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Abstract

It is well known that, using ruler and compass, the angle can not be
trisected in general, and the regular p-gon, where p is an odd prime, can
be constructed if and only if p is a Fermat prime. Also, cubic equations can
generally not be solved. But what happens if we allow angle trisection?
Which p-gons can be constructed, and what cubic equations can be solved?
These questions shall be answered, and we shall also see what can be
constructed with a marked ruler, and what cubic equations can be solved
using a parabola in addition to the classical tools.
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1 Introduction

Ruler and compass constructions is a classical, and well studied subject in math-
ematics. It is well known what is constructible, and what is not. As an example,
we can bisect angles, but not trisect them, in general. Using Galois theory one
can prove that the regular p-gon, where p is an odd prime, is constructible when
p is a Fermat prime, that is a prime of the form 22

n

+ 1. We also know that
quadratic equations can be solved by ruler and compass, but the cubic equation
is in general unsolvable. In this thesis we shall study what more can be con-
structed with a few different improvements of our tools. Especially we shall see
which regular polygons can be constructed, and which cubic equations can be
solved.
The reader is supposed to be familiar with the fundamentals of Galois theory.

The points we construct shall be defined as complex numbers x+ yi, instead of
points (x, y) in R2 as conventional in modern literature.

Our first modification of the tools is to use an angle trisector together with the
ruler and compass. We shall see that the regular p-gon is constructible when
p is a Pierpont prime, which is a prime of the form 2n3m + 1. We shall also
see that an irreducible cubic equation is solvable if and only if it has three real
roots. This section is my own work, although some of the results can also be
found in Gleason [3].

Better than to add the angle trisector to our toolbox is to replace the ruler and
compass by one single tool, namely the marked ruler. The marked ruler is a
ruler with only two markings on it, one unit apart. With this single tool we can
solve any cubic equation. Here I follow Martins book Geometric Constructions
[5].

Last we shall see how cubic equations can be solved using a parabola. Here I
was inspired by Khayyam and did some improvements of his original method,
which is found in Kline [4].

But before doing any of these things we shall study the classical ruler and
compass constructions, and see how they relate to field extensions.
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2 Ruler and compass constructions

The theory of ruler and compass constructions goes all the way back to Euclid’s
time. The question is what we can construct given a compass and an unmarked
ruler. Formally, we are allowed to draw a straight line between two given points,
and draw a circle that goes through a given point and has its center in another
given point.
This definition does not allow us to draw a circle, move the compass (without
closing it), and draw a circle with the same radius at some other place. However,
Euclid showed in his book Elementa that it is possible ”move” a circle, without
cheating. This is how he did it.

Assume we have a circle with center in a point b and that goes through a point
c. Say the radius is r. We want to draw a circle with radius r with center in
some given point a. To do this, first draw a circle with center in a that goes
through b, and a circle with center in b that goes through a. Call one of the
intersection points of these two circles d. This point d, together with a and b
form a equilateral triangle. The line through b and d intersects the original circle
in some point e. Draw a circle with center in d that goes through e. The line
that goes through a and d intersects this circle in a point f . Then the distance
between a and f is equal to the distance between b and e, which is r.

a

b c

d

e

r

f

Now we can draw a circle with center in a and radius r.

From now on we shall consider our points as numbers in the complex plane,
which is not exactly what Euclid did since complex numbers appeared in math-
ematics much later. Assume we are given a set of points in the complex plane.
From these points we can draw lines and circles. We say that a point in the
plane is contructible in one step if it is the intersection of two such lines, a line
and a circle, or two circles. Such a point we can use to draw new lines and
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circles, just as we did above, and from these construct new points. Any point
that can be constructed in a finite number of steps is called constructible.

2.1 Possible constructions

Now, what kind of things can we do with the ruler and compass?

To get started we need at least two points. But of course, if we are given an
empty paper we could just mark two arbitrary points. We may also choose
these points to be 0 and 1 in the complex plane. Then we can draw a line
between these two points. This will be the real axis in the complex plane.
One nice thing we can do now is to construct a right angle. To do this we draw
two circles, one that goes through 1 and with center in 0, and the other goes
through 0 and has center in 1. These circles intersect in two points. A line that
goes through these two points is orthogonal to the real axis.

0 1

Note that this line intersects the real line exactly midway between 0 and 1, so
this is also a method for dividing a distance in half.
Since we can construct orthogonal lines we can also draw parallel lines. But in
fact we can do even better. Given a line l and a point p, we can draw a line
parallel to l that goes through p. Here is one way to do this:
Draw a circle c1 that goes through p and with center at a point a on l. The
circle c1 intersects l at some point b. Draw a circle c2 with center in p that goes
through a, and a third circle c3 with center in b that also goes through a. Note
that these three circles all have the same radius. The circles c2 and c3 intersects
in a and in some point q. Then the line that goes through p and q is parallel to
the line that goes through a and b, which is l.
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a

l

p

c2

c1
b

c3

q

It follows that we also can draw a line that goes through a given point and is
orthogonal to a given line. Especially, we can draw the imaginary axis. These
facts will be useful in the task to construct numbers.

Given two real numbers a and b, say a ≤ b. To add these two we start with
drawing a line l parallel to the real line. Then we draw a line orthogonal to the
real line that goes through b. This gives us a point b′ right above b, on the line
l. We draw a line that goes through 0 and b′, and a line parallel to this one that
goes through a. This line intersects l in a point right above a + b. Finally we
project this point (i.e. we draw a line through this point orthogonal to the real
line) on the real line and we have constructed the point a+ b.

1 2 3 4 5 6 7 8

−1

1

2

3

4

5

0

a b

l

b′

a+ b

For any complex numbers a and b such that b = λa, where λ is real, we can
perform addition in a similar way. We just use the line that goes through the
origin, a, and b, instead of the real line.
Complex numbers a and b that does not possess this property can be added in
another (easier) way. First draw the line that goes through the origin and a,
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and draw another line l1 that goes through b and is parallel to this one. Second,
draw a line that goes through the origin and b, and a line l2 that is parallel to
this one and goes through a. The point where l1 and l2 intersect is a+ b.

2 4 6 8 10

2

4

6

0

a

b

l1

l2

a+b

Multiplication and division of real numbers can also be performed with ruler
and compass.
Assume we have two real numbers a and b, say a ≤ b. Start with drawing a
circle with center in the origin and radius a, to get the point ai on the imaginary
axis. Draw a line l1 between 1 and ai, and a line l2 between ai and b. Then
draw a line parallel to l1 that goes through b, and a line parallel to l2 that goes
through 1. The line parallel to l1 intersects the imaginary axis in some point
c1. The line parallel to l2 intersects the imaginary axis in some point c2.

−1 1 2 3 4 5 6 7 8

1

2

3

4

5

6

0

a b

ai

bi

c2=abi

c1=
a
b i

Now consider the four right-angled triangles with a corner in the origin that we
have drawn.
Note that the triangle with corners in b and c2 is similar to the triangle with
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corners in 1 and ai. The side with length 1 in the smaller triangle corresponds
to the side with length b in the bigger triangle, so the side with length a must
correspond to a side with length ab. Hence c2 = abi.
Also, the triangle with corners in 1 and c1 is similar to the triangle with corners
in b and ai. Then we get c1 = a

b i with a similar argument as above.
Now, since we have abi and a

b i we can use the compass to get ab and a
b .

Recall that we started with just the numbers 0 and 1. Now, since we can perform
addition, multiplication, and division, we can construct all rational numbers.

Multiplying complex numbers is slightly more complicated. For this matter it
will be convenient to write the numbers in polar form. Say we want to multiply
the numbers r1e

θ1i and r2e
θ2i, i.e. we want to construct r1r2e

(θ1+θ2)i. We know
how to multiply real numbers, so we can construct r1r2. The question is how
to add angles.
Let p1 = eθ1i and p2 = eθ2i be points on the unit circle, and let us assume
θ1 ≤ θ2. Draw a line between p1 and p2, and a line l parallel to this one that
goes through 1. The line l intersects the unit circle in a point a. Because of the
symmetry the distance between 1 and p1 is the same as the distance between
p2 and a. Hence the polar angle for a is θ1 + θ2, and a = p1p2.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.2

0.4

0.6

0.8

1

0

p1

p2

θ1θ2

l2

a

Now draw a circle with radius r1r2 and center in the origin, and a line that
goes through the origin and eθ1+θ2 . The point where these two intersect is
r1r2e

(θ1+θ2)i, so we can conclude that is is possible to multiply complex numbers
using ruler and compass.

It follows from this that we can construct the number −a, given a. Since we
can add numbers, we can now also perform subtraction.

We might want to construct multiplicative inverses of complex numbers as well.
As above, we can construct the inverse 1

r e
−θi to the number reθi if we can

construct the angle −θ. Given the angle θ on the unit circle we just need to
draw a line orthogonal to the real axis and pick the other point where the line
meets the unit circle.
Note that this also allows us to construct the conjugate of a complex number.
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Another nice thing we can do is to take square roots of real numbers. To
construct the square root of the real number a, draw a circle that goes through 1
and −a (i.e. has its center 1−a

2 ). The point where this circle meets the imaginary
axis is

√
ai.

−4 −3 −2 −1 1

−1

1

2

0

-a

√
ai

This can easily be verified by the Pyth-
agorean Theorem. The right triangle with corners in the origin, the center of
the circle, and

√
ai has catheti a−12 and

√
a, and hypotenuse a+1

2 (the radius of
the circle). Indeed(

a− 1

2

)2

+
(√
a
)2

=
1− 2a+ a2

4
+ a =

1 + 2a+ a2

4
=

(
a+ 1

2

)2

.

