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Abstract

This paper is about exploring matrix decompositions in different mathemati-
cal topics. By mainly using Gauss-elimination we can solve problems such as
determining an orthogonal basis, Jordan chains and the Jordan decomposi-
tion, the construction of a feedback matrix to reach the desired eigenvalues.
This paper is intended to provide a new way of thinking in solving many
different mathematical problems.
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Chapter 1

Introduction

The idea of this paper came when I sat in the classroom to listening a lec-
ture on how to do the Gram-Schmidt process in R” and I though to myself,
there must be a better way to do this. And there was! I found out that you
could use Gauss elimination to do the same thing(this method is explained
in 2.3). And then I started to think. What else can you do only using Gauss
elimination?

I started to explore different kinds of matrix decompositions and linear alge-
bra problems with this approach. I limited myself to only use methods that
involved variations of Gauss elimination and matrix multiplication. I found
that a lot of the problems in linear algebra could explain in terms of matrix
decompositions. In this piper I'm going to show how to look at linear algebra
almost entirely in terms of matrix decompositions.

1.1 Matrices in linear algebra

Matrices are an important part of linear algebra. In this section we shall
introduce different notations used in matrix theory. Many linear relations
can be written in a compact way using matrices. I shall give some examples
to show how matrices naturally appear in many objects after introducing
some basic and conventional mathematical notations. I assume that the
reader is familiar with the basic concepts on linear spaces, also called vector
spaces, a basis in a vector space, linear (in)dependency of vectors, dimension
of a subspace, linear transformation and so on, (see for example [1,2]).

Let K be a field and K™*™ be the set of all n x m (n rows, m columns)
matrices where every element of the matrix is in K. Denote by K" = K"*!
the set of all (column) vectors with n dimensions. As usual I will denote by
R the real numbers and by C the complex ones.



A very simple example for writing an object in matrix form is a linear
combination of a set of vectors by, by, ..., by € R™: A1by + Aoby + - - - Apby, where
A1, ... A € R, In matrix form we have

A1
A2
(b1 by --- bk) | = A A Asbo + - A
Ak
A second familiar example is a system of linear equations

1171 + a12T2 + - -+ ATy = by

a21T1 + A2 + * + + + Aoy Ty, = b2

Ap1T1 + GpaX2 + -+ - + AT, = bn

This can be written in the matrix form

AX =B
where
aix G2 - Aim T by
A a?1 aze -+ 2om X =— T2 b= by
ap1 Ap2 - Anm Lm bn

A third example is the connection between polynomials and matrices.
This connection is both by the characteristic polynomial and, as we shall
see later in the paper, by vectors. The matrix under demonstrate both
connection to polynomials.

00 00 —gq
10 00 —q
Ci=1|: 1 ...t 1
00 -+ 1 0 —gpo
00 01 —Qn—1

First we can see that this matrix has the characteristic polynomial of this
matrix is
q(2) = 2"+ g1 2"+ o+ o
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we can prove this by assuming

z 0 -+ 0 0 Q1

-1 z -+ 0 0 0

S b= T " T bt
0 0 -+ =1 2z guo

0 0 -+ 0 =1 z+4¢u

Now expand along the first row we obtain

z 0 -+ 0 O qo

_]_ 2 e 0 0 Q1

0 0 - =1 z  guo

0 0 -+ 0 —1 z+qu
z 0 -+ 0 O 72} -1 2z 0 --- 0 0
-1 z -~ 0 O G2 O -1 2z --- 0 O

=zt A G | IE Lo

o o0 -~ -1 =z Qn—2 0 o o0 -+ =1 =z
0O 0 -+ 0 -1 z4+¢qu o o o0 .- 0 -1

N

:Z(Zn_l + Qn—lzn_z 44 G2z +(]1) + (_1)n+1(_1)n—1q0
="+ gu 12" @ gzt

The connection with vectors has to do with to polynomial division. Consider

the polynomial a(z) = a,—12""' +...+ ag. Now if we take za(z) and do poly-

nomial division with ¢(z) we get that the reminder of non negative power is
Qo

the same as if we take C’ga where a =

Ap—1

The central topic of this paper is on different kinds of matrix decompo-
sitions used in some mathematical disciplines such as study of structure of
linear transformations, numerical linear algebra, mathematical control the-
ory, to mention a few. The main idea is to perform Gauss elimination in
decompositions of matrices. The purpose is to look at many existing top-
ics from a new angle. It turns out that the treatment on topics in finding
feedback matrix in this paper lead a result seemed to be new, at least in its
explicit form and characterization.



1.2 Definitions

In this section I collect notations and definitions used frequently in the se-
quel. Most conventions are from the references given in the end of the paper.

Definition 1 The transpose of a matriz A € K™™ is denoted AT and has
A:s columns as rows.

1 0 0

Definition 2 The identity looks like 01 | an is denoted as I,
f o0
0O --- 0 1

if it is an n x n matriz. If nothing else is said I is the Identity matriz with
the right size.

Definition 3 The inverse of a matriz A € K™" is denoted as A™' and has
the property that AA™ = A=A =1,

Definition 4 The image of a matriz A € K™*™ is denoted
Im(A) = {Az|z € K™}

Definition 5 The kernel of a matrix A € K"*™ is denoted
Ker(A) = {z|Ax = 0}

Definition 6 A full rank A € K™ is a matriz where
Ker(A) =0 or Ker(AT) = 0.

(Note: there are other definitions of full rank but this one is the one I find
most suitable for this paper.)

Definition 7 For a full rank matriz K € R™™ and n > m the matriz KT
will be denoted as KT = (KTK)*K™ and if n < m then K = KT(KKT)™!

Note that I shall write 0 for the zero matrix of appropriate size according to
the context, that is I do not, in general, specify the dimension of the zero
matrix for simplicity.



