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Abstract

This paper explores the possibility of backtesting trading strategies using
Monte Carlo simulation. An illustrative example is carried out by backtesting
two strategies. The main strategy is the Magic Formula, introduced by Joel
Greenblatt in his book ”The Little Book that Beats the Market” from 2006.
A randomized version of the Magic Formula is also backtested for comparison.
The strategies are then compared to the chosen equally-weighted index based
on the investable universe of stocks.

The results indicate that Monte Carlo simulation could be a fruitful way to
backtest strategies over a shorter time period, no longer than one year. For
the longer time periods employed the backtests did not provide any informative
results. The Magic Formula strategy is intended for a holding period of three
years or more so no relevant conclusions about its performance could be drawn
using Monte Carlo simulation. The paper also contains some suggestions for
future studies.

A description of the universe of investable stocks, the full code of the matlab-
program and the results from the simulation are supplied in appendices.
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1 Introduction

This study aims to explore ways to backtest portfolio strategies using Monte
Carlo simulation. The first part of the paper, chapter 2, 3 and 4 will go through
some basic theory regarding backtesting, Monte Carlo methods and how they
could be combined. In order to provide an illustrative example the following
chapters will be subjected to a simple backtest of trading strategies by means
of Monte Carlo simulation.

The main idea is to estimate a probability distribution of the future portfolio
value given a certain trading strategy using historical data. For the simulation
in the present study the historical data to be used is a number of series of ad-
justed1 daily closing prices from a universe of selected stocks. From these price
series daily growth and daily return are calculated. Samples are taken from the
daily growth or the daily return directly before the point of time chosen to be
the starting time of the simulation. The starting time will be varied within the
time frame of 2006-2011. Since the relative future to this point in time is known
one can get a notion of to what degree, if any, the results of the simulation gave
useful feedback for evaluating the strategy.

1The prices are adjusted for dividends and splits.
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2 Backtesting

In order to comprehend what a backtest is, it is of importance to understand
how a trading strategy can be executed on a time frame of historical data. For
this purpose some basic mathematical notation will be established.

2.1 Portfolios Over Time Frames

The aim of the notation is to describe trading strategies applied to a universe
of stocks. Other financial instruments are left out since they are not included
in this study.

2.1.1 A Portfolio of Stocks

Let P (t) be a portfolio of stocks at time t. Suppose the universe of investible
assets consists of m stocks. For each j let Sj(t) be the stock price of stock j
at time t, with j = 1, ...,m. Denote by aj(t) the number of shares of stock j
contained in the portfolio at time t. If no short positions are allowed in the
portfolio then aj(t) ∈ R+, otherwise aj(t) ∈ R.

The weights of the portfolio w(t) = (w1(t), ..., wm(t)) for the stock holdings
are given by the following relation

wk(t) = ak(t)
Sk(t)

VP (t)

where VP (t) is the value of the portfolio at time t in accordance with

VP (t) =

m∑
k=1

ak(t)Sk(t)

2.1.2 A Time Frame

A backtest is generally performed over an interval of time, or time frame. Let
T represent a time frame and let the time frame be a sequence of consecutive
days of length ∆t = 1

250 years. Set the end of the first day to t0 = 0 and call
the end of the last day tn. For any two consecutive time steps in T let

tk = ∆t+ tk−1, 0<k<n, k, n ∈ N

so that the time frame T = [0, tn] is split into n steps of length ∆t. The
time frame T can be seen as a sequence [tk]n0 .

2.1.3 Growth and Return

The daily growth of a stock is given by
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S(tk) = S(tk−1)eG(tk−1,tk) ⇔ G(tk−1, tk) = ln

(
S(tk)

S(tk−1)

)
and the growth over T

G(0, tn) =

n∑
k=1

ln

(
S(tk)

S(tk−1)

)
and the return over T

R(0, tn) =
S(tn)− S(0)

S(0)

The relation between return and growth can be concluded as

R(tk−1, tk) =
S(tk)− S(tk−1)

S(tk−1)
=

S(tk)

S(tk−1)
− S(tk−1)

S(tk−1)
= eG(tk−1,tk) − 1

It might also be of interest to relate one stock to another in terms of growth
or return. Covariance and the correlation can be used to satisfy this interest.
The covariance of the daily growth of two stocks S1 and S2 over T is calculated
as

Cov(G1, G2) =

n∑
k=1

(G1(tk−1, tk)− µ1)(G2(tk−1, tk)− µ2)

n

where µ1 and µ2 are the average daily growth over the period of time for S1

and S2 respectively.

If for example the daily growth of two stocks have a positive covariance it
means that the daily growth of the two stocks in general have the same sign. If
the covariance on the other hand is negative they tend to have daily growths of
opposite signs. The same holds for the daily return of two stocks.

Usually comparisons between instruments are done by means of the corre-
lation between them denoted as ρ. That is the covariance divided by (σ1σ2)
where σ refers to the standard deviation. Consequently the correlation between
the series of daily growth for S1 and S2 can be written as

ρ1,2 =
Cov(G1, G2)

(σ1σ2)

This yields a number ρ ∈ [−1, 1] more convenient for comparison.
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2.2 Briefly About Trading Strategies

A trading strategy gives a method for making a selection of assets from the
universe, and for assigning weights to those assets at each time t. Backtesting
of a trading strategy can be seen as a way of studying it in a context of historical
data. In order to be fruitfully backtested a trading strategy needs to be well
defined. This means that the strategy should be possible to formulate mathe-
matically and that its performance should be quantifiable. For the strategy to
be evaluated using a backtest it is also necessary to have something to compare
it with. This can for instance be a relevant market-index or another benchmark
considered to be relevant for the trading strategy.

Strategies can aim to pick individual stocks or instruments from the uni-
verse relying on financial analysis of their individual qualities. This approach
is usually referred to as bottom-up stock picking. A top-down strategy takes
for a starting point the desired exposures to different market segments from
the universe. Different methods can be used selecting the instruments that
maintain the desired exposure. These could involve technical analysis using
larger amounts of historical data to decide on the allocation, or exposures in
the portfolio strategy. The value of the instruments in the universe changes.
As a consequence the portfolio strategy should also define the schedule for re-
balancing the portfolio with optimal weights. To keep the allocations flexible
enough to be able to maintain the exposures, management of liquidity and other
possible transaction limitations might have to be taken into account.

The election of instruments based on large amounts of information drives
many modern strategies to involve a high level of optimization. Because of their
complexity, for someone without the proper knowledge base or without enough
time at their disposal, modern strategies might be difficult to grasp. The per-
formance of a trading strategy in a backtest can play an important role in order
to attract investors. For the backtesting to be convincing it should be carried
out on a variety of historical timeframes, covering relevant market conditions.
A backtest might also be used in order to stress-test a strategy, taking a his-
torical time period as a starting point and then successively modifying it with
respect to relevant parameters. This subject will be discussed briefly later in
this chapter.

2.3 Backtesting a Trading Strategy

A simple form of backtest illustrates expected performance under certain mar-
ket conditions in terms of plain application of the strategy to historical data.
This kind of backtest is going to be frequently referred to later in this paper.
To make this easier a short form for it is introduced.
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Plain application of a trading strategy to historical or simulated data is
onwards referred to as

Application on Time Frame (ATF)

As simple as it is it reflects the basic principals of a backtest, namely to test
a strategy meant for future trading on historical data. The trivial approach to
performing ATF is to consider possible future market conditions then trying to
find periods in history when the markets have behaved similarly to the expected
future market conditions. Applying the trading strategy to the universe of his-
torical data could give an indication of how the portfolio would behave during
similar market conditions.

This simple approach disregards the fact that every actor on the market
helps creating it. The back-tested strategy would in itself impact the over-all
market behaviour. This ignorance might be reasonable if the volumes of the
transactions employed by the strategy are relatively small. If the volumes are
large one might have to modify the behaviour of assets in the universe following
the expected impact of the strategy. This complicates the calculations and gives
rise to interpretations and assumptions in order to assess the expected impact.

In spite of market impact considerations some aspects of ATF backtesting
can be relevant. Consider for example the short term performance of strategies
where the transaction volumes employed by the strategy are large. Suppose
that historical data suggests that the market generally reacts to a certain kind
of market event with some delay. The ATF could be used to study the short-
term performance of a strategy, before the over-all market reacts to the event.

Another issue with historical back-testing is the difficulty in getting cor-
rect historical data. Not only might there be a lack of accessible information,
the available data might be wrong. Moreover, the real world contains massive
amounts of information that is not stored in databases but still slightly affects
the market. A historical data universe is thus by no means a complete repre-
sentation of that market over the historical time frame in question. Predictions
based on conclusions drawn from historical data might thus be expected to have
the same lack of correspondence to reality. Relating to back-testing it seems rea-
sonable and maybe sound to keep in mind that information grows old on both
sides of the present.

