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1. Introduction and background of study 

In our everyday life we are used to objects which are concrete for us. We can see them, 

feel them and understand approximately how they will behave, they are deterministic. Our 

intuition about behavior of macroscopic objects is based on experience and was 

beautifully mathematically explained by Isaac Newton in his Philosophiæ Naturalis 

Principia Mathematica. Although Newtonian mechanics was a success in dealing with 

large or macroscopic objects it was shorthanded when several experiments in the 

beginning of 1900’s, like the photoelectric effect and the Compton effect, showed that 

microscopic objects behave much differently from the theoretical predictions given by 

Newtonian mechanics. In an attempt to solve the difficulty L. de Broglie proposed in 

1923 that a moving object has wave as well as particle characteristics [1]. The main idea 

evolved from quantization of light; the energy E of a photon is given by E = hf, where f is 

the frequency of the light and h is Planck’s constant. The momentum p of a photon could 

then be calculated as p = hf/c = h/λ, where c is the speed of light and λ is the wavelength. 

If implementing this idea to a moving object we can calculate de Broglie wavelength as 

λ=h/p. This means than every moving object, regardless of size, is characterized like a 

matter wave!  

Attempts to construct a theoretical framework which incorporate the results of 

experimental evidence of quantization and wave-particle duality were elaborated by mid 

1920’s. Two main quantum mechanical theories emerged. The first one called matrix 

mechanics [2] which obeyed a non commutative algebra and the second one called wave 

mechanics following ideas about matter waves [3].
1
 Though, the matrix mechanics and 

wave mechanics were proved equivalent by E. Schrödinger [4], both theories are forms of 

a general formulation of quantum mechanics developed by Paul Dirac in 1930 [5]. An 

important element in quantum mechanical theory presented by all [3][4][5] is the presence 

of randomness.  Randomness and models of random phenomena are objects of probability 

theory. In particular we are interested in describing physical experiments that can be 

repeated and where future outcomes cannot be predicted. Especially in the early 

development of quantum mechanics many of the performed experiments which showed 

nature of randomness had its roots in scattering theory. Scattering phenomena is also an 

important branch in physics where much of what we know about atoms and nuclear 

physics comes from. There is also a good deal of modern technical application which is 

provided by our knowledge of scattering phenomena. Such applications are electron 

microscope [20], scanning tunneling microscope [21] and many areas in x-ray scattering. 

Although randomness is not new and has been actively performed in form of games of 

chance for thousands of years, a mathematically well presented treatment of the theory of 

probability only emerged in the early 1930s, formulated by A.N. Kolmogorov [6]. The 

fact of close connection between the probability theory and quantum mechanical theory 

gives us an idea to evaluate this connection and try to understand how it can be described 

mathematically.   

In this paper we will examine some basic concepts from the theory of quantum 

mechanics and its connection to the probability theory. To be more specific we will show 

that the principle of conservation of probability in quantum mechanical scattering theory 

give rise to unitary scattering matrices. To achieve a less abstract view of the theory, we 

will apply the quantum mechanics to some basic problems in scattering theory.  

                                                           
1
 There is actually an exciting story by Felix Bloch [17] behind how the wave mechanics emerged in 

the early days of quantum theory. Especially the well known Schrödinger equation could equally be 
called Debye’s equation if Peter Debye (1884-1966) had done some simple calculations to show 
wave properties of moving matter.   

http://sv.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica
http://sv.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica
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We now continue in section 2 to define the basic terms, notations and present some results 

in connection with unitary matrices. In section 3 important notations and principles from 

quantum mechanics will be presented. Implementation of the theory from both sections 2 

and 3 will be used as tools when dealing with scattering theory in section 4. We present 

our conclusions in section 5. 

2. Unitary and Hermitian matrices and operators  

The mathematical language of quantum mechanics is based on linear algebra which is 

supposedly the reader is somewhat familiar with. Let us therefore concentrate in this 

section on building up a mathematical framework which will be used later when dealing 

with quantum scattering problem.  

Definition 2.1 The inner product on a vector space  ,
2
 is a function that associates a 

complex number        to each pair of vectors in  , such that the following axioms are 

satisfied for all vectors a, b and c in   and all complex scalars γ and δ with their complex 

conjugate   and   : 

1.                                                                        
2.                                                                   
3.                                                     

We will be using an inner product on   , which can be checked to satisfy Definition 2.1, 

defined by: 

         
   

 

 

  

In vector notation in     the inner product can be written as      if we define   
            and               . 

 

The vectors we will encounter in quantum mechanical scattering theory are functions. We 

need therefore to introduce the inner product on the vector space of functions. 

 

Definition 2.2 Let   and   be two complex-valued functions in the vector space of all 

continuous functions on the class interval [a,b], then the inner product can be defined as: 

                  
 

 

  

Definition 2.3  A complete inner product space, commonly denoted as H, is called  

Hilbert space.
3
 

 

In section 3 we will see that not all complex-valued functions in [a,b] can represent a 

possible quantum mechanical “state”. We therefore need to define a set called L2(a,b) 

which constitute a collection of square integrable functions. 

 

Definition 2.4 The collection of all square integrable functions   on a complex 

continuous interval [a,b] such that: 

                                                           
2
 Though the interpretation of a vector space is generally known one may consult appendix A3 for 

a detailed definition.     

3
 See appendix A3 for a detailed definition of a completeness. 
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 , 

 

is called by L2(a,b) (Lebesgue square integrable vector space). 

 

Now, if two functions   and   are both in L2(a,b) space their inner product is limited 

which can be proven by Schwarz inequality on integrals: 

             
 

 

             
 

 

           
 

 

     

  

One can show by Riesz-Fischer theorem that the space L2(a,b) is complete and therefore is 

an example of Hilbert space. 

 

A linear transformation   from a vector space H  to itself is defined by ordinary rules of 

matrix multiplication as: 

        
         

           
          

      for all       ∈ H    and        ∈  . 

Here the analogy to often used notation of vector transformation is:   

                       . 

A linear transformation from a finite dimensional vector space, such as   , to itself can be 

described by a square matrix. In quantum mechanics we will be using a infinite 

dimensional vector space L2(a,b). Linear transformations from L2(a,b) to itself are often 

called operators
4
 which correspond to certain observables such speed or position of an 

object.  

 

We will need several definitions to be able to deal with different linear transformations. 