1.3 Block matrices

I shall use block matrices very often. Usually we obtain them from ordinary
matrices by dividing then by several horizontal and/or vertical lines into
block. For example

(0 0 0 0] —qo \
10 0 0] —q1
00 - 1 0] —gno
0 0 0 1| —gn_1
We divide C’g into four blocks
X Y
t_
(v w)
with
—do
—
X:<O 0 - O)v Y:_q07 U= n—1, W = .
—_—— :
el —Qn-1
or likewise
00 --- 0 0| —q
a0 T e
q s U w
00 --- 1 0] —¢gn2
\0 0 -+ 0 1]—gn
with
0 0 00 _
10 00 0
X' = . 7Y/_ : 7U,:(0 o 0 1)aW/__Qn—1
Do e — ——
O 0 1 O —qn—2 n—1

When working on multiplication matrices we have to divide the matrix blocks
into right sizes so that multiplication makes sense. The transpose of a block
works similar to transpose of an ordinary matrix but it is important to trans-
pose each block, e.g.

(Cﬁ)T B XT UT B X/T U/T
q - YT WT - Y/T W/T :



Proposition 1 Assume that A and B are square matrices. Then

A 0
¢ B

’ = det(A) det(B).

Proof. If A or B is singular the equality is clearly true, for the right hand side
will be zero (either det(A) = 0 or det(B) = 0). But the left hand side will
also be zero becasue either the first row block consists of linearly dependent
row or the first column block consists of linearly dependent columns, which

lead to a zero determinant.
Now we assume that either A or B is nonsigular. Observe that

(¢ 5)-(0 70 2) (e 1)
A 0‘ A 0|1 OH I 0

C B 0 I||0 B 1
det(A) det(I)det(I) det(B) det(I) de ( ) = det(A) det(B)

Hence

Proposition 2 Assume that A is a nonsigular matriz. Then

A D
C B

‘ = det(A) det(B — CA™'D).

Similarly if B is nonsigular,

A D
¢ B

‘ = det(B) det(A — DB'C).

where A, B,C, D are of appropriate dimension.

Proof. Observe that (by Gause elimination blockwise) assuming A is non-

singular,
1 0\ (A D\ [(A D
(<o 1) (@ 8)= (5 5-can)
Then
I 0[|A DI |A D
—CA™! ’C B —‘0 B—-CA™'D

which is by the property that the determinant of a matrix is equal to the
determinants of its transpose and Proposition 1

‘A D‘ 'A D

= = _ -1
C Bl |0 B_CA1D’—det(A)det(B CA D)
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as desired.

Note that the property det(AB) = det(A) det(B) used in the proofs re-
quires that A and B be square matrices but this does not hold if they are
non-square. However we have the flowing important theorem.

Proposition 3 Let A be n x m and B be m X n, then
det(I,, — AB) = det(I,,, — BA).
In particular, if m =1 then

det(I, — AB) =1 — BA

n

Proof. Compute the determinant B oI

using the previous proposition.

I, A

B g | =det(L)det(I, — BI'A) = det(l,, — BA)

On the other hand,

I, A

B 1| = det(Ln) det(l, — AL, B) = det(I, — AB).

Thus det(I,, — AB) = det(l,, — BA).
Clearly if m = 1, A is a columne vector and B is a row vector. Hence
I, — BA is a scalar and equals 1 — BA. Therefore, det(I,, — AB) = 1 — BA.



Chapter 2

Matrix decompositions

In this chapter I will explain how to do different decompositions. 1 will
do these decompositions by using Gauss and Gauss-Jordan elimination and
different variants of those.

2.1 Basic Theory

As I mentioned the first thing you have to know is how to use Gauss elim-
ination to compute the inverse of a given matrix. Let A € K" be a
nonsingular matrix. As we do in our linear algebra class, I augment the
matrix A with the identity matrix I = I,, as (A | I). Then we do row
operations on this augmented matrix until the matrix in the position of A
becomes [. Call the matrix on the right C'. Then C is the inverse of A,
i,e. AC = CA = 1. This procedure is called Gauss-Jordan elimination. For

1 1 -2
example , A= | 2 0 2 |. Now we perform Gauss-Jordan elimination
-1 0 2
on
1 1 -2(1 0 0 1 1 =21 00
2 0 2]/010]~10 -2 61-21T0]~
-1 0 2 (0 01 0 1 0|1 01
1 1 =211 00 11 =2|1 0 0
0O 1 0|1 O01]~101 01]1 0 1]~
0 -2 6 |-2 10 00 6 (01 2
11 -2[100 1000 % —3
01 010 1)~(0 101 0 1
00 1[0 ¢ 3 0010 ¢ 3



Now we have

1 1
0 3 —3
At'=11 0 1
1 1

0 5 3

Note that the process of row reducing until the matrix is reduced, as done
above, is sometimes referred to as Gauss-Jordan elimination, to distinguish
it from stopping after reaching echelon form. In the above example it is the
next last step. By row echelon form of a matrix we mean that the matrix
satisfies the following condition ([3]):

e All nonzero rows (rows with at least one nonzero element) are above
any rows of all zeroes (all zero rows, if any, belong at the bottom of the
matrix).

e The leading coefficient (the first nonzero number from the left, also
called the pivot) of a nonzero row is always strictly to the right of the
leading coefficient of the row above it.

e All entries in a column below a leading entry are zeroes (implied by
the first two criteria).

The aim of doing this example is to make the following point. At each step
we have the form

(A1)~ (B]|C)
This is equivalent to
CA=B.
In fact, performing Gauss elimination on A to get B is to multiply A by C
from left, and C' consists of the row operations up to this step. Note that
this is correct for A € K™*™ as well. We shall use them interchangeably in
the sequel.

2.1.1 Determination of a basis for a kernel

Now we know how to perform Gauss elimination to find the inverse of the
matrix A and the solution is the matrix C when (A | I) ~ (I | C'). Note that
we just read off what we have obtained from the last elimination. I claim
that this can be used to find a basis of the kernel of a matrix A.