Asset managers can resolve the data issue by purchasing backtesting ser-
vices from external data suppliers. Such data providers use more sophisticated
methods than ATF. Relevant benchmarks can for instance be constructed from
the key factors that affect a particular portfolio. Extensive stress-testing of
portfolios can be performed, not rarely employing stochastic simulation with
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estimated parameters calculated from historical data. Such stress-tests focus on
the probability that certain more or less extreme events would occur.

This study will explore the possibility to backtest strategies by means of
stochastic simulation. The idea is, roughly, to calculate a probability distribu-
tion customized for a particular portfolio strategy and simulate possible out-
comes of the strategy on this distribution. Stochastic simulation, commonly
referred to as Monte Carlo simulation will be the theme of the next chapter.

6



3 Monte Carlo

Methods referred to as ’Monte Carlo’ are used for many different purposes,
usually when no other methods or models provide satisfactory performance in
terms of accuracy or speed. What Monte Carlo methods have in common is the
use of randomly generated numbers2. It is for example quite easy to approximate
π by marking dots on uniformly random places on a square with side length 1m.
Draw a circle in the square with radius 1

2 m. The square has the area 1m2 and
the circle π

4 m
2. As the number of dots approaches infinity the number of dots

inside the circle n and the total number of dots inside the square N will satisfy
the following relation

n

N
=
π

4
/1⇔ π =

4n

N

The trustworthiness of Monte Carlo methods can be derived from the Strong
Law of Large Numbers. Let X be a stochastic variable and let xk, k = 1, ..., n,
be a sample of X. Then the Strong Law of Large Numbers state that the average
value of x1, ...xn will converge allmost surely (meaning with probability 1) to
the expected value of X as n→∞. Thus

µ = lim
n→∞

µn

where

µn =
1

n

n∑
k=1

xk.

The variance of X can further be estimated as

σ2
n =

1

n

n∑
k=1

(xk − µn)2

To find an estimate of the expectation of a random variable X with sample
space U ⊆ R it is thus a reasonable approach to draw a large number of out-
comes of X and calculate µn. Relating this to the π-example above, imagine a
division of the square into a grid of k<n smaller squares. The expected value
of a uniformly distributed random variable is a+b

2 , with the sample space [a, b].
Specify where to mark each dot on the square using two random variables X
and Y . Then the expected hit point in each square will converge almost surely
to a point in the middle of it. Let k, n→∞ and the expected hit points cover
the larger square uniformly so that the number of dots in subareas are subjected
to the same relation as the subareas.

2An important part of any Monte Carlo calculation is to generate random numbers, or
more precisely pseudorandom numbers. They can be generated in many different ways which
is not the focus of this present study. For more information about this subject, see for example
”Markovprocesser” -Rydén, Lindgren
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Aiming to draw that large number of outcomes of X implies the venture of
finding a probability density function that suits X. The probability distribution
could be roughly estimated as the number of outcomes from a large sample, X̂
that falls within uk ⊂ U , associated with the kth event divided by the total
number of outcomes in X̂. Such a distribution might be a bit cumbersome to
deal with mathematically.

Another way of estimating a probability distribution for X is to fit a known
probability distribution to a sample from a large number of observed outcomes
of X and then assume the corresponding probability density function to hold
for the actual sample space.

3.1 Dependency Between Random Variables

In many cases the outcomes of some stochastic variables X1, ..., Xm depend
on each other and as a consequence a probability for one of them depend on
the probabilities for the others. A probability distribution for such a collection
of stochastic variables is usually referred to as an m-dimensional multivariate
stochastic probability distribution. Such a distribution gives the probability for
a certain set of outcomes x1, ..., xm to occur. In the case of a normally dis-
tributed multivariate random variable of dimension m the dependency between
X1, ..., Xm is captured in the covariance matrix. The elements in it are specified
by

σ2
ij = Cov(Xi, Xj), i, j = 1, ...,m

where the covariance can be estimated from a sample of n outcomes of the
multivariate stochastic variable X = X1, ..., Xm.

Cov(X̂i, X̂j) =

n∑
k=1

(xi(k)− µi)(xj(k)− µj)
n

The covariance matrix of a univariate stochastic variable is thus its variance.

To generate random numbers from X = X1, ..., Xm one generatesm-dimensional
random vectors from a multivariate distribution that is seen fit for X analogus
to the univariate case.
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4 Monte Carlo Backtesting

4.1 Assumption of Normally Distributed Data

The stockprice can be written as S(t) = S(0)eG(0,t) or S(t) = S(0)(1 +R(0, t)).
Because of that the simulation of it could essentially be about simulating the
growth G(0, t) or the return R(0, t) of the stock. Choosing to simulate with un-
derlying growth by means of Monte Carlo simulation might in some cases be un-
necessary complicated. Let us consider a simulation of the stockprice S(t) over

the time frame T. Denote the daily growth of S(t) as G(tk−1, tk) = ln S(tk)
S(tk−1)

. Moreover, assume G(tk−1, tk) to be a stochastic variable ∼ N(µ, σ). Let
{G(tk−1,tk) : k = 1, 2, ..., n} be a stochastic process over T. Realizing the pro-
cess a large number of times will for each time tk yield a sample space of all
the realizations at tk which can be seen as an estimate of the probability dis-
tribution of the growth of S(t) from the first until the kth day of the time frame.

Just looking at the sum as a stochastic variable will however give the same
distribution as the simulation will approach. This follows from the fact that
The sum of normally distributed stochastic variables is normally distributed.
The sum is then normally distributed with the corresponding sum of expected
values and variance as its respectively expected value and variance. Since

G(0, tk) = ln

(
S(t1)

S(t0)

)
+ ...+ ln

(
S(tk)

S(tk−1)

)
consequently G(0, tk) ∼ N(kµ,

√
kσ2) and the probability distribution of

S(tk) is given by S(0)eG(0,tk).

Simulate by representing daily return with stochastic variables forR(tk, tk+1)
does not provide the possibility of adding daily random variables together in
the same way. In order to do so, the variables would have had to be defined
as R̂(tk, tk+1) = 1 + R(tk, tk+1). Assuming also that this variable is normally
distributed it is possible to assess the price S(tk) by

ln(S(tk)) = ln(S(0)) + ln R̂(t0, t1) + ...+ ln R̂(tk, tk+1) = ln(S(0)) +G(0, tk)

If underlying daily growth is used the growth over a period of days is also
normally distributed. This does not hold for daily return. It is quite common
that the assumption of normally distributed growth does not completely corre-
spond to reality as real distributions tend to have thicker tails, even though the
assumption is frequently used in finance (Hull -2012, ch. 21.7). Two examples
of this are shown below. In these cases it might therefore be reasonable to con-
sider the fit of another distribution to the underlying data.
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Figure 1: Observations of daily growths from Walt Disney and Apple respec-
tively plottet agains a normal probability distribution. If they agree the dots
should be clustered over the diagonal line. As can be seen there are clear devi-
ations from that line.

4.2 Backtesting by Means of Monte Carlo

What really can be estimated from backtesting is at most expected properties
of a stategy under certain market conditions and maybe the likeliness of future
growths or rates of return. With this in mind the definite character of the result
from an ATF-backtest leaves some to be desired in terms of nuances. Monte
Carlo-backtesting over a number of time frames provides an estimated proba-
bility distribution for the performance of a portfolio strategy. This could make
for a refined comparison with other strategies.

Assume we want to know how a portfolio would perform in the market con-
ditions of the previous year. Let the universe representing the market consist of
m stocks. A backtest for this purpose could be performed starting by electing
a time frame T, covering n days, that has the desired properties. Using data
from the time preceding T, estimate the random variables needed to represent
the daily growth or daily return of the stocks in the universe.

Suppose we want to backtest a portfolio strategy P (tk), k = 1, ..., n using a
Monte Carlo simulation. It could be performed in accordance with the following
steps:

1. Collect historical data for the stocks in the universe and calculate the
daily growths or returns. Using these, estimate the expected value and
covariance matrix for the daily growth or return of the m stocks in the
universe.

10



2. Choose a multivariate probability distribution with dimension m and the
expected values and covariance matrix from the previous step.

3. Generate sufficiently many samples from the distribution to represent the
daily growths or returns of the stocks in the universe over T.

4. Calculate the prices of the instruments using the generated random num-
bers. Iterate steps 2 and 3 to simulate N representations of the universe.

5. Calculate an ATF of the strategy on each of the N simulated representa-
tions of the universe over time T.

6. Gather the outcomes of the ATFs at time tk as a sample space and calcu-
late an estimated probability distribution for the portfolio value VP (tk).

This distribution can then be compared to the ATF of the straegy over the
real historical data.

11



5 Example: Simulation

In order to explore whether relevant information can be provided by a Monte
Carlo Simulation backtest, a simple example is going to be carried out. Several
strategies will be backtested and compared in order to provide a more general
idea of backtesting by means of Monte Carlo simulation.

