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Abstract

This paper is about exploring matrix decompositions in different mathemati-
cal topics. By mainly using Gauss-elimination we can solve problems such as
determining an orthogonal basis, Jordan chains and the Jordan decomposi-
tion, the construction of a feedback matrix to reach the desired eigenvalues.
This paper is intended to provide a new way of thinking in solving many
different mathematical problems.



Contents

1 Introduction 2
1.1 Matrices in linear algebra . . . . . . . . . . . . . . . . . . . . 2
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Block matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Matrix decompositions 9
2.1 Basic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Determination of a basis for a kernel . . . . . . . . . . 10
2.1.2 Determination of the intersection of images of two ma-

trices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 QR decomposition . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Full Rank decomposition . . . . . . . . . . . . . . . . . . . . . 17

3 Non eigenvalue problems 20
3.1 LS problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 QR solution . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 The matrix A† . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 ||AX −B|| . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Hessenberg decomposition . . . . . . . . . . . . . . . . . . . . 21

4 Eigenvalue problems 25
4.1 Minimal polynomial . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Jordan decomposition . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Determination of the feedback matrix . . . . . . . . . . . . . . 29

4.3.1 Single-Input Case . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Multi-Input Case . . . . . . . . . . . . . . . . . . . . . 32

1



Chapter 1

Introduction

The idea of this paper came when I sat in the classroom to listening a lec-
ture on how to do the Gram-Schmidt process in Rn and I though to myself,
there must be a better way to do this. And there was! I found out that you
could use Gauss elimination to do the same thing(this method is explained
in 2.3). And then I started to think. What else can you do only using Gauss
elimination?
I started to explore different kinds of matrix decompositions and linear alge-
bra problems with this approach. I limited myself to only use methods that
involved variations of Gauss elimination and matrix multiplication. I found
that a lot of the problems in linear algebra could explain in terms of matrix
decompositions. In this piper I’m going to show how to look at linear algebra
almost entirely in terms of matrix decompositions.

1.1 Matrices in linear algebra

Matrices are an important part of linear algebra. In this section we shall
introduce different notations used in matrix theory. Many linear relations
can be written in a compact way using matrices. I shall give some examples
to show how matrices naturally appear in many objects after introducing
some basic and conventional mathematical notations. I assume that the
reader is familiar with the basic concepts on linear spaces, also called vector
spaces, a basis in a vector space, linear (in)dependency of vectors, dimension
of a subspace, linear transformation and so on, (see for example [1,2]).

Let K be a field and Kn×m be the set of all n ×m (n rows, m columns)
matrices where every element of the matrix is in K. Denote by Kn = Kn×1

the set of all (column) vectors with n dimensions. As usual I will denote by
R the real numbers and by C the complex ones.
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A very simple example for writing an object in matrix form is a linear
combination of a set of vectors b1, b2, ..., bk ∈ Rn: λ1b1 +λ2b2 + · · ·λkbk where
λ1, ...λk ∈ R. In matrix form we have

(
b1 b2 · · · bk

)

λ1
λ2
...
λk

 = λ1b1 + λ2b2 + · · ·λkbk.

A second familiar example is a system of linear equations
a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2
...

an1x1 + an2x2 + · · ·+ anmxm = bn

This can be written in the matrix form

AX = B

where

A =


a11 a12 · · · a1m
a21 a22 · · · 22m
...
an1 an2 · · · anm

 , X =


x1
x2
...
xm

 , b =


b1
b2
...
bn

 .

A third example is the connection between polynomials and matrices.
This connection is both by the characteristic polynomial and, as we shall
see later in the paper, by vectors. The matrix under demonstrate both
connection to polynomials.

C]
q =


0 0 · · · 0 0 −q0
1 0 · · · 0 0 −q1
...

... · · · ...
...

...
0 0 · · · 1 0 −qn−2
0 0 · · · 0 1 −qn−1


First we can see that this matrix has the characteristic polynomial of this
matrix is

q(z) = zn + qn−1z
n−1 + ...+ q0

3



we can prove this by assuming∣∣∣∣∣∣∣∣∣∣∣

z 0 · · · 0 0 q1
−1 z · · · 0 0 q2
...

... · · · ...
...

...
0 0 · · · −1 z qn−2
0 0 · · · 0 −1 z + qn−1

∣∣∣∣∣∣∣∣∣∣∣
= zn−1 + qn−1z

n−2 + · · ·+ q2z + q1

Now expand along the first row we obtain∣∣∣∣∣∣∣∣∣∣∣

z 0 · · · 0 0 q0
−1 z · · · 0 0 q1
...

... · · · ...
...

...
0 0 · · · −1 z qn−2
0 0 · · · 0 −1 z + qn−1

∣∣∣∣∣∣∣∣∣∣∣
=z

∣∣∣∣∣∣∣∣∣∣∣

z 0 · · · 0 0 q1
−1 z · · · 0 0 q2
...

... · · · ...
...

...
0 0 · · · −1 z qn−2
0 0 · · · 0 −1 z + qn−1

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)1+nq0

∣∣∣∣∣∣∣∣∣∣∣

−1 z 0 · · · 0 0
0 −1 z · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 z
0 0 0 · · · 0 −1

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
n−1

=z(zn−1 + qn−1z
n−2 + · · ·+ q2z + q1) + (−1)n+1(−1)n−1q0

=zn + qn−1z
n−1 + · · ·+ q2z

2 + q1z + q0

The connection with vectors has to do with to polynomial division. Consider
the polynomial a(z) = an−1z

n−1 + ...+a0. Now if we take za(z) and do poly-
nomial division with q(z) we get that the reminder of non negative power is

the same as if we take C]
qa where a =

 a0
...

an−1

.

The central topic of this paper is on different kinds of matrix decompo-
sitions used in some mathematical disciplines such as study of structure of
linear transformations, numerical linear algebra, mathematical control the-
ory, to mention a few. The main idea is to perform Gauss elimination in
decompositions of matrices. The purpose is to look at many existing top-
ics from a new angle. It turns out that the treatment on topics in finding
feedback matrix in this paper lead a result seemed to be new, at least in its
explicit form and characterization.
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1.2 Definitions

In this section I collect notations and definitions used frequently in the se-
quel. Most conventions are from the references given in the end of the paper.

Definition 1 The transpose of a matrix A ∈ Kn×m is denoted AT and has
A:s columns as rows.

Definition 2 The identity looks like


1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1

 an is denoted as In

if it is an n× n matrix. If nothing else is said I is the Identity matrix with
the right size.

Definition 3 The inverse of a matrix A ∈ Kn×n is denoted as A−1 and has
the property that AA−1 = A−1A = In

Definition 4 The image of a matrix A ∈ Kn×m is denoted
Im(A) = {Ax|x ∈ Km}

Definition 5 The kernel of a matrix A ∈ Kn×m is denoted
Ker(A) = {x|Ax = 0}

Definition 6 A full rank A ∈ Kn×m is a matrix where
Ker(A) = 0 or Ker(AT ) = 0.

(Note: there are other definitions of full rank but this one is the one I find
most suitable for this paper.)