Given a mtrix A € K"*" we can do the following:
Perform Gauss elimination on (AT | I,,) until we have the form

(1))

10



ie. CAT = ()0(

AC'" = 0. C" gives a basis of Ker(A): the columns of C"". Moreover since
X has full rank, we have

). (Note that A(C"" ¢'") = (X 0).) This implies that

Ker(A) = Im (C’/T) .

1 111 00
. (1 2 31 , 12 1]0 10
Example 1 TakethematmxA—(l 11 2). Set A = 2 1010 0 1
1 210 00
Now we can do Gauss-elimination:
1 111 0 0 O 1 1 ]1 00O 1 111 0 00
2 1101 00 0 —-1/-2 1 00 0O -1/-2 1 0 0
3 1/0 010 0 -2/-3 010 0O 0|1 -2 10
1 210 0 0 1 0O 1 ]—-1 001 0O 0/-3 1 01
1 -2 10
We take out the last rows: 3 1 0 1)
1 -3
1 2 31 -2 1 L
<1 11 2) 1 0 =0, as expected. This gives us that
0 1
1 -3
Ker(A) = { Lo x|z € R?}.
0 1

2.1.2 Determination of the intersection of images of
two matrices

Another thing we can do is to find a basis for Im(N) N Im(K) where N, K
are n X m matrices. This is not as trivial as to find a basis in the kernel
of a matrix. However as we shall see it turns out to the same problem we
have to deal with. There are other methods to do this, but I'm going to
use one where we also can find a vector space of as big rank as possible in
Im(N)\ Im(K) \ {0}.

We want to find all linearly independent solutions x and y such that Nz =
Ky. That is, z,y is a solution of (N — K) <;§) = 0. Now we can apply the

method for finding the kernel to this problem. Do Gauss elimination on this

11
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matrix augmented with I, until we get the form we need, i.e.

v /(D] A 0\

(—KT ‘]2’")N TE

0 | By (Y

That is,

A 0 , D\ [ ANT \ /D
N / T T /
B, 4 _KT =D < | BIN' — 1K =1|D
By (5 0 BoNT — CoKT 0

The second block matrix equation is
B\NT —CKT\ (D
BoNT —CoKT )~ \ 0
From this we see that ByNT = C, KT, or equivalently NBI = KCI. Hence

Im(NBY) = Im(KCY) = Im(N) N Im(K)

Then, we have found a basis in Im(N) N Im(K): the columns of Bl or the
columns of C7. If there is no zero row below D then the intersection is {0}.
The above computation clearly shows that

Im(NBI)NIm(K) = {0}, Im(KC{)NIm(N)= {0}
since BINT —C KT = D/, thatis NBT = KCT+ D", or KCT = NBT —D'"
where D" # 0 by construction. Hence,

Im(NBT) ¢ (Im(N) \ Im(K)) U {0}, Im(KCT) C (Im(K) \ Im(N)) U {0}

We can also see that Im((N, K)) = Im((NBf, NCY, NBY ,NCT)) =
Im((NBT,NCT, NBI)) =

(Im(N) \ Im(K)) U (Im(K) \ Im(N)) U (Im(N) N Im(K)) and we can draw
the conclusion that Im(NBY) is a vector-space in Im(N) \ Im(K) \ {0} with
the biggest possible rank, notice that this rank is rank(N) — rank(NBY).

10 1 3
. 01 1
Example 2 Consider N = 11 and K = 0 3l We can do Gauss-
0 1 1 2
elimination
101 0/1 000 10 1 0/ 1 000
011 1|{01 00 01 1 1{0 100
1 10 1/0 010 01 -1 1{—-1 0 1 0
323 2/0001 02 0 2|-3 001

12



10 1 01 0 00O 10 1 01 O |0 O
01 1 1,0 1 00 01 1 1,0 110 O
00 -20/-1 -1 10 00 -20-1 -1} 1 0
00 -2 0/-3 =201 00 0 0/-2 —-1]-11
1 0 1 3 —2 2
0 1 —2 1 2 —1 —1 1
Now we can see that 11 (_1> + 0 3 < 1 ) =1 _3 + 3| = 0
01 1 2 —1 1
2
as we expected. We see obviously that a basis for Im(N) N Im(K) s ;
1
1 0 —1
01 —1 —1
And we can also see that 11 (_1> = 5] € Im(N) \ Im(K) \ {0}
01 —1

we can however not find a proper basis for this space since Im(K)UIm(N) C
Im(N) \ Im(K) \ {0} and Im(N, K') C Im(N, K) where Im(K") = Im(K) U
Im(N). But to find an basis as big as possible can be archived with this
method, and it is important in 4.2.

We can also prove that:

Theorem 1 Set two full rank matrices K € K™ and M € K™*" where
n >m. Then rank(MK) =m — rank(Ker(M) N Im(K))

Proof

We can find a nonsingular matrix H € K™ ™ such that KH = (N, K’)
where Im(N) = Ker(M)NIm(K) and since K has full rank we have, Im(K")N
Im(N) = {0} and M K’ has full rank. We now get rank(MK) = rank(M KH)
rank(MN, MK")) = rank((0, MK')) = m — rank(Ker(M) N Im(K))

2.2 LU decomposition

The LU factorization ! is to decompose a matrix into an upper triangle matrix
(U) and a lower triangular matrix (L). We can do this by Gauss eliminations
on an n X n matrix A to an upper triangular and then take the inverse of the
corresponding Matrix.

'more abut The LU Factorization exist in: Matrix Computations third edition, Gene

H. Golub,Charles F. Van Loan, The Johns Hopkins University press 1996 3.2

13



Example 3 We have the matrix A = . Then we can do Gauss-

W N =
w W N
T O W

elimination so that we get a triangular form.

1 2 31 00 1 2 3|1 00 1 10

236/010]~(0 -1 01]-210 0 -2 1

33 5|0 01 0 -3 —4|-3 0 1 0 0 —4 2 -3
10 0 1 00

Now we take inverse of | =2 1 0| whichis |2 1 0] and then we get

2 -3 1 4 3 1

1 2 3 1 00 1 2 3

23 6]=1210 0 -1 0

3 3 5 4 3 1 0 0 —4

I should point out, if there is a permutation in the row operations we can
not always make a perfect triangle.

