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Abstract

The purpose of this thesis is to explore the aspect of duality and
efficiency in semidefinite programming. In particular, we discuss bad
behaved systems in relation to the duality gap. In that sense, the
impact of efficiency seems to be dependent of if there exists duality
gap. There are several approaches to close up it, and we present two
regularization algorithms. The first algorithm is based on abstract
convex programming while the second one on semidefinite program-
ming. Then we show how duality gap can be closed by means of facial
reduction in semidefinite programming. The analysis part will end by
some semidefinite programming problems.
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1 Introduction

Semidefinite programming is a well explored research area. The model de-
veloped around 1990 has grown fast, intensively both from the research
interest and the practice perspectives. It serves many purposes and is one of
the most prominent areas in mathematical programming branches, in cod-
ing theory, and finance etc [11, 19, 24].

Semidefinite programming could be classified as an extension of linear
programming and is a subclass of conic programming. The extension of
linear programming has made it possible in recent years to develope more
efficient algorithms [11, 14, 19, 23, 24, 28].

There are some well known differences between linear programming and
semidefinite programming. In the linear programming the primal optimal
value always concides with the dual optimal value which does not hold neces-
sarily in the semidefinite programming. Pataki in [20] discussed the aspects
on duality in semidefinite programming in relation to bad behaved versus
well behavied systems [20].

Moreover, Lustig, Marsten, and Shanno in [16], Helmberg et al in [14]
have studied the interior point methods in relation to the efficiency. However
in some semidefinite programming problems there exists positive duality gap
and hence optimal value is not attained [20].

1.1 Problem statement

Semidefinite programming handles a finite set of inequality constraints, and
variables. The model has high potential, and delivers efficiency [10, 20].
Despite of it there are some limitations primarily related to the semidefinite
programming properties which cannot always be extended, interpreted, and
explained in the same manner as linear programming. Hence the duality
and efficiency are relevant to analyze since the equivalence of these pro-
grammings design cannot be met under the same assumptions. In addition,
the structure of the semidefinite programming problems are also significant
to target the duality gap [20].

The result of duality displays if there exists duality gap in semidefinite
programming. To reduce the size of duality gap is related to some of the
aspects; the models assumptions, structure, dualization, and regularization
methods. Borwein, Wolkowicz in [8] proposed in 1981 an approach to reduce
the duality gap. This regularization method is based on an abstract convex
programming and the conclusion holds for subfaces. Ramana, Tunçel, and
Wolkowicz in [23] validated the regularization method even for semidefinite
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programming. Recently, Malick et al in [17] proposed a new regularization
method and the results show increased robustness. The motivation to use
this method in comparison with alternative regulatization methods is based
on the high level of accurancy, and speed [17].

Differences between the above described regularization methods are the
following. The first method is comming from an abstract convex program-
ming approach while the other one from a semidefinite programming. Fur-
ther, the methods differ in the initiation position. Borwein and Wolkowicz
[8] regularize the primal perspective in comparision with Malick et al [17]
where the primal, dual perspectives are combined to construct the general
algorithm. Another important issue with the regularization method is the
fact that it is constructed particularly for ill-posed problem and not for
general problems [12].

1.2 Research questions and aim

• How does duality gap affect the efficiency of algorithms?

• Is it possible to close up the duality gap and retain efficiency?

• What methods are suitable and why?

The main purpose of this thesis is to explore the aspects duality and
efficiency in semidefinite programming.

1.3 Notations and outline

We have used the following notations. The set of symmetric n× n matrices
is denoted by Sn. Similary, Sn

+ is the set of positive semidefinite n× n ma-
trices, and Sn

++, the set of positive definite n× n matrices.

This thesis is structured into four chapters. The first one gives a general
introduction to semidefinite programming and presents the research ques-
tions, problem statement, and aim. Next chapter is divided into two parts
where the first one covers related work and the second part presents the
relevant theoretical framework. Furthermore this chapter contains a section
about the objective efficiency.

In the third chapter two regularization methods are introduced, and
both methods are explicitly reviewed separately. In chapter four, analysis is
focused on the achived results, and will also consider some notions from the
theoretical perspective. The last section ends with a summery of the most
important results in relation to the research questions, and propose further
research about duality gap in relation to semidefinite programming.
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2 Literature review and the theoretical framework

2.1 Related work

Boyd and Vanderberghe in [28] give a general review to semidefinite pro-
gramming and explain the theory of primal-dual interior point method. Al-
izadeh in [3] used the interior point method to show that local convergence
of an optimal solution holds in polynomial time. Redle in [24] considers the
aspects of a duality theory in semidefinite programming and argues that du-
ality turns out to be a key factor. Pataki [20] discusses a similiar reason on
duality and points out duality generates as a certificate to obtain optimality.

There are several advantages with semidefinite programming [9, 10, 28].
First, it has many applications in diverse areas which give the theoretical
framework a broader perspective, and in turn could lead to a higher level of
efficiency. For instance, the interior point method in semidefinite program-
ming. Secondly, it is possible to target many convex optimization problems
by reformulating them as semidefinite programming problems. The third
argument goes back to the era of semidefinite programming and beyond this
powerful idea.

Kharchiyan in [10] applied the ellipsoid method in 1979 in combination
with linear programming. Karmarkar in [10] further developed the idea in
1984 with an improving algoritm, and thereafter Nesterov and Nemirovski
[10] have built on the method and provided important contributions to the
existing and the most common used interior point methods within semidefi-
nite programs. Many recent articles have been inspired by this interior point
method and developed various types of interior point methods [3, 10, 14, 31].
For instance, Alizadeh in [3] used the interior point method in semidefinite
programming in combination with combinatorial optimization.

Klerk in [11] describes the complex structure in semidefinite program-
ming in constrast to the linear programming. Ramana in [22] explicitly
highlights that the extension does not always work for general semidefinite
programming and derive an exact duality theory. In addition Zhang, Chen,
and Zhang in [32] have regarded the duality theory to ensure zero duality
gap. From the above context we select to study the structure, duality, and
efficiency, respectively, in relation to the duality gap. The impact of effi-
ciency in semidefinite programming seems to be dependent of if there exist
duality gap.
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2.2 Linear programming

In order to illustrate why SDP is an extension of linear programming we
present LP in standard form and its dual problem.

2.2.1 The standard and canonical form

A linear programming is the minimization problem of a linear function sub-
ject to linear constraints, it is expressed in standard or canonical form [7].
We shall first consider the standard primal linear programming problem:

min ctx

s.t. Ax = b

x ≥ 0,

where c, x ∈ Rn, A ∈ Rm×n, b ∈ Rm, and the inequality constraint is inter-
preted componentwise. To derive the Lagrangian dual function introduce
multipliers λ ∈ Rm, µ ∈ Rn, µ ≥ 0, and we obtain the Lagrange relaxed
problem:

θ(λ, µ) = min{ctx+ λt(b−Ax)− µtx}
= min{(ct − λtA− µt)x+ λtb},

and the minimum value is:

θ(λ, µ) =

{

λtb, if ct − λtA− µt ≥ 0

−∞, if (ct − λtA− µt)i < 0 for some i.

The associated Lagrangian dual is:

max λtb

s.t. c−Atλ− µ ≥ 0

µ ≥ 0,

or, equivalently, by [9]

max λtb

s.t. Atλ ≤ c.

Another approach to get the dual problem is to just lift the equality con-
straint into the objective function, i.e introduce the multiplier λ ∈ Rm, we
get a Lagrange relaxed problem:

min (ct − λtA)x+ λtb

s.t x ≥ 0.
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Then

θ(λ) =

{

λtb, if ct − λtA ≥ 0

−∞, if (ct − λtA)j < 0 for some j.

The associated Lagrangian dual is:

max λtb

s.t. ct − λtA ≥ 0.

Thus for a linear programming problem there is a unique dual problem. This
is not true in general for nonlinear programming problems. We demostrate
this by an example.

Example 2.2.1. (NLP dual) Consider following NLP problem:

min
n∑

i=1

ai
xi
, ai > 0

s.t.
n∑

i=1

bixi = b0, b0 > 0

li ≤ xi ≤ ui, ui > li > 0, i = 1, . . . , n.

To obtain a Lagrange dual problem we can either lift the constraint
∑n

i=1 bixi =
b0 or all the constraints to the objective function.

Alternative 1. Introduce λ to minimize

min l(x, λ) =

n∑

i=1

(
ai
xi

+ λbixi)− λb0

s.t. li ≤ xi ≤ ui.

Separate the problem and minimize for each xi. Let fi(xi) =
ai
xi

+ λbixi,

i = 1, . . . , n. For fixed i we have f
′

i (xi) = − ai
x2
i

+ λbi, f
′′

i (xi) =
2ai
x3 > 0 so

fi(xi) is convex. So, the solution of f
′

i (xi) = 0 is a minimum. Solving this
equation yields x2i =

ai
λbi

.

Now we consider the constraints li ≤ xi ≤ ui. We have the following
cases:

(1) λbi ≤ 0, this gives optimum x̂ = ui because we minimize ai
xi

+ λbixi.

(2) λbi > 0 and li ≤
√

ai
λbi

≤ ui, then x̂i =
√

ai
λbi

.

(3) λbi > 0 and
√

ai
λbi

≤ li, then x̂i = li.
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(4) λbi > 0 and
√

ai
λbi

≥ ui, then x̂i = ui.

Substituting x̂1, . . . , x̂n determined in accordance above discussion in the
objective function we have the dual function

θ(λ) =
n∑

i=1

(
ai
x̂i

+ λbix̂i)− λb0.

So the dual problem is

max θ(λ)

which is an unconstrained problem.

Alternative 2. Introduce λ and µi ≥ 0, µ̄i ≥ 0, i = 1, . . . , n, and denote

µ =






µ1
...
µn




, µ̄ =






µ̄1
...
µ̄n




.We minimize

l(λ, µ, µ̄, x) =
n∑

i=1

(
ai
xi

+ (λbi − µi + µ̄i)xi)− λb0 +
n∑

i=1

µili −
n∑

i=1

µ̄iui.

Minimizing for each xi, using the same argument as in Alternative 1, we
have x2i =

ai
λbi−µi+µ̄i

.

(1) If λbi − µi + µ̄i < 0 we have x̂i = ∞.

(2) If λbi − µi + µ̄i ≥ 0 then x̂i =
√

ai
λbi−µi+µ̄i

.

The minimum is achived with minimal value:

Θ(λ, µ, µ̄) =

{

−∞ if λbi − µi + µ̄i ≤ 0

2
∑n

i=1

√

ai(λbi − µi + µ̄i)− λb0 +
∑n

i=1(µili − µ̄iµi) if otherwise.

So, the dual problem is

max Θ(λ, µ, µ̄) = 2
n∑

i=1

√

ai(λbi − µi + µ̄i)− λb0 +
n∑

i=1

(µili − µ̄iµi)

s.t. λbi − µi + µ̄i ≤ 0

µi ≥ 0, µ̄i ≥ 0.

Obviously these two dual problems are different. Different dual problems
will result in different efficient algorithms.
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Furthermore, the linear primal standard and canonical form are equiva-
lent. Consider the following pairs of forms below [9].

Standard form of primal and dual LP:







min ctx

s.t. Ax = b,

x ≥ 0







max λtb

s.t. Atλ ≤ c.

Canonical form of primal and dual LP:







min ctx

s.t. Ax ≥ b,

x ≥ 0







max λtb

s.t. Atλ ≤ c,

λ ≥ 0.

We see here the canonical pair is symmetric.

Remark. For the standard dual problem there is no sign restrictions on λ.

We shall now show that these forms are equivalent by introducing the
slackvariable s ≥ 0, s ∈ Rm.

Ax ≥ b⇔ Ax− s = b⇔ (A| − I)

[
x
s

]

= b.

Let Ã := (A| − I), x̃ =

[
x
s

]

, c̃ =

[
c
0

]

such that:

min c̃tx̃

s.t. Ãx̃ = b

x̃ ≥ 0.

max λtb

s.t. Ãtλ ≤ c̃,

where the inequality constraint is:

Ãtλ = (A| − I)tλ =

[
At

−I

]

λ =

[
Atλ
−λ

]

≤ c̃ =

[
c
0

]

⇔ Atλ ≤ c, −λ ≤ 0
︸ ︷︷ ︸

λ≥0

,

and the claim follows.
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2.2.2 Duality properties

This section is based on the literature of Bazaraa, Sherali, and Shetty [5],
Boyd, Vandenberghe [9].

Theorem 2.2.1. (Weak duality) For any feasible solution x to the primal
problem and any feasible solution λ to the dual problem we have ctx ≥ btλ.

Proof. For any pairs of feasible solutions x, λ in the primal and its associated
dual problem, we have:

ctx ≥ (Aλt)x = λt(Ax) ≥ btλ.

Thus, ctx ≥ btλ.

Theorem 2.2.2. (Strong duality) Assume that x and λ are feasible solu-
tions of the primal and dual problem respectively. Then they have both
optimal solutions with the same objective value, i.e ctx = btλ.

The following Table 1 shows the linear primal and dual perspective in
case of impossible solutions. In addition, the columns and rows are associ-
ated with the infeasible, finite, infinite solutions.

Table 1: The LP primal and dual solutions

D∅ Df D∞
P∅ impossible
Pf impossible impossible
P∞ impossible impossible

The table is an immediate consequence of the strong duality except the
D∅ and P∅ which is possible, seen by the following example.