Definition 2.5 If   is a complex matrix, then the conjugate transpose of  , denoted by   , 

is defined by:          . 

Definition 2.6 For a (bounded) operator T : H    H , the adjoint    : H    H  is defined by 

the equation:  

                     for all x and y ∈  H. 

There are two special classes of transformations which are of interest to us: 

1. A square complex matrix T is called Hermitian, or self-adjoint, if it is equal to its 

conjugate transpose:      . 

 

2. A square complex matrix T is said to be unitary, if its inverse is equal to its conjugate 

transpose;       . That is if           . 

Several important facts about unitary and Hermitian matrices can be proved.  

Theorem 2.1 If T is a complex     unitary matrix then               for all x and y 

in H.   

Proof.  Let               and                ∈ H, then by properties of a unitary 

matrix operator it follows                                            ■                                        

                                                           
4
 An operator is a mathematical instructor which is acting on the function that follows it. 
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It follows from Theorem 2.1 that a unitary matrix is also an isometry i.e. the distance is 

preserved between two vectors x and y after a map by a unitary matrix T, which can be 

shown by following: 

                                                               

 

Theorem 2.2 For a unitary matrix T, eigenvalues λ have unit magnitude i.e. eigenvalues 

λ ∈  :      . 

Proof.  For an eigenvector              , such that       we have by unitary 

property and Theorem 2.1: 

                                         

Since         and                 ⇒                                                        ■ 

Theorem 2.3 The eigenvalues of a Hermitian matrix are real.  

Proof.  Let λ be an eigenvalue with the corresponding eigenvector     of a Hermitian 

matrix T, then by Definition 2.6 and property of Hermitian operator:  

                                                    

Because     it must be true        ⇒     ∈  .                                                            ■ 

Without any proof we will state an important theorem which combines unitary and 

Hermitian matrices. 

Definition 2.7 A square complex matrix T is said to be unitary diagonalizable if there 

exists a unitary matrix B which diagonalizes T, i.e.          where D is a diagonal 

matrix. 

Theorem 2.4 Every Hermitian     matrix has an orthonormal set of n eigenvectors and 

is unitarily diagonalizable by a     matrix whose column vectors form an orthonormal 

set of eigenvectors of the Hermitian matrix                                                                       ■ 

 

Let us now introduce the notation for a linear operator which acts on complex functions in 

L2(a,b) space.  

 

Definition 2.8 Let   and   be two functions in L2(a,b). The quadratic form of a linear 

operator T denoted by    is a linear transformation on L2(a,b) with inner product defined 

by: 

                      
 

 

  

 

We will see further on that in physics we are interested in operators which has following 

property, equivalent to a Hermitian matrix. An operator    in L2(a,b) is called symmetric 

or just Hermitian if following equality holds: 

                 

3. On quantum mechanical representation and its principles 

In this part we shall present some general principles of quantum mechanics. [8 pp. 194-

231] [11 pp. 3-2 – 3-4]   But before doing so let us mention some facts about notation 

called Dirac bracket notation after Paul Dirac. It is widely used in theoretical physics and 
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mathematics and we have already introduced it in Definition 2.1 as inner product notation 

       . The symbol        is called bra while         is called ket and together they will form 

bracket           . Continuing using the bracket notation we can now introduce the general 

principles of quantum mechanics.  

3.1 The principles of quantum mechanics  

In quantum mechanics a state of an event, object or a system of objects can be described 

by complex functions in a Hilbert space
5
. The transition between some possible states is 

connected to the transition probability. Because the probability is always real and is 

between [0,1] we have the following principle to guarantee a real outcome despite 

quantum mechanical states are complex valued.  

Principle 1.  

Let   and   belong to the Hilbert space.  The probability that an object will be at a state 

  , when first being in the state   , is the absolute square of a complex number called 

the probability amplitude
6
. 

              
   

 

We see that     ∈       which is deduced from that absolute square of a complex scalar 

is real. The first principle states that two functions, which represent two quantum 

mechanical states, are square integrable and limited. The introduction of probability is 

important here because it gives us a way to interpret the probability amplitude.
7
  

If we have an event in state   which has several routes to end up in a state   we might 

ask us what is the probability amplitude for an event to go by some particular route? Let 

us define the route as an event with the quantum mechanical state α. Then we have by 

Principle 1 three events with the following probability amplitudes: 

           

                               

                              

                                                                       

  

Probability amplitude for event C is then given by        . The events A and B are said 

to be independent which is equivalent to say:            . Let us put this as a principle 

Principle 2. 

Probability amplitude for an event that is in state    and goes by some particular route, 

defined by state α, to end up in state    is the product of the amplitude to go part way 

       with the amplitude to go the rest way       .  

                       

It is not hard to see that if we add all the routes, say          , from   to   we should 

end up with a total probability amplitude go from state   to    by all routes possible. 

                                                           
5
 Technically a Hilbert space, is as stated by Definition 2.2, a complete inner product space. The 

collection of square integrable functions L2(a,b)  is therefore only one possible Hilbert space. But 
since physicist and many mathematicians often refer to L2(a,b) space when saying Hilbert space we 
will adopt same standard when dealing with quantum mechanics.         
6
 Observe that “probability amplitude” is not the same as “probability”. The probability amplitude 

is in general a complex number whereas probability is defined on a real interval.    

7 Some basic definitions and theorems from the theory of probability are stated in appendix A4.  

 



 8 

Principle 3. 

Probability amplitude for an event which has several routes,          , from state    to 

state    is the sum of the amplitudes for the routes considered separately.   

                       

 

  

By combining the three main principles we get the probability for an event from state    

to state   undertaking all possible routes and partial routs as: 

         
                                         

         

 

 

  

 

We will now put the idea by L. de Broglie, which is all moving objects have wave 

characteristics, in a mathematical form. Developed by E. Schrödinger we got the 

Schrödinger equation which explicitly tells that a quantum mechanical state is a function 

of position and time.   

 

Principle 4.  (The Schrödinger equation) 

To an ensemble of physical system one can associate a wave function which is in general 

complex. The wave function contains all the information that can be known about the 

ensemble.  