2.3 QR decomposition

This factorization? contains a matrix Q € R™™ n > m, rank(Q) = m,QTQ =
I,, and a matrix R € R™*™ rank(R) = m which is an upper triangular ma-
trix. Set D € R™™ rank(D) = m. Now you can do the LU on the matrix
A = DTD so that A = LU, then you take the diagonal in U and take the

. 1 . _1 . _1
diagonal as NG with the rows of L™ and it becomes R™". Then we have

that Q = DR™', D = QR. An example of this is.

1 11
000
Example 4 Let D = 01 2 . Then
0 01
1 11
D'D=A= 11 2 3|. Then the we do Gauss-elimination:
1 3 6
1 1 1/1 0 0 1 1 11 00 1 1111 0 O
1 2 3/010}~1012|-11O0}~1012|-1 1 0
1 3 6/0 01 0 2 5[—-1 01 0011 —-21

20ther methods to do this factorization can be found in: Matrix Computations third
edition, Gene H. Golub,Charles F. Van Loan, The Johns Hopkins University press 1996
5.2

14
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Here () = 0 1 =2|= and R=10 1 2
01 2 0 0 1 010 00 1
0 01 0 01

Next we show why this works. Since D € R™ "™ with n > m the full rank
matrix A € R™™ n > m then AT A has full rank.

Then set
ay . . . Aim
A=
Qm1 Qmm
b1y bim
0
B = abii >0
0 0 bum
C11 0 0
C= . i =1
0

Cm1 Cmm

1
0 0
b1
1
0
where CA = B, now set the matrix, P = Vb Now
1
0
V bmm

we want to show that PCACT P = I,,,. I'm going to show this by considering.

15



Fori >y

@‘lH

S8

a11
0)
Am1
a1
0)
Am1
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A1m
1
bi;
amm
Ci1
1
Ci; —_ . bii —
0 bi;
0
A1m
1
bjj
amm

Ci1

Cig




Ci
1 1 » 1 1
bii +/bj; bii  /bj;
0

and since A is symmetric we have the same results for ¢ < j.
Now if we set Q = DCTP and set R~! = CT P, we are done.

2.4 Full Rank decomposition

This is a decomposition you can do on any matrix. If we have an n xm matrix
A the only thing you have to do is a complete elimination of A and then take
the same rows form A at the rows that only have a one and zeros after gauss
elimination and multiply from the left to the complete Gauss-eliminated one.

1 201
Example 5 Let A= |2 1 2 1]|. Do the Gauss elimination.
4 5 2 3
120 1|1 00 12 0 1,1 00 12 0 1
2121/010)]~10 -32 —-1|-210]~1(0 -3 2 —1
45 2 3]0 01 0 -3 2 —-1,—-4 01 0 0 0 O
1 0 O 1 00
Now take the inverse of | =2 1 0] whichis |2 1 0] and we get that
-2 -1 1 (4 11
1 201 1 00 1 2 0 1 10
21 2 1|=(210 0—32—1221(3_238_11>
4 5 2 3 4 1 1 0 0 0 O 4 1

There are a couple of things you can do with this factorization. If we assume
A; € K™ is a singular matrix then A; = K7 M; where K, M; are full rank
matrices. Then we set M, K| = A leading to A3 = K{ MK\ M, = K, Ay M;.
If Ay is singular we can do rank decomposition so that Ay = KyM,. Then
set MoKy = Az. We see that A2 = KM K\ MK\ M, = K| AyAyM, =
K KyMyKoMoM, = K{KyAsMyM, and so on until A, has full rank. We

17



can now define K| = K;...K; and M = M,;...M;.

What can we do with this now? Well if we assume that A,, is the first invert-
ible matrix. Then we can set E = K/, A"M' | and we see that EA" =
K AT My (K AnMy = K G ATMARM = K G AM = AT
and we see that any matrix of the form B = K/, HA™M/ | where H is a
full rank matrix, will have the property EB = FBE = BE = B. Now we
can see that G = {K] HA.™M/ ,|Ker(H) = 0} is a group under matrix
multiplication with the Identity element E.

Moreover we can find Im(A™) with this method, and we can also prove that
the eigenvalues # 0 of A; is the same as those of A,,. But more of that can
be found in the Chapter on Jordan decomposition.

0 011
. . -2 2 2 2
Example 6 Consider the matriz A = 0 01 1 Let us try to Gauss-
1 001
eliminate this matrix
0 01 1|1 000 0O 01 1,1 000
-2 2 2 2|01 00 -2 2 2 210 1 00
0 01 1/0 010 0 00 O0Ol—-1 010
1 00 1/0 0 01 1 00 10 0O01
0O 0111 0O0O
-2 2 2 210 1 00
1 0010 001
0 00O0O|l-1 010
1 000\ /1000
) 0 1 00 0100
and since the 0 00 1 =11 00 11 We see that
-1 010 0010
100\ 1y gy
A1: —2 2 2 2 :KlMl
100 1 001
0 0 1
0 011 é (1) 8 101
Ao = MK, =|-2 2 2 2 =10 2 2| Then we do the
1 00
1 0 0 1 00 1 1 0 1

18



Full rank factorization on As.

)

1 0
0 1
-1 0 1

1

0
0 2 2
000

1

)|

1 0 1|1 00

02 2{0 10
1 0 1/0 01

(

[a\]
_An3
~
$
-~
s Il
= &3
s S
& 3
= <
K2 ~=
S
I
N\
T ow
A AN
i N
- < Il
N————
P e R
010010
— O
—— O
[
[\
A O AN
=
— O
s =
O
L I
(e}
2
N
o =
= I
n [ap]
S <

!
2

 ~
— N
— N O
o AN O
=
(
Y
—
o N
— O
~_
— | <t
N\
o —

RN
1nﬁ N o
( P )
R
o~ O SR
= 1A_1
(

/ N — <t

SO O -

~ _
S —H OO O —H OO

— O~ O~ O~

19



Chapter 3

Non eigenvalue problems

In this chapter I am going to look at problems where I don’t need the eigen-
values to solve the problems.

