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Abstract: This paper studies the ability of spatial hearing and the synthesis of 3D
audio. Some of the most well researched subjects concerning 3D audio is the shape
of the position dependent frequency response of the ears (the so called Head Re-
lated Transfer Function) and the difference of a sound’s arrival time between the
ears (the so called Inter aural Time Difference). Using anthropological data and
basic geometry a new ITD model is constructed. It is then compared somewhat
favourably to the classical model of Woodworth.
The effect of the shape of the outer ear (pinnae) on the elevation of HRTF is inves-
tigated as well. The results were inconclusive, but encouraging.
Finally a couple of different interpolations schemes were tried and investigated on
the measurements from the ‘94 KEMAR database.

1 INTRODUCTION TO SOUND MODELING IN 3D AND HEAD RELATED

TRANSFER FUNCTIONS

Most people have the ability to make out where a sound came from. This spatial hearing has
three different factors[4]:
a) Difference in the arrival time of the sound.
b) Difference in magnitude in the sound.
c) Difference in the frequency content of the sound.
The difference in arrival time has been named inter-aural time differences (ITD). This is
mostly owing to the simple fact that if the origin of the sound is closer to the right ear for
example, then the sound wave requires a little while longer in order to reach the left ear. The
mathematics behind the ITD is quite simple and will be discussed at a later point.
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The mathematics behind the change in frequency is far from simple. While it is not impos-
sible to simulate using a 3D-model of a head with torso and shoulders[1][2], the much more
common way of approaching this problem is using empirical measured data. Most often us-
ing a realistic human sized doll (dummy).
This change in frequency content comes from the blockage and reflections owing to the
shape of the pinnae (the outer ear), but also to a smaller degree the reflections from the shoul-
ders and the torso[4]. Already here the observant reader can spot something that might cause
trouble down the line: peoples upper bodies have vastly different shapes. This is especially
true for the pinnae[8]. These differences makes it hard to know exactly how the frequency
content should be treated. One might suspect that in order to work really well the procedure
would have to be custom fitted to each listener.
Luckily experience has shown that it works reasonably well even without custom fitting.

1.1 KEMAR

One of the most common set of measurement come from Bill Gardner and Keith Martin[3].
They used a dummy called KEMAR (Knowles Electronics Manikin for Acoustic Research).
It had a proper upper half of a body with one exception: in each of its ears there was a micro-
phone. KEMAR had two different sized ears to make up for the individual differences in ear
size.
The procedure was simple: an impulse sound was played from a speaker and the impulse re-
sponse (IR) in was recorded in KEMAR’s ears. This kind of impulse response is often referred
to as the Head Related Impulse Response (HRIR).
The speaker stayed 1.4 m from the doll and systematically varied the elevation and azimuth
(horizontal angle compared to the head) and kept recording the IR. Using this spherical grid
of measured points one can then use different interpolation schemes in order to approximate
the points between the grid points.
In this article the KEMAR database has been used unless otherwise stated.

1.2 ASSUMPTIONS IN THE RECORDING OF IR

There are a lot of assumptions and approximations in the creation of these databases. We
have, of course, already mentioned the difference in pinnae shape.
The KEMAR recordings tried to make up for this by using one big and one small ear-piece.
While this might be a good approach it was based on a assumption of right-left symmetry.
This assumption has since then been proven to be false; the right and left ear do not change
the frequency content in exactly the same way[5]. The difference is however rather small, and
can be neglected without making a huge impact on the result.
When one speaks about the recordings of the HRIR one has to make a distinction between
the so called near-field and far-field. The line is usually drawn at roughly 1 m; all sounds
closer than this are in the near-field and all sounds further away are in the far-field. Why this
distinction? Because in the far-field the HRIR are close to independent of distance[6]. That
means that one can measure the HRIR at a fixed range and factor in the distance at a later
point as long as the distance is more than 1 m. This is what the KEMAR database has done,
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Figure 1.1: The magnitude of the measured Head-Related Transfer Function of Kemar when
azimuth = 0 and elevation = 0.

and this is what I will do as well.

1.3 HEAD RELATED TRANSFER FUNCTION

So far we have only discussed the HRIR, but one of the main focus points of this article will
be on the interpolation of the transfer function associated with the HRIR. The so called Head
Related Transfer Function (HRTF). The HRTF is the Fourier transform of the HRIR.
The HRTF is often modeled as a function H(θ,φ, f ), where θ is the angle along the horizontal
plane (azimuth), φ is the angle along the vertical plane (elevation) and f is frequency. One
can by the mentioned procedure measure the HRIR for a fixed φ and θ, and then find the
HRTF for these φ and θ by Fourier transfer.
The HRTF has a very specific appearance; it is rather flat in the lower frequencies (often 1kHz
and below) while the higher range of the spectrum usually consists of a series of peaks and
notches. See fig. 1.1. for an example.

2 INTER-AURAL TIME DIFFERENCES

When the sound is closer to either ear there will be a delay between the ears. This is the major
cue for spatial hearing.
In 1972 Woodworth proposed the following model for calculating the delay

I T D = a

c
(sinθ+θ)

where a is the radius of the head and c is the speed of sound[9]. While this is formula is
attractive in its simplicity it has been shown to be inadequate for synthesis on the whole
sphere. It also approximates r as infinity in order to make the model distance-independent,
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Figure 2.1: Motivation of Woodworth’s model of ITD.

a trait which is desired in spatial hearing models since it usually reduces the complexity of
the model. However nowadays we have an abundance of computer power at our hands, and
it might be time to make accuracy the top priority when creating these models.
The way Woodworth motivated his model can be seen in fig. 2.1. (note that Woodworth use
an other definition of the angle θ). Assuming that the distance is infinity gives that the lines
that the sound waves propagate along are parallel. Woodworth also assumed that when the
sound wave aiming for the further-most ear reached the head it smoothly changed its course
and started to follow the arc of the circle (the head). While this is certainly not true for all
frequencies it is an adequate model of what is happening to the higher frequencies. And
since the higher frequencies are what we are mostly using for spatial hearing, it will do for
now.
This model led Savioja et al. to develop the idea further[10]. They proposed the model

I T D = a

c
(sinθ+θ)cosφ

and found that it was a good fit to their empirical data. It has later been found to be an
adequate model even in full sphere synthesis.

