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Abstract

Entanglement swapping is a quantum mechanical process in which
spatially separated initially independent entangled quantum systems
can be subject to nonlocal correlations. This thesis aims to study
quantum correlations in entanglement swapping scenarios in a broad
class of star-networks. We introduce a nonlinear assumption of local
realism from which we characterize classical correlations. We present
new Bell inequalities for entanglement swapping configurations in sev-
eral star-networks and show that our inequalities are tight with re-
spect to local realist correlations. In addition we show how to close
the freedom-of-choice loophole. Quantum violations are provided for
our inequalities and their various properties are extensively studied.
Furthermore we study the behaviour of quantum correlations in the
presence of experimental imperfections restricted to inefficient detec-
tors and white noise tolerance.
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1 Introduction

It is often said that the theory of quantum mechanics provides a counter-
intuitive view of nature. Two fundamental properties of nature that have
been shown cannot both be true in a reality described by quantum mechanics
is 1) Locality – that two space-like separated events are independent of each
other and 2) Realism – that physical entities have real predictable and well
defined properties independent of observation. In contrast to quantum me-
chanics, locality and realism are profound principles of classical physics. This
fundamental discrepancy between the quantum and the classical description
calls for directing some attention at fundamental physics and quantum the-
ory.

1.1 Historical background: EPR and quantum corre-
lations

In the early days of quantum mechanics, its radical view of nature lead to
a conflict with the established classical ideas of nature. In 1935 a famous
paper was published by Einstein, Podolsky and Rosen (EPR) entitled “Can
Quantum-Mechanical description of physical reality be considered complete?”
where the authors argued that quantum mechanics could not be considered
a complete theory [1]. EPR used quantum mechanical formalism to show the
existence of two-particle states subject to perfect correlations in both position
and momentum even though both particles were spatially separated and non-
interacting. These EPR-states are today more commonly called entangled
states, a term coined by Schrödinger to emphasize the inability to treat
the systems independently [2]. According to quantum theory, an accurate
measurement of position or momentum (but not both due to Heisenberg’s
uncertainty relation) on one particle provides accurate knowledge about the
outcome of the analog measurement performed on the second particle. On
this basis, EPR concluded that the second particle must have had well-defined
physical properties a priori to measurement. Since quantum mechanics fails
to provide this a priori knowledge EPR argued that quantum mechanics must
be an incomplete theory and emphasized the need of completing it.

The conflict between quantum mechanics and the EPR-argument was
essentially a problem of metaphysics until 1964 when John S. Bell pub-
lished a groundbreaking paper “On the Einstein Podolsky Rosen paradox”.
Bell imposed completeness in the sense of EPR by providing each particle
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with a local hidden variable, imagined to be carried with the particles un-
der separation. Given the hidden variable and a measurement, an outcome
can be predicted with a probability of unity. Such Local Hidden1 Vari-
able theories (LHVs) are synonymous to models enforcing the assumptions
of locality and realism (local realism). Bell showed that despite LHVs be-
ing able to reproduce some correlations predicted by quantum mechanics,
there exists quantum correlations that are impossible for the entire family of
LHVs to reproduce [3]. Bell’s work provides an observable difference between
the predictions of quantum theory and the EPR-argument. It is enforced
through Bell’s inequality, quantifying the correlations attainable with any
LHV model. Quantum mechanics on the other hand, allows for violations of
Bell’s inequality and therefore claims that at least one of the assumptions
of locality and realism made by EPR are false. In conclusion the discrep-
ancy between quantum mechanics and the EPR-argument could be settled
by experiments.

Experimental tests of the predictions of quantum theory are usually not
based Bell’s original inequality but on more general inequality due to Clauser-
Horne-Shimony-Holt (CHSH) more suitable to experimental tests [4]. The
prediction of nonlocal (quantum) correlations was confirmed by a first gen-
eration of experiments violating the CHSH-inequality [5, 6]. However, these
early experimental tests where subject to various experimental loopholes,
most notably 1) the detection loophole arising from imperfect detectors and
2) the locality loophole arising from not having space-like separated measure-
ment events. There is also theoretical loopholes such as the freedom-of-choice
loophole arising from the metaphysical problem of superdeterminism related
to free will of choosing measurement settings. A second generation of tests
of the CHSH-inequality have successfully closed each loophole individually
[7, 8, 9, 10, 11, 12]. Nevertheless no one experiment has been able to close
all loopholes simultaneously.

In conclusion, there is very strong experimental evidence supporting the
validity of Bell’s theorem, the rejection of at least one of the principles of
locality and realism2 and the existence of quantum nonlocal correlations in
nature.

1The name ”hidden” variable theory is due to historical reasons. There is nothing
forcing the hidden variable to actually be hidden from the observer.

2More recent work shows that a broad class of nonlocal realist theories are incompatible
with experimentally observed quantum correlations thus suggesting that abandoning the
principle of locality may not be sufficient [13].
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1.2 Motivation and outline of thesis

The existence of Bell inequalities and their numerous successful experimen-
tal violations are important and fundamental results in quantum mechanics.
The advances in the studies of correlations between outcomes in measure-
ment scenarios have led to remarkable progress in both applications based
on the power of quantum entanglement in comparison to classical tools and
theoretical understanding of the foundations of quantum mechanics. Pioneer
experimentalist in the field Alain Aspect expresses the evolution of the field
as:

“But in an unexpected way, it has been discovered that entanglement also
offers completely new possibilities in the domain of information treatment

and transmission. A new field has emerged, broadly called Quantum
Information, which aims to implement radically new concepts that promise

surprising applications”. [14]

In terms of practical applications the studies of quantum correlations has
led to e.g. 1) quantum key distribution and quantum cryptography [15, 16]
allowing for detection of eavesdroppers [17, 18], 2) reduction of communica-
tion complexity [19], 3) quantum computing [20] and 4) device independent
entanglement witness [21, 22].

Usually studies of correlations of measurement outcomes begin at the Bell
scenario with two parties performing measurements on a shared entangled
state. However one can construct many other scenarios exploiting quantum
nonlocality than the ordinary Bell scenario. In comparison, very little at-
tention has been directed at such systems so far. Nevertheless the reasearch
interest has increased significantly during the last years. There are many
motivations to why more complicated networks are interesting. Let’s present
at least three of them: 1) The fast experimental progress on quantum com-
munication networks and emerging quantum information technologies based
on distribution of entangled states makes the study of quantum nonlocality
in large networks of high complexity interesting [23]. These systems rely
on distribution of several bipartite states and one or more parties perform-
ing joint measurements yielding quantum correlations through entanglement
swapping. 2) The conceptual motivation is mainly focused on the nonlocal-
ity properties of correlations generated through the process of entanglement
swapping which is profoundly related to quantum teleportation and is not
well understood today [24]. Finding Bell-type inequalities for such entangle-
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Figure 1: Star-network with five edges and six vertices.

ment swapping networks configurations and studying the quantum properties
with respect to different important experimental parameters such as detec-
tion efficiency and tolerance of white-noise is of interest for both foundational
and experimental purposes. 3) During the last couple of years research in-
terest has been directed to study quantum foundations in terms of causal
networks (bayesian networks). Bayesian networks has for several decades
been an active research field in both mathematical statistics and computer
science. However the properties of these networks has always been taken clas-
sical. Recent efforts has taken the first steps to analyzing bayesian networks
subject to quantum nonlocality and thus establishing closer relationships be-
tween both the concepts and the fields [25, 26, 27, 28].

The work presented in this thesis considers a class of networks in a
broad sense represented by star-graphs where each edge in the graph rep-
resents a shared entangled state and each vertex represents a party perform-
ing a measurement on one part of the shared state (see figure 1 for exam-
ple). The simplest form of such star-networks, with three parties performing
two-outcome measurements has been studied in [33, 30] showing interesting
properties with respect to the Bell scenario. This thesis aims to generalize
the known results for star-network entanglement swapping configurations by
studying many-party star-networks with multipartite sources and high state-
dimensions. Having provided some background in section 1, we will give a
short introduction to fundamental quantum theory in section 2. In section 3
we properly introduce definitions and mathematically postulate local realism
in star-networks. We will argue the relevance of this postulate since it is
essential for our studies. Section 4 will contain several new Bell inequalities,
the relevance of each motivated. Also, we prove characteristics of our in-
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equalities with respect to local realist correlations. In addition we show how
to theoretically close the freedom-of-choice loophole protecting our theory
from assumptions of superdeterminism. Section 4 is for extensive numerical
studies of the presented Bell inequalities. We will consider various case stud-
ies, most importantly demonstrating quantum violations of our inequalities.
In section 5 we will use the intuition obtained from the numerical studies
to give an analytical framework for analyzing quantum properties of our in-
equalities. This includes giving proofs of maximal violations. In section 6
we study the behavior of quantum correlations in real experimental scenar-
ios where inefficient detection and noisy environments have to be taken into
account. Section 7 provides a summary, conclusions and open questions.

2 Background in quantum mechanics

Quantum mechanics constitutes a mathematical framework for theories of
physical reality. It fundamentally relies on a set of postulates connecting
nature to the formalism of quantum theory. We will only be concerned with
two of the postulates.

Postulate: (Quantum state). To every physical system that is isolated
from the environment a state space of the system represented by a hilbert
space is associated. The physical system is completely described by its state
which is a unit vector in the state space of the system.

In introductory quantum mechanics the postulates are expressed in the quan-
tum state vector representations. However they have a more general formu-
lation in the language of density operators [20]. In many common scenarios
encountered in quantum mechanics, e.g. when considering quantum systems
that randomly output various states one needs to go beyond the state vector
description and introduce the notion of a density operator.

2.1 Density operators

Let S be a source and let {pi
∣∣|ψi〉}Ni=1 be a set of probabilities and states

such that S outputs the state |ψi〉with probability pi. The set{pi
∣∣|ψi〉}Ni=1

is referred to as a mixed ensemble and is associated to a density matrix (or
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equivalently density operator) ρ.

ρ ≡
N∑
i=1

pi|ψi〉〈ψi| (1)

In the special case of N = 1 the density matrix is said to be pure since
the same state vector is outputted with unity probability. We state two
characterizing properties of any density matrix:

1. ρ has unit trace.

2. ρ is a hermitian positive semi-definit operator.

Although not provided here it is straightforward to prove these two properties
from (1).

2.2 Measurements

At the heart of quantum mechanics is the concept of measurement. This is
postulated as follows in terms of density matrices:

Postulate: (Quantum measurement). Quantum measurements are described
by a set {Mm} of measurement operators with the index m referring to the
outcome of the measurement. The collection of measurement operators sat-
isfy ∑

m

M †
mMm = 1 (2)

where 1 is the identity operator. If the state of the quantum system is
ρ immediately before measurement then the probability of obtaining the
outcome m when performing the measurement Mm is

P (m|Mm) = Tr(M †
mMmρ) (3)

and the state of the system immediately after the measurement is

ρpostMm =
MmρM

†
m

Tr(M †
mMmρ)

(4)

In elementary quantum mechanics one usually considers projective measure-
ments where the measurement operators are orthogonal projectors. However
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the postulate allows for more general measurements often referred to as pos-
itive operator valued measurements (POVMs) obeying (2).

One should also be familiar with the three Pauli matrices since these
often occur in measurements involving qubits. The Pauli matrices together
with the identity operator span the space of 2× 2 hermitian matrices.

1 =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(5)

Observe that all Pauli matrices are traceless, hermitian and unitary and that
the square of any Pauli matrix is identity.

2.3 Separable and entangled states

Consider a composite system with a hilbert space H equipped with subsys-
tems with hilbert spaces HA and HB respectively. Let the composite state
of the system be described by a density matrix ρAB. The reduced state de-
scribing one part of the composite system, ρA, can be obtained from ‘tracing
out’ the second subsystem by employing a partial trace

ρA = TrB
(
ρAB

)
=
∑
i

〈i|ρAB|i〉 (6)

where the set {|i〉} constitutes an ON-basis of HB. The reduced state of the
second part of the composite system, ρB, can be defined in an analogy with
(6).

