approximations. The solutions should be compared to the plot by the Matlab
solver "ode23" which is a combination of second and third order RK methods for
which we can implement adaptive step size according to user set tolerance, for the
following computations the tolerance is set to 1× 10−4.
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Figure 7: Van der Pol solution by Eulers method with µ = 10, h = 0.01.

With µ = 10 the problem becomes more difficult to solve. Euler and RK4 provide
decent approximations while being costly since the step size had to decrease by a
factor of 10 to provide any solution curve at all, keeping a step size of 0.1 will make
a horizontal line which explodes to positive or negative infinity when the equation
makes its "transition" from slow to rapid growth. Furthermore larger values of µ
makes the period of oscillation longer, and the cost increases due to this as well.
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Figure 8: Van der Pol solution by "ode23s" µ = 1000.

For even larger values of µ, the period becomes large and the problem becomes very
stiff. None of the constant step size explicit methods provide accurate solutions,
however the variable step solver "ode23" with adaptive step size and error tolerance
is able to accurately approximate the solution, at extreme expense and running time.
The running time for this algorithm on one of the university computers amounts to
minutes, and this is only an interval of 1200 seconds. On the other hand to inbuilt
matlab solver "ode23s" is designed to handle stiff problems and computes in a few
seconds the solution over an interval of 2000 seconds.
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%% Van der Pol equation
%% Overview
% In this script, we approximate the Van der Pol equation using explicit RK
% methods and built in matlab solvers to illustrate some common
% difficulities in implementation.

%% Script
clear all
close all

%interval of computation
t_beg=0;
t_end=35;
tspan = [t_beg,t_end];

%stepsize
h=0.1;
%initial condition
y0 = [2; 0];
Mu =1;
%Function exists as a matlab demonstration under the name vanderpoldemo.
F = @(t,y) vanderpoldemo(t,y,Mu);

%Error tolerance as specified by user for built in matlab solvers.
tol = 1e-4;

%% Beginning example with mu=1.
% With a small or modest size of the parameter mu, there is little
% difficulity in implementing the methods seen so far, and the methods
% remain accurate.

[t,y] = euler(F, t_beg, t_end, h, y0);

% Plot of the solution
plot(t,y(:,1),’-’)
xlabel(’t’)
ylabel(’solution y’)
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title(’Van der Pol Euler, \mu = 1’)

%%
% Plot of RK4
pause
[t,y] = rk4(F, t_beg, t_end, h, y0);

% Plot of the solution
plot(t,y(:,1),’-’)
xlabel(’t’)
ylabel(’solution y’)
title(’Van der Pol RK4, \mu = 1’)

%%
% Using matlab ode23 solver with error tolerance.
pause
opts = odeset(’RelTol’,tol);
[t,y] = ode23(F,tspan,y0,opts);

% Plot of the solution
plot(t,y(:,1),’-’)
xlabel(’t’)
ylabel(’solution y’)
title(’Van der Pol ode23, \mu = 1’)

%% Example leading to breakdown of methods.
% Letting the parameter Mu=50, we immediately run into difficulities.
%the problem becomes stiff and the methods employed so far break down. It
%then becomes clear that we must use stiff solvers.

pause
clear Mu;

t_beg=0;
t_end=30;
tspan = [t_beg,t_end];

79



%value of Mu
Mu =10;
F = @(t,y) vanderpoldemo(t,y,Mu);
%stepsize
h=0.01;

[t,y] = euler(F, t_beg, t_end, h, y0);

% Plot of the solution
plot(t,y(:,1),’-’)
xlabel(’t’)
ylabel(’solution y’)
title(’Van der Pol Euler, \mu = 10’)

pause

[t,y] = rk4(F, t_beg, t_end, h, y0);

% Plot of the solution
plot(t,y(:,1),’-’)
xlabel(’t’)
ylabel(’solution y’)
title(’Van der Pol RK4, \mu = 10’)

pause

[t,y] = ode23(F, tspan, y0, opts);
% Plot of the solution
plot(t,y(:,1),’-’)
xlabel(’t’)
ylabel(’solution y’)
title(’Van der Pol ode23, \mu = 10’)

pause

[t,y] = ode23s(F, tspan, y0);
% Plot of the solution
plot(t,y(:,1),’-’)
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xlabel(’t’)
ylabel(’solution y’)
title(’Van der Pol ode23s, \mu = 10’)

pause

[t,y] = ode113(F, tspan, y0,opts);
% Plot of the solution
plot(t,y(:,1),’-’)
xlabel(’t’)
ylabel(’solution y’)
title(’Van der Pol ode113, \mu = 10’)

%%
% Tackling a truly stiff problem, Mu=1000.
pause
clear Mu;

t_beg=0;
t_end=2000;
tspan = [t_beg,t_end];

%value of Mu
Mu =1000;
F = @(t,y) vanderpoldemo(t,y,Mu);

[t,y] = ode23s(F, tspan, y0);
plot(t,y(:,1),’-’)
xlabel(’t’)
ylabel(’solution y’)
title(’Van der Pol ode23s, \mu = 1000’)

pause

%using the ode23 solver becomes extremly costly, but is able to produce
%acceptable approximations within our specified error. It is very easy to
%crash matlab using this method, even if the parameters are changed only
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%slightly.

t_beg=0;
t_end=1200;
tspan = [t_beg,t_end];

[t,y] = ode23(F, tspan, y0, opts);
plot(t,y(:,1),’-’)
xlabel(’t’)
ylabel(’solution y’)
title(’Van der Pol ode23, \mu = 1000’)
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