To construct the square root
√
re

θ
2 i of the complex number reθi we need to

divide an angle in half. This is possible: Draw a line between the point p = eθi,
on the unit circle, and 1. As we noted in the beginning, we can draw an
orthogonal line exactly midway between p and 1. This line divides the angle in
half.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

0

With all these operations possible we can conclude that the set of constructible
complex numbers is a subfield of C which is closed under taking conjugates and
square roots.
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2.2 Quadratic equations

Recall that the solutions to a quadratic equation x2 + px+ q = 0 are

±
√(p

2

)2
− q − p

2
.

Since we can add, multiply, and take square roots, we can hence solve any
quadratic equation.

The fact that quadratic equations with positive real roots can be solved geomet-
rically was originally proved in another way. Here we shall see how Descartes
did it.
Descartes considered three cases of quadratic equations: z2 = az + b2,
z2 = −az + b2, and z2 = az − b2, where a and b are positive numbers. We shall
have a look at his geometric solution to these three equations.

1. z2 = az + b2

Draw a right triangle with catheti 1
2a and b. Also draw a circle with radius

equal to the side 1
2a, and with center p at the acute corner of the triangle,

as in the figure below. Call the other acute corner q. The hypotenuse of
the triangle intersects the circle at some point s. Prolong the hypotenuse
to a line that intersects the circle a second time, in a point o.

p

1
2a

q

b

o

s

Then the distance between o and q is

1

2
a+

√
1

4
a2 + b2,

which is a solution to the equation. The other solution 1
2a −

√
1
4a

2 + b2

is negative, and was ignored by Descartes.

2. z2 = −az + b2

To solve this equation we use the same construction. The distance between
q and s is

−1

2
a+

√
1

4
a2 + b2,
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and this is the positive solution to the equation. The negative solution is
ignored.

3. z2 = az − b2
We draw a rectangle with height 1

2a and base b. Call the lower right corner
p and the upper left corner q. Draw also a circle with center at the upper
left corner and radius 1

2a. The circle intersects the rectangle in some point
s between p and q. Prolong the line between p and q so that in intersects
the circle in a second point o.

1
2a

p

b

q

o

s

Note that the center of the circle together with the points q and o form a

right triangle. We see that distance between q and o is
√

1
4a

2 − b2. The

distance between p and q is 1
2a, so the distance between p and o is

1

2
a+

√
1

4
a2 − b2,

which is a solution to the equation. In a similar way we see that the
distance between p and s is

1

2
a−

√
1

4
a2 − b2,

which is the other solution to the equation. Note that this only works
when b ≤ 1

2a, and this is exactly when the equation has real roots.

Descartes did not consider the case z2 = −az− b2 since this equation never has
real solutions.

2.3 Relation to field extensions

Given some set of points we have seen how to construct new ones with the
ruler and compass. In this section we will see how this relates to field extensions.

Theorem 1. Let K be some subfield of C which contains i and is closed under
complex conjugation. Let p be a complex number constructible in one step from
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K. Then p is a zero of a quadratic or linear polynomial with real coefficients,
and hence

[K(p) : K] = 1 or 2.

Also, K(p) is closed under complex conjugation.

Proof. Note that if K contains some point x+ yi it also contains the conjugate
x− yi and hence

x =
(x+ yi) + (x− yi)

2

lies in K. Since K contains i we also have

y = −i((x+ yi)− x)

in K.
Since p is constructible in one step from K there are three cases to consider.
The point p could be the intersection between two lines, a line and a circle, or
two circles.

1. The intersection of two lines:
Let’s say we have a line that goes through two points x1 + y1i and
x2 + y2i in K, and a line that goes through two points x3 + y3i and
x4 + y4i in K, none of them vertical. As noted above, the real numbers
x1, x2, x3, x4, y1, y2, y3, and y4 also belongs to K. The point p = x+yi
lie on both lines.
The first line gives us the equation

y − y1 =
y2 − y1
x2 − x1

(x− x1)

or

y =
y2 − y1
x2 − x1

(x− x1) + y1.

In the same way the other line gives us

y =
y4 − y3
x4 − x3

(x− x3) + y3,

so we have

y2 − y1
x2 − x1

(x− x1) + y1 =
y4 − y3
x4 − x3

(x− x3) + y3.

Hence, x is the solution to a linear equation. That is, x actually lie in K.
Then the same holds for y.
Since i also belongs to K we have p = x + yi ∈ K and hence K(p) = K.
Then K(p) is obviously closed under complex conjugation and [K(p) :
K] = 1.

We must also consider the case when one line is vertical. Assume that the
first line is given by

y =
y2 − y1
x2 − x1

(x− x1) + y1

12



as before, and the second one is vertical

x = a

for some real number a. Then a ∈ K, and y can be calculated as

y =
y2 − y1
x2 − x1

(a− x1) + y1.

As before we can conclude that K(p) = K.

2. The intersection of a circle and a line:
Assume we have a non-vertical line that goes through some points x1+y1i
and x2 + y2i, and a circle with center in x3 + y3i and radius r. The circle
has some point a+ bi that lies in K (since we were allowed to draw it), so
r2 = (a− x3)2 + (b− y3)2 lies in K.
The line can be described with the equation

y =
x− x1
x2 − x1

(y2 − y1) + y1

and the circle
(x− x3)2 + (y − y3)2 = r2.

To find an x that satisfies both equations we place the linear expression
for y in the equation of the circle. This gives

(x− x3)2 +

(
x− x1
x2 − x1

(y2 − y1) + y1 − y3
)2

= r2.

Hence x is the solution to a quadratic equation over K, so [K(x) : K] = 2
(assuming x was not already in K). From the equation of the line see
that y ∈ K(x). Then we also have p = x + yi ∈ K(x), so in fact
K(p) = K(x). This field is closed under complex conjugation and we have
that [K(p) : K] = 2.

If the line is vertical, say y = a, the proof is the same, except the quadratic
equation becomes

(x− x3)2 + (a− y3)2 = r2.

3. The intersection of two circles:
Assume we have two intersecting circles, one with center x1 + y1i and
radius r1, and the other with center x2 + y2i and radius r2. Then we have
the equations {

(x− x1)2 + (y − y1)2 = r21
(x− x2)2 + (y − y2)2 = r22.

If we expand the parenthesis we get{
x2 − 2xx1 + x21 + y2 − 2yy1 + y21 = r21
x2 − 2xx2 + x22 + y2 − 2yy2 + y22 = r22.

As we saw in the previous case, r21 and r22 both lie in K.
We subtract the second equation from the first and get

x21 − 2xx1 + y21 − 2yy1 − x22 + 2xx2 − y22 + 2yy2 = r21 − r22.
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From this we can solve out y

y =
r21 − r22 − x21 + 2xx1 − y21 + x22 − 2xx2 + y22

2(y2 − y1)
.

If we place this in one of the original equations we see that x is the so-
lution to a quadratic equation over K. We can also see from the above
expression that y ∈ K(x). As in the previous case we can conclude that
[K(p) : K] = 2, and K(p) is closed under complex conjugation.

Note that if K consists only of real numbers, the requirement of K being closed
under complex conjugation is trivial. If p is also a real number we do not need
the field K to contain i.

We need also to note that K(p) is the splitting field of p’s minimal polynomial
over K. Let f(x) be the minimal polynomial for p over K, and let Σ be the
splitting field of f over K. The case when f is linear is trivial, so let us assume
that f is quadratic. Then f has one other root q, so we have

f(x) = (x− p)(x− q) = x2 − (p+ q)x+ pq.

The coefficients lie in K, which is a subfield of K(p). Hence

(p+ q)− p = q ∈ K(p).

Since both p and q belongs to K(p) this must be the splittingfield, i.e. K(p) = Σ.

In fact, any quadratic normal extension of a subfield of C comes from a ge-
ometric construction. Recall that a finite normal extension field is the same
as a splitting field of some polynomial. A quadratic normal extension field is
hence the splitting field of some quadratic polynomial. The zeroes of a quadratic
polynomial are constructible, as we saw earlier.

In the continuation we would like to start with the field Q (which we can
construct, as noted in the prevoius section). This is, as required, closed under
complex conjugation, but does not contain i.

Theorem 2. A complex number z is constructible if and only if there is a tower

Q = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊆ C

of field extensions such that z ∈ Kn and [Kj+1 : Kj ] ≤ 2 for all j =
0, 1, 2, . . . , n− 1. Hence [Kn : Q] is a power of 2.

Proof. Since i is of degree 2 over Q we can let K1 = Q(i). This is a field
that contains i and is closed under complex conjugation, so the conditions in
Theorem 1 are satisfied. Since z is constructible there is a sequence of points
p1, . . . , pn such that p1 is constructible in one step from Q(i), the point p2 is
constructible in one step from Q(i) ∪ {p1}, and so on.
Now let Ki+1 = Ki(pi) for i = 1, 2, . . . n. Assume Ki is closed under complex
conjugation. The field Ki will contain all the points p1, . . . , pi−1, so pi is con-
structible in one step from Ki. Then [Ki+1 : Ki] ≤ 2 and Ki+1 is closed under
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complex conjugation, by Theorem 1. By induction we can conclude that we
have a tower

Q = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn+1 ⊆ C

of field extensions such that z ∈ Kn and [Ki+1 : Ki] ≤ 2 for all i = 0, 2, . . . , n.

2.4 Impossible constructions

We have seen that we can do a lot of things with the ruler and compass. How-
ever, there are some things we can’t do. There are three famous ”impossible
constructions”, namely

• duplicating the cube

• squaring the circle.