Since the density matrix ρAB is a non-negative operator a spectral de-
composition can be performed

ρAB =
∑
i

λi|i〉〈i| (7)

where λi are non-negative real numbers associated to the eigenvector |i〉. Due
to the unit trace property of density matrices the sum of the coefficients λi
equals unity. The composite system associated to ρAB is a separable state if
and only if it is an element in the convex hull of product states

ρAB =
∑
i

piρ
A
i ⊗ ρBi (8)
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where pi > 0 and ρAi and ρBi are product states on each of the two hilbert
spaces.

If however ρAB does not admit to a decomposition on the form (8) it is
called an entangled state. The most commonly occuring entangled states are
the four two-qubit Bell states.

|φ+〉 =
1√
2

(|00〉+ |11〉) |φ−〉 =
1√
2

(|00〉 − |11〉)

|ψ+〉 =
1√
2

(|01〉+ |10〉) |ψ−〉 =
1√
2

(|01〉 − |10〉) (9)

What happens when you study the reduced state ρA of an entangled state?
Calculating the partial trace of a Bell state, say |φ+〉:

ρA =
1

2

∑
i=0,1

〈i| (|00〉+ |11〉) (〈00|+ 〈11|) |i〉 =
1

2
(|0〉〈0|+ |1〉〈1|) (10)

The reduced state of the maximally entangled state |φ+〉 is maximally mixed.
This implies that it is not possible to associate this subsystem to a state
vector and emphasizes the inability to understand one subsystem without
the other. Such a phenomenon as entangled states has no counterpart in
classical physics.

2.4 CHSH-inequality

The most elementary case of a non-trivial Bell inequality is the Clauser-
Horne-Shimony-Holt (CHSH) inequality considering two parties Alice and
Bob each performing one of two possible two outcome measurements Ax
and By for x, y = 0, 1 respectively on a shared state |ψ〉. Assume that
the outcomes of measurements A0, A1, B0, B1 are labeled ±1. Consider the
expectation value

SCHSH = 〈A0B0 + A0B1 + A1B0 − A1B1〉 (11)

Assume that Alice and Bob are sharing a hidden variable λ with some distri-
bution function q(λ). In a local realist model obeying the principle of locality
the outcome of Alice’s measurement is independent of Bob’s measurement
and therefore the probability distribution factors and each expectation value
in (11) can be written

〈AiBj〉 =

∫
Ai(λ)Bj(λ)q(λ)dλ (12)
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Thus with some rewriting:

SCHSH =

∫
q(λ)

((
B0(λ) +B1(λ)

)
A0(λ) +

(
B0(λ)−B1(λ)

)
A1(λ)

)
dλ (13)

There are a few possibilities. Either B0 = B1 = ±1 implying B0 + B1 = ±2
or B0 = ±1 and B1 = −B0 implying B0+B1 = 0. Thus the CHSH-inequality
is found [31]

|SCHSH | ≤
∫
q(λ) (|B0(λ) +B1(λ)|+ |B0(λ)−B1(λ)|) = 2 (14)

Any LHV model must satisfy the CHSH-inequality. However quantum me-
chanics allows for violations of the inequality. The upper bound on probabil-
ity distributions with a quantum model is given by Cirel’son’s bound stating
that if Alice and Bob perform local measurements on a maximally entangled
quantum state then 2

√
2 constitutes an upper bound of SCHSH [32]. We

show this by assuming the existence of a quantum model of the probability
distribution p(a, b|x, z) where a, b are the outcomes of Alice and Bob respec-
tively. When considering the quantity SCHSH the expectation values can in
a quantum mechanical framework be written

〈AiBj〉 = 〈ψ|Ai ⊗Bj|ψ〉 (15)

for some state |ψ〉. For simplicity introduce vectors corresponding to Alice
and Bob respectively making a measurement on the shared pure state.

|αi〉 = Ai ⊗ 1|ψ〉 (16)

|βj〉 = 1⊗Bj|ψ〉 (17)

Rewrite SCHSH and find an upper bound

SCHSH = 〈α0| (|β0〉+ |β1〉) + 〈α1| (|β0〉 − |β1〉) ≤ ‖|β0〉+ |β1〉‖+ ‖|β0〉− |β1〉‖
(18)

Introduce the notation cos(φ) = |〈β0|β1〉|. Then the upper CHSH-bound on
a quantum probability distribution is

SCHSH ≤
√

2|1 + cos(φ)|+
√

2|1− cos (φ)| = 2

(
cos

(
φ

2

)
+ sin

(
φ

2

))
(19)

The right hand side reaches a maximum value for φ = π
2

yielding

|SCHSH | ≤ 2
√

2 (20)

In conclusion the CHSH-inequality can discriminate between classically at-
tainable and quantumly attainable correlations.
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2.5 GHZ-paradox

To show that particular quantum correlations are nonlocal, it is sufficient
to show that there exists a Bell inequality that is violated. However there
are other methods of demonstrating nonlocality than explicitly construct-
ing inequalities (although these can always be written as inequalities). The
Greenberger-Horne-Zeilinger (GHZ) paradox may be the most famous exam-
ple where some clever (and surprisingly simple) logical arguments can show
contradictions between local models and quantum mechanics.

Introduce three players Alice, Bob and Charlie. Each player is given two
possible inputs x, y, z = 0, 1 respectively. Given an input, a player yields a
corresponding output Ax, By, Cz = ±1. Assume that Alice, Bob and Charlie
share a three-partite GHZ-state defined as

|GHZ〉 =
|000〉+ |111〉√

2
(21)

and that the inputs of each party are associated to the Pauli measurements
σx and σy. Then it is easy to see the following four relation hold true

A0B0C0 = 1

A0B1C1 = −1

A1B0C1 = −1

A1B1C0 = −1

(22)

These quantum predictions should be compared to those of a local model
where each input together with a hidden variable λ deterministically gives
and outcome ±1. Hence all outcomes associated to the same measurement
are the same. This is in direct contradiction with (22) and it becomes obvious
if the product of all left hand sides is compared to the product of all right
hand sides. The left hand side product is 1 while the right hand side product
is −1 and thus a contradiction with local models is found [34].

In multipartite systems, the GHZ-states are the states whose quantum be-
havior is most well understood. They are sometimes referred to as ’extremely
non-classical’. The GHZ-states constitute the states that can be used to yield
intersection points between the quantum and no-signaling3 polytopes in Bell

3The no-signaling principle is a profound principle of quantum information theory stat-
ing two parties cannot signal their inputs in order to obtain stronger correlations i.e., that
the input of one party cannot affect the outcome of another party.
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scenarios. Their properties have been studied using the Mermin inequality
for multipartite Bell scenarios [35].

3 Bell inequalities

In this section we will introduce star-networks more rigorously and present
four Bell-inequalities regarding various such networks.

3.1 Definitions

This section provides and defines the most fundamental concepts of this the-
sis. The concepts mentioned in the introduction will here be given a rigorous
mathematical framework adapted to the star-network configuration.

Definition 1:(Multipartite star-network measurement scenario). An L-
partite star-network measurement scenario with n sources is defined as (L−
1) × n parties called edge parties where the n groups of L − 1 parties asso-
ciated to a unique source share hidden variables. All edge parties share one
hidden variable with a center party labeled Bob. Each of the (L − 1) × n
edge parties can locally perform one of M ∈ N+ measurements on their part
of the respective L-qudit states with each measurement having d possible
outcomes. Bob is free to locally perform any number of measurements on
any part of the state at his disposal.

When working with bipartite star-networks with many sources we will be
using the following notations: Each of the n edge parties is referred to as
party i for i ∈ Nn. The measurement performed by party i is denoted
mi ∈ {0, 1, . . . ,M − 1}. The corresponding outcome of party i is denoted
ri ∈ {0, 1, . . . , d−1}. Bob’s measurement is denoted y ∈ {0, 1, . . . ,MBob−1}
and the corresponding outcome is labeled b.

Although when we work with three party star-networks we prefer alter-
native notations: the three parties will be called Alice, Bob and Charlie. The
measurement of Alice is denoted x ∈ {0, 1, . . . ,M−1} and similarly Charlie’s
measurement is denoted z ∈ {0, 1, . . . ,M − 1}. The corresponding outcomes
are denoted a ∈ {0, 1, . . . , d− 1} and c ∈ {0, 1, . . . , d− 1} respectively.

Definition 2:. (Star-network LHV model). An LHV model for an L-partite
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star-network measurement scenario with n sources is defined by a set of func-
tions {f ji } where i = 1, ..., n and j = 1, ..., L− 1 such that f ji : Λi×ZM−1 →
Zd−1 where each Λi for i = 1, 2, . . . , n is a set to which a distribution qi is
associated, and a function for Bob, fBob : Λ1 × . . . × Λn × Zy → Zdn .

Due to the determinism built into LHVs one may assign a set of hidden
variables λi ∈ Λi shared between the edge parties associated to source i and
Bob such that the outcome of any edge party with access to hidden variable
from source i is completely determined by the measurement and the hidden
variable λi.

We now introduce the central definition of this thesis. Any LHV model
for a bipartite star-network measurement scenario with n sources centered
about Bob is subject to an assumption of local realism as follows

P (r1, ..., rn, b|m1, ...,mn, y) =

∫
q(λ)P (b|y, λ)

n∏
i=1

P (ri|mi, λi)dλ (23)

We call (23) the n-local assumption. For convenience we will frequently
use λ = (λ1, ..., λn). The postulate (23) enforces realism through the hidden
variables as given in definition 2 effectively mapping each probability involved
either to zero or to unity. The n-local assumption also captures the fact that
locality enforces the probability distribution of each party in the network to
be independent of the outcomes of the other parties. In addition, we need
to enforce that all sources are indepdent of each other implying that the
probability density function q(λ) allows for factoring:

q(λ) =
n∏
i=1

qi(λi) (24)

If a conditional probability distribution P (r1, ..., rn, b|m1, ...,mn, y) can be
written on the form (23) obeying (24) there exist an LHV description and
the probability distribution is termed n-local. Otherwise we say that the
distribution is non n-local. See figure 2 for an example of a star-network
measurement scenario under the 3-local assumption.

The possibility of making local measurements on entangled states enables
the existence of nonlocal correlations in quantum mechanics. We repeat a
standard definition in literature:
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Figure 2: n = 3 bipartite star-network measurement scenario with hidden
variable distribution as assumed under the 3-local assumption.

Definition 4:(qubit correlation function). A correlation function for two
parties performing one of two possible two-outcome measurements is defined
as

〈AxCz〉 =
∑
a,c=0,1

(−1)a+cP (a, c|x, z) (25)

If Alice obtaining the result a (ā) implies Charlie obtaining c = a (c̄ = ā) then
we say that Alice and Charlie are perfectly correlated yielding 〈AxCz〉 = 1. If
however Alice obtaining a implies c = ā where the bar denotes a ‘logical not
operation’ then we say that Alice and Charlie are perfectly anti-correlated
yielding 〈AxCz〉 = −1.

The definition of two-party qubit correlation function is intuitive, how-
ever the notion of correlation and how to quantify it is not obvious when
considering systems of dimension d > 2. As a consequence we introduce a
broader definition.

Definition 5: (n-party qudit correlation function). A general correlation
function F for n edge parties in a bipartite star-network performing d-
outcome measurements is defined as a linear combination of N functions

f (k) : r1 × r2 × ...× rn → C (26)

for ∀k ∈ NN such that i) f (k)(r1, . . . , rn) = f
(k)
1 (r1)f

(k)
2 (r2). . . f

(k)
n (rn), ii)

|f (k)
i (∗)| ≤ 1 for all i ∈ Nn, iii) f (k) is linear in all variables and iv) F is com-
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pletely symmetric under any permutation of the outputs of the edge parties.

3.2 Bipartite inequalities 2→ 2

We are now ready to provide novel Bell inequalities. In this section we con-
sider the scenario of an bipartite star-network of n sources centered about
Bob performing one of 2 measurements with two possible outcomes. It will
referred to as the 2 → 2 inequality. The measurements of Bob are evi-
dently not complete measurements but partial measurements corresponding
to grouping the set of outcomes into two distinguishable sets. In general such
partial measurements are realized with a set of POVMs.