2.1 DISTANCE DEPENDENT ITD MODEL

I will now propose a slightly altered model in an effort to make it a little bit more accurate
when it comes to range.
Assume that the head of the listener is a circle, and call the distance from the middle of the
circle to the emission point of the sound r . Call the distance the sound has to travel in order
to reach the closest ear dc . Furthermore call the shortest possible distance from the emission
point to the furthermost ear d f .
It is clear that d f = l1 + l2, where l1 is the length of the circle’s tangent that intersects the
emission point and l2 is the remaining arc length. See figure 2.2. for clarification.
If we start with the case a ≤ r cos(θ) (when the x-coordinate of the emission point has a larger
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Figure 2.2: The sound’s emission point is the cross and finds its closest path to the ear furthest
away.

absolute value than a) using Pythagora’s theorem gives

d 2
c = (r sinθ)2 + (r cosθ−a)2 = r 2(sinθ2 +cosθ2)−2r a cosθ+a2

dc =
√

r 2 −2r a cosθ+a2

Using the same line of reasoning in the triangle created by the lines r , l1 and the radius of the
circle gives

r 2 = l 2
1 +a2 =⇒ l1 =

√
r 2 −a2

The arclength l2 is av where v is the angle indicated in fig. 2.3. From the same figure one can
see that the angle u can be defined as

u = arccos
( a

r

)
This gives

π= v +u +θ =⇒ v =π−arccos
( a

r

)
−θ

With this in mind we can find the shortest distance to the furthermost ear

d f = l1 + l2 =
√

r 2 −a2 +a(π−arccos
( a

r

)
−θ)

The ITD is of course (d f −dc )/c.

When |a| > |r cos(θ)| (which only happens in Woodworth’s model when θ =π/2 =⇒ I T D = 0
since r →∞) the shorter path isn’t simply a straight line, but instead like the longer path con-
sists of a straight line and and an arc segment. Hence this must be treated separately.
Call the angle between the x-axis and the point where the straight line from the emission
point intersects the circle w . See fig. 2.3. for clarification. There exists two right triangles in
the figure. Both have a hypotenuse with length r and one side of length a. Hence the third
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Figure 2.3: When the sound is coming from a point left of the dotted line the closest path to
the closest (right) ear requires an arc.

side of the triangles are equal. This means that the ITD in this case is only dependent on the
both arc lengths. That is:

I T D |a|>|r cos(θ)| =
d f −dc

c
= a

c
(v −w)

All that remains is to find w and v . Since the two before mentioned triangles are similar we
can see that

π= w +2(θ−w)+ v

Rearranging this gives
v −w =π−2θ

Hence

I T D |a|>|r cos(θ)| =
a(π−2θ)

c

2.2 REFINED MODEL OF ITD

Hence my model of ITD is

W (θ,r ) =
 a

c

((√( r
a

)2 −1

)
+π−arccos

( a
r

)−θ−√( r
a

)2 −2
( r

a

)
cos(θ)+1

)
if |a| ≤ |r cosθ|

a
c (π−2θ) otherwise

One can see that Woodworth’s model is a special case of this as r →∞.

lim
r→∞W (θ,r ) = lim

r→∞
a

c

((√( r

a

)2
−1

)
+π−arccos

( a

r

)
−θ−

√( r

a

)2
−2

( r

a

)
cos(θ)+1

)
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Figure 2.4: Difference between Woodworth’s model and the proposed one.

= lim
r→∞

a

c

((√( r

a

)2
−1

)
+π− π

2
−θ−

√( r

a

)2
−2

( r

a

)
cos(θ)+1

)

= a

c
(cos(θ)+ π

2
−θ)

Since Woodworth’s model used the definition π
2 −θ of the angle this gives ITD = sinθ−θ.

What about the difference between these two models? Assuming that c = 343m/s and ap-
proximating a = 0.1 we can see that the difference in the far field (r > 1m) is at its peak about
25µS. See fig. 2.4. for the graph of the difference. In Woodworth’s formula a difference of
25µS represents an angle shift of roughly 2 degrees.

25 .10−6 = sinθ+θ =⇒ θ ≈ 0.0425 rad ≈ 2.43o

This is not much of an improvement. The sample frequency of a wave file is 44.1 kHz meaning
that the sample length is about 22.6µS. Since the difference between the models is usually
smaller than this the difference is too small to even implement in most systems. Clearly, there
isn’t much use in this new model.

2.3 CONE OF CONFUSION AND FRONT-TO-BACK CONFUSION

Woodworth also discovered that his model led to what he chose to call the Cone of Confusion.
That is a cone in which the ITD is constant. In such a cone it is often harder to determine the
position from which the sound is originating.
One way to tackle this is of course to use HRTF, but even then there are problems. While the
HRTF is not exactly front to back symmetric the differences are rather small. This can lead to
the front-to-back confusion, which is a usual problem in 3D-audio synthesis[11].
In these cones of confusion it has been shown that the actual ITD may vary by as much as
120 µS, which is quite a lot[12]. One of the main reasons for this is the fact that the human
head is not in fact a perfect circle (yes, shocker! I know.) and the ears are not placed in the
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Figure 2.5: The backwards ear shift α. The nose is pointing along the y-axis.

middle of the head. Recent studies have found that when modeling the head as a 3D-ellipse
moving the ears back by a just a little bit causes the synthesized ITD’s to line up extremely
well with empirical data. Unfortunately there is no simple analytical solution to the shortest
path problem presented in the article. I will therefore propose a slightly simplified model that
is quick and simple to implement while still fighting the front-to-back confusion.
Call the angle shift of the ears α. See fig 2.5. It is not as clear as before how the shortest paths
from the emission point to the ears looks like.
Without loss of generality we can assume that the sound is coming from the right. In order to

know how the shortest path from the point to an ear looks like one needs to know three things:

Q1: Can the closest ear be reached with only a straight line?
Q2: Is the closest path to the furthermost ear in front of the head? Q3: Can the furthermost
ear be reached with only a straight line?

This leads to the classification shown in figure 2.6. We will now work through these regions
one by one.

Q1 Q2 Q3
1 Yes No No
2 No No No
3 No No No
4 Yes Yes No
5 No Yes No
1 Yes No Yes

We start in area 5. Since neither ear can be reached with only a straight line both paths must
have a circle arc as well. That means that we must calculate the arclength of the path to the
closest ear.
Call the angle between the x-axis and the point where the straight line from the emission
point intersects the circle v . See fig. 2.7. for clarification. The shortest path from the point
to the closest (right) ear is the sum of rightmost side of the triangle created by this point
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Figure 2.6: The different sections caused by the ear shift α.

of intersection, origo and the emission point and the arc length. By the same reasoning as
before the side of the triangle is

p
r 2 −a2 and the arc length is a(v +α).