5.1 The Universe

The universe of stocks for this simulation was chosen from companies with a
large market capitalization. This was chosen partly for reasons of data access, as
large companies in general provide more historic data records. Another reason
for this was that the simulations here are not taking into account the impact on
the market caused by the strategies . Large companies would likely require a
larger volume invested for a strategy to have a notable impact on the universe.
The S&P100-index was taken as a starting point and the universe was then
modified to make the simulations possible in practice. For more details on
which stocks are in the universe see Appendix 6.

5.2 The strategies

Three trading strategies will be defined and backtested using Monte Carlo sim-
ulation: The Magic Formula, The Random Formula and the Universe Formula.
They are all traded in the same volumes. One fifth of a dollar is invested each
ten week period until one dollar is invested. The full investment is conluded
after the last fifth is invested in the portfolio. the difference between the strate-
gies is determined by the way the stock selection is performed.

The strategies are chosen to fullfil the following criterias as far as possible

• They should both be well defined and possible to formulate in terms of
code.

• They should intuitively have different expected performances in order for
reasonable and clearly different hypothesises to be formulated.

• They should be relatively uncomplicated to fit into the time frame of the
present study.

The universe from where the strategies selects instruments to buy and sell
is chosen by

• Diversity of components in order to reflect a market that can be considered
relevant for the chosen strategies.

• Data accessibility.

• Reasonable number of components considering the limited number of
working hours at the disposal of the present study.
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5.2.1 The Magic Formula

The first strategy to be tested is the rather straight-forward portfolio strategy
called ”The Magic Formula” formulated by Joel Greenblatt in his book ”The
Little Book that Beats the Market” (2006). In this book Greenblatt argues that
MF beats the market on a long enough time line. By this he means that the
portfolios holdings need to be bought and held for at least 3 to 5 years in order
to do what he claims can be expected from it, that it beats the market.

The strategy gives a method to select stocks from the top performing com-
panies judging by two key numbers. The first one, Return on Capital, intended
to reflect the efficiency of the activities performed by the company. The second
one, Earnings yield, is intended to reflect the most undervalued company. Re-
turn on capital relates the earnings of the company to the resources it employs
in order to make them. Earnings Yield relates the earnings to the price that has
to be paid in order to own a share of them. The result of this selection aims to
be a collection of under valued stocks from companies that use their available
resources efficiently.

Since these two key numbers just vaguely reflect all the relevant character-
istics of the actual performance and value of a company, the formula is only
expected to work on average, calling for a few different stocks to be held at the
same time, and that they regularly are replaced with new ones. Joel Greenblatt
provides in his book step by step instructions. These assume that one uses the
online screener at www.magicformulainvesting.com which is not to be used in
this study3. The interpretation of the strategy used in this study is the following:

1. Categorize the stocks in the universe according to their performance rel-
ative to the key numbers.

2. Choose to buy the top five performers for a fifth of the money intended
for the portfolio.

3. Iterate the two preceding steps every 50 days (1
5 of a year consisting of 250

trading days) until all the money intended for the portfolio is employed,
that is, for one year.

4. Sell each stock after holding it one year and buy a new one from the top
five performers in the universe to replace it.

5. Repeat the last step until the portfolio has been held held for at least two
or three years.

Another difference from the original formula is that because of limited data
access EBITDA has been used instead of EBIT. This means that depreziations

3Limited access to the underlying data used by this screener made it natural to construct
a screener specifically for this study. See Appendix for the code.
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and amortizations are not considered in this study as they would be in the orig-
inal Magic Formula.

The Magic Formula is well defined, as long as there is access to the infor-
mation needed. Regarding the stocks as shares of companies it is reasonable to
relate the prospects of the company to affect the value of the shares. Because
of this, a strategy that takes into account more information about the company
in question in order to evaluate which stocks to buy might reasonably be ex-
pected, just like Joel Greenblatt suggests, to perform better than a strategy
disregarding such information.

5.2.2 The Random Formula

The Random Formula is a version of the Magic Formula that in order to facil-
itate comparison has been defined exactly like the interpretation of The Magic
Formula, made for this study, but disregarding the key number information.

5.2.3 The Universe Formula

The Universe Formula can be seen as the Monte Carlo simulation of the chosen
index. This strategy is traded with the same volume as the two former ones in
order to be comparable. It buys equally weighted of all stocks and thus represent
a simulated universe.

5.3 Assumptions and Decisions

Each simulation is to be carried out using the expected values and the covari-
ance matrix of underlying samples of daily growths or daily returns fitted to a
multivariate normal distribution.

They are going to be carried out for underlying daily growth and daily re-
turns respectively, with two different sample sizes, the full preceding year and
the preceding half year. Sample spaces are going to be generated with 1000
repetitions and collected for analysis after simulating one, three and five years
from the starting time.

The key numbers for the Magic Formula were accessible to a varying degree
from different companies. In the best cases they were accessible on quarterly
basis, and in the worst, not at all, or just for a few years during the time period
subjected for the study. In order to make a somewhat fair interpretation the
companies for which no key number data were available, for 20 of the cmpanies
that is, were taken out of the universe. For the rest the average of each key
number for the underlying sample for each simulation were used. Another pos-
sible way to deal with this would have been to randomly generate them as well
taking into account their covariance, but since some of the key numbers only
were provided for one or two years of the time period, the sample covariation
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could not be expected to realistically reflect the covariance of the underlying. A
backside of choosing the average is that the keynumbers being constant makes
for the Magic Formula to pick the ’best stocks’ first, then picking successively
’worse stocks’ until the first picks are sold and so once again available to be
bought.

5.4 The Construction

In this section the program written and used for the simulations is going to be
described. Throughout this section Appendix 2 will be useful, it contains the
full code of the program with comments.

Figure 2: An illustration of the program structure

5.4.1 The Main File

In the main file ’BackTest’ starting date, the number of repetitions and sample
size is set manually. Running the file it calls the functions ’dataReader’ and
’BTcall’. These do what their names imply. ’dataReader’ reads the stock price
histories for the companies from files in the directory, following this ’BTcall’ is
called for to call all the other parts of the program.

5.4.2 The Functions

From ’BTcall’ several functions are called for starting with BTyield. This one
processes the data originating from ’dataReader’ and calculates daily growth
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and daily return according to the formulas described in section 2.1.3 and esti-
mates the expected values from these.

Next, the covariance matrix is calculated for the daily growth and the daily
return respectively. Then the function ’MonteCarlo’ is called for in order to
generate the simulated universes.

The last function called for by ’BTcall’ is ’simulateStrats’. This function
compiles, partly by means of other functions, the portfolios of the strategies
from the simulated universes. The other major functions it uses that has been
written for this study are, ’BTholding’, ’BTstrat’ and ’uniStratSim’. It starts by
reading the key numbers for the Magic Formula using the function ’orgKeyNr’.
’orgKeyNr’ reads pre organized key number data from another folder. ’simu-
lateStrats’ calculates both the average of the key numbers as well as generates
random numbers to represent them. For the simulations however, only the for-
mer was used. They are used calling the function ’BTholding’ that selects the
stocks to be contained in the portfolios over time. These are selected as column
indexes, since the different stocks are organized as columns in ’the universe ma-
trix’.

’BTholding’ is using a built in sort function in matlab in a few steps to
categorize the stocks for the Magic Formula in order to make stock selections4.
The Random Formula has stocks selected in much the same way except for the
selection being based on chance. The stock selections that are returned to ’sim-
ulateStrats’ containing stocks going in and out of the portfolio each ten week
period of the simulation. Using the function ’BTstrat’ a sample path is created
for each of the simulated universes. In order to simulate the Universe Formula
a modified version of ’BTstrat’ is used, namely ’uniStratSim’. It was created to
make it have the same traded volume as the two strategies it is to be compared
to.

From these 1000 sample paths of each trading strategy expected value and
standard deviation were calculated after one, three and five years.

4An explicit explanation of how this is done can be found in the comments of the code of
’BTholding’ in Appendix 2, section 9.7, row 36
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6 Analysis

Throughout the analysis the figures in Appendix 1 will come in handy. A com-
parison between the results using daily growths or daily returns as underlying
data for the simulations did not suggest any significant difference between the
two. Using half a year of daily growths or daily returns generally resulted in
worse predictions of the simulation. The analysis will focus on the results based
on underlying data of one year of preceding daily growths, which will be the case
in the upcoming discussion if nothing else is mentioned. For natural reasons the
simulations can only be compared with the actual development5 one year into
the future starting in January of 2011 and only three years for the ones starting
in January of 2009.

6.1 General Trends

The development one year after the starting point of the backtest in January of
2006, 2009 and 2011 seem to reveal some gains with using monte carlo methods
for backtesting compared to the ATF. An ATF starting 2006 and 2011 falls
well within the sample spaces of the simulations but not for the one starting in
January of 2009 (See figures in section 8.2.1 and 8.2.3). This is probably due to
the high volatility of the market during 2008 and 2009.