• trisecting the angle

To duplicate a cube is to construct a new cube with twice the volume. In terms
of constructions in the complex plane, this is constructing the length of the side
of the cube. Assuming the given cube has side 1, we are to construct the number
3
√

2. But this number has degree 3 over Q, and is not constructible by ruler and
compass.

To square a circle is to construct a square with the same area as a given circle.
Let the circle be the unit circle. Since the unit circle has area π, we are supposed
to construct a square with side

√
π. If we can construct the number

√
π we

can also construct π. But π is transcendental, which makes the construction
impossible.

We shall take a closer look at the third ”impossibility”.

Theorem 3. Not all angles can be trisected using ruler and compass.

Proof. To show this we need to find one angle which is impossible to trisect
with ruler and compass. We shall prove that π

3 is such an angle.
Given the point cos

(
π
3

)
+ i sin

(
π
3

)
on the unit circle we try to construct the

point cos
(
π
9

)
+ i sin

(
π
9

)
. If this point is constuctible, then its real part cos

(
π
9

)
is constructible as well.
Recall the trigonometric formula

cos(3θ) = 4 cos3 θ − 3 cos θ.

If we apply this to θ = π
9 we get

1

2
= 4 cos3

(π
9

)
− 3 cos

(π
9

)
since cos

(
π
3

)
= 1

2 . Hence α = cos
(
π
9

)
is a solution to the equation

4x3 − 3x− 1

2
= 0
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or over the integers
8x3 − 6x− 1 = 0.

Since 3 is a prime and
3 - 8, 3 | 6, and 9 - 1

the polynomial 8x3 − 6x− 1 is irreducible, by Eisenstein’s criterion [1, p. 214].
Hence

[Q(α) : Q] = 3.

But this is not a power of two, so α is not constructible and the angle π
3 can

not be trisected.

3 The angle trisector

We saw above that angles can not be trisected using ruler and compass, in
general. But assume now that we have an additional tool that allows us to
trisect angles, an ”angle trisector”.

3.1 Constructible numbers and field extensions

First we need a formal definition of the angle trisector. Say we are given a
circle, and two points on the circle. These two points, together with the center
of the circle, defines some angle θ. The angle trisector allows us to mark the
two points on the circle that divides the angle θ in three.
We now extend out definition of constructible points, by also allowing points
to be constructed in this way.
We may now draw lines between the center of the circle and the four points
on the circle. The angles θ and θ

3 can now be moved to any other circle by
drawing lines parallel to these four, but that goes through the center of the
new circle. Hence it is enough to be able to trisect angles on the unit circle.
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Given two points eiθ and eiϕ, say ϕ < θ, on the unit circle. With the angle
trisector we can construct

ei(ϕ+
θ−ϕ

3 ) = ei(
θ+2ϕ

3 ) = ei
θ
3

(
ei
ϕ
3

)2
and

ei(ϕ+2 θ−ϕ3 ) = ei(
2θ+ϕ

3 ) =
(
ei
θ
3

)2
ei
ϕ
3 .

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

0

eiθ

eiϕ

ei
θ+2ϕ

3

ei
2θ+ϕ

3

Since we can multiply
complex numbers it is enough to be able to construct ei

θ
3 and ei

ϕ
3 .

So far we have concluded that we can trisect angles if we can construct eiθ given
ei3θ.
Note that a point is constructible if and only if its real and imaginary parts are

17



constructible. By Euler’s formula we have

cos(3θ) + i sin(3θ) = ei3θ = (eiθ)3 = (cos θ + i sin θ)3 =

= cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ

= cos3 θ + 3i(1− sin2 θ) sin θ − 3 cos θ(1− cos2 θ)− i sin3 θ

= 4 cos3 θ − 3 cos θ + i(−4 sin3 θ + 3 sin θ).

If we consider the real and imaginary parts we get the two equalities

cos 3θ = 4 cos3 θ − 3 cos θ

− sin 3θ = 4 sin3 θ − 3 sin θ.

We see that the real and imaginary parts of the point we wanted to construct
is both solutions to equations of the form

4x3 − 3x = A

where A is a real (constructible) number with |A| ≤ 1. Hence being able to
trisect angles is equivalent to being able to solve this kind of equations.

Note that if we solve the equation for cos θ the number eiθ is the intersection
of the unit circle and a vertical line that goes through cos θ. In terms of field
extensions we start with some field K containing cos(3θ), and consider the field
extension K(cos θ). Then eiθ lies in a quadratic extension of this field. As we
saw above cos θ is a root of the equation

4x3 − 3x = cos(3θ).

We also have

cos(3θ) = cos(3θ + 2π) = 4 cos3
(
θ +

2π

3

)
− 3 cos

(
θ +

2π

3

)
and

cos(3θ) = cos(3θ − 2π) = 4 cos3
(
θ − 2π

3

)
− 3 cos

(
θ − 2π

3

)
,

so the equation has the three roots

cos(θ), cos
(
θ +

2π

3

)
, cos

(
θ − 2π

3

)
.

If 4x3−3x−cos(3θ) is reducible over K, it can be factorized as a product of one
quadratic and one linear polynomial, or three linear polynomials. But then we
could have constructed cos θ with only the ruler and compass, so let us assume
4x3 − 3x − cos(3θ) is irreducible over K. Then the extension K ⊂ K(cos θ) is
of degree three.

As before, we usually want to start with the field Q when constructing numbers.

Theorem 4. Let z ∈ C be constructible by ruler, compass, and angle trisector.
Then there is a tower

Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ C

of field extensions, with z ∈ Kn and [Kn : Q] = 2k · 3l.
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Proof. This is proved the same way as Theorem 2. What is diffrent here is that
the extension Ki+1 = Ki(p) ⊂ Ki might come from trisecting an angle. We need
to verify that Ki+1 is closed under complex conjugation also in this case. As we
have seen above trisecting an angle corresponds to a series of ruler and compass
operations, and adjoining the real part of the cuberoot of a number on the unit
circle. We may therefore assume that Ki+1 = Ki(cos θ) and cos(3θ) ∈ Ki. If
Ki is closed under complex conjugation, so is Ki(cos θ). We get a tower

Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn

where each extension is of degree 2 or 3. Hence [Kn : Q] = 2k ·3l, where k is the
number of degree 2 extensions, and l the number of degree 3 extensions.

The converse statement might not be true here; A normal degree 3 field exten-
sion might be the splitting field of a cubic polynomial that can not be solved
by ruler, compass, and angle trisector. In the next section we shall investigate
what kind of polynomial equations can be solved with these tools.

3.2 Cubic equations

We have seen that any quadratic polynomial equation can be solved using ruler
and compass. With the angle trisector we can also solve some cubic equations.
Given an equation of the form 4x3 − 3x = A, where |A| ≤ 1, we may assume
that A = cos(3θ) for some angle θ. But given only cos(3θ) there are two possible
choices for the angle 3θ (when |A| 6= 1). The choice of angle should not affect
the solution, and this can easily be verified. Say we make a choice of the angle
3θ, and get the solutions cos(θ), cos(θ+ 2π

3 ), and cos(θ− 2π
3 ). The other possible

choice of the angle is −3θ. This gives the same solutions since cos(−θ) = cos(θ),
cos(−θ + 2π

3 ) = cos(θ − 2π
3 ), cos(−θ − 2π

3 ) = cos(θ + 2π
3 ). Hence, to solve the

equation geometrically, we make an appropriate choice of angle, trisect it, and
add the angles 2π

3 and − 2π
3 . We project these angles on the real axis to get the

three solutions to the equations.

Aθ

cos θcos
(
θ+ 2π

3

)
cos
(
θ−2π

3

)
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But the question is now, when can a cubic equation be written of the form

4x3 − 3x = A

for some real number A where |A| ≤ 1?

3.2.1 Rewriting equations, a condition on the coefficients

Any third degree equation

x3 + ax2 + bx+ c = 0

can be written as
t3 + pt+ q = 0

by the substitution x = t − a
3 of variables. When can such an equation be

written as
4x3 − 3x = A

where A is a real number with |A| ≤ 1?

Assume we have the equation

x3 + px+ q = 0.

There are two things we can do that preserves the degree:

• A substitution x = α1t + α2 of variables, where α1 and α2 are complex
numbers.

• Multiply the equation by some complex number β.

But a substitution x = α1t + α2 where α2 6= 0 would give us the quadratic
term back, and we don’t want that. Therefore we do a substitution x = αt, and
multiply by β, for some α, β ∈ C. This gives us

βα3t3 + βαpt+ βq = 0.

Now we want to choose the numbers α and β such that

βα3 = 4, βαp = −3, βq ∈ R and |βq| ≤ 1.

We may rewrite the first equality as

β =
4

α3
.

If we put this into the second we get

4

α2
p = −3

and

α2 = −4

3
p.
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Here we see that p must be non-zero. We can solve out α as

α = ±2

√
−p

3
.

We now have the following expression for β

β =
4

α3
=

4

±
(
2
√
−p3
)3 =

1

±2
√
−p3

3 =
1

∓ 2p
3

√
−p3

= ∓ 3

2p

√
−3

p
.

We also wanted βq ∈ R, and |βq| ≤ 1. That is,

A = q
3

2p

√
−3

p
∈ R, and |A| ≤ 1.

Note that, if p and q are real, p must be negative for A to be real (we take the
square root of − 3

p ). In this case the condition on A can be formulated as

q ≤ 2p

3

√
−p

3

or if we want

q2 ≤ −4
(p

3

)3
.

We now have a condition on the coefficients for reformulation of the equation
to be possible. To summarize:
The equation

x3 + px+ q = 0

can be rewritten as
4x3 − 3x = A

where A ∈ R and |A| ≤ 1 if p 6= 0 and the number

q
3

2p

√
−3

p

satisfies the conditions on A. In the real case the two conditions becomes

p < 0, and q2 ≤ −4
(p

3

)3
.