Definition 7 For a full rank matrix K ∈ Rn×m and n ≥ m the matrix K†

will be denoted as K† = (KTK)−1KT and if n ≤ m then K† = KT (KKT )−1

Note that I shall write 0 for the zero matrix of appropriate size according to
the context, that is I do not, in general, specify the dimension of the zero
matrix for simplicity.
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1.3 Block matrices

I shall use block matrices very often. Usually we obtain them from ordinary
matrices by dividing then by several horizontal and/or vertical lines into
block. For example

C]
q =


0 0 · · · 0 0 −q0
1 0 · · · 0 0 −q1
...

... · · · ...
...

...
0 0 · · · 1 0 −qn−2
0 0 · · · 0 1 −qn−1


We divide C]

q into four blocks

C]
q =

(
X Y
U W

)
with

X =
(
0 0 · · · 0

)︸ ︷︷ ︸
n−1

, Y = −q0, U = In−1, W =


−q0
−q1

...
−qn−1


or likewise

C]
q =


0 0 · · · 0 0 −q0
1 0 · · · 0 0 −q1
...

... · · · ...
...

...
0 0 · · · 1 0 −qn−2
0 0 · · · 0 1 −qn−1

 =

(
X ′ Y ′

U ′ W ′

)

with

X ′ =


0 0 · · · 0 0
1 0 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

 , Y ′ =

 −q0...
−qn−2

 , U ′ =
(
0 · · · 0 1

)︸ ︷︷ ︸
n−1

,W ′ = −qn−1

When working on multiplication matrices we have to divide the matrix blocks
into right sizes so that multiplication makes sense. The transpose of a block
works similar to transpose of an ordinary matrix but it is important to trans-
pose each block, e.g.

(C]
q)

T =

(
XT UT

Y T W T

)
=

(
X ′T U ′T

Y ′T W ′T

)
.
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Proposition 1 Assume that A and B are square matrices. Then∣∣∣∣A 0
C B

∣∣∣∣ = det(A) det(B).

Proof. If A or B is singular the equality is clearly true, for the right hand side
will be zero (either det(A) = 0 or det(B) = 0). But the left hand side will
also be zero becasue either the first row block consists of linearly dependent
row or the first column block consists of linearly dependent columns, which
lead to a zero determinant.

Now we assume that either A or B is nonsigular. Observe that(
A 0
C B

)
=

(
A 0
0 I

)(
I 0
0 B

)(
I 0

B−1C I

)

Hence

∣∣∣∣A 0
C B

∣∣∣∣ =

∣∣∣∣A 0
0 I

∣∣∣∣ ∣∣∣∣I 0
0 B

∣∣∣∣ ∣∣∣∣ I 0
B−1C I

∣∣∣∣ =

det(A) det(I) det(I) det(B) det(I) det(I) = det(A) det(B)

Proposition 2 Assume that A is a nonsigular matrix. Then∣∣∣∣A D
C B

∣∣∣∣ = det(A) det(B − CA−1D).

Similarly if B is nonsigular,∣∣∣∣A D
C B

∣∣∣∣ = det(B) det(A−DB−1C).

where A,B,C,D are of appropriate dimension.

Proof. Observe that (by Gause elimination blockwise) assuming A is non-
singular, (

I 0
−CA−1 I

)(
A D
C B

)
=

(
A D
0 B − CA−1D

)
Then ∣∣∣∣ I 0

−CA−1 I

∣∣∣∣ ∣∣∣∣A D
C B

∣∣∣∣ =

∣∣∣∣A D
0 B − CA−1D

∣∣∣∣
which is by the property that the determinant of a matrix is equal to the
determinants of its transpose and Proposition 1∣∣∣∣A D

C B

∣∣∣∣ =

∣∣∣∣A D
0 B − CA−1D

∣∣∣∣ = det(A) det(B − CA−1D)
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as desired.
Note that the property det(AB) = det(A) det(B) used in the proofs re-

quires that A and B be square matrices but this does not hold if they are
non-square. However we have the flowing important theorem.

Proposition 3 Let A be n×m and B be m× n, then

det(In − AB) = det(Im −BA).

In particular, if m = 1 then

det(In − AB) = 1−BA

Proof. Compute the determinant

∣∣∣∣In A
B Im

∣∣∣∣ using the previous proposition.

∣∣∣∣In A
B Im

∣∣∣∣ = det(In) det(Im −BI−1n A) = det(Im −BA)

On the other hand,∣∣∣∣In A
B Im

∣∣∣∣ = det(Im) det(In − AI−1m B) = det(In − AB).

Thus det(In − AB) = det(Im −BA).
Clearly if m = 1, A is a columne vector and B is a row vector. Hence

Im−BA is a scalar and equals 1−BA. Therefore, det(In−AB) = 1−BA.
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Chapter 2

Matrix decompositions

In this chapter I will explain how to do different decompositions. I will
do these decompositions by using Gauss and Gauss-Jordan elimination and
different variants of those.

2.1 Basic Theory

As I mentioned the first thing you have to know is how to use Gauss elim-
ination to compute the inverse of a given matrix. Let A ∈ Kn×n be a
nonsingular matrix. As we do in our linear algebra class, I augment the
matrix A with the identity matrix I = In as (A | I). Then we do row
operations on this augmented matrix until the matrix in the position of A
becomes I. Call the matrix on the right C. Then C is the inverse of A,
i.e. AC = CA = I. This procedure is called Gauss-Jordan elimination. For

example , A =

 1 1 −2
2 0 2
−1 0 2

. Now we perform Gauss-Jordan elimination

on  1 1 −2 1 0 0
2 0 2 0 1 0
−1 0 2 0 0 1

 ∼
1 1 −2 1 0 0

0 −2 6 −2 1 0
0 1 0 1 0 1

 ∼
1 1 −2 1 0 0

0 1 0 1 0 1
0 −2 6 −2 1 0

 ∼
1 1 −2 1 0 0

0 1 0 1 0 1
0 0 6 0 1 2

 ∼
1 1 −2 1 0 0

0 1 0 1 0 1
0 0 1 0 1

6
1
3

 ∼
1 0 0 0 1

3
−1

3

0 1 0 1 0 1
0 0 1 0 1

6
1
3


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Now we have

A−1 =

0 1
3
−1

3

1 0 1
0 1

6
1
3


Note that the process of row reducing until the matrix is reduced, as done
above, is sometimes referred to as Gauss-Jordan elimination, to distinguish
it from stopping after reaching echelon form. In the above example it is the
next last step. By row echelon form of a matrix we mean that the matrix
satisfies the following condition ([3]):

• All nonzero rows (rows with at least one nonzero element) are above
any rows of all zeroes (all zero rows, if any, belong at the bottom of the
matrix).

• The leading coefficient (the first nonzero number from the left, also
called the pivot) of a nonzero row is always strictly to the right of the
leading coefficient of the row above it.

• All entries in a column below a leading entry are zeroes (implied by
the first two criteria).

The aim of doing this example is to make the following point. At each step
we have the form

(A | I) ∼ (B | C)

This is equivalent to
CA = B.

In fact, performing Gauss elimination on A to get B is to multiply A by C
from left, and C consists of the row operations up to this step. Note that
this is correct for A ∈ Kn×m as well. We shall use them interchangeably in
the sequel.