The time evolution of the wave function of a physical system is determined by the time 

dependent Schrödinger equation, which is a partial differential equation. In one 

dimension we can express the time dependent Schrödinger equation on a wave function 

       by its partial derivatives:  

  
  

  
  

  

  

   

   
          

In this equation i is the square root of -1,    is Planck’s constant divided by 2 , m is the 

mass of the system and V is the potential, which is real, describing the interaction between 

the system by the rest of the surrounding world.
8
   

Principle 5. (The Heisenberg’s uncertainty principle in one dimension) 

It is not possible to know both the exact momentum (p) and the exact position (x) of an 

object at the same time. The minimum uncertainty is quantitatively described by: 

     
 

 
    

Were    is the deviation in momentum and    is the deviation in position. As before   is 

Planck’s constant divided by 2 .  The fifth principle tell us that no matter how well one 

measures speed (momentum) and position of an object one will end up at least to be 

uncertain in       magnitude when measure speed and position at the same time. 

 

 

                                                           
8
 A more elaborate description of the Schrödinger equation and its connection to the classical 

wave equation is presented in appendix A1. 
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3.2 Arbitrary quantum mechanical system 

In general, for an arbitrary quantum mechanical system, let the system be represented by a 

function        living in Hilbert space. Define x as position vector in    and t as time 

parameter belonging to  . It now follows from Principle 1 that integrating a quantum 

mechanical state        over the whole volume    equals unity:   

                                                                  (3.2) 

Physically (3.2) means that probability of finding, somewhere in real space    and at all 

times, an object described by a quantum mechanical state        must be 1.  

Besides being square integrable, Ψ must be continuous to give a physically meaningful 

result. One might observe that there is no integration in (3.2) with respect to time 

parameter t. It can be explicitly proven that the probability for a quantum mechanical 

state, described by the Schrödinger equation, evolving in time is preserved i.e. 

 

  
                 

We might be interested in some physical observable quantities like speed or position of an 

object represented by the Schrödinger equation. Such observables are represented in 

quantum physics by symmetric or hermitian operators (see Definition 2.8).
9
 The 

expectation value for a hermitian operator follows same notation as expectation value of a 

function of a random variable defined in appendix A4. We have also showed by Theorem 

2.3 that the eigenvalues of a hermitian matrix have to be real. Same follows for a 

hermitian operator where the eigenvalues representing determinate states are real. The 

expectation value of a hermitian operator, which is an average of eigenvalues, is therefore 

also real. Why is this conclusion so important? We will see in the next section that the 

total energy of an object (in motion much less than speed of light) can be represented by 

Hamiltonian operator (  ) which is hermitian with eigenvalues representing the energy E. 

The time independent Schrödinger equation (see appendix A2.1) can be written as: 

           

Where    is an eigenvalue corresponding to eigenfunction   . When we measure the 

energy of a quantum mechanical system we are guaranteed by Theorem 2.3 to get a real 

energy value   . In probabilistic terms we say that the wave equation Ψ collapses to give 

one of the possible eigenvalues   .    

4. Introduction to quantum mechanical scattering theory.   

In classical physics scattering is associated with moving objects which interact and then 

move apart. In quantum mechanics, moving objects are associated with the wave function 

which is described by the Schrödinger equation “Principle 4”. When studying scattering 

problems we are therefore interested in finding solutions to partial differential equations 

which describe different quantum mechanical states. The standard case is that several 

particles come together from an infinite large distance away. They collide or maybe react 

and then scatter away to infinity again. The solutions to the differential equations tell 

which directions the particles are most likely to go. An equivalent way of describing the 

same problem is by applying the general principles of quantum mechanics. Suppose we 

                                                           
9
 For example the momentum operator (p) tells to differentiate the wave function  (x) with 

respect to position variable x and then multiply the result by    . 
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have an arbitrary potential structure which causes scattering of a particle when interacting 

with it. We can label the various position on the potential structure by an index i, where i 

runs over the integer N. For any particular i, the amplitude that the particle arrives at a 

particle counter   placed in a fixed position j denoted as         , is the amplitude that 

the particle gets from the source in initial state    to position in state   , multiplied by the 

scattering amplitude    :  

Probability amplitude to go from    to    by position i :                         

The total probability amplitude to go from    to    is the sum over all the positions i: 

   
 
  

 
 
 

 

   

        
  

 
 

 

   

                                             

Because we are in (4.0) adding amplitudes of scattering from index i with different space 

positions, the amplitudes will have different phases giving rise to interference. Now, the 

probability of finding the particle before scattering, somewhere in space, must be 1. This 

is equal to the probability of finding same particle after the scattering. We have therefore 

equality of probabilities before and after scattering. If          is the probability to find 

particles in a small space interval    before and            is after, we have: 

                       

 

    

 

 

           

 

    

               

The different quantum mechanical states in expression (4.0) can be described by the 

Schrödinger equation for which we are interested in finding a solution. In particular, we 

are studying what is called the spectrum of a linear operator corresponding to the 

Schrödinger equation. Discrete spectrum is corresponding to bound states while 

continuous spectrum is corresponding to scattering states of the Schrödinger equation. The 

long time asymptotic of the scattering states is then described by a map, called S-matrix, S 

: H    H. For example, the time independent Schrödinger equation (see appendix A2.2) 

can be written as:
 10

 

         
 

 

  

 
 
     

          
                                       (4.1) 

Here we use the correspondence between classical mechanics and quantum mechanics In 

(4.1)   stands for the eigenvalue and   for the eigenfunction. The solution to the 

Schrödinger equation, (4.1), which is a second-order linear ordinary differential equation, 

is generally complex-valued. Consider first       , with general solution to the 

equation (4.1) is:   

                                ∈     
    

 
                          (4.2) 

Tacking on the time dependence on (4.2), as stated in appendix A2.2, which is         , 

we get the time dependent wave function:
11

  

                                                           
10

 The Hamiltonian operator    in x-variable is obtained by the substitution of momentum operator 

   
 

 

 

  
 into Hamiltonian:   

  

  
     , which gives:       

  

  

  

         

11
 Actually we have a small problem here because the wave equation describing a scattering state 

in (4.2) is not part of the L2(a,b) space i.e. not normalizable. A wave packet, constituted by a set of 
individuals waves, is on the other hand normalizable and by Theorem A4.4 (see appendix A4) fully 



 11 

                                                                 (4.3) 

Now, let us introduce potential        which gives rise to transformation of the 

scattering state in (4.3). Because there is a time parameter t we may introduce an 

evolution operator          [8 p. 232 ] which is a time dependent transforms a state by 

the following rule:  

                           

with the definition of           . The S-matrix is the time limit of the evolution 

operator          i.e. 