Example 2.2.2. (LP duality) An example on the case where the dual and
the primal problems are not feasible.

The primal problem:

min − x2

s.t. x1 − x2 ≥ 1

− x1 + x2 ≥ 0

x1, x2 ≥ 0,
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has no solution and neither does its dual

max u1

s.t. u1 − u2 ≤ 0

− u1 + u2 ≤ −1

u1, u2 ≥ 0.

2.3 Convex programming

2.3.1 Convex sets, functions, and duality

This section presents the convex programming and it is based on the lit-
erature of Bazaraa, Sherali, and Shetty [5]. We begin by considering the
constrained nonlinear problem with the equality and inequality constraints:

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , l

x ∈ X,

where f(x), gi(x), i = 1, . . . ,m, hj(x), j = 1, . . . , l are functions defined on
X, a subset of Rn, and x = (x1, x2, . . . , xn) is a vector with n components
[5]. The following definitions survey some basic notions and specify some
significant properties under the assumption that S ⊆ Rn is not empty.

Definition 2.3.1. (Convex set) The set S is convex if the line segment
between x1, x2 ∈ S, belongs to S, that is λx1 + (1 − λ)x2 ∈ S, for all
λ ∈ [0, 1], and all x1, x2 ∈ S.

Geometrically, a straight line that passes through two distinct points
inside the set S. If a part of the line segment does not belong to the set
then it is not convex.

Definition 2.3.2. (Convex hull) The convex hull, denoted conv(S) is the
collection of all convex combinations of S. That is, conv(S) = {x =

∑m
i=1 λixi :

xi ∈ S,
∑m

i=1 λi = 1, λi ≥ 0 for i = 1, . . . ,m}, where m is a positive integer.

Definition 2.3.3. (Neighborhoods) Given x, and an ǫ > 0, the ball Nǫ(x) =
{y : ||y − x|| < ǫ} is called an ǫ-neighborhood of x.

Definition 2.3.4. (Closure) The closure of S, denoted cl(S) is defined by
cl(S) = {x ∈ S : S ∩Nǫ(x) 6= ∅ for every ǫ > 0}.

Definition 2.3.5. (Affine combination) A vector y in Rn is a linear combi-
nation of x1, . . . ,xk in Rn if y =

∑k
j=1 λjxj for λ1, . . . , λk. If, in addition,

λ1, . . . , λk satisfy
∑k

j=1 λj = 1, then y is an affine combination of x1, . . . ,xk.
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Definition 2.3.6. (Affine hull) The affine hull of S, is the collection of all
affine combinations of points in S.

Definition 2.3.7. (Relative interior) The relative interior of S, denoted
ri(S), ri(S) = {x ∈ S : Nǫ(x) ∩ aff(S) ⊂ S for some ǫ > 0}, where aff(S) is
the affine hull of S.

The following definition describes convexity for a univariate function.
In parallel with convex sets is a convex function characterized as chords
between two distinct points lie above its graph.

Definition 2.3.8. (Convex function) The function f defined on S is convex
if f(λx1+(1−λx2) ≤ λf(x1)+(1−λ)f(x2) for all x1, x2 ∈ S, and λ ∈ [0, 1],
where S is convex.

Furthermore, a convex function in relation with optimality determines if
optimum exists and the optimal value is attained. In addition, the optimal
dual value assesses to be an underestimate for the optimal primal value, it
is consistent [6].

Before considering properties of duality, we state the primal and its La-
grangian dual:

min f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., l

x ∈ X,

and we derive the Lagrangian dual function:

θ(λ, µ) = min{f(x) +
m∑

i=1

λigi(x) +
l∑

j=1

µjhj(x) : x ∈ X}.

where λi, µj are classified as the lagrangian multipliers, λ ≥ 0, i = 1, . . . ,m.
Hence, the Lagrangian dual is then formulated:

max θ(λ, µ)

s.t. λ ≥ 0.

Another important issue with duality is that maximum does not always
exists, and then it is more convenient to depict maximum as supremum. In
the similar way, minimum corresponds to infimum. If the primal optimal
value exists, and concides with its dual then is sufficient to only examine
the properties of duality [5].

10



Theorem 2.3.1. (Carathédory theorem) Let S be an arbitrary set in Rn.
If x ∈ conv(S),x ∈ conv(x1, . . . ,xn+1), where xi ∈ S for i = 1, . . . , n + 1.
Then, x can be represented

x =

n+1∑

i=1

λixi

n+1∑

i=1

λi = 1

λi ≥ 0 for i = 1, . . . , n+ 1

xi ∈ S for i = 1, . . . , n+ 1.

Example 2.3.1. ([5], Ex. 6.13) Formulate explicit the Lagrangian dual
function of the following problem for which:
X = {(x1, x2, x3, x4) : x1 + x2 ≤ 12, x2 ≤ 4, x3 + x4 ≤ 6, x1, x2, x3, x4 ≥ 0.

max 3x1 + 6x2 + 2x3 + 4x4

s.t. x1 + x2 + x3 + x4 ≤ 12

− x1 + x2 + 2x4 ≤ 4

x1 + x2 ≤ 12

x2 ≤ 4

x3 + x4 ≤ 6

x1, x2, x3, x4 ≥ 0.

First, rewrite the objective function to minimize:

min − 3x1 − 6x2 − 2x3 − 4x4

s.t. x1 + x2 + x3 + x4 ≤ 12

− x1 + x2 + 2x4 ≤ 4

x1 + x2 ≤ 12

x2 ≤ 4

x3 + x4 ≤ 6

x1, x2, x3, x4 ≥ 0.

Compute the Lagrangian dual function:

Θ(λ1, λ2) = min{f(x) + λ1g1(x) + λ2g2(x) : x ∈ X}
= min{−3x1 − 6x2 − 2x3 − 4x4 + λ1(x1 + x2 + x3 + x4 − 12)

+ λ2(−x1 + x2 + 2x4 − 4) : x ∈ X}.
Divide the Lagrangian dual function into two functions:

Θ1(λ1, λ2) = min{x1(−3 + (λ1 − λ2) + x2(−6 + (λ1 + λ2)) : x1 + x2 ≤ 12, x2 ≤ 4, x1, x2 ≥ 0}
Θ2(λ1, λ2) = min{x3(−2 + λ1) + x4(−4 + (λ1 + 2λ2) : x3 + x4 ≤ 6, x3, x4 ≥ 0} − 12λ1 − 4λ2

11



and use the Carathédory theorem [5] where

Θ1(λ1, λ2) =







0, (x1, x2) = (0, 0), if λ1 − λ2 ≥ 3, λ1 + λ2 ≥ 6

4λ1 + 4λ2 − 24, (x1, x2) = (0, 4), if λ1 − λ2 ≥ 3, λ1 + λ2 ≤ 6

12λ1 − 4λ2 − 48, (x1, x2) = (8, 4), if λ1 − λ2 ≤ 3, λ1 + λ2 ≤ 6

12λ1 + 12λ2 − 36, (x1, x2) = (12, 0), if λ1 − λ2 ≤ 3, λ1 + λ2 ≥ 6,

Θ2(λ1, λ2) =







−12λ1 − 4λ2, (x3, x4) = (0, 0), if λ1 ≥ 2, λ1 + 2λ2 ≥ 4

−6λ1 + 8λ2 − 24, (x3, x4) = (0, 6), if λ1 ≥ 2, λ1 + 2λ2 ≤ 4

−6λ1 − 4λ2 − 12, (x3, x4) = (6, 0), if λ1 ≤ 2, λ1 + 2λ2 ≥ 4.

where λ1, λ2 ≥ 0.

The initialization step consists of rewriting the objective function in
standard form, and in the main step we computed the Langrangian dual
funcion, we used theorem of Carathédory. Finally, divide the Lagrangian
function into two functions, and simplify to get the desired dual function.

Theorem 2.3.2. (Karush-Kuhn-Tucker Necessary conditions) Consider the
primal problem to minimize f(x) subject to x ∈ X and gi(x) ≤ 0 for
i = 1, . . . ,m. Let x̄ be a feasible solution, and I = {i : gi(x̄) = 0} the active
index set. Suppose f and gi for i ∈ I are differentiable at x̄ and that gi for
i /∈ I are continous at x̄. Furthermore, suppose that ∇gi(x̄) for i ∈ I are
linearly independent. Then, the following KKT conditions holds true

∇f(x̄) +
m∑

i=1

ui∇gi(x̄) = 0,

uigi(x̄) = 0, for i = 1, . . . ,m

ui ≥ 0, for i = 1, . . . ,m,

where uigi(x̄) = 0 is the complementary slackness condition.

Remark. The condition ∇gi(x̄) for i ∈ I is one of the constrained qual-
ification. There are othere conditions to ensure the KKT conditions to be
necessary. One commonly used is the Slaterś condition. See Definition
2.3.16. It turns out to be the commonly used natural condition in study of
SDP.

Example 2.3.2. ([5], Ex. 6.11) Find the optimal point, verify the KKT-
conditions.

min (x1 − 2)2 + (x2 − 6)2

s.t. x21 − x2 ≤ 0

− x1 ≤ 1

2x1 + 3x2 ≤ 18

x1, x2 ≥ 0.

12



For simplicity we solve the problem by geometrically. The point (2, 6) is
optimum without the constraints. So we enlarge the circle center at (2, 6)
until it tangents to the tendency of the feasible region (Figur 1).

That is, we find shortest distance from the point (2, 6) to the line 2x1 +
3x2 = 18, which can be parametrized by (x1, x2) = (t, 6− 2

3 t).

−4 −2 0 2 4 6

0
5

10
15

x1

x 2

x1 = −1

x2 = x1
2

x2 =
18

3
−

2

3
x1

(x1 − 2)2+(x2 − 6)2

Figur 1. Graph of the objective function, and inequality constraints in R.

The shortest line segment between (2, 6) and a point on the line should
be orthogonal to the line, i.e. the direction (1,−2

3). So the inner product
of (1,−2

3) and (t − 2, 6 − 2
3 t − 6) = (t − 2,−2

3 t) is zero, yielding t = 18
3 .

So the minimal value is achieved at x̄ = (183 ,
66
13). This shows that only one

constraint is active. Let

g1(x) = x21 − x2,

g2(x) = −x1 − 1,

g3(x) = 2x1 + 3x2 − 18,

g4(x) = −x1,
g5(x) = −x2.
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Then we have u3 6= 0 the other u′is are zero by the complementary slack-
ness. We continue verifying the KKT-conditions, and calculate the partial
derivatives:

∇f(x) =
[
2(x1 − 2)
2(x2 − 6)

]

,∇g1(x) =
[
2x1
−1

]

,∇g3(x) =
[
2
3

]

,

∇g4(x) =
[
−1
0

]

,∇g5(x) =
[

0
−1

]

.

The first KKT-condition:

∇f(x̄) + u1∇g1(x̄) + u3∇g3(x̄) + u4∇g4(x̄) + u5∇g5(x̄) = 0 :

[
− 8

13
− 8

13

]

+ u3

[
1
1

]

=

[
0
0

]

⇔ u3 =
8

13
> 0.

and the third KKT-condition: ui ≥ 0, for i = 1, 2, 3, 4, 5 is satisfied at x̄.

The next theorems concern some properties of duality.

Theorem 2.3.3. (Weak duality) Let x be a feasible solution to primal and
similary let (λ, µ) be a feasible solution to the dual. Then f(x) ≥ Θ(λ, µ).

Proof. According to the definition of the dual:

Θ(λ, µ) = min{f(y) + λtg(y) + µth(y) : y ∈ X}
≤ f(x) + λtg(x) + µth(x)

≤ f(x),

and the claim follows since λ ≥ 0, by the primal g(x) ≤ 0 and h(x) = 0.

Remark. The dual optimal value is the lower bound of the primal. This
has significance in computation.

Theorem 2.3.4. (Strong duality) Let f : Rn → R and g : Rn → Rm be
convex, and let h : Rn → Rl be affine. Suppose that the following constraint
qualificaton holds true. There exists x̄ ∈ X s.t. g(x̄) < 0, and h(x̄) = 0,
and 0 ∈ int{h(x) : x ∈ X}. Then

min{f(x) : g(x) ≤ 0,h(x) = 0,x ∈ X} = max{Θ(λ, µ) : λ ≥ 0}.

Proof. We omit the proof. (see, for instance [5]).

In general, strong duality holds whenever the primal optimal value is
equal to its dual value. There exists a duality gap if the primal optimal value
exceed dual value. These optimality criteria work also for other program-
mings design and not specifically developed for the convex programming.
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2.3.2 Convex cones

This subsection proceed with convex cones. In particular, we explore convex
cones, check the validity, and utilize the result to semidefinite cones. Here
we have assumed that K ⊆ V , an inner product space.

Definition 2.3.9. (A cone,[9]) The set K is a cone if every x ∈ K and
λ ∈ [0, 1] imply λx ∈ K.

Definition 2.3.10. (A convex cone, [9]) The set K is called a convex conve
if it is closed and convex, i.e for any x1, x2 ∈ K and λ1, λ2 ≥ 0 we have
λ1x1 + λ2x2 ∈ K.

Definition 2.3.11. (Alternative Definition of a convex cone, [2]) The cone
K is convex if it is closed under addition x1, x2 ∈ K ⇒ x1 + x2 ∈ K.

