
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

An algebrai approah to the problem of graph isomorpism

av

Alex Loiko

2014 - No 6

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

An algebrai approah to the problem of graph isomorpism

Alex Loiko

Självständigt arbete i matematik 15 högskolepoäng, Grundnivå

Handledare: Boris Shapiro

2014

An algebraic approach to the problem of graph
isomorpism

Alex Loiko

February 18, 2014

1

Acknowledgements

I would like to thank my advisor Boris Shapiro for introducing me
to a topic that suited my interests and background so well and for his
help with this project. I would also like to thank Torbjörn Tambour
for his insightful comments.

2

Abstract

This work discusses invariant theory and its application on a partic-
ular question, the graph isomorphism problem. We develop the commu-
tative algebra theory required to prove that the methods of invariant
theory apply to graph isomorphism, implement several algorithms in
Mathematica for solving graph isomorphism between complex-weighted
graphs and analyze its complexity. Along the way, we discuss repre-
sentation theory, group theory, and various algebraic methods.

3

1 Introduction

1.1 Background and overview

The problem of whether two given graphs are isomorphic is a well-known
difficult problem. From the point of view of complexity theory, it belongs
to the class NP. It is believed not to be NP-complete [Sch87] and has led to
defining and studying the classGI of all languages with polynomial reduction
to the graph isomorphism problem.

The graphs we will study are finite, the edges are undirected and weighted
by complex numbers. The problem of undirected weighted graph isomor-
phism seems to be much more general than the ordinary undirected version,
but it turns out that undirected complex-weighted graph isomorphism is
GI-complete, meaning that there is polynomial reductions going in both
directions between the more general and the undirected unlabeled versions.

Definition 1. Let V = {1, 2, . . . , n} and let
(
V
2

)
be the set of subsets con-

taining 2 elements of V . Let G1, G2 be two complete undirected graphs with
vertex set V and edge set

(
V
2

)
and weight functions wi :

(
V
2

)
−→ C, i = 1, 2.

The graphs G1, G2 are said to be isomorphic, if there exists a permuta-
tion σ ∈ Sn such that for each edge pair {a, b},

w1({a, b}) = w2({σ(a), σ(b)})

1.1.1 Reduction

Theorem 1. There is a reduction polynomial in the size of input from the
problem of edge-weighted undirected graph isomorphism to unweighted undi-
rected graph isomorphism.

Proof. Let G1, G2 be two edge-weighted graphs and let k be the total number
of different edge-weights in both graphs. Let |Ei| be the number of edges in
graph Gi. We will abbreviate |E| for both |E1| and |E2| because a necessary
condition for isomorphy is an equal number of edges. Instead of weights we
will color the edges in k colors. For edge (x, y) of color i, replace it with the
structure below, x adjacent to a new vertex x′ which is adjacent to i + |E|
(adding |E| to ensure uniqueness) new vertices that are adjacent to a new
vertex y′ that is adjacent to y. This makes it only possible for equally marked
edges to be identified. This reduction is obviously polynomial and the new

4

graphs have O(V + E2) vertices.

v1

>>>>>>>>

x x′

��������

>>>>>>>>
... y′ y

vk

��������

Invariant theory for the weighted GI problem

It turns out that studying the more general problem of weighted graph iso-
morphism makes it possible to use techniques from invariant theory - a
branch of algebra using results from group theory, commutative algebra,
representation theory and algebraic geometry.

Complexity

One asymptotically fast algorithm solves graph isomorphism in 2O(
√
n logn)

[BL83], and there are heuristics that are efficient for almost all pairs of
graphs.

The time complexity of the first algorithm that we will develop using invari-

ant theory is Ω

(((
n
2

)
+ n!(
n
2

)))
. The time complexity of the improved ver-

sion is difficult to give an upper bound for, but it does O
(((

n
2

)
+
(
n
2

)2(
n
2

)))
many Gröbner basis computations in the worst case to generate a separating
set. In practice, the number of Gröbner basis calculations is much lower. We
refer to section 3.2 for the implementation of the first version, section
4 for for discussion and analysis, theorem 8 for the second version and
section 6.4 for its analysis.

1.2 Introducing the algebraic approach

1.2.1 Graph counting and comparison

We consider the main problem, namely, the one of counting and comparing
graphs on n vertices.

Let S′ be the set of all labeled graphs over n nodes with edges without
weights. We consider the action of the symmetric group Sn on S′ by per-
muting the vertices. If a graph G ∈ S′ has an edge (i, j) and σ ∈ Sn, the
graph σ ·G has an edge (σ(i), σ(j)).

5

It turns out that this approach is not well suited for weighted or directed
graphs or any kind of numerical computation. The problem lies in the set
S′ that contains all possible 2(n2) labeled graphs.

1.2.2 Reducing the size of S′

For our purposes, it turns out to be better to see an unweighted undirected
graph as a sum of its edges, e.g. G = {1, 2} + {2, 3} + {3, 1} is a triangle
with edges 1 ←→ 2, 2 ←→ 3, 3 ←→ 1. We let the symmetric group Sn act
on this set of edges (represented by unordered pairs {i, j}) by

σ{i, j} = {σ(i), σ(j)}.

Then the action of σ on G is essentially the same, we get a new graph with
permuted labels. The advantage of acting on edges instead of on whole
graphs is that the size of the set S is reduced from 2(n2) (number of possible
undirected labeled graphs) to only

(
n
2

)
(the number of unordered pairs of

numbers 1, 2, . . . , n)
This approach has another advantage: weighted graphs can be repre-

sented as sums G =
∑
{i,j} c{i,j}{i, j} over the edges and directed graphs

can be thought of as weighted graphs where the weight contains information
about the direction of the edge.

1.2.3 Defining the Sn−representation

Given an action of a finite group G on a finite set S, there is a natural way
to construct a G-module out of S. We introduce formal variables for each
element s ∈ S, and define M to be the |S|-dimensional vector space

M =
⊕
s∈S

Cs

Then we can define a G−representation on M from the action on S by

g ·
∑
s∈S

ass =
∑
s∈S

asg · s

(This is just linear extension of the inverse G-action on the basis vectors).
This turns out to be a G-module. We use this construction on Sn and S

from section 1.2.2 to turn CS into a Sn−module.

1.2.4 Applications

This algebraic approach leads to a general way of solving symmetry prob-
lems like GI and is believed [Thi00] to lead to progress in deciding Ulam’s
reconstruction conjecture, defined as follows:

6

Conjecture 1. For a given graph G, we define D(G) to be the multiset of
all graphs obtained from G by deleting exactly one vertex. Then two graphs
G,H are isomorphic if and only if D(G) = D(H).

1.3 Summary

In this work, we develop a solid and mostly self-contained foundation for
invariant theory. The literature referenced for this work often omits impor-
tant details, uses less elementary techniques or refers the proofs to external
sources. Therefore, I believe that the subject has been made accessible for a
wider audience.

We state the basic definitions of invariant theory and multilinear algebra
in sections 2, A. We show using commutative algebra and algebraic geome-
try that invariant theory can be applied to the problem of graph isomorphism
in section 2.5. We describe how a theorem of Emmy Noether can be used
to apply the theoretical results to comparing graphs in practice in section
3 and implement a complete algorithm for solving graph isomorphism in
section 3.2. We indicate several ways the algorithm can be improved in
section 4. In section 5, we define and show properties of Molien series,
which is another theoretical tool that combined with a structure theorem
of invariant rings described in section 6 leads to a more efficient algorithm
discussed in section 6.3. The algorithm is demonstrated for special cases
in section 6.3.1.

2 Invariant ring

In section 1.2 we reinterpreted combinatorial problems of counting and
equivalence as algebra. This section develops the crucial theory behind the
algorithm for deciding whether two elements belong to the same orbit.

2.1 Separating sets

Given a set S with an equivalence relation ∼ (the set of objects and symme-
tries), an arbitrary set D and a collection of functions F = {fi : S −→ D}i
invariant on equivalence classes, we say that F is a separating set if x ∼ y
if and only if f(x) = f(y) for each f ∈ F . Finding a finite separating set of
computable functions solves the symmetry/isomorphism problem. Represen-
tation theory gives an algorithm for constructing a finite set of polynomial
separating functions for any group acting on any finite set [FH91]. In what
follows, we will develop the theory, give examples, implement this method
in Mathematica and analyze complexity.

7

2.2 Definitions

Let V be a C[G]-module. Then V ∗ is also a C[G]-module under 1

(g • f)(v) = f(g−1(v))⇐⇒ g • f = f ◦ g−1

The symmetric tensor algebra
⊙
V ∗ is a polynomial ring by Theorem

10 below. We let each generator
⊗n

i=1 v̂i act on v ∈ V by(
n⊗
i=1

v̂i

)
• v =

n∏
i=1

v̂i(v)

and extend this action linearly over the whole
⊙
V ∗.

2.2.1 Interpretation of
⊙
V ∗⊙

V ∗ can be interpreted as the ring of all polynomial functions2 on V .
As an example, let V = Cx ⊕ Cy be a 2-dimensional vector space over C
with basis vectors x,y. Then the dual space V ∗ has a dual basis x̂, ŷ and by
Theorem 10, V ∗ is isomorphic to C[x, y] as an algebra under concatenation
of tensor products. Let p(x, y) ∈ C[x, y], p(x, y) = x2y+ 2y. Then p acts on
v = ax + by ∈ V by p(x, y) • v = a2b+ 2b

2.2.2 G-action on
⊙
V ∗

Let V a vector space and G be a group acting linearly on V . Following
the discussion in Section 2.2.1, every f ∈

⊙
V ∗ is a polynomial function

V −→ C. We define g • f = f ◦ g−1 for f ∈
⊙
V and g ∈ G. This defines a

group action because a polynomial function composed with a linear operator
on V remains polynomial.

