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Abstract

This thesis is concerned with the occurrence of problems corresponding to the numerical

treatment of the viscid Burgers’ equation together with homogeneous Neumann boundary

conditions. It has been shown that the steady state solutions of this system must be

constants for an arbitrary initial condition, but for the same problem and for some specific

initial conditions, the numerical solutions indeed converge to non-constant steady state

solutions. We proved analytically that for arbitrary small non-zero Neumann conditions,

the steady states are non-constant and in the shape of a tanh function. Since numerically

treated derivatives must be approximated, the homogeneous Neumann conditions are in

general approximated by a value up to the size of the machine epsilon of the used floating

point format. Thus, these wrong non-constant solutions are existing numerical steady

states for the homogeneous problem. It has also been shown that these non-constant steady

states are indeed not uniquely defined. For each initial value problem there exist two steady

state solutions that mainly depend on the size of the error of the Neumann conditions, the

viscosity parameter and the magnitude of the initial condition. The convergence therefore

depends on which floating point format we use, since the round off that can occur in the

approximation of the Neumann conditions are larger for less accurate formats.

During numerical testing another problem was also found. Most likely it is also caused

by the round off errors. Since all constants are steady state solutions, there are no globally

defined attractor to the problem, and hence different initial conditions have different steady

states. Because of that, small errors that occur in every iteration in the numerical process

cannot be cured, since the solution in every iteration can be seen as an initial condition

by itself. Hence, in some cases the solution seems to converge to the right steady state,

but makes a drastic change to a wrong constant solution. Looking more closely, for an

initial condition with an invariant point and for which the steady state solution is the

zero constant we can see that the point is shifted by a small value in each iteration. We

have approached this problem using an initial condition with a invariant point in which

we imposed a Direchlet condition. With this setting the problem was eliminated, which

indicates that the errors appear most likely due to the round off errors that occur when

the zero value in the point is approximated.

We have also proved that the non-constant solutions does not exist for all numerical

schemes. More detailed studies of the impact on specific numerical schemes might therefore

be a topic for further studies.
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Chapter 1

Introduction

Named after the Dutch physicist Johannes Martinus Burgers (1895-1981), the Burgers’

equation is a famous partial differential equation. It appears in applied mathematics

as a fundamental model of non-linear phenomenon. Burgers presented the equation as a

simple one-dimensional model for turbulent flow. The equation was later derived by James

Lighthill (1924-1998) to a second order approximation of the Navier Stokes equation in

fluid mechanics. One can consider the Burgers’ equation as a simplification of the Navier

Stokes equation, where the pressure term is dropped.

The uses of Burgers’ equation are many. For instance it can be used to model flow

problems such as shock flow and traffic flow. But depending on the nature of the problem

it can also be used in areas of heat conduction, thermal radiation, chemical reactions etc.

It is known as the simplest model that includes the non-linear and viscous effects of fluid

dynamics.

Burgers’ equation is also a useful equation for general testing. In this matter, the

reason it is to prefer is that it is simple enough to give an insight into more complex

problems. Hence, Burgers’ equation is often the first choice as a test model in numerical

analysis to illustrate accuracy and convergence of a particular scheme.

Burgers’ equation is mainly stated in two forms: The viscous Burgers’ equation is the

complete form, written as

ut + uux = νuxx, (1.1)

where ν > 0 is the viscosity parameter, u is the solution variable; ut defines the derivative

in time and ux the derivative in space. The physical interpretation of the terms is that uux

controls convection and νuxx diffusion. The second form is the inviscid Burgers’ equation,

where the viscosity constant is set to zero:

ut + uux = 0. (1.2)

The solutions of the inviscid equation can be considered by studying the characteristics of
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the equation. As long as the characteristics does not cross there will be unique solutions.

But due to the non-linear term, the characteristics may cross at some time, which will

cause non-unique solutions. Non-unique solutions cannot exist in most physical situations.

If the viscosity parameter is non-zero, then the diffusion term works as a control term,

restricting existence of non-unique solutions. As the wave starts to break the second

derivative uxx grows much faster than ux and νuxx starts to influence the solution. It

shows that the νuxx term keeps the solution smooth for all time. Hence the viscous

Burgers’ equation does not generate any shock wave solutions.

This thesis only deals with results corresponding to the viscous Burgers’ equation.

However, the solutions of the inviscid Burgers’ equation are a widely studied subject. See

e.g. [9].

Consider again the shape of the viscous equation (1.1); the equation is written in quasi

linear form. Sometimes the uux term is not handy to use. One may instead rewrite the

term to conservative form: (F (u))x =
(
u2/2

)
x
. Hence, the equation (1.1) is reformed to:

ut +

(
u2

2

)
x

= νuxx. (1.3)

This form will be used several times in this thesis.

The existence of explicitly given analytical solutions to a differential equation makes the

use of numerical approximations crucial in many areas. Also, there is a need of simulations

in science which cannot for sure be done analytically. Even since the performance of the

computers has been increasing a lot over the recent decades, the precision of an arithmetic

operation will always be limited by the floating point format of the computer. The non-

existence of infinite memory will always prevent the use of infinite numbers on a computer

system.

The most used computer systems at date (2014) are single and double precision for-

mats. I.e. Systems with 32 and 64 bits memory per number stored. Every part of the

number must be stored in a different place in the memory. The distribution of the bits in

single precision is stored as follow: one bit for the sign (− or +), 8 bits for the exponent

and 23 bits for the fraction. In double precision arithmetic the distribution is: one bit for

the sign, 11 bits for the exponent, and 52 bits for the fraction. In Figure 1.1 the the distri-

bution is shown in more detail. All numbers expressed on a computer system is rational

| ×2︸︷︷︸
Sign

| ×2 ×2 · · · ×2 ×2︸ ︷︷ ︸
Exponent

| ×2 ×2 · · · ×2 ×2︸ ︷︷ ︸
Fraction

|

Figure 1.1: Bit occupation for one number in finite precision arithmetic.

numbers. For a number to be expressed exactly in base two, the denominator has to be

powers of two. Numbers with a prime factor other than two as a denominator cannot be
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represented with a finite binary expansion. In double precision arithmetic 52 bits for the

fraction can be stored, the rest is truncated. Similarly, in single precision arithmetic there

is only place for 23 bits, the rest is truncated. While an arithmetic operation is executed,

the result may therefore be truncated. And the smallest number that is stored but not

truncated after a arithmetic operation is performed is called the machine epsilon. The

machine epsilon is for double respectively single precision

εdouble = 2−53 ≈ 1.1102 · 10−16, (1.4)

εsingle = 2−24 ≈ 5.9605 · 10−8, (1.5)

which is the representation where the last bit is 1 and the rest 0 for the fraction part. One

may not mix this with the smallest number possible that can be represented, since that

number also uses the exponential part of the memory. E.g. the smallest number in double

precision is 10−325. More about floating point arithmetic can be seen in [8].

In this thesis the impact of the round off errors that occur when we are dealing with val-

ues close to machine epsilon are treated. Consider the Neumann boundary value problem

governed by the viscous Burgers’ equation:
ut + uux = νuxx, (x, t) ∈ (0, 1)× (0,∞), ν > 0,

ux = 0, (x, t) ∈ {0, 1} × (0,∞),

u = u0, (x, t) ∈ [0, 1]× {0}.
(1.6)

where u0 is an initial condition over [0, 1]. Solving (1.6) numerically, the Neumann condi-

tions must be zero in each iteration using a numerical time-stepping method. Dealing with

zeros against non-zeros, especially values that we expect being computed as zero, is most

often giving round off errors. Hence, trying to compute something such that the result is

zero can be changed to compute something to a value close to machine epsilon in finite

precision. It is found that the viscid Burgers’ equation with zero Neumann conditions and

for an arbitrary initial condition does generate non-existing solutions. It is easy to show

that for all initial conditions the steady state solution must be constant, but the numerical

results shows something else. Instead of a constant solution, the solution converges to a

non-constant shock-wave looking solution, see Figure 1.2.

There has been some research going on treating this problem over the years. Indeed, it

seems to be the round off error while using the zero Neumann conditions that is the main

source to these wrong solutions. We are considering this in more detail. The ground of this

thesis follows from the research papers by Allen, Burns, Balogh, Gilliam, Hill and Shubow

[2]-[3], which first approached the problem at the nineties. Also, the master students Pugh

and Nguyen has done numerical testing of different finite element schemes in their master

theses [11], [10], which has been valuable. Other papers that has influenced the content

of this thesis is the work by Titi and Cao [5], which are treating the problem from a more

analytical point of view.
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The purpose of this thesis has NOT been to copy the results from the work mentioned

above. The goal has been reviewing the problem at an undergraduate level and also give

examples of possible error sources that can be studied in more detail for further research.
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Figure 1.2: (a) Expected steady state solution to the system (1.6) at a time T , for the
initial condition u0(x) = 5 cos(πx). (b) Numerical solution to the same problem.
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Chapter 2

Analytical solutions

Why using numerical methods and finite precision instead of the analytical analogy? To

answer this question, the analytical treatment of Burgers’ equation are presented in this

chapter. It shows that complexity of the boundary conditions restrict the possibility for

an explicitly given solution to exist. The viscid Burgers’ equation (1.1) is one of the

few non-linear partial differential equations which can be solved exactly for a restricted

set of arbitrary initial conditions. Indeed, by changing variables the non-linear equation

can be linearized by the so called Cole-Hopf transformation [7]. Hopf introduced the

transformation by first rewriting the space derivatives into the following form

ut =

(
νux −

u2

2

)
x

. (2.1)

Then by introducing the dependant variable φ = φ(x, t), defined as

φ(x, t) = exp

{
− 1

2ν

∫ x

0
u(s, t)ds

}
, (2.2)

the final Cole Hopf transformation is reached

u(x, t) = −2ν
φx
φ
. (2.3)

Theorem 2.0.1. If φ(x, t) is any solution to the heat equation

φt(x, t) = νφxx(x, t), (2.4)

then u(x, t) = −2νφ′(x, t)/φ(x, t) is a solution to the viscid Burgers’ equation (1.1).
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Proof. Compute the terms in (1.1) individually

ut = 2ν
φtφx − φφxt

φ2
,

uux = 4ν2φx(φφxx − φ2
x)

φ3
,

νuxx = −2ν2 2φ3
x − 3φφxxφx + φ2φxxx

φ3
.

Substitute into (1.1) yields

2ν
φtφx − φφxt

φ2
+ 4ν2φx(φφxx − φ2

x)

φ3
= −2ν2 2φ3

x − 3φφxxφx + φ2φxxx
φ3

⇐⇒ − φφxt + φx(φt − νφxx) + νφφxxx = 0

⇐⇒ φx(φt − νφxx) = φ(φxt − νφxxx) = φ(φt − νφxx)x = 0.

Thus, if φ solves φt − νφxx = 0, then (2.3) solves (1.1).

Any initial condition to (1.1) in the form u0(x) = u(x, 0) is also easily transformed by

(2.3) into the form

φ(x, 0) = exp

{
− 1

2ν

∫ x

0
u0(ξ) dξ

}
. (2.5)

Boundary conditions, must also be transformed by (2.3). But, it shows that basic boundary

conditions are not always trivial after the transformation is applied. Hence, the simplicity

of the equation after applying the Cole-Hopf transform is somewhat limited to the form

of the boundary conditions. This difficulties are shown in the next section.