The lower left angle in the mentioned triangle is θ− v , and we can see that cos(θ− v) = a
r .

Since 0 ≤ θ− v ≤ π
2 we get

v = θ−arccos
( a

r

)
Hence the shortest path to the closest ear dc is

dc = a

(√( r

a

)2
+1+α−arccos

( a

r

)
+θ

)
When it comes to the furthermost (left) ear the calculations are exactly the same as in the

previous section with the exception that the arc length is increased by aα. Hence

I T D5 = dl −dc

c
= a

c

(√
1+

( r

a

)2
+π−arccos

( a

r

)
−θ+α−

√( r

a

)2
+1−α+arccos

( a

r

)
−θ

)

I T D5 = a

c
(π−2θ)

We continue with region 4. If the whole coordinate system is shifted by α counter clock-wise
then this is almost the same as before when there was no ear shift. The only difference is that
the arc to the furthermost ear is 2aα longer. (One α for the coordinate shift and one for the
shift of the other ear). Hence

I T D4 = a

c

((√( r

a

)2
−1

)
+π−arccos

( a

r

)
−θ+α−

√( r

a

)2
−2

( r

a

)
cos(θ+α)+1

)
Region 3 doesn’t need a formula since even the most far away point is in the near-field for any
sound value of α.
In the triangle in figure 2.8 we can see that using the law of sines we get
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Figure 2.7: The point is the point of emission and v is the angle where the sound first hits the
head.

Figure 2.8: An angular shift α simplifies the calculations is section 4.
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sin
(
π
2

)
b

= sin
(
π
2 −2α

)
a

=⇒ b = a

cos(2α)

and since b must be around 1.4 m to be in the far field and a usually is around 0.1 which gives
α≈ 0.75. And this is way too much. So we ignore region 3 and move on to region 2.
Fortunately for us region 2 is similar to before when |a| > |r cos(θ)|. All that differs is a α

counter clock-wise coordinate shift, and the sign of θ. This gives

I T D2 = a(2(α−θ)−π)

c

And finally: region 1. The distance to the closest ear is easily calculated by converting to
Cartesian coordinates and using Pythagoras’ theorem. Using the notation from figure 9.5 we
can see that

π=α+ v +w +α
And with Pythagoras’ once again the length straight line part of the path to the furthermost
ear is

p
r 2 −a2. In order to find w we can calculate this length again, but this time we use the

difference in the Cartesian coordinates. Hence

r 2 −a2 = (a sin(−(w +α))− r sinα)2 + (a cos(−(w +α))− r cosθ)2

r 2 −a2 = a2 −2ar cos(α+θ+w)+ r 2

a

r
= cos(α+θ+w)

w = arccos
( a

r

)
−α−θ

Combining all these parts gives

I T D1 =
p

r 2 −a2 +av −
√

(r sinθ−a sin(−α))2 + (r cosθ−a cos(−α))2

c

I T D1 = a

c

(√( r

a

)2
−1+ (π−α+θ−arccos

( a

r

)
)−

√( r

a

)2
−2

r

a
cos(α+θ)+1

)
And finally: section 6. Since both ears can be reached with a straight line this is simple

I T D6 = 1

c
(
√

(a cos(−α)− r cos(θ))2 + (a sin(−α)− r sinθ)2−
√

(a cos(π+α)− r cos(θ))2 + (a sin(π+α)− r sinθ)2)

I T D6 = a

c

(√
1−2

r

a
cos(α+θ)+ r 2 −

√
1−2

r

a
cos(α−θ)+ r 2

)
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Figure 2.9: The difference between the new ITD function and Woodworth’s with α=π/8.

2.4 COMPARISON TO WOODWORTH’S MODEL

Call this new function I T DW (θ,r, a,α). For now assume that a = 0.08m. It does of course
wary from person to person, but a is almost always 0.05 < a < 0.1 [16]. Also set c to 344m/s.
The value of α varies a lot from person to person, but according to the CIPIC database a good
estimation of its mean value is roughly π/5. In the comparison below α will have therefore
the values π/8, π/6 and π/4.
In the figures below the right hand side is shown, since the ITD is an odd function in x, with
the near-field (r < 1.4) removed. The nose of the head is pointing along the y-axis.

In a normal wave file the sampling rate is 44.1 kHz. This means that the smallest ITD change
that can be implemented in most systems ≈ 23µS. This time the difference between the two
ITD functions is greater than this for most values of the input parameters.
The difference seems to have the same general appearance for the plausible values of α. The
main object of the new ITD, however, was to decrease the front-to-back confusion. This was
partly successful since I T DW ase is not front to back symmetric, but difference is not huge.
For a lot of emission points this difference is less than 23µS.

Since the KEMAR database is simply a collection of impulse responses it is possible to re-
trieve some ITD data from it. However this will be for a fixed distance r = 1.4 m. I wrote a
quick script that found the ITD as a function of the azimuth θ when elevation φ= 0 by find-
ing the time where a sample was at least 15% of the amplitude of the maximum value. See fig.
2.12 for the ITD data. Then one needs to find the best parameter fit for the both ITD-models.
I developed an evolutionary algorithm that found the best fit (in the least mean square sense)
of the parameter a (head radius) for Woodworth’s model and the parameters a andα (angular
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Figure 2.10: The difference between the new ITD function and Woodworth’s with α=π/6.

Figure 2.11: The difference between the new ITD function and Woodworth’s with α=π/4.
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Figure 2.12: The measured ITD data from the KEMAR database.

ear shift) in my model, by randomly guessing at parameter values and updating the value if
the least square error is smaller than before. I found that the value of α shrunk rather quickly
through the iterations of the algorithm, thus getting closer to the model proposed in section
2.2. As stated before, that model is indistinguishable from Woodworth’s in any real applica-
tion owing to the sampling rate of 44.1 kHz. Hence the two models are almost equal in this
setting.

However the KEMAR database only contains ITD data at r = 1.4 m, which is not enough to
draw any decent conclusions from. In the 2009 paper Distance-Dependent Head-Related
Transfer Functions Measured With High Spatial Resolution Using a Spark Gap T. Qu et. al
created a new HRTF database using a dummy. The difference is that they have collected data
for several distances.
They also used a higher sample frequency than usual, meaning that the ITD data should be
slightly more accurate.