Clearly, these two definition are equivalent. The following definitions is
taken from e.g. Ahron, Nemiroviski [2].

Definition 2.3.12. (A pointed cone) The convex cone is pointed if x1 ∈
K,−x1 ∈ K imply x1 = 0.

Definition 2.3.13. (A proper cone) The cone is proper if the following
conditions holds; convex, closed, pointed, and has a nonempty interior.

Example 2.3.3. (A proper cone, [2]). The nonnegative orthant K = {x ∈
Rn : xi ≥ 0, i = 1, . . . , n} is a proper cone. Sn

+ is also a proper cone.

A proper cone K induces a generalized inequality (or partial ordering)
as follows [9]:

x1 �K x2 ⇔ x2 − x1 ∈ K

x1 ≺K x2 ⇔ x2 − x1 ∈ intK,

where intK is the interior of K. According to Boyd, Vandenberghe [9] the
generalized inequality �K satisfies following properties:

• reflexive: x1 �K x1.

• antisymmetric: if x1 �K x2 and x2 �K x1 then x1 = x2.

• transitive: if x1 �K x2 and x2 �K x3 then x1 �K x3.

• preserved under addition: if x1 �K x2, u1 �K u2, then x1 + u1 �K

x2 + u2.

• If x1 �K x2 then λx1 � λx2 for all λ > 0.
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Example 2.3.4. (The generalized inequality,[9]) For K = Rn
+, x �K y

means xi � yi, i = 1, . . . , n; for Sn
+, X �K Y means Y − X is positive

semidefinite.

Definition 2.3.14. (Dual cone, [9]) Let K be a cone. The set K∗ = y :
xty � 0, ∀x ∈ K} is called the dual cone of K.

Definition 2.3.15. If K∗ = K then K is said to be self dual.

Example 2.3.5. (Cones and their dual cones, [9]) The aim of this example
is to show that proving a set is to show that matrix formulation is sometimes
very effective in proving properties of cones. Therefore we are going to give
two alternative ways to prove some properties of the following special cone.

(1) Rn
+ is self-dual.

(2) Icecream cone is self-dual.

(3) (Sn
+)

∗ = Sn
+.

Example 2.3.6. (Cones and their dual cones)

K = {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≥ 0, x1x2 ≥ x23}.

Alternatively, K = S3
+ can be defined as the following set

K = {x1, x2, x3) ∈ R3 :

[
x1 x3
x3 x2

]

�S3
+
0}.

Proposition 2.3.1. K is a closed convex cone.

Proof. We apply the alternative definition to show the closedness. We need
to show that the complement is open. If we have a symmetric matrix

M =

[
x1 x3
x3 x2

]

that is not positive semidefinite, there exists x̃ ∈ R2

such that x̃tMx̃ < 0 and this inequality still sholds for all matrices M
′

in a
sufficiently small neighborhood of M .

Now, we show the convex cone properties:

(i) ∀x ∈ K, ∀λ ≥ 0 (real) we have λx ∈ K, (i.e K is a cone).

(ii) ∀x, x′ ∈ K we have x + x
′ ∈ K, (i.e K is convex, since if x, x

′ ∈ K
and λ ∈ [0, 1], then (1− λ)x, λx

′ ∈ K by (i) and then (ii) shows that
(1− λ)x+ λx

′ ∈ K as required by convexity.)

Now, if xtMx ≥ 0 and xtM
′

x ≥ 0 then also xt(λM)x = λxtMx ≥ 0 for
λ ≥ 0 and xt(M +M

′

)x = xtMx+ xtM
′

x ≥ 0.
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Remark. We can prove the proposition using the original definition, but
the proof is not as simple as given above. For example, to show (ii) (the
sum property) we compute

(x1 + x
′

1)(x2 + x
′

2) = x1x2 + x1x
′

2 + x
′

1x2 + x
′

1x
′

2

≥ x23 + 2
x1x

′

2 + x
′

1x2
2

+ x
′

3
2

≥ x23 + x
′

3
2 + 2

√

x1x
′

2x
′

1x2

≥ x23 + x
′

3
2 + 2

√

x23x
′

3
2

= x23 + x
′

3
2 + 2|x3||x

′

3|
≥ x23 + x

′

3
2 + 2x3x

′

3 = (x3 + x
′

3)
2,

where in the second inequality above, we used the Arithmetic-Geometric
Mean Inequality (AGM).

Proposition 2.3.2. The dual cone of K is

K∗ = {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≥ 0, x1x2 ≥
x23
4
} ⊆ R3.

Proof. We show first the inclusion ⊇. Again we use AMG inequality. Let

us fix ỹ = (x̃1, x̃2, x̃3) such that x̃1 ≥ 0, x̃2 ≥ 0, x̃1x̃2 ≥ x̃2
3

4 . Then for
x = (x1, x2, x3) ∈ K chosen arbitrarily, we get

ỹtx = x̃1x1 + x̃2x2 + x̃3x3

= 2
x̃1x1 + x̃2x2

2
+ x̃3x3

≥ 2
√

x̃1x1x̃2x2 + x̃3x3

= 2
|x̃3|
2

|x3|+ x̃3x3 ≥ 0.

This means that ỹ ∈ K∗.

For ⊆ let us fix ỹ = (x̃1, x̃2, x̃3) such that x̃1 < 0 or x̃2 < 0 or x̃1x̃2 <
x̃3

2

4 .
We need to find a proof for ỹ ∈ K∗. If x̃1 < 0 we choose x = (1, 0, 0) ∈ K
and get the desired x̃2

tx < 0. If x̃2 < 0, x = (0, 1, 0) will do the job. In

case of x̃1, x̃2 ≥ 0, but x̃1x̃2 < x̃3
2

4 , let us first assume x̃3 ≥ 0 and set
x = (x̃2, x̃1,−

√
x̃1x̃2) ∈ K. Then

ỹtx = 2x̃1x̃2 − x̃3
√

x̃1x̃2 < 2x̃1x̃2 − 2x̃1x̃2 = 0.

For x̃3 < 0, we pick x = (x̃2, x̃1,
√
x̃1x̃2) ∈ K.

Remark. We can see that the proof will be much easier by alternative def-
inition using matrices.
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2.3.3 Constraint qualifications

In this section we consider the constrained convex programming problem
under the inequality constraint [5]:

min f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m

x ∈ X.

As seen in the Karush-Kuhn-Tucker necessary theorem, there is an extra
condition that makes the KKT conditions to be necessary for the local op-
timum, that is, the set of gradients of gi is linear independent at the KKT
point x̄ where i is the active constraint index. In this section we consider
several other such conditions.

Definition 2.3.16. (Slaterś constraint qualification) We say the above non-
linear programming problem satifies the Slater condition if g1, . . . , gm are
convex, and there is a point x̄ in the open set X satisfying gi(x̄) < 0, i =
1, . . . ,m.

Bazaraa, Sherali, and Shetty in [5] describe several constraint qualifi-
cations (CQś) and their relations. The top level starts with the strongest
condition the slaterś CQ and the linear independence CQ.

Definition 2.3.17. (Linear independence constraint qualfication) The set
X is open, each gi for i /∈ I is continous at x̄, and ∇gi(x̄) for i ∈ I are
linearly independent.

Example 2.3.7. ([5], Ex. 6.11, revisited) Check if slaterś CQ, LICQ hold
for the following problem:

min (x1 − 2)2 + (x2 − 6)2

s.t. x21 − x2 ≤ 0

2x1 + 3x2 ≤ 18

− x1 ≤ 1

x1 ≥ 0, x2 ≥ 0.

Now X = R2. As before let g1 = x21 − x2, g2 = 2x1 + 3x2 − 18, g3 =
−x1 − 1, g4 = −x1, g5 = −x2. Clearly all g′is are convex. At the point
(1, 2) all functions gi < 0. So the Slater conditon holds. Next we consider

g1 = g2 = 0 which gives a solution at x̄ = (
√
55−1
3 , −2

√
55+56
9 ). At this point

the gradients of g1 and g2 are computed as follows:

∇g1(x̄) =
[

2(
√
55−1)
3
−1

]

∇g2(x̄) =
[
2
3

]

,
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which are linear independent, and the LICQ is satisfied.

2.4 Abstract convex programming

2.4.1 The abstract convex programming

The abstract convex programming is characterized as an extension of the
convex programming [26]. In this section we formulate the general abstract
convex programming according to Borwein, Wolkowicz [8]:

min f(x)

s.t g(x) �S 0,

x ∈ Ω

where f : is an extended convex function on Rn, g: an extended S-convex
function on Rn → Rm, Ω ⊂ Rn is convex, S ⊂ Rm is a convex cone. Fur-
thermore the convex cone S is pointed, and defines a generalized inequality
[8].

Definition 2.4.1. (S-convex function, [9]) An S-convex function is repre-
sented by a convex function w.r.t a proper cone S. More precisely, f(λx1 +
(1− λ)x2) �S λf(x1) + (1− λ)f(x2).

Example 2.4.1. [9] Example of an abstract convex programming problem.
Boyd, Vandenberghes form of the abstract convex programming problem:

min f0(x)

s.t fi(x) ≤ 0 for i = 1, . . . ,m,

atix = bi, for i = 1, . . . , p,

where f0, . . . , fm are convex. It seems that it is very restrictive but many
problems can be reformulated in this form. For example

min x21 + x22

s.t
x1

1 + x22
≤ 0,

(x1 + x2)
2 = 0,

we can see that f1 = x1

1+x2
2

is not convex, show the inequality constraint in

the abstract form is not convex by utilize the hessian:

∂g1(x1, x2)

∂x1
=

1

1 + x22
∂g1(x1, x2)

∂x2
=

−2x1x2
(1 + x22)

2

⇒ ∇g1(x1, x2) =
[

1
1+x2

2−2x1x2

(1+x2
2
)2

]
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⇒ ∇2g1(x1, x2) = H =

[
0 −2x2

(1+x2
2
)2

−2x2

(1+x2
2
)2

−2x1(1+x2
2
)+4x1x2

(1+x2
2
)3

]

The leading principle minor of the matrix H is:

H1 = 0, det(H) =

∣
∣
∣
∣
∣

0 −2x2

(1+x2
2
)2

−2x2

(1+x2
2
)2

−2x1(1+x2
2
)+4x1x2

(1+x2
2
)2

∣
∣
∣
∣
∣
= 0− 4x22

(1 + x22)
4
= − 4x22

(1 + x22)
4
,

and det(H) = − 4x2
2

(1+x2
2
)4

implies H is negative semidefinite, g1 is concave

for all x1, x2 ≥ 0, and (x1 + x2)
2 is not affine. So, it is not a convex

programming problem. But it can be transformed to a convex programming
by its equivalent form [9].

min x21 + x22

s.t x1 ≤ 0,

x1 + x2 = 0.

2.4.2 Subcones and faithfully convex function

This section concerns subcones contained in the convex cone, faithfully con-
vex function. Subfaces is an important issue in the abstract regulariza-
tion method, and assesses as the core. All definitions below are based on
Borwein, Wolkowiczs work [8], Moskowitz, Paligiannis [18], and Boyd and
Vandenberghe [9].

Definition 2.4.2. (A face, [23]) A subcone K of S is a face of S, and denoted
K ⊳ S, x1, x2 ∈ S, x1 + x2 ∈ K ⇒ x1, x2 ∈ K.

Definition 2.4.3. (An exposed face) A face of S is exposed if there exist ψ
in S∗ such that K = {s ∈ S : 〈ψ, s〉 = 0}. Furthermore, the convex cone S
is called facially exposed if every face of S is exposed.

Definition 2.4.4. (Faithful convex) The S-convex functions g is faithfully
convex with respect to the face E if g is not affine along any line segment
in E unless they are affine along the entire line extending the segment.

Definition 2.4.5. (Real analytic at x̄, [18]) A smooth function f which is
represented by the Taylor series

f(x) =

∞∑

k=0

f (k)(x̄)

k!
(x− x̄)k

in a neighborhood of x̄, is called real analytic at x̄. Furthermore, if f is
analytic at every point x̄ ∈ Ω, we say f is real analytic on Ω.
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Definition 2.4.6. (Taylors theorem in several variables, [18]) Let f : Ω ⊆
Rn → R be a continious, differentiable function, that is C2 on the open
convex set Ω of Rn and x̄, and x such that

f(x) = f(x̄) + 〈∇f(x̄), x− x̄〉+ 1

2!
〈Hf (c)(x− x̄), x− x̄〉.

Example 2.4.2. (Faithfully convex function, [29]) Consider the function f
defined by

f(x1, x2, x3) = −
√

(4 + (x1 + x2)2) + x1 + x2 + x23

A faithfully convex function is convex, analytic. Recall that the Defini-
tion 2.3.8. Since we have a multi variable function we apply the hessian to
verify that f is convex. Start by calculating the partial derivatives for f :

∂f(x1, x2, x3)

∂x1
= 1− (x1 + x2)

√

4 + (x1 + x2)2

∂f(x1, x2, x3)

∂x2
= 1− (x1 + x2)

√

4 + (x1 + x2)2

∂f(x1, x2, x3)

∂x3
= 2x3.