By the Cole-Hopf transformation it suffices to solve the heat equation for the trans-

formed boundary conditions and initial condition. And the heat equation can be solved

explicitly by e.g. separating variables and Fourier analysis. Such a solution is the next

thing to consider.

2.1 General solution using separation of variables

Consider the viscid Burgers’ equation with an arbitrary chosen initial condition u0 on the

real spatial interval [0, 1], where the boundary conditions are not yet decided:
ut + uux = νuxx, (x, t) ∈ (0, 1)× (0,∞), ν > 0,

u satisfies some boundary conditions (x, t) ∈ {0, 1} × (0,∞),

u = u0, (x, t) ∈ [0, 1]× {0}.
(2.6)
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Using Cole-Hopf transform (2.3) it suffices to solve the system governed by the heat

equation
φt − νφxx = 0, (x, t) ∈ (0, 1)× (0,∞), ν > 0,

φ satisfies some boundary conditions (x, t) ∈ {0, 1} × (0,∞),

φ = exp
(
− 1

2ν

∫ x
0 u0(ξ) dξ

)
, (x, t) ∈ [0, 1]× {0}.

(2.7)

Separate, the variable φ(x, t) into the spatial variable X(x) and the time variable T (t):

φ(x, t) = X(x)T (t). Substitute into (2.7) it follows that

(X(x)T (t))t = ν(X(x)T (t))xx,

which is rewritten to

X(x)Tt(t) = νXxx(x)T (t).

Dividing the above equation by νX(x)T (t) yields

1

ν

Tt(t)

T (t)
=
Xxx(x)

X(x)
.

The left hand side depend only on t and the right hand side only depends on x; thus both

are equal to the same constant if there exists a solution φ(x, t) = X(x)T (t) to (2.7) so T

and X satisfy

Tt(t)

νT (t)
= −λ

Xxx(x)

X(x)
= −λ.

where λ is an arbitrary separation constant. It is good to mention that the minus sign

is not necessary, but it is useful further on. Hence, the problem turns into solving the

eigenvalue problem{
−Xxx = λX, x ∈ (0, 1), λ ∈ C,
X satisfies some boundary conditions x ∈ {0, 1}.

(2.8)

where λ is the eigenvalue of − ∂2

∂x2
and X is the corresponding eigenfunction. Thus, to

solve for φ, the first thing to do is to solve this eigenvalue problem, then solve for T (t)

and a multiplication of the solutions is our solution.

The solutions vary for different boundary conditions. There is no need to show the

whole solution process with other boundary conditions than for Neumann conditions,

which is the main issue in this thesis. But it is worthwhile considering what happens when

the Cole-Hopf transformation is applied to Direclet conditions for comparison purposes.
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2.1.1 Direchlet boundary conditions

Homogeneous, Direchlet boundary conditions are easily transformed by the Cole Hopf

transformation. If u(0, t) = u(1, t) = 0, then the transformation follows

u(0, t) = −2ν
φx(0, t)

φ(0, t)
= 0 =⇒ φx(0, t) = 0, (2.9)

u(1, t) = −2ν
φx(1, t)

φ(1, t)
= 0 =⇒ φx(1, t) = 0. (2.10)

Thus, in this case, Direchlet conditions are transformed into Neumann conditions.

2.1.2 Neumann boundary conditions

Consider now, the Cole Hopf transformation applied to homogeneous Neumann conditions.

On the domain [0, 1], these are written as

ux(0, t) = ux(1, t) = 0. (2.11)

But applying the Cole Hopf transformation now yields rather complex expressions.

ux(0, t) =

(
−2ν

φx(0, t)

φ(0, t)

)
x

= −2ν
φxx(0, t)φ(0, t)− φ2

x(0, t)

φ2(0, t)
= 0,

⇐⇒ φxx(0, t)φ(0, t)− φ2
x(0, t) = 0 (2.12)

ux(1, t) =

(
−2ν

φx(1, t)

φ(1, t)

)
x

= −2ν
φxx(1, t)φ(0, t)− φ2

x(1, t)

φ2(1, t)
= 0

⇐⇒ φxx(1, t)φ(1, t)− φ2
x(1, t) = 0. (2.13)

Thus, the boundary conditions in this case are non-linear and mixed. This conditions

are not easy to apply to the eigenvalue problem obtained from the separation of variables

process, which means that other methods have to be developed; in general numerical

methods.
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Chapter 3

Steady state solutions

Physically, the equilibrium condition of a system are often the most important solutions

to analyse. An equilibrium is also called a steady state, and mathematically it means

that the solution of a differential equation is constant in time. As an example: a steady

state solution of the heat equation with no-flux boundaries is when the heat-flow doesn’t

change. Another example is for the wave equation, when all waves are gone and the water

is still. However, the examples just explained shows stable equilibria – as time passes the

solutions converges to these states. But, there are also unstable equilibria. If the stable

equilibria are interpreted as attracting points, where all trajectories attracts the point,

then the behaviour of the unstable equilibria can be interpreted as repelling points, for

which all trajectories leave the point.

The following result is crucial in this thesis.

Theorem 3.0.1. v(x) is the steady state solution to the viscid Burgers equation with

homogeneous boundary conditions (1.6) if and only if v(x) = C, where C is a constant

value.

Proof. Every constant function v(x) = C is a steady state solution since all terms in (1.6)

are derivatives, which makes a constant vanish. Conversely, let v(x) be any steady state

solution to (1.6). Then v(x) satisfies{
−νvxx + (F (v))x = 0, x ∈ (0, 1), ν > 0,

vx = 0, x ∈ {0, 1}.
(3.1)

where F (v) = v2/2. Integrating ( 3.1) yields

vx(x) = vx(0)e
∫ x
0 F ′(v(s)) ds = 0. (3.2)

And integrating both sides of (3.2) finally gives

v(x) = C. (3.3)
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Hence, all steady state solutions are constants.

As a consequence of the theorem above – since every constant function is a steady state

solution, the steady states of the Neumann boundary value problem cannot be uniquely

defined. And since all constants are steady state solutions, we can conclude that the

global attractor of the dynamical system is unbounded, since it contains the whole real

axis. Hence we might expect to have different steady state solutions for different initial

conditions chosen.

3.0.3 The equilibrium u = 0

Assume that at t = t∗ we have a steady state u(x, t∗), then ut(x, t
∗) = 0. The steady state

doesn’t depend on t, hence define h(x) := u(x, t∗). Substituting into (1.6) yields{
(h′)2

2 = νh′′, x ∈ (0, 1), ν > 0,

h′ = 0, x ∈ {0, 1}.
(3.4)

Plugging in a constant value into (3.4) makes every term cancels out, which confirms that

all constants are steady states.

Other solutions can be found by integrating both sides of the first equation in (3.4),

which yields

−νh′ + h2

2
= C. (3.5)

This equation can indeed be solved explicitly in the following way

− νh′ + h2

2
= C.

⇐⇒ νh′ =
h2

2
− C

⇐⇒ 2νh′ = h2 − 2C

⇐⇒ 1 =
h′

h2−2C
2ν

⇐⇒ x =

∫ h(x)

0

dz
z2−2C

2ν

+D

Use the substitution z =
√

2C tanh θ (see [6]). Then dz =
√

2C(1− tanh2 θ) dθ, and hence

x =

∫ h(x)

0

√
2C(tanh2 θ − 1)

2C
2ν (tanh2 θ − 1)

dθ +D

⇐⇒ θ =

√
2C

2ν
(D − x).
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Then combining the results gives a final steady state solution on the form

h(x) =
√

2C tanh

(√
2C

2ν
(D − x)

)
(3.6)

Thus, there are two constants that have to be solved out. The boundary conditions can

be used to this end. The derivative of (3.6) is

h′(x) = −C
ν

sech2

(√
2C

2ν
(D − x)

)
(3.7)

And at the boundaries, the derivative of the steady state solution is therefore given as:

0 = h′(0) = −C
ν

sech2

(√
2C

2ν
D

)
, (3.8)

0 = h′(1) = −C
ν

sech2

(√
2C

2ν
(D − 1)

)
. (3.9)

Since sech cannot be zero, the only way for (3.8) and (3.9) to be satisfied is to choose

the constant C equal to zero. And if C = 0, then (3.6) must be equal to zero. Hence,

the only constant steady state that deals with this kind of solution is the steady state

h(x) = u(x, t∗) = 0. There is no possibility at all for (3.6) to be a constant value not

equal to zero for all C, ν and D. This makes the zero steady state solution interesting.

There are indeed other possibilities for (3.7) to be satisfied. If the argument of sech tends

to infinity then sech itself tends to zero. Thus,

lim
ν→0
−C
ν

sech2

(√
2C

2ν
(D − x)

)
= 0, (3.10)

and

lim
C→∞

−C
ν

sech2

(√
2C

2ν
(D − x)

)
= 0. (3.11)

So, if either ν → 0 or C → ∞ the boundary conditions are also satisfied. But, (3.7) is

more influential if the boundary conditions are non-zero Neumann conditions, which will

be the case if the zero value is approximated to a non-zero. This is the main subject of

this thesis, hence we will come back to this later on.

3.1 Linearization

A deeper analysis of a steady state can be performed locally. The linearization principle

states that designs based on linearizations work locally for the original system [12]. Hence
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by linearizing at the zero state, the equilibrium becomes simpler to study. A linearization

is most often performed by the Taylor expansion, where all non-linear terms are dropped.

For the Burgers’ equation let u(x, t) = 0 + δw(x, t), where δ is the magnitude of the

increment around the zero equilibrium. Substituting into the general form (1.6) yields:
wt = νwxx, (x, t) ∈ (0, 1)× (0,∞), ν > 0

wx = 0, (x, t) ∈ {0, 1} × (0,∞).

w = u0 (x, t) ∈ [0, 1]× {0}.
(3.12)

Thus, the linearized problem at zero is indeed the linear heat equation, which can be

solved in the way described in previous section, namely by separating variables: w(x, t) =

X(x)T (t). The first part of this process is therefore already done, and it remains to solve

for the Neumann boundary conditions.