By once again using the same evolutionary algorithm to find the parameters for the best
least square fit we can compare the the two models. For both models the radius of the head
a converged rather rapidly to about 8 cm. In the proposed model the shift of the ears α

shrunk quickly and converged to slightly below 1 degree. This is much smaller than previ-
ously thought. Even so the error shrunk a little. The average l2-error in each of the 8 x 36
sample points for Woodworth’s model was 1.30.10−6 and my proposed model had an average
error of 1.18.10−6. The improvement was only just under 9%. Hardly much considering that
a new variable r as well as a new parameter α had to be introduced.

The fact that Woodsworth’s model is astoundingly accurate for its simplicity is nothing new,
but the problem was of course the front-to-back confusion. In figure 2.13 the difference be-
tween the two models with the optimal parameters is shown.
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Figure 2.13: The difference between Woodworth’s model and the newly proposed model.

Figure 2.14: The difference between the ITD measured using a spark gap in the near field and
Woodworth’s model. Notice the peak at around 180o .
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Figure 2.15: The front to back difference of the proposed model with ear shift α= 3o

The question is now whether or not this helps against front-to-back confusion. The largest
differences are at 0 and 270 degrees, that is when the point of emission is straight to the left or
right of the head. Unfortunately this is the only place where front-to-back confusion is, per
definition, impossible. It is also the places where there is the least localization errors in most
studies.
The ITD function is front to back symmetric iff I T D(r,θ) = I T D(r,−θ). A way of investigating
if the new model prevents this kind of symmetry is to measure I T D(r,θ)− I T D(r,−θ). In fig-
ure 2.15 below this proof of non-symmetry is shown. As mentioned before the smallest time
difference most systems can implement is around 22 µS. In order for the time difference to
even get this big at its maximum α has to be ≈ 3o , which is several times larger than the opti-
mal fit value.
The only possible conclusion that can be drawn from this is that the proposed model unfor-
tunately does very little to reduce front-to-back confusion.

2.5 ITD IN ELEVATION

Up to this point we have only considered ITD as a function of two variables r and θ. But of
course any proper ITD-model should depend on elevation φ as well.
The simplest way of achieving the 3D model would be to multiply the distance r with cosφ,
since r cosφ is the orthogonal projection of the distance vector on the plane studied in the
previous sections. This is indeed what Savioja et al. did, and it has been shown to work very
well with Woodsworth’s planar model.
Another way is to repeat the process with the ear-shift but in 3D. This is close to what Duda,
Avendano and Algazi did in their study[12]. This works great and reduces the errors in the
cones of confusion significantly. The problem with that approach is that it gets complicated
rather quickly. As stated before they were unable to find a closed analytical formula, but in-
stead gave a way of solving for the desired value.
There might of course exist a region dependent formula, like the one found in the previous
section. Seeing how messy the formula got in only two dimensions, however, I chose not to
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Figure 2.16: The function f that tries to separate elevation and azimuth dependence of ITD,
with azimuth θ = 90o .

do this in order to preserve what little elegance and simplicity the ITD-model has.
Instead I try finding a function f (r,φ) such that it separates the variables θ and φ in the
I T D3D -function. Hence:

I T D3D (r,θ,φ) = I T Dw (r,θ) f (r,φ)

The measured data will have to suffice as the I T D3D -function. Hence an approximation of f
might be found by inspection the behaviour of I T D3D (r,θ,φ)/I T Dw ase (r,θ).
In figure 2.15 we can see the result of this when the azimuth is 0o . The graph has similar
behaviour for all azimuths (except 90 and -90, when the numerical instabilities take over since
the computer is asked to divide by zero), making the assumption of separation of variables
seem rather plausible. And if the assumption is false it is of little importance, since it seems
to lead to a good approximation.
In said graph one can see that the behaviour along the elevation axis does closely resemble

a cosinus function. When θ is close to 0 and 180 there is a small error for all values of r . It is
around where the elevation is 0. It has the form of a small sharp peak that is slightly higher
than the value of the cosine function. It can be seen in fig. 2.15, especially when r is small. It
is however small enough to be ignored without severely impacting the result.
A closer inspection of the graph shows that the f function is not independent of r . In figure
2.16 below we have the graph corresponding to f (r,φ) but at azimuth 20o . On the right side
this measured f (r,φ) is divided by cosφ to reveal the nature of the error. Here it is clear that
the function is indeed dependent of r . As r grows its influence over the function decreases,
and it looks like the r -part of the function can be said to have converged when r is in the far
field.
To avoid complicating things too much I will therefore consider f (r,φ) = f (φ) to be distance
independent. It should be noted that this might prevent full sphere synthesis of ITD in the
near field.
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Figure 2.17: The function f (and its corresponding error) that tries to separate elevation and
azimuth dependence of ITD, with azimuth θ = 20o .

3 ANALYSIS OF RECORDED HEAD-RELATED TRANSFER FUNCTION

Some researchers have tried to model the HRTF as a smooth function that depends on a few
parameters. These models are often build on the assumption that the HRTF is a combina-
tion of peak and notch filters. Simply put a peak/notch filter is a filter which has one central
frequency. In the vicinity of this frequency it either amplifies the incoming data (peak) or it
reduces it (notch).
These peaks and notches are (primarily) owing to the shape of the pinnae. In fig. 3.1. one
can see an example of how the shape of the pinnae causes the sound wave to interfere with
itself. For some frequencies this interference is destructive, other constructive; giving rise to
the peaks and notches in the HRTF.
Since these creases in the pinnae vary continuously it seems natural the peaks and notches
should do so too.
In a recent study Ramos et al.[13] used a second order low frequency shelving filter in combi-

nation with 12 second order peak audio filters with parameters central frequency w , log-gain
G and quality factor Q, on the form

Hi (z) = bi
0 +bi

1z−1 +bi
2z−2

ai
0 +ai

1z−1 +ai
2z−2

ai = [1+αi gi ,−2cos wi ,1−αi gi ]

bi = [1+αi /gi ,−2cos wi ,1−αi /gi ]
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Figure 3.1: Example of how the sound waves interfere with each other at different elevations.

whereαi = sin wi /(2Qi ) and gi = 10Gi /40. H(z) is the general form of a second order peak/notch
filter, where z is the (possibly complex) frequency. w is, as mentioned before, the frequency
which the filter is centered around, G is the amplitude of the filter and w is the width. This was
found to be a good fit. The main points of the study was to decrease the size of the database
by only storing the parameters at the measured points as well as allowing easier interpolation
by reduction of parameters. However instead of simplifying the calculations of interpolation
I think that a new take on this approach can make the interpolation smoother and possibly
even closer to the correct HRTF.