3.1 LS problem

The Least Square! or LS problem is the problem where you want to find
mingegn (|Az —0|) for fixed A € R™*", m > n and b € R™, where |b| = VbTb.

In this section I'm going to show two ways to do this.

3.1.1 QR solution

For an orthogonal n x n matrix @ we have that |v] = |Qu| for v € R".
We can use this to minimize |Az — b|. First we do the QR factorization
on A then we take out a basis for the null space of AT say N and then
we do the QR factorization on N7. So we have that A = Q R4, N =

T
QnRNn. Set Q = (QA) Now we get that |Az — b] = |QAx — Qb| =

QN
QﬁAx . ng _ Q£A$ - ng _ p-1NOT
’(Q%Aw Ot | =| 0— Qub |. Let now = = R;'Q%b. We see
TR _ T
that |Az — 0] = | <QA€Q%?A6> = (Q%b> | = |@nb|. This is the best

method to actually find out the value of min,crn(|Az — b|) = |QL0].

I'More about this in: Matrix Computations third edition, Gene H. Golub,Charles F.
Van Loan, The Johns Hopkins University press 1996 5.3
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3.1.2 The matrix Af

This method is the best method to find out . The answer to this is z =
(AT A)~1ATh we can verify this by checking:
(REQTQaRA)"ATb = (RERA)'ATb = Ry'RY ' ATb = (ATA)"'ATb

3.1.3 ||AX — B|

This is the problem where we shall minimize ||AX — B|| where ||AX — B|| is
the maximum of |(AX — B)v| where |v| = 1. The first thing we can do is to
rank factorize A = KM and then set X = MTX'. Now AX —B=KX'—B
where K is a tall full rank matrix.

Then we can say that X' = (x4, ..., 2,,) for z; € R* and B = (by, ..., b,,) now
we can see that Kx; = b; and we can see that x; is x; = KT (KK')~'b; and

X' = (1, ) = (KT(KKT) "y, .., KT(KKT)b,,) = KT(KKT)(by, ...

KT(KKT)™1B and we get X = MTK'B.
This is a solution since for every vector v € Im(B) will have the solution
r = MKy for minimizing |Az — v|.

3.2 Hessenberg decomposition

The matrix in the following form

* % *
x % *

0

0 0 * =x

is called a Hessenberg matrix, that is all elements in the matrix below the
first off-diagonal line are zero.

Now we use Gauss elimination to reduce any matrix to the Hessenberg
form, in the sense of a similarity transform. Note that it is not the same as
the Hessenberg decomposition in numerical literature where often it requires
the transformation matrix be to orthogonal (unitary). Why I am interested
in this decomposition will become apparent later.
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This decomposition? is to find an matrix U such that UAU ! =

next column. It is easiest shown by an example.

Example 7 Consider the matric A = Ag =
1 0 00 1
. 0 1 00 2
elimination so that UyAy = 0 -1 1 0 9
0 -1 0 1 2
Then multiply the inverse
1 2 2 0 1 000
4121 2 1 0100] _
Uodoo™ =19 9 —1 1|lo11 0]~
0 -1 -1 1 01 01
We see now that
1 000 1 4 2 0 1
01 00 2 4 2 1 2
Udi=10 01 0flo 2 -1 1]~ |o
0035 1/\0 -1 —11 0
muerse
1 4 2 0 1 0 0
4124 2 1 01 0 0f
DA =109 1 1|]loo 1 o]~
0 0 —% % 0 0 —% 1
Set U = UygUyand we get that
1 0 00 1 2 20 10
0 1 00 21 21 01
-1 _
VAU~ = 0 -1 1 0 2 31 2 01
0 -2 51/ \2012/\01

—_
o w wl\)[\)l\)b—\
OO N =N N

O N =

S O N =

0
0
1

1
2

O W N

R e

_ o O O

NN/ \GJ[oV)

lee N

NN = O

W = = O

0
for an n x n A. The way to do this is to to eliminate from the second row
and multiplying the inverse from the left. Then do the same thing to the

O O N

0

Do Gauss-
2 2
1 2
2 -1
-1 -1
0
1
| = A;.
1

. Multiply the

NWIW = = O

S O N

DN s

0

NN I [W\]

N DN

Njw = = O

This method can be useful if you want to determinant the characteristic poly-

2More about this in: Matrix Computations third edition, Gene H. Golub,Charles F.

Van Loan, The Johns Hopkins University press 1996 7.4
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hll h12 hln

hor  hao
nomial of a matrix. Consider the matrix H = | 0 ha2
0 - 0 hywm—) hun
1
0
now if every hj;—1) # 0 and we have that v = | . | then the matrix
0

P = (v, Hv, H*v, ..., H" 'v) will be invertible(this is easy to check) and we
can see that

0 0 - 0 a
1 0 :

PYHP = P~Y(Hv, H%,..,H™W) = [0 1
0 -+ 0 1 a

We can after this calculation see that the characteristic polynomial of H is

s" —a;8" ! — ... — a, this can be verified by calculating
det(Is — H) = det(P)det(P~'HP)det(P~' = det(P~*HP) =
s 0 - 0 —a,
-1 s :
=10 -1 . :s"—alsnfl—...—an
: " .S
o -+ 0 -1 s—a

The last step follows from the definition of determinate. Finally note that
if hjj—1) = 0 we can split computation of the characteristic polynomial into
two smaller matrices

haor  hao hi+v; hG+1G+1)
0 ]’L32 and 0 h(j+2)(j+1)
0 - 0 hgg-2 hG-ui-1 0 o 0 ho@-1) Tnn
We can now see the for any non singular matrix A we can decompose A into
0 0 --- 0 =
Cl * s *
1 0 :
P'HP where H = 0 Ca and C; = |0 1
0 0 G 0 0 1 x
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from this we can always get the characteristic polynomial for A
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Chapter 4

Eigenvalue problems

In this chapter I'm going to look at problems where I need eigenvalues of a
matrix to solve the problem.