Recall that the problem that has to be solved is the eigenvalue problem in the form{
−Xxx = λX, x ∈ (0, 1), λ ∈ C
Xx = 0. x ∈ {0, 1}

(3.13)

Consider the three cases for λ: λ > 0, λ < 0 and λ = 0. Starting with λ > 0; the general

solution in this case is

X(x) = C cos(
√
λx) +D sin(

√
λx). (3.14)

Now, applying the boundary conditions gives

0 = Xx(0) =
√
λD =⇒ D = 0, (3.15)

0 = Xx(1) = −
√
λC sin(

√
λ) =⇒

√
λ = nπ, n = 1, 2, . . . (3.16)

Hence, the eigenvalues λ > 0 with corresponding eigenfunctions of (3.13) are given by

λn = (nπ)2, Xn(x) = cos(nπx), n = 1, 2, 3, . . . (3.17)

The case λ = 0 gives the general solution

ϕ(x) = C +Dx. (3.18)

And applying the boundary conditions to this equation yields

0 = Xx(0) = D =⇒ X(x) = C. (3.19)

Hence, λ = 0 is an eigenvalue of the boundary value problem and the eigenfunction
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corresponding to this eigenvalue is

X(x) = 1. (3.20)

Finally for λ < 0, the general solution is

X(x) = C cosh(
√
−λx) +D sinh(

√
−λx). (3.21)

And applying the boundary conditions gives

0 = Xx(0) =
√
−λD =⇒ D = 0 (3.22)

0 = Xx(1) =
√
−λC sinh(

√
−λ). (3.23)

But,
√
−λ 6= 0, which implies that sinh(

√
−λ) 6= 0. Hence, C = 0; so both C and D are

equal to zero, which means that there exist no eigenvalues in this interval.

Summarize all three cases – the general solution to the eigenvalue problem is

λn = (nπ)2, Xn(x) = cos(nπ), n = 0, 1, 2, . . . (3.24)

Now, solving for t – the time dependent problem has the solution

T (t) = e−kn
2π2t. (3.25)

Hence, the product-solution becomes

wn = An cos(nπx)e−kn
2π2t, n = 0, 1, 2, . . . (3.26)

This gives the general solution to the linearization of the viscid Burgers’ equation:

w(x, t) = A0 +

∞∑
n=1

An cos(nπx)e−kn
2π2t. (3.27)

It is indeed a cosine-series. For the initial condition it is given that

u0(x) = w(x, 0) = A0 +

∞∑
n=1

An cos(nπx). (3.28)

Multiplying both sides by cos(mπx), m ∈ N, and integrating over [0, 1] then gives∫ 1

0
u0(x) cos(mπx) dx =

∫ 1

0
A0 dx+

∞∑
n=1

∫ 1

0
An cos(nπx) cos(mπx) dx. (3.29)

Since the cosine terms are orthogonal to each other in all cases where n 6= m, it follows

that the Fourier-series converge to the initial condition u0, with the smoothness property
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u0 ∈ L2(0, 1)

An =

{ ∫ 1
0 u0(x) dx, n = 0,∫ 1

0 u0(x) cos(nπx) dx, n 6= 0,
(3.30)

where cos(nπx) are the eigenfunctions corresponding to the eigenvalues λn = n2π2. Letting

t→∞ makes e−kn
2π2t → 0 in (3.27). And hence,

lim
t→∞

w(x, t) = A0. (3.31)

This means that the solution converges to a constant steady state for each specifically

chosen initial condition. However, since zero is a steady state, and also where the lin-

earization is performed, the only true equilibrium is the zero solution itself. Hence, by

(3.31), the zero state is reached from initial conditions with mean value zero.

3.2 The class of odd functions around x = 1/2

By the Fourier series solution (3.30) we restrict the initial conditions being square inte-

grable. And by the result (3.31) we can conclude that all initial conditions which has a

mean value of zero, shall converge to the zero function. A class of such functions in [0, 1]

is the class of odd functions around x = 1/2. Define this class of functions in L2(0, 1) as

L2
odd := {u ∈ L2(0, 1) : u(x, t) = −u(1− x, t)}. (3.32)

Also, this class is independent of the viscosity, and solutions to (1.6), which can be checked

by plugging in u(x, t) = −u(1− x) into (1.6):

− ut(1− x, t)− u(1− x, t)ux(1− x, t) = −νuxx(1− x, t)

⇐⇒ ut(x, t) + u(x, t)ux(1− x, t) = νuxx(x, t).

For the boundary conditions it follows that

ux(0, t) = ux(1, t) = 0.

And for the initial condition

−u(1− x, 0) = −u0(1− x) = u0(x) = u(x, 0).

Hence u(x, t) = −u(1 − x, t). According to the steady state expression (3.6) – since it is

an odd function (well known fact for the tanh function) the D constant can be solved out
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using the fact that h(1/2) = 0. Thus,

√
2C tanh

(√
2C

2ν

(
D − 1

2

))
= 0 =⇒ D =

1

2
. (3.33)

This form is used in the sequel in this thesis. It is only of interest to consider odd initial

conditions, since they shall converge to the constant zero solution, which is the only

solution that actually corresponds to the linearized results.

3.3 Steady state solutions in finite precision

Recall that the steady state solutions in L2
odd(0, 1) are in the form

h(x) =
√

2C tanh

(√
2C

2ν

(
1

2
− x
))

(3.34)

with the derivative

h′(x) = −C
ν

sech2

(√
2C

2ν

(
1

2
− x
))

(3.35)

where the boundary conditions are

h′(0) = h′(1) = −C
ν

sech2

(√
2C

4ν

)
= 0. (3.36)

But, in finite precision, one cannot be sure about computing something which generates an

exact zero solution. Even though the approximation will be something very close to zero

it will still be treated as a constant instead of a zero value, and as we know, performing

an arithmetic operation will always end up with errors up to machine epsilon, which are

numbers that still are saved in the memory of a computer system. Denote approximate

discrete numerical solution as U ≈ u and the approximation of zero as the constant γ.

Then the analogue system to (1.6) in finite precision is written as
Ut + UUx = νUxx, (x, t) ∈ (0, 1)× [0, T ), ν > 0,

Ux = −γ, (x, t) ∈ {0, 1} × [0, T ), γ > 0.

U = U0, (x, t) ∈ [0, 1]× {0}, U0 ∈ L2
odd(0, 1),

(3.37)

were T is the final time of the computation, T <∞. According to this system, the same

steady state solution as for (1.6) with u0 ∈ L2
odd(0, 1) is obtained, namely (3.34) – but now

the constant C inside (3.34) must be non-zero to satisfy the boundary conditions. I.e. the
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constant has to be solved out from:

h′(0) = h′(1) = −C
ν

sech2

(√
2C

4ν

)
= −γ, (3.38)

Since C 6= 0, the steady state solutions must be a non-zero function in the form of (3.34).

Note that the non-zero derivative must be negative for −C
ν sech2

(√
2C

4ν

)
to exist. In the

case γ < 0, the solutions are truly non-existent. Hence, if this case appear, the round

off errors may not give rise to any solutions on the form (3.34) at all. And for sure,

there cannot be any constant solutions either since they all must have zero derivatives

at the boundaries. However, the small positive values are very small, and their existence

does not influence the existence of any other types of solutions, which makes them most

likely converge to an approximate value close to the true one. Solutions for monotonically

increasing and monotonically decreasing initial conditions has been tested, and will be

considered in section 5.5.

The shape of the steady states and the derivatives for two different C are depicted

in Figure 3.1. Note that as C is getting smaller, then h(x) is getting closer to the zero

solution.

0 0.2 0.4 0.6 0.8 1

−5

0

5

x

h
(x

)

0 0.2 0.4 0.6 0.8 1

−100

−50

0

x

D
h

(x
)

Figure 3.1: Stationary solutions with ν = 0.1, where C = 1 [- -] and C = 10 [–].

3.3.1 Existence of the zero steady state in finite precision

It was shown in section 3.0.3 that (3.38) tends to zero if either ν → 0 or C →∞. Hence,

for an iterative process the derivatives on the boundaries may be non-zero at one iteration,

but zero at the next, due to round off errors that occur when ν is small enough or C is

large enough. Let us consider what values of ν and C that may give γ = 0. Both single

and double precision are considered:

First consider the case where ν is fixed to 0.1 and C is varying. Then the opposite

case, where C = 1 and ν is varying. Recall that a subnormal value is a number in a
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floating point system on the form M × 2e, M ∈ [1, 2), which are numbers smallest than

2emin , where emin = −1022 in double precision and emin = −126 in single precision (see

[8]). The smallest subnormal value is the smallest number existing in the actual floating

point format.

Single precision

Let ν = 0.1, then for the derivative expression (3.38) to be smaller than the smallest

subnormal value, the following inequality has to be fulfilled

10C sech2

(√
2C

0.4

)
< 1.4× 10−45. (3.39)

Solving for C gives that the result must satisfy C > 253.137 or C < 1.4× 10−45. But C <

1.4× 10−45 is already smaller than the smallest value by itself and must be approximated

as zero. Hence in this setting, the only way for (3.38) to be rounded down to zero is if

C > 253.137.

For a fixed C = 1, (3.38) is rounded down to zero if

1

ν
sech2

(√
2

4ν

)
< 1.4× 10−45. (3.40)

And solving for ν gives the result ν < 0.0064452 or ν > 1045. Hence, large ν that satisfying

the inequality must be larger than the largest possible number, which is not possible due

to memory restrictions. But ν < 0.0064452 are valid numbers in single precision.

Double precision

Similarly for double precision:

Let ν = 0.1, then for (3.38) to be smaller than the smallest subnormal value, the

following inequality has to be fulfilled

10C sech2

(√
2C

0.4

)
< 4.94× 10−324. (3.41)

Solving for C gives that the result must satisfy C > 11475 or C < 4.94 × 10−324. Thus,

the same problem occur here as for single precision: small C cannot force (3.38) to zero,

but C > 11475 are valid numbers in double precision.

Lastly, for a fixed C = 1, the derivative expression (3.38) is rounded down to zero if

1

ν
sech2

(√
2

4ν

)
< 4.94× 10−324. (3.42)
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And solving for ν gives ν < 0.000939 or ν > 2.02× 10323. Similar to single precision, the

large number that force (3.38) to zero is so big it may give memory overflow. But the

small numbers ν < 0.000939 are valid numbers in double precision.

These results tell that cases for which the derivative is rounded down to zero in the

two most common finite precision formats, may occur if ν is very small or if C is very

large. But these numbers are much smaller/larger than machine epsilon for respective

format. Hence, it is impossible to get consistent results with this sizes of numbers. Also,

the numerical schemes will have stability problems with numbers like this. This is not

proved, but stability problems have been noticed even for unconditionally stable schemes

when ν < 0.01 and C > 50.

Another thing according to these results is; if the derivatives are rounded down to zero

in this way, the solution (3.34) must be a non constant value with very large magnitude

on the boundaries. Because, if the argument of tanh is large, the magnitude of the term√
2C will be demanding. In general: h(0)→

√
2C as

√
2C/(4ν)→∞.
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Chapter 4

A bifurcation analysis of the finite

precision steady states

In this chapter, we analyse the steady state u = 0 further. Assuming there exist both the

zero solution and a non-constant solution, it is of interest to know when those solutions

occur, and if the equilibria are stable or unstable.

4.1 Consequences of non-zero Neumann conditions

It was observed in the previous chapter that because of round off errors in finite precision

the Neumann conditions in (1.6) are more likely written equal to a small negative constant

−γ instead of zero for a discretized system. Assuming this fact, the expression for the

derivative of the steady state solution on the left boundary is therefore given by

h′(0) = h′(1) = −C
ν

sech2

(√
2C

4ν

)
= −γ. (4.1)

Now, we derive a bifurcation analysis based on this expression. This means that the

different solutions which can be obtained by varying C and ν are considered.