3.1 ELEVATION DEPENDENT BEHAVIOUR OF THE PEAKS AND NOTCHES

When it comes to determining the elevation these peaks and notches are necessary since the
ITD that depends on elevation tends to be almost neglectable. Since these peaks and notches
vary continuously a good way to interpolate in elevation is with total respect to the peaks and
notches. That is: find out how the central frequency w varies as a function of elevation φ for
the major peaks and notches.

This must be admitted to be a long shot. There might not exist such a function. In the
study On the Relation Between Pinna Reflection Patterns and Head-Related Transfer Func-
tion Features[14] they tried modelling how the peaks and notches of the elevation dependent
part of the HRTF behaved based on pinna shape. They reduced the folds of the pinna to three
polynomials of degree five. This study is recent and showed that there might be a new ap-
proach worth investigating.

If there does exist such a function (or a close approximation of it) then one can note that
Q should be close to constant while G changes smoothly. With the reduced noise one can
interpolate G using one of the usual schemes, cubic spline for example.
Call the function of the first j filters A j (w1to j ,G1to j ,Q1to j ). By implementing an evolution-
ary algorithm that minimizes the error |||AN (w,G ,Q, z)| − |HRT F (z)|||2 one can get a good
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approximation of the parameters w,G and Q for a fixed point (θ,φ).
The reason for the absolute value around the functions is because they are both complex-
valued functions. But since the phase-shift is irrelevant for higher frequencies, which is where
the HRTF is relevant, it seemed appropriate to ignore the phase-shift.

3.2 DETAILS OF THE ALGORITHM FOR FINDING w(φ)

The algorithm has two stages. In the first stage it starts with only one filter and minimizes
|||A1(w,G ,Q, z)|−|HRT F (z)|||2 by randomly altering w1,Q1 and G1 and update them if |||A1(w,G ,Q, z)|−
|HRT F (z)|||2 shrinks. If the parameters have been altered 1000 times without being updated
it is considered to minimized. Then another filter is added and the procedure is repeated.
When there are 12 filters stage two begins. Stage two is randomly altering all 12 (wi ,Qi ,Gi )
triples. If they have been altered 10000 times without improvement the program terminates.
This whole procedure of stage 1 and 2 is repeated 10 times, and the fit with the smallest error
is chosen. Then the exact same thing is done to all the other sampled elevations for this fixed
azimuth.

3.3 RESULTS OF THE ALGORITHM AND FURTHER INVESTIGATION

This script was computationally intense and it took a couple of days for it to run in order to
get it to give reliable results. Unfortunately the results were anything but positive. It seems
very unlikely that there exists even a rough approximation of the w(φ) function. There is not
much similarity between any of w(φ)-functions for any azimuth or elevation.

Hence I chose to give up on the w(φ) strategy and try something a little closer to the ap-
proach in the study [14]. As mentioned before a lot of the elevation dependent changes in
the peaks and notches are owing to the constructive and destructive interference caused by
reflections of the sound wave. Figure 3.1 shows an example of how this could work. In the
study they started by finding how these folds look like by investigating a picture of the ear in
question. I will instead try to find the shape of the ear from the information concerning the
peaks and notches. If this shape is constant for different elevations it might be possible to use
that underlying shapes to interpolate more smoothly.

3.4 REFLECTIONS IN THE PINNA

The fact that different people have different ear sizes and different ear shapes has proved to
be a slight problem in 3D audio sythesis. If one could find some strong connection between
the shape of the HRTF and the shape of the ear it could increase the quality of the personal-
ization of the HRTF. That is why I shall try to reverse engineer the shape of the ear from the
peaks and notches.

Imagine that a sound source is infinity far away. All the sound waves will act like parallel
rays. One of these rays will head right for the ear canal. Call this line l1. There will be another
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Figure 3.2: Example of how the shape of the pinna might cause destructive/constructive be-
haviour in the frequency response.

line l2 which will bounce of one of the folds of the ear and then make its way to the ear canal.
See figure 3.3 below for a graphical explanation.

Clearly l2 needs to travel longer than l1. Call this difference ∆l . It is somewhat likely that
the ray which is most strongly reflected is the one whose angle of incidence is equal to its
angle of reflection. That is, we assume that the ear has a rather smooth surface. Call this in-
cidence angle v , and its complementary angle w = π

2 − v . Call the function representing the
first ear fold r1(θ) (this function is given in polar coordinates owing to the concave shape of
the fold). This point of reflection is where the line l2 intersects r1. In order to find the either
the angle v or w one can find the slope of the ear r ′

1. And using the difference between the
slope of the line which is orthogonal to r ′

1 and the slope of l1 we can get the angle v . But the
angle of the slope of l1 is per definition φ

v =− tan(arctan(r ′)−φ)

If one defines the coordinate system with the origo in the ear canal then the hypotenuse of the
right angle triangle in the figure 3.3 is of length r1(θ0), where θ0 is the point of intersection.
Call this length d . The total difference ∆l is the sum of d and the side through which the
sound enters the ear. Basic trigonometry then gives

∆l = d(1+cos(2w))

But when does this give rise to peaks and notches? The first thing to notice is that the reflec-
tion coefficient is most likely negative[14]. This means that there will be a peak at frequency
fn when the difference is

∆l = c(n +1)

fn

where c is the speed of sound and n any natural number. In the same way there will be a
notch when

∆l = c(2n +1)

2 fn
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Figure 3.3: If the difference in length of the two lines is a multiple of λ/2 constructive or de-
structive interference will occur.

3.5 EVOLUTIONARY ALGORITHM TO FIND THE SHAPE OF THE PINNA

Using the above equations one can of course find the frequencies of the peaks and notches
for a given ear shape formula, such as r1. Assume that the ear can be reduced to three such
functions r1(θ), r2(θ) and r3(θ)[14] . I will now construct an algorithm that finds the shapes of
these three functions in order to make them fit to the already measured peaks and notches.
Let ri (θ) start as a a constant function, thus giving a circle in polar coordinates. In order to
evaluate the fitness of these functions all the peaks and notches corresponding to the func-
tions are found by iterating through the polar coordinate θ. Frequencies above 20 kHz are
of course ignored. Then the algorithm iterates through the newly found peaks and notches.
For each of those a value ei is found. It is the distance to the closest measured frequency
multiplied by the corresponding log gain. That is

ei = wi |Gi |

All of these ei are then added together to form e.
This is not enough to minimize e since this might be frequencies w that are not covered by
any peaks and notches caused by any ri (θ). Hence the algorithm iterates through all wi and
adds the distance to the closest fn to e.
Add a random smooth function to each of the ri (θ) functions. If the inverted fitness e of the
new functions is less than for the previous functions the functions the functions are updated.
This procedure repeats for 105 iterations.