⇒ ∇f(x1, x2, x3) =







1− (x1+x2)√
4+(x1+x2)2

1− (x1+x2)√
4+(x1+x2)2

2x3







⇒ ∇2f(x1, x2, x3) = H =







4

(4+(x1+x2)2)
3
2

4

(4+(x1+x2)2)
3
2

0

4

(4+(x1+x2)2)
3
2

4

(4+(x1+x2)2)
3
2

0

0 0 2







The leading principal minors of the matrix H are:

H1 =
4

(4 + (x1 + x2)2)
3

2

> 0, H2 =

∣
∣
∣
∣
∣
∣

4

(4+(x1+x2)2)
3
2

4

(4+(x1+x2)2)
3
2

4

(4+(x1+x2)2)
3
2

4

(4+(x1+x2)2)
3
2

∣
∣
∣
∣
∣
∣

= 0,

det(H) = 0 implies H is positive semidefinite, f is convex for all x1, x2, x3 ≥
0. The analycity is clear, since f has a Taylor series.

2.4.3 The extended slater constraint

This section is built on previous sections. The main result is the extended
slaterś constraint in terms of extended inequality ≺S . Again we refer to
Borwein, Wolkowicz [8].
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Theorem 2.4.1. (The extended slaterś constraint) Suppose that g is con-
tinuous and weakly faithfully S-convex on Ω, Ω is the intersection of a poly-
hedrar set and a closed linear manifold, and P satisfies the generalized slaters
conditions: there exists x̄ ∈ Ω with g(x̄) ≺S 0. Then the standard Lagrange
multiplier theorem holds, that is,

(a) assume that µ is the finite optimal value of

min f(x)

s.t g(x) �S 0,

x ∈ Ω.

Then f(x) + λg(x) ≥ µ for all x ∈ Ω for some λ ∈ S∗.

(b) If µ is attained by f(a), a ∈ Ω, then λg(a) = 0.

Proof. We omit the proof. (See, [8]).
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2.5 Semidefinite programming

2.5.1 Positive semidefinite matrices

This section describes semidefinite matrices, semidefinite programming in
relation to the primal and duality. Following definitions, theorems are ac-
cording to the literature of Boyd, Vandenberghe [9], Aharon, Nemiroviski
[2].

Definition 2.5.1. (Positive semidefinite matrices, [2]) A positive semidefi-
nite matrix (PSD) is denoted A � 0 with following properties:
(i) A is symmetric,
(ii) xtAx ≥ 0 for any x ∈ Rn.

This definition is equivalent to all eigenvalues of A denoted λ(A) are
nonnegative, i.e λ(A) ≥ 0. Similary, the matrix A is positive definite if
xtAx > 0, all eigenvalues λ(A) > 0.

Example 2.5.1. [9] The cone of positive semidefinite n × n matrices, is a
convex cone.

Proof. According to the Definition 2.3.10 if λ ∈ [0, 1], A,B ∈ Sn
+ then λA+

(1 − λ)B ∈ Sn
+. Insert the convex expression in Definition 2.5.1 and hence

xtAx = xt(λA+ (1− λ)B)x = λxtAx+ (1− λ)xtBx ≥ 0.

Definition 2.5.2. (Inner product) The inner product of matrices Sn is
defined as A •B:

A •B =
n∑

i=1

n∑

j=1

aijbij = tr(AtB)

This definition can be justifed to satisfy the axioms of inner product.

2.5.2 Dual problems, equivalence of SDP problems

In literature, there are often two standard forms of SDP. We state them as
two definitions following Vandenberghe and Boyd [28].

Remark. Sometimes, especially we compute, we also use the notation 〈A,B〉
for the inner product of Sn for simplicity. And we use these notations in-
terchangeably. Also we use the same notation for inner product 〈a, b〉 for
a, b ∈ Rn.
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Definition 2.5.3. (Conic standard form) A primal SDP in the conic
standard form is (SDPc) :

min tr(CX)

s.t. tr(AiX) = bi, i = 1, ...,m

X �Sn
+
0 ⇔ X ∈ Sn

+

where C,Ai ∈ Sn, and Sn
+ is the cone of symmetric positive semidefinite

matrices. Clearly, this is an obvious parallel to the standard form for LP,
where the only difference is that the cone Rn

+ is substituted by the cone
S+
n . To see this we use the notation:

vect(A) := (a11, a21, . . . , am1, a12, a22, . . . , am2, . . . , a1n, . . . , ann)
t

for any matrix of m×n, that is we stack the columns of A on the top of each
other. Then tr(CX) =

∑n
i,j=1 cijxij = ctx and tr(AiX) = atix, i = 1, . . . ,m

where x = vect(X), ai = vect(Ai) and c = vect(C). Thus (SDPc) can be
rewritten as

min ctx

s.t. atix = bi, i = 1, ...,m

X �Sn
+
0.

Remark. Malick et al in [17] call it linear semidefinite programming. Ap-
perantly, this can be considered as a generalization of LP problem in standard
form. The only difference is we use the variable in the cone Sn

+.

Definition 2.5.4. (SDP in inequality standard form) A primal SDP is in
inequality standard form is (SDP�)

min ctx

s.t. x1B1 + · · ·+ xkBk � B

where B1, . . . Bk, B ∈ Sn, and we call B(x) := x1B1+ · · ·+xkBk � B linear
matrix inequality (LMI). Note that it is here the same semidefinite program
comes from ([28]).

Apply Lagrange duality theory, we can derive the associate dual problem
to (SDPc) and (SDP�), respectively. For (SDPc) we introduce y ∈ Rm and
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construct the Lagrange dual function:

Θ(y) = minX∈S+
n
{tr(CX) +

m∑

i=1

(bti − tr(AiX))yi}

= minX∈S+
n
{〈C,X〉 −

m∑

i=1

〈Ai, X〉yi}+ bty

= minX∈S+
n
{〈C,X〉 − 〈

m∑

i=1

Aiyi, X〉}+ bty

= minX∈S+
n
{〈C −

m∑

i=1

Aiyi, X〉}+ bty

=

{

bty if 〈C −∑m
i=1Aiyi, X〉 ≥ 0

−∞ otherwise .

Therefore we obtain the dual problem

max Θ(y)

s.t. 〈C −
m∑

i=1

Aiyi, X〉 ≥ 0

Explicitly, in the matrix form:

(DSDPc) max bty

s.t. C −
m∑

i=1

yiAi �S+
n
0.

The last constraint is true due to the fact that (Sn
+)

∗ = Sn
+, and the char-

acterizations of positive semidefinite matrices: A is positive semidefinite if
and only if 〈A,B〉 ≥ 0 for all B ∈ S+

n . Now we have a pair of primal-dual
problem for (DSDPc) in Definition 2.5.3.

Similarly, we can derive the dual problem of (SDP�) as follows:

B(x) � B ⇔ 〈B(x)−B,X〉 ≤ 0, ∀X ∈ Sm
+ .
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Then the dual objective function is, for X � 0:

f(Y ) := minx{ctx+ 〈B(x)−B,X〉}

= minx{ctx+
k∑

i=1

〈xiBi, X〉 − 〈B,X〉}

= minx{ctx+
k∑

i=1

xi〈Bi, X〉} − 〈B,X〉

= minx

k∑

i=1

(ci + 〈Bi, X〉)xi − 〈B,X〉

=

{

−〈B,X〉 if all ci + 〈Bi, X〉 ≥ 0

−∞ otherwise .

So, the dual problem of (SDP�) is:

max − 〈B,X〉 = −tr(BX)

s.t. tr(BiX) + ci ≥ 0, i = 1, . . . k.

X �Sn
+
0.

To get equality constraints, we introduce the slackvariables s1, . . . , sn ≥ 0:

max − tr(BX)

s.t. tr(BiX) + ci − si = 0, i = 1, . . . k.

X �Sn
+
0, si ≥ 0, i = 1, . . . , k.

To put this in the form of (SDPc), we construct a new matrix variable

X̃ =

[
X 0
0 diag(s1, . . . , sk)

]

�
Sn+k

+

0 and accordingly B̃ =

[
B 0
0 0

]

and B̃i =
[
Bi 0
0 0

]

, where diag(s1, . . . , sk) is the diagonal matrix with s1, . . . , sk as

diagonal elements. Hence the dual of (SDP�) is:

(DSDP�) max − tr(B̃X̃)

s.t. tr(B̃iX̃) + ci = 0

X̃ �
Sn+k

+

0.

Remark. We notice that there is an obvious relation between (SDP�) and
(DSDPc), respectively, between (SDPc) and (DSDP�).

So, we raise the question: Is the dual problem (DSDP�) still a SDP
problem? In fact we can show that the two forms (SDP�) and (SDPc) are
equivalent. In other words, we can convert one form to the other.

26



Proposition 2.5.1. (SDP�) ⇔ (SDPc).

Proof. For the direction (SDPc) ⇒ (SDP�), we assume for simplicitly that
the matrices A1, . . . , Ak are linearly independent. Then we can expess the
affine set

{Z : Z ∈ Sn, tr(AiZ) = bi, i = 1, . . . , k}
in the form

{G(y) = G0 + y1G1 + · · ·+ ypGp : y ∈ Rp}

where p = n(n+1)
2 − k, and Gi are appropriate matrices, that is, the solution

set can be parametrized by p parameters y1, . . . , yp (due to linearly indepence
of A1, . . . , Ak). Applying this fact to (SDPc) we have X = G(y) ≥ 0 and
tr(CtG((y)) should be minimized which is

tr(Ct(G0 + y1G1 + · · ·+ ypGp)) =tr(CtG0 + (CtG1)y1 + · · ·+ (CtGp)yp)

=tr(CtG0) + tr(CtG1)y1 + · · ·+ tr(CtGp)yp.

Since tr(CtG0) is a constant, the (SDPc) is equivalent to:

min c1y1 + · · ·+ cpyp

s.t. G(y) � 0,

where ci = tr(CtGi), i = 1, . . . , p. This is in the form of (SDP�).To show
the other direction, let Z := B −∑k

i=1 xiBi. This will be our new variable
matrix. Thus, we have the variables Z and k scalars x1, . . . , xk. Denote
Z = (zij), B = (bij), Bl = (blij), l = 1, . . . , k, i, j = 1, . . . , n. Then

Z = B −
k∑

l=1

xlBl ⇔ zij = bij −
k∑

l=1

xlb
l
ij , i, j = 1, . . . , n.

Clearly, they are linear constraints. Hence (SDP�) becomes

max ctkx

s.t.
k∑

l=1

blijxl + zij = bij , i, j = 1, . . . n.

Z � 0.

Since x′is free variables, we use the usual trick to convert them to positive
ones by introducing x+i ≥ 0, x−i ≥ 0 such that xi = x+i −x−i , i.e x = x+−x−.
Then the above program is turned to:

max ct(x+ − x−)

s.t.
k∑

l=1

blij(x
+
l − x−l ) + zij = bij , i, j = 1, . . . n

Z � 0, x+l ≥ 0, x−l ≥ 0.
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Finally, we define:

C =





On 0 0
0 diag(c) 0
0 0 −diag(c)





Aij =





Eij 0 0
0 diag(a1ij , . . . , a

k
ij) 0

0 0 −diag(a1ij , . . . , a
k
ij)



 , i, j = 1, . . . , n

where On is the n × n-zero matrix and Eij has all entries 0 expect 1 at
(i, j) and diag(c) is the diagonal matrix with elements c at diagonal. Thus
(SDP�) is converted to

mim tr(CtX)

s.t. tr(At
ijX) = bij , i, j = 1, . . . n.

X � 0,

with the variable matrix

X =





Z 0 0
0 diag(x+) 0
0 0 diag(x−)



 .

Note that C,Aij and X are of size (n+2k)× (n+2k). Thus X ∈ Sn+2k
+ .

Rendel in [24] discusses the duality for the semidefinite programming,
and apply it to approximate integer problems. Another strength is based
on transformations into semidefinite programming. The following lemma is
very powerful in both the process of transformations and in the constructions
of primal-dual algorithms.

Lemma 2.5.1. (Schur complement, [2]) Let X be decomposed as follows

X =

[
A B
Bt C

]

� 0 ⇔ S = C −BtA−1B � 0,

where the matrices A,C � 0, symmetric,and det(A) 6= 0 ⇔ A−BCtB � 0.

Proof. Apply Definition 2.5.1, and simplify with the rules of algebra:

0 �
[
x, y

]t
[
A B
Bt C

] [
x
y

]

=
[
x, y

]t
[
Ax+By
Btx+ Cy

]

= xtAx+ 2xtBty + ytCy.

This is equivalent to f(x, y) = xtAx+2xtBy+ytCy � 0, where A is positive
definite by assumption. Differentiate f w.r.t x, and solve for x = −A−1By,
and with optimal value −ytBA−1Bty + ytCy = yt(C −BA−1Bt)y.
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Example 2.5.2. [9] Derive an expression for the inverse Schur complement.

[
A B
Bt C

] [
x
y

]

=

[
u
v

]

.

where A is invertible, i.e det(A) 6= 0. Consider the following two systems of
equations:

Ax+By = u

Btx+ Cy = v.

Solve the first equation for x:

Ax = u−By

x = A−1(u−By),

and substitute in the second equation:

Btx+ Cy = Bt(A−1(u−By)) + Cy = BtA−1u−A−1BtBy + Cy

= BtA−1u+ y(C −BtA−1B)

= BtA−1u+ yS

= v,

where S is the Schur complement of A in x. Solve this equation for y:

v = BtA−1u+ yS

yS = v −BtA−1u

y = S−1(v −BtA−1u),

and insert the above expression in x:

x = A−1(u−By)

= A−1(u−B(S−1(v −BtA−1u)

= u(A−1 +A−1BS−1BtA−1)−A−1BS−1v.