Preferably, one would be more interested in a complete measurement for
Bob. The reason that we begin by considering the Bob 2→ 2 case is that it
has been shown that a complete Bell state measurement in photonics cannot
be experimentally realized using linear optics [36]. Thus the Bob 2 → 2 is
initially motivated by experimental limitations in linear optics experiments.

Start by introducing correlators defined from a modified version of the
correlation function in definition 4 extended to including n party correlations.

〈ByC
1
m1
C2
m2
...Cn

mn〉 =
∑

b,r1,...,rn

(−1)b+
∑n
i=1 riP (r1, ..., rn, b|m1, ...,mn, y) (27)

Form quantities from linear combinations of the correlators in (27): one
symmetric quantity and one anti-symmetric quantity

I =
1

Mn

M−1∑
m1,...,mn=0

〈B0C
1
m1
C2
m2
...Cn

mn〉 (28)

J =
1

Mn

M−1∑
m1,...,mn=0

(ω)
∑n
i=1mi〈B1C

1
m1
C2
m2
...Cn

mn〉 (29)

where ω = exp
(

2πi
M

)
is the root of unity. Observe that we provide an arbitrary

number of measurements M for the edge parties.
Now we state and prove the first general result:

Theorem 1: (Bob 2 → 2 qubit bipartite n-locality). If a probability
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distribution P (b, r1, . . . , rn|y,m1, . . . ,mn) corresponding to a bipartite star-
network with n sources where y ∈ {0, 1} and d = 2, is n-local then it must
satisfy the inequality

S2→2(n) ≡ |I|1/n + |J |1/n ≤ 1 (30)

Proof:

Start with considering only the quantity I, by (27,28):

I =
1

Mn

∑
m1,...,mn

∑
b,r1,...,rn

(−1)b+
∑n
i=1 riP (b, r1, ..., rn|y = 0,m1, ...,mn) (31)

Implement the n-locality assumption (23,24)

I =
1

Mn

∑
m1,...,mn

∑
b,r1,...,rn

(−1)b+
∑n
i=1 ri

∫
q(λ)P (b|y = 0, λ)

n∏
i=1

P (ri|mi, λi)dλi

(32)
Group terms by factors and split the sum over b, r1, r2, .., rn

I =
1

Mn

∑
m1,...,mn

∫
q(λ)

∑
b

(−1)bP (b|y = 0, λ)
n∏
i=1

∑
ri=0,1

(−1)riP (ri|mi, λi)dλi

(33)
This constitutes a local realist expression for I. Introduce new correlators
constructed from this expression conditioned on the hidden variables

〈Ci
mi
〉λi =

∑
ri=0,1

(−1)riP (ri|mi, λi) (34)

〈By〉λ1,...,λn =
∑
b

(−1)bP (b|y, λ) (35)

With these new correlators I takes the form

I =
1

Mn

M−1∑
m1,...,mn=0

∫
q(λ)〈B0〉λ

n∏
i=1

〈Ci
mi
〉λidλi (36)

Only the product series over the correlators 〈Ci
mi
〉λi depends on the measure-

ments. In (36) we may interchange summation and product series. We will
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not give the proof here but it can be justified using induction.

M−1∑
m1,...,mn=0

n∏
i=1

〈Ci
mi
〉λi =

n∏
i=1

M−1∑
m1,...,mn=0

〈Ci
mi
〉λi (37)

Implementing (37) with (36) yields

I =
1

Mn

∫
q(λ)〈B0〉λ1,...,λn

n∏
i=1

M−1∑
mi=0

〈Ci
mi
〉λidλi (38)

From the n-local assumption it is imposed that the probability density func-
tion factors. Estimate an upper bound as follows

|I| ≤ 1

Mn

∫ n∏
i=1

∣∣∣∣∣
M−1∑
mi=0

〈Ci
mi
〉λi

∣∣∣∣∣ qi(λi)dλi (39)

Observe that we have eliminated 〈B0〉λ since it is bounded by a modulus of
unity. We are left with an expression (39) that is a product of independent
variables and hence allows for a factorization

|I| ≤
n∏
i=1

∫
qi(λi)

1

M

∣∣∣∣∣
M−1∑
mi=0

〈Ci
mi
〉λi

∣∣∣∣∣ dλi (40)

An analog analysis for the quantity J yields

|J | ≤
n∏
i=1

∫
qi(λi)

1

M

∣∣∣∣∣
M−1∑
mi=0

ωmi〈Ci
mi
〉λi

∣∣∣∣∣ dλi (41)

Introduce notations as follows:

xi =

∫
qi(λi)

1

M

∣∣∣∣∣
M−1∑
m1=0

〈Ci
mi
〉λi

∣∣∣∣∣ dλi (42)

yi =

∫
qi(λi)

1

M

∣∣∣∣∣
M−1∑
m1=0

ωmi〈Ci
mi
〉λi

∣∣∣∣∣ dλi (43)

Implementing the new notation

|I| ≤ x1x2...xn |J | ≤ y1y2...yn (44)
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In order to proceed lemma 1 is derived (see appendix A) and applied.

|I|1/n + |J |1/n ≤
n∏
i=1

(xi + yi)
1/n =

(
n∏
i=1

∫
qi(λi)

1

M

(∣∣∣∣∣
M−1∑
mi=0

〈Ci
mi
〉λi

∣∣∣∣∣+

∣∣∣∣∣
M−1∑
mi=0

ωmi〈Ci
mi
〉λi

∣∣∣∣∣
)
dλi

)1/n

(45)

Since the correlators in (34,35) are real, bounded by modulus unity and can
in principle be chosen independently of each other, we provide the estimation∣∣∣∣∣

M−1∑
m1,...,mn=0

〈Ci
mi
〉λi

∣∣∣∣∣+

∣∣∣∣∣
M−1∑

m1,...,mn=0

ω
∑n
i=1mi〈Ci

mi
〉λi

∣∣∣∣∣ ≤M (46)

This is an optimization over a hypercube in the space of the quantities (34).
Implementing (46) we obtain

|I|1/n + |J |1/n ≤

(
n∏
i=1

∫
qi(λi)dλi

)1/n

(47)

Every qi(λi) is a probability density function and therefore

|I|1/n + |J |1/n ≤ 1 (48)

This concludes the proof.

�

Theorem 1 is a one way theorem. It should not be too difficult to study
whether it holds that P (b, r1, r2, . . . , rn|y,m1,m2, . . . ,mn) is n-local if and
only if it satisfies inequality (30). In section 3.4 we will show that this is in
fact is true.

As it comes to bipartite 2 → 2 inequalities we also demonstrate how to
construct a Bell inequality for star-networks where the n sources are emit-
ting qutrits and the edge parties perform three-outcome measurements. The
construction of such an inequality is not difficult since it is a slight modifi-
cation of theorem 1. However the inequality is only interesting (non-trivial)
if it can be violated by quantum mechanics. As it turns out, the construc-
tion of a quantum mechanically non-trivial qutrit n-locality inequality is a
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much more difficult task, by intuition because the geometry of the n-local set
becomes more complex. The inequality presented here is the only example
observed so far of such a non-trivial inequality but it is probably the case
that stronger inequalities can in principle be constructed. In order for the
inequality to be non-trivial we enforce three choices of measurements for the
edge parties. The modifications needed from theorem 1 is that the outputs
of the edge parties are mapped onto the three roots of unity 1, ω

2πi
3 , ω

4πi
3 .

The corresponding I, J would be

I3 =
1

9

∑
m,r

ωa+b+cP (a, b, c|x, z) (49)

J3 =
1

9

∑
m,r

ωa+b+c+x+zP (a, b, c|x, z) (50)

The process of obtaining an inequality is analog to theorem 1 with exception
of putting the upper bound on the LHV correlations. Following the outline
of theorem 1, the analog of the upper bound in equation (46) will be

1

3

(∣∣〈Ci
0〉λi + 〈Ci

1〉λi + 〈Ci
2〉λi
∣∣+
∣∣〈Ci

0〉λi + ω〈Ci
1〉λi + ω2〈Ci

2〉λi
∣∣) ≤ 2√

3
(51)

where the quantities 〈Ci
mi
〉λi , in analogy with (34), are convex combinations

of the roots of unity with probability weights. The upper bound in (51) is
obtained optimizing over the convex hull of the three roots of unity in the
complex plane. The final inequality will be

|I3|1/n + |J3|1/n ≤
2√
3

(52)

The fact that (52) is non-trivial will be demonstrated in section 4.1.

3.3 Bipartite inequality 1→ 2n

While the relevance of the previous section is motivated by experimental lim-
itations, the analog bipartite star-network measurement scenario of n sources
with Bob always performing a fixed measurement on the n qubits at his dis-
posal and obtaining one of 2n possible outcomes (complete measurement), is
the more intuitive scenario. Bob’s measurement will typically be chosen as a
complete Bell state measurement since such a measurement has been shown
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to generate quantum correlations in various quantum information applica-
tions such as teleportation. It is simply a reasonable guess.

The scenario considered in this section is labeled 1→ 2n. Define the same
correlators as in (27) but with a slight modification

〈BiC1
m1
...Cn

mn〉 =
∑

b1...bnr1,...,rn

(−1)
∑n
i=1 rifi(b)P (b1...bn, r1, ..., rn|m1, ...,mn)

(53)
where |fi(b)| ≤ 1 is some arbitrary function of the bitstring b. Using the cor-
relation function in (53) introduce quantities Q1, Q2 formed by linear com-
binations of correlators:

Q1 =
1

Mn

∑
m1,...,mn

〈BC1
m1
...Cn

mn〉

Q2 =
1

Mn

∑
m1,...,mn

ω
∑n
i=1mi〈BC1

m1
...Cn

mn〉 (54)

This is highly reminiscent of the 2→ 2 case but with the difference that the
two quantities in (54) are strongly coupled in comparison to the partial mea-
surement scenario since they are both generated by the same measurement
of Bob.

Theorem 2: (1→ 2n qubit bipartite n-locality). If a probability distribution
P (b1b2. . . bn, r1, r2, . . . , rn|m1,m2, . . . ,mn) corresponding to a bipartite star-
network measurement scenario of n sources with d = 2 where Bob performs
a fixed complete measurement is n-local it satisfies the inequality

S1→2n(n) = |Q1|1/n + |Q2|1/n ≤ 1 (55)

Proof:

The proof for inequality (55) is analogous to the proof method of theorem 1
and will not be shown explicitly.

�

An important feature of the 1 → 2n inequality is that the results of [33]
constitute a special case of (55), namely the inequality corresponding to
n = 2.
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Figure 3: The bilocal set of probability distributions corresponding to a
bipartite n = 2 star-network measurement scenario. The thick black line
enclosing the bilocal set is the boundary of the local set arising in Bell mea-
surement scenarios.

Remark: one could raise an issue of with the quantities used to derive
the inequality. Evidently if n > 2 there exists no correlator and quantity
that is conditioned on b3, .., bn which may or may not constrain the results
achievable with a quantum model. One could argue that n quantities Qi each
conditioned on a bit in the bitstring output of Bob would be necessary. This
was also the initial form of the derived inequality of which inequality (55)
constitutes a special case but after extensive studies it was shown that such
an inequality can, without loss of generalization, be reduced to the inequality
presented in theorem 2. We will not take the reader through such a detour.

3.4 Structure of the n-local set

As is the case with theorem 1, theorem 2 is a one way theorem. A necessary
but not sufficient criteria for knowing if (55) is a ’good’ inequality or not is
whether there exists an LHV yielding equality in (55) i.e., there exists a an n-
local probability distribution realizing S1→2n = 1. A much stronger criteria is
whether the lower quantum bound predicted by the inequality continuously
coincides with the upper classical bound realizable with a family of LHVs i.e.,
the inequality is tight. We illustrate this bound in figure 3 for bilocal (n = 2)
probability distributions detected by the inequality in (55). By comparison to

20



the thicker line enclosing the fully deterministic points of the predicted bilocal
set representing the set of local correlations from an ordinary Bell scenario
it is evident that the bilocal assumption is significantly stronger constraint
than Bell’s assumption of local causality. Thus, a probability distribution
violating bilocality, or by extension n-locality may be locally attainable in a
Bell scenario due to the possibility of sharing randomness that is not possible
in entanglement swapping.