For 2006 the result seems quite intuitive. More precisely the simulations
starting in January of 2006 has the expected daily growth taken from the year
of 2005. Looking at the development of the universe over 2005 and 2006 they are
rather alike. In fact just assuming the ATF for 2005 of the Universe Formula to
forecast the development of 2006 would have been a pretty acurate prediction,
giving 1.1156 dollars. Even though it is actually closer to the ATF of 2006 than
the expected value of the simulation (Which still is well within two standard
deviations from the ATF), it still doesn’t provide any notion of the variation
span of possible outcomes.

Looking at the results of the simulations starting in January of 2011 the
standard deviations of all the strategies are greater than the ones for the simu-
lations starting in January of 2006 (See the columns ’std’ in the tables of section
8.2.1 and 8.2.3). Again, looking at the development of the universe for the years
2010 and 2011 they also look rather alike in terms of volatility. An ATF over
2010 would however correspond poorly to 2011 in terms of portfolio value for
the different strategies. The Simulation on the other hand, based on data from
2010 gives a fairly just prediction.

For the simulation starting in January of 2009 the distributions for all the
strategies deviate from the actual development during the time period (See fig-
ures in section 8.2.2). It is clear that the simulations only carry information

5The ’actual development’ is represented by an ATF, that is, the strategies applied to the
actual historical price development over the time frame forecasted by the simulation.
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about the history before they started. The simulation starts at a radical trend
shift. Thus, using historical data yields a negative expected value of growth for
most of the stocks in the universe while the actual development changed to a
positive growth for most of the stocks. This simulation method seems unable to
comprise major trendshifts over time. This will later be discussed as a prospect
for future studies. Looking three or five years further the simulations fall quite
far off from the result of the ATF for all starting points and strategies (See
figures in section 8.3 and 8.4).

The table below shows the differences between the expected values of the
distributions for the portfolio values and the corresponding ATF after one, three
and five years. The difference is expressed in absolute terms of standard devia-
tions of the portfolio distributions. UF1 stands for the Universe Formula after
1 year, RF3 stands for the Random Formula after 3 years and MF5 stands for
the Magic Formula after five years and so on.

Figure 3: The differences between the expected values of the distributions for

the portfolio values and the corresponding ATF. They are expressed in terms of

standard deviations of the portfolio value distributions.

As can be seen in the table, an outcome equal to the ATF is at least five
standard deviations away from the expected portfolio value in all cases on a
time horizon of three or five years. The probability of an outcome deviating
five standard deviations or more from the sample mean is 0.00005733%. Conse-
quently this particular backtesting method by means of Monte Carlo simulation
does not seem to give any informative distribution on a time horizon of three or
five years. The seeming inabillity of the simulation method to comprise major
trendshifts over time might contribute to this, as the number of trend shifts
over time can be expected to increase over a larger time span.

6.2 The Strategies

The Magic Formula is a long-term trading strategy, meant to be maintained
over at least three to five years. Because of that a comparison of the strategies
over shorter time frame such as one year could not give any relevant conclusion.
It would be better to compare the strategies after three or five years. Since this
particular simulation method does not seem to provide informative distributions
after such periods of time it would be fruitless to point out a ’best strategy’6.

6“Best” in this connection means the strategy that performs best compared to the Universe
Formula, chosen to reflect the universe.
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6.3 Thoughts and Comments

I believe there is a more simple and maybe better way of performing the sim-
ulations given the assumption of the underlying daily growths being normally
distributed. It is to add the distributions of the underlying daily growths for the
different stocks held in the portfolio when rebalancing it, creating a portfolio
specific distribution. From this distribution it would be possible to simulate
the daily growth until it is time to rebalance the holdings again. The reason
that I chose to build the program and the simulation the way I did is that I
aimed to use the real distribution of the underlying instead of fitting the normal
distribution to it. Gathering usable data took more of my time than I had ex-
pected and I simply hadn’t enough time to implement the second distribution.
Hopefully simulating the way I simulated in this study might be a step stone
for a future study, relating to my code and implementing a better distribution
for the underlying.

7 Conclusions and Ideas

This section is divided in two sections. The first sums up the present study.
The second one is about ideas for endeavouring further into related subjects.

7.1 Conclusion from the study

This study indicates that backtesting through simulation of a trading strategy
by means of Monte Carlo might give relevant information about it derived from
historical developments. Backtesting this way generates a clear distribution of
different possible outcomes of the portfolio. The method employed by this study
does not seem to give a fair representation of possible over all trendshifts over
time of the market. The results of the study also suggests this form of Monte
Carlo backtesting to be more suitable for short term trading strategies. The
number of trend shifts over time can be expected to decrease over a shorter
time span. Consequently a short term trading strategy might be less sensitive
to the kind of events that these simulations seem unable to comprise.

7.2 Prospects for Future Studies

The normal distribution does not provide a perfect fit for the underlying samples
of daily growths. While the normal distribution makes for easier calculation it
does not provide a fair simulation given the underlying data provided by real-
ity. Prospects for future studies would be to investigate other distributions that
might provide a better fit. What has caught my interest through out this study
is the prospect of using the actual distribution of the underlying daily growths
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or returns. Here follows an explanation of a way to randomly draw a sample of
one days daily growth for a collection of stocks from the distribution given by
an underlying sample of historical daily growth.

Given the historical daily growth Gl(tk), l = 1, 2, ...,m, k = 1, ..., n for a
collection of m stocks over a specified historical time frame T of n days. Let
G(tk) be interpreted as an m-dimensional vector with the daily growths of each
stock at day tk so that in G(tk), the lth element is Gl(tk), the growth of stock
l at day tk.

1. Create an intervalD ⊂ R between the single largest and the single smallest
daily growth of all the stocks and all the days in T. Divide D into p
subintervals of equal length ∆j ⊂ D, j = 1, ..., p so that ∆1∪...∪∆p = D. p
can be seen as the resolution or precision of the emerging interpretation of
the underlying distribution of historical daily growths G(tk), k = 1, ..., n.

2. Let I be the list of all possible combinations of m elements from {1, ..., p} ⊂
N, assigning each combination an index i = 1, ..., pm (as pm is the number
of all possible combinations of the elements in {1, ..., p}). This way I(i)
is a unique combination of m elements from {1, ..., p} ⊂ N that in code
could be formulated as an m-dimensional vector with the lth element j ∈
{1, ..., p} ⊂ N that correspond to the subinterval ∆j .

3. Let N(i) ∈ N be the number of vectors G(tk), k = 1, ..., n such that their
elements fall within the subintervals ∆j , j ∈ {1, ..., p} ⊂ N corresponding

to the elements in the vector I(i). This way N(i)
n can be seen as the

probability for the daily growth of the m stocks to simultanously fall into
the corresponding combination of m subintervals given by the elements of
I(i).

4. Draw a number i from {1, ..., pm} ⊂ N using the probability distribution

given by N(i)
n over i = 1, ..., pm. Generate numbers gl, l = 1, ...,m from a

univariate distribution on the subinterval corresponding to the lth element
in I(i). The vector g = [g1 ... gm] could be used as a randomly drawn
sample of daily growth for the m stocks.

This way random numbers are drawn from the underlying distribution. To
some extent it also preserves the market trends from within the underlying col-
lection of instruments, at least on a daily basis. A backside of using such a
distribution for generating sample paths is that the possible values are limited
to the ones that have appeared in the sampled history. The future might of
course deviate from the historical span of variation.

No matter the underlying distribution, possible market trends over time are
not considered by the above simulation methods. Fluctuations might occur in
a simulation with many consecutive days of growth deviating from average all
up or all down. An event of many consecutive days of extreme deviation from

20



average growths is however very unlikely. Economic crisis, bubbles that burst
or occur do not seem to have their proper chance to appear in these simulations.
Looking at plotted time series of stocks the extreme daily events seemingly ap-
pear in clusters. With this in mind some mechanism to deal with trends over
time could probably provide a simulation better reflecting reality.

One could for example consider resampling from the simulated history so
that a downward trend rebalances the probability distribution for the coming
days. This could be thought of as a way of representing trends over time on the
market. This method might not reflect the actual behaviour of trends on the
market. Despite that, many repeated simulations could provide a more realistic
sample space since the extreme deviations from the expected average path based
on historical data might be expected to increase.

I had thoughts, inspired by my mentors, of implementing the rebalancing
mechanism in my simulations. In that case I would have performed the simula-
tions in steps, say 20 days at the time. After 20 days, calculating the expected
value and the covariance based on the past 250 days. The first effect of this,
that comes into my mind is that the ratio of ’real’ data in the underlying will
decrease as the simulation advances. On the other hand the most recent ’real’
data will be reused more times the closer to the starting point it is. Had I
had much more time for this study I would probably have implemented it. The
reason that I did not put a higher priority on it was because on a long time
frame, I don’t believe such simulated trends would carry information about the
behaviour of the underlying. The gain, I believe, would be a greater spread of
the resulting distributions, but these would be based more on randomness than
on the underlying historical data.