3.6 RESULT

It must be noted that while the pinna is responsible for much of the elevation dependent
change in the frequency response it is not the only cause of peaks and notches in the HRTF.
In figures 3.4 and 3.5 below the shape of the ear with azimuth 90 and elevation 30o and 60o
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Figure 3.4: Simulation of the folds of the ear with elevation = 30 and azimuth = 90

are shown. While these two are just examples most elevations (with azimuth 90o) have this
general appearance. They are not identical, but they do have the typical shape of an ear.
Perhaps a better way of doing it is to iterate through all possible elevations for a specific az-
imuth and find the best possible ri (θ) functions. In this case the ear might get a slightly more
realistic shape since usually a human ear doesn’t change shape when observed from different
angles.
In figures 3.6 and 3.7 we see two examples of this with azimuths 90o and 120o . Unsurprisingly
the one with azimuth 900 share many characteristics with fig. 3.4 and 3.5. However fig. 3.6
has a smeared appearance. While this is not perfect it does show that something is indeed
working, since a flat surface becomes increasingly stretched when viewed from an angle. Un-
fortunately it loses the shape in this smearing process. This probably means that some of the
underlying assumptions of the model were a little extreme. In figure 3.8 below the azimuth
is 0o . At this point the model breaks down almost completely. This is not all that surprising
since azimuth was assumed to be 90 in the design of the model and algorithm.

It seems that this model was a little too simple to fit reality. In spite of this simple visual
inspection of the ears with the sound emission point straight forward showed promising re-
sults. The shapes did indeed look like ears, and more so; they looked rather similar no matter
which values the elevation had.
This type of reverse engineering of the ear could with a little luck (and more than a little hard
work) lead to custom HRTF by simply taking a photograph of the ear. The individual differ-
ences in the ear’s frequency response is one of the biggest problems in today’s spatial audio
synthesis.
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Figure 3.5: Simulation of the folds of the ear with elevation = 60 and azimuth = 90

Figure 3.6: Simulation of the folds of the ear all elevations and azimuth = 120
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Figure 3.7: Simulation of the folds of the ear all elevations and azimuth = 90

Figure 3.8: Simulation of the folds of the ear all elevations and azimuth = 0

25



4 INTERPOLATION

When it comes to interpolation of the HRTF along the elevation φ the choice of interpolation
method was motivated by the fact that most of the changes were due to the shape of the outer
ear (pinnae). Interpolation along the azimuth θ is slightly trickier since there isn’t only one
factor responsible for most of the change. Therefore one has to rely on the more common
types of interpolation. In this section four different types of interpolation will be compared
to each other.

4.1 LINEAR INTERPOLATION

Linear interpolation is probably the most commonly used in these sorts of interpolations
since it is by far the simplest and fastest method of interpolation.

4.2 CUBIC SPLINE

After trying linear interpolation a intuitive approach would be to change the line to a higher
order polynomial. However if this is done in a naive way by taking an n-order polynomial
and fitting it through n +1 points the interpolated function will oscillate widely between the
points when n is high. This is called Runge’s phenomenon. In order to avoid this we continue
to interpolate with piece-wise polynomials, but add some smoothness requirement.
The Spline interpolation makes the resulting curve as smooth as possible. That is, given a
function f (x) it minimizes the curvature k

k = f ′′(x)

(1+ f ′(x)2)3/2

The Spline interpolation can of course be of any order n, but the most common is the cubic
and it is also the one that shall be used here. That means that the smoothness requirement is
that f ′′

i (θ) is continuous.

4.3 PERIODIC INTERPOLATION

One thing that can be said to be true about the complex system that is HRTF is that it is 2π-
periodic. This makes the choice of a periodic interpolation scheme seem intuitive. If the
sampled points are exact and the function is band limited to the so called Nyquist frequency
then this one might even get the exact interpolation. This is most likely not the case, and its
repercussions will be discussed later.
A Fourier polynomial p of order n has the general form

p(x) = ao +
n∑

k=1
ak cos(kx)+

n∑
k=1

bk sin(kx)

For a fixed value on r and φ call HRT F (θ,φ,r, f ) = H f (θ). Since H f (θ) = H f (θ±2nπ),∀θ, f
and ∀n ∈Nwe know that there exists a (of possibly infinite order) Fourier polynomial p such
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that the error between p and H f in the L2-norm is zero. This error is denoted ||p −H f ||2 with
definition

||p −H f ||2 =
∫ π

−π
(p(θ)−H f (θ))2dθ

It is worth noting that this doesn’t necessary imply point-wise convergence. Take for example
the function

sq(x) =
{

1 if 1 < x < 2

0 otherwise

owing to the jump at x = 1 and x = 2 p(2) 6= H f (2) even if the order of p goes to infinity. This is
called Gibb’s phenomenon. But if the true HRTF is continuous, as it should be, this shouldn’t
be much of a problem.

The Nyquist frequency is half of the sampling frequency. The Nyquist−Shannon sampling
theorem says that if the highest frequency in the sampled material is B then with a sample
rate of 2B the original signal can be uniquely determined.
In practice the sample rate should always be a little more than 2B to avoid errors. This is why
the sample rate of most music formats is 44.1 kHz, since the upper limit of human hearing is
20 kHz. This means that if the curve is band-limited under this frequency the interpolation
will be exact. If it is not, however, there is a chance of oscillation between the sampled points.
The naive way of finding the coefficients a0 to an and b1 and bn would perhaps be to take the
Fourier Transform of the curve of the HRTF at a specific elevation and frequency. Then using
the properties

F (cos(2π f0t )) = δ( f − f0)+δ( f + f0)

2

F (sin(2π f0t )) = δ( f − f0)+δ( f + f0)

2i

the coefficients can be found easily. This way is not numerically stable and small errors tend
to grow.
A much better way of doing it would be using Lagrange polynomials. An ordinary Lagrange
polynomial is a linear combination of k l j -functions on the form

l j (x) =Π0≤m≤k
x −xm

x j −xm
s.t. j 6= m

where xm are the sample points. The coefficients are simply the corresponding y-values,
giving the interpolating function

p(x) =
k∑

j=0
y j l j (x)

But in order to adjust this to trigonometric polynomials the l j (x) functions are replaced by
trigonometric functions t j (x) such that

t j (x) =Π0≤m≤k
sin(0.5(x −xm)

sin(0.5(xk −xm))
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with k 6= m if there are an odd number of sample points. If there are an even number of
sample points then

t j (x) = sin(0.5(x −αk )

sin(0.5(xk −αk ))
Π0≤m≤k

sin(0.5(x −xm)

sin(0.5(xk −xm))

where
αk =∑

m
xm ,m 6= k

4.4 COMPARISON

In order to compare the interpolation techniques half of the sample points were discarded
for the time being. Using the different interpolations approximate values to these discarded
points one can get an estimation of the error.