   
     
    

            

The scattering transformation of a quantum mechanical state can then be written as: 

                                                                (4.4) 

The conservation of probability demands that                . If we take the 

absolute square of both sides of expression (4.4) we see that    
      

      . It 

follows that       which means that the S-matrix is unitary. 

We will from now on concentrate on to show how to construct S-matrix from some 

idealized scattering problems and its connection to probability conservation. Before we 

first deal with the one-dimensional scattering problem let us mention some facts about 

idealized scattering in experimental physics. 

In an idealized scattering experiment we have a particle ( ) with a defined momentum 

and which is scattered from a target     with a well defined shape. As a result of the 

collision there are several possible outcomes:   

1. An elastic collision where momentum of     is conserved. 

2. An inelastic collision where some kinetic energy of     is transformed.  

3. An absorption where     is transformed into a new particle. 

In this paper we will limit our analysis to only elastic collisions; both energy, momentum 

and the number of particles are conserved. In particular our point of view will be from a 

theoretical perspective, where we first treat one dimensional scattering problem and 

expand the analysis to the three dimensional scattering problem.  

4.1 One dimensional quantum mechanical scattering  

Consider a schematic situation where an object described by state   , is scattered by a 

potential V(x) at time t which transforms the state    into another scattered state   . We 

can divide the situation into three regions as seen in Fig. 4.1. 

                                                                                                                                                 
defined by its continuous distribution. But it would be too much for us to describe a configuration 
of waves, why we only deal with a wavelength at a time.  
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Figure 4.1. Scattering from an arbitrary localized potential. 

 

Outside the potential, in the region 1 and 3, the Schrödinger equation has following time 

independent form where          : 

             
    

     
  

                                        (4.5) 

             
    

     
  

                                        (4.6) 

The solutions to the equation (4.5) and (4.6) are: 

                           ∈                                     (4.7) 

                           ∈                                     (4.8) 

Where   is the wave number of de Broglie wave representing the object:
12

 

    
    

 
  

Recall from appendix A2.2 that adding the time dependence         gives rise to a wave 

function propagating to either left or right depending on the time independent function: 

          
      

   
  

  
   

       
   
  

  
                             (4.9) 

We can therefore interpret A and G as incident wave amplitudes from left respective right 

side as in Fig. 4.1. By the potential V(x) the incident waves are partially reflected and 

transmitted with  the wave amplitudes B and F.  

Inside the barrier the Schrödinger equation reads: 

             
    

    
  

                                          (4.10) 

The solution to the equation (4.10) depends on whether          has positive or 

negative sign (or zero). It is not in our purpose to go through all possibilities and therefore 

we limit our analysis to the case where          is constant and positive. In that case 

the solution to equation (4.10) is:
13

 

                                                           
12

 Actually an object cannot be just represented by a single probability wave. In that case it would 

be everywhere. Instead we are talking about a wave packet, a packet with individual waves in 
superposition. For our purpose it is fully enough to study one wave individually.  However, 
example of numerical studies of wave packets scattering off different wells and barriers can be 
found in [19]. 
13

 Observe that since the exponents are real of function (4.11) it does not oscillate and therefore 

cannot represent a moving object defined by de Broglie wave. The probability density, which is 
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                         ∈       
        

 
               (4.11) 

Now, we must have both   and its derivative to be continuous. This implies four 

boundary conditions because there are three regions with two splits dividing the regions 

(see Fig. 4.1). 

                                 
     

   

  
 

   

  

                           (4.12) 

                                
     

   

  
 

   

  

                           (4.13) 

By substituting  1,  2 and  3 from equation (4.7), (4.11) and (4.8) into boundary 

conditions (4.12) and (4.13) we will end up in a system of equations: 

                                                            (4.14) 

                                                               (4.15) 

                                                          (4.16) 

                                                          (4.17) 

We can write the above equation system in a more compact way as: 

 

 

                            
    

          
          

       
       

                            

     
         

                 
       

 

 

  
 

 
 
 
 
 
  

  
 

 

 

  
 

 
 
 
 
 
  

  
 

  

Let us for simplicity deal with a location of the potential which has its position between 

         . This implies somewhat easier matrix than above stated: 

 

 

        
              

                        

     
        

               
     

 

 

  
 

 
 
 
 
 
  

  
 

 

 

  
 

 
 
 
 
 
  

  
 

             (4.18) 

Usually, in experimental physics, there is only incoming wave from one side. Let us 

therefore put     which makes it only possible for a transmitted wave with amplitude 

F. Now, to show the probability conservation principle we need to calculate the 

transmission probability (T) and reflection probability (R) which are defined as: 

  
    

    
              

    

    
  

The first step is to calculate F/A and B/A which can be done by observing that A and B are 

functions of C and D which are in turn functions of just F: 

                                                                                                                                                 
square of the function (4.11), is certainly real and therefore there is a real probability of finding the 

object within the barrier!      
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By replacing C and D in equation (4.19a) by formula for C and D in (4.19b) we will 

obtain the following ratios for F/A and B/A: 

 

 
 

       
         

             
          

 
                                         

 

 

 
 

            
    

  

             
          

 
                                        

Expression (4.20a) can be rewritten as: 

 
 

 
 

  

  
             

          
 

       
         

       
                          

      

  

  

       
  

           
 

      

      
  

           
 

      

      

       
  

    
 

      

      
  

    
 

      

     
      

      

      
      

      

      

        
  

    
 

      

              
          

 
  

          
  

    
 

     

  
          

 
   

          

 
   

         
  

    
 

     

                       

We are now able to express the transmission probability as ratios between square of 

probability amplitudes    . The complex conjugate of     which we denote by        

multiplied by (   ) gives: 

     
 

 
 

  

 
  

  
 

  

 
              

    
              

   
   

  

Utilizing the hyperbolic identity,                 , the expression above for 

transmission coefficient can be simplified further to give: 
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Using same method as when obtaining the transmission coefficient it can be shown that 

(4.20b) leads to the reflection coefficient 

     
   

   
 

   
    

             
 

  

  

Remember expression for the    and     where 

    
    

 
         

        

 
  

the transmission and reflection coefficients can be written as 

     
            

       
 

  

                
       

            
 

  