[
A B
Bt C

]−1

=

[
A−1 +A−1BS−1BtA−1 −A−1BS−1

−S−1BtA−1 S−1

]

.

Example 2.5.3. ([9], Ex. 4.40) Transform the second order cone program-
ming to a semidefinite programming problem.

min f tx

s.t. ||Aix+ bi|| ≤ ctix+ di, i = 1, . . . ,m.
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Introduce the variable t, and let ||Ai + bi|| � t2I.

min f tx

s.t.

[
(ctix+ di)I Aix+ bi
(Aix+ bi)

t (cti + di)I

]

� 0.

Example 2.5.4. [15] Transform the matrix fractional programming to a
semidefinite programming problem.

min (Ax+ b)t(A0 + x1A1 + ...+ xnAn)
−1(Ax+ b)

s.t. A0 + x1A1 + ....+ xnAn ≻ 0

x ≥ 0,

where A(x) = A0 + x1A1 + ... + xnAn, and the inequality constraint de-
fines a strict matrix inequality, i.e (A ≻ B). Apply Definition 2.5.3, and
Lemma 2.5.1:

min t

s.t.

[
A(x) Ax+ b

(Ax+ b)t t

]

� 0.

Remark. In the case when A � B then the matrix fractional problem could
instead be restated more efficiently as a second order cone programming [15].

The first appearances of semidefinite programming is the Shannon ca-
pacity problem of a graph G, and it is related to efficiency [10, 7].

Definition 2.5.5. (Strong product of graphs, [10]) The strong product of
G1 ⊞G2 of two graphs G1 = (V1, E1), G2 = (V2, E2) has vertex set

V1 × V2 = {(u1, u2) : u1 ∈ V1, u2 ∈ V2}

with (u1, u2) 6= (v1, v2) adjacent if and only if ui = vi or uivi ∈ Ei for
i = 1, 2.

Definition 2.5.6. (Shannon capacity of a graph, [10]) The Shannon capac-
ity of a graph G = (V,E) is defined as

ϑ(G) := limr→∞α(G
r)

1

r ,

where α(Gr) is the maximum number of words of length r in G.

Theorem 2.5.1. (Lovász theta function of G, [10]) Let two graphs G1 =
(V1, E1), G2 = (V2, E2) be given. Then

ϑ(G1 ∗G2) = ϑ(G1)ϑ(G2).
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Proposition 2.5.2. (The ϑ(G) is the optimum of the following semidefinite
programming problem, [7])

min ϑ(G) = t
s.t. Y � tI

Yii = 1, i ∈ V,
Yij = 1, (i, j) /∈ E

max ϑ(G) = tr(JX)
s.t. tr(X) = 1

Xij = 0, (i, j) ∈ E,
X � 0,

where the matrix J has all entries equal to 1.

2.5.3 Duality of SDP

Proposition 2.5.3. (Weak duality, [27]) If X is feasible in the primal stan-
dard form and (y, S) in the dual then

tr(CX)− bty = tr(XS) ≥ 0.

Proof. Apply the Definitions 2.5.1, 2.5.2, and 2.5.3:

tr(CX)− bty = tr((
m∑

i=1

yiAi + S)X)− bty

=
m∑

i=1

tr((AiX)yi) + tr(SX)− bty

= tr(SX)

= tr(XS) ≥ 0

Since X ∈ Sn
+ and S ∈ Sn

+.

Theorem 2.5.2. (Slaterś regularity condition, [10]) If there exists feasible
point in the primal and dual problem s.t. X ≻ 0, S ≻ 0 then p∗ = d∗.

Zhang, Chen and Zhang in [32] emphasizes nonattainment of optimal
value occurs in semidefinite programming, motivated to utilize slaterś con-
straint qualification. Ramana in [22] have also regarded the duality in
semidefinite programming, proposed to examine an exact duality theory,
and investigate its consequences. The differences among these duality ap-
proaches are embedded in the variation to verify the absence of duality gap.
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2.5.4 The duality gap from a geometric point of view

In constrast to LP, it is no longer true that optimality implies that the opti-
mal dual objective value is equal to the optimal value of the primal as shown
in Table 1.

So, the optimal value of dual (if feasible) is a lower bound of the optimal
value of the primal, called weak duality. The gap between a dual feasible
solution (y, S) and a primal feasible solution X is

tr(CX)−
m∑

i=1

biyi = tr((
m∑

i=1

yiAi + S)X)−
m∑

i=1

yitr(AiX) = tr(SX) ≥ 0

If tr(SX) = 0, then this primal-dual pair is an optimal solution. Unlike
LP, it is no longer true that optimality implies tr(SX) = 0. Consider the
following example:

Example 2.5.5. (A finite duality gap by a straight algebraic derivation of
the dual problem, [13])

min x12

s.t.





0 x12 0
x12 x22 0
0 0 1 + x12



 � 0.

In matrix form

C =





0 1
2 0

1
2 0 0
0 0 0



 , A1 =





0 −1
2 0

−1
2 0 0
0 0 1



 , A2 =





1 0 0
0 0 0
0 0 0



 ,

A3 =





0 0 1
0 0 0
1 0 0



 , A4 =





0 0 0
0 0 1
0 1 0



 , b =







1
0
0
0







Dualization yields

max y1

s.t. Z = C − y1A1 − y2A2 − y3A3 − y4A4 � 0.

⇔ max y1

s.t. Z =





−y2 1+y2
2 −y3

1+y1
2 0 −y4

−y3 −y4 −y1



 � 0.
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If the primal matrix is PSD, then x12 = 0, because x11 = 0. In the same
manner, z22 = 0 implies that y1 = −1 in the dual problem. The duality gap
is 1.

Next, we show the gap is closed if a smart transformation is made to an
equivalent problem. If X � 0 then X = PWP t � 0, for W � 0, where we

choose for example P =





0 0
1 0
0 1



. The choice of P will be discussed later.

So replacement of X � 0 by X̃ = PWP t � 0 with W � 0 does not change
the primal problem, since

X̃ =





0 0
1 0
0 1





[
w11 w12

w21 w22

] [
0 1 0
0 0 1

]

=





0 0 0
0 w11 w12

0 w21 w22



 ,

and tr(CX̃) = 0, tr(A1X̃) = w22, tr(A2X̃) = 0, tr(A3X̃) = 0, tr(A4X̃) =

2w12 = 0. This yields the optimal solution X̃∗ =





0 0 0
0 w11 0
0 0 1



.

Now dualizing min tr(CX̃) s.t tr(A1X̃) = 1, tr(A2X̃) = 0, tr(A3X̃) =
0, tr(A4X̃) = 0, X̃ � 0. We have

max y1

s.t. Z =





−y2 1+y2
2 −y3

1+y1
2 0 −y4

−y3 −y4 −y1



 � 0.

So, Z must be psd with respect to the subspace spanned by the columns of
P . So

[
0 1 0
0 0 1

]




−y2 1+y1
2 −y3

1+y1
2 0 −y4

−y3 −y4 −y1









0 0
1 0
0 1



 =

[
0 −y4

−y4 −y1

]

� 0

Showing that y1 = 0. Now the duality gap is 0. This shows that a pure
algebraic derivation of the dual problem, as done in the beginning is not
sufficient, we have to consider the geometry of the feasible set. This moti-
vates the study of faces of semidefinite cones. To make the later section on
first regulaizaton method meaningful for SDP we are going to give a more
detail discussion on faces of semidefinite cones. As demostrated above, it
has heavy geometric arguments. We carry out most properties by matrix
theory.
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2.5.5 Characterization of faces of the semidefinite cone

We start by the cone of the nonnegative orthant in Rn. Then we discuss
the cone of positive semidefinite matrices.

Definition 2.5.7. (A nice cone and face, [21]) A closed convex cone K is
called nice, if the set K∗ + F⊥ is closed for all F ⊳ K.

Example 2.5.6. (The nonnegative orthant Rn
+) Let x ∈ Rn

+. Then the
minimal face of Rn

+ contaning {x} is the set

F (x,Rn
+) := {y ∈ Rn

+ : yi = 0, ∀i such that xi = 0}

This face can be transformed to the form F (

[
e
0

]

,Rn
+), by permutation of

components, for an e appropriate size.

Example 2.5.7. (Semidefinite cone Sn
+). For P ∈ Sn

+, the minimal face of
Sn
+ consisting P is the set

F (P, Sn
+) := {X ∈ Sn

+ : R(X) ⊆ R(P )}

where R(·) is the range space (or image) of the matrix.

The proof of this characterization of minimal faces is much involved in
e.g.[4]. But it is useful. This characterization can be reformulated as follows:

Theorem 2.5.3. F is a face of Sn
+ if and only if

F = {Om×n} or F = {X : X = PWP t,W ∈ Sk
+}

for some k ∈ {1, 2, . . . , n}, P ∈ Rm×k with rank k.

Remark. This theorem explains why we choose such a matrix P =





0 0
1 0
0 1





in the motivating Example 2.5.5.

Since any matrix A ∈ Sn
+ can be transformed by a full rank assuming k

matrix V such that V tAV in the form

[
x 0
0 0

]

for x ∈ Sk
+, the face can be

in the form

F = {
[
x 0
0 0

]

x ∈ Sk
+}.

Here we give an elementary proof.
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Proof. Observe that F is a convex cone in Sn
+. Next observation is we can

choose P with orthonormal columns, so P tP = Fk. Now, supposeX,Y ∈ Sn
+

such that X + Y ∈ F . Then X + Y = PWP t for some W ∈ Sk
+. Then

P tXP +P tY P =W and P tXP � 0 and P tY P � 0 since X,Y ∈ Sn
+. These

inequalities imply that

P tXP = BX and P tY P = BY

for some BX , BY ∈ Sk
+ therefore X,Y ∈ F so F ⊳ Sn

+.

Definition 2.5.8. (Exposed cone) A face F ⊳ K is exposed if there is a
φ ∈ K∗ such that

F = {x ∈ K : 〈φ, x〉 = 0} = k ∩ {φ}⊥

A cone is facially exposed if every face F ⊳ K is exposed. We need
following result to describe exposed face containing the face F .

Proposition 2.5.4. Let K and F be arbitrary convex cones. If F ⊆ K,
then F c := F⊥ ∩K∗ ⊳ K∗. We call F c the conjugate face.

Proof. Clearly F c ⊆ K∗ by definition. Since K∗ and F⊥ are convex cones,
the intersection of them is a convex cone. Thus F c is a convex cone. To
show F c is a face of K∗, pick up x, y ∈ K∗ such that x + y ∈ F c (since
K∗ is convex), i.e 〈x + y, z〉 = 0 for z ∈ F . Then z ∈ F ⊂ K implies
〈x, z〉 ≥ 0, 〈y, z〉 ≥ 0 and 0 = 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉. Hence 〈x, z〉 =
〈y, z〉 = 0, ∀z ∈ F so x, y ∈ F⊥. Now, x, y ∈ K∗, we have x, y ∈ F c. Thus
F c ⊳ K∗.

Proposition 2.5.5. If F ⊳ K,φ ∈ F c, then

F ⊳ K ∩ {φ}⊥ ⊳ K.

Remark. This result shows that each point in F c defines an exposed face
containing F .

Proof. Since F is a face, F ⊆ K, φ ∈ F c implies φ ∈ F⊥. So, F ⊆ K ∩{φ}⊥
which is clearly a convex cone. Let x, y ∈ K ∩ {φ}⊥ such that x + y ∈ F .
Since x, y ∈ K and F ⊳ K, we have x, y ∈ F . Showing that F ⊳ K ∩ {φ}⊥.

Next, we show that K ∩ {φ}⊥ is a face of K. Note that K ∩ {φ}⊥ ⊂ K.
Let x, y ∈ K such that x + y ∈ K ∩ {φ}⊥. Then φ ∈ K∗ implies that
〈φ, x〉 ≥ 0, 〈φ, y〉 ≥ 0 and 0 = 〈φ, x+y〉 = 〈φ, x〉+〈φ, y〉 so 〈φ, x〉 = 〈φ, y〉 = 0
proving that x, y ∈ K ∩ {φ}⊥, hence K ∩ {φ}⊥ ⊳ K.
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Now, we can rephrase Theorem 7.1 in [8]. To make it comparable with
Farkas lemma , we set up more compact notation. We define the linear map
A : Sn → Rm by

AX =






〈A1, X〉
...

〈Am, X〉






and the adjoint operator to A, denoted by A∗ : Rm → Sn defined by
A∗y =

∑m
i=1 yiAi.

Theorem 2.5.4. Exactly one of the following systems has solution:

I. 0 6= X � 0,AX = 0, 〈C,X〉 ≤ 0.

II. A∗y ≺ C.

Furthermore, if there exists X ∈ Sn
+ such that AX = 0 and 〈C,X〉 < 0, then

the system A∗X � C is also infeasible.

Proof. Suppose there exists 0 6= X � 0 such that AX = 0 and 〈C,X〉 ≤ 0.
Assume contradiction there is y ∈ Rm s.t. A∗y ≺ C. Then

0 < 〈C −A∗y,X〉 = 〈C,X〉 − 〈A∗y,X〉 = 〈C,X〉 ≤ 0.