We now show that inequality (55) properly characterizes the boundaries
of the n-local set. This proof directly extends to include inequality (30).

Theorem 3: (n-local set boundaries). For each Q1 and Q2 satisfying in-
equality (55) there exists an n-local probability distribution
P (b1b2. . . bn, r1, r2, . . . , rn|m1,m2, . . . ,mn) corresponding to a bipartite star-
network measurement scenario of n sources with M = d = 2 that achieves
the values of Q1 and Q2.

Proof:

We start by showing that there exists an LHV model that realizes the upper
bound in (55) once given a value of n.

Let the hidden variable shared between party i and Bob be λi for i =
1, . . . , n. As the correlation function is defined in equation (54) the condition

r1 ⊕ ...⊕ rn ⊕ by = 0 (56)

must be satisfied in order to maximize the symmetric quantity Q1. An LHV
performing this task is

ri = λi b1,2,...,n =
n⊕
i=1

λi (57)

Thus this LHV implies that Q1 = 1. It follows from theorem 2 that the
antisymmetric quantity Q2 = 0. The LHV (57) satisfies the upper bound of
inequality (55) for all values of n. In figure 3 this strategy, for n = 2, realizes
the bilocal point (1, 0).

Similarly, in order to find an optimal n-local strategy maximizing the
antisymmetric quantity Q2 the following condition must be satisfied due to
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the introduced correlation function, see (54).

by ⊕
n⊕
i=1

(ri ⊕mi) = 0 (58)

An LHV performing this task is

ri = mi + λi b1,2,...,n =
n⊕
i=1

λi (59)

It is evident that the strategy (59) yielding Q2 = 1 implies Q1 = 0 under the
constraint of theorem 2. For the special case of n = 2 this corresponds to
the point (0, 1) in figure 3.

The intension is now to mix strategies to explore the trade off. Introduce
a string of binary random variables u = u1...un with ui ∈ {0, 1} and construct
a new LHV such that

ri = λi ⊕ uimi b1,2,...,n =
n⊕
i=1

λi (60)

For each possible value of the random variables in the bitstring u there is
a corresponding value of quantities (Q1, Q2). The all-zero bitstring u = 0
returns the optimal strategy for the symmetric quantity Q1 while the all-one
bitstring u = 1 returns the optimal strategy for the antisymmetric quantity
Q2. Any other u implies Q1 = Q2 = 0 due to the no-signaling principle. The
random variables are each subject to a distribution Pi. Enforcing the n-local
assumption on the distributions:

P (u) =
n∏
i=1

Pi(ui) (61)

Let Pi(ui = 0) = pi, then

Pi(ui) = (pi, 1− pi) (62)

for i = 1, 2, ..., n. Since only two bitstrings u contribute to the quantities
Q1, Q2

(Q1, Q2) =
n∏
i=1

pi (1, 0) +
n∏
i=1

(1− pi) (0, 1) (63)
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Even though we are working only with non-negative (Q1, Q2), analog argu-
ments will hold also in other quadrants in the Q1Q2-plane. This provides a
bounded closed simply connected set. We need now only to characterize the
boundary of this set.

Enforce symmetry in the distribution of random variables by letting pi =
p ∀i ∈ Nn. Then (63) becomes

Q1 = pn Q2 = (1− p)n (64)

Thus for all p ∈ [0, 1] the upper bound of inequality (55) is realized.

|Q1|1/n + |Q2|1/n = 1 (65)

Hence the upper LHV bound of the n-local set predicted by inequality (55)
is continuously realizable with LHV models and thus shows tightness of the
inequality.

�

This analysis provides a proper physical understanding and characterization
of the general n-local set. It is clear that the trade-off between the two
deterministic points (Q1, Q2) = (1, 0) and (Q1, Q2) = (0, 1) yields the non-
convex structure of the n-local set. Evidently the n-local set is not a polytope
as is the local set in Bell scenarios (see figure 3), but a more complicated
object.

As a remark one can prove theorem 3 with other methods than mixing
between LHV strategies. An example of an alternative proof is performing a
direct n-local decomposition as described in the definition of n-locality and
under the assumption of uniform marginal probability distribution one can
derive a result equivalent to that of theorem 3. Despite this certainly being
more elegant than the proof of theorem 3, we do not need to present the
alternative proof.

3.5 Multipartite inequality

So far we have only considered star-networks with bipartite sources. We will
generalize this to L-partite sources (explained in definition 1) in this section.
Thus we are concerned with the most general class of star-networks involving
qubit distribution. See figure 4 for an illustration of a L = 3 star-network.
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For each of the n sources we associate L − 1 edge parties. From the n
sources of L − 1 edge parties each, we form L − 1 groups consisting of n
parties in such a way that there are no two parties in the same group that
share a hidden variable. We label these groups by an index k = 1, ..., L −
1. Furthermore we arrange the order within in each group such that party
number j in each group shares randomness with all parties of index j in
the other L − 2 groups. As an example, in figure 4 such groups would
be Alice/Charlie and Albert/Carol. Each edge party makes a measurement
labeled mk

j . The corresponding outcomes are labeled rkj . We use m to denote
the string of all measurements r for the string of all outcomes.

Crucially we need to extend the definition of n-local probability distri-
butions to include the L-partite case. This is easily done along the lines of
(23,24)

P (r, b|m, y) =

∫ n∏
i=1

qi(λi)P (b|λ, y)
L−1∏
k=1

n∏
j=1

P (rkj |mk
j , λj)dλ (66)

We show how to generalize the n-locality inequality (30) to the corresponding
L-partite case. Introduce a set of 2L−1 quantities of linear combinations of
conditional probabilities. The set of quantities is {KX} where we let X run
over all subsets of NL−1 (including the empty set)4.

KX =
1

2n(L−1)

∑
m

g(X)
∑
r

(−1)b+
∑
j,k r

k
jP (r, b|m, yX) (67)

The expression yX just signifies that the measurement of Bob associated
to the set X can be freely chosen. Thus we have the freedom of choosing
up to 2L−1 measurements for Bob each associated to a different KX . The
function g(X) associates a factor of symmetry or antisymmetry to the linear
combination with respect to the measurements of some of the groups k.
Explicitly we define g(X)

g(X) =
∏
k∈X

(−1)
∑n
j=1m

k
j (68)

Having introduced these quantities, a legitimate question is: Why do we
choose these quantities in particular? Because it is crucial to make a clever

4In our convention we do not include zero in the set of natural numbers.
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Figure 4: Three-partite bilocality scenario.

choice of quantities in order to uphold interesting quantum mechanical prop-
erties of the inequalities and as we will see in section 4.1, these quantities
do uphold such interesting properties. However this does not mean that
there is no other set of quantities that also may uphold interesting quantum
properties.

As it comes to the local realist correlations, we can now state and prove
the following generalization of theorem 1

Theorem 4: (L-partite n-locality). If a probability distribution P (r, b|m, y)
corresponding to a L-partite star-network measurement scenario involving n
sources with M = d = 2 is n-local, then it satisfies the inequality

S2L−1→2(n, L) ≡
∑

X⊂NL−1

|KX |1/n ≤ 1 (69)

Proof:

Introduce the generalized n-local assumption (66) to the quantities (67).
Some regrouping of sums will yield for quantity KX

KX =
1

2n(L−1)

∑
m

g(X)

∫ n∏
i=1

qi(λi)
∑
b

(−1)bP (b|λ, yX)
L−1∏
k=1

n∏
j=1

∑
rkj

(−1)r
k
jP (rkj |mk

j , λj)dλ

(70)

Perform a relabeling of the sums as

〈ByX 〉λ =
∑
b

(−1)bP (b|λ, yX) (71)

〈Ak,j
mkj
〉λj =

∑
rkj

(−1)r
k
jP (rkj |mk

j , λj) (72)
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In the spirit of equations (34-40) it can be shown that

|KX | ≤
1

2n(L−1)

n∏
j=1

∫ L−1∏
k=1

qj(λj)

∣∣∣∣∣∣
M−1∑
mkj=0

gkj (X)〈Ak,j
mkj
〉λj

∣∣∣∣∣∣ dλ (73)

where the function gkj (X) is a factor of g(X) such that if k ∈ X we impose
the antisymmetrization

gkj (X) = (−1)m
k
j (74)

otherwise gkj (X) = 1. Also, observe the right hand side expression in (73)
is factorable in terms of the hidden variables since we have dropped the
quantity 〈ByX 〉λ with the motivation that is bounded by a modulus of unity.

Using lemma 1 (in appendix A) to the set of quantities {KX} yields

∑
X⊂NL−1

|KX |1/n ≤

 n∏
j=1

∫
qj(λj)

1

2L−1

∑
X⊂NL−1

L−1∏
k=1

∣∣∣∣∣∣
M−1∑
mkj=0

gkj (X)〈Ak,j
mkj
〉λj

∣∣∣∣∣∣ dλj
1/n

(75)

The problem is reduced to providing a good estimation of the integrand.
Fortunately this is easier than it might seem at first sight:

∑
X⊂NL−1

L−1∏
k=1

∣∣∣∣∣∣
M−1∑
mkj=0

gkj (X)〈Ak,j
mkj
〉λj

∣∣∣∣∣∣ ≤ 2L−1 (76)

The reason for this is that since all the quantities 〈Ak,j
mkj
〉λj are real and

bounded by a modulus of 1 we are effectively optimizing the left hand side
of (76) over a hypercube. This is a closed compact and convex set and it
is easy to realize that the optimum of (76) is found at a vertex of the set.
However due to the symmetry imposed by the choice of the quantities KX

all vertices of the convex set yield the same value for (76) since optimizing
one of the product-quantities in the sum minimizes the modulus of all other
quantities. Thus we are reduced to L− 1 factors that are all optimized and
therefore each equal 2. Hence we obtain the upper bound presented.

It is now straightforward to find the inequality. Since qj for j = 1, ..., n are
probability density functions, the integral after factoring out the integrand
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using estimation (76) is unity. This yields the final inequality∑
X⊂NL−1

|KX |1/n ≤ 1 (77)

�

We have now provided an L-partite generalized n-locality inequality. Observe
that inequality (30) is a special case of (69) corresponding to L = 2 and
that the quantities KX for will be equal to the I, J up to the number of
measurements which is here restricted to 2. It is easy to see that we can
generalize (69) to include many measurements, the main problem arises from
putting a tight upper bound on the expression corresponding to (76) which
will no longer be subject to the simple argument we applied for M = 2.

3.6 Freedom-of-choice loophole

When deriving Bell inequalities (not only restricted to star-networks) there
are various assumptions that need justification. Similarly in experimental
test of Bell inequalities there are other assumptions that need justification.
Both the theoretical and experimental assumptions are commonly referred
to as loopholes that needs closing. However for our purpose here, we are in-
terested in the theoretical principles of reality rather than the experimental
loopholes (although these are the most relevant for technological applica-
tions). A theoretical loophole arises our assumption of n-locality namely
that we have assumed that all parties involved can effectively act as perfect
random number generators, using their free will or some pseudorandom num-
ber generator to make a uniformly random choice of measurement settings
that is independent from all influences of nature. This is an assumption of
freedom-of-choice and it is intimately connected with the metaphysical ques-
tion of free will and superdeterminism. The loophole arising is that if we
cannot show resistance to such superdeterministic assumptions, one could
(at least in principle) exploit the loophole to construct a local realist theory
reproducing the predictions of quantum mechanics.