2.3 Relation to separating sets and equality on orbits

Recall the discussion of separating sets in Section 2.1 We have constructed
a large ring of all polynomial functions on V . We also have a group G acting
on V partitioning the vector space into orbits. To construct a separating set,
we need a set F of functions constant on the orbits. It turns out that for
finite groups G and finite-dimensional C-vector spaces V , it is enough to let
F be the set of all polynomial functions constant on the orbits, which will
be proven in Theorem 2.

1 The reason for g−1 instead of g is that acting by g may lead to non-representations
that do not satisfy gh = g ◦ h fon non-abelian groups G. Indeed, if the action was defined
by g•f = f ◦g, we would have (gh)•f = f ◦(gh) = f ◦g◦h = h•(f ◦g) = h•(g•f) = (hg)•f

2 By which we mean all functions that map v = a1e1 + . . . + anen on an element in
C[x1, . . . , xn] and then evaluate in (a1, . . . , an).

8

We say that a polynomial p ∈
⊙
V ∗ is invariant if p = g • p for all

g ∈ G. This condition guarantees that p is invariant on orbits, since p • v =
(g−1 • p)(v) = p ◦ g(v) = p(g • v).

The set of all invariant polynomials is closed under + and · and therefore
is a subring of

⊙
V ∗. We call this ring the invariant ring of G and denote

it by
⊙
V ∗G.

For finite groups G, the invariant ring is non-empty and does not only
contain constants because for each p ∈

⊙
V ∗,

h •

∑
g∈G

g • p

 =
∑
g∈G

(hg) • p =
∑
g∈G

g • p

and thus
∑

g∈G g • p ∈
⊙
V ∗G.

In later sections, we will show that
⊙
V ∗G is a separating set and how

to compute a finite generating set of
⊙
V ∗G

2.4 Reynolds operator

The Reynolds operator RG :
⊙
V ∗ −→

⊙
V ∗G is defined by

RG(p) =
1

|G|
∑
g∈G

g • p.

We alraedy showed that RG(p) ∈
⊙
V ∗G for all p ∈

⊙
V ∗ in Section 2.3

Varieties - algebraic geometry

Recall that a variety of an ideal I ⊂ C[x1, . . . , xn] is the set of common zeros
of I in V ,

V(I) = {v ∈ V |∀f ∈ V : f(v) = 0}

Hilberts Nullstellensatz states that V(I) is never empty,

V(I) = ∅ ⇐⇒ I = C[x1, . . . , xn]

The following properties follows from the definitions:

• Finite union:
V(I) ∪ V(J) = V(I ∩ J)

• ∅ and V :
∅ = V(C[x1, . . . , xn]

•
V = V({0})

9

• Arbitrary intersection: ⋂
α

V(Iα) = V(
∑
α

Iα)

• Single points are varieties:

{(a1, . . . , an)} = V(x1 − a1, . . . , xn − an)

This implies that finite sets are varieties.

This shows that the sets V(I) define an topology on V called the Zariski
topology where the V(I) are assumed as closed. The last property implies
that it is at least as fine as the finite complement topology. We define r(Ω)
for Ω ⊂ V as

r(Ω) = {f ∈ C[x1, . . . , xn]|∀x ∈ Ω : f(x) = 0}

the ideal of all functions that are 0 on Ω.

The coordinate ring

If W is a variety in V , the coordinate ring of W is defined as

C[x1, . . . , xn]
/
r(W) .

It can be identified with the algebra of all polynomial functions on W :
Let A be all polynomial functions on W and let φ be the map that restricts
a polynomial p ∈ C[x1, . . . , xn] to W . The kernel of φ is all polynomials that
are 0 on W , which is r(W).

2.5 The separation property

The following theorem is the main theoretical result behind our use or in-
variant theory to distinguish combinatorial objects.

Theorem 2. Let V be a finite-dimensional vector space over C and G a
finite group acting on V . Then

⊙
V ∗G separates the orbits of V , that is, if

v1, v2 ∈ V are in different orbits, there is p ∈
⊙
V ∗G such that p(v1) 6= p(v2).

Proof. The orbit orbG(v) of v under G-action contains ≤ |G| elements and
therefore is finite. Under the Zariski topology finite sets in V are closed.
Closed sets are by definition varieties. Let Iv1 = r(orb(v1)), Iv2 = r(orb(v2)).
Then by the variety properties,

V(Iv1 + Iv2) = orb(v1) ∩ orb(v2) = ∅

10

because v1 and v2 were assumed to lie in different orbits.
By the Nullstellensatz, we have Iv1 + Iv2 =

⊙
V ∗. It follows that 1 ∈

Iv1 + Iv2 =⇒ 1 = a+ b with a ∈ Iv1 and b ∈ Iv2 . Let A = RG(a), B = RG(b)
where RG is the Reynolds operator. Then A+B = RG(a+ b) = RG(1) = 1.
We have (g • a)(v1) = a(g−1(v1)) = 0 because g−1(v1) is a common zero of
Iv1 and it follows that A(v1) = 1

|G|
∑

g∈G 0 = 0. Likewise, B(v2) = 0. But
the sum (A+B)(v2) = 1 = A(v2) +B(v2) = A(v2). Now we get A(v2) = 1,
so A separates v1 and v2.

3 Computations

In Section 2.3 we stated that the invariant ring is a separating set which was
proven in Theorem 2. But it is still not clear how knowledge that a certain
infinite set of invariant functions is separating can be used to construct an
algorithm for determining graph isomorphism.

We will compute a finite set of generators of
⊙
V ∗G for arbitrary finite

groups G and finite-dimentional complex vector spaces V .
This set will be shown to constitute a finite separating set for graphs

under isomorphism.

3.1 Finite set of generators

The following theorem is due to Emmy Noether and is one of the two main
computational results. It directly leads to an algorithm implemented in
section 3.2. The second important computational result is theorem 6
discussed in section 6. It leads to a major improvement of the algorithm in
section 3.2, discussed in section 6.3.

Theorem 3. Let G be a finite group and V a n-dimensional complex vector
space.

Then the invariant ring
⊙
V ∗G is generated by the set

{RG(xa11 · . . . · x
an
n)|a1 + . . .+ an ≤ |G|, ai ≥ 0}

Proof. The strategy of the proof will be to use the fundamental theorem of
symmetric polynomials to rewrite a symmetric polynomial with degree larger
than |G| in |G| variables to a polynomial in the |G| symmetric power sum
polynomials.

We introduce some notation:

xα with x = (x1, . . . , xn) and α = (α1, . . . , αn) stands for xα1
1 . . . xαnn

11

As an example, let V = Cex ⊕ Cey be a 2-dimensional vector space,
on which a group element g−1 acts by g−1 • (aex + bey) = (ag1,1 +
bg1,2)ex + (ag2,1 + bg2,2)ey. Then p = x2y is a polynomial function on
V with p (aex + bey) = a2b. After action of g, we have

(g • p) (aex + bey)

= p
(
g−1 • (aex + bey)

)
= p ((ag1,1 + bg1,2)ex + (ag2,1 + bg2,2)ey)

= (ag1,1 + bg1,2)
2(ag2,1 + bg2,2)

With the exponent notation, we have x2y = (x, y)(2,1) and g • x2y =

((xg1,1 + yg1,2), (xg2,1 + yg2,2))
(2,1)

The Reynolds operator on xα can with this notation be expressed as

RG(xα) =
1

|G|
∑
g∈G

(g • x)α

Ug for g ∈ G is defined by letting g act on x resulting in a vector (y1, y2, . . . , yn)
as in the example above by

Ug = u1y1 + . . .+ unyn

where u1, . . . , un are formal independent variables (making this is an
expression in C[x1, . . . , xn, u1, . . . , un]).

Sk we define by
Sk =

∑
g∈G

Ukg

|α| is defined as α1 + . . .+ αn

Let a1, . . . , a|G| be formal variables in C[a1, . . . , a|G|]. Then each symmet-
ric polynomial p(a1, . . . , a|G|) is a unique polynomial q in the elementary
symmetric polynomials. By an alternative version of the theorem p is also
a unique polynomial r in the first |G| power sum symmetric polynomials.
Thus each Sk can be expressed as a polynomial Sk = Tk(S1, . . . , S|G|).

We expand each Ukg as

Ukg =
∑
|α|=k

(
k

α

)
uα(g • x)α

12

where u = (u1, . . . , un). Now we sum over g ∈ G,

∑
g∈G

Ukg =
∑
g∈G

∑
|α|=k

(
k

α

)
uα(g • x)α

=
∑
|α|=k

(
k

α

)
|G|uαRG(xα)

If we consider the expressions to be polynomials in u1, . . . , un with coef-
ficients in K[x1, . . . , xn], we get∑

|α|=k

((
k

α

)
|G|RG(xα)

)
uα = Tk(S1, . . . , S|G|)

and equating coefficients of uα shows that the coefficient
((

k
α

)
|G|RG(xα)

)
of uα on the left hand side is a polynomial in the coefficient uα of the left
hand side, which itself is a polynomial in RG(xβ) for all β ≤ |G|.