This is a contradiction so there is no such y ∈ Rm such that A∗y ≺ C.
Suppose that C − A∗y ∈ Sn

++ for all y ∈ Rm. First we note that C /∈
Sn
++ + A∗(Rm). Since Sn

++ + A∗(Rm) is a convex cone, by hyperplane
separation there exists X 6= 0 and β ∈ R such that

〈C,X〉 ≤ β ≤ 〈S +A∗y,X〉, ∀S ∈ Sn
++, y ∈ Rm

Taking y = 0 we have X � 0. To show this, we assume contradiction
that X /∈ Sn

+, that is, there is a v 6= 0 such that vtXv < 0, then take
S = tvvt + I ≻ 0 for t > 0, we have

β ≤ 〈tvvt + I,X〉
= 〈tvvt, X〉+ 〈I,X〉
= tvtxv + 〈I,X〉

by the property of the trace (i.e. tr(AB) = tr(BA) ). Letting t → ∞
yields tV tXV + 〈I,X〉 → −∞ so β ≤ −∞, contradicting β ≥ 〈C,X〉 a fixed
number so X must be PSD.

Taking S = 1
t
I, y = −tAX for t > 0, we would have AX = 0. Otherwise

β ≤ 〈1
t
I +A∗(−tAX), X〉 = 1

t
〈I,X〉 − t(AX,X) → −∞ as t→ ∞,
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a contradiction. If we choose S = 1
t
I for t > 0 and y = 0, we have 〈C,X〉 ≤

0, because

〈C,X〉 ≤ β ≤ 〈1
t
I,X〉 → 0 as t→ ∞

Therefore, there is X 6= 0, X � 0 such that AX = 0 and 〈C,X〉 ≤ 0.

Finally, assume there is an X ∈ Sn
+,AX = 0, 〈C,X〉 < 0. To show

the last statement we assume again contradiction that there is ỹ such that
A∗ỹ � C. Set S̃ := C −A∗ỹ. Then S̃ � 0. Consequently

0 > 〈C,X〉 = 〈S̃ +A∗ỹ, X〉 = 〈S̃,X〉+ 〈ỹ, AX〉 = 〈S̃,X〉

which is impossible.

Since the conjugate face can be viewed as a collection of exposed faces
(Proposition 2.5.4) it is our intention to give such a description of the conju-
gate face of the minimal face of a feasible set of SDP problem. The theorem
above provides such a possibility.

Proposition 2.5.6. Let FD := face(FD) where

FD := {S ∈ Sn
+ : S = C −A∗y, for some y ∈ Rm}.

If FD 6= ∅, then face ({X ∈ Sn
+ : AX = 0, 〈C,X〉 = 0}) ⊳ F c

D. Here
face(FD) and the similar stands for the minimal face of FD.

Proof. AssumeX ∈ Sn
+ such that AX = 0 and 〈C,X〉 = 0. If S = C−A∗y ∈

FD, then compute 〈S,X〉

〈S,X〉 = 〈C −A∗y,X〉 = 〈C,X〉 − 〈A∗y,X〉
= 〈C,X〉 − 〈y,A∗X〉 = 〈C,X〉 = 0.

Therefore 〈S,X〉 = 0, ∀S ∈ FD, implying X ∈ F⊥
D . Now FD 6= ∅. So there

is some S̄ ∈ ri(FD). We have for S̄ the decomposition S̄ = UΛU t with
U ∈ Rm×k whose columns are orthonormal and Λ being diagonal in Sk

++.
Then FD = USk

+U
t. Further, 0 = S̄X = UΛU tX implies ΛU tX = 0 ⇒

U tX = 0 ⇒ X ∈ F⊥
D ⇒ X ∈ F c

D. Hence

{X ∈ Sn
+ : AX = 0, 〈C,X〉 = 0} ⊆ F c

D

so

face({X ∈ Sn
+ : AX = 0, 〈C,X〉 = 0}) ⊳ F c

D.
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An immediate consequence is the following result:

Corollary 2.5.1. Let FD := face(FD). If FD 6= ∅ and X ∈ Sn
+ satisfying

AX = 0 and 〈C,X〉 = 0, then

FD ⊳ Sn
+ ∩ {X}⊥ = USk

+U
t,

where U ∈ Rn×k is of full column rank and R(U) = N (X).

Proof. By Proposition 2.5.6, X ∈ F c
D. By Proposition 2.5.5, FD ⊳ Sn

+ ∩
{X}⊥. It remains to prove

Sn
+ ∩ {X}⊥ = USk

+U
t

with the required properties for U . Let F := USk
+U

t. To process, we prove
the following things:

(a) Let U ∈ Rn×k. Then

Y ∈ USk
+U

t ⇔ Y � 0 and R(Y ) ⊆ R(U).

(b) F = {X ∈ Sn
+ : R(X) ⊆ R(U)} = {X ∈ Sn

+ : R(V ) ⊆ N (X)} where V
is such that the matrix (U, V ) is orthogonal.

(c) ri(F ) = USk
+U

t = {X ∈ Sn
+ : R(X) = R(U)}; ri(F c) = V Sn−k

++ V t =
{Y ∈ Sn

+}.

Proof of (a): Assume Y ∈ USk
+U

t. Then Y � 0. For any y ∈ R(Y ) i.e.
there exists an x ∈ Rn such that

y = Y x = USU tx ∈ R(U) for S ∈ Sk
+.

So R(Y ) ⊆ R(U). Now, assume Y � 0 and R(Y ) ⊆ R(U). Since
Y � 0 then there exists V such that Y = V V t with V � 0 and
obviously R(V ) = R(Y ) so there exists Φ ∈ Rk×n such that V = UΦ
so that Y = UZU t with Z := ΦΦt ∈ Sk

+ from which we conclude that
Y ∈ USk

+U
t.

Proof of (b): The first equality follows from (a). The second follows from
the fact that R(X) ⊂ R(U) ⇔ R(U)⊥ ⊂ R(X)⊥ ⇔ R(V ) ⊂ N (X).

Proof of (c): Assume X = UΣU t ∈ ri(F ). Let Y = UU t. Then Y ∈ F .
So there is µ > 1 such that (1 − µ)Y + µX ∈ F [25]. Hence there is
Z ∈ Sk

+ such that

UZU t = (1− µ)Y + µX = U((1− µ)I + µΣ)U t

Since U tU = I, we have Z = (1−µ)I +µΣ ⇔ Σ = 1
µ
Z+ µ−1

µ
I ∈ Sn

++.

Therefore, X ∈ USk
++U

t. Since U has full column rank, by (a) we
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have R(X) = R(U).

Conversely, assume X ∈ Sn
+ such that R(X) = R(U). We know that

U is of full column rank by (a), X = UΣU t for some Σ ∈ Sk
++. To

prove X ∈ ri(F ), we can prove that for all Y ∈ F , there is some
µ > 1 such that (1− µ)Y + µX ∈ F . Let Y = UΦU t ∈ F . Obviously
Sn
++ = int(Sn

+). If Σ ∈ Sk
++,Φ ∈ Sk

+, there is some µ > 1 such that
(1− µ)Φ + µΣ ∈ Sk

+. Hence

(1− µ)Y + µX = U((1− µ)Φ + µΣ)U t ∈ USk
+U

t = F

implying X ∈ ri(F ). The other part is proved in similar manner.
Now assume X = V ΦV t ∈ ri(F c). If Y = UΣU t ∈ F then Y X = 0
since U tV = 0. Then Y ∈ Sn

+ ∩ {X}⊥. On the other direction,
Y ∈ Sn

+ ∩ {X}⊥. Then V ΦV tY = XY = 0 ⇒ V tY = 0 due to the
fact V tV = I and I ≻ 0 ⇒ R(Y ) ⊆ N (V t) = R(U). By (b) we have
Y ∈ F so F = Sn

+ ∩ {X}⊥
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2.6 Efficiency

It has almost taken ten years to achive the efficiency with interior point
methods [10]. Several studies have discussed the interior point method and
efficiency under the composed name “state of the art” [10, 16]. Thus a se-
ries of improvments of several algorithms have reinforced aspects such as
control, and stability.

Lustig, Marsten, and Shanno in [16] highlight the implementation pro-
cess to develop a successful code. An efficient algorithm or code is indeed a
technical priori, and to match the input and output optimal.

Vandenberghe, Boyd [28] have also noted the objective efficiency in re-
lation to interior point methods, and divide efficiency into three levels. The
first level ”practical efficiency“ corresponds to a competitive factor. This
level represents an effective approach for small, medium, and large scale
problems in finite steps. The second level is called ”theoretical efficiency“,
and it responds to semidefinite programming, interior point methods based
on a worse case analysis. The last level considers each solution iteration step
individually, and is realized as ”ability to exploit problem structure“ [28].

To accomplish zero duality gap is related to regularization methods
[8, 17]. For instance, Malick et al [17] use the quadratic term to handle the
aspect stability, and Borwein, Wolkowicz [8] apply instead succesive prob-
lem reduction. Another argued approach for these reasons is for instance
the extended Lagrange slater dual [32, 23]. A third approach consider con-
sequently an exact duality theory [22]. These three approaches demonstrate
the theoretical and methodological perspectives to handle the duality gap
efficiently.
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3 Regularization methods

This section presents two regularization methods. The first method is based
on abstract convex analysis, and the second utilizes the semidefinite pro-
gramming. These methods have in common the primal regularization tech-
nique.

3.1 Abstract convex regularization

Borwein and Wolkowicz in [8] present an algorithm to regularize the pri-
mal problem based on abstract convex analysis. The main idea with the
algorithm is to transform the primal problem into a new primal problem
on an exposed subface contained in the minimal cone. Hence, the new pri-
mal problem validated the extended slaterś constraint qualification. Lustig,
Marsten, and Shannon in [16] highlight problem size reduction as an im-
portant factor for large scale problems. Wolkowicz in [30] validated another
approach regarding problem size, to regularize by adding or substitution of
a finite number of linear constraints.

The algorithm in [8] consists of determining two cones, the minimal cone
of the feasible set Sf , and the cone of direction of constancy of g D=

g (S
f ).

The algorithm holds in the case g is weakly faithfully convex. Although g is
not weakly faithfully convex, the algorithm works as well by adding an ad-
ditional condition. In the case of faithfully S-convex function, the algorithm
is modified. Furthermore, in the case of the not weakly faithfully convex
and the faithfully S-convex adjustments required affect the algorithm speed
[8].

Borwein and Wolkowicz in [8] have also clarified the limitations of the
regularization method. The first limitation is concerned with the new primal
problem, the extended slaters constraint qualification which holds valid for
subfaces. Secondly, if the optimal point does not satisfy the Kuhn-Tucker
condition, then it could affect the stability [8].

Before we present the algorithm, regard some notations. The annihilator
to the cone K is marked byK⊥ = K+∩(−K+), whereK+ is the nonnegative
dual cone. The generalized inverse of the matrix A is expressed as A⊤. In
this section we also use φ⊥ instead of {φ}⊥. We consider explicit the real
case of analytic functions in several variables.
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3.1.1 Algorithm I

The following algorithm describes how to determine the minimal cone, cones
of directions of constancy. Assume g is weakly faithfully convex. The itera-
tions are repeated until all mi = 0 [8].

Initialization step Let x̄ be an optimal point in the feasible set. Set

Ω0 = Ω− x̄,

m0 = dimRm,

Q0 = Im0×m0
,

S0 = S,

n0 = dimRn,

P0 = In0×n0
,

i = 0,

and preceed to main step.

Main step i-th step (0 ≤ i ≤ t). If mi > 0 consider the system

Ω+
i ∩ [∂φiQig(x̄)]Pi 6= ∅

φiQig(x̄) = 0, 0 6= φi = S+
i .

(a) If the system is consistent, use algorithm A to find ni-by-ni+1

matrix Ai+1 satisfied by:

R(Ai+1) = D=
(φiQig)Pi

Then set:

mi+1 = mi − 1 = dimφ⊥i

Bi+1 : φi
onto−−→ Rmi+1

N (Bi+1) = span{φi},with Bi+1 = [1], if mi+1 = 0

Pi+1 = PiAi+1

Qi+1 = Bi+1Qi

Ei = Si ∩ φ⊥i
Si+1 = Bi+1Ei

Ωi+1 = A+
i+1{Ωi ∩R(Ai+1)}

and iterate the main step i+ 1.

(b) If the system is inconsistent or mi = 0 stop.

Sf = B+
1 B

+
2 . . . B

+
i Si

D=
g (S

f ) = R(Pi).
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The regularized primal and dual problem becomes:

inf f(x)

s.t g(x) �St
0

x ∈ Ωt

where,

St = Sf , φi ∈ St
i , Si+1 = (Si ∩ φ⊥i ),Ωt = (x+ ∩t

i=1D
=
φig

) ∩ Ω.

The associated regularized dual is given by:

sup LH(λ)

s.t λ ∈ (Sf )+,

and the restricted Lagrangian is LH(λ) = inf{f(x) + λg(x) : x ∈ x̂+D=
φg}.