4.1 Minimal polynomial

A minimal polynomial® for a matrix A € R™ " is the polynomial p(s) with
the lowest degree for which p(A) = 0. The first thing I'm going to show is
how to minimize a singular n X n matrix.

Theorem 2 If A € K" is singular then A can be factorized to KM =
A where K and M are full rank matrices, non-square. Then the minimal
polynomial is p(x)x where p(x) is the minimal polynomial of M K

The proof of this is straight foreword p(A)A = p(KM)KM = Kp(MK)M =
KOM = 0, and this is the minimal polynomial since there musts be at least
one solution must be zero, also if there existed an other polynomial of lower
rank such that a(A) = 0 then this polynomial must still have 0 as a solution
and there for we can see that a(A) = d/(A)A = Ka(MK)M and then o
must be the minimal polynomial of M K.

To make this more general I state the theorem:

Theorem 3 The minimal polynomial of A € K"*™ where in this case K
is algebraic closed and with distinct eigenvalues Ay, ..., A is [[1my(z — X))

Here k; is defined as rank(A—1IX\)*~ > rank(A—I\)% = rank(A—1IX;)F !

Note that m < n in general. Assume that the characteristic polynomial of a
matrix A € K™ is a(s) and A is an eigenvalue of A then we can factorize

'More of this in:A polynomial approach to linear Algebra,Paul A. Fuhrmann,Springer
2012, p93
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a(s) so that a(s) = (s — A\)Pb(s) so that b(\) # 0. Now we know that
0=a(A) = (A—INPb(A). Rank factorize b(A) = KM,. Thus 0 = a(A) =
(A — INPK,M, and it is now clear that a(A) = 0 iff (A — INPK, = 0 and
since the row space of a matrix B € R™ " is the same for B¥ and B*! iff

rank(B*) = rank(B**1) we can draw the conclusion that the minimal i for
which (A—TA\)P K}, = 0is rank(A—IN)""! > rank(A—I\)" = rank(A—I)\)"".

4.2 Jordan decomposition

Jordan decomposition may refer to many different things, but here we talk
about Jordan canonical form. In general, a square complex matrix A is
similar to a block diagonal matrix

Ji
J =
JP

where each block J; is a square matrix of the form

So there exists an invertible matrix P such that P~'AP = J is such that the
only non-zero entries of J are on the diagonal and the superdiagonal. J is
called the Jordan normal form of A. Each J; is called a Jordan block of A.
In a given Jordan block, every entry on the super-diagonal is 1.

What I am going to do here is to find the nonsingular matrix P. To this
end we give a method using full rank decomposition of matrices to construct
the so-called Jordan chains, whose definition will be made clear in a while.

Say that the matrix A € K"*" has only one eigenvalue A\. Set H =
A — M,. We want to find vectors vy, ...,v,, such that H*v;, = 0 and
Hix7 Yy, £ 0and P = (H" My, ., vy, H2 Yoy, vy o Hm o vy,) s
invertible n x m matrix. Set ¢ such that rank(H') — rank(H"') = 0 and
rank(H"') —rank(H") # 0. Do the factorization described in 2.4 such that
H' = KM
Conciser the lemma:

Set a matrix Y such that Im(Y") C (Ker(Mj) \ Im(K})) U{0} and Y has the
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biggest possible rank (recall section 2.1.2). Then rank(Y) = (rank(H*!) —
rank(H*)) — (rank(H*) — rank(H*+1))

[ will show this by referring to Theorem 1 We know that rank(Y') = rank(Ker(My))—
rank(Ker(My) N Im(Ky)) = (rank(H*Y) — rank(H*)) — rank(Ker(M;) N
Im(K})) and that rank(H*') = rank(MyKy) = rank(H*)—rank(Ker(M;)N
Im(K})) < rank(Ker(M,) NIm(Ky)) = rank(H*) — rank(H*™1) and we get
that rank(Y) = (rank(H*"') — rank(H*)) — (rank(H*) — rank(H**1))
This lemma is important since we want to find every biggest possible vector
space within (Ker(Mj) \ Im(K})) U{0}. Now check:

(rank(H®) — rank(H")) — (rank(H") — rank(H?) = p;)

(rank(H") — rank(H?)) — (rank(H?*) — rank(H?) = py)

(rank(H™') — rank(H?")) — (rank(H") — rank(H"™") = p;)

Find a basis xy, ..., z,for every Im(Y) C (Ker(My) \ Im(K})) U {0} big as
pr- Now multiply with M,;' | for an z, € (Ker(My) \ Im(kK})) U {0}. Then
we have that v, = M;Z_lxk. I will first demonstrate that this is true by an
example and then prove it.

1 2 0 -1
. . 1 3 0 0 . .
Example 8 Consider the matriz A = 1 _3 9 9 This matriz has
-1 1 0 2
one eigenvalue 2.
-1 2 0 -1
1 1 0 0
SetH, = (A —21,) = . -3 0 o Do full rank factorization H, =
— 1 0 0
-1 2 0 -1 0
-1 1 0 0 0 1 —1 2 0 —1
1—302——21—1100_K1M1'
-1 1 0 0 0 1
1 0
-1 2 0 1 0 1 -1 1
SetHQ_M1K1_<—1 10 0 -2 1 -1 1)
0 1
Do full rank factorization Hy = ( 1,1)

set Hy = (1,—1) = (0). We see that:

1

1
(rank(H®) — rank(H')) — (rank(H') — rank(H?) = 1
(rank(H") — rank(H?)) — (rank(H?) — rank(H?) = 0)