Another prospect of future studies is to do a study similar to this one but
with short term strategies. On a short time horizon the problem of major
trendshifts might be less prominent and so the Monte Carlo backtesting method
described here could be more useful. In section 2.3 an ATF is suggested to be
useful to study the short-term performance of a strategy, before the over-all
market reacts to an event provoked by the strategy. For such a study historical
data would have to suggest that the market generally reacts to that market
event with some delay that can be somewhat specified. Such a situation might
be interesting to study using the methods employed in the simulations of this
study.
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8 Appendix 1: Results

The following results are based on daily growths from the year preceding the
starting time of the simulation.

8.1 The development of the stock universe

Figure 4: The development of the stock universe
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8.2 After One Year

8.2.1 starting in January of 2006

The three plots show the sample spaces generated by the simulations after one
year for each strategy. The table below is giving the corresponding figures of
expected value and the standard deviation of the distributions as well as the
actual outcome of the different portfolios represented by an ATF.

Figure 5: The three strategies after one year, starting January of 2006. The red
line indicates the result of the corresponding ATF.
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8.2.2 starting in January of 2009

The three plots show the sample spaces generated by the simulations after one
year for each strategy. The table below is giving the corresponding figures of
expected value and the standard deviation of the distributions as well as the
actual outcome of the different portfolios represented by an ATF.

Figure 6: The three strategies after one year, starting January of 2009. The red
line indicates the result of the corresponding ATF.
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8.2.3 starting in January of 2011

The three plots show the sample spaces generated by the simulations after one
year for each strategy. The table below is giving the corresponding figures of
expected value and the standard deviation of the distributions as well as the
actual outcome of the different portfolios represented by an ATF.

Figure 7: The three strategies after one year, starting January of 2011. The red
line indicates the result of the corresponding ATF.
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8.3 After Three Years

Figure 8: Starting January of 2006

Figure 9: Starting January of 2009
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8.4 After Five Years

Figure 10: Starting January of 2006
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9 Appendix 2: The Code

9.1 BackTest

1 % Monte Carlo Backtesting
2 %
3 %This is the main file for a for the Monte Carlo backtesting.
4 %It is devided in two sections, the first one gathers data,
5 %the second one performs the backtest.
6 %
7 %The result of running both section are two csv files in the
8 %folder 'sample spaces'. They each contain sample spaces for
9 %the strategies, based on daily returns and daily growths

10 %respectively. Sample spaces are provided for ten half year
11 %steps from the starting date. It also contains the ATF result
12 %at each half year step.
13 %
14 % Section 1.
15

16

17 %Format of the dates in the time series data that is to be loaded.
18 format='yyyy mm dd';
19

20 %Calls the function dataReader() which returns a price series for
21 %each stock. These are organized as column vectors in a matrix
22 %'data' with the first column containing dates.
23 %The earliest date possible to start a simulation from, and the
24 %last for which data is available are also returned.
25 old=cd('data');
26 [data, minStart, maxStop]=dataReader(format);
27 cd(old);
28

29 %Prints the accessible timeframe that allows for estimations to
30 %be made from the year before.
31 Tidsintervall=[minStart ' till ' maxStop]
32

33

34

35 %%
36 % Section 2.
37

38 %The desired number of repetitions of the simulation
39 rep=1000;
40

41 %Set the starting year between 2006 and 2012.
42 setYear=2006;
43 %To start from 2013 see comments below.
44

45 %The sample size, 1 => 1/2 year, 2 => 1 year
46 sampleSize=1;
47

48

49 yearIndex=setYear2005;%This number is used to set the starting day
50 %the data of the key numbers for the Magic Formula.
51 Y={'2006', '2007', '2008', '2009', '2010', '2011', '2012'};
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52 Y=Y{yearIndex};
53

54 fileName={'Half a', 'One'};
55 nrOfDays=[125 250];
56

57 tit=fileName{sampleSize};
58 smplSize=nrOfDays(sampleSize);
59

60 %Sets the desired distribution to be fit to the daily growth
61 %or daily returns.
62 Dist='norm';
63

64 %Specifies the day when the simulation should start and when it
65 %should end end and converts it to a serial number. It should be
66 %set to the first trading day of a year.
67 begin=datenum([Y ' 01 03'],format);
68 keyNrStart=(yearIndex 1)*250;%This is used to set the key number
69 %data for the magic formula to the right starting date.
70

71 % 2 0 1 3
72

73 %For a simulation based on data during 2012, use 2012 12 28 and
74 %uncomment the next two lines:
75 % Y='2013';
76 % keyNrStart=1750;
77

78 %
79

80 %The following code looks for the specified beginning dates
81 %and determines wether it is missing from the time series,
82 %a message is returned if a new date needs to be set above.
83 initial=sum(data(:,1)==ones(size(data(:,1)))*begin);
84

85 if initial==0
86 date='Prices are missing for that starting date.'
87 break;
88 else
89 date='ok'
90 end
91

92 %Converts 'begin' to a row index in the data matrix.
93 begin=find(data(:,1)==begin,1,'first');
94

95

96 %To perform the simulation the function BTcall() is used.
97 BTcall(data, Dist, rep, begin, smplSize, keyNrStart, tit, Y);
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9.2 dataReader

1

2 % The input argument 'format' is the specific format of
3 % the dates in the csv files in the directory.
4

5 % dataReader() returns the data located in the directory
6 % reformatted into a single matrix 'data'. In 'data' the
7 % daily stock prices are organized columnwise for the
8 % different stocks. The first column in 'data' contains
9 % the dates of the price series for the stocks.

10 % dataReader also returns the time span over which simulations
11 % are possible in the variables 'minStart' and 'maxStop'.
12

13

14 function [data, minStart, maxStop]=dataReader(format)
15

16 %All the csv files in the current directory, supposedly the
17 %stock price time series are saved in to 'files'.
18 files=dir('*.csv');
19

20 %These stocks, that I have not complete key number data for,
21 %are excluded.
22 files([5 6 13 15 17 48 51 53 55 63 75 78 80 81 82 85 86 93 97])='';
23

24 %'inst' get the length of the vector 'files' assigned to it,
25 %that is the number of stock in the universe.
26 inst=length(files);
27

28 %Two empty row vector with inst number of elements are
29 %createt to later contain the first and last value for
30 %each stock.
31 startNr=zeros(size(files));
32 slutNr=zeros(size(files));
33

34 %The following for loop specifies the first and last date
35 %that has a price assigned to it and puts them in the
36 %vectors startNr and slutNr.
37 for i=1:inst
38 kurs=importdata(files(i).name);
39 slutNr(i)=datenum(kurs.textdata(2,1), format);
40 startNr(i)=datenum(kurs.textdata(end,1),format);
41 end
42

43 %Finds the latest start date and the first ending date
44 %and creates a time series of serial date numbers for
45 %all the days in between. In this series there are as
46 %well weekends and other trade free days.
47 slut=min(slutNr);
48 start=max(startNr);
49 tid=(start:slut)';
50

51 %Creates a matrix later to be filled, each column
52 %with the daily adjusted closing prices of one stock
53 %in the universe.
54 univers=zeros(length(tid),inst+1);
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55 univers(:,1)=tid;
56

57 %For each stock in the univers, the loop matches
58 %each date in 'tid' to a value of the daily adjusted
59 %closing prices(that happens to be the 6th one
60 %from the current source)
61 for i=1:inst
62 post=importdata(files(i).name);
63 fileDat=post.textdata(2:end,1);
64 file=post.data(:,6);
65 for j=1:length(fileDat)
66 nr=datenum(fileDat(j),format);
67 day=find(univers(:,1)==nr, 1, 'first');
68 univers(day,i+1)=file(j);
69 end
70 end
71

72 %The time series now has rows containing zeros,
73 %since there are trade free days, these row vectors
74 %are eliminated through the next line of code.
75 univers(any(univers==0,2),:)=[];
76

77 %The universe ie returned as 'data' and the first
78 %column is still a time series of serial date numbers.
79 data=univers;
80

81 %270=one months lag for the calculation of daily growth
82 %+ one year of preceeding underlying data sample=20+250=270
83 minStart=datestr(univers(270,1));
84 maxStop=datestr(univers(end,1));
85

86 end
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9.3 BTcall

1 % BTcall() preforms the simulations by means of other functions.
2 % All the input arguments to the functions are therefor past on
3 % as input arguments to other functions.
4

5

6 function []=BTcall(data, Dist, rep, begin, smplSize, keyNrStart, ...
tit, Y)

7

8

9 %BTyield basically prepares information for MonteCarlo.m
10 %that will produce the simulation a few lines down. It uses
11 %the histrorical prices of the stocks in the parameter 'data',
12 %the chosen distribution in 'Dist' and sthe starting date
13 %'begin'. The starting date is relevant since the expectance
14 %of growth is calculated from the one year history prior to
15 %the simulation to come. 'G' and 'R' are matrixes containing
16 %the calculated daily growth and return respectively. 'drift' and
17 %'ExpR' are vectors with the expected values for the growth
18 %and the return respectively.
19 [G, drift, R, ExpR]=BTyield(data, Dist, begin, smplSize, Y);
20