The equation (4.1) depends on both C and ν. It is already proven that ν → 0 gives a

small γ. But for C; small γ can occur both if C is small and large. We want to study the

possible C values and their corresponding solutions. First, rewrite the expressions a bit.

Take the square root of (4.1), then√
C

ν
sech

(√
2C

4ν

)
=
√
γ. (4.2)

Since the sech function in (4.2) is smooth and even, it is possible for the constant C to

have two solutions for each
√
γ. Hence, if γ is small, then either C is very small or very

big. Consider the graphs of (4.2) in Figure 4.1. Define C∗ as the C which gives the
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extreme value of (4.2). As can be observed – when ν is getting smaller, the C∗ is also

getting smaller. Hence if γ is fixed, both solutions; call them C< (for C < C∗) and C>

(for C > C∗), are getting smaller. In particular, for every γ, there are either zero solutions

(above maxima), one solution (at C∗) and two solutions (below maxima). Let us compute
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Figure 4.1: (a) The shape of (4.2) for ν = 0.1 in a linear plot. (b) The equation (4.2)
plotted in a semilog plot for varying ν.

the maxima of this second order expression and observe for what γ, there are solutions.

Multiply (4.2) on both sides with
√

2/(4
√
ν) and obtain

√
2C

4ν
sech

(√
2C

4ν

)
=

√
γ

8ν
. (4.3)

Now, use the variable substitution R :=
√

2C/(4ν). Then,

F (R) :=
√

8νR sech(R) =
√
γ. (4.4)

The extrema of F (R) is computed by differentiating F (R) with right to R and finding the

root. Thus,

dF

dR
=
√

8ν sech(R)(1−R tanh(R)). (4.5)

Then letting dF/dR = 0 gives an expression only depending on R

0 = sech(R)(1−R tanh(R)). (4.6)

The roots of this expression are R∗ = ±1.1997. But only the positive root is defined for

(4.5). It is easy to see that (4.5) has a negative second derivative at 1.1997, which implies

that the extreme is a maximum (which can also be seen in Figure 4.1). Substituting back

to C gives,

C∗ = 8ν21.19972. (4.7)
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Furthermore, the maximum value that
√
γ can possess becomes

max
R

F (R) = F (R∗)
√

8ν ≈ 0.663
√

8ν ≥ √γ. (4.8)

Which means that

0 <
√
γ ≤ 0.663

√
8ν. (4.9)

Thus, for small γ, there are two different steady states, one corresponding to all C< and

one corresponding to all C>:

h<(x) =
√

2C< tanh

(√
2C<

2ν

(
1

2
− x
))

, (4.10)

h>(x) =
√

2C> tanh

(√
2C>

2ν

(
1

2
− x
))

. (4.11)

This is the two cases that we may expect the numerical methods converge to. The existence

of solutions for γ is restricted by the upper bound computed in equation (4.8). For ν = 0.1

this bound is computed to ≈ 0.593 and for ν = 0.01 we get ≈ 0.188. These are big values

in comparison to the round off errors that we expect generates the γ. We expect γ to be

close to machine epsilon; but to get equality in (4.9) we can conclude that ν < γ, which

means that ν must be smaller than machine epsilon in both double precision and single

precision for a solution to be non-existing.

4.2 Stability analysis

Studying the eigenvalues of the linearized system give rise to more valuable information

about the stability and instability of possible equilibrium. We now know that the equilib-

rium is either a constant solution or in the form h< or h>. An eigenvalue analysis therefore

focuses on the latter solutions, corresponding to the linearizations around these points.

4.2.1 Linearization

Similarly to the work in section 3.1, the linearization idea is to make use of a first order

Taylor approximation. Hence, substitute u(x, t) := h(x) + δξ(x, t) into (1.6) and keep the

first order terms. To get control over this procedure one may evaluate the derivatives of

(1.6) separately:

ut ≈ ξt (4.12)(
u2

2

)
x

=

(
h2 + 2hδξ + δ2ξ2

2

)
x

≈ (hξ)x (4.13)

νuxx ≈ νδξxx (4.14)
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Substituting the boundary conditions yields

ux(0) = hx(0) + (δξ(0, t))x = 0 =⇒ ξx(0, t) = 0 (4.15)

ux(1) = hx(1) + (δξ(1, t))x = 0 =⇒ ξx(1, t) = 0. (4.16)

All together with only first order terms kept gives the eigenvalue problem{
Lξ := ξt = νξxx − (hξ)x = λξ, (x, t) ∈ (0, 1)× [0,∞), ν > 0, λ ∈ C,
ξx = 0, (x, t) ∈ {0, 1} × [0,∞).

(4.17)

For simplicity reasons we add a Direchlet condition ξ(1/2, t) = 0 and change the domain

from [0, 1] to [0, 1/2]. This is possible since we only use odd initial conditions around

x = 1/2, and the reason we are doing that is that it makes the computations a bit easier

further on. Hence, the eigenvalue problem to be considered is{
Lξ := ξt = νξxx − (hξ)x = λξ, (x, t) ∈ (0, 1/2)× [0,∞), ν > 0, λ ∈ C,
ξx = 0, (x, t) ∈ {0, 1/2} × [0,∞).

(4.18)

4.2.2 Transformation into Sturm Liouville form

A problem with the eigenvalue problem on the form (4.18) is that the operator Lξ =

νξxx − (hξ)x is not self adjoint. I.e. letting u, v ∈ [0, 1], the inner product 〈Lu, v〉 is not

satisfying 〈Lu, v〉 = 〈u, Lv〉. But, transforming into Sturm Liouville form helps to get rid

of that problem, since it is a well known fact that the Sturm Liouville operator is self

adjoint.

A consequence of a self adjoint operator is that all eigenvalues are real and distinct,

which means that it suffices to study the smallest eigenvalue and check if this is positive

or negative to get insight in the stability properties.

The transformation process is as follows: Introduce a Liouville transformation

η = exp

(
1

2ν

∫ x

1/2
h(s) ds

)
= exp

(
1

2ν

∫ x

1/2

√
2C tanh

(√
2C

2ν

(
1

2
− s
))

ds

)
,{

u =

√
2C

2ν

(
1

2
− x
)
, ds = − 2ν√

2C
du

}
,

= exp

(∫ u

0
tanh(w) dw

)
,

= exp (ln (sech(u))) ,

= sech

(√
2C

2ν

(
1

2
− x
))

, (4.19)
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and do the variable substitution ξ = ηψ. The derivatives in (4.18) are then computed as

ξx = ηxψ + ηψx, (4.20)

ξxx = ηxxψ + 2ηxψx + ηψxx. (4.21)

And the derivatives of η are computed as

ηx =
hη

2ν
, (4.22)

ηxx =
hxη + hηx

2ν
=
hxη

2ν
+
h2η

4ν2
. (4.23)

Substituting (4.22) and (4.23) into (4.20)-(4.21), as such are inserted into (4.18) yields

ληψ = ν

((
hxη

2ν
+
h2

4ν

)
ψ + 2

1

2ν
hηψx + ηψxx

)
− hxηψ − h2 1

2ν
ηψ − hηψx

⇐⇒ λψ = −hxψ
2
− h2ψ

4ν
+ νψxx

⇐⇒ λ

ν
ψ = ψxx −

(
hx
2ν

+
h2

4ν2

)
ψ

Hence, the eigenvalue problem on Sturm Liouville form is written as

ψxx − q(x)ψ =
λ

ν
ψ, (4.24)

where q(x) is

q(x) :=
h2

4ν2
+
hx
2ν{

−νhx +
h2

2
= C

}
=

C

2ν2

(
1− 2 sech2

(√
2C

2ν

(
1

2
− x
)))

. (4.25)

The boundary conditions of (4.18) are also transformed in the similar way:

0 = (η(0)ψ(0))x = ηx(0)ψ(0) + η(0)ψx(0)

=
h(0)

2ν
η(0)ψ(0) + η(0)ψx(0)

⇐⇒ 0 =
h(0)

2ν
ψ(0) + ψx(0)

= ψ′(0) +

√
2C

2ν
tanh

(√
2C

4ν

)
ψ(0). (4.26)



24 ERIK BOSTRÖM

0 = η

(
1

2

)
ψ

(
1

2

)
⇐⇒ 0 = ψ

(
1

2

)
. (4.27)

Finally, all together, the Sturm-Liouville problem can be stated in the form
ψxx − q(x)ψ = λ

νψ, x ∈ (0, 1), ν > 0, λ ∈ R,
ψx(0) +

√
2C

2ν tanh
(√

2C
4ν

)
ψ(0) = 0, C ∈ R+,

ψ
(

1
2

)
= 0.

(4.28)

4.2.3 Eigenvalue approximation

The eigenvalue problem can be solved in many ways. We used a second order finite

difference approximation, with a Nx point space discretization: x = i∆x, where i =

1, 2, . . . ,Nx, ∆x = 1/Nx. The discretization in time is written as: For the inner points

ψi−1 − 2ψi + ψi+1

(∆x)2
− q(xi)ψi =

λ

ν
ψi, i = 2, 3, . . . , Nx − 1. (4.29)

And for the boundary points we used a second order discretization of the derivative at

ψ(1): (ψ(2)− ψ(0))/2∆x, which was inserted into (4.26). For ψ(1/2), (4.27) was directly

used. Hence,

ψ2 − ψ0

2∆x
+

√
2C

2ν
tanh

(√
2C

4ν

)
ψ1 = 0

=⇒ ψ0 =
∆x
√

2C

ν
tanh

(√
2C

4ν

)
ψ1 + ψ2 (4.30)

ψNx+1 = 0 (4.31)

Which gives

∆x
√

2C
ν tanh

(√
2C

4ν

)
ψ1 + 2ψ2

(∆x)2
− q(x1)ψ1 =

λ

ν
ψ1, (4.32)

−2ψNx + ψNx−1

(∆x)2
− q(xNx)ψNx =

λ

ν
ψNx . (4.33)

Written in matrix form the finite difference approximation yields

Aψ =
λ

ν
ψ, (4.34)
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where

A =
1

(∆x)2



∆x
√

2C
ν tanh

(√
2C

4ν

)
2

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2


− diag (q(x1), q(x2), . . . , q(xNx)) .

(4.35)

The smallest eigenvalue of A can be computed by e.g. inverse power iteration. In Matlab

there is the inbuilt eig function, to get the eigenvalues too. We do not care that the

eigenvalues indeed are divided by the ν constant. The result is scaled, which doesn’t

effect the signs of the eigenvalues. Solving for different C, we can see that the eigenvalues

are all smaller than zero if C < C∗, one eigenvalue equal to zero and all other negative

for C = C∗, and one eigenvalue positive and the rest negative for C > C∗. In Figure

4.2, consider how the first scaled eigenvalue (λ̂ = λ/ν) is changing for different sizes of

R =
√

2C/(4ν). This variable does not care about ν, as ν is fixed. Therefore it gives

a general solution for the C constant. In the plot we can see that the general value for

the extrema R∗ = 1.1997, occur when the first eigenvalue changes from being negative to

being positive, for a varying R with fixed ν.

We can conclude that by the numerical approximation of the eigenvalues, the equilibria

corresponding to R < R∗ is stable, R∗ belongs to the centre manifold (eigenvalues equal

to zero) and for R > R∗ there are unstable equilibras.