27



(rank(H?) — rank(H?)) — (rank(H®) — rank(H?*) = 1)
We Should now look for one vector in (Ker(M)\ Im(Ky)) and one in (Ker(M;)\ Im(K3)).
This can be done by using the methods from 2.1.1 and 2.1.2. and we find

0
that (1) € (Ker(My)\Im(K7)) and (2) € (Ker(M;)\ Im(K3)).
0
0
120 -1 c =1
NowMgz(—1,1)(_1 L 0 0):(0 -1 0 —1) and My = 0 :
1
0
now we see that M} (2) = _01 . Now we get the matriz
1
0 0 0 0 2 -3 0 0
—1 —1 —1 0 2 -1 -1 0
(12 1 _
P=(H 0  H 01710 7|1 )= -2 5 0 1
1 1 1 0 2 -1 1 0
2100
0210
AP —
Now we can check that P~ AP = 00 2 0
0 00 2

To conclude this we can prove:

Theorem 4 if A € K", A" = K/M] for full rank matrices Ky and M, and
a matriz Vi such that M; 1V = I and x € Ker(M;) then (A= 'Vax,..,Vz)
has full rank.

Proof

First of all, M;V,0 < k <i—1 has full rank since M;_;V has full rank. And
since A'Vz = K!M;xz = 0 we have that if (A" 'Vz,...,Vz) dose not has full
rank then there exist a non-zero vector y such that 0 = (A" 'Vz,...,Vx)y
now if we multiply A then A0 = 0 = (0, A" 'Vx,..., AVz)y this is true if
A7V = 0 and that is not true, (A" 'V z, ..., AVz) does not have full rank.
And if we multiply with A again we get A0 =0 = (0,0, A" 'Vx, ..., A?Vax)y
and this is true if A" 'Vx = 0 and that is not true, or if (A"'Vux,..., AVx)
does not have full rank. Now we can do this until 0 = (0, ...,0, AV z)y and
since AV # 0 we are done.

Theorem 5 if A € K™, z; € Ker(M,;) \ Im(K;), zo € Ker(M;) \ Im(K;)
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for i > j and V1, Va are matrices such that M!_ Vi = I and MleVg then
(ATWixy, ..., Vizy, A7 Wox, ..., Vams) has full rank.

Proof.
We know that (A™'Vizy, ..., Vixy) and (A7~ Vamy, ..., Voxs) has full rank. As-
sume that there exist vectors z,y such that 0 = (A" '"Vizy, ..., Viz))x —

(AT YWoxy, ..., Voxs)y (this is true iff (A" WVixy, ..., Vixy, A7 Womy, ..., Voxs)

not has full rank). Then 0 = A0 = (0, A" Vizy, ..., AVixy )2z —(0, AT~ Woms, ..., AVaxy)y
this is true if Im(A""'Vizy) = Im(A7"Voxy) or if (AT Wixy, ..., AViz) N
(A7"Wamy, ..., AVaxy) # (), and we can do this in the same way as in the
previous proof until 0 = (0, ...,0, A 'Vizy, ..., A7 'Viz)x — (0,...,0)y and

since (A" 'Viwy, ..., A7 'Viz1) has full rank the only thing left to show is

that Tm(A"'Vyz;) # Im(A7~"Vax,). and this is true since Im(A7~'Vyxy)) =

Im(K)_ 29) # Im(K} | K;.. K1) = Im(K]_ 21) = Im(A*'Vi21) and we are

done.

Note: If 2y, z9 € Ker(M;)\Im(K;) and (x4, z2) is of full rank but Im((z}, z9))N

Im(K;) # 0 then (A" "Viay, ..., Vizy, A" Waxy, ..., Vazog, A1 Voxh, ..., Vorh)
k1 .

don’t have full rank. Set v = | : | and a such that (z,2}) (a) € Im(K).
kj

Then

(AT Wamy, ..., Vozo)v + (AT Woaly, ... Vazh ) va =

Aj_l‘é%le + ...+ ‘/ngkj + Aj_l‘/QSL’lzkla “+ ...+ ‘/Ql’ékja =

AWy (zo+aha)ky+...+Va(zatxha)k; = (A Vo(ze+aha), ..., Va(xataha))v

Since (x9 + xha) € Im(K) the matrix,

(Aiilx/lxla ceey ‘/11'17 Ajil‘/Q'IQa eeey ‘/23727 Ajil%xé? ceey ‘/21'/2) doesn’t have full rank'

4.3 Determination of the feedback matrix

In control theory, one of the important topics is stabilization of a system.
Consider a linear system

dx(t)
= Ax(t) + Bu(t).

where x : R, — R" is a state vector, and v : R, — R is an input or control
variable, A € R™™ and B € R™™,

In practice, we want to the system behaves as we wish, for example xz(t)
generated by this system should go to 0, as t — co. We know that ([4]) the
eigenvalues of A play a essential role in this problem. If A has a "wrong”
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eigenvalue what can we do? In control theory we have freedom to choose
u. A common strategy here is to use a feedback control law, i.e. choose
u(t) = Kz(t) by a proper choice of K with K € R™*" . Then we get a

feedback system

dx(t)
5 = (A+ BK)x(t).

In this section we shall give a method to find the matrix K, based on the
machinery we have built up. We divide the problem into two cases (i) the
so-called single-input case, i.e. B is just a column vector; and (ii) the so-
called multi-input case, i.e. m > 1. For mathematical purposes I'm going to
address the problem as.

4.3.1 Single-Input Case

I'm going to start with showing how you can do when B :=b € R". For a

matrix A € R™" with a characteristic polynomial a(s) = s"+a;s" ' +...+a,

and for the matrix A — bk we have the characteristic polynomial ax(s) =

s" + 18" 1 + ... + a, which is often described by the location of the zeros.

Now we can show that a(s) — a(s) = a(s)k(Is — A)~'b &

ar(s) = (k(Is — A)7'b + 1)a(s) < det((sI — A+ bk)(s] — A)™') =

= det(I + bk(sI — A)™1) this is clearly true.