21 %The covariance matrixes are calculated using
22 %the built in function cov()
23 Qg=cov(G);
24 Qr=cov(R);
25

26

27 % This function provides the number of simulated
28 %universes requested in BackTest.m using the covariance
29 %matrixes 'Qg' and 'Qr', the calculated expected values,
30 %the number of repetitions and the beginning date for
31 %the simulation at hand.
32 [simuleringG, simuleringR]=MonteCarlo(Qg, drift, rep, Qr, ExpR);
33

34

35 %simulateStrats() creates the paths of the strategies, which
36 %together
37 titleG=[Y ' ' tit ' year of preceeding daily growths'];
38 titleR=[Y ' ' tit ' year of preceeding daily returns'];
39

40 figure('Name', titleG)
41 simulateStrats(data, simuleringG, smplSize, keyNrStart, begin, ...

rep, titleG);
42 figure('Name', titleR)
43 simulateStrats(data, simuleringR, smplSize, keyNrStart, begin, ...

rep, titleR);
44

45

46

47 end
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9.4 BTyield

1 %The main idea with this function is to produce the
2 %vector 'drift' with the assessed drift for each of
3 %the stocks in the universe and also the vector 'ExpR',
4 %which contains the expected daily return for each stock.
5 function [growth, DRIFT, R, ExpR]=BTyield(dat, Dist, begin, ...

smplSize, Y)
6

7 %the first column in the universe, that is, the serial date numbers,
8 %are saved in 'indexDat'. After that a new matrix is created
9 %being the original universe without the columnvector of serial

10 %date numbers. This separation is made for practical reasons.
11 indexDat=dat(:,1);
12 dat=dat(:,2:end);
13

14 %The number of columns in the matrix of the stock prices is
15 %the same as the number of stocks, why, 'inst', short for
16 %instruments is the number of instruments in the universe.
17 %n=20 is the number of days that form the basis of the assumed
18 %daily growth. To avoid discrepencies due to daily fluctuations
19 %that do not represent the general changes on the market, an
20 %average is taken from the n days before each day and the
21 %growth used for further calculations is thus a more stable
22 %one than the original.(Reference [8])
23 inst=length(dat(1,:));
24 n=20;
25

26 %An empty cell array of inst elements is created to contain the
27 %distribution of growth for each stock in the universe.
28 PDG=cell(1,inst);
29

30

31 %Two vectors are created to contain the volatility and the
32 %expected value of growth respectively.
33 vol=ones(size(PDG));
34 mu=vol;
35

36 %Daily growth is calculated as the logaritmic difference
37 %between consecutive days in the historical prices.
38 G=log(dat(2:end,:)) log(dat(1:end 1,:));
39

40 %Selecting daily growth from a time period of one year
41 %plus 20 days to provide data for the first 20 days
42 %of that year when calculating the average daily growths.
43 sample=begin ( smplSize+n):begin;
44

45 Gsim=G(sample,:);
46

47 %Anorher vector is created to contain the daily
48 %growth averages that are to be used for calculating
49 %the estimations of the parameters.
50 Gstat=zeros(smplSize,length(dat(1,:)));
51

52 %calculate the moving average for one year.
53 for i=n+1:smplSize+n
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54 Gstat(i n,:)=(1/n)*sum(Gsim(i n:i,:));
55 end
56

57 %Fits a distribution to each series of growths and assigns
58 %a distribution from which parameters are estimated.
59 for i=1:inst
60 PDG{i}=fitdist(Gstat(:,i),Dist);
61 vol(i)=sqrt(PDG{i}.sigma);
62 mu(i)=PDG{i}.mu;
63 end
64

65

66 %Estimates expected value directly from data, this is not
67 %in use at the moment.
68 EG=ones(1,length(inst));
69 for i=1:length(EG)
70 EG(i)=sum(Gstat(:,i))/length(Gstat(:,i));
71 end
72

73

74 volatilitet=vol;
75 DRIFT=mu;
76 growth=Gstat;
77 PDg=PDG;
78 data=[indexDat dat];
79

80

81 %Daily return is now calculated from the data.
82 Ret=(dat(2:end,:) dat(1:end 1,:))./dat(1:end 1,:);
83

84 %Selecting daily return from a time period of one year
85 %plus 20 days to provide data for the first 20 days
86 %of that year when calculating the average daily return.
87

88 Rsim=Ret(sample,:);
89

90 %Anorher vector is created to contain the daily
91 %return averages that are to be used for calculating
92 %the estimations of the parameters.
93 Rstat=zeros(smplSize,length(Ret(1,:)));
94

95 %calculate the moving average for one year.
96 for i=n+1:smplSize+n
97 Rstat(i n,:)=(1/n)*sum(Rsim(i n:i,:));
98 end
99

100 PDR=cell(1,inst);
101 vol=ones(size(PDR));
102 mu=vol;
103

104 %Fits a distribution to each series of growths and assigns
105 %a distribution from which parameters are estimated.
106 for i=1:inst
107 PDR{i}=fitdist(Rstat(:,i),Dist);
108 vol(i)=sqrt(PDR{i}.sigma);
109 mu(i)=PDR{i}.mu;
110 end
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111

112 Rvol=vol;
113 ExpR=mu;
114 PDr=PDR;
115 R=Rstat;
116

117 %Saves the returns and growths in the folder 'underlying data'.
118 older=cd('underlying data');
119 old=cd(Y);
120

121 csvwrite('growth.csv', growth);
122 csvwrite('return.csv', R);
123

124 cd(old);
125 cd(older);
126

127

128

129 end
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9.5 MonteCarlo

1

2 %MonteCarlo() returns 'simuleringG' and 'simuleringR', cell arrays
3 %containing number of simulations of the universe.
4 %Each simulation is a matrix of the same size as 'data'.
5 %For this purpose it uses the covariance matrix 'Q',
6 %'drift' and 'ExpR' that are the expected values,
7 %the number of simulations 'rep'.
8

9

10 function [simuleringG, simuleringR]=MonteCarlo(Qg, drift, rep, ...
Qr, ExpR)

11

12

13 %The length of the simulation span is set to five years,
14 %saved in the variable 'tid'. The number of instruments
15 %in the universe is saved in the variable inst.
16 tid=1250;
17 inst=length(drift);
18

19 %A container is created to gather the simulations before returning
20 %them in 'simulering'
21 sim=cell(1,rep);
22

23 for i=1:rep
24 %A built in function is called for to return a matrix with
25 %random elements of the multivariate normal distribution with
26 %covariance matrix 'Qg' and the expected value vector 'drift'.
27 %The size of the returned matrix is 'tid' times the dimension
28 %of Qg, which is the same as 'inst'.
29

30 delSim=mvnrnd(drift, Qg, tid);
31

32 %The values of the first row (day) is set to be one, that is
33 %for the stocks to be comparable. The prices are thereafter
34 %calculated using 'delSim'.
35

36 delSim(1,:)=ones(1,inst);
37 for j=2:tid
38 delSim(j,:)=delSim(j1,:).*exp(delSim(j,:));
39 end
40 sim{i}=delSim;
41 end
42 simuleringG=sim;
43

44 %
45

46 %Simulating the stock yield by means of daily return. It is ...
performed

47 %much like the above.
48 for i=1:rep
49

50 delSim=mvnrnd(ExpR, Qr, tid);
51

52 delSim=delSim+ones(size(delSim));
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53

54 delSim(1,:)=ones(1,inst);
55 for j=2:tid
56 delSim(j,:)=delSim(j1,:).*delSim(j,:);
57 end
58 sim{i}=delSim;
59 end
60

61 simuleringR=sim;
62

63 end
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9.6 simulateStrats

1 % simulateStrats() is called for to perform the simulations,
2 % partly by means of other functions. The input arguments are
3

4 % 'data' which is the matrix of the underlying price series
5 % used here to perofrm the ATFs,
6

7 % 'simulering' which is an array of 'rep' simulated universes,
8

9 % 'begin' which is the starting date of the simulation in the
10 % form of a row index and
11

12 % 'tit' which is a string to be used for the title in the
13 % plot made at the end of the program.
14

15 % 'smplSize' is a variable containing the number of days used
16 % as sample for the simulation.
17

18 % 'keyNrStart' is a row index for the key number data
19 % corresponding to the date given implicitly by 'begin'.
20

21

22 function []=simulateStrats(data, simulering, smplSize, ...
keyNrStart, begin, rep, tit)

23

24 %This code line is used to make the simulated universes and the key
25 %number data agree datewise.
26 initial=500+keyNrStart;
27

28

29 %The key number data are calculated by the function orgKeyNr()
30 old=cd('MF Key Numbers');
31

32 [RoC, EY]=orgKeyNr();
33

34 cd(old);
35

36 %Calculating average over the sample period
37 averageRoC=(1/smplSize)*sum(RoC(initial smplSize:initial,:));
38 averageEY=(1/smplSize)*sum(EY(initial smplSize:initial,:));
39