This shows that the quantities RG(xα) are elements of the ring generated
by all RG(xβ) with |β| ≤ |G|.

It remains to show that RG is surjective. Let p ∈
⊙
V ∗G. We compute

RG(p) = 1
|G|
∑

g∈G p = p and the surjection property follows.

As there are
(
n+|G|
n

)
values of α with |α| ≤ |G|, this theorem proves the

bound
(
n+|G|
n

)
for the number of generators of the invariant ring. For the

graph case, Sn has n! elements and V has dimension
(
n
2

)
. Emmy Noether’s

theorem applied to this particular case gives the number of basis elements((n
2

)
+ n!(
n
2

))
For n = 4, the expression is 593775, for n = 5 it is 266401260897200.

Based on Noether’s theorem and Theorem 2, we can now construct a
simple but rather inefficient algorithm that determines graph isomorphy on

graphs weighted with complex numbers. For each of the
((n2)+n!

(n2)

)
polyno-

mials in the generating set of
⊙
V ∗Sn , we evaluate the polynomials on the

two graphs and compare the results. If all values coincide, the graphs are
isomorphic, otherwise they are not.

13

3.2 Mathematica implementation

We implement this algorithm in Mathematica:
SnAction[perm, poly, var, n] computes the action of the permuta-

tion perm−1 on the polynomial poly in the
(
n
2

)
variables var1,2, . . . , varn−1,n

1 SnAction[perm_ , poly_ , var_ , n_] :=
2 poly /.
3 Table[var[t[[1]], t[[2]]] ->
4 If[perm[[t[[1]]]] < perm[[t[[2]]]] ,
5 var[perm[[t[[1]]]] , perm[[t[[2]]]]] ,
6 var[perm[[t[[2]]]] , perm[[t[[1]]]]]] , {t, Subsets[←↩

Range[n], {2}]}]

variables[var, n] is the
(
n
2

)
variables var1,2, . . . , varn−1,n:

1 variables[var_ , n_] :=
2 Table[var[t[[1]], t[[2]]] ,
3 {t, Subsets[Range[n], {2}]}]

reynolds[poly, var,n] computes the Reynolds operator RSn(poly)

1 reynolds[poly_ , var_ , n_] :=
2 1/ Factorial[n] Total[
3 Table[
4 SnAction[perm , poly , var , n], {perm ,
5 Permutations[Table[i, {i, n}]]}
6]
7] // Expand

expVectors[n] computes the list of all
(
n
2

)
-dimensional tuples α with

|α| ≤ n!

1 (* expVectors - computes exponent vectors for Noether ’s←↩
generator -bound theorem on the invariant ring. Uses←↩
FrobeniusSolve that returns all solutions (a1 ,a2←↩

,...,an) to m1*a1 + m2*a2+..+mn*an=d for input (m1 ,←↩
m2 ,...,mn) and d. Much more efficient that the ←↩
previous version that generated all tuples (a1 ,...,←↩
an) with ai <Factorial[n] and selected the ones with ←↩
sum <Factorial[n]*)

2
3 expVectors[n_] :=
4 Flatten[
5 Table[
6 FrobeniusSolve[
7 ConstantArray [1, Binomial[n, 2]],
8 k],
9 {k, Range[0, Factorial[n]]}],

10 1]
11 (* Example *)
12 expVectors [3];

14

generators[var, n] computes the list of generators from Theorem 3

1 generators[var_ , n_] := Table[
2 reynolds[
3 Times @@ MapThread [#1^#2 &,
4 {variables[var , n],
5 expVector}],
6 var , n]
7 ,
8 {expVector , expVectors[n]}]

Finally, isomorphic[graph1, graph2] tests isomorphy

1 (* Evaluates poly on graph. ’graph ’ is expected to be a←↩
list of weights for each of the Binomial[n, 2] edges←↩

. *)
2
3 evaluateGraph[poly_ , var_ , n_ , graph_] :=
4
5 poly /. MapThread [#1 -> #2 &, {variables[var , n], ←↩

graph}] // Expand
6
7 (* Example: *)
8 evaluateGraph[
9 x[1, 2]^2 + x[2, 3] x[1, 3], x, 3, {0, a, b}]

10
11 (* graph1 , graph2 is a list of weights , have to be same←↩

length. Solves the graph isomorphy problem with ←↩
Noether ’s theorem and invariant theory! *)

12
13 isomorphic[graph1_ , graph2_ , n_] :=
14 Module [{n1 = Length[graph1],
15 n2 = Length[graph2]},
16 If[n1 != n2 , False ,
17 Fold[And , True ,
18 Table[
19 evaluateGraph[poly , x, n, graph1] ===
20 evaluateGraph[poly , x, n, graph2],
21 {poly , generators[x, n]}
22]
23]
24]
25]

The implementation was tested to work correctly and near instanta-
neously for n = 3 but runs out of memory for n = 4.

15

4 Improving the algorithm

We will now focus on improving the algorithm from Section 3. The version
implemented in Mathematica worked for graphs with up to 3 vertices and

had a time complexity of Ω

(((n
2

)
+ n!(
n
2

)))
.

We will demonstrate a simple improvement using only algebra: Let G be
the set of generators from Theorem 3. We know G to be a generating set
for
⊙
V ∗Sn , that is C[G] =

⊙
V ∗Sn . If we find a set T with C[T] = C[G],

then T also has to be a generating set and therefore a separating set for
graphs.

As an example, consider the list G of the
((3

2

)
+ 3!(
3
2

))
= 84 generators

of
⊙
V ∗S3 generated by generators[x, 3] from Section 3.2. It contains,

among 81 others, polynomials

x[1, 2]x[2, 3]x[1, 3] = RS3(x[1, 2]x[2, 3]x[1, 3])

1/3x[1, 2] + 1/3x[1, 3] + 1/3x[2, 3] = RS3(x[1, 2])

1/3x[1, 2]x[2, 3] + 1/3x[1, 3]x[2, 3] + 1/3x[1, 3]x[2, 3] = RS3(x[1, 3]x[2, 3])

and therefore all the elementary symmetric polynomials of 3 variables. This
implies by the Fundamental theorem of symmetric polynomials that the ring
of all symmetric polynomials on x[1, 2], x[2, 3], x[1, 3] is a subring of

⊙
V ∗Sn .

On the other hand, every polynomial in
⊙
V ∗Sn is symmetric, therefore⊙

V ∗
S3

= C[G] = C
[
x[1, 2]x[2, 3]x[1, 3],

1/3x[1, 2] + 1/3x[1, 3] + 1/3x[2, 3],

1/3x[1, 2] + 1/3x[1, 3] + 1/3x[2, 3]
]

This argument shows that it is enough to evaluate two graphs of 3 vertices
on the elementary symmetric polynomials and none others - not surprising
as two weighted triangle graphs are isomorphic if and only if the multiset of
edge weights are equal.

In Theorem 13 of section B, we describe an algorithm based on the
theory of Gröbner bases that given a list of polynomials G and another
polynomial p, tests whether p ∈ C[G]. This algorithm can then be applied
to reduce the size of the generating set. As is described below in section
B.3.1 the algorithm applied to the 84 generators from section 3.2 results
in only 3 generators{

1

3
x1,2 +

1

3
x1,3 +

1

3
x2,3,

1

3
x21,2 +

1

3
x21,3 +

1

3
x22,3,

1

3
x31,2 +

1

3
x31,3 +

1

3
x32,3

}
In section 5 we gain information about the invariant ring by decom-

posing it into a direct sum of degree-homogeneous components and defining

16

the generating function for the sequence of dimensions of these homogeneous
components. The technique is useful for faster computation of smaller gener-
ating sets and therefore for smaller sets of separating functions, which leads
to the more efficient graph isomorphy algorithm described in theorem 8.

5 Molien series

A very useful tool for computing the invariant ring of a group G acting on a
vector space V and its generators is the Molien series of the invariant ring.
The results from this section are used together with commutative algebra
theorems from section 6 to develop and prove correctness of the algorithm
in theorem 8.

Assume dimC V = dimC V
∗ = n. Then by theorem 10,

⊙
V ∗ =⊕

d≥0

(⊙d V ∗
)
∼= C[x1, . . . , xn] is a free graded algebra of dimension n.

The subalgebra
⊙
V ∗G inherits the grading with

⊙
V ∗

G
=
⊕
d≥0

(
d⊙
V ∗

)G

The Molien series of
⊙
V ∗G are defined as the generating function of

the sequence dimC

(
d⊙
V ∗

)G
∞

d

of dimensions of the components
(⊙d V ∗

)G
,

H⊙
V ∗G(T) =def

∑
d≥0

dimC

(
d⊙
V ∗

)G
T d ∈ C JT K

5.1 Computing Molien series

As will follow from theorems 1, 4, the Molien series of an invariant ring can
be computed without finding a generating set, which allows for improved
methods of computing generating and consequently constructing separating
sets of functions.

5.1.1 Diagonalizability

Let G be a finite group acting on a finite-dimensional vector space V over
the field C of complex numbers. Let g ∈ G be an element of G that acts on
V with invertible linear map Mg ∈ GL(V). To be able to compute Molien
series, we show the following lemma:

17

Lemma 1.

1. The corresponding linear map Mg ∈ GL(V) for the group action of
g ∈ G on a finite-dimensional complex vector space V is diagonalizable
for finite |G|.