We have ag(s) — a(s) = a(s)k(Is — A)~'b and from this we can show that

a(ls) [s" 1 +s"2(A+Tay)+...] = (sI —A)~! and this can be shown as follows
Sl 4 5" A+ Tay) + (s — A) = a(ls (s" + s YA+ Tay — A) +

sS"HA?+ A+ Tag — (A2 + a A)) +...) = a(ls)a(s)[ =1.

Now we can simply see that:

ar(s) —a(s) = k[s" ' +s"2(A+ Lay) + ..]b =

s}

~
~

1 a; -+ Gy sn1
0O 1 - apo sn2

k(b Ab A% ... A1) [0 O - ang | =
0 0 1 1
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n—1

s
Sn—2
=(m-a aw-a - a-a)| P |e
s
1
If (b, Ab, ..., A""1b) is nonsigular then set:
1 ay - Gpy -1
0 1 - ay,.o
=(m—a ag—ay - oy —ay) 0 0 Up—3 (b Ab A%
o0 --- 1

and we can see that we can choose any characteristic polynomial for A — bk
by chancing k. This is called controllable in control theory ([4]).

1 a - Ap—1
0 1 - a,-
If (b Ab A%b ... A”_lb) 0 0 - ans3| = KM for full rank ma-
o0 --- 1
trices M, K and if (al —a; Qy—ay - an—an)t € Im(M") then we
can find an z such that (a1 — a1 Qg — Qg - Oy — an) = M and k =
r(K'K) 'K
-4 —4 -7 —4
E le 9 If we have th wip A = |73 2 74 db =
xample we have the matrix = 6 5 10 5 an =
-3 -1 —4 =2
2
_22 and A has the characteristic polynomial a(s) = s*—2s*—3s*+4s+4we
1
can build the matrix
1 -2 -3 4
o 1 -2 =3
21 A3 _
(b, Ab, A*b, A°D) 00 1 -92|7
0O 0 0 1
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S o o (123 0
9 7 g 0 1 -2 —-3|=KM. Now we see that (o + 2,z +
RS U
1 -2 -3 0
3, az—4, ay—4)T must be inTm(M7T). Hence (a1, a9, a3,04) =2 [0 1 =2 =3 ]+
0 O 1 1

(=2,—3,4,4) for all 27 € R?

Theorem 6 Assume a(s) is the characteristic polynomial of the given ma-
trix A and a desired polynomial ay(s) Then we have

(i) If (A,b) is controllable then

-1

1 a - Ay
0 1 Ap—2

= (a1 —a, Qg —ay Oy — an) 0 0 an—3 (b Ab A%b ... A”_lb)_l
o0 --- 1

(ii) If (A,b) is not controllable but (a; — ay,...)T € Im(M?), then
k=x(K'K)'K”

for some x € R"™, where M and K are matriz factors of the full rank factor-

1 a; o Qp_q

0 1 - a,o
ization of the matrix (b Ab A% ... A"‘lb) 0 0 -+ aps

o0 --- 1

Remark. In case (i) there are other methods to construct the matrix K see
Sontag. Case (ii) corresponds the notion of stabilization of (A,b). So far I
have not seen any precise construction of such K in literature.

4.3.2 Multi-Input Case

For the general problem I'm going to reduce the problem to the single input
problem. Set B = (b1, ..., by,,) and K = (ky, ..., k)" and for rank(by, ..., AP71b;) <
rank(by, ..., APby) = rank(b, ..., APT1by) set ko such APbikI # 0 and ky €
Ker((by, ..., AP71b)T) and then for

rank(((bl, e bi—l)a ceey Anil(bl, ey bi—l)a bi, ..., Apiilbi) <
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rank(((by,...;0i1), ..., A" (by, o bi1), by, .. APiD;) =

rcm/{:(((bl,... b_ ) An_l(bh...,bi_l),b“ Apri-lb)

set ki1 such APkl = —1 and

k; € Ker((b i ...,Aplilb ) ) @ Ker(((bl, v bi—l)a ceey Anil(bl, ceey bi_l))T)

for i > 1. If we can’t pick such a k;; then set k;;; = 0.

Set A" = (A—(by, ..., by) (Ko, ..., k) T) now we can see that Im(B, AB, ..., A" 'B) =
Im(by, A’by, ..., A" 'by) this is true since we can see that (by,..., AP'b) =

(b, ..., AP'b;) now consider A’AP1b; = AP*Th; + by and since AP1Tlh, €
Im(by, ..., AP*b;) we don’t have to care about that. Now consider A'by = Aby+

boko By, and since boke By, € (by, ..., APh) we don’t have to care abut that
ether. now we can see that Im((by, bs), ..., A" 1(by, by)) = Im(by, A'by, ..., A" 'by)
and by similar arguments we can see that Im(B, AB, ..., A" 'B) = Im(by, A'by, ..., A" 'by)
Now we have a single-input case that we can solve.

00 2 0 -1
Example 10 Consider A= |1 0 1 ,B=12 0
0 1 1 1
0 0 0 2 00 2 2
we can now see that Aby = |1 0 2 1) and A%, =1 0 1 1] =
01 — 1 0 01 =2 0

0
2 |, we can see that rank(by) < rank(by, Aby) = rank(by, Aby, A%by). [
1

1
T2
am going to pick ky = 0 | since AbjkI = —1 and bikI = 0. Set
0
0 0 -1 —% 0 2
A =110 0 —% 1 0 1 |. The charac-
01 — 1 11 =2
teristic polynomzal of A’ is s® + 28 . Now we can see that ay, (s) =
02 -1\ /1 5 -1 s
S+ (21 2101 2 )+(E -1 =)s
10 2 00 1 1

Theorem 7 consider the matrix n x n A+ BK where B € R™™ and K €
R™ "™ where A and B are fized. By choosing K the possible coefficients of the
characteristic polynomial of A+ BK can be described by an linear equation.

Note that I have not used any eigenvalues under this section.
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