We do this by substituting

x = 2

√
−p

3
t,

and multiplying the equation by the number

− 3

2p

√
−3

p
.
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3.2.2 Rewriting equations, a condition on the roots

We shall now study the roots of the equation 4x3−3x = A, where A ∈ R. When
|A| ≤ 1 we can find an angle θ such that A = cos 3θ. Then we know that the
equation has the roots

cos(θ), cos
(
θ +

2π

3

)
, cos

(
θ − 2π

3

)
.

But what happens when |A| > 1?
The function f(x) = 4x3−3x has the derivative f ′(x) = 12x2−3. The derivative
has its zeroes in 1

2 and − 1
2 . The second derivative, f ′′(x) = 24x, is positive in

1
2 , and negative − 1

2 . Hence the function f(x) has a local minimum in 1
2 , and a

local maximum in − 1
2 . Note also that f(x) −→ ±∞ when x −→ ±∞. We see

that f(x) has the upper bound f(− 1
2 ) = 1, but now lower bound, on (−∞, 0].

On [0,∞) the function has the lower bound f( 1
2 ) = −1, and no upper bound.

−2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0.5

1

1.5

2

0

Hence the equation f(x) = A has three real roots if and only if |A| ≤ 1.

Assume now that we have an equation

x3 + px+ q = 0

with three real roots x1, x2 and x3. Then

x3 + px+ q = (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x− x1x2x3.

From this we get the equalities

x1 + x2 + x3 = 0, (1)

p = x1x2 + x1x3 + x2x3 (2)
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and
q = −x1x2x3. (3)

We also have

(x1 + x2 + x3)2 = x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3 = 0

and hence

p = x1x2 + x1x3 + x2x3 = −x
2
1 + x22 + x23

2
.

We see that p < 0, except when all the roots are zero, then of course p = 0.
This is one of the properties on the coefficients we had before.
Actually, the second property is satisfied as well. To show this, we start with
considering the discriminant of the polynomial, which is given by

∆ = (x1 − x2)2(x1 − x3)2(x2 − x3)2.

Since all the roots are real ∆ ≥ 0, with equality only if two of the roots are
equal. From (1) we get x3 = −x1 − x2. We use this and expand the expression
for the

∆ = (x1 − x2)2(2x1 + x2)2(x1 + 2x2)2

= 4x61 + 12x51x2 − 3x41x
2
2 − 26x31x

3
2 − 3x21x

4
2 + 12x1x

5
2 + 4x62 ≥ 0.

The property

q2 ≤ −4
(p

3

)3
becomes

(x1x2x3)2 ≤ −4
(x1x2 + x1x3 + x2x3)3

27

here. We shall show that this gives us the same expression as the one we got
from the discriminant above. The left hand side is expanded as

(x1x2x3)2 = (x1x2(x1 + x2))2 = x41x
2
2 + 2x31x

3
2 + x21x

4
2,

and the right hand side

− 4

27
(x1x2 + x1x3 + x2x3)3

=− 4

27
(x1x2 − x1(x1 + x2)− x2(x1 + x2))3

=
4

27
(x21 + x22 + x1x2)3

=
4

27
(x61 + 3x51x2 + 6x41x

2
2 + 7x31x

3
2 + 6x21x

4
2 + 3x1x

5
2 + x62),

so we have the inequality

27(x41x
2
2 + 2x31x

3
2 +x21x

4
2) ≤ 4(x61 + 3x51x2 + 6x41x

2
2 + 7x31x

3
2 + 6x21x

4
2 + 3x1x

5
2 +x62).

If we collect all the terms on one side we get

4x61 + 12x51x2 − 3x41x
2
2 − 26x31x

3
2 − 3x21x

4
2 + 12x1x

5
2 + 4x62 ≥ 0.
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This is the same expression as the one we got from the discriminant. Hence the
equation satisfies both our conditions.

This could also be deduced directly from the formula, [6, p. 256]

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2

for the discriminant of the polynomial ax3 + bx2 + cx+ d. In our case, with the
polynomial x3 + px2 + q, this becomes

∆ = −4p3 − 27q2.

The discriminant is positive if and only if all roots are real, so this would also
give us the second condition.

Note also that the roots to
t3 + pt+ q = 0

are real if and only if the roots to the original equation

x3 + ax2 + bx+ c = 0

are real, since the reformulation was done by the substitution x = t − a
3 . We

have shown the following theorem.

Theorem 5. A cubic polynomial equation can be written as

4x3 − 3x = A

where and |A| ≤ 1, if and only if it has three real roots. Hence any cubic
polynomial with three real roots can be solved geometrically by ruler, compass,
and angle trisector.

We finish this section with an example, inspired by an old Chinese riddle.
There is a circular castle with two gates, one to the north and one to the south.
Two li (a Chinese unit, approximately 500 meters) outside the north gate there
is a large tree. This tree can be seen standing at a point no less than six li east
of the south gate. What is the radius of the castle?
We call the point where the tree is B, and the point from where the tree is
visible A. We draw a straight line from A to B, and call the point where it
tangents the circle of the castle C. Let a denote the distance from B to C.

2 a

A

B

6

C

r

D
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Note that we have three right triangles with one corner in the centre of the castle.
The one with corners in A and D (the south gate) is in fact the congruent to
the one with corners in A and C. Hence the distance between A and C is 6.
The smaller triangle, with a corner in B, together with the big triangle with
corners in A, B and D gives us the equations{

a2 + r2 = (r + 2)2

36 + (2r + 2)2 = (a+ 6)2
.

The first one is simplified as

a2 = 4(r + 1).

We know that a is positive, since it is a distance, so we insert a = 2
√

(r + 1) in
the second equation and get

36 + (2r + 2)2 = (2
√

(r + 1) + 6)2,

which (after some elementary algebraic operations) becomes

r2 + r = 6
√
r + 1.

We square both sides to get a polynomial equation

r4 + 2r3 + r2 = 36(r + 1).

The left hand side factorizes as r2(r+ 1)2, and since r = −1 is not a solution to
our problem (we do not want a negative radius), we cancel the factor (r + 1).
We now have the cubic polynomial equation

r2(r + 1) = 36.

This equation has the root r = 3, and is hence reducible, so we do not need
our angle trisector here. But let us generalize the problem a bit. Instead of the
distances two and six li we define the distance from the north gate to the tree
to be one (and forget about the unit li), and call the distance from the south

gate to the point where the tree is visible b.

1 a

A

B

b

C

r

D

For which b can this be solved geometrically with the angle trisector? Our two
equations now becomes {

a2 + r2 = (r + 1)2

b2 + (2r + 1)2 = (a+ b)2
.

The first equation gives us a2 = 1 + 2r, and placing this in the second one gives

a4 = a2 + 2ab,
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and hence
a3 − a = 2b.

We factorize the left hand side

a(a2 − 1) = 2b

and note that a =
√

1 + 2r, and a2 − 1 = 2r. Hence, in terms of r the equation
becomes

2r
√

1 + 2r = 2b

or
r2(1 + 2r) = b2.

We write this as a monic polynomial equation

r3 +
r2

2
− b2

2
= 0

and try to solve it with the method from section 3.2.1. The first step is the
substitution r = t− 1

6 , to eliminate the quadratic term. This gives the equation

t3 − t

12
− b2

2
+

1

108
= 0.

The next step is the substitution t = 2
√
−p3x, where p is the coefficient of the

linear term. In this case p = − 1
12 , so we get

t = 2

√
1

36
x =

x

3
.

The equation becomes

x3

27
− x

36
− b2

2
+

1

108
= 0.

Last we multiply by 4 · 27 = 108 and get

4x3 − 3x = 54b2 − 1.

For this to be solvable by angle trisection we need

b2 ≤ 2

54
=

1

27
.

Assume now that our distance b satisfies this condition. How do we draw the
castle?
The number 54b2− 1 is cos 3θ, for some angle 3θ, which we find by drawing the
unit circle. Then we use our angle trisector to get the angle θ, and the number
x = cos θ.
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1

1

b 54b2 − 1 x

To get the radius r we must now construct the number r = t − 1
6 = x

3 −
1
6 .

The south gate of the castle will in this picture be at the origin, so we draw
a circle with radius r that goes through the origin. We mark the place of the
tree (which is the complex number (2r + 1)i) as well, and see that it should be
visible from the point b.

1

1

b 54b2 − 1

xr

27



4 Regular polygons

A particularly interesting kind of construction is the construction of regular
polygons. A regular n-gon will in this case have its corners at the n:th roots
of unity. The essential part is to construct the number ω = ei

2π
n . Once this is

done we have two adjacent corners (1 and ω), and we can use the compass to
draw a circle with center in ω that goes through 1. This circle intersects the
unit circle in the next corner of the n-gon, and we proceed in the same way to
construct the other corners.

−1 1

1

0

ei
2π
n

Not all regular polygons can be constructed. In the next section we shall se
which n-gons are constructible by ruler and compass.

4.1 Construction of regular polygons using ruler and com-
pass

Assume that the regular n-gon, and the regular m-gon are constructible, and
that n and m are relatively prime. Then there are some integers a and b such
that an+ bm = 1. We have

1

mn
=

a

m
+
b

n
,

and

ei
2π
mn =

(
ei

2π
m

)a (
ei

2π
n

)b
.

Hence the regular mn-gon is constructible.

The regular 2k-gon is constructible. This can easily be proved by induction.
If k = 2 (smaller k does not give an actual polygon), we get a square with
corners in 1, i, − 1 and −i. This is obviously constructible. If the 2k-gon is
constructible we get the 2k+1-gon by bisecting the angle 2π

2k
.