2. The eigenvalues of Mg lie on the unit circle and can be written as
λ = eπir for rational r e.g. the eigenvalues are roots of unity.

Proof.

1. Let
〈
•
∣∣•〉 be any scalar product on V . Then define

[
•
∣∣•] : V ×V −→ C

by [
v1
∣∣v2] =

1

|G|
∑
h∈G

〈
h • v1

∣∣h • v2〉
[
•
∣∣•] defines another scalar product that has the property of being

G-invariant, meaning that
[
g • v1

∣∣g • v2] =
[
v1
∣∣v2] for all v1, v2 ∈ V .

From elementary linear algebra, it follows that there is a basis u1,u2, . . . ,un
orthonormal with respect to

[
•
∣∣•].

Consider the vectors w1 = Mgu1,w2 = Mgu2, . . . ,Mgun. These vec-
tors form a basis for V because Mg ∈ GL(V) and u1, . . . ,un were
assumed to be a basis. We compute[

wi
∣∣wj] =

[
g • ui

∣∣g • uj] =[
ui
∣∣uj] = δi,j

where δi,j is the Kronecker δ. As seen, the vectors w1, . . . ,wn form an
orthonormal basis under

[
•
∣∣•]. In the basis u1, . . . ,un the coordinates

of the vectors w1, . . . ,wn are the rows of Mg. We have showed that
the rows of Mg form an orthonormal basis. This is equivalent to Mg

unitary. The Spectral theorem implies that Mg is diagonalizable.

2. Let d = ordG g. Then gd = e and it follows from group action that
Md
g = IdimV . Mg is diagonalizable by 1. It follows that λd = 1 for

every eigenvalue λ ofMg, which implies that λ = e2πi
k
d for some integer

k.

5.2 Trace of the Reynolds operator

Recall the Reynolds operator from 2.4 defined by

RG(p) =
1

|G|
∑
g∈G

g • p

18

for finite groups G. We will be interested in its projection and grading
preserving property:

Lemma 2.

1. As a linear map
⊙
V ∗ −→

⊙
V ∗G, the Reynolds operator is a projec-

tion.

2. The Reynolds operator preserves degree of monomials. Let p me a
homogeneous polynomial p ∈

⊙
V ∗. Then RG(p) homogeneous with

the same total degree.

Proof.

1. Let p ∈
⊙
V ∗. Then RG(p) ∈

⊙
V ∗G. From the proof of theorem 3,

we know that RG is identity on
⊙
V ∗G. We compute RG ◦ RG(p) =

RG(RG(p)) = RG(p)

2. Let xα ∈
⊙
V ∗ be a monomial. Then as in the proof of theorem 3,

g • xα = (g • x)α which is homogeneous. It follows that RG(xα) =
1
|G|
∑

g∈G(g • x)α is a sum of homogeneous components with total
degree |α| and is therefore homogeneous with total degree |α|.

Lemma 2 implies that RG can be restricted to homogeneous compo-
nents,

RG

(
d⊙
V ∗

)
=

d⊙
V ∗

G

The following lemma relates the trace of RG to the dimension of a graded
component:

Lemma 3. Let RGd :
⊙d V ∗ −→

⊙d V ∗ be the restriction of RG to
⊙d V ∗.

Then

Tr(RGd) = dimC

d⊙
V ∗

G

Proof. By lemma 2, RG is a projection. Therefore, the restriction RGd :⊙d V ∗ −→
⊙d V ∗ is also a projection on

⊙d V ∗
G
. By theorem 9,

⊙d V ∗

is finite-dimensional with dimension
(
n+d−1

d

)
. Thus the trace is defined.

Since RGd is a projection, there is a basis where the corresponding matrix of
RGd has block structure

RGd ∼
(
Ik B
0 0

)
where k = dim ImRGd and B is some k × (

(
n+d−1

d

)
− k) matrix. Since RGd is

a projection onto
⊙d V ∗

G
, k = ImRGd = dim

⊙d V ∗
G
.

19

We compute TrRGd = Tr

(
Ik B
0 0

)
= k. k = dim

⊙d V ∗
G

and the

proof is finished.

The lemma leads to the following corollary concerning Molien series:

Corollary 1. The Molien series of
⊙
V ∗G can be computed by

H⊙
V ∗G(T) =

∑
d≥0

(TrRGd)T d (1)

5.3 Traces of group elements

The aim of this section is to state and prove theorem 4, which will be done
by expanding the definition of RG in corollary 1.

To compute TrRGd , we use the definition of the Reynolds operator to
rewrite RG as RG(p) = 1

|G|
∑

g∈G g • p. We saw in the proof of theorem 3
that g-action preserves total degree. Therefore, we can define a restriction
of g onto

⊙d V ∗. Denote the linear map corresponding to this restriction as
gd. Then RGd can be expressed as

RGd =
1

|G|
∑
g∈G

gd

By linearity of trace,

TrRGd =
1

|G|
∑
g∈G

Tr gd

We substitute into 1:

H⊙
V ∗G(T) =

∑
d≥0

(TrRGd)T d = (2)

∑
d≥0

 1

|G|
∑
g∈G

Tr gd

T d =

1

|G|
∑
g∈G

∑
d≥0

Tr gdT
d

The expression

(∑
d≥0 Tr gdT

d
)
will be simplified below using Lemma

1. The result is the following theorem:

Theorem 4. A finite group G acts on a finite-dimensional vector space V
by Mg ∈ GL(V) for every g ∈ G. Then the Molien series H⊙

V ∗G(T) are
given by the formula

H⊙
V ∗G(T) =

1

|G|
∑
g∈G

1

det(In − TMg)

20

Proof. By Lemma 1, Mg : V −→ V has eigenvectors λ1, . . . , λn, for which
there is a corresponding eigenbasis v1,v2, . . . ,vn. Consider the dual basis
f1,f2, . . . ,fn of V ∗. Then by theorem 9,

⊙d V ∗ is has a basis consisting
of every monomial ⊗ni=1f

αi
i for any choice of |α| = α1 + α2 + . . . + αn = d

that by theorem 10 corresponds to monomials xα. By the discussion in
theorem 3, g acts on xα by g • xα = λαxα where λ = (λ1, . . . , λn) and
λα =

∏n
i=1 λ

αi
i .

It follows that in the chosen monomial basis, gd has an associated diago-
nal basis where every monomial xα is an eigenvector and λα corresponding
eigenvalue. Then Tr gd is the sum of all eigenvalues which we compute as

Tr gd =
∑
|α|=d

λα =

[
T d
](n∏

i=1

1

1− Tλi

)
is the coefficient of T d in the expansion of

∏n
i=1

1
1−Tλi .

We conclude that ∑
d≥0

Tr gd

 =

n∏
i=1

1

1− Tλi

Let Mg be the matrix associated with gd in the eigenbasis. The eigenvectors
are λ1, . . . , λn, so Mg = Diag(λ1, . . . , λn). It follows that In − TMg =
Diag(1−Tλ1, . . . , 1−Tλn). We compute the determinant det(In−TMg) =∏n
i=1(1− Tλi) and therefore simplify∑

d≥0
Tr gd

 =
n∏
i=1

1

1− Tλi
= (3)

1

det(In − TMg)

Simple substitution into 3 gives

H⊙
V ∗G(T) =

∑
d≥0

(TrRGd)T d =

1

|G|
∑
g∈G

(
1

det(In − TMg)

)

5.4 Molien series of special rings

We will calculate the Molien series for invariant rings of permutation actions
and for invariant rings generated by algebraically independent homogeneous
polynomials.

21

5.4.1 Algebraically independent homogeneous polynomials

Lemma 4. Let V be an n-dimensional vector space, G - a group acting
on it as a subgroup of GL(V). Assume

⊙
V ∗G ⊆

⊙
V ∗ is generated by

algebraically independent homogeneous polynomials θ1, . . . , θn with degrees
d1, d2, . . . , dk. Then the molien series of the invariant ring⊙

V ∗
G ∼= C[θ1, . . . , θn] ⊆ C[x1, . . . , xn]

can be computed by

H⊙
V ∗G(T) =

1

(1− T d1)(1− T d2) . . . (1− T dk)

Proof.
⊙d V ∗

G
has one spanning component for each product θα with |α| =

d. It follows that dim
⊙d V ∗

G
is the coefficient of T d in

(1 + T d1 + T 2d1 + . . .)(1 + T d2 + T 2d2 + . . .) . . . (1 + T dk + T 2dk + . . .) =

1

(1− T d1)(1− T d2) . . . (1− T dk)

5.4.2 Example, graphs with n = 3

The computation in section 4 shows that
⊙
V ∗S3 is generated by the 3

symmetric power-sum polynomials. These polynomials are algebraically in-
dependent. We can therefore apply lemma 4:

H⊙
V ∗S3 (T) =

1

(1− T)(1− T 2)(1− T 3)
=

1 + T + 2T 2 + 3T 3 + 4T 4 + 5T 5 + 7T 6 + . . .

We will obtain another way to compute Molien series for this invariant ring
from lemma 5

5.4.3 Molien series for permutation actions

Assume a finite group G acts on a finite set S. Then G acts linearly on
V = CS. The Molien series of the invariant ring

⊙
V ∗G of this action can

be found with the following result:

Lemma 5. A finite group G acts on a finite set X by permutation. Each g ∈
G acts by a corresponding permutation πg ∈ SX . Let cyc(g) = (ag1, a

g
2, . . . , a

g
n)

be the exponent vector of the cycle type 1a
g
12a

g
2 . . . na

g
n of πg for each g ∈ G.