      

Let us verify the principle of probability conservation which should in this case give 

     : 

       
            

       
 

  

     
       

            
 

  

 

 
       

                    
 

            

                    
    

4.2 Generalization of quantum mechanical scattering in one dimension 

The case study of one dimensional scattering under restrictions of          in section 

4.1 can be generalized to arbitrary localized potential.
14

 In region 1 and 3 (see Fig. 4.1) the 

potential energy is         . This means the solutions to the time independent 

Schrödinger equations are:    

                                                          (4.21) 

                                                          (4.22) 

In region 2 the potential energy is      and the Schrödinger equation reeds: 

    

    
  

                                                 (4.23) 

A general solution to the linear second order differential equation (4.23) is of the form: 

                        ∈  ,                                 (4.24) 

where both      and      are two linear and independent solutions. The rest of the 

problem is about to combine region 1 and 2 by two boundary conditions and region 2 and 

3 by another two boundary conditions: 

        

     

   

  
  

   

  

     

                                                           
14

 In our analysis we are treating only one wave function.  
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Two of the conditions can be used to eliminate C and D which will lead to B and F can be 

solved in terms of A and G. We can therefore construct a 2 x 2 scattering matrix (S-

matrix) which tells us the relation between the incoming components of wave (A and G) 

and outgoing components of wave (B and F): 

  
 
    

      

      
   

 
                                     (4.25) 

               
 

 
             

 

 
   

The law of energy conservation demands conservation of probability, as stated in (3.2). 

This means in quantum mechanical notation    
          

     . But since the relation 

(4.25) holds the following must be true for one dimensional scattering problem: 

   
          

         
         ⇒                               (4.26) 

Which leads to the following equation                          . 

In a typical formulation of scattering described in section 4.1 we only have incident wave 

coming from one side of the potential. But we can as well think of two incident waves 

with the same wave number coming from both sides of the potential. In the first case we 

are able to talk about the reflection (R) and transmission (T) coefficients. For example if 

we let        we have the following expression for (R) and (T): 

  
    

    
    

        
    

    
     

   

4.3 Quantum mechanical scattering in three dimensions 

In classical three dimensional scattering the main problem is to calculate scattering angle 

when we have a given impact parameter. Consider the case where the collision object is a 

circle with radius R at which we fire a projectile with an impact parameter b, see Fig. 4.2. 

Using the angle notation from Fig. 4.2 we can see that the impact parameter is equal to 

          where        and therefore: 

 

                                
    

       
   
   

  

 

                                                                                       Figure 4.2. Scattering circle. 

 

Expanding to three dimensional view we can introduce so called differential cross 

section, defined as the ratio of an infinitesimal area   , from which there is a projection 

into a corresponding infinitesimal solid angle    (see Fig. 4.3) or             . In 

practice we measure the number of particles received (      )) by a counter in a certain 

time interval and in some solid angle     ). If we know how many particles per time unit 
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are crossing a unit area, normal to the direction of incident say Ji, we are able to calculate 

the differential cross section by: 

       
  

  
  

       

  
   

              

Figure 4.3  Schematic scattering.                          Figure 4.4 QM scattering 2-dimension. 

From the differential cross section we can obtain the total cross section of a collision 

object, which typically depends on the energy of the incoming particle and the collision 

object’s form [18 pp. 24-25], as:   

   
  

  
                                                (4.27) 

Let us now go over to quantum theory of scattering and imagine a simple configuration 

where a plane wave, defined by      and traveling in z-direction, representing an electron, 

atom or another particle, travelling towards an object represented by a potential V(r), see 

Fig. 4.4 for a 2-dimensional example. After interaction with the potential there is an 

outgoing (in this example) spherical wave with the energy concentration proportional to 

      . The wave carries a factor of     because of the energy conservation law. The task 

for us now is to solve the Schrödinger equation for different configurations and find the 

probability amplitude for respective outgoing waves. We know that the solution must be 

similar to: 

                
            

   
                            (4.28) 

As before k is related to energy of the incident particle as          . The so called 

scattering amplitude       , which is related to the S-matrix, has a close connection to 

the differential cross section. By analyzing the problem in probability measurement we 

have in case for large r:  

            
 
     

           

 
 

 

           

where      is the probability of a particle being in a small volume around part of cross 

section     and      is the probability of finding the scattered particle in a small 

volume    . We have in fact following notation: 

              
 
      

           

 
 

 

             

But           which in our notation reads: 

              
             

                                 (4.29) 

By using formulation (4.27) and equation (4.29) it follows that                and 

therefore: 

                                                            (4.30) 
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In other words the differential cross section is equal to the absolute square of scattering 

amplitude.  

There are two main techniques of finding solutions to scattering problems: partial wave 

analysis [8 pp. 595-599] and Born approximation [8 pp. 615-618]. In the following we 

will use the techniques of partial wave analysis for calculating the scattering amplitude.  

Let us begin by observing that solution to the three-dimensional Schrödinger equation for 

different potential functions has vast set of solutions. We will therefore limit ourselves to 

the potentials which are typically functions of the distance from the origin. It is then more 

convenient to go from cartesian (x, y, z) to spherical coordinates (r, θ, φ). By limitation to 

a spherically symmetrical potential V(r) we can now allow us to use the method of 

separable solution to the three-dimensional Schrödinger equation. Referring to appendix 

A2.3 the wave equation described by the Schrödinger equation with symmetrical potential 

V(r) has separable solutions of following form in spherical coordinates:   

                
      , 

where       is a function of distance from the origin and   
       is the function of polar 

angle θ, and azimuthal angle φ. The values m and l in   
  are standing for magnetic 

quantum number (m) respectively azimuthal quantum number (l).
15

 The radial 

solution       satisfies the radial equation (see appendix A2.3 eq. A2.3e):  

 

 

 

  
     

  
  

    

  
                                        (4.31) 

By introducing           , so that                       and  

                            , we can write (4.31) in the following form:
16

 

 
  

  

   

          
  

  

      

                                   (4.32) 

The solution to equation (4.32) depends on     . If we consider the case when potential is 

localized, which means          if      where   ∈  , we are dealing with two 

regions. In the region where        the radial equation becomes: 

   

    
      

                                                 (4.33) 

The general solution, for arbitrary integer l, to the equation (4.33) is a combination of 

spherical Bessel         and Neumann         functions of order l [9 p.142, 16 pp.540-