However, we shall see that the regular pa-gon is not constructible, when a > 1
and p is an odd prime.
Assume, for a contradiction, that the regular pa-gon is constructible, for some
a > 1. Then the number (

ei
2π
pa

)pa−2

= e
i 2π
p2 ,
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and hence the regular p2-gon, is constructible. Geometrically, we can get the
p2-gon by adjoining every pa−2th corner in the pa-gon. We shall now prove that

the minimal polynomial of e
i 2π
p2 is

f(x) = 1 + xp + x2p + · · ·+ x(p−1)p.

Note that

f(x) =
xp

2 − 1

xp − 1

and

f
(
e
i 2π
p2

)
=

0

ei
2π
p − 1

= 0.

We need to show that f(x) is irreducible. The polynomial f(x) is irreducible if
and only if f(1 + t) is irreducible. We have

f(1 + t) = 1 + (1 + t)p + (1 + t)2p + · · ·+ (1 + t)(p−1)p.

This polynomial has the constant term p. We also have

f(1 + t) =
(1 + t)p

2 − 1

(1 + t)p − 1
.

Recall that (x+ y)p
n ≡ xpn + yp

n

mod p. Hence

f(1 + t) ≡ 1 + tp
2 − 1

1 + tp − 1
=
tp

2

tp
= t(p−1)p mod p.

Then
f(1 + t) = t(p−1)p + p · tk(t) + p

for some polynomial k(t) with integer coefficients. By Eisensteins criterion, with

the prime p, the polynomial f(x) is irreducible. Hence e
i 2π
p2 has degree (p− 1)p

over Q. This is obviously not a power of 2, and by Theorem 2 the number e
i 2π
p2

is not constructible. This contradicts our assumption, and hence the regular
pa-gon is not constructible, when a > 1.

We have now proved that the regular n-gon is constructible if and only if
n = 2kp1 · · · pl, where p1, . . . , pl are distinct odd primes and the regular pi-gons
are constructible. The question is, for which primes p is the regular p-gon con-
structible?

For the regular p-gon to be constructible we need the degree of ω = ei
2π
p over

Q to be a power of 2. We shall first prove that the minimal polynomial of ω is

f(x) = 1 + x+ x2 + · · ·+ xp−1.

We do this in a similar way as above. Note that

f(x) =
xp − 1

x− 1

and

f(ω) =
ωp − 1

ω − 1
= 0.
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The polynomial

f(1 + t) = 1 + (1 + t) + (1 + t)2 + · · ·+ (1 + t)p−1

has the constant term p. Since

f(1 + t) =
(1 + t)p − 1

1 + t− 1
=

(1 + t)p − 1

t
≡ tp

t
= tp−1 mod p

we can use Eisensteins criterion as before, and hence f(x) is irreducible. Then
ω has the degree p − 1 over Q. Hence the regular p-gon is constructible when
p− 1 is a power of 2. That is, when p = 2k + 1, for some integer k.
The number 2k + 1 can only be prime when k = 2n for some integer n, because
if k = ab where b is odd

2k + 1 = 2ab + 1 = (2a)b + 1 ≡ (−1)b + 1 = −1 + 1 = 0 mod 2a − 1.

This was originally proved by Fermat, and primes of this form are called Fermat
primes. However, not all numbers of the form 22

n

+1 are prime. Fermat himself
found that the first five numbers in the sequence, which is

22
0

+ 1 =3

22
1

+ 1 =5

22
2

+ 1 =17

22
3

+ 1 =257

22
4

+ 1 =65537,

are prime. These are believed to be the only Fermat primes, but no one has
been able provide a proof.

The results of this section summarizes to the following theorem.

Theorem 6. The regular n-gon is constructible by ruler and compass if and
only if

n = 2kp1 · · · pl
where p1, . . . , pl are distinct Fermat primes.

4.2 Construction of regular polygons using ruler, com-
pass, and angle trisector

We now ask ourselves what new regular polygons can be constructed when we
allow angle trisecting. An immediate result is that the 3k-gon is constructible.

The regular triangle with corners in the third roots of unity, that is − 1
2±
√
3
2 i and

1, is obviously constructible. We get the 3k-gon inductively by trisecting angles,
as with the 2k-gon. Hence any regular 2k3lp1 · · · pm-gon, where p1, . . . , pm are
Fermat primes, are constructible. But can we construct a regular p-gon, for
some prime p that is not a Fermat prime? A guess would be that this works
for primes of the form 2n3m + 1, which are called Pierpont primes after the
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mathematician James Pierpont. But this is not obvious, since not all field
extensions of degree three are allowed. We shall start with a special case of the
Pierpont primes, the primes of the form 2n3 + 1. The first two are 2 · 3 + 1 = 7
and 4·3+1 = 13. It turns out that the regular heptagon (7-gon), and tridecagon
(13-gon) are constructible.

4.2.1 The regular heptagon

Let ω = ei
2π
7 . This is then the first corner in the heptagon, and the others are

given by ω2, ω3, . . . , ω7. These are the seventh roots of unity, that is the roots
of the polynomial x7 − 1. This polynomial is factorized as

x7 − 1 = (x− 1)(1 + x+ · · ·+ x6).

As we saw above, the polynomial (1 + x + · · · + x6) is irreducible, and
[Q(ω) : Q] = 6. To find out more about this extension we shall use some Galois
theory. The Galois group Γ corresponding to the extension [Q(ω) : Q] has six
elements. As we know, the Galois group consists of permutations of the zeroes
of the polynomial, or equivalently of all automorphisms on Q(ω) that fixes Q.
Since all the zeroes are powers of ω every τ ∈ Γ is completely determined by
τ(ω). There are six possible automorphisms, since ω can be mapped to itself or
any of the other zeroes. Since Γ should have six elements, all these occur. That
is

Γ = {τi}6i=1, where τi(ω) = ωi.

The automorphism τ3 generates the group since

τ3(ω) =ω3

τ23 (ω) =τ3(ω3) = ω9 = ω2

τ33 (ω) =τ3(ω2) = ω6

τ43 (ω) =τ3(ω6) = ω18 = ω4

τ53 (ω) =τ3(ω4) = ω12 = ω5

τ63 (ω) =τ3(ω5) = ω15 = ω

(recall that ω7 = 1). Let τ = τ3. Then Γ = 〈τ〉, and we have a subgroup

〈τ3〉 = {τ3, τ6}

By Galois theory this tells us that there is a field K such that Q ⊂ K ⊂ Q(ω),
where [Q(ω) : K] = 2, and [K : Q] = 3. The field K consists of everything that
is fixed under τ3. So we need to find out what elements that are, other than
the rational numbers. As a start, note that

τ3(ω) = ω33 = ω27 = ω6 = ω

and then
τ3(ωk) = ωk = ωk.

That is, τ3 maps every element to its complex conjugate. Since

ω = ω6, ω2 = ω5, and ω3 = ω4,
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we have

τ3(ω + ω6) =ω + ω6

τ3(ω2 + ω5) =ω2 + ω5

τ3(ω3 + ω4) =ω3 + ω4.

Put
x1 = ω + ω6, x2 = ω2 + ω5, and x3 = ω3 + ω4.

Note that these are real numbers, since they are sums of complex conjugates.
We also have

x1 + x2 + x3 =

6∑
j=1

ωj = −1,

x1x2+x1x3 + x2x3 =

= (ω + ω6)(ω2 + ω5) + (ω + ω6)(ω3 + ω4) + (ω2 + ω5)(ω3 + ω4)

= ω3 + ω6 + ω + ω4 + ω4 + ω5 + ω2 + ω3 + ω5 + ω6 + ω + ω2 = −2

and

x1x2x3 =(ω + ω6)(ω2 + ω5)(ω3 + ω4)

=(ω3 + ω6 + ω + ω4)(ω3 + ω4)

=ω6 + ω2 + ω4 + 1 + 1 + ω3 + ω5 + ω + 1 = 1.

Hence the numbers x1, x2 and x3 are roots of the polynomial equation

(x− x1)(x−x2)(x− x3) =

= x3 − (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x− x1x2x3
= x3 + x2 − 2x− 1 = 0

This equation has rational coefficients and real roots, so it should be solvable
by ruler, compass, and angle trisector. But to see how the construction goes we
need to rewrite the equation on the form 4x3 − 3x = A. The first step is the
substitution x = t− 1

3 , to eliminate the quadratic term. We get

x3 + x2 − 2x− 1 =

(
t− 1

3

)3

+

(
t− 1

3

)2

− 2

(
t− 1

3

)
− 1

= t3 − 7

3
t− 7

27
= 0.

The we substitute

t = 2

√
7

9
u = 2

√
7

3
u,

which gives

8
7
√

7

27
u3 − 2

7
√

7

9
u− 7

27
= 0.

Last we multiply by 27
14
√
7
, and get

4u3 − 3u− 1

2
√

7
= 0.
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as desired. That is,

A =
1

2
√

7
= cos(3θ),

so we need to construct the number 1
2
√
7

(which is possible by ruler and com-

pass). Then we draw a vertical line through this point and take the intersection
with the unit circle to get the angle 3θ. We trisect the angle to get the solu-

tion u1 = cos θ. From this we get t1 = 2
√
7
3 u1 (after constructing 2

√
7
3 ) and

x1 = t1 − 1
3 . Note that we already defined x1 in terms of ω, so it is not obvious

that this root is x1, it might equally well be x2 or x3. But if we actually perform
the construction (or use a computer to approximate the numbers), we see that
it is correct.

1

1

0 1
2
√

7

θ

u1 t1x1

In the same way we can use u2 and u3 given by cos
(
θ ± 2π

3

)
to get x2 and x3.