Then the Molien series of the invariant ring
⊙

CX∗G can be found by

H⊙
CX∗G(T) =

1

|G|
∑
g∈G

1∏n
i=1(1− T i)a

g
i

22

Proof. g ∈ G acts on X with cycle type 1a
g
12a

g
2 . . . na

g
n . This means that

there are agi cycles of length i for each i = 1, 2, . . . n and
∑n

i=1 i · a
g
i = n.

We choose the standard basis B = {s|s ∈ X}, and reorder the basis
vectors in a way so that elements are grouped by cycles. Then the matrix
Mg of g has the form

Mg = ⊕ni=1C
⊕agi
i

where each Ck is a matrix of a cyclic action on k elements, one way such
matrices could look like is

C2 =

(
0 1
1 0

)
, C3 =

 0 0 1
1 0 0
0 1 0

We recognize Ck as a matrix for the shift operator of the module of all
polynomial remainders under division by zk − 1, denoted Xzk−1 in [Fuh11].
According to proposition 5.4 of [Fuh11] the eigenvalues of the shift
operator are the roots {e

l
k
2πi|l = 0, 1, . . . (k − 1)} of zk − 1.

If we instead choose an eigenbasis, Ck is similar to

Ck ∼ Diag(ω, ω2, . . . , ωk)

where ω = e
2πi
k . Then the determinant det(Ik − TCk) is

k∏
i=1

(1− Tωk) =
k∏
i=1

T

(
1

T
− ωk

)
=

T k

((
1

T

)k
− 1

)
= 1− T k

and we can factor det(In − TMg) as

det(In − TMg) =
n∏
i=1

(1− T k)a
g
i

which substituted in equation (4) gives∑
d≥0

Tr gdT
d =

1

det(In − TMg)
=

k∏
i=1

1

(1− T k)a
g
i

23

We substitute this into equation (3) and compute

H⊙
CX∗G(T) =

∑
d≥0

(TrRGd)T d =

1

|G|
∑
g∈G

(
k∏
i=1

1

(1− T k)a
g
i

)
=

1

|G|
∑
g∈G

1∏n
i=1(1− T i)a

g
i

5.4.4 Example, graphs with n = 3, 4

Again, we consider graphs with n = 3. The set X of edges upon which S3
acts has 3 elements. There is 1 permutation with cycle type 13 that is the
identity, 3 permutations with cycle type 1121 that flip two vertices and 2
permutations of type 31 that rotate the vertices. Lemma 5 allows us to
compute

H⊙
CX∗G =

1

3!

(
1

(1− T)3
+ 3

1

(1− T)(1− T 2)
+ 2

1

1− T 3

)
=

1

(1− T)(1− T 2)(1− T 3)

6 Hironaka decomposition, efficient algorithm

In this section, we will state a strong structure theorem about a certain kind
of rings and describe how it can be used to distinguish graphs. We refer to
[PS08] for the proofs of theorems 6.

Definition 2. Let R be a C-algebra. Then the Krull dimension of R is
defined as the maximal number of algebraically independent elements of R.

Definition 3. Let R be a graded ring with Krull dimension n. A set {θ1, . . . , θn} ⊂
R of algebraically independent homogeneous elements is a homogeneous
system of parameters if R is finitely generated as a C[θ1, . . . , θn]-module.

As an example of definition 3, we will prove that

Theorem 5. Let Xn be the set of all undirected edges of n-vertex graphs
under Sn acting on vertices. Then the graded C[x{1,2}, . . . , x{n−1,n}]-sub-
algebra

⊙
CX∗n

G has Krull dimension
(
n
2

)
and a homogeneous system of

parameters.

24

Proof. Applying the Reynolds operator RSn to x{1,2}, x2{1,2}, . . . , x
(n2)
{1,2}, we

obtain the first
(
n
2

)
elementary power-sum symmetric polynomials which

are known to be algebraically independent. This implies that the Krull
dimension of

⊙
CX∗n

G is at least
(
n
2

)
. But

⊙
CX∗n

G is a sub-algebra of
C[x{1,2}, . . . , x{n−1,n}] from which it follows that the Krull dimension of⊙

CX∗n
G is at most

(
n
2

)
.

Definition 4. Let R be a graded C-algebra. If for any homogeneous system of
parameters θ1, . . . , θn there exists a finite sequence of homogeneous η1, . . . , ηt
such that

R =

t⊕
i=1

ηiC[θ1, . . . , θn]

then R is a Cohen-Macaulay algebra.

Given a decomposition {θ1, θ2, . . . , θn, η1, . . . , ηt} of R the elements θi, i =
1, 2, . . . n are called primary invariants and the elements ηi, i = 1, 2, . . . , t are
called the secondary invariants.

We refer to [PS08] for the proof of the following central theorem:

Theorem 6. For a finite group G acting on a finite-dimensional vector space
V , the invariant ring ⊙

V ∗
G

is Cohen-Macaulay.

The next theorem shows how Cohen-Macaulayness is related to Molien
series and generators of invariant rings by comparing Molien series of

t⊕
i=1

ηiC[θ1, . . . , θn] and
⊙

V ∗
G

Theorem 7. Let G be a finite group acting on an n-dimensional vector
space V . Assume that θ1, . . . , θn is a homogeneous system of parameters of⊙
V ∗G. Let di = deg θi for i = 1 . . . , n. Then the number t and degrees

of the corresponding homogeneous secondary invariants are the exponents
e1, e2, . . . , et of the generating function

H⊙
V ∗G(T) ·

n∏
i=1

(1− T di) = T e1 + T e2 + . . .+ T et

Proof. By Cohen-Macaulayness of
⊙
V ∗G there exists a set {η1, . . . , ηj} of

homogeneous secondary invariants. The Molien series of
⊕t

i=1 ηiC[θ1, . . . , θn]

25

can be computed by lemma 4 to

H⊕k
i=1 ηiC[θ1,...,θn]

(T) =

k∑
i=1

T deg ηi

(1− T d1)(1− T d2) . . . (1− T dn)
=

∑k
i=1 T

deg ηi∏n
i=1(1− T di)

It follows that

H⊙
V ∗G(T) ·

n∏
i=1

(1− T di) = T deg η1 + T deg η2 + . . .+ T deg ηk

and equating coefficients we see that k = d is the number of secondary
invariants and deg ηi = ei is the degree of ηi.

6.1 Example: graphs

By theorems 6, 7, we can find the number and degrees of some system of
secondary invariants given a set of primary invariants and the Molien series.
Theorem 5 implies that

θ =

{
RSn(xk{1,2})

∣∣k = 1, 2 . . . ,

(
n

2

)}
is a homogeneous system of parameters for the invariant ring of the set of
undirected graph edges under Sn action.

We apply theorem 7. The degrees of a corresponding sequence of sec-
ondary invariants can be retrieved as the exponents of the generating func-
tion

T e1 + T e2 + . . .+ T ed = H⊙
CXn∗G(T) ·

(n2)∏
i=1

(1− T i) (4)

The Sn action is a permutation action, therfore lemma 5 can be applied
provided the cycle types of σ ∈ Sn acting on Xn. To be able to compute
cycle types, we first prove that it is enough to compute the cycle type of one
representative from each conjugacy class of Sn. In section 6.2, we describe
a general method of computing cycle types for the Sn action on Xn.

Cycle types are constant on conjugacy classes

The Sn-action on Xn induces a homomorphism φ : Sn −→ SXn . The cycle
type of σ ∈ Sn acting on Xn is defined as the cycle type of φ(σ) ∈ SXn .
Formulated this way, it is easy to see that this cycle type is conjugation-
invariant: indeed, let π ∈ Sn be any other permutation. Then φ(πσπ−1) =
φ(π)φ(σ)φ(π)−1 is a conjugate of φ(σ) and therfore has the same cycle type.

26

6.2 Cycle index of Sn action on Xn

In this section, we demonstrate how to compute the cycle index of S4 acting
on X4 and outline a solution for general n.

Assume σ is a permutation of S4 and {a, b} ∈ X4 is an edge. We distin-
guish between two cases:

• a, b are in different cycles of σ. Let the cycles have length |Ca| =
la, |Cb| = lb. Then there is no k for which σk(a) = b, and σk •
{a, b} = {a, b} if and only if σk(a) = a, σk(b) = b. This is equvalent
to k | la, k | lb and it follows that the cycle length of a, b is lcm(la, lb).

• a, b are in the same cycle of σ. Assume that a = x1, b = xl and the
cycle is (x1, x2, . . . , xd). Then σk • {a, b} = {a, b} can happen when
σk(a) = a, σk(b) = b and also if σk(a) = b, σk(b) = a. The last case
occurs only if d is even and l − 1 = d

2 .

S4 has 4 conjugacy classes. The identity permutation leaves every edge
invariant and has cycle type 16. A permutation with cycle type (∗∗)(∗)(∗)
partitions the vertices into a set of 2 vertices forming the 2-cycle and the
2 vertices in 1-cycles. There are 2 · 2 = 4 edges going between the cycles.
Each of these edges is part of a cycle of 2 elements. The 2 edges with both
endpoints within one of the sets are invariant.

The cycle type of each element from the conjugacy class (∗∗)(∗)(∗) is
therefore 1222.