0 0.5 1 1.5 2
−10

0

10

R

λ̂
1

Figure 4.2: The first eigenvalue of the eigenvalue problem for varying R and a fixed ν = 0.1.
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Chapter 5

Numerical results

Analytically we have deduced a lot of facts according to the steady state solutions in finite

precision arithmetic. Now it is up to showing that these results actually occur. We give

in this chapter some examples where the finite precision approximations perform poorly.

Aside from stability questions, which obviously differ, different methods based on differ-

ent discretization approximations give rise to different problems. We have implemented

three different numerical schemes, all of different characters: One explicit finite differences

method, the standard first order explicit Euler method; One implicit second order finite

differences method, the Crank Nicolson method; and a piecewise finite element method

solved in time with the inbuilt adaptive Matlab function ode15s. The implementation

of the three methods are given in the appendix. The basic idea of using just these three

methods was the difference in the implementation of the boundary conditions. The ex-

plicit Euler method uses a first order discretization of the boundary conditions, the Crank

Nicolson uses a second order discretization and for the finite element implementation

the Neumann conditions are incorporated implicitly. In all comparing experiments anti-

symmetric initial conditions are used because of the knowledge that they shall converge

to the zero steady state.

Before actually showing results, there is a need of proving existence of possible solutions

to the discretized problems. It follows that the results are not the same for all three

methods studied.

5.1 Existence of numerical solutions

We have proved that the numerical methods may converge to wrong, non-existing steady

states of (1.6), and the hypothesis is that these occur because of finite precision approx-

imations. There is of interest before doing the numerical test to know if those wrong

solutions exist for the numerical schemes implemented. From previous results, we expect

the steady state solutions to the viscid Burgers’ equation with homogeneous Neumann
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conditions and odd initial conditions be in the form

h(x) =
√

2C tanh

(√
2C

2ν

(
1

2
− x
))

, (5.1)

where the viscosity parameter ν is fixed, and the constant C is zero for the only correct

solution and non-zero for wrong ones.

5.1.1 Explicit Euler method

The explicit Euler method is a finite differences approximation that is discretized forward

in both time and space. The implementation for the viscid Burgers’ equation is written

as (the whole discretization process can be found in appendix.)

un+1
1 = un1 + ν∆t

(
−un1 + un2

(∆x)2

)
, (5.2)

un+1
i = uni + ∆t

(
f(uni )− f(uni+1)

∆x
+ ν

uni+1 − 2uni + uni−1

(∆x)2

)
, (5.3)

un+1
Nx

= unNx
+ ν∆t

(−unNx
+ unNx−1

(∆x)2

)
. (5.4)

where f(u) = u2/2 and i = 1, 2, . . . , Nx, ∆x = 1/(Nx − 1).

Theorem 5.1.1. For the explicit Euler implementation to the viscid Burgers’ equation

with homogeneous Neumann conditions (stated in (5.2)-(5.4)) with an arbitrary initial

condition u0 ∈ L2(0, 1), all steady state solutions must be constants.

Proof. At a steady state we have un+1 = un. If we start from the left boundary, we prove

the theorem by induction. Let i = 1, then at a steady state we get u1 = u2 from (5.2).

Substituting into (5.3) yields

u1 = u1 + ∆t

(
u2

1 − u2
1

2∆x
+ ν

u2 − 2u2 + u3

(∆x)2

)
⇐⇒ 0 = ν∆t

(
u3 − u2

(∆x)2

)
.

This means that u3 = u2. Assuming i− 1 = i gives similarly

ui−1 = ui−1 + ∆t

(
u2
i−1 − u2

i−1

2∆x
+ ν

ui − 2ui + ui+1

(∆x)2

)
⇐⇒ 0 = ν∆t

(
ui+1 − ui

(∆x)2

)
.

Hence, ui+1 = ui, which proves that all points must be equal. If all points are equal,

also the right boundary condition must be satisfied, since letting i = n − 1 implies that

(5.4) is fulfilled as un+1 = un. I.e all steady state solutions computed by the eplicit Euler
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implementation must be constants.

5.1.2 Crank Nicolson method

The Crank Nicolson method is a second order implicit method, which is discretized forward

in time and centred in space. For the viscid Burgers’ equation the implementation yields

(see appendix for details)

u
(n+1)
1 − u(n)

1

∆t
= ν

(
−u(n)

1 + u
(n)
2

(∆x)2
+
−u(n+1)

1 + u
(n+1)
2

(∆x)2

)
, (5.5)

u
(n+1)
i − u(n)

i

∆t
+
f(u

(n)
i+1)− f(u

(n)
i−1)

2∆x
+
f(u

(n+1)
i+1 )− (fu

(n+1)
i−1 )

2∆x

= ν

(
u

(n)
i+1 − 2u

(n)
i + u

(n)
i−1

2(∆x)2
+
u

(n+1)
i+1 − 2u

(n+1)
i + u

(n+1)
i−1

2(∆x)2

)
, (5.6)

u
(n+1)
Nx

− u(n)
Nx

∆t
= ν

(
−u(n)

Nx
+ u

(n)
Nx−1

(∆x)2
+
−u(n+1)

Nx
+ u

(n+1)
Nx−1

(∆x)2

)
. (5.7)

where f(u) = u2/2 and i = 1, 2, . . . , Nx, ∆x = 1/(Nx − 1).

Theorem 5.1.2. For the Crank Nicolson implementation to the viscid Burgers’ equation

(stated in (5.5)-(5.7)) with an initial condition u0 ∈ L2
odd(0, 1), there exist a zero steady

state solution and a steady state solution on the form

u =


2ν
∆x 0 ≤ i ≤ Nx−1

2

0 i = Nx−1
2 + 1

− 2ν
∆x

Nx−1
2 + 2 ≤ i ≤ Nx

, (5.8)

where Nx is an odd integer.

Proof. The zero solution is directly fulfilled for (5.5)-(5.7), since all terms are non-constants.

For a steady state, n = ∗, we can assume that un = un+1. Hence the inner point expression

(5.6) is reformed to

(
u∗i+1

)2 − (u∗i−1

)2 − 2ν

∆x

(
u∗i+1 − 2u∗i + u∗i−1

)
= 0. (5.9)

There are actually four cases to study:

Case 1: Let ui−1 = ui = ui+1 = C for i < (Nx − 1)/2 and ui−1 = ui = ui+1 = D for

i > (Nx − 1)/2 + 2, then everything on both left hand side and right hand side cancels

out. Thus, if all three points in the stencil are equal, we have a solution. This case also

covers the boundary conditions, which follows from the assumption.
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Case 2: Let u(Nx−1)/2−1 = u(Nx−1)/2 = C and u(Nx−1)/2+1 = 0, then

(
−C2

)
− 2ν

∆x
(−C) = 0

⇐⇒ C =
2ν

∆x
.

Case 3: Let u(Nx−1)/2+1 = 0, and u(Nx−1)/2+2 = u(Nx−1)/2+3 = D, then

(
D2
)
− 2ν

∆x
(−D) = 0

⇐⇒ D = − 2ν

∆x
.

Case 4: Let u(Nx−1)/2 = C, u(Nx−1)/2+1 = 0 and u(Nx−1)/2+2 = D, then

(
D2 − C2

)
− 2ν

∆x
(D + C) = 0

⇐⇒
(
D2 − C2

)
=

2ν

∆x
(D + C).

By plugging in the results from case 2 and case 3 into case 4, both left hand side and right

hand side of the last expression cancels out. Hence, we have another solution. Summarize

all cases gives the final result:

u =


2ν
∆x 0 ≤ i ≤ (Nx−1)

2 ,

0 i = (Nx−1)
2 + 1,

− 2ν
∆x

(Nx−1)
2 + 2 ≤ i ≤ Nx,

(5.10)

where Nx is an odd integer.

5.1.3 Finite element method

In matrix form, the finite element implementation is written as (see appendix for the

implementation)

ξ̇ = M−1(νKξ −B(ξ ◦ ξ)). (5.11)

where M , K and B are all (n + 1) × (n + 1) stiffness-matrices, ξ is the approximate

(n + 1) × 1 Galerkin solution vector and ξ ◦ ξ :=
(
ξ2

0 , ξ
2
1 , . . . , ξ

2
n+1

)>
. For a steady state,

the time derivative is zero. Hence, at the steady state we have,

0 = M−1(νKξ −B(ξ ◦ ξ)), (5.12)
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which can be simplified to

νKξ −B(ξ ◦ ξ) = 0. (5.13)

where the form of the matrices can be found in the appendix, stated in equations (8.51)-

(8.53). It follows from this system that the inner points of (5.13) are formulated as

(ξi+1)2 − (ξi−1)2 − 4ν

∆x
(ξi−1 − 2ξi + ξi+1) = 0, (5.14)

where i = 1, 2, . . . , n. And the expressions for the boundary points are

(ξ1)2 − (ξ0)2 − 4ν

∆x
(ξ1 − ξ0) = 0 (5.15)

(ξn+1)2 − (ξn)2 − 4ν

∆x
(ξn+1 − ξn) = 0 (5.16)

This gives the following result:

Theorem 5.1.3. For the finite element implementation to the viscid Burgers’ equation

(stated in (5.11)) with an initial condition u0 ∈ L2
odd(0, 1), there exist a zero steady state

solution and a steady state solution on the form

u =


4ν
∆x 0 ≤ i ≤ n

2 ,

0 i = n
2 + 1,

− 4ν
∆x

n
2 + 2 ≤ i ≤ n+ 1,

(5.17)

where n is an odd integer.

Proof. The main proof follows exactly the same steps as for the Crank Nicolson imple-

mentation. Note the similarity of the expression (5.9) against (5.14). For the boundary

points it is easy to see that letting ξ1 = ξ0 and ξn+1 = ξn solves (5.15) and (5.16), which

is sufficient to prove the result.

5.2 Results

In this section, the numerical results in form of plots and tables are presented. The section

is divided into treating different interesting cases for the different methods implemented.

Note that it is hard to trust numerical proofs. The interpretation of the numerical results

must be taken with care. Therefore the main goal of this section is to review the main

problems that can occur and show counter-examples. More detailed studies as exact proofs

of why the numerical results occur are left for further studies.
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5.2.1 ν fixed, varying magnitude of the initial condition

First, fix the viscosity parameter to ν = 0.1 and consider the impact of different initial

conditions with varying magnitudes.

Consider the results we get for the D cos(πx) condition for varying D settings. See

Figure 5.1 for the result computed by the explicit Euler method, 5.2 for the result computed

with Crank Nicolson method and 5.3 for the result computed with the finite elements in

space and Matlab ode15s in time. The results for the Crank Nicolson and the finite

element implementations gives more or less identical results as can be seen in the plots.
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Figure 5.1: Explicit Euler results.
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Figure 5.2: Crank Nicolson results.
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Figure 5.3: Finite element results.
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From the plots we can see that the solutions for the initial condition D cos(πx), where

D is small are all converging to solutions close to zero, and for the case when D = 5 the

steady state is non-constant for the Crank Nicolson and the FEM implementations. Even

for the explicit Euler the solution for large D looks as something close to the tanh solution

even though this solution does not exist, which was proved earlier in this chapter. If

computing the solution for all D ∈ [0.01, 5] one can see approximately where the solution

starts switching from being a non-constant solution to being the zero solution. In plots 5.4-

5.6, it is noticeable that the explicit Euler is more sensitive than the other two methods

(it is just a first order method, so we cannot make any conclusions about this more

than state it at a notice. The other methods should converge faster because the order

of the discretization is higher). The explicit Euler method converges to zero for all D

approximately smaller than 0.75 and the Crank Nicolson and FEM needs D smaller than

approximately 1.5 to converge to a solution close to the zero function.