2.1.1 Determination of a basis for a kernel

Now we know how to perform Gauss elimination to find the inverse of the
matrix A and the solution is the matrix C when (A | I) ∼ (I | C). Note that
we just read off what we have obtained from the last elimination. I claim
that this can be used to find a basis of the kernel of a matrix A.

Given a mtrix A ∈ Km×n we can do the following:
Perform Gauss elimination on (AT | In) until we have the form(

X
0

∣∣∣∣ C) =

(
X C ′′

0 C ′

)
10



i.e. CAT =

(
X
0

)
. (Note that A(C ′′T C ′T ) = (X 0).) This implies that

AC ′T = 0. C ′ gives a basis of Ker(A): the columns of C ′T . Moreover since
X has full rank, we have

Ker(A) = Im
(
C ′

T
)
.

Example 1 Take the matrix A =

(
1 2 3 1
1 1 1 2

)
. Set A′ =


1 1 1 0 0 0
2 1 0 1 0 0
3 1 0 0 1 0
1 2 0 0 0 1

.

Now we can do Gauss-elimination:
1 1 1 0 0 0
2 1 0 1 0 0
3 1 0 0 1 0
1 2 0 0 0 1

 ∼


1 1 1 0 0 0
0 −1 −2 1 0 0
0 −2 −3 0 1 0
0 1 −1 0 0 1

 ∼


1 1 1 0 0 0
0 −1 −2 1 0 0
0 0 1 −2 1 0
0 0 −3 1 0 1

.

We take out the last rows:

(
1 −2 1 0
−3 1 0 1

)
.

(
1 2 3 1
1 1 1 2

)
1 −3
−2 1
1 0
0 1

 = 0, as expected. This gives us that

Ker(A) = {


1 −3
−2 1
1 0
0 1

x|x ∈ R2}.

2.1.2 Determination of the intersection of images of
two matrices

Another thing we can do is to find a basis for Im(N) ∩ Im(K) where N,K
are n×m matrices. This is not as trivial as to find a basis in the kernel
of a matrix. However as we shall see it turns out to the same problem we
have to deal with. There are other methods to do this, but I’m going to
use one where we also can find a vector space of as big rank as possible in
Im(N) \ Im(K) \ {0}.
We want to find all linearly independent solutions x and y such that Nx =

Ky. That is, x, y is a solution of (N −K)

(
x
y

)
= 0. Now we can apply the

method for finding the kernel to this problem. Do Gauss elimination on this
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matrix augmented with I2m until we get the form we need, i.e.(
NT

−KT

∣∣∣∣ I2m) ∼
D A 0
D′ B1 C1

0 B2 C2


That is,A 0

B1 C1

B2 C2

( NT

−KT

)
=

DD′
0

⇔
 ANT

B1N
T − C1K

T

B2N
T − C2K

T

 =

DD′
0


The second block matrix equation is(

B1N
T − C1K

T

B2N
T − C2K

T

)
=

(
D′

0

)
From this we see that B2N

T = C2K
T , or equivalently NBT

2 = KCT
2 . Hence

Im(NBT
2 ) = Im(KCT

2 ) = Im(N) ∩ Im(K)

Then, we have found a basis in Im(N) ∩ Im(K): the columns of BT
2 or the

columns of CT
2 . If there is no zero row below D then the intersection is {0}.

The above computation clearly shows that

Im(NBT
1 ) ∩ Im(K) = {0}, Im(KCT

1 ) ∩ Im(N) = {0}

since B1N
T−C1K

T = D′, that is NBT
1 = KCT

1 +D′T , or KCT
1 = NBT

1 −D′
T

where D′ 6= 0 by construction. Hence,

Im(NBT
1 ) ⊂ (Im(N) \ Im(K)) ∪ {0}, Im(KCT

1 ) ⊂ (Im(K) \ Im(N)) ∪ {0}

We can also see that Im((N,K)) = Im((NBT
1 , NC

T
1 , NB

T
2 , NC

T
2 )) =

Im((NBT
1 , NC

T
1 , NB

T
2 )) =

(Im(N) \ Im(K)) ∪ (Im(K) \ Im(N)) ∪ (Im(N) ∩ Im(K)) and we can draw
the conclusion that Im(NBT

1 ) is a vector-space in Im(N) \ Im(K) \ {0} with
the biggest possible rank, notice that this rank is rank(N)− rank(NBT

2 ).

Example 2 Consider N =


1 0
0 1
1 1
0 1

 and K =


1 3
1 2
0 3
1 2

. We can do Gauss-

elimination
1 0 1 0 1 0 0 0
0 1 1 1 0 1 0 0
1 1 0 1 0 0 1 0
3 2 3 2 0 0 0 1

 ∼


1 0 1 0 1 0 0 0
0 1 1 1 0 1 0 0
0 1 −1 1 −1 0 1 0
0 2 0 2 −3 0 0 1


12




1 0 1 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 −2 0 −1 −1 1 0
0 0 −2 0 −3 −2 0 1

 ∼


1 0 1 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 −2 0 −1 −1 1 0
0 0 0 0 −2 −1 −1 1



Now we can see that


1 0
0 1
1 1
0 1

(−2
−1

)
+


1 3
1 2
0 3
1 2

(−1
1

)
=


−2
−1
−3
−1

+


2
1
3
1

 = 0

as we expected. We see obviously that a basis for Im(N) ∩ Im(K) is


2
1
3
1

.

And we can also see that


1 0
0 1
1 1
0 1

(−1
−1

)
=


−1
−1
−2
−1

 ∈ Im(N) \ Im(K) \ {0}

we can however not find a proper basis for this space since Im(K)∪ Im(N) ⊆
Im(N) \ Im(K) \ {0} and Im(N,K ′) ⊆ Im(N,K) where Im(K ′) = Im(K) ∪
Im(N). But to find an basis as big as possible can be archived with this
method, and it is important in 4.2.

We can also prove that:

Theorem 1 Set two full rank matrices K ∈ Kn×m and M ∈ Km×n where
n > m. Then rank(MK) = m− rank(Ker(M) ∩ Im(K))

Proof
We can find a nonsingular matrix H ∈ Km×m such that KH = (N,K ′)
where Im(N) = Ker(M)∩Im(K) and since K has full rank we have, Im(K ′)∩
Im(N) = {0} andMK ′ has full rank. We now get rank(MK) = rank(MKH) =
rank((MN,MK ′)) = rank((0,MK ′)) = m− rank(Ker(M) ∩ Im(K))

2.2 LU decomposition

The LU factorization 1 is to decompose a matrix into an upper triangle matrix
(U) and a lower triangular matrix (L). We can do this by Gauss eliminations
on an n×n matrix A to an upper triangular and then take the inverse of the
corresponding Matrix.