543]: 

                               ∈                             (4.34) 

where spherical Bessel and Neumann functions are defined as follows: 

            
 

 

 

  
 

        

 
              

 

 

 

  
 

        

 
     

                                                           
15

 Observe m does not stand for the physical unit mass in this case. 
16

 The equation (4.31) is called radial equation and is identical in form to the one dimensional 

Schrödinger equation (see Principle 4, part 3) except       
  

  

      

    , which is called effective 

potential,  and containing an extra term. 

http://en.wikipedia.org/wiki/Partial_wave_analysis
http://en.wikipedia.org/wiki/Partial_wave_analysis
http://en.wikipedia.org/wiki/Born_approximation


 19 

The problem is that neither spherical Bessel nor Neumann function represents a complex 

wave function as stated in (4.28). The solution to the problem is to apply spherical 

Hankel functions of first and second kind:
17

 

  
                           

                                       (4.35) 

We are interested in asymptotic behavior (large r) of spherical Hankel functions. For the 

first kind Hankel function   
   

               and the second kind Hankel function 

  
   

            , when r goes to infinity. Because we are interested in an outgoing 

probability wave we use the spherical Hankel function of first kind. The solution to the 

radial equation (4.33) is proportional to    
         or            

         

The exact probability wave function in region where        can now be written as: 

                       
         

                                 (4.36) 

where the first complex term is the incident plane wave and the second series term is the 

scattered wave where     is the product coefficients for    
         

      . Now we have 

to deal with angular wave function   
       which is proportional to (see appendix 

A2.3): 

  
                       

           

where   
  is the Legendre function defined in appendix A2.3. The normalized angular 

wave function   
       is called spherical harmonic: 

  
          

    

  

        

        
      

                                   (4.37) 

where         for     and     for    . Because we have limited ourselves to 

spherically symmetric potential there is no dependence of variable   in the outgoing wave 

function (4.37). This means m is equal to zero which gives us following spherical 

harmonic function: 

  
        

    

  
            

The product coefficient      in function (4.36) is then reduced to 

                         [9 p. 402], where       is called the partial wave 

amplitude. We can now write the wave function in (4.36) as follows: 

                                 
                 

 

   

              

In the limit of large distance from the origin of the potential we know that the Hankel 

function   
   

              . This means: 

                  
    

 
   

                                                           
17

 This is analogous to linear combination of     and      in case when we want to express the 
harmonic functions        and       . 
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Remember that             and                 , we have now a way to 

calculate the total scattering cross section as function of     . With the orthogonality 

relation: 

                         
  

    
 

  
   

where        if     and        if     , we can express   by: 

                  
          

   

                         

                  
 

   

  

To calculate       one need to solve the Schrödinger equation in the region where     

and match the solution to the solution of (4.38) using right boundary conditions as in one 

dimensional scattering analysis. It is not in our scope to make all the necessary and in 

many times advance calculations to get an explicit formula for      . The interested 

reader is advised to consult [8] or [9].   

 

5 Discussion  

We have now looked on the quantum mechanical scattering theory by a brief analysis of 

one and three dimensional problems. In section 2 we presented the mathematical frame of 

reference upon which the quantum mechanical scattering theory is based. In section 3 we 

presented the principles on which quantum mechanics is based. In particular the main 

principles of quantum mechanics gave us the ability to understand how to deal with 

probability amplitude. The main result which followed from previous section 4, on 

quantum mechanical scattering theory, was that a scattering matrix must be unitary to 

ensure that energy and probability amplitude were conserved. The construction of 

scattering matrix for simple case as one dimensional problem involve solving the 

Schrödinger equation and application of correct boundary conditions. Whereas the three 

dimensional scattering problem, even in simple cases with spherical symmetrical 

potential, give rise to complicated solution to the Schrödinger equation.  

 

An important distinction we would like to stress is the difference between analyzing a 

problem by a deterministic model, as we have done in solving the Schrödinger equation, 

and a probabilistic model. A differential equation may well describe a random 

phenomenon, although the equation does not capture any of the randomness involved in 

the real problem. A differential equation can not tell us why a particle has chosen to 

scatter into one direction or another. It only tells us the average behavior of the scattering 

phenomenon. We can only point out a random phenomenon by its distribution which we 

observe. In the case of one dimensional scattering the distribution is binomial; reflection 

or transmission. In the case of three dimensional scattering we may have a continuous 

distribution over spherical angles     (scattering problem described in section 4.3 by 

function (4.30)) or a discrete distribution in case of limited number of scattering channels. 
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Further questions which might be interested to examine are connected to the set of all 

unitary scattering matrices characterized by some given conditions. For example we might 

be interested in construction of a physical devise which gives a certain distribution of 

scattered amplitudes. Relevant applications are different efficient photon radiation and 

collection techniques. One example which is widely used in our everyday lives is light 

emmitin-diod. More advanced applications are; micropillar cavity [22], light guiding 

nanowires [23] and apertured microcavity [24]. All these applications are based on proper 

understanding of scattering theory. 
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Appendices 

A1 Mathematical description of wave motion 

In this section we formulate mathematical description for wave motion in general. Further 

on we concentrate on a special case of wave motion, the harmonic wave. The importance 

of harmonic wave comes from its physical representation.   

A1.1 Wave equation [14 pp.94-96] 

To begin with let us define a one dimensional pulse of arbitrary shape. One can set the 

pulse moving along x-axis to the right of the origin with speed  . The shape of the pulse 

stays the same but changes the location on the x-axis as time goes by. In mathematical 

form the moving pulse is described by a time-dependent function which has the form of 

       . 

By definition any function represented by           is a pulse traveling in positive 

x-direction. If the pulse moves to the left the sign of   must be reversed so we might write 

in general 

                                                           (A1.1a) 

Theorem A1.1. In general a one dimensional wave function satisfies following differential 

equation: 

   

   
 

 

  

   

   
                                            (A1.1b) 

Proof.   For        where           we can calculate the partial derivatives as 

follow: 

Derivative with respect to x: 

  

  
 

  

  

  

  
 

  

  
  

Second derivate with respect to x: 

   

   
 

 

  
 
  

  
  

 

  
 
  

  
 
  

  
 

 

  
 
  

  
  

   

   
  

First time derivative: 

  

  
 

  

  

  

  
   

  

  
  

Second time derivative: 

   

   
 

 

  
 
  

  
  

 

  
 
  

  
 
  

  
 

 

  
   

  

  
        

   

   
  

Comparing the second partial derivatives we get the statement (A1.1b).                            ■ 

A1.2 Harmonic waves [14 pp. 96-97] 

An important representation of wave in physics is the harmonic one which is 

characterized by a periodicity. The most familiar are the sine and cosine functions, 
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                                                             (A1.2a) 

Where A and k are constants. Because the only difference between sine and cosine is the 

phase of      it is sufficient for us to treat only one of the functions.  