In this section we show how to approach the freedom of choice loophole
in star-networks. This task has previously been undertaken for ordinary
Bell scenarios [33] and further developed in [26]. We apply the methods
to considering a wider class of networks from now referred to as extended
star-networks. An extended star-network is a bipartite star-network of n+ 1
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Figure 5: Extended bilocal scenario

parties to which we add m ≤ n + 1 parties such that each of the m parties
share randomness with one and only one party in the star-network. An
example of an extended star-network for the extended bilocal scenario is
displayed in figure 5.

Consider the ordinary bilocality scenario with Alice, Bob and Charlie
having inputs x, y, z and outcomes a, b, c respectively. The bilocal assumption
going in to our derivation of Bell inequalities reads

Pbiloc(a, b, c|x, y, z) =

∫
ρ1(λ1)ρ2(λ2)P (a|x, λ1)P (b|y, λ1, λ2)P (c|z, λ2)dλ1dλ2

(78)
Quantum mechanics allows us to think of each measurement outcome of each
party as a discrete random number generator. However the settings of these
random number generators are subject to the freedom-of-choice loophole so
we assume that the setting of each random number generator is determined
by some hidden variables µ1, µ2, µ3 such in fact all edge parties are subject to
superdeterminism and therefore have no free will. The choices of measure-
ments are given by P (x|µ1), P (y|µ2), P (z|µ3) which is always zero or unity.
The hidden variables are subject to distributions q1, q2, q3 since these are
independent of each other. The distribution (78) now takes the form

Pbiloc(a, b, c, x, y, z) =

∫
ρ1(λ1)ρ2(λ2)q1(µ1)q2(µ2)q3(µ3)P (x|µ1)P (y|µ2)P (z|µ3)

P (a|x, λ1)P (b|y, λ1, λ2)P (c|z, λ2)dλdµ

(79)

The bilocal scenario will be put in contrast to the extended bilocal scenario
displayed in figure 5. The system involves six parties where no party in the
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network has any choice of measurement settings i.e., free will nor hidden
measurement settings make an observable difference to the system. The
outcomes are labeled by a, b, c, x, y, z. A local realist assumption in analogy
with the n-local assumption would be

PExtBiloc(a, b, c, x, y, z) =

∫
ρ1(λ1)ρ2(λ2)q1(µ1)q2(µ2)q3(µ3)P (x|µ1)P (y|µ2)P (z|µ3)

P (a|µ1, λ1)P (b|µ2, λ1, λ2)P (c|µ3, λ2)dλdµ

(80)

Under the realist assumption and assuming that our measurement do not
have trivial outcomes we enforce that P (x, y) = P (x)P (y) > 0. We state
and prove the following theorem.

Theorem 5:(Freedom-of-choice loophole). The probability distribution PExtBiloc
is extended bilocal if and only if the conditional probability distribution Pbiloc
is bilocal, where we interpret the outcomes x, y, z of the extended bilocality
scenario as inputs of the ordinary bilocality scenario.

Proof:

Assume that PExtBiloc admits to the decomposition (80). Then elementary
conditional probability gives us q1(µ1)P (x|µ1) = q1(µ1|x)P (x) and similarly
for the other two extended parties. Since PExtBiloc is extended bilocal it
follows that

PExtBiloc(a, b, c|x, y, z) =
PExtBiloc(a, b, c, x, y, z)

P (x)P (y)P (z)
(81)

Carrying out (81) and labeling

P (a|x, λ1) =

∫
q1(µ1|x)P (a|µ1, λ1)dµ1

P (b|y, λ1, λ2) =

∫
q2(µ2|y)P (b|µ2, λ1, λ2)dµ2

P (a|x, λ1) =

∫
q2(µ3|x)P (a|µ3, λ2)dµ3

(82)

29



brings PExtBiloc to the form

PExtBiloc(a, b, c|x, y, z) =

∫
ρ1(λ1)ρ2(λ2)P (a|x, λ1)P (b|y, λ1, λ2)P (c|z, λ2)dλ1dλ2

(83)
which is exactly the form (78).

Conversely assume that PBiloc is bilocal and therefore admits to the de-
composition (78). Let (µ1, µ2, µ3) = (x, y, z). This allows us to express P (x)
in a different form

P (x) =

∫
q1(µ1)P (µ1)P (x|µ1)dµ1 (84)

and similarly for P (y) and P (z). Since PBiloc is bilocal we have

PBiloc(a, b, c, x, y, z) = PBiloc(a, b, c|x, y, z)P (x)P (y)P (z) (85)

Performing (84) then yields the distribution given in (80).

�

Although this rather simple proof provides a way of avoiding the freedom
of choice assumptions in star-networks, one must not draw the drastic con-
clusion that superdeterminism is now rejected from nature (although exper-
imental result make it very likely) but simply emphasizes the fact that even
if we assume superdeterminism, quantum mechanics still outperforms local
realist correlations.

In order to realize an experiment not subject to the freedom-of-choice
loophole, let the extended parties act as random number generators by dis-
tributing the uniformly mixed states 1

2
(|0〉〈0| + |1〉〈1|) between edge parties

and extended parties and allow extended parties to measure σz in order to
obtain an outcome with uniform randomness.

The example we have provided for bilocality is straightforward to gen-
eralize to a broader statement. In fact given any star-network there always
exists an extended star-network with fixed measurements such that the cor-
relations in the star-network are n-local if and only if the correlations in the
extended star-network are extended n-local. Once again, we interpret the
outcomes of the extended parties as inputs of the edge parties.
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4 Numerical case studies of quantum proper-

ties

Having provided Bell inequalities for four different star-network measure-
ment scenarios and characterized the n-local set for qubit distribution we
now study the quantum properties of the inequalities. We perform MatLab
numerical analysis of case studies for star-networks with n ≥ 2. We aim to
provide violations of the inequalities with quantum probability distributions,
find the maximal quantum violations, study properties of the quantumly
attainable subset of the non n-local set.

Usually in foundational physics, the task we will consider in this section
are often unmanageable to do directly by analytical tools. Unless one has an
extraordinary intuition for quantum systems, one must be very lucky in order
to solve the listed tasks analytically straight away. The common procedure
is to first perform numerical studies to gain intuition in order to be able to
show more general analytical results. Also, first performing the numerics
will hopefully reduce the feeling of the rabbit being pulled out of the hat in
section 5. Before we show the results of the numerical analysis we should say
something about the numerical methods constructed for this section.

When increasing the number of parties the dimension of the composite
hilbert space of the system increases exponentially. This implies that given
arbitrary measurements for all parties involved in the system, computing the
quantum probability distribution is a problem of exponential time computa-
tional complexity. This effectively puts a limit on how large networks we can
analyze within reasonable time. Explicitly for the programs constructed for
the tasks, the limits are n no larger than 4 for the 1 → 2n inequality and n
no larger than 6 for the 2→ 2 inequality. A second problem arises from the
fact that the n-local set is not convex i.e., that we have to perform nonlin-
ear optimization over a more complicated set. Not only that the numerical
methods for optimizing over non-convex sets are less efficient but also the
fact that optimization algorithms can ’get stuck’ in local extreme points is a
problem. This fact makes the numerical analysis of the n-local assumption
much more difficult than the Bell scenario where the local set is a convex
polytope and the task of finding maximal violations is in comparison very
easy. In some cases we try to overcome this problem by studying the n-local
set along a linear path uniquely characterized by some number α, thus con-
sidering the optimal quantum violation along the linear path (OQVALPs).
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Such a procedure allows for effective convex optimization since the straight
line evidently is a convex subset of the n-local set and we can therefore use
semi-definit programing (SDPs).

4.1 Examples of maximal quantum violations

Is it possible to find quantum probability distributions that violate the in-
equalities derived in section 3? To answer this question a suitable choice of
states distributed between Bob and each of the n parties needs to be made.
It is natural to consider one of the maximally entangled Bell states in equa-
tion (9). Let start with considering the 1→ 2n inequality and let each edge
party in the bipartite star-network of n sources share the singlet Bell state
with Bob

|ψ−〉 =
1√
2

(|01〉 − |10〉) (86)

We let Bob’s measurement be a complete Bell state measurement on n qubits.
Thus, the composite state of the n qubits at his disposal is projected onto a
complete set of 2n maximally entangled states. The essential and non-trivial
question is which measurements the n parties should perform in order to
maximize the quantities Q1, Q2 introduced in (54).

We now quantumly find these optimal measurements by brute force non-
linear numerical optimization, starting with n = 4. The program fixes the
complete Bell measurement of Bob and the states distributed between the
parties while optimizing over the two possible measurements of each of the
four edge parties which are in practice taken as linear combinations of the
Pauli operators and identity since these span the space of 2 × 2 hermitian
matrices. The maximal value returned by this numerical optimization for
n = 4 is

2∑
i=1

|Qi|1/4 = 21/4 ≈ 1.19 � 1 (87)

This is a clear violation of the derived n-local bound, namely 1. Due to the
nonlinear properties mentioned earlier it cannot be stated with 100 percent
confidence that (87) constitutes the global maximal violation. Several other
violations were observed constituting local maximums of the quantity being
optimized. However after conducting extensive tests of the optimization by
variation over the initial conditions it can be stated with confidence that
(87) constitutes a maximal violation of the 1 → 24 inequality and it will be
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referred to as such. The maximal violation is obtained for

Q1 = Q2 = 0.125 (88)

The measurements of the four parties corresponding to the obtained maximal
violation of 1 → 24 inequality are symmetric linear combinations of the
eigenvectors of σx and σy shifted by a relative phase to each other. We
will not present the whole list of eigenvectors for reasons that will soon be
obvious.

Having studied the case of n = 4 we now consider the case of n = 3.
A similar brute force optimization was performed and a maximal violation
of inequality 1 → 23 was obtained with high confidence. We now list all
computed maximal violations of 1 → 2n inequality allowing us to spot a
pattern.

n = 2 : S1→2n

max (n = 2) = 21/2 ≈ 1.41 � 1 (89)

n = 3 : S1→2n

max (n = 3) = 21/3 ≈ 1.26 � 1 (90)

n = 4 : S1→2n

max (n = 4) = 21/4 ≈ 1.19 � 1 (91)

The factor by which quantum mechanics outperforms the n-local bound (the
violation factor) seems to be exponentially decreasing with the number of
edge parties and we therefore make the following conjecture.

Conjecture 1: The maximal quantum violation of the inequality 1→ 2n is
given by 21/n.

Due to this decreasing property, the 1 → 2n inequality is of less interest
since we would like robustness also for large networks. We hope for better
results with the 2→ 2 inequality.

When considereding the 2 → 2 inequality we choose a more effective
approach than brute force optimization. We apply the previously described
method of restricting ourselves to a line in the I, J-plane and use semi-definit
programing to obtain the OQVALP. From the geometry of the n-local set and
also from the results of maximal quantum violations for 1→ 2n it is a good
guess to consider the path I = J and find the corresponding OQVALP. In
order to work with SDPs we fix the measurements of the edge parties to
(σx, σz) and optimize over two POVMs for Bob, obeying

Mb=0|y=0 +Mb=1|y=0 = 1 Mb=0|y=1 +Mb=1|y=1 = 1 (92)
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Due to the constraint (92) we have the freedom of choosing a total of two
POVMs for Bob.