Similar calculations for other cycle types lead to the following table:

cycle type conjugacy class size cycle type in X4

(•)(•)(•)(•) 1 (•)(•)(•)(•)(•)(•)
(••)(•)(•) 6 (••)(••)(•)(•)
(••)(••) 3 (••)(••)(•)(•)
(• • •)(•) 8 (• • •)(• • •)
(• • ••) 6 (••)(• • ••)
Chapter 14 of [BVS76] explains how to compute the cycle types for

general Sn acting on Xn using the same techniques as this section.

6.2.1 Example: graphs, n = 4

We will now demonstrate the computation on undirected graph edges X4

under S4-action.

27

By Lemma 5 and the cycle type table, the Molien series of
⊙

CX4
∗S4

is

H⊙
CX∗4

S4 (T) =

1

4!

(1

(1− T)6
+ 9

1

(1− T)2(1− T 2)2
+

+8
1

(1− T 3)2
+ 6

1

(1− T 2)(1− T 4)

)
=

T 8 − T 7 + T 6 + T 4 + T 2 − T + 1

(T − 1)6(T + 1)2 (T 2 + 1) (T 2 + T + 1)2
= (5)

1 + T + 3T 2 + 6T 3 + 11T 4 + 18T 5 + 32T 6 + 48T 7 + 75T 8 + . . .

By equation 4 a homogeneous system of parameters η1, η2, . . . , ηd corre-
sponding to θ =

{
RSn(xk{1,2})

∣∣k = 1, 2 . . . ,
(
n
2

)}
would by equation 5 have

exponent sequence

H⊙
CX∗4

S4 (T) ·
(42)∏
i=1

(1− T i) =

T 8 − T 7 + T 6 + T 4 + T 2 − T + 1

(T − 1)6(T + 1)2 (T 2 + 1) (T 2 + T + 1)2
·

(42)∏
i=1

(1− T i) =

T 15 + T 13 + 2T 12 + 2T 11 + 2T 10 + 4T 9 + 3T 8 +

3T 7 + 4T 6 + 2T 5 + 2T 4 + 2T 3 + T 2 + 1

We see that there are 30 corresponding secondary invariants invariants with
degrees ≤ 15.

6.3 Algorithm: separating set for graphs

We describe an algorithm that is relatively efficient in practice for computing
a separating set of polynomials for the set of graphs with n vertices.

1. Compute the Molien series H⊙
CX∗nSn

(T) using lemma 5 with cycle
indices computed using the technique in section 6.2.

2. Use theorem 5 to choose θ =
{
RSn(xk{1,2})

∣∣k = 1, 2 . . . ,
(
n
2

)}
to be a

homogeneous system of polynomials.

3. Compute the polynomial

H⊙
CX∗nSn

(T) ·
(n2)∏
i=1

(1− T i) =

c1T
e1 + c2T

e2 + . . .+ crT
er

28

4. Let E = ∅ be the set that will contain the ηk. For each i = 1, 2, . . . , r,
let S = ∅,M a sorted list of all monomials of

[
C[x{1,2}, . . . , x{n−1,n}]

]
ei

and iterate through the monomials mj of M doing the following:

(a) If |S| = ci, we have found sufficiently many generators of degree
ei. We add S to E and continue with i+ 1.

(b) Let m be the current monomial. Use the algorithm in section
B.4 to check if RSn(m) is contained in the C[θ1, . . . , θ(n2)

]-module
that E generates. If m is contained in that model, continue with
next m. Otherwise, add RSn(m) to S and continue with next m.

5. At this step, E = {η1, . . . , ηd} is a sequence of secondary invariants.

6. Output the set θ1, θ2, . . . , θ(n2), η1, η2, . . . , ηd.

Theorem 8. The algorithm described above correctly finds a sequence {η1, η2, . . . , ηs}
of secondary invariants that together with the chosen sequence θ form a Hi-
ronaka decomposition of ⊙

CX∗n
Sn

and returns a valid separating set for solving the graph isomorphism problem.

Proof. We first prove that at each step the E is a free basis for⊕
η∈E

ηC[θ1, θ2, . . . , θ(n2)
]

This is done by induction on |E|. Assume we add a new element RG(m) to E.
If there are polynomials pη(θ1, . . . , θ(n2)), e ∈ E with

∑
η∈E kηηpη(θ1, . . . , θ

(
n
2

)
=

0, we can assume kη = 1 and rearrangeRG(m) =
∑

η∈E\{RG(m)} ηpη(θ1, . . . , θ
(
n
2

)
)

which contradicts the choice of RG(m) in section B.4.

Next, we prove that the algorithm finds exactly ci polynomials of degree
di for each i = 1, . . . , r. Assume that the algorithm finishes with less that
the full amount of secondary invariants. Then consider a modification of
the algorithm where we remove step 4.(a). Then the algorithm would check
every monomial up to degree er.

We claim that the modified version cannot produce less than the whole
set of invariants and that the original version terminates with the same end
result that the modified one.

The modified version tests each RG(m) wherem is a monomial with total
degree ≤ ei for membership and adds it if it is not a member. In the end,

29

every monomial with degree ≤ m will have RG(m) ∈
⊕

η∈E ηC[θ1, . . . , θ(n2)
].

But this implies that[⊙
CX∗n

Sn
]
d
⊆
⊕
η∈E

ηC[θ1, . . . , θ(n2)
]

because of the projection property of RG(m).
Let E′ be a hypothetical set of secondary invariants that is guaranteed

to exists by theorem 6.
By theorem 7, we know the degree sequence of E′. In particular, we

know that for each η′ ∈ E′, there is a degree d such that η′ ∈
[⊙

CX∗nSn
]
d

This implies
η′ ∈

⊕
η∈E

ηC[θ1, . . . , θ(n2)
]

and therefore ⊕
η′∈E′

η′C[θ1, . . . , θ(n2)
] ⊆

⊕
η∈E

ηC[θ1, . . . , θ(n2)
]

Strict inclusion is impossible, as we cannot have generated a larger ring
than the whole invariant ring. Therefore the inclusion is equality, and E is
a full system of secondary invariants.

Now consider the difference between the original algorithm and the mod-
ified version with 4.(a) omitted. By theorem 7, the degrees of η ∈ E are
uniquely determined. It follows that the algorithm will never find another
RG(m) to add to S in step 4 after S already has the maximal size and we
can add 4.(a) for increasing efficiency.

The set θ∪E of primary and secondary invariants is clearly a generating set
of
⊙

CX∗nSn by the Hironaka decomposition.

6.3.1 Mathematica implementation

We demonstrate steps 2, 3 and 4 of the algorithm in mathematica

1 (* We investigate X_4 again*)
2 n = 4
3
4 (* theta is the Binomial[n, 2] power -sum symmetric ←↩

polynomials *)
5 theta = Table[
6 reynolds[
7 (variables[x, n]) [[1]]^k,
8 x,
9 n], {k, Length[variables[x, n]]}

30

10];
11
12 (* Standard vector space monomial basis of the graded ←↩

component [C[var]]_d*)
13 dimDComponent[var_ , d_ , n_] :=
14 Table[
15 Times @@ MapThread [#1^#2 &,
16 {variables[x, 4],
17 expVector}
18],
19 {expVector ,
20 FrobeniusSolve[
21 ConstantArray [1, Binomial[n, 2]], d]}
22]
23
24 (* Ex, Binomial[4, 2] = 6 variables , all deg -2 ←↩

monomials *)
25 dimDComponent[x, 2, n]
26
27 eta = {reynolds[x[1, 2] x[2, 3], x, n]};
28
29 hironakaRingMember[eta , theta ,
30 reynolds[x[1, 2] x[2, 3], x, n],
31 variables[x, 4]
32]

This program computes a Gröbner basis for an ideal of 7 polynomials in
a ring with 13 variables. It turned out to be too many polynomials and
variables for mathematica and as a consequence, the algorithm does not
finish in a reasonable amount of time.

6.4 Analysis

The algorithm in theorem 8 is in practice much more efficient than the
algorithm from section 3.2. It seems to be hard to prove concrete results
on the running time, amount and monomials considered to find the secondary
invariants [Thi00].

Nevertheless, we can still prove that the algorithm is a major theoretical
improvement over section 3.2. The example in section 6.2.1 for X4 has
maximal degree of secondary invariants equal to 15. This means that the

algorithm will do at most
((n

2

)
+ 15

6

)
Gröbner basis calculations instead of

the number
((n

2

)
+ 24

6

)
from Noether’s theorem.

We can in general derive a better bound than the Ω

(((n
2

)
+ n!(
n
2

)))
that

follows from Noether’s theorem by inspecting the degree of the Molien series.

31

Our chosen set of primary invariants has degrees 1, 2, . . .
(
n
2

)
. By theorem

7, the maximal degree of a secondary invariant is

degH⊙
CX∗nSn

(T) ·
(n2)∏
i=1

(1− T i) =

deg
1

n!

∑
σ∈Sn

1

det(I(n2)
− TMσ)

·
(n2)∏
i=1

(1− T i) =(
n
2

) ((
n
2

)
+ 1
)

2
−
(
n

2

)
≤
(
n

2

)2

There are less than
((n

2

)
+
(
n
2

)2(
n
2

))
monomials that the algorithm in theorem

8 considers, which is asymptotically an improvement over
((n

2

)
+ n!(
n
2

))
Gröb-

ner basis computations in the algorithm derived from Noether’s theorem.
There is an even larger practical improvement that is difficult to account

for arising from the fact that the algorithm jumps to another degree after
having found the correct amount of monomials without a need to test all.