Definition A1.1. Relationships of wave parameters: 

 The constant k is related to the wavelength λ as       .  

 The time period T is related to the wavelength λ as     ., where   is the wave 

velocity.  

 The angular frequency   is related to the wavelength λ as         

By Definition A1.1 we can express the harmonic functions in (A1.2a) in different ways: 

                      
 

 
 

 

 
                  

A1.3 Harmonic waves in three-dimensional space [14 pp. 100-102] 

Definition A1.2. Let     be the vector representing an arbitrary point in space and      

represent a vector with magnitude      which is pointing in the direction of propagation 

of the wave. Similar to one dimension we write : 

                                                            (A1.3a) 

The partial differential equation which is satisfied by the harmonic wave in (A1.3a) is a 

generalization of equation (A1.1b) and has following form: 

   
 

 

   

   
  

where   is the Laplacian in cartesian coordinates defined as:     
  

    
  

    
  

   . 

Using Eulers’s formula the function in (A1.3a) can be expressed as imaginary part of the 

complex function 

                                                                   (A1.3b) 

This will simplify many calculations because it is easier to work with exponential 

functions than with trigonometric.   

A2 The Schrödinger equation 

A2.1 The Schrödinger equation in one dimension 

The Schrödinger equation can be arrived in many different ways but it cannot be derived 

from already known physical principles [8,9,12]. We will here show one way to get the 

equation by starting from a freely moving particle interpreted by L. de Broglie’s point of 

view as a wave described in appendix A1. Assume a wave function (A1.3a), mentioned in 

section A1.3, but for simplicity only in one dimension (x-axis) as moving in + x direction, 

which can be written as: 
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We can now rewrite the above written function by implementing what we have already 

stated in section 1 about the energy of a particle and its wavelength: 

               and        
   

 
  

This gives us the wave function for a freely moving particle: 

                                                         (A2.1a) 

The expression for the wave function (A2.1a) is correct only for freely moving particles 

which means potential    . By restricting the motion of the freely moving particle by 

some local potential         , in general a function of position x and time t, we get by 

the classical physics the total energy of the particle as sum of its potential and kinetic 

energy. For non relativistic energies (particle speed much lower than speed of light) the 

total energy is given by: 

   
  

   
                                                  (A2.1b) 

What we now will do is to obtain the fundamental difference equation for a wave function 

Ψ, which we can solve for a specific situation involving potential restriction. Let us begin 

by differentiating equation (A2.1a) twice with respect to x, which gives: 

   

     
  

                     

                              (A2.1c) 

Differentiating equation (A2.1a) once with respect to t gives: 

  

  
  

  

 
                 

 

 

  

  
                             (A2.1d) 

Multiplying both sides of equation (A2.1b) by   and substituting for E  and p
2  from 

equation (A2.1c) and (A5.1d) respectively we obtain following equation: 

  
  

  
  

  

  

   

   
  

Remember the classical expression for the total energy in (A2.1b), we can now use the 

quantum mechanical equivalence which is the operator in (A2.1d) for energy  . The 

operator for momentum   is given in (A2.1c). We will get the time dependent 

Schrödinger equation for the wave function   as: 

    
   

   
              

  

  
  

  

  

   

   
          

A2.2 Separation of variables to solve the Schrödinger equation 

In many physical problem formulations the potential energy V is independent of time. In 

that case the Schrödinger equation can be solved by the method of separation of 

variables. We are looking for solutions to the Schrödinger equation which are products 

                                                            (A2.2a) 
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where   is a function of only x and φ is a function of only t. Substituting the expression in 

(A2.2a) into the Schrödinger equation and dividing by      we will obtain: 

  
 

 

  

  
  

 

  

   

   

 

 
                                  (A2.2b) 

Because the left side of the equation (A2.2b) is a function of just t and the right side is a 

function of x, both sides must be constant. In fact it turns out that the constant in equation 

(A2.2b) is related to the energy of the system [9 pp. 26-27]. Now we have made a partial 

differential equation into two ordinary differential equations: 

              
 

 

  

  
                

   

  
   

  

 
 

                
 

  

   

   

 

 
                     

The first equation can be solved by standard methods with an integration of both sides to 

get              . The second equation, which is a time independent Schrödinger 

equation, can be solved when the potential V(x) is specified.  

A2.3 Separation of variables to solve the Schrödinger equation in 

spherical coordinates  

In three dimensions the Schrödinger equation has following form: 

  
  

  
  

 

  
                                         (A2.3a) 

Changing from cartesian coordinates to spherical coordinates (     ) the Laplacian takes 

the following form: 

   
 

  

 

  
    

  
  

 

        

 

  
       

 

  
  

 

         
 

  

            (A2.3b) 

Putting the Laplacian in (A2.3b) into the three dimensional Schrödinger equation (A2.3a) 

and we may look for solutions to the separable equation of following form: 

                                                     (A2.3c) 

The partial derivatives are: 

  

  
 

  

  
              

  

  
 

  

  
              

   

    
   

                 (A2.3d) 

Substituting the expression (A2.3c) and the three derivatives (A2.3d) in the Schrödinger 

equation (A2.3a), thereafter dividing entire equation by       and multiplying by  

           we end up with the following equation: 

 

 

 

  
   

  

  
  

    

  
         

 

 
 

 

      

 

  
       

  

  
   

 

 
 

 

       

   

        

As with the one dimensional analysis (see equation (A2.2b)) we can divide the above 

written equation into two equations equal to a constant: 
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                                 (A2.3e) 

 

 
 

 

      

 

  
       

  

  
   

 

 
 

 

       

   

                           (A2.3f) 

It can be proved that the constant k is equal to       , where l is an nonnegative integer. 