Example 3.1.1. [8, 30] Let S = R7
+, g : R5 → R7. Determine Sf and D=

g .

g1(x) = ex1 + x22 − 1 ≤ 0

g2(x) = x21 + x22 + e−x3 − 1 ≤ 0

g3(x) = x1 + x24 + x25 − 1 ≤ 0

g4(x) = e−x2 − 1 ≤ 0

g5(x) = (x1 − 1)2 + x22 − 1 ≤ 0

g6(x) = x1 + e−x4 − 1 ≤ 0

g7(x) = x2 + e−x5 − 1 ≤ 0,

x1, x2, x3, x4, x5 ≥ 0.

We begin by consider the set of active inequality constraints g1, g3, g4, g5,
and an optimal point x̄ = (0, 0, 1, 1√

2
, 1√

2
). Next, compute the active con-

straints partial derivatives at the optimal point:

∇g1(x̄) =









1
0
0
0
0









∇g3(x̄) =









1
0
0√
2√
2









∇g4(x̄) =









0
−1
0
0
0









∇g5(x̄) =









−2
0
0
0
0









.
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Initialization step

According to initialization step, we define the following:

Ω0 = R5,

m0 = 7,

Q0 = I7×7,

S0 = R7
+,

n0 = 5,

P0 = A0 = I5×5,

i = 0.

Step 0

Solve the following system of equations:

λ1









1
0
0
0
0









+ λ3









1
0
0√
2√
2









+ λ4









0
−1
0
0
0









+ λ5









−2
0
0
0
0









=









0
0
0
0
0









,

where λ1 + λ3 + λ4 + λ5 = 1, λk ≥ 0.







λ1 + λ3 − 2λ5 = 0

−λ4 = 0√
2λ3 = 0√
2λ3 = 0,

which provides λ3 = 0, λ4 = 0, λ5 =
1
3 , λ1 =

2
3 for i = 1, 3, 4, 5.

φt0 = (
2

3
, 0, 0, 0,

1

3
, 0, 0)

⇒ [φt0Q0g]P0 = φt0













1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

























g1
g2
g3
g4
g5
g6
g7





















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1








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=
[
2
3 , 0, 0, 0,

1
3 , 0, 0

]













g1
g2
g3
g4
g5
g6
g7





















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









=
2

3
g1 +

1

3
g5.

Next, select P1 = P0A1 = A0A1 = A1 such that

P1 = A1 =









0 0 0
0 0 0
1 0 0
0 1 0
0 0 1









Q1 = B1Q0 = B1 =











0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
−1 0 0 0 2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1











,

E0 = {s = (si) ∈ R7
+ : s1 = s5 = 0}

S1 = {s = (si) ∈ R6
+ : s4 = 0}

Ω1 = R3.

Step 1

The vector φt1 = (0, 0, 1, 0, 0, 0) solves the main step system.

[φt1Q1g]P1 = [g4]P1.

Then

A2 =





1 0 0
0 1 0
0 0 1



 ,

P2 = P1A2 =









0 0 0
0 0 0
1 0 0
0 1 0
0 0 1













1 0 0
0 1 0
0 0 1



 = P1 =





1 0 0
0 1 0
0 0 1




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B2 =









1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1









Q2 =









0 1 0 0 0 0 0
0 0 1 0 0 0 0
−1 0 0 0 2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1









E1 = {s = (si) ∈ R6
+ : s3 = s4 = 0}

S2 = {s = (si) ∈ R5
+ : s3 = 0}

Ω2 = R3.

Step 2

The vector φt2 = (0, 0, 1, 0, 0) solve the main step system.

[φt2Q2g]P3 = 0.

Then

A3 =





1 0 0
0 1 0
0 0 1



 ,

P3 = P2

B3 =







1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1







Q3 =







0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1






,

E2 = S2

S3 = R4
+

Ω3 = R3.
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Step 3

φt3 = (λi) ∈ S⊥
3 .

The main step system becomes λi ≥ 0,

0 = φt3Q3g(x̄) = (λ1g2 + λ2g3 + λ3g6 + λ4g7)(x̄)

0 ∈ [∂φt3Q3g(x̄)]P3 = [(λ1∇g2 + λ2∇g3 + λ3∇g6 + λ4∇g7)(x̄)]P3,

and since g2, g6, g7 is in the complement of the active constraints, we get:

λ1 = λ3 = λ4 = 0, λ2 > 0

0 = [λ2∇g3(x̄)]P3,

which is inconsistent.

Conclusion

The minimal cone:

Sf = B+
0 B

+
1 B

+
2 B

+
3 S3

= Bt
1B

t
2B

t
3R

4
+

=













0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1













= {s = (si) ∈ R7
+ : s1 = s4 = s5 = 0}.

The cone of direction of constancy:

D=
g (D

f ) = R(P3) = {d = (di) ∈ R5 : d1 = d2 = 0}.
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3.1.2 Facial reduction in SDP

For SDP the facial is much easier. Now we turn to facial reduction in SDP.
We consider the conic standard form

min 〈C,X〉
s.t. 〈Ai, X〉 = bi, i = 1, ...,m

X ∈ Sn
+

where Ai ∈ Sn, i = 1, . . . ,m are linearly independent, b ∈ Rm, and C ∈ Sn.
Let U ∈ Rn×k have full column rank such that

face({X ∈ Sn
+ : 〈Ai, X〉 = bi, ∀i}) = USk

+U
t

Then the (SDPc) is equivalent to the strictly feasible problem

min 〈C,UZU t〉
s.t. 〈Ai, UZU

t〉 = bi, i = 1, ...,m

Z ∈ Sn
++

⇔ min 〈UCU t, Z〉
s.t. 〈UAiU

t, Z〉 = bi, i = 1, ...,m

Z ∈ Sn
++

Set C̃i := U tCU, Ãi := U tAiU , we have

min 〈C̃, Z〉
s.t. 〈Ãi, Z〉 = bi, i = 1, ...,m

Z ∈ Sn
++

Let A : Sn → Rm be defined by AX =






〈Ã1, Z〉
...

〈Ãm, Z〉




. By Theorem 2.5.4,

if (SDPc) is feasible then it is not strictly feasible if and only if there is a
y ∈ Rm such that A∗y 6= 0 and A∗y ≻ 0 and bty = 0. Furthermore, if
y ∈ Rm is such that A∗y 6= 0 and A∗y � 0 and bty = 0 then

face{X ∈ Sn
+ : AX = b} ⊳ Sn

+ ∩ {A∗y}⊥ = USk
+U

t
⊳ Sm

+

where U ∈ Rn×k is of full column rank and R(U) = N (A∗y). If the set of
matrices {Ãi, i = 1, . . . ,m} is linearly dependent, we can choose a maximal
subset I ⊂ {1, 2, . . . ,m} such that {Ai}i∈I is linearly independent.
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Assume that the number of I is l. Then b̄ ∈ Rl. Therefore the (SPDc)
is reduced to:

min 〈C̄, Z〉
s.t. ĀZ = b̄

Z ∈ Sk
+

where Ā : Sk → Rl is defined by ĀZ =






〈Ā1, Z〉
...

〈Āl, Z〉




.

In conclusion, facial reduction is a method of regularization of bad SDP
problem, i.e. we can close the duality gap by solving the problem on a
smaller positive semidefinite cone.
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3.2 Quadratic regularization

Malick et al in [17] present a regularization algorithm for standard semidef-
inite programming, and it fits for several classes of large scale problems. A
general regularization algorithm is created by combining two separate reg-
ularize algorithms. These parts assign to regularize the primal semidefinite
problem by Moreeau Yosida regularization, and its dual by the augmented
Lagrangian method. Both these approaches are based on quadratic regular-
ization, and are equivalent [17].

The idea to apply quadratic regulariztion to linear semidefinite program-
ming is to stabilize the problems. In addition, under certain conditions the
augumented dual Lagrangian function concides with the dual of the Moreau
Yosida regulariztion [17].

We begin to consider the equivalent SDP problem [17]:

min 〈C,X〉+ 1

2t
||X − Y ||2

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m,X � 0, Y ∈ Sn.

Simplfy the norm ||.||:

||X − Y ||2 = 〈X − Y,X − Y 〉 = 〈X,X〉 − 2〈X,Y 〉+ 〈Y, Y 〉.

Insert in the Moreau Yosida regularization Ft(Y ), and let t > 0:

Ft(Y ) = min{〈C,X〉+ 1

2t
(〈X,X〉 − 2〈X,Y 〉+ 〈Y, Y 〉) : X � 0,AX = b}

= min{〈C,X〉+ 〈X,X〉
2t

− 〈X,Y 〉
t

+
〈Y, Y 〉
2t

: X � 0,AX = b}

We have the Lagrangian dual function:

Θt(λ, Z) = inf{〈C,X〉+ 〈X,X〉
2t

− 〈X,Y 〉
t

+
〈Y, Y 〉
2t

− 〈λ,AX − b〉 − 〈Z,X〉 : X ∈ Sn}

= inf{〈C,X〉+ 〈X,X〉
2t

− 〈X,Y 〉
t

+
〈Y, Y 〉
2t

+ 〈λ, b〉 − 〈A∗λ,X〉 − 〈Z,X〉 : X ∈ Sn},

where AX =






〈A1, X〉
...

〈Am, X〉




, λ ∈ Rm, Z ∈ Sn

+. Now, we compute Θt(λ, Z).

Let

Lλ(X,Z) := 〈C,X〉+ 〈X,X〉
2t

− 〈X,Y 〉
t

+
〈Y, Y 〉
2t

+ 〈λ, b〉 − 〈A∗λ,X〉 − 〈Z,X〉
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Note that the objective function in Moreau Yosida regularization Ft(Y ) is
convex, so, the minimum exists and unique and determined by:

∂Lλ(X,Z)

∂X
= C +

1

t
(X − Y )−A∗λ− Z = 0 ⇒ X(λ, Z) = t(Z +A∗λ− C) + Y.

⇒ Θt(λ, Z) = 〈C,X(λ, Z)〉 − 〈A∗λ,X(λ, Z)〉 − 〈Z,X(λ, Z)〉+ 1

2t
||X(λ, Z)− Y ||2 + btλ

= 〈C −A∗λ− Z, t(Z +A∗λ− C) + Y 〉+ 1

2t
||(t(Z +A∗λ− C) + Y )− Y ||2 + btλ

= −t〈Z +A∗λ− C,Z +A∗λ− C〉+ 〈C −A∗λ− Z, Y 〉+ 1

2t
||t(Z +A∗λ− C)||2 + btλ

= −t〈Z +A∗λ− C,Z +A∗λ− C〉+ 〈C −A∗λ− Z, Y 〉+ t

2
||Z +A∗λ− C||2 + btλ

= −t||Z +A∗λ− C||2 − 〈Y, Z +A∗λ− C〉+ t

2
||Z +A∗λ− C||2 + btλ

= btλ− 〈Y, Z +A∗λ− C〉 − t

2
||Z +A∗λ− C||2,

its associated dual problem is [17]:

max btλ− 〈Y, Z +Aλ− C〉 − t

2
||Z +A∗λ− C)||2

s.t. λ ∈ Rm, Z � 0.

To this end, we compute ||Z +A∗λ− C||2 :

||Z +A∗λ− C||2 = 〈Z − C +A∗λ, Z − C +A∗λ〉
= 〈Z − C,Z − C〉+ 〈A∗λ, Z − C〉+ 〈Z − C,A∗λ〉+ 〈A∗λ,A∗λ〉
= 〈Z − C,Z − C〉+ 2〈A(Z − C), λ〉+ 〈AA∗λ, λ〉.

Thus

Θt(λ, Z) = btλ− 〈Y, Z − C〉 − 〈AY,A∗λ〉 − t

2
〈Z − C,Z − C〉 − t〈A(Z − C), λ〉 − t

2
〈AA∗λ, λ〉

So,

∂Θt(λ, Z)

∂λ
= b−AY − tA(Z − C)− tAA∗λ

= b−AY − tA(Z − C +A∗λ)

= b−A(Y + t(Z +A∗λ− C)).

Clearly ∇ZΘt(λ, Z) = −t(Z +A∗λ− C) + Y ). So, we have proved

Proposition 3.2.1. (Inner dual function, [17]) The dual function Θt(λ, Z)
is equal to btλ − tr(Y (Z +A∗λ − C)) − t

2 ||Z +A∗λ − C)||2. Furthermore,
Θt(λ, Z) is differentiable, and its gradient w.r.t λ is:

∇Θt(λ, Z) = b−A(t(Z +A∗λ− C) + Y,
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it gradient with w.r.t Z is:

∇Θt(λ, Z) = −(t(Z +A∗λ− C) + Y ).

If we compute the derivatives of the primal Moreau Yosida problem,
w.r.t Y , then

∂Θt(λ, Z)

∂Y
=

1

2t
(−2X + 2Y ) =

1

t
(Y −X).

Definition 3.2.1. (Lipschitz continuity, [1]) A function f : A→ R is called
Lipschitz continous if there exists a bound L > 0 such that

|f(x1)− f(x2)| ≤ L|x1 − x2| ∀x1, x2 ∈ A.

Definition 3.2.2. (Uniform continuity, [1]) A function f : A → R is uni-
formly continous on A if for every ǫ > 0 there exists a δ > 0 such that any
x1, x2 ∈ A satisfying |x1 − x2| < δ implies |f(x1)− f(x2)| < ǫ.

Example 3.2.1. ([1], Ex. 4.4.9) If f : A → R is Lipschitz, then it is
uniformly continous on A.