1more abut The LU Factorization exist in: Matrix Computations third edition, Gene
H. Golub,Charles F. Van Loan, The Johns Hopkins University press 1996 3.2
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Example 3 We have the matrix A =

1 2 3
2 3 6
3 3 5

. Then we can do Gauss-

elimination so that we get a triangular form.1 2 3 1 0 0
2 3 6 0 1 0
3 3 5 0 0 1

 ∼
1 2 3 1 0 0

0 −1 0 −2 1 0
0 −3 −4 −3 0 1

 ∼
1 2 3 1 0 0

0 −1 0 −2 1 0
0 0 −4 2 −3 1


Now we take inverse of

 1 0 0
−2 1 0
2 −3 1

 which is

1 0 0
2 1 0
4 3 1

 and then we get1 2 3
2 3 6
3 3 5

 =

1 0 0
2 1 0
4 3 1

1 2 3
0 −1 0
0 0 −4


I should point out, if there is a permutation in the row operations we can
not always make a perfect triangle.

2.3 QR decomposition

This factorization2 contains a matrixQ ∈ Rn×m, n ≥ m, rank(Q) = m,QTQ =
Im and a matrix R ∈ Rm×m, rank(R) = m which is an upper triangular ma-
trix. Set D ∈ Rn×m, rank(D) = m. Now you can do the LU on the matrix
A = DTD so that A = LU , then you take the diagonal in U and take the
diagonal as 1√

diag
with the rows of L−1 and it becomes R−1. Then we have

that Q = DR−1, D = QR. An example of this is.

Example 4 Let D =


1 1 1
0 0 0
0 1 2
0 0 1

. Then

DTD = A =

1 1 1
1 2 3
1 3 6

. Then the we do Gauss-elimination:

1 1 1 1 0 0
1 2 3 0 1 0
1 3 6 0 0 1

 ∼
1 1 1 1 0 0

0 1 2 −1 1 0
0 2 5 −1 0 1

 ∼
1 1 1 1 0 0

0 1 2 −1 1 0
0 0 1 1 −2 1


2Other methods to do this factorization can be found in: Matrix Computations third

edition, Gene H. Golub,Charles F. Van Loan, The Johns Hopkins University press 1996
5.2
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Here Q =


1 1 1
0 0 0
0 1 2
0 0 1


1 −1 1

0 1 −2
0 0 1

 =


1 0 0
0 0 0
0 1 0
0 0 1

 and R =

1 1 1
0 1 2
0 0 1


Next we show why this works. Since D ∈ Rn×m with n ≥ m the full rank
matrix A ∈ Rn×m, n ≥ m then ATA has full rank.
Then set

A =


a11 . . . a1m
. .
. .
. .
am1 . . . amm



B =


b11 . . . b1m
0 . .
. . . .
. . . .
0 . . 0 bmm

 , bii > 0

C =


c11 0 . . 0
. . . .
. . . .
. . 0
cm1 . . . cmm

 cii = 1

where CA = B, now set the matrix, P =



1√
b11

0 · · · 0

0
1√
b22

...
. . .

0
1√
bmm


Now

we want to show that PCACTP = Im. I’m going to show this by considering.
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1√
bii

(
ci1 . . . cii 0 . . 0

)

a11 . . . a1m
. .
. .
. .
am1 . . . amm

 1√
bii



ci1
.
.
.
cii
0
.
.
.
0


=

=
1

bii

(
0 . . . 0 bii . . bin

)



ci1
.
.
.
cii
0
.
.
.
0


=

1

bii
· bii = 1

For i > j

1√
bii

(
ci1 . . . cii 0 . . 0

)

a11 . . . a1m
. .
. .
. .
am1 . . . amm

 1√
bjj



cj1
.
.
.
cjj
0
.
.
.
0


=
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=
1√
bii
· 1√

bjj

(
0 . . . 0 bii . . bin

)



cj1
.
.
.
cjj
0
.
.
.
0


=

1√
bii
· 1√

bjj
· 0 = 0

and since A is symmetric we have the same results for i < j.
Now if we set Q = DCTP and set R−1 = CTP , we are done.

2.4 Full Rank decomposition

This is a decomposition you can do on any matrix. If we have an n×m matrix
A, the only thing you have to do is a complete elimination of A and then take
the same rows form A at the rows that only have a one and zeros after gauss
elimination and multiply from the left to the complete Gauss-eliminated one.

Example 5 Let A =

1 2 0 1
2 1 2 1
4 5 2 3

. Do the Gauss elimination.1 2 0 1 1 0 0
2 1 2 1 0 1 0
4 5 2 3 0 0 1

 ∼
1 2 0 1 1 0 0

0 −3 2 −1 −2 1 0
0 −3 2 −1 −4 0 1

 ∼
1 2 0 1 1 0 0

0 −3 2 −1 −2 1 0
0 0 0 0 −2 −1 1


Now take the inverse of

 1 0 0
−2 1 0
−2 −1 1

 which is

1 0 0
2 1 0
4 1 1

 and we get that

1 2 0 1
2 1 2 1
4 5 2 3

 =

1 0 0
2 1 0
4 1 1

1 2 0 1
0 −3 2 −1
0 0 0 0

 =

1 0
2 1
4 1

(1 2 0 1
0 −3 2 −1

)

There are a couple of things you can do with this factorization. If we assume
A1 ∈ Kn×n is a singular matrix then A1 = K1M1 where K1,M1 are full rank
matrices. Then we set M1K1 = A2 leading to A2

1 = K1M1K1M1 = K1A2M1.
If A2 is singular we can do rank decomposition so that A2 = K2M2. Then
set M2K2 = A3. We see that A3

1 = K1M1K1M1K1M1 = K1A2A2M1 =
K1K2M2K2M2M1 = K1K2A3M2M1 and so on until An has full rank. We
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can now define K ′i = K1...Ki and M ′
i = Mi...M1.

What can we do with this now? Well if we assume that An is the first invert-
ible matrix. Then we can set E = K ′n−1A

1−n
n M ′

n−1 and we see that EAn =
K ′n−1A

1−n
n M ′

n−1K
′
n−1AnM

′
n−1 = K ′n−1A

1−n
n An

nM
′
n−1 = K ′n−1AnM

′
n−1 = An

and we see that any matrix of the form B = K ′n−1HA
1−n
n M ′

n−1 where H is a
full rank matrix, will have the property EB = EBE = BE = B. Now we
can see that G = {K ′n−1HA1−n

n M ′
n−1|Ker(H) = 0} is a group under matrix

multiplication with the Identity element E.
Moreover we can find Im(An) with this method, and we can also prove that
the eigenvalues 6= 0 of A1 is the same as those of An. But more of that can
be found in the Chapter on Jordan decomposition.