Since the optimization is more effective than the previously applied brute
force method we can generate OQVALPs for any n ∈ {2, 3, 4, 5, 6}:

S2→2
max (2) = S2→2

max (3) = S2→2
max (4) = S2→2

max (5) = S2→2
max (6) =

√
2 � 1 (93)

This is a remarkable result. In contrast to the 1→ 2n inequality, the maximal
quantum violation does not decrease with n but seems to stay constant with
the size of the network. However the POVMs of Bob realizing this maximal
violation are not obvious nor reminiscent of any elementary measurement in
quantum mechanics. Nevertheless they do uphold strong symmetries. This
seems to suggest that there is a better choice of edge party measurements.
In order to find these edge party measurements we first gain understanding
of Bob’s POVMs by realizing that they are on the form of the general parity
operator. Introduce an arbitrary real qubit basis

B =

{(
a

b

)
,

(
−b
a

)}
a2 + b2 = 1 a, b ∈ R (94)

By solving four systems of four linear equations one can find the parity
observable corresponding to the basis B. For parity zero this is given by

Π0
B =

1

(a2 + b2)2


a4 + b4 a3b− ab3 a3b− ab3 2a2b2

a3b− ab3 2a2b2 2a2b2 ab3 − a3b
a3b− ab3 2a2b2 2a2b2 ab3 − ba3

2a2b2 ab3 − a3b ab3 − a3b a4 + b4

 (95)

Bob’s measurement is of this form for (a, b) =

(√
2−
√

2

2
,

√
2+
√

2

2

)
. This is an

eigenvector of σx+σz√
2

. Studying the parity one observable the second eigen-
vector is found. Similarly studying Bob’s second measurement we find the
eigenvectors of σx−σz√

2
. Thus we can shift the basis of the complete star-system

by letting the edge parties perform measurements

mi = 0 :
σx + σz√

2
(96)

mi = 1 :
σx − σz√

2
(97)
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SDPs now give Bob’s POVMs as parity measurements in the computational
and diagonal bases respectively. For the special case of n = 2 these take
the simple form corresponding to a = b = 1√

2
and a = 1, b = 0 in (95)

respectively.

Mn=2
0|0 =

1

2


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 Mn=2
0|1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (98)

Such a change of basis does not affect the maximal quantum violations in
(93) but allows for better understanding of the quantum properties of the
entanglement swapping measurement. In section 5 we will analytically prove
that this sequence of measurement yields maximal quantum violations of
2→ 2 for a network of arbitrary size.

We continue with demonstrating that our bipartite qutrit inequality (52)
is non-trivial. Consider the bilocality scenario and let the two sources dis-
tribute the maximally entangled state

|ψ〉 =
|00〉+ |11〉+ |22〉√

3
(99)

Inspired by the strong results of the 2 → 2 inequality we let Bob perform
generalized parity measurements in the X and Z bases respectively. Then it
is possible to obtain √

|I3|+
√
|J3| =

4

3
�

2√
3

(100)

The violation is rather small but it shows that it is a possible generalization
to qutrits. Such an inequality will be interesting on its own but also in
applications to detection efficiency for qubit distributions.

Finally we consider the multipartite inequality (69) and we pick the sim-
plest non-trivial case depicted in figure 4 in section 3.5 with two three-partite
sources. We have four quantities K∅, K{1}, K{2}, K{1,2} and we impose maxi-
mal freedom by allowing each quantity to be associated to one of four mea-
surements for Bob. We choose to distribute GHZ-states in both sources

|GHZ〉 =
|000〉+ |111〉√

2
(101)
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and from the known properties of the GHZ-paradox we let all the edge parties
perform the same measurements, namely σx and σy. Optimization over Bob’s
measurement yields a very strong maximal quantum violation of

S2L−1→2
Q (L = 3, n = 2) = 2 � 1 (102)

This result is obtained for Bob performing parity measurement in the bases
given by the eigenvectors of σx and σy respectively. This demonstrates that
one does not need the freedom of choosing four measurements for Bob, it is
sufficient with two measurements ordered in such a way that all quantities
KX such that X is of even cardinality perform the same measurement and
similarly for the odd cardinarlity quantities.

The violation factor of 2 is equivalent to the violation factor GHZ-states
exhibit in the Mermin-inequality [37] with the same measurements and GHZ-
states also uniquely maximally violate the Mermin inequalities [38]. Could
it be the case that the nonlocality is in fact not arising from entanglement
swapping but from the Bell scenario of each source i.e., between Alice, Albert
and Bob in figure 4? Such suspisiouns are rejected by the fact that we can
violate the inequality with a factor of

√
2 by letting Bob perform just one

parity measurement in the diagonal basis so our scenario cannot be equivalent
to the three-partite Bell scenario. Furthermore the robustness to increasing
the number of sources also seems to hold true since we find

S2L→2
Q (L = 3, n = 3) = 2 � 1 (103)

For larger L, e.g. L = 4 we see the same pattern. The L = 4 bilocality
inequality is maximally violated by Bob with such a configuration that for all
quantities in (67) with X of even cardinality one measurement is associated
and for all X of odd cardinality another measurement is associated. The
zero-outcome measurement operator of these two measurements are

1

2


1 0 0 −i
0 1 1 0
0 1 1 0
i 0 0 1

 1

2


1 0 0 i
0 1 1 0
0 1 1 0
−i 0 0 1

 (104)

by (92) the outcome-one operator is found for each of the two measurements
in (104). The edge parties choose between measurements σx and σy. This
configuration leads to the maximal violation

S24−1→2
Q (L = 4, n = 2) = 2

√
2 � 1 (105)
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Figure 6: The set of quantumly attainable probability distributions for n = 2.
Each rectangle represents the quantum set along the path.

It seems to be the case that we are reproducing violation factors that are
equivalent to those of the Mermin inequality i.e., exponentially outperform-
ing the local models and we make the following conjecture

Conjecture 2: The maximal quantum violation factor of inequality (69)

describing the L-partite n-locality scenario is 2
L−1
2 . In section 5 we will in-

troduce a general framework allowing the proof of this conjecture.

4.2 The set of quantum correlations

We have in section 3.4 we have studied the geometry of the n-local set of
probability distributions. In this section we attempt the same task but for
the quantum subset of the non n-local set attainable with inequality 2→ 2,
restricting ourselves to n = 2, 3.

Introduce the path parameter α such that

I = αJ (106)

defines a linear path in the I, J-plane on which we can apply SDPs. For
n = 2 and α ∈ [0, 1] in steps of 0.05 we generate the OQVALPs corresponding
to that particular value of α and 1

α
thus giving us 41 points on the boundary

of the quantum subset of the non-bilocal set. Once finding the OQVALP for
some α we numerically generate the set of quantum probability distributions
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Figure 7: Bilocal and trilocal sets. Numerically obtained OQVALPs for
n = 2, 3 are used to roughly draw the quantum subset of the non-bilocal and
non-trilocal sets.

attainable along this path if the edge parties are allowed arbitrary measure-
ments. We plot the result in figure 6. Each rectangle in the plot encloses the
set of quantumly attainable probability distributions along the path. This
rectangle formation derives from the fact that the only way the quantities
I, J are coupled is through the measurements of the edge parties. Such a
result would for instance not be expected for the 1→ 2n inequality.

Observe that the set boundary in figure 6 is linear and therefore equiva-
lent to the local set arising in a Bell scenario (plotted also in figure 3). This
raises interesting and fundamental questions about the nature of entangle-
ment swapping versus shared randomness in terms of which correlations are
attainable. Why should these two sets coincide?

In order to compare the quantum sets for different n we find, in a similar
way to the n = 2 case, a set of OQVALPs for the n = 3 star-network. In
figure 7 we display the data points on the boundaries of the quantum sets for
n = 2, 3 together with an estimation of the set and the corresponding bilocal
and trilocal sets.

The nonlinearity of the quantum set boundary arises in the trilocal case.
Naturally the size of the quantum sets seem to be decreasing with n in
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Figure 8: OQVALPs for n = 2, 3, 4.

analogy with the classical sets.
From section 4.1 we know that the maximal violations are all the same.

However we have no information of how the violations behave along an arbi-
trary path in the I, J-plane for different values of n. We numerically study
the violation factor of the inequality for n = 2, 3, 4 along paths α ∈ [0, 1] in
steps of 0.1 and the results are shown in figure 8. Evidently the OQVALPs
seem to be increasing with n. The sequence seems to be converging to the
maximal violation of the inequality

√
2 quite rapidly. This suggests that the

strength of the quantum correlations in the network for some given direction
in the I, J-plane increases with the number of parties. The result make it
plausible that in the limit when n→∞ the upper quantum bound

|I|1/n + |J |1/n ≤
√

2 (107)

will become a tight inequality for describing the quantumly attainable subset
of the non n-local set.

5 Analytical studies of quantum properties

In the previous section we raised various questions about the quantum prop-
erties of the n-local set and the properties of OQVALPs which we treated
with numerical analysis for small n. The central problem arose from the ex-
ponential growth of the probability distribution which in general constrains
numerical studies. Nevertheless, in this section we will attempt an analyt-
ical approach to the questions raised in section 4 and show that the vast
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symmetries encountered in our n-locality inequalities allows for an effective
analytical approach. We aim to provide a general analytical framework for
analyzing quantum properties of our inequalities and use it to derive proper-
ties of quantum correlations both explaining and generalizing the numerical
results of section 4.

5.1 Mathematical framework

We begin by introducing a general framework for analyzing our most general
multipartite inequality (69). This will serve to demonstrate a general math-
ematical method rather than providing explicit computations which will be
done in the next section.

Take the L-partite star-network measurement scenario with n sources
that are all distributing GHZ-states. Let Bob choose from a set of arbitrary
measurements and let each measurement be labeled yX . Then the reduced
state after Bob’s measurements will in general be some mixture of pure states∑

j

Pj|ψjX,Π〉〈ψ
j
X,Π| (108)

where Π is the outcome of the measurement yX . Each edge party has two
possible measurements that can be taken arbitrarily and we label the eigen-
vectors of these observables as |mk

j r
k
j 〉.

Introduce the following notations for the inner products

pj,k,l,X,Π
mkj ,r

k
j

= 〈mk
j , r

k
j |ψlX,Π〉 (109)

Then the corresponding global probability distribution takes the form

P (r|m, yX ,Π) =
∑
l

Pl

∣∣∣∣∣∏
j,k

pj,k,l,X,Π
mkj ,r

k
j

∣∣∣∣∣
2

(110)

In order to apply to our inequalities we just use that

P (r,Π|m, yX) = P (r|m, yX ,Π)P (Π|yX) (111)

In principle, we can now compute the quantities KX going into inequality
(69), with more or less effort depending on the specification of measurements
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for all parties. However we know from the numerics which measurements for
Bob are favorable.

In purpose of demonstration, let us fix the measurements of Bob to those
found to yield maximal violations in section 4.1 leading to conjecture 2.
For any odd L, applying the numerically obtained parity measurements and
computing the reduced states will yield

|κ1〉 ≡
1√
2

(
|0〉⊗L−2 + (−1)y+Π|1〉⊗L−2

)
|κ2〉 ≡

1√
2

(
|0〉⊗

L−2
2 |1〉⊗

L−2
2 + (−1)Π|1〉⊗

L−2
2 |0〉⊗

L−2
2

)
ρy,Πodd =

1

2
|κ1〉〈κ1|+

1

2
|κ2〉〈κ2| (112)

Similarly for any even L the reduced state will be

|µ1〉 ≡
1√
2

(
|0〉⊗L−2 − i(−1)y+Π|1〉⊗L−2

)
|µ2〉 ≡

1√
2

(
|0〉⊗

L−2
2 |1〉⊗

L−2
2 + (−1)Π|1〉⊗

L−2
2 |0〉⊗

L−2
2

)
ρy,Πeven =

1

2
|µ1〉〈µ1|+

1

2
|µ2〉〈µ2| (113)

When it comes to choosing edge party measurements it is known that the
GHZ-states are trivial in the space spanned by σx and σz and without loss
of generality we can consider only the xy-plane. Also assuming that all edge
parties choose between the same measurements, we obtain

|m = 0, r = 0〉 =
1√
2

(
1

eiθ

)
|m = 0, r = 1〉 =

1√
2

(
1

−eiθ

)
|m = 1, r = 0〉 =

1√
2

(
1

eiφ

)
|m = 1, r = 1〉 =

1√
2

(
1

−eiφ

)
(114)

for some φ, θ. Having computed reduced states and defined the edge party
measurement eigenvectors it is straightforward to compute pj,k,l,X,Π

mkj ,r
k
j

from

which the all KX can be found. Observe that chosing θ = 0 and φ = π
2

will return the measurement scenario seen to produce maximal violations in
section 4.1. In the next section we show an explicit example of this method.
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5.2 Sequence of maximal quantum violations

The framework of the previous section will here be used to solving the prob-
lem of providing a sequence of measurements that will maximally violate the
inequality 2→ 2 for any n i.e., show that the numerical results in (93) indeed
are true for arbitrary large networks. We do this by studying the state of the
system after Bob’s measurement and show that this is an entangling mea-
surement leading to strong symmetries. On basis of our numerics favoring
parity measurements for Bob we derive a lemma.