0 0.2 0.4 0.6 0.8 1

−5

0

5

x

EE: D cos(πx)

(a)

0 1 2 3 4 5

−4

−2

0

2

4

D

EE: u(0, T )

(b)

Figure 5.4: Explicit Euler solutions for D ∈ [0.01, 5] at T = 10 with ν = 0.1.
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Figure 5.5: Crank Nicolson solutions for D ∈ [0.01, 5] at T = 10 with ν = 0.1.
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Figure 5.6: Finite elements solutions for D ∈ [0.01, 5] at T = 10 with ν = 0.1.

5.2.2 Magnitude of the initial condition fixed, varying ν

As ν is getting small, the steady state solutions are influenced in the same way as if the

C constant is getting large. By plotting the final state for a varying ν, we can measure

the sensitivity for which the solution tends to zero or not. Now, the D constant is fixed

to being one all time. As one can see in Figure 5.7 the explicit Euler needs ν larger than

approximately 0.15 to converge to zero for the initial condition cos(πx). But similarly

as the case where ν was fixed and D was changing, the zero solution is not as sensible

as for the Crank Nicolson and FEM implementations (compare to Figures 5.8 and 5.9).

The oscillations as can be seen in the plot of the Crank Nicolson (Figure 5.8) are spurious

oscillations that occur for the Crank Nicolson method instead of a blown-up solutions,

when the method has stability problems. The method is unconditionally numerically stable

and this is other issues that indeed can occur. For the finite element implementation, we

used the inbuilt Matlab function ode15s, which is adaptive and shows more numerically

stable results.

0 0.2 0.4 0.6 0.8 1

−1

0

1

x

EE: cos(πx)

(a)

0 0.1 0.2 0.3 0.4 0.5

−1

0

1

ν

EE: u(0, T )

(b)

Figure 5.7: Explicit Euler solutions at T = 10 with D = 1 and ν ∈ [0.01, 0.5].
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Figure 5.8: Crank Nicolson solutions at T = 10 with D = 1 and ν ∈ [0.01, 0.5].
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Figure 5.9: Finite elements solutions at T = 10 with D = 1 and ν ∈ [0.01, 0.5].

5.3 Approximation of roots and derivatives

For the class of odd initial conditions defined in section 3.2, there is always one root, which

lies in the middle of the spatial interval [0, 1]. Since all solutions are in the class of odd

solutions for all iterations, the root shall be invariant in time. We have talked about the

zero approximation of the Neumann condition before and that the C constant is computed

by

C = −νhx(0) +
h(0)2

2
. (5.18)

Thus, there is actually two things that controls the value of C: the νhx(0) term and

the h(0)2/2 term. For an iterative solver, every current state can be seen as an initial

condition. And since the solution is the constant mean value of the initial condition, the

mean value must be zero for all current states. Hence, if the convergent state is the zero

function, then the approximation of the root at the middle of the spatial domain is crucial

for every time step. If this approximation is computed wrongly in one time step the error

cannot be cured through the rest of the process, since there is no global attractor (which

was proven in theorem (3.0.1).
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Consider in Table 5.1 how the x = 0.5 value is changing as time grows for the case

where the solution is close to the zero solution, and consider Table 5.2 for the case where

the solution is a non-constant solution. The viscosity term is fixed as ν = 0.1 in both

cases. The results are computed with the finite element method, but similar results are

observed also for the other two methods. Notice that, if we assume that the finite element

Time u((Nx − 1)/2 + 1)

0 6.1232e-17
1.3722e-03 9.4046e-17
2.7444e-03 -8.3506e-17
4.1166e-03 -3.8248e-16
1.2952e-02 -8.7108e-16
2.1788e-02 -3.8444e-14
3.0623e-02 -1.1726e-13

...
...

2.6849e+04 -9.1408e-08
3.6849e+04 -9.1408e-08

Table 5.1: Solutions at x = 1/2 for different time states, computed from the initial con-
dition cos(πx), by the FEM implementation. The space discretization was chosen as
Nx = 401. for a fixed ν = 0.1.

Time u((Nx − 1)/2 + 1)

0 3.0616e-16
6.2314e-04 5.8441e-16
1.2463e-03 1.5376e-13
1.8694e-03 3.8122e-13
4.3869e-03 6.5038e-13
6.9044e-03 1.4049e-12

...
...

1.1604e+00 -4.6776e-08
1.1605e+00 -4.6776e-08

Table 5.2: Solutions at x = 1/2 for different time states, computed from the initial con-
dition 5 cos(πx), by the FEM implementation. The space discretization was chosen as
Nx = 401. for a fixed ν = 0.1.

approximation approximates the derivatives almost correctly, there is still other errors that

influences the choice of the C constant, and therefore makes the iterative process converge

to wrong type of solutions.

Consider in Tables 5.3 and 5.4 the approximative derivative at x = 0 for the two

test cases cos(πx) and 5 cos(πx). The number of inner points used was the same as for

the x = 1/2 analysis, namely 401. A second order approximation of the derivative was

preformed and the method used was the finite element method. For the case where the

initial condition was chosen as cos(πx), the derivative seems stabilized on a zero value at
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time 1.87×106, as can be seen in Table 5.3 – but then, two time steps later it changes to a

non-zero value, and after that going back to zero again. This explains the difficulty of the

zero result. On the other hand, the derivatives corresponding to the other initial condition

for which the solution has been converging to a non-constant function is stabilized at a

small non-zero value, not even close to machine epsilon (≈ 10−16), see Table 5.4.

Time u(3)− u(1)

0 -1.2337e-04
1.3722e-03 -1.1055e-04
2.7444e-03 -1.0437e-04
4.1166e-03 -9.9844e-05
1.2952e-02 -8.3906e-05
2.1788e-02 -7.3908e-05
2.1788e-02 -7.3908e-05
3.0623e-02 -6.6745e-05
4.9973e-02 -5.5301e-05
...

...
1.8760e+06 0
2.6800e+06 0
3.6800e+06 -1.3235e-23
4.6800e+06 1.3235e-23
5.6800e+06 0
6.6800e+06 0

Table 5.3: Second order approximation of the derivative at different times for the finite
element approximation. For the initial condition cos(πx).

Time u(3)− u(1)

0 -6.1684e-04
6.2314e-04 -4.3621e-04
1.2463e-03 -3.5537e-04
1.8694e-03 -3.0242e-04
4.3869e-03 -1.6863e-04
6.9044e-03 -1.1600e-04
9.4219e-03 -8.4382e-05
1.1939e-02 -6.2092e-05
...

...
1.1009e+00 -5.0768e-12
1.1010e+00 -5.0768e-12

Table 5.4: Second order approximation of the derivative at different times for the finite
element approximation. For the initial condition cos(πx).

Comparing how the approximated values of the derivatives elapses with time for the

two cases shows that the approximations seem to be closely to the same magnitude for the

first iterations in both the solution computed with cos(πx) and the solution computed from
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5 cos(πx). Hence, the derivative seems not be the main case for the solution to converge

to wrong solutions. We can note that which steady state solution the method chooses to

converge to is probably mostly not depending on the magnitude at the derivatives; and

the steady state solution for which the method converges to is decided more or less from

the first iteration – especially for the cases where the solution converges to a non-constant

solution, which is reached in short time compared to the much longer time that is needed

for convergence to the constant solutions.

5.3.1 Wrong solutions because of the approximation at x = 1/2

We have shown that the approximation of the root at x = 1/2 for initial conditions in

L2
odd(0, 1) is a hard one for finite precision to handle. Indeed, according to the round off

error at this point – for some cases, it shows that the solution makes a drastic change and

converges to a wrong constant solution instead of the zero solution that was expected.

By imposing a Direchlet condition at the root we get rid of this problem, which makes

it even more clear that the round off errors in the point is a source to the occurrence

of this problems. Consider in Figure 5.10 two different cases, where the L2
odd(0, 1) initial

conditions 4 cos(πx) and the discontinuous: 5 if 0 ≤ x < 1/2, 0 if x = 1/2 and −5 if

1/2 < x ≤ 1 were used.
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Figure 5.10: (a) and (c): Without condition at x = 1/2. (b) and (d): With the added
Direchlet condition u(1/2, t) = 0.
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5.4 Solutions in different decimal formats

Changing the finite precision format to something that can handle less decimals give rise to

even more round off errors. Consider in Figure 5.11, a case where the solution converge to

the zero function in one format (double precision) and converging to the non-zero function

in another format (four significant digits format).
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Figure 5.11: Solution in time for double precision and a four digit significant digit approx-
imation for an initial condition with magnitude 4.

5.5 Monotonically increasing odd initial conditions

The results shows that the magnitude of the initial data is a reason by itself for the solution

to converge to a non-constant solution. This is indeed not exactly the case. In section 3.3

we deduced the fact that the derivative must be negative for the non-constant solutions to

exist. In Figure 5.12, there is an example of this: For the monotonically decreasing initial

condition 5 cos(πx) over the interval [0, 1] the solution converge to a non constant, but for

the monotonically decreasing −5 cos(πx) over the same interval it does not.
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Figure 5.12: Solutions generated from monotonically decreasing vs monotonically increas-
ing initial condition.



NUMERICAL RESULTS 39

As a second case: Even for a really large amplitude of the initial condition the solution

converge to zero. And the convergence is really fast; in approximately T = 0.001 the

solution is close to zero. Consider this case in Figure 5.13.
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Figure 5.13: Very high magnitude monotonically increasing initial condition used.

5.6 Comparison with the non-homogeneous problem

In finite precision, recall we assume that the approximated problem is written as:
Ut + UUx = νUxx, (x, t) ∈ (0, 1)× (0, T ], ν > 0,

Ux = −γ, (x, t) ∈ {0, 1} × (0, T ], γ > 0,

U = U0, (x, t) ∈ [0, 1]× {0}, U0 ∈ L2
odd(0, 1),

(5.19)

where U is the discrete solution and T is the final computation time. Let us compare the

results we get when non-constant Neumann conditions are imposed instead of the true

homogeneous analogue. If our hypotheses are true, the results shall be equal to each other

for sufficiently small γ.

Consider the computed C values for different initial conditions at a convergent time

in Table 5.5. As we can see; for the case when the initial condition is small and the

convergence is close to a zero solution, the homogeneous results are similar to the non-

homogeneuos when γ is close to machine epsilon. This means in particular that the h<

solutions may converge to zero by themselves. But for a case with larger initial condition

and convergence to a non-constant function (Table 5.6), the C constant in the homogeneous

implementation is approximated close to the case where γ is set to 10−10 for the non-

homogeneuos one. Taking larger values than ≈ 10−7 gives not relyable solutions, where

the value at x = 1/2 are not even close to zero.