7 Results and discussion

This work mainly constitutes an introduction to invariant theory with iso-
morphism of graphs as a main example. For further reading, we suggest the
survey [Sta79] by Richard P. Stanley.

The problem of finding separating sets by studying the invariant ring is
very hard, making it unsurprising that our simple implementation did not
completely characterize the invariant ring. The following is a quote on this
topic made by Nicolas Thiery[Thi00]:

. . . there is a combinatorial explosion in the computations in-
volved and, to our knowledge, the ring Jn has only been com-
pletely described for n ≤ 4.

In conclusion, I would say that while this project may not have resulted
in a useful algorithm for efficiently solving the graph isomorphism problem,
it has made me familiar with several topics of beautiful mathematics.

32

A Symmetric tensor power construction

This section contains the definitions and lists basic proofs of the symmetric
tensor power

⊙n V and the symmetric tensor algebra for vector spaces V .

Definition of the tensor product V ⊗W for vector spaces

Let V,W be a vector spaces over a field K. For a set S, denote K 〈S〉 to
be the free vector space on S defined as all finite sums

∑
s∈T kss for finite

subsets T ⊂ S with addition k1s + k2s = (k1 + k2)s.
On K 〈V ×W 〉, form the subspace U generated by all

k(v, w)− (kv, w)

(kv, w)− (v, kw)

(v1 + v2, w)− (v1, w) + (v2, w)

(v, w1 + w2)− (v, w1) + (v, w2)

for all v, v1, v2 ∈ V,w,w1, w2 ∈W,k ∈ K. Then define

V ⊗W := K 〈V ×W 〉 /U

Let ⊗ : V ×W −→ V ⊗W be the restriction of the corresponding projection
operator and denote ⊗(v, w) = v ⊗w From the definition of the subspace it
follows that

k(v ⊗ w) = kv ⊗ w = v ⊗ kw
(v1 + v2)⊗ w = (v1 ⊗ w) + (v2 ⊗ w)

v ⊗ (w1 + w2) = (v ⊗ w1) + (v ⊗ w2)

A.1 Iterating the procedure

We define the n : th tensor power V ⊗n as

V ⊗n = V ⊗ (V ⊗ (. . . V) . . .)︸ ︷︷ ︸
n times

Due to the symmetry of the construction, there is an isometry V ⊗(V ⊗V) ∼=
(V ⊗ V) ⊗ V defined by v1 ⊗ (v2 ⊗ v3) 7→ (v1 ⊗ v2) ⊗ v3. Parentheses are
therefore superfluous as the order of taking products is irrelevant.

Construction of symmetric tensor power
⊙n V

We let Sn act on the set V ⊗n. Sn acts on the generators v1 ⊗ . . .⊗ vn by

σ • v1 ⊗ . . .⊗ vn := vσ(1) ⊗ . . .⊗ vσ(n)

33

We define
⊙n V to be the quotient of V ⊗n and the space generated

by all (x − σ • x) for all; x ∈ V ⊗n and σ ∈ Sn. In
⊙n V , we denote

v1 ⊗ v2 ⊗ . . . ⊗ vn to be the equivalence class of v1 ⊗ v2 ⊗ . . . ⊗ vn ∈ V ⊗n.
Then for each v1 ⊗ v2 ⊗ . . .⊗ vn ∈

⊙n V , and σ ∈ Sn,

v1 ⊗ v2 ⊗ . . .⊗ vn = vσ(1) ⊗ vσ(2) ⊗ . . .⊗ vσ(n)

because the difference v1 ⊗ v2 ⊗ . . . ⊗ vn − vσ(1) ⊗ vσ(2) ⊗ . . . ⊗ vσ(n) lies in
the space generated by all x− σx.

Relation to monomials

Let X be a basis of V . Then any x ∈ V ⊗n is (using linearity) a finite linear
combination of terms

⊗n
i=1 xi with xi ∈ X. Since projection is surjective,

the same is true for
⊙n V : every x ∈

⊙n V is a finite linear combination of
terms

⊗n
i=1 xi with xi ∈ X.

The following theorem shows which of these terms construct a basis:

Theorem 9. Let V be a vector space over K, X be a basis for V . For each
selection T of n elements of X with repetition, construct xT =

⊗
t∈T t ∈⊙n V (order of summation is irrelevant since

⊗
is commutative in

⊙n V).
Then the set of all xT forms a basis for

⊗n V .

The symmetric algebra

Theorem 10. If X is a basis for V , then

⊕
n≥0

(
n⊙
V

)

is a graded algebra isomorphic to the free commutative graded algebra K[X]
under concatenation of tensor products.

Proof. This follows from the construction and from theorem 9.

Omitted proofs and detailed discussions can be found in [Fuh11] and
[FH91].

B Gröbner bases

The aim of this section is to describe two algorithms: one is the algorithm
for computing Gröbner bases. We do not give a detailed implementation,
only prove that a reduced Gröbner basis exist and sketch a version of the

34

algorithm. The other one is relevant to us and is used in section 4. It uses
Gröbner bases and computes the following: given polynomial generators
F1, . . . , Fk that generate a subring R ⊆ C[x1, . . . , xn] determines whether
a given polynomial p ∈ C[x1, . . . , xn] belongs to R. This section is mostly
based on chapter 11 of [GCL92] and chapter 1.2 of [PS08]

B.1 Definitions and basic properties

Definition 5. A monomial order is a total order of monomials ≺ such that

• a ≺ b =⇒ ac ≺ bc for all nonconstant monomials a, b, c

• 1 ≺ a for all nonconstant monomials a.

An example of a monomial order of monomials in x1 . . . , xn is the lexi-
cographic order on the exponent vectors. It is clear that it is total and that
it satisfies both conditions.

Definition 6. For each p ∈ C[x1, . . . , xn] and a given monomial order ≺ on
x1, . . . , xn, we define the leading term of p with respect to ≺, LT≺(p) to
be the largest monomial of p under ≺.

Fix a monomial order ≺ and abbreviate LT≺(p) = LT (p). For any ideal
I ⊂ C[x1, . . . , xn], we define the leading ideal LT (I) as the ideal generated
by all leading monomials:

LT (I) = 〈LT (p)|p ∈ I〉

E.g. if ≺ is lexicographic order with z ≺ y ≺ x, then LT≺(2x2y+ 3xy2 +
4y2z) = 2x2y.

Definition 6 is enough to give a useful definition of Gröbner bases:

Definition 7. Let I be an ideal of C[x1, . . . , xn] and ≺ some monomial
order. Then a finite set G of elements in I, G = {g1, . . . , gk} ⊂ I, is called
a Gröbner basis of I if the set LT (G) = {LT (g1), . . . , LT (gk)} generates
the ideal LT (I).

If LT (gj) does not divide any monomial in gi for all i 6= j in {1, . . . , k}, we
call G a reduced Gröbner basis of I.

We will now prove the existence of Gröbner bases for every ideal and
monomial order and prove properties that will lead to algorithms later.

35

Lemma 6. Every ideal M in C[x1, . . . , xn] generated by a (possibly infinite)
set of monomials is generated by a finite number of monomials.

Proof. There are countably many monomials, so we can enumerate all mono-
mials in M by {m1, . . . ,mk, . . .}. The ring C[x1, . . . , xn] is Noetherian, so
the chain of ideals

M1 = 〈m1〉 ⊂M2 = 〈m1,m2〉 ⊂ . . . ⊂Mk = 〈m1,m2, . . . ,mk〉 ⊂ . . .

is finite and

M =
∞⋃
i=1

Mi = Mr

for some index r. It follows that m1, . . . ,mr are generators of M .

Now we can give a simple proof for the existence of Gröbner bases for
every ideal.

Theorem 11. Every ideal I has a Gröbner basis G for every monomial order
≺.

Proof. By the theorem above, LT (I) has a finite monomial basism1, . . . ,ms.
There are polynomials gi ∈ I with gi = LT (mi) for each I. The set G of all
such polynomials is a Gröbner basis for I in the sense of Definition 7

Nothing in the definition tells us that a Gröbner basis generates its ideal.
But this is an important motivation for studying and calculating Gröbner
bases.

Theorem 12. A Gröbner basis G generates its ideal.

Lemma 7. A monomial order ≺ is a well-ordering of monomials.

Proof. Assume there is an infinite decreasing chain m1 � m2 � We
know that the ideal of the mi is generated by the first k mi for some k. It
follows that every later mi is a multiple of some mj , j ≤ k. But that is a
contradiction.

Now we prove the main theorem.

Proof. Assume that I \ 〈G〉 is nonempty. Take p ∈ I \ 〈G〉 with minimal
leading term. p ∈ I, so LT (p) ∈ LT (I). But we know that LT (I) =
LT (G), so LT (p) is a multiple of some LT (gi). We can write LT (p) =
mLT (gi) for a monomial m. Consider q = p − λmgi with λ ∈ C. q 6∈ 〈G〉
because otherwise p 6∈ 〈G〉. We choose λ so that the leading term of p cancels
out. We claim LT (q) ≺ LT (p). This is true because LT (p) = LT (mgi)
and LT (a + b) � max{LT (a), LT (b)} and LT (q) 6= LT (p − λmgi). we
get LT (q) � LT (p − λmgi) � max{LT (p), LT (λmgi)} = LT (p). Since
q ∈ I \ 〈G〉, we have a contradiction.