Proof. If ǫ > 0 there exists δ > 0 such that |x1 − x2| < δ. Let δ = ǫ
L
. By

definition 3.2.1 |f(x1)− f(x2)| < L ǫ
L
= ǫ.

Proposition 3.2.2. (Regularization properties, [17]) The function Ft is
finite everywhere, convex, and differentiable. Its gradient at Y ∈ Sn is

∇Ft(Y ) =
1

t
(Y − Pt(Y )),

where Pt(Y ) = t(Z+A∗−C)+Y is the proximal point of Y with parameter
t, and ∇Ft(Y ) are Lipschitz continuous.

If we differentiate the dual of Moreau Yosida problem, w.r.t Y , then

max btλ− t

2
||Z +A∗λ− C)||2

s.t. C −A∗λ = Z,Z � 0,

which resembles the augumented dual Lagrangian [17]:

max btλ− σ

2
||Z +A∗λ− C)||2

s.t. C −A∗λ = Z,Z � 0,

where Θσ(Y ) = btλ− σ
2 ||Z +A∗λ−C)||2. According Malick et al [17] there

is an outer connection between the primal and dual:

Proposition 3.2.3. (Outer connection, [17]) If t = σ then Θσ(Y ) = Ft(Y )
for all Y ∈ Sn.

Remark. [17] By the propositions 3.2.1, 3.2.3 there is no duality gap .
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3.2.1 Algorithm II

The following algorithm describe the primal perspective to regularize linear
semidefinite programming, and it is built upon the primal Moreau Yosida
regularization [17].

Initialization step Let t > 0, and YSn
� 0.

Main step Repeat until 1
t
||Y − Pt(Y )|| is small.

1. Solve the inner problem to the primal Moreau Yosida regularization
to get X = Pt(Y ).

2. Set Y = X, and update t.

4 Numerical illustrations

4.1 Diagonal matrices

This section begins by consider the aspect structure for symmetric matrices
in semidefinite programming. There are two specific forms of symmetric
matrices. The first matrice is expressed in the diagonal form, the other one
is not diagonal. Thereafter, we apply the theory of duality, characterized a
duality gap.

Case 1. Diagonal matrices, Definition 2.5.3, zero duality gap.

C =





0 0 0
0 1 0
0 0 0



 , A1 =





1 0 0
0 0 0
0 0 1



 , A2 =





1 0 0
0 1 0
0 0 1



 , b =

[
0
1

]

We express the primal SDP problem in the standard form:

min 〈





0 0 0
0 1 0
0 0 0



 , X〉

s.t. 〈





1 0 0
0 0 0
0 0 1



 , X〉 = 0, 〈





1 0 0
0 1 0
0 0 1



 , X〉 = 1,

X ∈ Sn
+.

A feasible solution X is then:

X =





0 0 0
0 1 0
0 0 0




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and minimum attains to be 1. The assoicated dual for the SDP is:

max y2

s.t. y1





1 0 0
0 0 0
0 0 1



+y2





1 0 0
0 1 0
0 0 1



+ S =





0 0 0
0 1 0
0 0 0





S � 0.

This is equivalent to:

max y2

s.t.





−y1 − y2 0 0
0 1− y2 0
0 0 −y1 − y2



 � 0 ⇔







−y1 − y2 ≥ 0

1− y2 ≥ 0

−y1 − y2 ≥ 0

and a unique feasible solution is (y1, y2) = (−1, 1) and maximum attains to
be 1. Since p∗ − d∗ = 1− 1 = 0 we conclude there is zero duality gap.

If we interchange the values in the vector b, the conclusion remains same.
Furthermore, the primal and dual optimal values are attained. On the
other hand, if the vector b is equal to zero, then the dual optimal value is
not attained. However, the primal optimal value attains its minimum. If
bt = (0,−1) then there is again zero duality gap. Pataki in [20], Zhang,
Chen and Zhang in [32], and Ramana in [22] describe these internal aspects
within semidefinite programming.

Pataki in [20] have also noted the matrices partition into bad semidefinite
programming. This is accompliched by delete the second row, the second
column for the three dimensions matrices. In our case, this will return the
identity matrices. The next case, do not however give the identity matrices.

Case 1.1 Case 1, with additional constraints.

C =





0 0 0
0 1 0
0 0 0



 , A1 =





1 0 0
0 0 0
0 0 1



 , A2 =





1 0 0
0 1 0
0 0 1



 , A3 =





0 0 0
0 0 0
0 0 1



 ,

A4 =





0 0 0
0 1 0
0 0 0



 , A5 =





1 0 0
0 0 0
0 0 0



 , A6 =





0 0 0
0 1 0
0 0 1



 , bt =
[
0, 1, 0, 1, 0, 1

]
.
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We express the primal SDP problem in the standard form:

min 〈





0 0 0
0 1 0
0 0 0



 , X〉

s.t. 〈





1 0 0
0 0 0
0 0 1



 , X〉 = 0, 〈





1 0 0
0 1 0
0 0 1



 , X〉 = 1, 〈





0 0 0
0 0 0
0 0 1



 , X〉 = 0,

〈





0 0 0
0 1 0
0 0 0



 , X〉 = 1, 〈





1 0 0
0 0 0
0 0 0



 , X〉 = 0, 〈





0 0 0
0 1 0
0 0 1



 , X〉 = 1

X ∈ Sn
+.

A feasible solution X is then:

X =





0 0 0
0 1 0
0 0 0





and minimum attains to be 1. The assoicated dual for the SDP is:

max y2 + y4 + y6

s.t. y1





1 0 0
0 0 0
0 0 1



+y2





1 0 0
0 1 0
0 0 1



+ y3





0 0 0
0 0 0
0 0 1



+ y4





0 0 0
0 1 0
0 0 0



+ y5





1 0 0
0 0 0
0 0 0





+ y6





0 0 0
0 1 0
0 0 1



+ S =





0 0 0
0 1 0
0 0 0



 ,

S � 0.

This is equivalent to:

max y2 + y4 + y6

s.t.





−y1 − y2 − y5 0 0
0 1− y2 − y4 − y6 0
0 0 −y1 − y2 − y3 − y6



 � 0

⇔







−y1 − y2 − y5 ≥ 0

1− y2 − y4 − y6 ≥ 0

−y1 − y2 − y3 − y6 ≥ 0,

and the feasible solution is (y1, y2, y3, y4, y5, y6) = (0, 0, 0, 1, 0, 0) and maxi-
mum attains to be 1. Since p∗ − d∗ = 1 − 1 = 0 we conclude there is zero
duality gap.
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Case 1.2 Case 1.1, with an additional constraint.

C =





0 0 0
0 1 0
0 0 0



 , A1 =





1 0 0
0 0 0
0 0 1



 , A2 =





1 0 0
0 1 0
0 0 1



 , A3 =





0 0 0
0 0 0
0 0 1



 , A4 =





0 0 0
0 1 0
0 0 0



 ,

A5 =





1 0 0
0 0 0
0 0 0



 , A6 =





0 0 0
0 1 0
0 0 1



 , A7 =





1 0 0
0 1 0
0 0 0



 bt =
[
0, 1, 0, 1, 0, 1, 0

]
.

We express the primal SDP problem in the standard form:

min 〈





0 0 0
0 1 0
0 0 0



 , X〉

s.t. 〈





1 0 0
0 0 0
0 0 1



 , X〉 = 0, 〈





1 0 0
0 1 0
0 0 1



 , X〉 = 1, 〈





0 0 0
0 0 0
0 0 1



 , X〉 = 0, 〈





0 0 0
0 1 0
0 0 0



 , X〉 = 1,

〈





1 0 0
0 0 0
0 0 0



 , X〉 = 0, 〈





0 0 0
0 1 0
0 0 1



 , X〉 = 1, 〈





1 0 0
0 1 0
0 0 0



 , X〉 = 0,

X ∈ Sn
+.

The last inequality constraint do not satisfy the other constraints. Hence,
the primal is infeasible.

We turn now to the case, non-diagonal matrices.

4.2 Non-diagonal matrices

Case 2. Non-diagonal matrices, Definition 2.5.4, zero duality gap.

c =

[
1
1

]

, A1 =





8 2 0
2 8 2
0 2 10



 , A2 =





2 4 0
4 12 6
0 6 10



 , B =





0 0 1
0 0 0
1 0 0





We express the primal SDP problem on the inequality form:

min x1 + x2

s.t. x1





8 2 0
2 8 2
0 2 10



+ x2





2 4 0
4 12 6
0 6 10



 �





0 0 1
0 0 0
1 0 0



 .
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The feasible solution is (x1, x2) = (0, 0) and minimum attains to be 0. The
assoicated dual for the SDP is:

max 〈





0 0 1
0 0 0
1 0 0



 , λ〉

s.t. 〈





8 2 0
2 8 2
0 2 10



 , λ〉 = 1, 〈





2 4 0
4 12 6
0 6 10



 , λ〉 = 1.

A feasible solution λ is then:

λ =





0 0 0
0 0 0
0 0 1

10





and maximum attains to be 0. Since p∗ − d∗ = 0 − 0 = 0 we conclude it is
zero duality gap.

4.3 Mixed matrices

Case 3. Mixed matrices, Definition 2.5.4, zero duality gap.

c =

[
1
4

]

, A1 =





2 0 0
0 2 0
0 0 0



 , A2 =





8 2 0
2 8 2
0 2 8



 , B =





1 0 0
0 1 0
0 0 0





We express the primal SDP problem on the inequality form:

min x1 + 4x2

s.t. x1





2 0 0
0 2 0
0 0 0



+ x2





8 2 0
2 8 2
0 2 8



 �





1 0 0
0 1 0
0 0 0



 .

The feasible solution is (x1, x2) = (12 , 0) and minimum attains to be 1
2 . The

assoicated dual for the SDP is:

max 〈





1 0 0
0 1 0
0 0 0



 , λ〉

s.t. 〈





2 0 0
0 2 0
0 0 0



 , λ〉 = 1, 〈





8 2 0
2 8 2
0 2 8



 , λ〉 = 4.

A feasible solution λ is then:

λ =





1
2 0 0
0 0 0
0 0 0




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and maximum attains to be 1
2 . Since p

∗ − d∗ = 1
2 − 1

2 = 0 we conclude it is
zero duality gap.

Malick et al [17] have also regarded the matrices solutions. In particular,
if there is small pertubutations in the semidefinite programming or if the
starting position vary with different initial conditions then it could affect
the systems of equations solutions. According the theory of matrices, it is
well known a system of equations could have unique, infinitely many or no
solutions.

Furthermore, Ramana, Tunçel, and Wolkowicz in [23] disusses the solu-
tions in semidefinite programming. The solutions might consist of rational
or irrational numbers. The previous two cases illustrate this more concretely.

Case 3.1 [20] Mixed matrices, Definition 2.5.4, duality gap.

c =

[
0
1

]

, A1 =





1 0 0
0 0 0
0 0 0



 , A2 =





0 0 1
0 1 0
1 0 0



 , B =





1 0 0
0 1 0
0 0 0





We express the primal SDP problem on the inequality form:

min − x2

s.t. x1





1 0 0
0 0 0
0 0 0



+ x2





0 0 1
0 1 0
1 0 0



 �





1 0 0
0 1 0
0 0 0



 .

The feasible solution is (x1, x2) = (1, 0) and minimum attains to be 0. The
assoicated dual for the SDP is:

max − 〈





1 0 0
0 1 0
0 0 0



 , λ〉

s.t. 〈





1 0 0
0 0 0
0 0 0



 , λ〉 = 0, 〈





0 0 1
0 1 0
1 0 0



 , λ〉 = 1.

A feasible solution λ is then:

λ =





0 0 0
0 1 0
0 0 0





and maximum attains to be −1. Since p∗ − d∗ = 0− (−1) = 1 we conclude
that duality gap exists. This is due to either strong duality property is not
satisfied or slaterś condition fails. Nevertheless, the optimal values are at-
tained [10].

58



4.4 Concluding comments

We have described two primal regularization methods to close up the duality
gap. The first method is based on abstract convex programming, and the
other by semidefinite programming. The algorithms are according Borwein,
Wolkowitz [8], and Malick et al [17]. These methods shows various ways to
close up the duality gap depending on problem size, i.e small, medium, and
large scale problems.

Furthermore, we explore in the analysis part a combination of the as-
pects duality, and matrices structure for some semidefinite programming
problems to characterize a duality gap.

In conclusion, the duality and efficiency in semidefinite programming
are important aspects both from the theoretical and practical perspectives.
Further reserach in the theme is suggested to gain insight among the com-
plex phenomenas, and clarify the efficiency levels relation to regularization
methods.

59



References

[1] Abbott S. Understanding analysis, New York, Springer, cop. 2001.

[2] Ahron B., Nemiroviski A. Lectures on modern convex optimization: anal-
ysis, algorithms, and engineering applications, MPS-SIAM series on op-
timization, 2013.

[3] Alizadeh F., Interior point methods in semidefinite programming with
applications to combinatorial optimization, SIAM Journal on optimiza-
tion Vol. 5, Issue 1, 1995, p. 13-51.

[4] Barker G., Carlson D., Cones of diagonally dominant matrices, Pacific
Journal of Mathematics Vol. 57, Issue 1, 1975, p. 15-32.

[5] Bazaraa M., Sherali H., Shetty C.. Nonlinear programming theory and
algorithms, New York, John Wiley, cop., 2006.
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