Before we actually start comparing errors the norm must first be considered. Since human
hearing is logarithmic both in pitch and loudness a logarithmic error norm should be used.
We shall simply take the logarithm of the vectors before we start applying the usual error
norms. While this might give us a better appreciation of the perceived error it unfortunately
loses the properties that makes it a norm. For example for p(v) to be a norm p(av) = |a|p(v),
where a is a scalar. But if

p(v) = n(log(v))

where n(v) actually is a norm, then

p(av) = n(log(av)) = n(log a + log v) 6= |a|n(log v)

So we should look into some usual norms first just to make sure that the loss of scalability
doesn’t affect the result too much.

In the table below one can see the number of sample points from the KEMAR dummy on each
elevation. These numbers where chosen to make sure that the distance between the points
were roughly equal (≈ 0.1m) since the circles were smaller for more extreme elevations. While
this makes sense it makes it harder to interpolate when the number of sample points get
too low. This is especially true for the periodic interpolation owing to the Nyquist−Shannon
sampling theorem. It seems reasonable that the highest frequency at the lower elevations
shouldn’t be all that different from the highest frequency at the more extreme elevations since
the it is the same factors in play. But according to the sampling theorem the highest frequency
that we can handle is proportional to the number of sample points.
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Figure 4.1: The interpolation errors measured in the l 2-norm.

Elevation Num. of sample points
-40 56
-30 60
-20 72
-10 72

0 72
10 72
20 72
30 60
40 56
50 45
60 36
70 24
80 12
90 1

In figure 4.1. below we can see the error measured in the usual l 2-norm without compen-
sation for logarithmic hearing. All the interpolation errors seem to have to same overall be-
haviour; with larger values for elevations close to 0 and smaller otherwise. It should be noted
that this is not simply owing to the increased number of sample points at those elevations,
since the error is divided by the number of sample points. Call the number of points at a
specific elevation n, then the error is

el 2 (x) =
√∑n

i=1 x2
i

n

Already at this point it is easy to discard the linear interpolation unless speed is of paramount
importance since its error is often twice as big as the other interpolation schemes. When it
comes to the comparison between periodic and spline it is a closer race: more careful analysis
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Figure 4.2: The interpolation errors measured in the l∞-norm.

is needed.
Let’s look at the l∞-norm. It is defined as the l p -norm as p →∞, where the l p -norm is(

n∑
i=1

|xi |p
) 1

p

Put simpler it is the element in the vector x with the largest magnitude. This is important
because it discovers weak spots. Convergence to zero in the continuous L2-norm does not
imply point-wise convergence, but convergence in the continuous L∞-norm does. While we
are not measuring a continuous function it is always worth t have in mind that even a small
l 2-norm between two functions might have a rather big difference and one point, if the num-
ber of points is big.
The max-error is shown in figure 4.2. below. Here something interesting appears: all interpo-
lation schemes give roughly the same result. The linear error is perhaps slightly bigger than
the other ones, but not nearly as much as in l 2-norm. At elevation 50 we can see that the
periodic interpolation has a clear spike (this spike is visible in the l 2-norm as well, but it is
much smaller there). This is owing to the odd number of sample points at that elevation.

And finally the measurements using a logarithmic scale. Hopefully the logarithmic error
should look somewhat similar to the other errors, since it is most like how the human brain
perceives the sounds. In figure 4.3 below we can see that is closely resembles the l 2-error. Un-
fortunately this provides no further information about which interpolation scheme should be
used: Fourier polynomials or cubic Spline.
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Figure 4.3: The interpolation errors measured in the l 2-norm using a logarithmic scale.

Figure 4.4: Example of the different interpolation schemes with ele = 0o and azi = 195o .
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4.5 NOISE REDUCTION

The problem with the periodic interpolation is that when the function isn’t band limited
to the Nyquist frequency the interpolant might begin to oscillate widely between sampling
points. Since the sample rate was halved when every other point was removed it might ac-
tually be the case that the true sample rate might be enough. Unfortunately we would need
more sample points in order to test this.
Another thing that might cause these oscillations is noise, since the noise is most likely not
band limited to the Nyquist frequency either. For example will one small perturbation on one
of the samples in one of the sample points look like a delta function in the time domain, thus
completely making a mess of the higher frequencies in the frequency domain thus causing
oscillations. In order to make this effect less prominent one could either remove the noise or
ignore it.
In an effort to increase the signal-to-noise quotient the signal is convoluted with the rectan-
gular function

r ect (t ) =
{

1 if |t | < 1

0 otherwise

This is also called a moving average. Hence the new function is∫ ∞

−∞
H f (φ−τ)

r ect (sτ)

s
dτ

where s is the scaling factor of the moving average. But since our H-function is discrete a
much simpler way of doing this computation is to simply take the average of the point in
question and s points to the left and s points to the right. However the points with a dis-
tance less than s from the endpoints pose a small problem, since the vector is of finite length.
Hence these points will retain their original value.
See figure 4.4 for an example where s = 1.

In an attempt to ignore the noise one more interpolation scheme is tried. Instead of first
smoothing the data we try finding a function that is smoother than the data itself. The sim-
plest way of doing this is perhaps loosening the restriction that forces the function to pass
exactly through the measured data points. Let’s instead find a best fit in a least square sense.
Once again piece-wise cubic spline will be used but each piece-wise polynomial will pass
through n points, where n can be any integer of my choosing. See figure 4.5 for an example.

The downside with both of these approaches is that it is much harder to measure the error.
This is because the way that the error was measured in the previous section assumed that the
sampled data points were correct. In this case we are assuming the existence of some noise,
which means that if the interpolated function doesn’t pass through the removed data points
it could mean that the noise was successfully removed. It could, however, also mean that the
interpolation scheme failed miserably.