40 %Calculating key numbers as the average for the sample period
41 avRoC=bsxfun(@times, ones(size(RoC)), averageRoC);
42 avEY=bsxfun(@times, ones(size(EY)), averageEY);
43

44 % In case of simulated key numbers
45

46 %Calculating the covariance matrixes
47 QRoC=cov(RoC(250:500,:));
48 QEY=cov(EY(250:500,:));
49

50 %Generates the key numbers from a multivariate normal distribution
51 rndRoC=mvnrnd(averageRoC, QRoC, 250);
52 rndEY=mvnrnd(averageEY, QEY, 250);
53
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54

55 %
56

57

58

59

60 %BTholding is called for with time series of yearly
61 %Return on Capital, 'RoC', and Earnings yield for each stock.
62 %Stock selections are returned in terms of column indeces.
63 %These indeces indicates five stocks that go in to the portfolio
64 %and five stocks that goes out of it for every ten week period.
65 [magi, slump]=BTholding(avRoC, avEY);
66

67 %With BTstrat() specific simulations are generated from the
68 %universe through the stock selections generated above.
69 %'MF' and 'RF' are each cell arrays with one cell
70 %for each repetition 'rep', now implied by the number of
71 %cells in 'simulering'.
72 MF=BTstrat(simulering, magi);
73 RF=BTstrat(simulering, slump);
74

75

76 % Simulating the equally weighted univers portfolio strategy
77

78

79

80 %For the strategies to be comparable the function uniStratSim() ...
is used.

81 Uni=uniStratSim(simulering);
82

83

84

85

86 %The date column is taken off the data matrix, it is added again ...
below.

87 dat={data(begin:end, 2:end)};
88

89 %ATF is performed on the index
90 UniAtf=uniStratSim(dat);
91

92 %ATF is performed on the Magic Formla
93 MfAtf=BTstrat(dat, magi);
94

95

96 %ATF is performed on the Random Formula
97 RfAtf=BTstrat(dat, slump);
98

99

100 %PLOTTING THE RESULTS
101 toPlot={MF, RF, Uni, MfAtf, RfAtf, UniAtf};
102 atTime={125, 250, 375, 500, 625, 750, 875, 1000, 1125, 1250};
103

104 sampleSpaces(toPlot, atTime, rep, tit)
105

106 clf
107 subplot(2,3,1)
108 axis([1 1250 0.5 8])
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109 title('The Magic Formula over five years with one invested dollar')
110 grid minor
111 hold on
112 plot(MF(1:1250,:))
113 hold on
114 plot(MfAtf, 'LineWidth',0.75)
115 legend('ATF')
116

117 subplot(2,3,4)
118 axis([0 8 0 100])
119 title('The sample space after five years for the Magic Formula')
120 hold on
121 hist(MF(1250,:),100)
122

123 subplot(2,3,2)
124 axis([1 1250 0.5 8])
125 title('The Random Formula over five years with one invested dollar')
126 grid minor
127 hold on
128 plot(RF(1:1250,:))
129 hold on
130 plot(RfAtf, 'LineWidth',0.75)
131 legend('ATF')
132

133 subplot(2,3,5)
134 axis([0 8 0 60])
135 title('The sample space after five years for the Random Formula')
136 hold on
137 hist(RF(1250,:),100)
138 hold on
139

140 subplot(2,3,3)
141 axis([1 1250 0.5 8])
142 hold on
143 title('The Universe Formula over five years with one invested ...

dollar')
144 hold on
145 plot(Uni(1:1250,:))
146 hold on
147 grid minor
148 hold on
149 plot(UniAtf, 'LineWidth',0.75)
150 legend('ATF')
151

152 subplot(2,3,6)
153 title('The sample space after five years for the Universe Formula')
154 axis([0 8 0 60])
155 hold on
156 hist(Uni(1250,:),100)
157 hold on
158 end

40



9.7 BTholding

1 %This function generates the selection of stocks, in terms of
2 %indexes over time, that are to be contained in the portfolios.
3 %Two selection 1 x 2 cell arrays are returned, each containing
4 %matrixes for stocks to be sold from the portfolio at the
5 %beginning of each ten week period and one for the stocks
6 %that are to be bought into the portfolio at the same time.
7 %The arrays are named 'magi' for the Magic Formula, and 'slump'
8 %for its random counterpart. It is only 'magi' that requires input
9 %to the function and this input is in form of w x inst where w

10 %is at least the number of ten week periods that covers the whole
11 %simulation time frame, and inst is the number of stocks
12 %in the universe.
13

14 function [magi, slump]=BTholding(RoA, PE)
15

16 % n is set to be the shortest length of the column vectors
17 %of the input matrixes. After that both the matrixes are
18 %set to have the same size.
19 n=min(length(RoA(:,1)),length(PE(:,1)));
20 RoA=RoA(1:n,:);
21 PE=PE(1:n,:);
22

23 %The number of stocks is saved into 'inst'.
24 inst=length(RoA(1,:));
25

26 %The number of ten week periods is determined and saved into 'tenW'.
27 tenW=length(RoA(:,1));
28

29 %A matrix is created for the purpose of containing the buy matrix
30 %for the two output arrays.
31 addStock=zeros(5,tenW);
32

33 %This for loop categorizes the stocks by means of the input and
34 %creates the buy matrix for the Magic Formula.
35 for i=1:tenW
36 %sort() arranges two vectors, the first one with the input
37 %vector elements ordered descendingly and the second one with
38 %the former index of each value in the first vector.
39 %Since the stocks are identified by their column index
40 %RoAi and PEi identifies which stock is first, second
41 %and third best etc acording to the P/E ratio or
42 %Return on Asset.
43 [RoAy, RoAi]=sort(RoA(i,:),'descend');
44 [PEy, PEi]=sort(PE(i,:),'descend');
45 %Now sorting the identification vectors in ascending order
46 %'j' and 'k' are memory vectors keeping the hierarchy of each
47 %vector from the sorting regarding P/E ratio and RoA while
48 %sorted in the original order of the stock universe.
49 [y, j]=sort(RoAi,'ascend');
50 [x, k]=sort(PEi,'ascend');
51 %Adding j and k makes for a vector that produces a vector with
52 %the best stock index last.
53 [result, stockIn]=sort(j+k,'descend');
54 %The last five stock indexes in the vector 'stockIn' are saved
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55 %into the i:th column of the 'addStock' matrix.
56 addStock(:,i)=stockIn(end 4 :end)';%stockIn(1:5)';
57 %'RoA' and 'PE' are modified so that the first
58 %sort() function in the next four lap will place the selected
59 %five stocks in the bottom for the categorization by assigning
60 %them the value 0. Since the stocks are held for one year
61 %and the same stock should not be bought more than once
62 %during the same year.
63 RoA(i:i+4,addStock(:,i))=zeros(5,5);
64 PE(i:i+4,addStock(:,i))=zeros(5,5);
65 end
66

67 %Creates the matrix containing indexes for the stocks to be sold
68 %at each ten week period
69 magi=cell(1,2);
70 magi{1}=addStock;
71 takeStock=zeros(size(addStock));
72 takeStock(:,6:end)=addStock(:,1:end 5);
73 magi{2}=takeStock;
74

75

76

77 %'weave' is the matrix containing indexes that are
78 %elected for the Random Formula during the comming for loop.
79 weave=zeros(5,tenW);
80

81 %A matrix is created to keep track of which stocks that are
82 %not currently in the portfolio.
83 port=ones(tenW,inst);
84

85 for i=1:tenW
86 % Checks which stocks and how many that are not in the portfolio
87 nonZ=find(port(i,:));
88 nrNonZ=length(nonZ);
89

90 stockInd=zeros(5,1);
91 nonZZ=nonZ;
92 for j=1:5
93 % Stocks are selected randomly from the ones that are not
94 % allready in the portfolio.
95 stockInd(j)=unidrnd(nrNonZ,1,1);
96 weave(j,i)=nonZZ(stockInd(j));
97 nonZZ(stockInd(j))='';
98 nrNonZ=nrNonZ 1;
99 end

100 port(i:i+5,weave(:,i)')=zeros(6,5);
101 end
102

103 % Creates an array for the two matrixes that are to contain
104 % the indeces of the stocks that are going in and out of the
105 % portfolio at each ten week step.
106 slump=cell(1,2);
107

108 % Creates the matrix containing the stocks going in.
109 slump{1}=weave;
110 spit=zeros(size(weave));
111 spit(:,6:end)=weave(:,1:end 5);
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112

113 % Creates the matrix containing the stocks going out.
114 slump{2}=spit;
115

116 end
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9.8 BTstrat

1 %This function constructs the paths of the portfolios
2 %in the simulated universes. It takes the simulated universes
3 %and the array containing buy and sell matrixes and then
4 %produces a matrix in which each column is a outcome
5 %of the portfolio.
6