This is not necessary however, we will get all we need from x1. Recall that
x1 = ω + ω. We draw a vertical line midways between x1 and the origin. This
line intersects the unit circle in ω and ω, and as noted earlier we can now use
the compass to get the other corners.
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4.2.2 The regular tridecagon

Let now ω = ei
2π
13 . Then 1, ω, ω2, . . . , ω12 are the 13th roots of unity, and

the corners in the regular tridecagon. These are the zeroes of the irreducible
polynomial

1 + x+ x2 + · · ·+ x12.

As with the heptagon, we shall study the Galois group corresponding to the
field extension Q(ω) ⊃ Q, which is given by

Γ = {τi}12i=1 where τi(ω) = ωi.

Note that τi ◦ τj = τr where r is the remainder of ij when divided by 13, since
τj(τi(ω)) = ωij and ω13 = 1. Hence τn generates Γ when n generates Z∗13. One
can easily check that the number 2 generates Z∗13, and hence τ = τ2 generates
Γ. The automorphism τ3 generates a subgroup

〈τ3〉 = {id, τ3, τ6, τ9}

since

τ3(ω) = ω23 = ω8

τ6(ω) = τ3 ◦ τ3(ω) = τ3(ω8) = (ω8)8 = ω64 = ω12 = ω−1

τ9(ω) = τ6 ◦ τ3(ω) = (ω−1)8 = ω−8 = ω5

τ9 ◦ τ3(ω) = (ω5)8 = ω40 = ω.

Note that τ6 is of order 2, and generates the subgroup

〈τ6〉 = {id, τ6} ⊂ 〈τ3〉.

Galois theory then tells us there are fields K1 and K2 such that

Q ⊂
3
K1 ⊂

2
K2 ⊂

2
Q(ω)
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where the indexed numbers are the degrees of the extensions. K1 is the fixed
field under 〈τ3〉, so we need to find out what is fixed under τ3. Since

τ3(ω) =ω8,

τ3(ω8) =ω12,

τ3(ω12) =ω5,

τ3(ω5) =ω

we have
τ3(ω + ω5 + ω8 + ω12) = ω + ω5 + ω8 + ω12.

In a similar way we see that ω2 + ω3 + ω10 + ω11 and ω4 + ω6 + ω7 + ω9 are
fixed under τ3. Put

x1 = ω + ω5 + ω8 + ω12,

x2 = ω2 + ω3 + ω10 + ω11,

and
x3 = ω4 + ω6 + ω7 + ω9.

Note that ω = ω12, ω2 = ω11, ω3 = ω10, and so on. Hence

x1 = ω + ω5 + ω5 + ω,

x2 = ω2 + ω3 + ω3 + ω2,

and
x3 = ω4 + ω6 + ω6 + ω4.

The numbers x1, x2, and x3 are sums of complex conjugates, and hence real.
They are not rational though, since

τ(x1) = ω2 + ω10 + ω10 + ω2 = ω2 + ω3 + ω3 + ω2 = x2,

τ(x2) = ω4 + ω6 + ω6 + ω4 = x3

and
τ(x3) = τ2(x2) = τ3(x1) = x1,

and rational numbers should be fixed under τ .
This means that K1 = Q(x1, x2, x3).
In a similar way as for the heptagon we can calculate

x1 + x2 + x3 = ω + ω2 + · · ·+ ω12 = −1,

x1x2 + x1x3 + x2x3 = −4,

and
x1x2x3 = −1

using that
∑12
i=1 ω

i = −1 repeatedly. Hence x1, x2 and x3 are the roots of the
polynomial equation

(x− x1)(x− x2)(x− x3) = x3 + x2 − 4x+ 1 = 0.

This is a cubic polynomial with rational coefficients and real zeroes, and hence
x1, x2 and x3 can be constructed using angle trisection. When this is done we
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can construct ω using ruler and compass, since the other two field extensions
are of degree two.

We have now proved that the regular tridecagon is constructible. Next, we shall
see how this is done geometrically.
First we need to write the equation x3+x2−4x+1 = 0 on the form 4x3−3x = A.
The first substitution, x = t− 1

3 , gives

t3 − 13

3
t+

65

27
= 0,

and the second, t = 2
3

√
13s, gives

8 · 13

27

√
13s3 − 2 · 13

9

√
13s+

65

27
= 0.

We multiply by 27
2·13
√
13

, which gives us the equation

4s3 − 3s+
5

2 ·
√

13
= 0.

Hence

A = − 5

2 ·
√

13
= cos(3θ),

and the solutions to the equation x3 + x2 − 4x+ 1 = 0 is given by

x1 =
2

3

√
13 cos

(
θ − 2π

3

)
− 1

3

x2 =
2

3

√
13 cos θ − 1

3

x3 =
2

3

√
13 cos

(
θ +

2π

3

)
− 1

3

which we get by angle trisecting, and some ruler and compass operations. One
can check that xi is actually equal to the xi expressed in terms of ω, for i = 1,
2 and 3. We shall also see that it is enough to construct x1 and x3.

θA

cos
(
θ− 2π

3

)
cos
(
θ+ 2π

3

) x1x3
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Let us now define the real numbers y1 = ω + ω and y2 = ω5 + ω5. Recall that

x1 = ω + ω5 + ω5 + ω = y1 + y2.

We also have that
y1y2 = ω6 + ω4 + ω4 + ω6 = x3.

Hence y1 and y2 are the roots to the quadratic polynomial equation

(x− y1)(x− y2) = x2 − x1x+ x3 = 0

with coefficients in K1. Note also that

y1 = ω + ω = 2 cos

(
2π

13

)
> 0,

y2 = ω5 + ω5 = 2 cos

(
10π

13

)
< 0,

and hence
x3 = y1y2 < 0.

The points y1 and y2 can be constructed by ruler and compass by drawing a
circle with center in x1

2 that goes through the point
√
|x3|i. Call the points

where this circle intersects the real axis a and b. We may assume a < 0 and
b > 0.

x1
2

√
|x3|i

a b

Now recall the Intersecting Chords Theorem.

Theorem 7 (Intersecting Chords Theorem).

Assume we have two intersecting
chords in a circle. The point where the
chords intersect splits the first chord
into two segments of length a and
b. In the same way the second chord
splits into two segments of length c
and d. Then ab = cd.

a
b

c

d
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Applied to this case, where the cords are given by the real and imaginary axes,
the theorem says that −ab = |x3| = −x3 and hence ab = x3. Since we also
have a + b = x1, the numbers a and b must be the solutions to the equation
x2 − x1x+ x3 = 0. Hence y1 = b and y2 = a.
Now the number y1 = ω+ω is constructed, and from this we get the first corner
of the tridecagon.

4.2.3 The regular 2n3+1-gon

With a few results from Group Theory we will be ready to consider the regular
p-gon, when p = 2n · 3 + 1. This shall later be generalized to the case when p is
a Pierpont prime.

Theorem 8. The multiplicative group Z∗p, where p is prime, is cyclic.

Theorem 9. The subgroups of a cyclic group all have different order.

For proofs see [1, p. 136] and [1, p. 347].

Theorem 10. The regular p-gon, where p is a prime on the form 2n · 3 + 1, is
constructible.

Proof. Let p be a prime such that p = 2n · 3 + 1, for some integer n, and

let ω = ei
2π
p . As before, we note that ω, ω2, . . . , ωp−1 are the zeroes of the

polynomial
f(x) = 1 + x+ x2 + . . .+ xp−1,

and we consider the corresponding Galois group Γ. The group Γ is given by

Γ = {τi}p−1i=1

where τi is an automorphism on Q(ω) that fixes the rational numbers and maps
ω to ωi. As noted in the construction of the tridecagon, τm generates Γ when
m generates Z∗p. By the theorem above, such an m exists. Let τ = τm. Hence
Γ = 〈τ〉 is a cyclic group, and all subgroups have different order.

Complex conjugation is an automorphism on Q(ω) that leaves Q fixed, and
hence an element in the Galois group Γ. Complex conjugation has order two,

and generates a subgroup of order two. But 〈τ
p−1
2 〉 is also a subgroup of order

two, hence τ
p−1
2 = τ3·2

n−1

must be complex conjugation.

Now consider the chain of subgroups

Γ = 〈τ〉 ⊃ 〈τ3〉 ⊃ 〈τ3·2〉 ⊃ · · · ⊃ 〈τ3·2
n−1

〉,

and the corresponding tower of field extensions

Q ⊂ K1 ⊂ · · · ⊂ Kn ⊂ Q(ω),

where K1 is the fixed field of τ3, K2 the fixed field of τ3·2, and so on. The
field Kn is the fixed field of τ3·2

n−1

. Since this automorphism was complex
conjugation the field Kn, and all the other Ki’s, consists of real numbers. The
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non-real complex numbers appears first in Q(ω).
By the Fundamental Theorem of Galois Theory the field K1 is normal over Q,
since 〈τ3〉 is a normal subgroup of Γ. Let α ∈ K1 \Q. Then

3 = [K1 : Q] = [K1 : Q(α)][Q(α) : Q].

Since 3 is prime we must have K1 = Q(α). Let now f(x) be the minimal
polynomial of α over Q. Since [Q(α) : Q] = 3 the degree of f(x) must be 3. The
field K1 was normal over Q, so all the zeroes of f(x) lies in K1, and are hence
real. This means that the field K1 is constructible by ruler, compass, and angle
trisector. The other field extensions were of degree 2, thus we have now proved
that the regular p-gon is constructible.

4.2.4 A closer look at the field K1

Before generalizing this, we shall take a closer look at the field K1.
Let σ = τ3. Then K1 is the fixed field of σ, and we want to find out what is
fixed under σ. Note that

σ(ω + σ(ω) + σ2(ω) + · · ·+ σ2n−1(ω)) = ω + σ(ω) + σ2(ω) + · · ·+ σ2n−1(ω),

since
σ2n−1 ◦ σ = σ2n = τ3·2

n

= id .