Lemma 2:(State post Bob). Given a bipartite star-network configuration
with d = 2 of n shared singlet states and Bob performing one of two possi-
ble measurements {Πcomp,Πdiag} labeled by y = 0, 1 corresponding to parity
in computational and diagonal basis respectively, the reduced state of the
system is

|ψΠ
y=0〉 =

1√
2

(
|+〉⊗n + (−1)Π|−〉⊗n

)
(115)

|ψΠ
y=1〉 =

1√
2

(
|0〉⊗n + (−1)Π|1〉⊗n

)
(116)

Proof:

Distributing n copies of the singlet state yields the global state of the system
to be

|ψ〉 =
n⊗
i=1

|ψ−〉 (117)

Temporarily introduce the notation p = |01〉 (p-block) and q = |10〉 (q-
block). Define some operation such that N(p) = 0 and N(q) = 1 and expand
(117) in a sum 2n unique terms consisting of n blocks with some combination
of blocks of type p, q.

|ψ〉 =
∑

(−1)N(q)perm{p, q}⊗n (118)

It is important to keep the ordering of the hilbert spaces in mind.
Introduce Bob’s first measurement, y = 0 i.e., parity in computational

basis. Assume that the outcome is Π = 0. If the number of |1〉 vectors in the
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tensor product on Bob’s hilbert spaces is even then, these will be projected
onto them selves with eigenvalue 1. Otherwise the parity-zero measurement
operator associates the eigenvalue to 0.

The number of vectors on HBob with parity zero is given by the number of
ways one can positition an even number of |1〉-vectors in the tensor product
of Bob i.e.,

n∑
i=0

(
n

2i

)
= 2n−1 (119)

The same will of course hold for the outcome Π = 1 of measurement y = 0.
Thus the reduced state of the system after Bob perform his measurement

is

|ψΠ=0
y=0 〉 =

1√
2n−1

∑
x1⊕...⊕xn=0

|x1x2...xn〉 (120)

|ψΠ=1
y=0 〉 = − 1√

2n−1

∑
x1⊕...⊕xn=1

|x1x2...xn〉 (121)

We now show that the reduced states (120,121) in fact are maximally entan-
gled states. This would imply that the measurements of Bob are entangling
measurements, swapping the entanglement of the global system. We apply
the method of induction.

Define the diagonal ON-basis of qubit state space as

|+〉 =
1√
2

(|0〉+ |1〉) |−〉 =
1√
2

(|0〉 − |1〉) (122)

Then it is straightforward to show that the following two Bell states are
subject to rotational symmetry with respect to the diagonal basis

|φ+〉 ≡ 1√
2

(|00〉+ |11〉) =
1√
2

(|++〉+ |−−〉) (123)

|ψ+〉 ≡ 1√
2

(|01〉+ |10〉) =
1√
2

(|++〉 − |−−〉)

Holding true for n = 2, this constitutes the base case for our induction
assumption that given any n > 2

|ψΠ=0
y=0 〉 =

1√
2n−1

∑
x1⊕...⊕xn=0

|x1x2...xn〉 =
1√
2

(
|+〉⊗n + |−〉⊗n

)
(124)

|ψΠ=1
y=0 〉 =

1√
2n−1

∑
x1⊕...⊕xn=1

|x1x2...xn〉 =
1√
2

(
|+〉⊗n − |−〉⊗n

)
(125)
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We perform the induction for (124). Take k = n + 1 and use the induction
assumption together with (122) to obtain

1√
2k−1

∑
x1⊕...⊕xk=0

|x1x2...xk〉 = |0〉 ⊗ 1√
2k−1

∑
x2⊕...⊕xk=0

|x2...xk〉+

|1〉 ⊗ 1√
2k−1

∑
x2⊕...⊕xk=1

|x2...xk〉 =

|0〉 ⊗ 1√
2

(
|+〉⊗k−1 + |−〉⊗k−1

)
+ |1〉 ⊗ 1√

2

(
|+〉⊗k−1 − |−〉⊗k−1

)
=

(|0〉+ |1〉)⊗ |+〉⊗k−1 + (|0〉 − |1〉)⊗ |−〉⊗k−1 =
1√
2

(
|+〉⊗k + |−〉⊗k

)
(126)

An analog argument will prove (125).
Due to the rotational symmetry of the singlet state, one can almost copy

this proof to show that the relation (116) hold true for Bob’s second mea-
surement, Πdiag.

�

Having the lemma in place we demonstrate a sequence of maximal violations
of the 2→ 2 inequality.

Theorem 6: (Maximal quantum violation) Given a bipartite star-network
configuration with M = d = 2 of n shared singlet states a sequence of mea-
surements yielding a violation of inequality (30) by a factor of

√
2 is letting

the edge parties all make the measurements in (96,97) and let Bob perform
parity measurements in the computational and diagonal bases respectively:
{Πcomp,Πdiag}.

Proof:

The parties on the edges perform their measurements provided in (96,97).
Label the sequence of measurements by m and the sequence of outcomes
by r. We know that the reduced states tracing out Bob’s hilbert space are
maximally entangled pure states. As a special case of our general frame-
work, applying lemma 2 together with (110,111) we can compactly present
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the probability distributions given the measurement of Bob.

P (r,Π|m, y = 0) =
1

4

∣∣∣ n∏
i=1

〈mi, ri|+〉+ (−1)Π

n∏
i=1

〈mi, ri|−〉
∣∣∣2 (127)

P (r,Π|m, y = 1) =
1

4

∣∣∣ n∏
i=1

〈mi, ri|0〉+ (−1)Π

n∏
i=1

〈mi, ri|1〉
∣∣∣2 (128)

Observe that the probability distribution exhibits strong symmetries in the
sense that it does not matter which party is doing what measurement and
obtaines which outcome. We are only concerned about the number of people
making some measurement and obtaining some outcome. This motivates
some new notations. Let α be the number of parties making measurement
zero obtaining outcome zero, β the number of parties making measurement
zero obtaining outcome one, γ the number of parties making measurement
one obtaining outcome zero and δ the number of parties making measurement
one obtaining outcome one. Evidently it must hold true that α+β+γ+δ = n.

Since we can completely map each probability distribution by essentially
computing eight inner products, the task is very simple. Calculating the
eigenvectors of the edge party measurements and taking the respective inner
products with |+〉 and |−〉 we can reduce (127) to

Py=0(α, β, γ, δ,Π) =
1

21+2n

∣∣(2−√2)
α+δ
2 (2 +

√
2)

β+γ
2 +

(−1)α+γ+Π(2−
√

2)
β+γ
2 (2 +

√
2)

α+δ
2

∣∣2 (129)

where Π ∈ {0, 1} is outcome of Bob’s parity measurement. The similar
computation for (128) is simple.

The quantity I can now explicitly be decomposed in terms of the distri-
bution (129). One has to account for the degeneracy of the measurement
settings and outcomes by introducing multinomial coefficients. Similar pro-
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cedure for (128) yields

I ≡ 1

2n

∑
m,r,b

(−1)r1+...+rn+bP (r, b|m, y = 0) =

=
1

2n

∑
Π=0,1

∑
α+β+γ+δ=n

(−1)β+δ+Π

(
n

α, β, γ, δ

)
Py=0(α, β, γ, δ,Π)

J ≡ 1

2n

∑
m,r,b

(−1)r1+...+rn+bP (r, b|m, y = 1) =

=
1

2n

∑
Π=0,1

∑
α+β+γ+δ=n

(−1)β+γ+Π

(
n

α, β, γ, δ

)
Py=1(α, β, γ, δ,Π)

(130)

The domain of the summation over α, β, γ, δ can equivalently be expressed
as all possible partitions of n into four non-negative integers.

Finding I, J for the introduced measurements for the edge parties is now
a matter of direct calculation. Some simplification will yield the probability
distribution on the form

Py=0 =
1

2

(
2 +
√

2

4

)n
(2−

√
2

2 +
√

2

)α+δ

+

(
2−
√

2

2 +
√

2

)n−α−δ

+ 2(−1)α+γ+Π
(√

2− 1
)n

(131)

We can immediately realize that the first two terms in the brackets do not
contribute to I, J since they are symmetric in Π. Only the third term in
(131) contributes and some simplification will give the final result

I = (−1)n
(

1

4
√

2

)n ∑
α+β+γ+δ=n

(
n

α, β, γ, δ

)
=

(−1)n√
2n

(132)

An analog analysis for J will give

|J | = 1√
2n

(133)

The implication for inequality (30) is

|I|1/n + |J |1/n =
√

2 (134)
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The method introduced in this proof also provides extensive numerical com-
putational power for n-locality problems in general. In previous evaluation
of the inequalities (30) and (55) we have applied nonlinear optimization pro-
grams of high computational complexity resulting in the inability of analyzing
large networks. Even with the SDPs we could not go beyond n = 6 in any re-
alistic time. However by keeping the parity measurement of Bob and varying
the measurements of the edge parties the distributions (127,128) can eas-
ily be modified for various inner products. Each correlator, first introduced
in (27) as a linear combination of probabilities can then with few steps be
computed from the distribution function.

In addition, one should observe the following: The fact that we can make
such a manageable analysis of a network of arbitrary size is fully due to the
nature of the entanglement swapping performed by the parity measurement
i.e., the simple structure of the reduced state after Bob’s measurement in
lemma 2.

5.3 Parity generated quantum non n-local sets

We now further explore the quantum non n-local set as generated through
Bob’s parity measurements. Even though our previous method allows for
very efficient numerical computations, we can analytically explore its gen-
eralized forms. In this section we show how the post Bob’s measurement
symmetries allows for a complete characterization the quantum n-local set
generated with parity measurements by Bob.

Fix Bob’s measurements to parity in computational and diagonal bases
so that the post-measurement symmetries arise according to lemma 2. For
edge party measurements we parametrize these to a general form as follows{(− sin

(
φ
2

)
cos
(
φ
2

) ),(cos
(
φ
2

)
sin
(
φ
2

))} {(− sin
(
θ
2

)
cos
(
θ
2

) ),(cos
(
θ
2

)
sin
(
θ
2

))} (135)

The parameters (φ, θ) are by (135) associated to the two eigenvectors of
the qubit measurement. Applying the analytical introduced in the previous
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sections, we can after some computations show that

I(θ, φ) =
1

4n

∑
α+β+γ+δ=n

(
n

α, β, γ, δ

)
(−1)n+δ+γ cosα+β(φ) cosγ+δ (θ) (136)

J(θ, φ) =
1

4n

∑
α+β+γ+δ=n

(
n

α, β, γ, δ

)
(−1)δ+γ sinα+β(φ) sinγ+δ (θ) (137)

The multinomial theorem allows us to write (136,137) in a much more com-
pact form

I(θ, φ) =
(−1)n

2n
(cos(φ)− cos(θ))n J(θ, φ) =

1

2n
(sin(φ)− sin(θ))n(138)

At this point we can see that the case of maximal quantum violations ob-
tained in theorem 6 is the special case of (138) corresponding to θ = 5π

4
and

φ = π
4
.

Due to the form of inequality (30) it is evident that the value of the
inequality corresponding to I(θ, φ), J(θ, φ) is independent of n. We write it
as

S2→2
Q =

1

2
(|cos(φ)− cos(θ)|+ |sin(φ)− sin(θ)|) (139)

Given any φ i.e., fixing one edge party measurement, there is a subset of
the quantum non n-local set that is realizable with the freedom of varying
θ. Since φ is a continuous parameter there are infinitely many such cases
and the union of these enclosed sets corresponds to the quantum non n-local
set in the I, J-plane generated through parity measurements. Furthermore,
given any φ there exists a θ such that the corresponding probability dis-
tribution corresponds to a OQVALP for some specified path parameter α.
We parametrically plot the values of I(θ), J(θ) for different values of φ for
the special cases of n = 2, 3 to demonstrate the power of this method for
identifying quantum sets. See figures 9 and 10.