The equation (A2.3e), which is called the radial equation, can only be solved when we 

know the form of the potential     . The equation (A2.3f) can be divided once more into 

following parts after multiplication by        : 

 

 
        

 

  
       

  

  
                  

 

 

   

   
  

Both sides are constant which we may set to q. It can be proved that     , where m is 

an integer. The separation constant    in above equation gives following equations: 

 

 
       

 

  
       

  

  
                                        (A2.3g) 

 

 

   

                           (A2.3h) 

Equation (A2.3h) can be directly solved to generate following solutions: 

                              ∈    

 

Somewhat difficult is to solve equation (A2.3g) so we will just state the solution which is 

given in [9 p.136]: 

        
            

 

Where   
  is the Legendre function defined by: 

  
           

   
  

 

  
 

   

       

and    is the Legendre polynomial of the     order, defined by the Rodrigues formula: 

      
 

    
 

 

  
 

 

         

A3 A mathematical definition of a complete vector space 

Definition A3.1 A metric space is a set X with a real-valued function          

such that for every       ∈  : 

                    

                               

               

                       

The metric space is an abstraction of the distance between two points in space. This 

creates a fundamental question of closeness of points and, in a broader view, 

completeness of a metric space. To deal with this questions let us define convergence. 
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Definition A3.2 If for some x and for any positive real number   there exists a natural 

number N, such that           when    , we say that the sequence        
  

converges to x. Written as           . 

Often it is not easy to tell about convergence of a sequence from Definition A3.2. 

However, the next best thing to do is to see whether the points of a sequence get closer 

with larger n. Let’s therefore define a Cauchy sequence. 

Definition A3.3 A Cauchy sequence is a sequence for which  ∈   shows following 

property:                      

A sequence that converges is necessary a Cauchy which can be shown by the following: 

                                  
 

 
 

 

 
   

We have here used the Definition A3.2 of convergence and triangle inequality.  

Definition A3.4 A complete metric space is one in which every Cauchy sequence 

converges. 

An example of a metric space which is not complete but where we have a Cauchy 

sequence is the set of rational numbers ℚ with respect to the absolute value metric i.e. 

            . If we take the sequence of rational numbers              
    the 

sum is well known to converge to the base of natural logarithm e, which is an irrational 

number. But e is not part of ℚ which means that ℚ is not complete.  

We now define a Euclidian metric space often represented by vectors. 

Definition A3.5 A vector space V is a set of objects called vectors with the following 

properties: 

1) For every vectors   ,      and     in V we have corresponding binary operation with 

the vector-result which is also in V  

a)                                       ∈       

b)                         

c)                        (     is a unique zero-vector) 

d)              

 

2) For scalars    ∈   we have a corresponding vector in V with following 

properties: 

a)               

b)           

 

3) Distributive laws: 

a)                    

b)                    

 

Definition A3.6 The vectors                           are said to be linearly independent if for 

scalars   ∈  , the relation    
 
             implies      for all i. 

Definition A3.7 A complete vector space V is a vector space for which every Cauchy 

sequence of vectors in V has a limit vector in V. 



 28 

A.4 Basics in probability theory 

The basic idea behind the probability theory is the probability space and the stabilization 

of the relative frequencies. If we perform, what is called, independent repetitions of an 

unchanged random experiment we will get a countable set, an integer number B, for as 

many times as an event occurred and continue add 1 to the set for every time the event 

occurs. Let then       denote the number of occurrences of B in the first n trials, and 

      the relative frequency whit the following relation;                . We will 

empirically observe the stabilization of the relative frequencies as       converges to 

some real number as    . To be more precise let us build up some definitions and 

outline some basic properties in probability theory which will be of importance for us 

when dealing with theory of quantum mechanics. A more rigorous treatment of 

probability can be found in most books for graduate courses in probability as example [7]. 

 

Definition A4.1 The triple (Ω,F,P) is a probability space if  

 Ω is the sample space. 

 F is a collection of events - or the subsets of Ω.
18

 

 P is a probability measure, which means that P satisfies the following three axioms of 

Kolmogorov: 

1. For any A ∈F, there exists a number P(A) ≥ 0; the probability of A. 

2. P(Ω) = 1. 

3. Let {An, n ≥ 1} be disjoint. Then An is countable additive:  

     

 

 

        

 

 

    

Definition A4.2 The events {Ak, 1 ≤ k ≤ n}   are independent if and only if 

      
        

   

where intersections and products are to be taken over all subsets of {1, 2, . . . , n}. 

 

 

Definition A4.3 A random variable X is a (measurable) function from the sample space Ω 

to ℝ;  X : Ω → ℝ.  

The inverse image of any subset A of  R is a subset of F: 

              ∈    ∈               ∈    

 

Definition A4.4 To each random variable X there is an induced probability ℙ: 

ℙ                             ∈                   ∈     
 

By Definition 4.3 and 4.4 we have actually described a map from (Ω,F,P) to (ℝ,R,ℙ) 

which can be showed to satisfy Kolmogorov’s axioms. The importance of this fact should 

be stated in a theorem. 

 

Theorem A4.1 The induced space (ℝ,R,ℙ) with ℙ defined by Definition A4.4 is a 

probability space. 

 

                                                           
18

 To be more formal F is an σ-algebra of sets. But for our purposes it is fully enough to 
define F as a collection of events as subsets of Ω. 
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Actually there is no reason for us to go between the two probability spaces when in fact 

we are just interested in the random variable X. We shall henceforth, for convenient 

reason, write P(X ∈ A) instead of ℙ               ∈     . 

 
Definition A4.5 Let A and B be two events, and suppose that P(A) > 0. The conditional 

probability of B given A is defined as 

        
      

    
  

 

If conditional probability of an event B does not depend on a given event A we say event 

B and A are independent.  

 

Definition A4.6 A random variable X said to be degenerate if: 

for some a ∈R, P(X = a) = 1. 

The degenerality is treated as some kind of axiom in quantum mechanics. When one 

measures an observable of a quantum mechanical system the probability wave is said to 

collapse to give only one value; a degenerate state.   

 

Definition A4.7 Expectation value of a random variable X respectively continuous 

random variable Y is 

             
         respectively                    

 

  
 

Where      is probability to get an outcome x from a random variable X and         is 

the limit of probability to get an outcome in the infinitesimal surround of y from a random 

variable Y.  

 

Definition A4.8 Variance, or spread, of a random variable X is defined by: 
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