Example 6 Consider the matrix A =


0 0 1 1
−2 2 2 2
0 0 1 1
1 0 0 1

 Let us try to Gauss-

eliminate this matrix
0 0 1 1 1 0 0 0
−2 2 2 2 0 1 0 0
0 0 1 1 0 0 1 0
1 0 0 1 0 0 0 1

 ∼


0 0 1 1 1 0 0 0
−2 2 2 2 0 1 0 0
0 0 0 0 −1 0 1 0
1 0 0 1 0 0 0 1

 ∼

∼


0 0 1 1 1 0 0 0
−2 2 2 2 0 1 0 0
1 0 0 1 0 0 0 1
0 0 0 0 −1 0 1 0



and since the


1 0 0 0
0 1 0 0
0 0 0 1
−1 0 1 0


−1

=


1 0 0 0
0 1 0 0
1 0 0 1
0 0 1 0

. We see that

A1 =


1 0 0
0 1 0
1 0 0
0 0 1


 0 0 1 1
−2 2 2 2
1 0 0 1

 = K1M1

A2 = M1K1 =

 0 0 1 1
−2 2 2 2
1 0 0 1




1 0 0
0 1 0
1 0 0
0 0 1

 =

1 0 1
0 2 2
1 0 1

 Then we do the
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Full rank factorization on A2.1 0 1 1 0 0
0 2 2 0 1 0
1 0 1 0 0 1

 ∼
1 0 1 1 0 0

0 2 2 0 1 0
0 0 0 −1 0 1



and we now see that A2 =

1 0
0 1
1 0

(1 0 1
0 2 2

)
= K2M2 and then

A3 = M2K2 =

(
1 0 1
0 2 2

)1 0
0 1
1 0

 =

(
2 0
2 2

)
and have E = K ′2A

−2
3 M ′

2 =
1 0 0
0 1 0
1 0 0
0 0 1


1 0

0 1
1 0

( 1 0
−2 1

)
1

4

(
1 0 1
0 2 2

) 0 0 1 1
−2 2 2 2
1 0 0 1

 =


1 0
0 1
1 0
1 0

 1

4

(
1 0 1 2
−4 4 0 0

)
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Chapter 3

Non eigenvalue problems

In this chapter I am going to look at problems where I don’t need the eigen-
values to solve the problems.

3.1 LS problem

The Least Square1 or LS problem is the problem where you want to find
minx∈Rn(|Ax−b|) for fixed A ∈ Rm×n,m ≥ n and b ∈ Rm, where |b| =

√
bT b.

In this section I’m going to show two ways to do this.

3.1.1 QR solution

For an orthogonal n × n matrix Q we have that |v| = |Qv| for v ∈ Rn.
We can use this to minimize |Ax − b|. First we do the QR factorization
on A then we take out a basis for the null space of AT say N and then
we do the QR factorization on NT . So we have that A = QARA, N =

QNRN . Set Q =

(
QT

A

QT
N

)
. Now we get that |Ax − b| = |QAx − Qb| =

|
(
QT

AAx
QT

NAx

)
−
(
QT

Ab
QT

Nb

)
| = |

(
QT

AAx−QT
Ab

0−QNb

)
|. Let now x = R−1a QT

Ab. We see

that |Ax − b| = |
(
QT

AB −QT
Ab

−QT
Nb

)
| = |

(
0

QT
Nb

)
| = |QNb|. This is the best

method to actually find out the value of minx∈Rn(|Ax− b|) = |QT
Nb|.

1More about this in: Matrix Computations third edition, Gene H. Golub,Charles F.
Van Loan, The Johns Hopkins University press 1996 5.3
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3.1.2 The matrix A†

This method is the best method to find out x. The answer to this is x =
(ATA)−1AT b we can verify this by checking:

(RT
AQ

T
AQARA)−1AT b = (RT

ARA)−1AT b = R−1A RT
A
−1
AT b = (ATA)−1AT b

3.1.3 ||AX −B||
This is the problem where we shall minimize ||AX −B|| where ||AX −B|| is
the maximum of |(AX −B)v| where |v| = 1. The first thing we can do is to
rank factorize A = KM and then set X = M †X ′. Now AX −B = KX ′−B
where K is a tall full rank matrix.
Then we can say that X ′ = (x1, ..., xm) for xi ∈ Rk and B = (b1, ..., bm) now
we can see that Kxi = bi and we can see that xi is xi = KT (KKT )−1bi and
X ′ = (x1, ..., xm) = (KT (KKT )−1b1, ..., K

T (KKT )−1bm) = KT (KKT )−1(b1, ..., bm) =
KT (KKT )−1B and we get X = M †K†B.
This is a solution since for every vector v ∈ Im(B) will have the solution
x = M †K†v for minimizing |Ax− v|.

3.2 Hessenberg decomposition

The matrix in the following form
∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
0

. . .
...

...
...

. . . . . .
...

...
0 · · · 0 ∗ ∗


is called a Hessenberg matrix, that is all elements in the matrix below the
first off-diagonal line are zero.

Now we use Gauss elimination to reduce any matrix to the Hessenberg
form, in the sense of a similarity transform. Note that it is not the same as
the Hessenberg decomposition in numerical literature where often it requires
the transformation matrix be to orthogonal (unitary). Why I am interested
in this decomposition will become apparent later.
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This decomposition2 is to find an matrix U such that UAU−1 =


∗ ∗ · · · ∗
∗ ∗ ...

0
. . .

...
. . .

0 · · · 0 ∗ ∗


for an n × n A. The way to do this is to to eliminate from the second row
and multiplying the inverse from the left. Then do the same thing to the
next column. It is easiest shown by an example.

Example 7 Consider the matrix A = A0 =


1 2 2 0
2 1 2 1
2 3 1 2
2 0 1 2

. Do Gauss-

elimination so that U0A0 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 −1 0 1




1 2 2 0
2 1 2 1
2 3 1 2
2 0 1 2

 =


1 2 2 0
2 1 2 1
0 2 −1 1
0 −1 −1 1

.

Then multiply the inverse

U0A0U
−1
0 =


1 2 2 0
2 1 2 1
0 2 −1 1
0 −1 −1 1




1 0 0 0
0 1 0 0
0 1 1 0
0 1 0 1

 =


1 4 2 0
2 4 2 1
0 2 −1 1
0 −1 −1 1

 = A1.

We see now that

U1A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

2
1




1 4 2 0
2 4 2 1
0 2 −1 1
0 −1 −1 1

 =


1 4 2 0
2 4 2 1
0 2 −1 1
0 0 −3

2
3
2

. Multiply the

inverse

U1A1U
−1
1 =


1 4 2 0
2 4 2 1
0 2 −1 1
0 0 −3

2
3
2




1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1

2
1

 =


1 4 2 0
2 4 3

2
1

0 2 −3
2

1
0 0 −9

4
3
2


Set U = U0U1and we get that

UAU−1 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 −3

2
1
2

1




1 2 2 0
2 1 2 1
2 3 1 2
2 0 1 2




1 0 0 0
0 1 0 0
0 1 1 0
0 1 −1

2
1

 =


1 4 2 0
2 4 3

2
1

0 2 −3
2

1
0 0 −9

4
3
2


This method can be useful if you want to determinant the characteristic poly-

2More about this in: Matrix Computations third edition, Gene H. Golub,Charles F.
Van Loan, The Johns Hopkins University press 1996 7.4
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nomial of a matrix. Consider the matrixH =


h11 h12 · · · h1n
h21 h22
0 h32
...

. . . . . .

0 · · · 0 hn(n−1) hnn



now if every hj(j−1) 6= 0 and we have that v =


1
0
...
0

 then the matrix

P = (v,Hv,H2v, ..., Hn−1v) will be invertible(this is easy to check) and we
can see that

P−1HP = P−1(Hv,H2v, ..., Hnv) =


0 0 · · · 0 an

1 0
...

0 1
...

. . . . . .

0 · · · 0 1 a1

.

We can after this calculation see that the characteristic polynomial of H is
sn − a1sn−1 − ...− an this can be verified by calculating
det(Is−H) = det(P )det(P−1HP )det(P−1 = det(P−1HP ) =

=

∣∣∣∣∣∣∣∣∣∣∣∣

s 0 · · · 0 −an
−1 s

...