This also holds if we replace ω by ωi for any i. So how many different sums, fixed
by σ, can we get in this way? We shall see that if two such sums are different

then they have no terms in common. Assume we have two sums
∑2n−1
k=0 σk(ωi)

and
∑2n−1
k=0 σk(ωj), where i 6= j, with a common term

σa(ωi) = σb(ωj).

We may assume a ≤ b. Then

ωi = σb−a(ωj),

and
ωi + σ(ωi) + σ2(ωi) + · · ·+ σ2n−1(ωi) =

σb−a(ωj) + · · ·+ σ2n−1(ωj) + ωj + · · ·+ σb−a−1(ωj) =

ωj + σ(ωj) + · · ·+ σ2n−1(ωj).

Note also that each sum consists of 2n terms, and all the terms are different
powers of ω. Since there are 3 · 2n powers of ω (before we reach 1), we can form
three different sums of this type.
Recall that we had τ(ω) = ωm, where m generates Z∗p. That is σ(ω) = ωm

3

,
and

Z∗p = {1,m, . . . ,m3·2n−1}.
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Let

x1 =ω + σ(ω) + σ2(ω) + · · ·+ σ2n−1(ω)

=ω + ωm
3

+ ωm
2·3

+ ωm
3·3

+ · · ·+ ωm
(2n−1)3

,

x2 =ωm + σ(ωm) + . . .+ σ2n−1(ωm)

=ωm + ωm
4

+ · · ·+ ωm
3·2n−2

,

and

x3 =ωm
2

+ σ(ωm
2

) + . . .+ σ2n−1(ωm
2

)

=ωm
2

+ ωm
5

+ · · ·+ ωm
3·2n−1

.

We have now found three elements that are fixed under σ. These numbers are of
course real, since they belongs to K1. Another way to see this is the following.
Recall that σ2n−1

= τ3·2
n−1

is complex conjugation. Then

σi(ω) = σ2n−1

(σi−2
n−1

(ω)) = σi−2n−1(ω),

and
σ2n−1(ω) = σ2n−1−1(ω)

since
2n − 1− 2n−1 = 2n−1(2− 1)− 1 = 2n−1 − 1.

For x1, this means that

x1 = ω + σ(ω) + · · ·+ σ2n−1−1(ω) + ω + σ(ω) + · · ·+ σ2n−1−1(ω).

In the same way we see that x2, and x3 are also sums of complex conjugates,
and hence real. Note that the xi’s in the construction of the heptagon and the
tridecagon corresponds to the xi’s here.

These numbers are not rational, since τ(x1) = x2 and τ2(x1) = x3. As be saw
before K1 = Q(α) for any α ∈ K1 \ Q. Especially, K1 = Q(x1). Let m(x) be
the minimal polynomial of x1 over Q. Then

m(x2) = m(τ(x1)) = τ(m(x1)) = τ(0) = 0

and
m(x3) = m(τ2(x1)) = τ2(m(x1)) = τ2(0) = 0,

hence x2, and x3 are the other two zeroes of the polynomial m(x). We can then
describe m(x) as

m(x) =

= (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x− x1x2x3,

and we shall try to compute these coefficients. We have

x1 + x2 + x3 =

p−1∑
i=1

ωi = −1,
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so the coefficient for x2 is 1.
Next, note that if ωa is a term in x1, so is ω−a = ωa. The same holds for x2 and
x3. We know that the sums x1, x2 and x3 does not contain any common terms.
Hence, when multiplying a term in xi by a term in xj we know that we are
multiplying two numbers that are not each others inverses, when i, j = 1, 2, 3
and i 6= j. This means that the product xixj is a sum of powers of ω not equal
to 1, no term is ever multiplied by its inverse. Hence

x1x2 + x1x3 + x2x3 = g(ω)

where g(x) is a polynomial with positive integer coefficients and no constant
term. Since all powers of omega can be reduced so that the exponent is less
than p we can say that g(x) has degree at most p − 1. Also, we know that
x1x2 + x1x3 + x2x3 is rational, so g(w) = r for some rational number r. Now
put h(x) = g(x)− r. Then h(ω) = 0, and h(x) must be divisible by the minimal
polynomial

f(x) =

p−1∑
i=0

xi

of ω. But h(x) is also of degree at most p − 1, and since h(x) is not constant
we must have h(x) = c · f(x), for some rational number c. In fact, c must be
equal to the constant term in h(x), which is −r, so we have h(x) = −r · f(x).
Since the leading coefficient in h(x) is a positive integer, r must be a negative
integer. Moreover, each power of ω must occur the same number of times, and
this number is −r.
When expanding x1x2 + x1x3 + x2x3 we get 3 · 22n terms, since each xi has 2n

terms. On the other hand, the above expression there is r · 3 · 2n terms. Hence
r = 2n, and

x1x2 + x1x3 + x2x3 = 2n.

Let now x1x2x3 = s, for some rational number s. With the same argument as
above we get that

x1x2x3 = q(ω)

where q(x) is a polynomial such that q(x)− s = a · f(x) for some integer a. The
problem is that, in this case we can not say anything about the constant term
in q(x). All we know is that when expanding x1x2x3 we get a sum of powers of
ω and 1’s. From q(x)− s = a · f(x) we see that

q(ω) = a · f(ω) + s = a

p−1∑
i=1

ωi + a+ s,

and a+s must be the number of 1’s. We also know that the number of terms in
the expansion of x1x2x3 is 23n, and we can use this to approximate a. Obviously,
a must be at least 1. If a = 22n−1 the number of omegas in the sum is

22n−1(p− 1) = 22n−1 · 3 · 2n = 23n−1 · 3 > 23n.

Since the number of terms is 23n, this is a contradiction, and we deduce that
a < 22n−1.
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Note that the number of 1’s in the expansion of x1x2x3 must be 23n−a · (p−1).
But the number of 1’s is also given by a+ s, so we have

a+ s = 23n − a · (p− 1),

and hence
s = 23n − a · (p− 1)− a = 23n − a · p.

The polynomial m(x) can now be expressed as

x3 + x2 − 2nx− 23n + a · p where a ∈ Z and 1 ≤ a < 22n−1,

and K1 is the splitting field of this polynomial.

We compare this with the polynomials we got for the heptagon and tridecagon.
When p = 7 and n = 1 we get the polynomial

x3 + x2 − 2x− 8 + 7a, where 1 ≤ a < 2.

The only possibility is a = 1, and hence the polynomial is x3 + x2 − 2x − 1,
which is consistent with the result from section 4.2.1.
When p = 13 and n = 2 we get the polynomial

x3 + x2 − 4x− 64 + 13a, where 1 ≤ a < 8.

From section 4.2.2 we know that the polynomial should be x3 + x2 − 4x + 1,
and hence a = 5 in this case.

4.2.5 The regular 2n3m+1-gon

We shall now generalize Theorem 10 to the case when p is a Pierpont prime.

Theorem 11. The regular p-gon, where p is a Pierpont prime, is constructible.

Proof. Let p be a Pierpont prime, say p = 2n3m + 1. We let ω = ei
2π
p , and

define the Galois group Γ = 〈τ〉 as before. The chain of subgroups now looks
like

〈τ〉 ⊃ 〈τ3〉 ⊃ 〈τ3
2

〉 ⊃ . . . 〈τ3
m

〉 ⊃ 〈τ3
m·2〉 ⊃ · · · ⊃ 〈τ3

m·2n−1

〉

and we have a corresponding tower of field extensions

Q ⊂
3
K1 ⊂

3
. . . ⊂

3
Km ⊂

2
. . . ⊂

2
Km+n−1 ⊂

2
Q(ω).

The fact that τ
p−1
2 is complex conjugation still holds, so all the fields, except

Q(ω) consists of real numbers.
In the case when p = 3 · 2n + 1 we showed that K1 was the splitting field of
an irreducible cubic polynomial over the rationals, and this holds here as well.
The same holds for Ki+1 ⊃

3
Ki, if we can show that the extension is normal.

We know that all the Ki’s are normal over Q, since the corresponding groups
are normal in Γ (since Γ is Abelian).

In general, assume that we have fields K ⊂ F ⊂ E, such that E is normal over
K. We want to show that E is normal over F .
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Let a ∈ E \ F , and let m(x) be the minimal polynomial of a over F . Let p(x)
be the minimal polynomial of a over K. Then m(x) must divide p(x), say

p(x) = f(x)m(x),

for some polynomial f(x). Assume that b is another zero of m(x). We want to
show that b ∈ E. We have

p(b) = f(b)m(b) = 0,

and since E is normal over K we must have b ∈ E.

From this we can conclude that Ki+1 is normal over Ki, for all i = 1, 2, . . . ,m−1.
Then all the extensions of degree 3 can be constructed by ruler, compass and
angle trisection. The other extensions are of degree 2, and can be constructed by
ruler and compass. Thus we have showed that the regular p-gon is constructible
when p is a Pierpont prime.

As in section 4.1, this now implies the following theorem.

Theorem 12. The regular n-gon is constructible by ruler, compass, and angle
trisector if and only if

n = 2k3lp1 · · · pm
where p1, . . . , pm are distinct Pierpont primes.

The number of Pierpont primes is unknown, but the general conjecture is that
there are infinitely many.

5 Marked ruler constructions

Instead of constructions using ruler, compass, and angle trisector we shall now
consider constructions using only one tool, namely a marked ruler. A marked
ruler is a ruler with two marks on it, one unit apart. This may seem like a
restriction compared to our previous set of tools, but we will see that this in
fact allows us to construct more points than before.