36

Now, we define reduction modulo a Gröbner basis and show uniqueness
of the reduction.

B.2 Reduction and spanning property

There is an algorithm for reducing a polynomial to a unique remainder mod-
ulo an ideal I associated with a Gröbner basis of I. We call a monomial m
standard if m 6∈ LT (I) and nonstandard if m ∈ LT (I). We claim that

Lemma 8. The equivalence classes of the standard monomials are linearly
independent over C and span C[x1, . . . , xn] /I as a C-vector space.

This implies that every polynomial p has a unique corresponding sum of stan-
dard monomials called remainder modulo I

Proof. Let p ∈ C[x1, . . . , xn]. We are to find q ∈ C[x1, . . . , xn] with q =∑
i λimi where λi ∈ C, mi are standard monomials and p ∼ q, equivalently

p = g + q with g ∈ I.
Let m = HNST (p) be the highest nonstandard monomial in p. Then

m ∈ LT (I), equivalently there is r ∈ I with m = m′LT (r). We then
write p′ = p − HNST (p) ·m′LT (r). The polynomial p′ has HNST (p′) ≺
HNST (p), therefore repeating this operation decreases until every monomial
is standard. At each step, we subtract elements of I, thus the final result q
has p ∼ q mod I.

This proves that the standard monomials span

C[x1, . . . , xn] /I

To prove linear independence in the quotient ring, assume
∑

i λimi ∈ I
where mi are standard. But the mi are by definition 6∈ I, so the only way
the sum

∑
i λimi is in I is when the sum is 0. But then the mi are linearly

independent over C and so every λi = 0 and we are done.

Reduced Gröbner basis

The Gröbner basis functions in various software packages always return re-
duced Gröbner bases. These Gröbner bases are unique for a given monomial
order and can be used to compute the unique remainder, which is proven

37

in [GCL92]. For instance in Mathematica, the function GroebnerBasis ex-
pects a list of generators of an ideal and an ordering and returns the reduced
Gröbner basis for that ideal whilst the function PolynomialReduce, when
supplied a reduced Gröbner basis, a polynomial and an ordering returns the
unique remainder from Lemma 8. The algorithms used are explained in
detail and proven correct in [GCL92]

B.3 Ring membership algorithm

The algorithm that utilizes repetitive division from Lemma 8 is suitable for
checking membership and remainder of a polynomial over an ideal, but can
not be used right away to test membership in a ring.

The problem is as follows: We have a polynomial p and polynomials
f1, . . . , fn. We want to check if there exists a q such that p = q(f1, . . . , fn)
and find q if it exists. It turns out that we can formulate this as a reduction
problem for ideals and reuse the result Lemma 8

Theorem 13. Let p be a polynomial in variables x1, . . . , xm. Let R be a
subring of K[x1, . . . , xm] generated by f1, . . . , fn.

In the ring K[x1, . . . , xm, y1, . . . , yn], form the ideal I = (f1−y1, . . . , fn−
yn).

Assume that ≺ is a monomial order with yj ≺ xi for every i, j (an ex-
ample is the lexicographic order).

Then let q be the reduction of p with respect to I and ≺ defined in Lemma
8.

Then the following holds:

• q is a polynomial in y1, . . . , yn only and not x1, . . . , xm if and only if
p ∈ R.

• If p is in the subring, and then q evaluated in f1, . . . , fn satisfies

q(f1, . . . , fn) = p.

Proof. First, observe that

q(x1, . . . , xm, f1, . . . , fn) = p

To verify this, write

p(x1, . . . , xm) = A1(f1 − y1) + . . .+An(fn − yn) + q(x1, . . . , xm, y1, . . . , yn)

The left hand side is an expression only in x1 . . . xm, so this has to be valid
for all values of yi. We substitute yi = fi. Then we get

p(x1, . . . , xm) = 0 + . . .+ 0 + q(x1, . . . , xm, f1, . . . , fn)

38

Assume that q is a polynomial only over the yi. Then we know that p =
q(f1, . . . , fn) because of the above.

We will prove that q doesn’t have any xi:s. Assume that p = r(f1, . . . , fn)
for some r. Then each monomial fα can be written as

fα = ((f1−y1)+y1)α1 . . . ((fn−yn)+yn)αn = A1(f1−y1)+. . .+An(fn−yn)+r(y1, . . . , yn)

and it follows that the whole of p can be expressed that way in at least one
way. Thus we have

p = A1(f1 − y1) + . . .+An(fn − yn) + r(y1, . . . , yn)

for some r. It follows that p ∼ r(y1, . . . , yn) modulo I. Every monomial
yα is non-standard since the yi ≺ xi and LT (I) contains no monomials in
y.

B.3.1 Mathematica implementation

We implement the ring membership algorithm in mathematica:

1 ringMembership[generators_ , poly_ , vars_] :=
2 Block[{nvars , groebB , allvars , remainder , z},
3 nvars = Table[z[i], {i, Range[Length[generators]]}];
4 allvars = Join[vars , nvars];
5 groebB = GroebnerBasis[
6 MapThread[
7 Subtract ,
8 {generators , nvars}
9],

10 allvars
11];
12 remainder = PolynomialReduce[poly , groebB , allvars←↩

][[2]]
13 /. Table[var -> 1, {var , nvars }];
14 Internal ‘RealValuedNumericQ[remainder]
15]
16
17 (* example , check if ’x+y’ lies in ring C[x,y] *)
18 ringMembership [{x, y}, x + y, {x, y}]
19 ringMembership [{}, 0, {x, y}]
20 ringMembership [{x^2, y}, x^2 y + y^2, {x, y}]

This algorithm may be used to reduce the size of a generating set of a
ring. If G generates the ring C[G], we can iterate through G and check if a
later member already lies in the subring generated by the previous ones. In
mathematica, it would look like this:

39

1 (* If newPoly lies in C[oldB], returns oldB. Otherwise ,←↩
returns oldB + {newPoly} *)

2 step[oldB_ , newPoly_ , vars_] :=
3 If[ringMembership[oldB , newPoly , vars],
4 oldB ,
5 Join[oldB , {newPoly }]
6]
7
8 (* Reduce a large list ’genList ’ of generators in ←↩

variables ’vars ’ to a hopefully smaller one *)
9 reduceGenerators[genList_ , vars_] :=

10 Fold[
11 step[#1, #2, vars] &,
12 {},
13 genList
14]
15
16 (* example on the generators for the graph invariant ←↩

with n=3 *)
17 reduceGenerators[generators[x, 3], variables[x, 3]]

Running this cone on the 84 generators of the graph invariant ring from
section 3.2, we end up with the answer{

1

3
x1,2 +

1

3
x1,3 +

1

3
x2,3,

1

3
x21,2 +

1

3
x21,3 +

1

3
x22,3,

1

3
x31,2 +

1

3
x31,3 +

1

3
x32,3

}
That are the 3 power-sum symmetric polynomials that generate the algebra
of symmetric polynomials of 3 variables.

B.4 Hironaka ring membership algorithm

We describe a modification of algorithm B.3.1 to test whether a polynomial
p(x) belongs to a ring given as a set E, theta of primary and secondary
generators for Hironaka decomposition

⊕
η∈E η C[θ1, . . . , θn].

The set of E ∪ θ is a generating set of
⊕

η∈E η C[θ1, . . . , θn], therefore
the ordinary ring membership algorithm from section B.3.1 applies.

A mathematica implementation follows:

B.4.1 Mathematica implementation

1 (* checks if poly lies in the ring with hironaka ←↩
decomposition eta , theta. Everything is a polynomial←↩
in vars *)

2 hironakaRingMember[eta_ , theta_ , poly_ , vars_] :=
3 ringMembership[Join[eta , theta], poly , vars]

40

References

[BL83] László Babai and Eugene M. Luks. Canonical labeling of graphs. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, STOC ’83, pages 171–183, New York, NY, USA, 1983.
ACM.

[BVS76] B.B Belov, E.M. Vorobev, and V.E. Shatalov. Teoriya grafov.
Vyshaya shkola, 1976.

[FH91] W. Fulton and J. Harris. Representation Theory: A First Course.
Graduate Texts in Mathematics / Readings in Mathematics.
Springer New York, 1991.

[Fuh11] P.A. Fuhrmann. A Polynomial Approach to Linear Algebra. Uni-
versitext. Springer, 2011.

[GCL92] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Com-
puter Algebra. Kluwer Academic, 1992.

[PS08] P. Paule and B. Sturmfels. Algorithms in Invariant Theory. Texts
& Monographs in Symbolic Computation. Springer, 2008.

[Sch87] Uwe Schöning. Graph isomorphism is in the low hierarchy. In
FranzJ. Brandenburg, Guy Vidal-Naquet, and Martin Wirsing, ed-
itors, STACS 87, volume 247 of Lecture Notes in Computer Science,
pages 114–124. Springer Berlin Heidelberg, 1987.

[Sta79] Richard P. Stanley. Invariants of finite groups and their appli-
cations to combinatorics. BULLETIN OF AMER. MATH. SOC,
1(3):475–511, 1979.

[Thi00] Nicolas M. Thiéry. Algebraic invariants of graphs; a study based
on computer exploration. SIGSAM Bull., 34(3):9–20, September
2000.

41