0 −1
. . .

...
. . . . . . s

0 · · · 0 −1 s− a1

∣∣∣∣∣∣∣∣∣∣∣∣
= sn − a1sn−1 − ...− an

The last step follows from the definition of determinate. Finally note that
if hj(j−1) = 0 we can split computation of the characteristic polynomial into
two smaller matrices
h11 h12 · · · h1j
h21 h22
0 h32
...

. . . . . .

0 · · · 0 h(j−1)(j−2) h(j−1)(j−1)

 and


hjj hj(j+1) · · · hjn

h(j+1)j h(j+1)(j+1)

0 h(j+2)(j+1)
...

. . . . . .

0 · · · 0 hn(n−1) hnn

.

We can now see the for any non singular matrix A we can decompose A into

P−1HP where H =


C1 ∗ · · · ∗
0 C2

. . .
...

...
. . . ∗

0 · · · 0 Ck

 and Ci =


0 0 · · · 0 ∗
1 0

...
0 1
...

. . . . . .

0 · · · 0 1 ∗


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from this we can always get the characteristic polynomial for A
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Chapter 4

Eigenvalue problems

In this chapter I’m going to look at problems where I need eigenvalues of a
matrix to solve the problem.

4.1 Minimal polynomial

A minimal polynomial1 for a matrix A ∈ Rn×n is the polynomial p(s) with
the lowest degree for which p(A) = 0. The first thing I’m going to show is
how to minimize a singular n× n matrix.

Theorem 2 If A ∈ Kn×n is singular then A can be factorized to KM =
A where K and M are full rank matrices, non-square. Then the minimal
polynomial is p(x)x where p(x) is the minimal polynomial of MK

The proof of this is straight foreword p(A)A = p(KM)KM = Kp(MK)M =
K0M = 0, and this is the minimal polynomial since there musts be at least
one solution must be zero, also if there existed an other polynomial of lower
rank such that a(A) = 0 then this polynomial must still have 0 as a solution
and there for we can see that a(A) = a′(A)A = Ka(MK)M and then a′

must be the minimal polynomial of MK.
To make this more general I state the theorem:

Theorem 3 The minimal polynomial of A ∈ Kn×n where in this case K
is algebraic closed and with distinct eigenvalues λ1, ..., λm is

∏m
i=1(x− λi)ki.

Here ki is defined as rank(A−Iλi)ki−1 > rank(A−Iλi)ki = rank(A−Iλi)ki+1

Note that m ≤ n in general. Assume that the characteristic polynomial of a
matrix A ∈ Kn×n is a(s) and λ is an eigenvalue of A then we can factorize

1More of this in:A polynomial approach to linear Algebra,Paul A. Fuhrmann,Springer
2012, p93
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a(s) so that a(s) = (s − λ)pb(s) so that b(λ) 6= 0. Now we know that
0 = a(A) = (A− Iλ)pb(A). Rank factorize b(A) = KbMb. Thus 0 = a(A) =
(A − Iλ)pKbMb and it is now clear that a(A) = 0 iff (A − Iλ)pKb = 0 and
since the row space of a matrix B ∈ Rn×n is the same for Bk and Bk+1 iff
rank(Bk) = rank(Bk+1) we can draw the conclusion that the minimal i for
which (A−Iλ)pKb = 0 is rank(A−Iλ)i−1 > rank(A−Iλ)i = rank(A−Iλ)i+1.

4.2 Jordan decomposition

Jordan decomposition may refer to many different things, but here we talk
about Jordan canonical form. In general, a square complex matrix A is
similar to a block diagonal matrix

J =

J1 . . .

Jp


where each block Ji is a square matrix of the form

Ji =


λi 1

λi
. . .
. . . 1

λi

 .

So there exists an invertible matrix P such that P−1AP = J is such that the
only non-zero entries of J are on the diagonal and the superdiagonal. J is
called the Jordan normal form of A. Each Ji is called a Jordan block of A.
In a given Jordan block, every entry on the super-diagonal is 1.

What I am going to do here is to find the nonsingular matrix P . To this
end we give a method using full rank decomposition of matrices to construct
the so-called Jordan chains, whose definition will be made clear in a while.

Say that the matrix A ∈ Kn×n has only one eigenvalue λ. Set H =
A − λIn. We want to find vectors v1, ..., vm such that H ikvk = 0 and
H ik−1vk 6= 0 and P = (H i1−1v1, ..., v1, H

i2−1v2, ..., v2, ..., H
im−1vm, ..., vm) is a

invertible n × n matrix. Set i such that rank(H i) − rank(H i+1) = 0 and
rank(H i−1)− rank(H i) 6= 0. Do the factorization described in 2.4 such that
H i = K ′iM

′
i .

Conciser the lemma:
Set a matrix Y such that Im(Y ) ⊂ (Ker(Mk) \ Im(Kk))∪ {0} and Y has the
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biggest possible rank (recall section 2.1.2). Then rank(Y ) = (rank(Hk−1)−
rank(Hk))− (rank(Hk)− rank(Hk+1))
I will show this by referring to Theorem 1 We know that rank(Y ) = rank(Ker(Mk))−
rank(Ker(Mk) ∩ Im(Kk)) = (rank(Hk−1) − rank(Hk)) − rank(Ker(Mk) ∩
Im(Kk)) and that rank(Hk+1) = rank(MkKk) = rank(Hk)−rank(Ker(Mk)∩
Im(Kk))⇔ rank(Ker(Mk)∩ Im(Kk)) = rank(Hk)− rank(Hk+1) and we get
that rank(Y ) = (rank(Hk−1)− rank(Hk))− (rank(Hk)− rank(Hk+1))
This lemma is important since we want to find every biggest possible vector
space within (Ker(Mk) \ Im(Kk)) ∪ {0}. Now check:
(rank(H0)− rank(H1))− (rank(H1)− rank(H2) = p1)
(rank(H1)− rank(H2))− (rank(H2)− rank(H3) = p2)
...
(rank(H i−1)− rank(H i))− (rank(H i)− rank(H i+1) = pi)
Find a basis x1, ..., xmfor every Im(Y ) ⊂ (Ker(Mk) \ Im(Kk)) ∪ {0} big as
pk. Now multiply with M ′†

k−1 for an xt ∈ (Ker(Mk) \ Im(Kk)) ∪ {0}. Then

we have that vk = M ′†
ik−1xk. I will first demonstrate that this is true by an

example and then prove it.

Example 8 Consider the matrix A =


1 2 0 −1
−1 3 0 0
1 −3 2 2
−1 1 0 2

 This matrix has

one eigenvalue 2.

SetH1 = (A − 2I4) =


−1 2 0 −1
−1 1 0 0
1 −3 0 2
−1 1 0 0

. Do full rank factorization H1 =


−1 2 0 −1
−1 1 0 0
1 −3 0 2
−1 1 0 0

 =


1 0
0 1
−2 1
0 1

(−1 2 0 −1
−1 1 0 0

)
= K1M1.