It seems that the finite element solver has problems with the combination of the non-

homogeneuos boundary conditions together with the approximation of the root at x = 1/2.

An example of that with γ = 10−4 is shown in Figure 5.14, where the root is completely

wrong approximated after the time T = 1.

In particular, what can be concluded from the Tables 5.5-5.6 and the Figures 5.14-5.15

is that for small γ, the non-homogeneous and the homogeneous boundary conditions gives
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results very close to each other, and for γ close the size of machine epsilon, the solutions

are identical.

γ
0 1e-12 1e-14 1e-17

0 5.0123e-01 5.0123e-01 5.0123e-01 5.0123e-01
T 100 2.0942e-15 1.9452e-15 1.8846e-15 2.0942e-15

1000 1.7015e-16 4.9020e-18 8.0881e-16 1.7015e-16

Table 5.5: C at different times for the initial condition cos(πx)

γ
0 1e-5 1e-7 1e-10

0 1.2506e+01 1.2506e+01 1.2506e+01 1.2506e+01
T 0.01 1.2428e+01 1.2420e+01 1.2428e+01 1.2428e+01

1 1.2400e+01 1.1915e+01 1.2395e+01 1.2400e+01

Table 5.6: C at different times for the initial condition 5 cos(πx)
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Figure 5.14: Varying γ for the initial condition cos(πx).
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Figure 5.15: Time T = 1 for the initial condition 5 cos(πx).
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Chapter 6

Possible treatment on boundary

conditions

Besides the surprise that the wrong solutions exists, the main thoughts that appear when

dealing with this kind of problems may be how to actually get rid of them, or how to at

least make the errors as small as possible.

At this moment, we have fortunately some insight in how the solution should look like.

This makes it possible to add feedback to the boundary conditions such that it allows the

problem to behave as we wish.

If the ν is assumed to be fixed, then it is the C constant in (3.6) that actually makes

the solution behave wrongly. This can be seen in detail in for instance chapter 4. If we

set the constant to a value corresponding to the solutions h< in each iteration, then the

solution shall also converge to such a solution. And if we let the constant be equal to zero,

we are actually helping the computer choose this constant as it should be chosen to satisfy

the true zero Neumann conditions.

Thus, letting the boundary conditions be based on:

C =
h(0)2

2
− νh′(0) =

h(1)2

2
− νh′(1), (6.1)

which is in the from the solution process for a general steady state solution to (1.6). Using

this as boundary conditions at x = 0 and x = 1 makes the new system looking like this
Ut + UUx = νUxx, (x, t) ∈ (0, 1)× (0, T ], ν > 0
U2

2 − νUx = C (x, t) ∈ {0, 1} × (0, T ], C ∈ R+, ν > 0

U = U0 (x, t) ∈ [0, 1]× {0}, U0 ∈ L2
odd(0, 1)

, (6.2)

where U is the discrete solution and T is the final computation time. Thus, choosing C

close to zero gives rise to a solution corresponding to h< determined in the bifurcation

analysis, or the zero solution. And choosing C large enough gives the h> solutions. How

large and small C must be chosen depends clearly on the choice of ν. In Figure 6.2, we
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show different cases, where C is chosen differently, were the initial condition is chosen

large enough so it surely makes the original problem converge to a non-constant solution.
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Figure 6.1: Comparison of solutions generated by different BC’s.
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Figure 6.2: If C = 0, even higher magnitudes of the initial conditions still gives a zero
solution. Here the magnitude at the left boundary is 100.
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Chapter 7

Conclusions

In this thesis it has been shown that Burgers’ equation with homogeneous Neumann

conditions would have wrong solutions. This solutions exists (as the results shows) because

of round off errors that occur when the boundary points are implemented as discretized

derivatives. The accuracy of the numerically imposed Neumann conditions is not accurate

enough to make the solution satisfy the correct boundary conditions – we have shown that

the small errors was enough for non-unique solutions to exist.

The issue we have found, is that accuracy of computed solutions cannot be higher

than the machine epsilon of the floating point format used. If so is the case, the problem

cannot in general be solved by standard numerical methods. However, by some insight in

the solution, one may include e.g. specific boundary conditions that restrict the source of

the round off errors, which we have tested with success. But without pre-knowledge in

the solution, other ways to approach the problem must be used, which is a possible topic

for further studies.

The types of accuracy problems that we encountered have to do with the treatment of

computing something exactly zero. Two different approximations were proven to generate

problems: homogeneous Neumann conditions, and consistence of a root that we know

should be invariant with time.

Commenting the latter problem first. Assuming only constant solutions exist; for

some initial conditions there is actually a problem for the iterative methods to converge

to the right steady state of the initial condition. Since there is no global attractor to

the problem (there is no unique steady state for an arbitrary initial condition) a small

error of the actual solution makes the problem converge to another steady state. We have

seen that this makes the steady state of zero more or less non-existing in finite precision,

since new errors are summarized to the old ones in each iteration. However, if there is a

globally defined attractor the accuracy problems does not have such an effect. Using e.g.

homogeneous Direchlet conditions only have the steady state zero for all initial conditions.

By the bifurcation analysis, we have proved that the non-constant steady states was

not uniquely defined – for the discretized system there are most often two different steady
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states h< and h>, which depends on the choice of a constant C, which is a constant

obtained from an integration in the solution process of the general steady state solution.

From the numerical testing we could conclude that forcing the boundary conditions to

choose C = 0 in every iteration makes the solution converge to the constant zero solution

for the corresponding initial condition, and letting C be a sufficiently large makes a non-

constant solution appear. Thus, this confirms the results of the bifurcation analysis. In

the bifurcation analysis chapter we also investigated in a stability analysis, where the h<

was proved to be stable and h> unstable. We have not been able to make any conclusions

about this results from the numerical testing. Further studies according the effect of the

stability results may be necessary for understanding.

It was also proven that non-constant solutions satisfies some numerical schemes, but for

other not. For finite differences, non-constant solutions occur if the scheme is discretized

with central differences in space (e.g. Crank Nicolson method), but for a forward in space

discretization the non-constant solutions does not exist (explicit Euler method). Hence,

to gain more insight in problems that can occur in numerical results, one may study the

schemes more in detail, since most likely it is the combination of the how the solution is

discretized and the accuracy of the floating point format of the computer that decide how

large possible errors may be.

For further research in this area, one may consider if the same kind of problems can

occur for other partial differential equations such as the Navier Stokes equation. It is also

of interest to know if there are some methods to approach this kind of problems in general.

And some final words: It is important to have an insight in that numerical methods

are not always to trust. Most often the impact of errors down to machine epsilon are

negligible. But if the existence of them by themselves changes the whole result we have a

big problem. Existence of this kind of problems must be taken into account doing scientific

computations.
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Chapter 8

Appendix: Implementation of

numerical schemes

8.1 Explicit Euler implementation

For an explicit finite difference implementation we discretize forward in time and forward

in space:

ut =
u

(n+1)
i − u(n)i

∆t
(8.1)

ux =
u

(n)
i+1 − u

(n)
i

∆x
(8.2)

uxx =
u

(n)
i+1 − 2u

(n)
i + u

(n)
i−1

(∆x)2
. (8.3)

where n ∈ [0, Nt] is the time-steps, i ∈ [0, Nx] is the points of the space discretization,

∆x = 1/(Nx − 1) is the step-length in space and ∆t = T/Nt is the step-length in time,

where T is the final computation time. (8.1)-(8.3) substituted into the viscid burgers

equation (1.6) yields

u
(n+1)
i − u(n)i

∆t
+
f(u

(n)
i+1)− f(u

(n)
i )

∆x
= ν

u
(n)
i+1 − 2u

(n)
i + u

(n)
i−1

(∆x)2
. (8.4)

Now, the time variables need to be on different sides of the equal sign to be written in

the final recursive form. Hence the left hand side in (8.4) is splitted up. The expression

obtained is

u
(n+1)
i = u(n)i + ∆t

(
f(u

(n)
i )− f(u

(n)
i+1)

∆x
+ ν

u
(n)
i+1 − 2u

(n)
i + u

(n)
i−1

(∆x)2

)
. (8.5)
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The Explicit Euler is a first order method, therefore we use a first order discretization of

the Neumann boundary conditions: u0 = u1, uNx+1 = uNx . Written in matrix form, the

system of the explicit Euler discretization is

u
(n+1)
1

u
(n+1)
2

...

u
(n+1)
Nx−1

u
(n+1)
Nx


=

∆t

∆x



0

f(u
(n)
1 )− f(u

(n)
2 )

...

f(u
(n)
Nx−2)− f(u

(n)
Nx−1)

0


+

ν∆t

(∆x)2



−1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −1





u
(n)
1

u
(n)
2
...

u
(n)
Nx−1

u
(n)
Nx


.

(8.6)

8.2 Crank Nicolson implementation

The Crank Nicolson method is a second order finite difference scheme, which is numerically

implicit in time. This method is more numerically stable than the explicit Euler scheme,

but a bit more cumbersome to implement. The computational cost is also higher, which

may be to a disadvantage for large scale problems, to which an explicit method still gives

stable results for adequate large step-sizes.

The Crank Nicolson method is based on central differences in space, and the trapezoidal

rule in time. Hence, the derivatives of the Burgers’ equation are discretized as follows

ut =
u

(n+1)
i − u(n)i

∆t
(8.7)

ux =
u

(n)
i+1 − u

(n)
i−1

2∆x
+
u

(n+1)
i+1 − u(n+1)

i−1

2∆x
(8.8)

uxx =
u

(n)
i+1 − 2u

(n)
i + u

(n)
i−1

2(∆x)2
+
u

(n+1
i+1 − 2u

(n+1)
i + u

(n+1)
i−1

2(∆x)2
. (8.9)

where i = [1, Nx] is the index of the points in the space discretization, ∆x = 1/(Nx − 1)

is the step lenght in space, n ∈ [1, Nt] is the index of the time steps and ∆t = T/Nt is

the time step legth, where T is the final computation time. Substituting into the viscid

Burgers’ equation (1.6) gives for the inner points that

u
(n+1)
i − u(n)

i

∆t
+
f(u

(n)
i+1)− f(u

(n)
i−1)

2∆x
+
f(u

(n+1)
i+1 )− (fu

(n+1)
i−1 )

2∆x

= ν

(
u

(n)
i+1 − 2u

(n)
i + u

(n)
i−1

2(∆x)2
+
u

(n+1)
i+1 − 2u

(n+1)
i + u

(n+1)
i−1

2(∆x)2

)
. (8.10)

Now, the hard part is to rewrite this into a recursive formula. Since Burgers’ equation has

the non-linear term f(u), there is no possibility to move time variable terms with index

n + 1 to the left hand side and similarly move the index n terms to the right hand side

directly. The trick is to linearize the equation using Taylor expansion on the non-linear
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terms. Applied to the f(u) = (u2/2)x term of Burgers’ equation the Taylor expansion

reads

f(u
(n+1)
i ) = f(u

(n)
i ) + ft(u

(n)
i )∆t+O((∆t)2)