Perhaps the best way of testing this is by actually trying it out by letting people estimate di-
rection and range based on hearing cues. But this is outside the scope of this paper. Instead I
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Figure 4.5: Comparison of the original function and the smoothed function with azi=90, ele=0
and s=1

have chosen to measure the curvature of the function. While this probably won’t give definite
proof either way it is a good first hint of the quality of the interpolation.

Since the spline actually minimizes the curvature it will be used as the base line for the mea-
surement of the error of the trigonometric smoothing scheme. Since the trigonometric inter-
polation are most likely to capture the underlying mechanisms of the HRTF it seems plausible
that if the trigonometric interpolation, for some smoothing factor s, has a small curvature it
will accurately capture the behaviour of the true HRTF.

The total curvature will be the numerical integral of k with numerical derivatives defined

Figure 4.6: Example of 5 point spline interpolation with azi=90 and ele=0
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as

f ′(x) ≈ f (x +h)− f (x −h)

2h

f ′′(x) ≈ f (x +h)−2 f (x)+ f (x −h)

h2

where h is the step-size. These were chosen since they are both simple and of second order.

When it comes to deciding the values of the scaling factor s and the number of points for
the piece-wise polynomial to be interpolated through n it is clear that bigger values will give
smaller curvature. That is why both are made to be as small as possible. Visual inspection
(for example in fig. 4.4) indicates that n = 5 gives a very smooth function that stays true to the
shape of the original function.

Call the curvature of the spline with n = 5 for ksp . By numerically integrating the k(x) curve
function of the trigonometric interpolation using s = 0,1,2 and comparing this to ksp the fol-
lowing is found:

s
∫

kd x/ksp

0 11,068
1 3,066
2 2,032

The interpolating function clearly oscillates less than before the smoothing process. When
s = 2 the curvature is just twice as large as the minimized curvature ksp , which leads me to
believe that this interpolation scheme might be worth investigating. To further increase the
value of s would probably cause the function to deviate from the HRTF too much.

5 CONCLUSIONS AND FURTHER WORK

5.1 COMBINING THE INTERPOLATIONS

Unfortunately the investigation of elevation dependent interpolation didn’t yield any results
that are straight away usable. This means that until further work on the area has been done
the choice of interpolation will have to be solely based on the work done in section 4. For-
tunately this makes the combination of the elevation and azimuth much simpler. Instead of
finding a subtle way of making them work together one can now simply choose an interpola-
tion scheme and generalize it up a dimension.

5.2 FURTHER WORK

The work on the ITD in section 2 yielded results that are only slightly better than the classi-
cal Woodworth model. Except when it comes to synthesis of spatial hearing in the near field
and horizontal plane. In this special case of a special case my model excels. However using
the anthropomorphic data provided in the CIPIC database[16] and statistical regression one
could try to find the one or two parameters that have the biggest effect on the ITD. Then using
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the same approach of simple geometry one could perhaps find a better ITD model that give
robust results even in the near field.
The model might also be expanded to three dimensions. This would however cause the cal-
culations to become messy, seeing how the number of sections was rather high already in 2D
with only one parameter. It might, however, make for a sightly better real time ITD calculator.

The work in section 3 seem to tap into a rich vein of future research. The model used in
this paper is, as stated before, much to simple to give any more than a vague glimpse of the
underlying mechanisms. Perhaps one could remove the assumption that the ear is a smooth
surface and thus instead of a straight line which the sound wave is reflected along one would
have a distribution of lines. The larger the angle between the original reflected wave and the
one in the distribution that actually passes through the ear canal, the smaller the reflection
constant (in magnitude, not with sign).

The area of interpolation schemes in HRTF is a well studied area, and except for actually
trying the proposed schemes on actual people there is little I could suggest to the enrich this
field of research.

6 PSEUDO CODE

6.1 ITD

The ITD-function returns the time difference between the right and left ear in seconds. If the
point of emission is closer to the left ear then the answer will be negative.
Before showing how to implement the ITD mentioned in section 2 we must first find a way of
finding out which of the six regions that the sound is coming from (see fig 2.6 for a reminder).
The line that goes through origo is the simple one: if θ >α then the point of emission is above
this line and hence in region 4 or 5.
When it comes to the other line it is clear that its slope if π/2−α radians. By writing the
equation of the line y = kx+m we get k = tan(π/2−α). The line must pass through the point
(x, y) = (a cos(−α), a sin(−α)) = (a cos(α),−a sin(α)). Plugging in this we can find m:

−a sinα= tan(π/2−α)a cosα+m

− tanα= tan(π/2−α)+
( m

a cosα

)
m =−a cosα(tanα+ tan(π/2−α))

m =−a cosα(tanα+1/tanα)

Hence we find that the eq. of the line is

y = x

tanα
−a cosα(tanα+1/tanα)

And hence if we denote the Cartesian coordinates of the emission point (xep , yep ), then if
tan(π/2−α)xep −a cosα(tanα+1/tanα) < yep the point is below the line.
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However when α gets close to zero this gets numerically unstable. This is because 1/tanα→
∞ when α→ 0+. The computer is then asked to subtract infinity from infinity. Not the best
of ideas. Let’s reformulate the equation.

y = x

tanα
−a cosα(tanα+1/tanα)

y =
cosαx −a cosα

(
sin2α
cosα +cosα

)
sinα

y = cosαx −a
(
sin2α+cos2α

)
sinα

y = cosαx −a

sinα

Not only is this more elegant; when α gets close to 0 the factor 1/sinα gets larger until it hits
the maximum floating point value the machine can handle. At this point the right hand side
is larger than yep if and only if x −a is positive (or non-negative if yep < 0). This is the same
division of regions as in the range dependent model without the ear-shift α. There the model
made the distinction when a ≤ r cosθ, but since r cosθ = xem this is the same.
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function ITD(θ,φ,r ,a,α)
x ← r cosθ
y ← r sinθ
c ← 344
if θ >α then

if cosαx−a
sinα < y then

t ←π−2θ
else

t ←
√

(r /a)2 −1+π−arccos(a/r )−θ+α−
√

(r /a)2 −2(r /a)cos(α+θ)+1
end if

else
if cosαx−a

sinα < y then
t ←π+2θ

else

if y < cos(α−π/2)x−pr 2−2 r
a cosα+a2

sin(π/2−α) then

t ←
√

1−2 r
a cos(α+θ)+ r 2 −

√
1−2 r

a cos(α−θ)+ r 2

else
t ←

√
(r /a)2 −1+π−arccos(a/r )+θ−α−

√
(r /a)2 −2(r /a)cos(α+θ)+1

end if
end if

end if
return (a/c)t cosφ

end function
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