Set H2 = M1K1 =

(
−1 2 0 −1
−1 1 0 0

)
1 0
0 1
−2 1
0 1

 =

(
−1 1
−1 1

)

Do full rank factorization H2 =

(
1
1

)
(−1, 1)

set H3 = (1,−1)

(
1
1

)
= (0). We see that:

(rank(H0)− rank(H1))− (rank(H1)− rank(H2) = 1)
(rank(H1)− rank(H2))− (rank(H2)− rank(H3) = 0)
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(rank(H2)− rank(H3))− (rank(H3)− rank(H4) = 1)
We Should now look for one vector in (Ker(M1)\ Im(K1)) and one in (Ker(M3)\ Im(K3)).
This can be done by using the methods from 2.1.1 and 2.1.2. and we find

that


0
0
1
0

 ∈ (Ker(M1)\ Im(K1)) and (2) ∈ (Ker(M3)\ Im(K3)).

Now M ′
2 = (−1, 1)

(
−1 2 0 −1
−1 1 0 0

)
=
(
0 −1 0 −1

)
and M ′†

2 =


0
−1
0
1

 1
2

now we see that M ′†
2 (2) =


0
−1
0
1

. Now we get the matrix

P = (H2


0
−1
0
1

 , H1


0
−1
0
1

 ,


0
−1
0
1

 ,


0
0
1
0

) =


2 −3 0 0
2 −1 −1 0
−2 5 0 1
2 −1 1 0


Now we can check that P−1AP =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2


To conclude this we can prove:

Theorem 4 if A ∈ Kn×n, Ai = K ′iM
′
i for full rank matrices Kk and Mk and

a matrix V x such that Mi−1V = I and x ∈ Ker(Mi) then (Ai−1V x, ..., V x)
has full rank.

Proof
First of all, M ′

kV, 0 ≤ k ≤ i− 1 has full rank since Mi−1V has full rank. And
since AiV x = K ′iMix = 0 we have that if (Ai−1V x, ..., V x) dose not has full
rank then there exist a non-zero vector y such that 0 = (Ai−1V x, ..., V x)y
now if we multiply A then A0 = 0 = (0, Ai−1V x, ..., AV x)y this is true if
Ai−1V x = 0 and that is not true, (Ai−1V x, ..., AV x) does not have full rank.
And if we multiply with A again we get A0 = 0 = (0, 0, Ai−1V x, ..., A2V x)y
and this is true ifAi−1V x = 0 and that is not true, or if (Ai−1V x, ..., AV x)
does not have full rank. Now we can do this until 0 = (0, ..., 0, Ai−1V x)y and
since Ai−1V x 6= 0 we are done.

Theorem 5 if A ∈ Kn×n, x1 ∈ Ker(Mi) \ Im(Ki), x2 ∈ Ker(Mj) \ Im(Kj)
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for i > j and V1, V2 are matrices such that M ′
i−1V1 = I and M ′

j−1V2 then
(Ai−1V1x1, ..., V1x1, A

j−1V2x2, ..., V2x2) has full rank.

Proof.
We know that (Ai−1V1x1, ..., V1x1) and (Aj−1V2x2, ..., V2x2) has full rank. As-
sume that there exist vectors x, y such that 0 = (Ai−1V1x1, ..., V1x1)x −
(Aj−1V2x2, ..., V2x2)y (this is true iff (Ai−1V1x1, ..., V1x1, A

j−1V2x2, ..., V2x2)
not has full rank). Then 0 = A0 = (0, Ai−1V1x1, ..., AV1x1)x−(0, Aj−1V2x2, ..., AV2x2)y
this is true if Im(Ai−1V1x1) = Im(Aj−1V2x2) or if (Ai−1V1x1, ..., AV1x1) ∩
(Aj−1V2x2, ..., AV2x2) 6= ∅, and we can do this in the same way as in the
previous proof until 0 = (0, ..., 0, Ai−1V1x1, ..., A

j−1V1x1)x − (0, ..., 0)y and
since (Ai−1V1x1, ..., A

j−1V1x1) has full rank the only thing left to show is
that Im(Ai−1V1x1) 6= Im(Aj−1V2x2). and this is true since Im(Aj−1V2x2)) =
Im(K ′j−1x2) 6= Im(K ′j−1Kj...Ki−1x1) = Im(K ′i−1x1) = Im(AiV1x1) and we are
done.

Note: If x′2, x2 ∈ Ker(Mi)\Im(Ki) and (x′2, x2) is of full rank but Im((x′2, x2))∩
Im(Kj) 6= ∅ then (Ai−1V1x1, ..., V1x1, A

j−1V2x2, ..., V2x2, A
j−1V2x

′
2, ..., V2x

′
2)

don’t have full rank. Set v =

k1...
kj

 and a such that (x2, x
′
2)

(
1
a

)
∈ Im(K).

Then
(Aj−1V2x2, ..., V2x2)v + (Aj−1V2x

′
2, ..., V2x

′
2)va =

Aj−1V2x2k1 + ...+ V2x2kj + Aj−1V2x
′
2k1a+ ...+ V2x

′
2kja =

Aj−1V2(x2+x′2a)k1+...+V2(x2+x′2a)kj = (Aj−1V2(x2+x′2a), ..., V2(x2+x′2a))v
Since (x2 + x′2a) ∈ Im(K) the matrix,
(Ai−1V1x1, ..., V1x1, A

j−1V2x2, ..., V2x2, A
j−1V2x

′
2, ..., V2x

′
2) doesn’t have full rank.

4.3 Determination of the feedback matrix

In control theory, one of the important topics is stabilization of a system.
Consider a linear system

dx(t)

dt
= Ax(t) +Bu(t).

where x : R+ → Rn is a state vector, and u : R+ → Rm is an input or control
variable, A ∈ Rn×n and B ∈ Rn×m.

In practice, we want to the system behaves as we wish, for example x(t)
generated by this system should go to 0, as t→∞. We know that ([4]) the
eigenvalues of A play a essential role in this problem. If A has a ”wrong”
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eigenvalue what can we do? In control theory we have freedom to choose
u. A common strategy here is to use a feedback control law, i.e. choose
u(t) = Kx(t) by a proper choice of K with K ∈ Rm×n . Then we get a
feedback system

dx(t)

dt
= (A+BK)x(t).

In this section we shall give a method to find the matrix K, based on the
machinery we have built up. We divide the problem into two cases (i) the
so-called single-input case, i.e. B is just a column vector; and (ii) the so-
called multi-input case, i.e. m > 1. For mathematical purposes I’m going to
address the problem as.

dx(t)

dt
= (A−BK)x(t).