= u
(n)
i

(u
(n)
i )2

2
+
u

(n)
i (u

(n+1)
i − u(n)

i )

∆t
∆t+O((∆t)2)

= u
(n)
i u

(n+1)
i −

(u
(n)
i )2

2
+O((∆t)2). (8.11)

Substituting (8.10) into (8.11) yields(
∆t

4∆x
u

(n)
i−1

)
u

(n+1)
i+1 +

(
1 +

ν∆t

(∆x)2

)
u

(n+1)
i +

(
− ∆t

4∆x
u

(n)
i+1 − ν

∆t

2(∆x)2

)
u

(n+1)
i+1

= ν
∆t

2(∆x)2
u

(n)
i−1 +

(
1− ν ∆t

(∆x)2

)
u

(n)
i + ν

∆t

2(∆x)2
u

(n)
i+1. (8.12)

Since Crank Nicolson is a second order method a second order central differences dis-

cretization of the Neumann boundary conditions is applied. I.e.

u2 − u0

2∆x
= 0 =⇒ u0 = u2 (8.13)

uNx−1 − uNx+1

2∆x
= 0 =⇒ uNx+1 = uNx−1. (8.14)

And (8.13)-(8.14) substituted into (8.12) yields the following expressions for the boundary

points(
1 +

ν∆t

(∆x)2

)
u

(n+1)
1 +

(
−ν ∆t

(∆x)2

)
u

(n+1)
2 =

(
1− ν ∆t

(∆x)2

)
u

(n)
1 + ν

∆t

(∆x)2
u

(n)
2 (8.15)(

1 +
ν∆t

(∆x)2

)
u

(n+1)
Nx

+

(
−ν ∆t

(∆x)2

)
u

(n+1)
Nx−1 =

(
1− ν ∆t

(∆x)2

)
u

(n)
Nx

+ ν
∆t

(∆x)2
u

(n)
Nx−1.

(8.16)

All together the Crank Nicolson implementation are written in matrix form asM
(
u(n)

)
u(n+1) =

Au(n). Where,

M(u(n)) =



a1 −a2

a3u
(n)
1 − a4 a1 −a3u

(n)
3 − a4

a3u
(n)
2 − a4 a1 −a3u

(n)
4 − a4

. . .
. . .

. . .

a3u
(n)
Nx−2 − a4 a1 −a3u

(n)
Nx
− a4

−a2 a1


(8.17)
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and,

A =



a5 a2

a4 a5 a4

. . .
. . .

. . .

a4 a5 a4

a2 a5


, (8.18)

where the coefficients of the matrices are

a1 = 1 +
∆t

(∆x)2
, a2 = ν

∆t

(∆x)2
, a3 =

∆t

4∆x
, a4 = ν

∆t

2(∆x)2
, a5 = 1− ∆t

(∆x)2
.

(8.19)

The M(u(n)) matrix is a banded square matrix, with non-zero entries. Thus, as long as it

is non-singular, the system yields numerically stable results. The final recursive formula

used for the implementation of the Crank Nicolson method therefore becomes

u(n+1) = M(u(n))−1Au(n). (8.20)

8.3 A piecewise linear finite element implementation

Consider the one dimensional viscid Burgers’ equation on the space interval [0, 1] with an

arbitrary initial condition u0 and homogeneous Neumann Neumann boundary conditions

and with the viscosity parameter ν
ut +

(
u2

2

)
x

= νuxx, (x, t) ∈ (0, 1)× (0,∞), ν > 0

ux = 0, (x, t) ∈ {0, 1} × (0,∞),

u = u0, (x, t) ∈ [0, 1]× {0}.

(8.21)

As usual when doing a finite element implementation, the first step is to rewire the dif-

ferential equation into variational formulation, which is obtained by multiplying left and

right hand side of the PDE with a test-function v and then integrate over the space inter-

val [0, 1]. The test function is assumed to vanish at the end points, i.e. v(0) = v(1) = 0.

Multiplying both left- and right- hand side of the PDE with the test function and integrate

over the space interval yields∫ 1

0

[
ut +

(
u2

2

)
x

]
v dx =

∫ 1

0
νuxxv dx. (8.22)
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Integration by parts of the second integral implies∫ 1

0

[
ut +

(
u2

2

)
x

]
v dx+

∫ 1

0
νuxv

′ dx− uxv|10 = 0. (8.23)

The last therm vanishes since v(0) = v(1) = 0 by assumption. Thus,∫ 1

0

[
ut +

(
u2

2

)
x

]
v dx+

∫ 1

0
νuxv

′ dx = 0. (8.24)

We require that the test function v and its derivative v′ are square integrable on [0, 1],

hence their function space need to be defined as:

V0 = {v : ‖v‖L2[0,1] <∞, ‖v′‖L2[0,1] <∞, v(0) = v(1) = 0}. (8.25)

Thus, the final variational formulation of the differential equation is written as∫ 1

0

[
ut +

(
u2

2

)
x

]
v dx = −ν

∫ 1

0
uxv

′ dx, ∀v ∈ V0. (8.26)

The numerical implementation we use is based on the Galerkin method, i.e. finding an

approximate solution of u, in the space of continuous piecewise linear functions Vh and

letting the test functions be chosen as tent functions ϕi, which are one at the index i

corresponding to the grid point xi and zero elsewhere. The approximated discrete solution

denoted by uh ∈ Vh is due to the Galerkin method defined as the linear combination of

tent functions

uh =
n+1∑
j=0

ξjϕj , (8.27)

where ξj , j = 0, 1, . . . , n+1, are the n+2 coefficients to be determined. The finite element

method obtained are: find uh ∈ Vh such that∫ 1

0

[
uht +

(
u2
h

2

)
x

]
v dx = −ν

∫ 1

0
uhxv

′ dx, ∀v ∈ V0. (8.28)

Substituting (8.27) into (8.28) and letting v = ϕi, i = 1, 2 . . . , n yields

∫ 1

0

n+1∑
j=0

ξ̇jϕj +
1

2

n+1∑
j=0

ξ2
jϕ
′
j

ϕi dx = −ν
∫ 1

0

n+1∑
j=0

ξjϕ
′
jϕ
′
i dx, i = 0, 1, . . . n. (8.29)
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This is rearranged to

n+1∑
j=0

[∫ 1

0
ϕiϕj dx

]
ξ̇j +

1

2

n+1∑
j=0

[∫ 1

0
ϕ′jϕi dx

]
ξ2
j = −ν

n+1∑
j=0

[∫ 1

0
ϕ′iϕ

′
j dx

]
ξj , i = 1, 2, . . . n.

(8.30)

Define mij =
∫ 1

0 ϕiϕj dx, bij = 1
2

∫ 1
0 ϕ
′
jϕi dx and kij = −

∫ 1
0 ϕ
′
iϕ
′
j dx, where i = 0, 1, . . . , n+

1, and j = 0, 1, . . . n+ 1. Then (8.30) can be written in matrix form as

Mξ̇ +B(ξ ◦ ξ) = νKξ, (8.31)

where M , B and K are (n+ 2)× (n+ 2) square matrices containing the elements mij , bij

and kij , and ξ ◦ ξ :=
(
ξ2

0 , ξ
2
2 , . . . , ξ

2
n+1

)>
is called the Hadamard product of ξ with itself. It

is the simple nature of the B matrix that makes the conservation form more handy to use.

Using the nonlinear expression uux from the beginning does force out a more complicated

non-linear vector instead of B(ξ ◦ ξ).

The elements of the matrices are not yet evaluated. But due to the nature of the

tent functions, the integrals can be solved out easily. No numerical integration is needed.

Instead note that the tent functions are defined as

ϕ0(x) =

{
−(n+ 1)(x− x1), x0 ≤ x ≤ x1

0, otherwise.
(8.32)

ϕi(x) =


(n+ 1)(x− xi−1), xi−1 ≤ x ≤ xi
−(n+ 1)(xi+1 − x), xi ≤ x ≤ xi+1

0, otherwise.

(8.33)

ϕn+1(x) =

{
(n+ 1)(x− xn), xn ≤ x ≤ xn+1

0, otherwise.
(8.34)

Their space derivatives are easy to compute as

ϕ′0(x) =

{
−(n+ 1), x0 ≤ x ≤ x1

0, otherwise.
(8.35)

ϕ′i(x) =


(n+ 1), xi−1 ≤ x ≤ xi
−(n+ 1), xi ≤ x ≤ xi+1

0, otherwise.

(8.36)
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ϕ′n+1(x) =

{
(n+ 1), xn ≤ x ≤ xn+1

0, otherwise.
(8.37)

Note that the slope of the hat function is (n + 1) where 1/(n + 1) is the step length.

By using the statements above, the elements of the matrices are computed by standard

integration in one variable technique

m0,0 =

∫ x1

x0

ϕ2
0 dx =

1

3(n+ 1)
(8.38)

mn+1,n+1 =

∫ xn+1

xn

ϕ2
n+1 dx =

1

3(n+ 1)
(8.39)

mi,i =

∫ xi

xi−1

ϕ2
i dx+

∫ xi+1

xi

ϕ2
i dx =

2

3(n+ 1)
(8.40)

mi,i+1 = mi−1,1 =

∫ xi+1

xi

ϕiϕi+1 dx =
1

6(n+ 1)
(8.41)

b0,0 =
1

2

∫ x1

x0

ϕ′0ϕ0 dx = −1

4
(8.42)

bn+1,n+1 =
1

2

∫ xn+1

xn

ϕ2
i dx = −1

4
(8.43)

bi,i =
1

2

∫ xi

xi−1

ϕ2
i dx+

∫ xi+1

xi

ϕ2
i dx = 0 (8.44)

bi,i+1 =
1

2

∫ i+1

i
ϕiϕj dx = −1

4
(8.45)

bi−1,i =
1

2

∫ i+1

i
ϕiϕj dx =

1

4
(8.46)

k0,0 =

∫ x1

x0

(ϕ′0)2 dx = −(n+ 1) (8.47)

kn+1,n+1 =

∫ xn+1

xn

(ϕ′n+1)2 dx = −(n+ 1) (8.48)

ki,i =

∫ xi

xi−1

(ϕ′i)
2 dx+

∫ xi+1

xi

(ϕ′i)
2 dx = −2(n+ 1) (8.49)

ki,j = kj,i =

∫ i+1

i
ϕ′iϕ

′
j dx = (n+ 1) (8.50)
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Hence the system matrices are

M =
1

6(n+ 1)



2 1

1 4 1
. . .

. . .
. . .

1 4 1

1 2


(n+2)×(n+2)

(8.51)

B =
1

4



−1 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 1


(n+2)×(n+2)

(8.52)

K = (n+ 1)



−1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −1


(n+2)×(n+2)

(8.53)

Obviously M is invertible since it has linearly independent columns. Thus, (8.31) can be

reformed into

ξ̇ = M−1(νKξ −B(ξ ◦ ξ)), (8.54)

which is a system of first order ordinary differential equations, that can be solved by e.g.

some numerical time stepping scheme.
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