7 function simStrategi=BTstrat(dat, choice)
8

9 %'addStock' gets assigned the buy matrix and 'takeStock'
10 %the sell matrix.
11 addStock=choice{1};
12 takeStock=choice{2};
13

14 %The number of repetitions is the same as the length of
15 %the cell array 'dat'.
16 rep=length(dat);
17

18 %The number of days of the simulation, the number of stocks
19 %in the universe and useful matrixes for the construction
20 %of the portfolio simulation are declared.
21 days=length(dat{1}(:,1));
22 uniInst=length(dat{1}(1,:));
23 eternity=3750;%15 years in days
24 spacious=zeros(eternity,uniInst);
25 delStrat=zeros(eternity,rep);
26

27 %This loop creates 'rep' number of paths for the strategy
28 %generated from the 'rep' number of simulated universes
29 %respectively.
30 for k=1:rep
31 %choose the k:th universe and fill it up with zeros
32 %so that it covers 15 years, this is done so that it
33 %will be no problem stepping through it in steps of
34 %50 days.
35 data=dat{k};
36 portfolio=zeros(eternity,uniInst);
37 spacious(1:days,1:uniInst)=data;
38 data=spacious;
39 tenW=ceil(days/50);
40 %This loop assigns stocks for the portfolio for each
41 %ten week period.
42 for i=1:tenW
43 if takeStock(:,i)==zeros(5,1)
44

45 %The number of different stocks to ultimately
46 %be held in the portfolio is 25. Therefor the
47 %amount invested (1 $) is divided by 25 for
48 %each stock bought until 25 stocks are held.
49 nrOfS=(1/25)./data((i 1)*50+1,addStock(:,i));
50 else
51 %If there are 25 different stocks in the
52 %portfolio the amount used to buy new stock
53 %is a fifth of the amount recieved for
54 %the once sold.
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55 nrOfS=(sum(portfolio((i 1)*50,takeStock(:,i)))/5)./data((i 1)*50+1,addStock(:,i));
56 end
57 %The simulated price series of the newly bought
58 %stocks for a ten week period is assigned to
59 %'addData'.
60 addData=data((i 1)*50+1:(i 1)*50+250,addStock(:,i));
61 portfolio((i 1)*50+1:(i 1)*50+250,addStock(:,i))=[nrOfS(1)*addData(:,1) ...

nrOfS(2)*addData(:,2) nrOfS(3)*addData(:,3) ...
nrOfS(4)*addData(:,4) nrOfS(5)*addData(:,5)];

62 end
63 delStrat(:,k)=(portfolio*ones(uniInst,1))';
64 end
65

66 %Takes away unnecessary zeros
67 lastDay=find(delStrat(:,1),1,'last');
68 delStrat=delStrat(1:lastDay,:);
69

70 simStrategi=delStrat;
71 end
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9.9 uniStratSim

1 %uniStratSim() is a version of BTstrat() with 'rep'=1 in
2 %which all the stocks are bought in steps of 1/5 to end up
3 %with one invested dollar after one year.
4

5 function indexSim=uniStratSim(simulering)
6

7

8 indexSim=zeros(length(simulering{1}(:,1)), length(simulering));
9

10

11 for i=1:length(simulering)
12 dat=simulering{i};
13 %
14 %A break is defined in case the ATF starting from a late
15 %year can not be carried out.
16 if length(dat(:,1))<201
17 indexSim=zeros(size(simulering{1}));
18 break
19 end
20 %
21 nrOfS1=((1/5)/length(dat(1,:)))./dat(1,:);
22 nrOfS2=nrOfS1+((1/5)/length(dat(1,:)))./dat(50,:);
23 nrOfS3=nrOfS2+((1/5)/length(dat(1,:)))./dat(100,:);
24 nrOfS4=nrOfS3+((1/5)/length(dat(1,:)))./dat(150,:);
25 nrOfS5=nrOfS4+((1/5)/length(dat(1,:)))./dat(200,:);
26

27 indexPort1=bsxfun(@times, dat(1:50,:), nrOfS1);
28 indexSim(1:50,i)=indexPort1*ones(length(dat(1,:)),1);
29

30 %'bsxfun(@times, X, Y) multiplies the column vectors X(i)
31 %with the scalars Y(i)
32 indexPort2=bsxfun(@times, dat(51:100,:), nrOfS2);
33 indexSim(51:100,i)=indexPort2*ones(length(dat(1,:)),1);
34

35 indexPort3=bsxfun(@times, dat(101:150,:), nrOfS3);
36 indexSim(101:150,i)=indexPort3*ones(length(dat(1,:)),1);
37

38 indexPort4=bsxfun(@times, dat(151:200,:), nrOfS4);
39 indexSim(151:200,i)=indexPort4*ones(length(dat(1,:)),1);
40

41 indexPort5=bsxfun(@times, dat(201:end,:), nrOfS5);
42 indexSim(201:end,i)=indexPort5*ones(length(dat(1,:)),1);
43 end
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10 Appendix 3: The Universe

Starting out the universe was intended to consist of the stocks in the SP100
index with equal weights. The universe was intended to be unchanged over the
time for the simulations so full price history for the stocks was required. For
different reasons the accessability for a few of the stocks in the S&P100(at the
end of June 2012). These were replaced with stocks from the same industry
segment, not necessarily from the same part of the world, but with compareable
market capitalization. All the data was downloaded from Yahoo Finance. The
companies who’s stocks became the resulting universe were:

Apple Inc, Abbott Laboratories, Accenture plc, American Electric Power
Co, American International Group Inc., The Allstate Corporation, Amgen Inc.,
Amazon.com Inc., Apache Corp., Anadarko Petroleum Corporation, American
Express Company, The Boeing Company, Bank of America Corporation, Bax-
ter International Inc., The Bank of New York Mellon Corporation, Bristol-
Myers Squibb Company, Berkshire Hathaway Inc., British American Tobacco
plc, Citigroup Inc., Caterpillar Inc., Colgate-Palmolive Co., Comcast Corpora-
tion,Capital One Financial Corp., ConocoPhillips, Costco Wholesale Corpora-
tion, Ciscao Systems Inc., CVS Caremark Corporation, Chevron Corporation,
E. I. du Pont Nemours and Company, Dell Inc., The Walt Disney Company, Dish
Network Corp, The Dow Chemical company, Devon Energy Corporation, eBay
Inc., EMC Corporation, Emerson Electric Co., Exelon Corporation, Ford Motor
Co., Freeport-McMoRan Copper & Gold Inc., FedEx Corporation, General Dy-
namics Corp., General Electric Company, Gilead Sciences Inc., Google Inc., The
Goldman Sachs Group Inc., Halliburton Company, The Home Depot Inc., Hon-
eywell International Inc., Hewlett-Packard Company, HSBC Holdings plc, Inter-
national Business Machines Corporation,Intel Corporation, Johnson & Johnson,
JPMorgan Chase & Co., The Coca-Cola Company, Eli Lilly Company, Lockheed
Martin Corporation, Lowe’s Companies Inc., McDonald’s Corp., Mondelez In-
ternational Inc., Medtronic Inc., MetLife Inc., 3m Company, Altria Group Inc.,
Monsanto Company, Merck & Co. Inc., Morgan Stanley, Microsoft Corporation,
Nike Inc., National Oilwell Varco Inc., Norfolk Southern Corporation, Oracle
Corporation, Occidental Petroleum Corporation, Pepsico Inc., Pfizer Inc., The
Procter & Gamble Company, QUALCOMM Incorporated, Raytheon Co., Star-
bucks Corporation, Schlumberger Limited, Southern Company, Simon Property
Group Inc., AT&T Inc., Target Corp., Toyota Motor Corporation, The Travel-
ers Companies Inc., Time Warner Inc., Texas Instruments Inc., UnitedHealth
Group Incorporated, Union Pacific Corporation, United Parcel Service Inc., U.S.
Bancorp, United Technologies Corp., Walgreen Co., Wells Fargo & Company,
Williams Companies Inc., Wall-Mart Stores Inc., Verizon Communications Inc.,
Exxon Mobil Corporation

Because of lack of access to complete key number data for the purposes of
the Magic Formula these were taken out of the universe:
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American International Group Inc., The Allstate Corporation, Bank of Amer-
ica Corporation, The Bank of New York Mellon Corporation, Berkshire Hath-
away Inc., The Home Depot Inc., HSBC Holdings plc, Intel Corporation, JP-
Morgan Chase & Co., MetLife Inc., Pepsico Inc., QUALCOMM Incorporated,
Starbucks Corporation.
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The Code

The code was inspired by the introduction section of [2] and the last chapter of
[1]. The strategies were of course implemented in the code following [3]. The
calculations of daily growth and daily return followed the guidance of [7] and
[8].

Chapter 2: Backtesting

This chapter used information from [8] and [7], with 2.1 using [7] and 2.2-3 using
[8].

Chapter 3: Monte Carlo

This chapter used information from the indroduction sections of [3] and [5] and
was inspired by Appendix A in [6] as well as using information from wolframal-
pha.com for section 3.1.
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