As before, a point is considered constructible if it is the intersection between
two lines. Of course, the marked ruler may be used as the unmarked ruler, to
draw lines between two given points. But we may also draw a line that goes
through a given point a, and intersects two other lines at points p and q (not
yet constructed) exactly one unit apart.
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1

a

p

q

We allow the special case when a and q coincide. Then, obviously, q is already
constructed and we are constructing p. Say now that we choose a as the
origin. Any point that lies on a line and is at distance one from the origin
is constructible in this way. This is the same as allowing to draw the unit
circle. The following famous theorem implies that we can construct any point
constructible by ruler and compass.

Theorem 13 (Poncelet-Steiner). Any point constructible by ruler and compass
can be constructed by the ruler alone, given one circle and its center.

Next we shall see that the marked ruler can trisect angles. In this construction
we will use the Converse theorem of Thales.

Theorem 14 (Converse Theorem of Thales).

Any right triangle has its corners on
a circle, where the hypotenuse of the
triangle is the diameter of the circle.

Assume we are given points A, O, and B that form an acute angle 3θ. Without
loss of generality we can assume that the distance between A and O is 1

2 . If A
were at some other distance from O we could use our marked ruler to construct
a point at distance 1

2 from O, on the line between A and O. Let l denote the
line between O and B. Draw two lines through A, one orthogonal to l, and one
parallel to l. With the marked ruler we now draw a line that goes through O
and intersects these two lines at points R and S, one unit apart.
The points B, O, and R form an angle t. We shall prove that t = θ. Note that
the angle at S, given by the points R and A, forms the same angle, t.
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Now mark the point that lies midways between R and S, and call it M . Note
that the points R, A, and S form a right triangle. By the Converse Theorem
of Thales these points lie on a circle with center M and radius 1

2 . Hence the
distance between A and M is 1

2 .
Now consider the triangle with corners in A, M and S. This triangle is isosceles.
Hence the angle at the corner A, in this triangle, is the same as the angle at the
corner S, which is t. The angle at the corner M is then π − 2t. Then the angle
at M given by the points A and O is 2t. The triangle with corners in A, M ,
and O is also isosceles. As the angle at the point M , in this triangle, is 2t, the
angle at the corner O is also 2t.

1
2

1
2

1
2

1
2

O

A

B

S

R

t

t

M

t

π − 2t

2t

2t

Now we see that 2t + t = 3t = 3θ, and hence t = θ, and we have trisected the
angle 3θ.

For obtuse angles we can first bisect the angle (which is possible with ruler and
compass, and hence with marked ruler), one or two times, into acute angles.
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Then we trisect these angles separately. To get the trisection of the original
angle we need to add angles, which we have seen can be done with ruler and
compass.

We have now seen that with the marked ruler we can do the same constructions
as with ruler, compass, and angle trisector. As promised, we shall now see that
we can do even more.
Let k be a real number, such that 0 < k < 8. We shall construct the real number
3
√
k.

Start with marking the point A at k
4 . Call the point midways between A

and the origin (at k
8 , that is) M , and draw a vertical line through this point.

Then we use the marked ruler to find a point B on this line, with the dis-
tance one from A and the origin. Note that this would be impossible for
k > 8, because then the distance between A and M is greater than one. In
the case k = 8 the points B and M coincide, which would also fail our con-
struction, so this explains the upper bound for k. Extend the line through
B and the origin to a point C at the distance one from the origin, in the
other direction. Next, draw a line through C and A. We use the marked ruler
to draw a line through B that intersects this line in some point R, and the
real axis in some point S, such that the distance between R and S is one.

0

1

k

A

B

11

C

1

S

R

M

Let x be the distance between A and S. We shall now prove that x = 3
√
k.

Draw a line through B parallel to the real axis. This intersects the line through
A and C at some point D.
Now note that the triangle with corners in A, C, and the origin is similar to the
triangle with corners in D, C and B. The side of the smaller triangle is half the
side of the bigger one. Since the distance between A and the origin is k

4 , the

distance between B and D is k
2 .
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The triangle with corners in B, D, and R is similar to the triangle with corners
in A, S, and R. This gives us the equality

x =
x

1
=
k/2

BR
,

where BR denotes the distance from B to R. We rewrite this as

BR =
k

2x
.

Then

BS = BR+ 1 =
k

2x
+ 1.

Now consider the right triangle with corners in B, M , and S. Pythagoras gives

BS2 = BM2 +MS2,

and hence (
k

2x
+ 1

)2

= BM2 +

(
x+

k

8

)2

.

Since B, M , and A also are the corners of a right triangle we can calculate the
length of the side BM by

BM2 = 1−
(
k

8

)2

.

If we put this into the above expression we get the equation(
k

2x
+ 1

)2

= 1−
(
k

8

)2

+

(
x+

k

8

)2

.

This factorizes to
(4x+ k)(x3 − k) = 0,
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which has the only real positive solution x = 3
√
k.

This was only for real k in the range 0 < k < 8, but it easily extends to any
complex number. Assume that k ≥ 8. Then we can choose some sufficiently
large n, such that k

8n < 8. Since 2n is constructible, the number

3
√
k =

3

√
k

8n
· 2n

is also constructible. This is, with the marked ruler we can construct the cube
root of positive real numbers. Since we can trisect angles the cube root 3

√
rei

θ
3

of a complex number reiθ, is also constructible.
Especially the number 3

√
2 is constructible. Hence the marked ruler does not only

trisect angles, but also solves another of the impossible constructions, namely
duplicating the cube.
In fact, this means that we can solve any cubic polynomial equation. By Car-
dano’s formula, the roots to the equation

x3 + px+ q = 0

is given by
u+ v, ωu+ ω2v, and ω2u+ ωv,

where

u =
3

√
−p

2
+

√
q2

4
+
p3

27
,

v =
3

√
−p

2
−
√
q2

4
+
p3

27
,

and ω is the number ei
2pi
3 = − 1

2 +
√
3
2 i, a primitive third root of unity. Since

we can construct cube roots, these numbers are constructible.

6 Solving cubic equations using a parabola

We have now seen that the angle trisector can solve cubic equations with real
roots, and that the marked ruler solve any cubic equation. We shall now consider
a third way of solving cubic equations geometrically.

In the 12’s century the Persian mathematician Omar Khayyam solved cubic
equations x3 + Ax = B where A and B are positive numbers, geometrically
using ruler, compass, and a parabola. Khayyam wrote the equation of the form

x3 + b2x = b2c

and used the parabola y = x2

b . To solve the equation we draw the parabola,
and the circle with center at c

2 that goes through the origin. The solution is the
intersection of the parabola and the circle, projected on the real axis.
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y = x2

b

x c

To prove that this is actually a solution to the equation x3 + b2x = b2c, we
consider the equation of the circle, which is given by(

x− c

2

)2
+ y2 =

( c
2

)2
.

Since we shall intersect this circle with the parabola y = x2

b we insert this into
the equation of the circle, and get(

x− c

2

)2
+
x4

b2
=
( c

2

)2
.

Simplifying this we get
x4

b2
+ x2 = cx.

Obviously x = 0 is a solution. But we are interested in the other one, i.e. the
solution to

x3

b2
+ x = c.

If we multiply b2 we get the exact equation we wanted to solve. Hence the real
part (or x-coordinate) of the intersection of the circle and the parabola is a
solution to the equation x3 + b2x = b2c.

We shall now try to generalize Khayyam’s method. Instead of using the parabola

y = x2

b which depends on the equation we want to solve, we shall consider the
fixed parabola y = x2. We shall also allow the center of the circle to be some
point a+ bi, not necessarily a positive real number.
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a+ bi

Such a circle has the equation

(x− a)2 + (y − b)2 = a2 + b2.

Replacing y by x2 and simplifying the expression gives

x4 + (1− 2b)x2 − 2ax = 0.

Hence real solutions to this equation are real parts of the intersections of the
parabola and the circle. As before, x = 0 is a solution, but we are interested in
the other ones. Therefore we consider the equation

x3 + (1− 2b)x− 2a = 0.

Say now that we have some equation x3 + px+ q = 0 with real coefficients that
we want to solve. We put {

a = − q2
b = 1−p

2

This gives precisely the equation x3 + (1 − 2b)x − 2a = 0, and we can solve it
geometrically by intersecting the parabola y = x2, and the circle with center in
a+bi that goes through the origin. Note that this works for any cubic equation,
when written on the form without quadratic term. As we know, cubic equation
can have one or three real roots. When the equation has three real roots, this
method gives all the roots right away. If the equation has one real α roots and
two complex roots the intersection with the parabola only gives the real root,
but the complex roots are not that hard to find. Say the complex roots are c
and c. Then we have

(x− α)(x− c)(x− c) = x3 + px+ q.

Hence
q = −acc = −a|c|2,

and
0 = a+ c+ c = a+ 2 Re(c).
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From this we see that the absolute value, and the real part of the complex
roots are constructible. From this the numbers c and c themselves can also be
constructed.

As an example we consider the equation x3−7x−6 = 0. This equation has three
real roots, namely −1, −2, and 3, and is not solvable by Khayyam’s original
method. We calculate

a =
6

2
= 3, and b =

1 + 7

2
= 4,

and draw the circle with center at 3 + 4i that goes through the origin, together
with the parabola.

−6 −4 −2 −1 2 3 4 6 8

2

4

6

8

0

3 + 4i

We see that this gives us all the three solutions.

With the angle trisector we could solve any cubic equation with three real roots.
Using the parabola we can solve any cubic equation with real coefficients. Hence
both the parabola, in addition to the ruler and compass, and the marked ruler
alone contributes more than to allow angle trisection.
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