4.3.1 Single-Input Case

I’m going to start with showing how you can do when B := b ∈ Rn. For a
matrix A ∈ Rn×n with a characteristic polynomial a(s) = sn+a1s

n−1+...+an
and for the matrix A − bk we have the characteristic polynomial ak(s) =
sn + α1s

n−1 + ...+ αn which is often described by the location of the zeros.
Now we can show that ak(s)− a(s) = a(s)k(Is− A)−1b⇔
ak(s) = (k(Is− A)−1b+ 1)a(s)⇔ det((sI − A+ bk)(sI − A)−1) =
= det(I + bk(sI − A)−1) this is clearly true.
We have ak(s)− a(s) = a(s)k(Is− A)−1b and from this we can show that
1

a(s)
[sn−1I+sn−2(A+Ia1)+ ...] = (sI−A)−1 and this can be shown as follows

1
a(s)

[sn−1I + sn−2(A + Ia1) + ...](sI − A) = 1
a(s)

(snI + sn−1(A + Ia1 − A) +

sn−2(A2 + a1A+ Ia2 − (A2 + a1A)) + ...) = 1
a(s)

a(s)I = I.
Now we can simply see that:
ak(s)− a(s) = k[sn−1I + sn−2(A+ Ia1) + ...]b =

k
(
b Ab A2b . . . An−1b

)


1 a1 · · · an−1
0 1 · · · an−2
0 0 · · · an−3
...

...
. . .

...
0 0 · · · 1




sn−1

sn−2

...
s
1

 =
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=
(
α1 − a1 α2 − a2 · · · αn − an

)

sn−1

sn−2

...
s
1

⇔
If (b, Ab, ..., An−1b) is nonsigular then set:

k =
(
α1 − a1 α2 − a2 · · · αn − an

)


1 a1 · · · an−1
0 1 · · · an−2
0 0 · · · an−3
...

...
. . .

...
0 0 · · · 1


−1

(
b Ab A2b . . . An−1b

)−1

and we can see that we can choose any characteristic polynomial for A− bk
by chancing k. This is called controllable in control theory ([4]).

If
(
b Ab A2b . . . An−1b

)


1 a1 · · · an−1
0 1 · · · an−2
0 0 · · · an−3
...

...
. . .

...
0 0 · · · 1

 = KM for full rank ma-

trices M,K and if
(
α1 − a1 α2 − a2 · · · αn − an

)t ∈ Im(M t) then we
can find an x such that

(
α1 − a1 α2 − a2 · · · αn − an

)
= xM and k =

x(KtK)−1Kt.

Example 9 If we have the matrix A =


−4 −4 −7 −4
−3 −2 −4 −1
6 5 10 5
−3 −1 −4 −2

 and b =


2
2
−2
1

 and A has the characteristic polynomial a(s) = s4−2s3−3s2+4s+4we

can build the matrix

(b, Ab,A2b, A3b)


1 −2 −3 4
0 1 −2 −3
0 0 1 −2
0 0 0 1

 =
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
2 −6 −5
2 −3 −2
−2 7 9
1 −2 −3


1 −2 −3 0

0 1 −2 −3
0 0 1 1

 = KM . Now we see that (α1 + 2, α2 +

3, α3−4, α4−4)T must be in Im(MT ). Hence (α1, α2, α3, α4) = x

1 −2 −3 0
0 1 −2 −3
0 0 1 1

+

(−2,−3, 4, 4) for all xT ∈ R3

Theorem 6 Assume a(s) is the characteristic polynomial of the given ma-
trix A and a desired polynomial ak(s) Then we have
(i) If (A,b) is controllable then

k =
(
α1 − a1 α2 − a2 · · · αn − an

)


1 a1 · · · an−1
0 1 · · · an−2
0 0 · · · an−3
...

...
. . .

...
0 0 · · · 1


−1

(
b Ab A2b . . . An−1b

)−1

(ii) If (A,b) is not controllable but (α1 − a1, ...)T ∈ Im(M t), then

k = x(KTK)−1KT

for some x ∈ Rn, where M and K are matrix factors of the full rank factor-

ization of the matrix
(
b Ab A2b . . . An−1b

)


1 a1 · · · an−1
0 1 · · · an−2
0 0 · · · an−3
...

...
. . .

...
0 0 · · · 1

.

Remark. In case (i) there are other methods to construct the matrix K see
Sontag. Case (ii) corresponds the notion of stabilization of (A,b). So far I
have not seen any precise construction of such K in literature.

4.3.2 Multi-Input Case

For the general problem I’m going to reduce the problem to the single input
problem. SetB = (b1, ..., bm) andK = (k1, ..., km)T and for rank(b1, ..., A

p−1b1) <
rank(b1, ..., A

pb1) = rank(b1, ..., A
p+1b1) set k2 such Apb1k

T
2 6= 0 and k2 ∈

Ker((b1, ..., A
p−1b1)

T ) and then for
rank(((b1, ..., bi−1), ..., A

n−1(b1, ..., bi−1), bi, ..., A
pi−1bi) <
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rank(((b1, ..., bi−1), ..., A
n−1(b1, ..., bi−1), bi, ..., A

pibi) =
rank(((b1, ..., bi−1), ..., A

n−1(b1, ..., bi−1), bi, ..., A
pi+1bi)

set ki+1 such Apibik
T
i+1 = −1 and

ki ∈ Ker((bi, ..., A
pi−1bi)

T )⊕Ker(((b1, ..., bi−1), ..., A
n−1(b1, ..., bi−1))

T )
for i > 1. If we can’t pick such a ki+1 then set ki+1 = 0.
SetA′ = (A−(b2, ..., bm)(k2, ..., km)T ) now we can see that Im(B,AB, ..., An−1B) =
Im(b1, A

′b1, ..., A
′n−1b1) this is true since we can see that (b1, ..., A

p1b1) =
(b1, ..., A

′p1b1) now consider A′Ap1b1 = Ap1+1b1 + b2 and since Ap1+1b1 ∈
Im(b1, ..., A

p1b1) we don’t have to care about that. Now consider A′b2 = Ab2+
b2k2Bb2 and since b2k2Bb2 ∈ (b1, ..., A

′p1+1b1) we don’t have to care abut that
ether. now we can see that Im((b1, b2), ..., A

n−1(b1, b2)) = Im(b1, A
′b1, ..., A

′n−1b1)
and by similar arguments we can see that Im(B,AB, ..., An−1B) = Im(b1, A

′b1, ..., A
′n−1b1)

Now we have a single-input case that we can solve.

Example 10 Consider A =

0 0 2
1 0 1
0 1 −2

 , B =

0 −1
2 0
1 1

.

we can now see that Ab1 =

0 0 2
1 0 1
0 1 −2

0
2
1

 =

2
1
0

 and A2b1 =

0 0 2
1 0 1
0 1 −2

2
1
0

 =0
2
1

, we can see that rank(b1) < rank(b1, Ab1) = rank(b1, Ab1, A
2b1). I

am going to pick k2 =

−1
2

0
0

 since Ab1k
T
2 = −1 and b1k

T
2 = 0. Set

A′ =

0 0 2
1 0 1
0 1 −2

 −
−1

0
1

(−1
2

0 0
)

=

−1
2

0 2
1 0 1
1
2

1 −2

. The charac-

teristic polynomial of A′ is s3 + 5
2
s2 − s − 5

2
. Now we can see that ak1(s) =

s3 + (k1

0 2 −1
2 1 2
1 0 2

1 5
2
−1

0 1 5
2

0 0 1

+
(
5
2
−1 −5

2

)
)

s2s
1


Theorem 7 consider the matrix n× n A+ BK where B ∈ Rn×m and K ∈
Rm×n where A and B are fixed. By choosing K the possible coefficients of the
characteristic polynomial of A+BK can be described by an linear equation.

Note that I have not used any eigenvalues under this section.
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