From our numerical studies in section 4 we have sufficient data on the
quantum set boundaries in order to compare with the analytical results. For
the case of n = 2 we compare to the local set boundary since (as pointed out
in section 4) the quantum non bilocal set and the local set are the same. For
n = 3 we use the numerically obtained boundary function.

Now we are ready to solve the final problem. Completely characterizing
the quantum non n-local set induced by parity measurement. The impor-
tance of this lies in the following fact we will be able to determine if some
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Figure 9: Quantumly attainable sets in the I, J-plane for various φ for n = 2.
The sets are compared to the bilocal set and the in section 4 numerically
obtained quantum sets to demonstrate a sequential mapping of the quantum
non-bilocal set.

Figure 10: Quantumly attainable sets in the I, J-plane for various φ for n = 3.
The sets are compared to the trilocal set and the in section 4 numerically
obtained quantum set to demonstrate a sequential mapping of the quantum
non-trilocal set.
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probability distribution is detected by the inequality as supra quantum. Ev-
idently the quantum upper bound of

√
2 is in no way tight which we saw in

section 4. However we can now give a proper characterization of the quantum
set solving this problem. We do this by realizing that the set of points (I, J)
corresponding to OQVALPs generated by variation of φ and optimization
over θ is the upper quantum set bound.

The set of OQVALPs is easy to recover. From (138) it is obvious that
for φ = θ the inequality is zero. A shift by π between the angles such
that φ = θ − π then generates the optimum. For these optimal choices of
measurements (138) simplifies to

I(θ) = (−1)n cosn(θ) J(θ) = sinn(θ) (140)

Thus we have fully characterized the quantum n-local set generated through
partiy measurements. Testing these against the numerically obtained bounds
in section 4 indeed yields very good agreement.

As a corollary of (138) we can now solve the problem of finding mea-
surements generating the corresponding OQVALP for given path. Along the
path associated to α i.e., I = αJ we can now easily obtain the following
relation

θ = arccot
(
α1/n

)
(141)

Let us make some observations on basis of equation (140). Some rather
interesting phenomena is exhibited by the quantum sets in comparison to the
n-local sets. Given any non-negative n we can rewrite I, J such that

I =
(
cos2(θ)

)n/2
J =

(
1− cos2(θ)

)n/2
(142)

which is subject to the relation

|I|2/n + |J |2/n = 1 (143)

Assuming that n is an even integer (so that we have a physical interpreta-
tion), expression (143) exactly corresponds to the n

2
-local set as described

by inequality (30). However since the quantities I, J are not the same for
different n we cannot conclude some equivalence between n-local set and the
quantum non 2n-local set. However this property is remarkable and surely
leads to several new questions on the nature of quantum correlations in en-
tanglement swapping configurations.

50



6 Experimental imperfections and quantum

correlations

In this section we are concerned with the possibility of observing quantum
correlations in a star-network under realistic experimental conditions. For
any such real-life task experimental imperfections cause the effectively ob-
servable value of Bell inequalities to decrease. Depending on the intensity of
these experimental imperfections, quantum correlations may be impossible
to observe thus rendering applications useless.

The two most significant imperfections arise from 1) detectors not having
ideal detection rates. Depending on the type of experiment the efficiency
of detectors can vary a lot. If one is performing experiment on entangled
photons one can roughly speaking expect lower detection efficiencies than
e.g. experiments one entangled ions.5 2) Random signals causing distur-
bances known as noise. Noise can come of many forms (different colors) but
the most relevant one is white noise where the random disturbances have
constant power spectral density i.e., flat distributions. We study how much
experimental imperfections our inequalities can be subject to and still uphold
quantum correlations.

6.1 Only one ideal detector

The first case we consider is the star-network of n edge parties where central
party Bob has a perfect detector while the edge party detectors are all subject
to inefficiencies. Since all edge parties perform one-qubit measurements it is
realistic to assume that they are all subject to the same inefficiency η ∈ [0, 1]
defined as the probability that a qubit is successfully detected. Thus η = 1
is the same as a perfect detector.

Every time a party fails to detect a qubit the party outputs some number,
for simplicity 0 but can in general be chosen with any deterministic strategy.
We then numerically compute the critical detection efficiency ηcritical at which
it is no longer possible to observe quantum correlations. For the case of
inequality (30) at the most elementary case of n = 2 we find

ηn=2
critical =

1√
2

(144)

5On the other hand spin entangled ions are subject to other shortcomings such as the
locality loophole.
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This strong result is already known from [30]. We expect it to hold for any n
due to theorem 6 and the fact that Bob has a perfect detector so the increased
complexity of the parity measurement is not taken into account.

For inequality (55) where Bob is performing complete Bell state measure-
ment we have studied the inefficiencies for n = 2, 3, 4 and we find

ηn=2
critical = 2−1/2 ≈ 0.71

ηn=3
critical = 2−1/3 ≈ 0.79

ηn=4
critical = 2−1/4 ≈ 0.84 (145)

The exponential decrease in the optimal quantum violations observed in sec-
tion 4.1 seems to be inversely related to the critical detection efficiency. This
result clearly implies that large scale star-networks will run into experimental
problems.

There should be no doubt that the scenario we are considering is un-
fair. The low critical detection efficiencies we have obtained cannot fairly
be compared to the CHSH-inequality where the critical detection efficiency
is 82.8% [39] with inefficiency on both detectors involved. We cannot ar-
gue that we have objectively lowered the requirements of observing quantum
correlations. However it is interesting to observe that for n = 3 and with
complete Bell measurement we are encountering a scenario where we have
one perfect detector and three inefficient detectors and that the correspond-
ing critical detection efficiency is actually lower than for the two detectors in
CHSH. Equation (145) shows us that this property is lost already for n = 4,
however it will always be true for inequality (30).

6.2 All detectors inefficient

The issue with properly quantifying detection inefficy in star-networks comes
from Bob’s measurement. With increasing n the complexity of this measure-
ment significantly increases. For inequality (55) the problems are too great
for us to propose a satisfying solution since the complete Bell measurement
even in theory is impossible to perform with linear optics and would require
a number of detectors exponentially growing with n.

On the other hand we have seen that inequality (30) can be realized with
linear optics. Parity measurement is of significantly smaller complexity than
complete Bell measurements. Nevertheless, the problem of how to quantify
the n-qubit measurement is not obvious and one may want to consider several
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Figure 11: The region in the ηµ-plane where quantum correlations cannot
be observed by inequality (30) for the bilocal case. The blue dots are the
numerical datapoints.

quantifications each corresponding to some interpretation of the experimental
procedure of measuring parity. We now present one such quantification and
thus considering a scenario where all detectors are subject to inefficiencies.

There is no reason for the inefficiency of Bob to be the same as the
edge parties. Let the detection efficiency of the edge parties be η and the
efficiency of Bob to be µ. In this model, Bob’s efficiency is linear however in
some experimental realizations it has to be taken quadratic. We now consider
the case of n = 2 for inequality (30). Keeping η = 1 it is observed that the
inequality is fairly robust against Bob’s measurement failing. The efficiency
can then be taken as low as µ = 1

2
. In figure 11 we roughly display the region

in the ηµ-plane where it is not possible to violate the inequality on basis of
the data points on the boundary obtained by numerical analysis (blue dots).

There is no natural way of telling whether we have lowered the require-
ments of observing quantum correlations in comparison to CHSH or not due
to the distinct nature of the two measurement scenarios. A proposition for
measuring this would be to consider the supremum of the set of geometric
means of the efficiencies of all detectors involved along the nontrivial part
of the critical boundary. In terms of this measure, we would outperform the
82.8% obtained in CHSH.
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Another possible measure is to restrict ourselves to the line η = µ and
then simply take the inefficiency of each detector as a measure of the critical
efficiency of the overall system. Such a procedure leads to

ηcritical ≈ 0.791± 0.005 (146)

which is lower than the CHSH critical efficiency.
As a final remark: there are various ways to quantify detection efficien-

cies. In the model applied here we say that if a qubit is not detected by
some party, this party always outputs a 0. There is a method of higher
potential relying on quantifying the failed detections as an outcome on its
own. Thus the measurements of the edge parties would be regarded as three-
outcome measurements. However this is not compatible with the form of
the inequalities (30,55) but is more intimately connected with generalizing
n-local inequalities to arbitrary dimensions. The inequality (52) could be
used for this purpose. However it may be the case that a stronger inequality
will be necessary. This approach to detection efficiency is left as an open
question.

6.3 Resistance to white-noise

The resistance to white noise is an important property that needs to be stud-
ied in terms of how much noise a quantum probability distribution can be
subject to and still violate the 1 → 2n inequality. This task we solve ana-
lytically for the inequality (55) but it is straightforward to realize that with
slight modification the argument also holds for all our derived inequalities
due to the linearity in the correlation functions.

Assume that each of the n sources Si instead of sending the maximally
entangled state send white noise with a probability 1 − vi. Thus the state
actually transmitted by source Si is not a pure state but the mixed state
described by the density matrix

ρi(vi) = vi|φ00〉〈φ00|+ (1− vi)
1

2n
(147)

The white noise is represented by a flat distribution i.e. the identity operator.
Thus the total visibility of the n-party system is V = v1v2. . . vn. The states
of highest interest are those presented in section 4.1 maximally violating the
inequalities. The quantum probability distribution PQ is subject to white
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noise and takes a dependence on V .

PQ(V ) = V PQ + (1− V )P0 (148)

where P0 = P0(r1, . . . , rn, b
1b2. . . bn|m1,m2, . . . ,mn) =

(
1

2n

)2
;∀ri, bi,mi; is

the uniform probability distribution. Recalling the definition of the intro-
duced correlator in (53) implemented with PQ(V ):

〈ByC1
m1
...Cn

mn〉V =
∑

b1...bn,r1,...,rn

(−1)b
y+

∑n
i=1 riPQ(V )(b1...bn, r1, ..., rn|m1, ...,mn)

(149)
As seen in (148) there are two terms going into PQ(V ) however the second
of these will not contribute to the correlator since P0 is a constant and as
all the variables of the sum are binary the terms can be grouped in pairs of
opposite signs and cancel out. The correlator (150) simplifies to

〈ByC1
m1
...Cn

mn〉V =
∑

b1...bn,r1,...,rn

(−1)b
y+

∑n
i=1 riV PQ(b1...bn, r1, ..., rn|m1, ...,mn)

(150)
Thus the visibility can be factored out the quantities Qi may therefore be
written

Qi(V ) = V Qi (151)

Thus inequality (55) taking white noise into account becomes

|Q1(V )|1/n + |Q1(V )|1/n = V 1/n
(
|Q1|1/n + |Q1|1/n

)
≤ 1 (152)

If we denote Smax(n) the maximal violation of inequality (55) for a given n
then we have the critical visibility

Vcritical =
n∏
i=1

vi =

(
1

Smax(n)

)n
(153)

for which it is no longer possible to observe quantum correlations in the
star-network.

A realistic assumption is that the n sources available are subject to the
same visibilities i.e. v = vi ∀i ∈ Nn thus implying the total visibility V = vn

and yielding the critical visibility of each source

vcritical =
1

Smax(n)
(154)
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Considering 1 → 2n inequality the critical bound is best for n = 2 yielding
vcritical = 1√

2
and then decreasing exponentially with n. However considering

the 2 → 2 inequality the critical visibility stays constant at vcritical = 1√
2

for any n. This means that arbitrarily large networks can be constructed
with non-increasing critical visibility. The implication for the multipartite
inequality (69) is that we have an exponentially decreasing critical visibility

vcritical =
1√

2L−1
(155)

which is equivalent to the critical visibilities for the Mermin inequality.
A concluding remark: One might observe that choosing to count detection

inefficiencies by letting a failed measurement randomly be associated to 0 or
1 is in fact equivalent to our treatment of white noise and therefore the
argument of this section shines some light on this special interpretation of
inefficient detection.

7 Conclusions

In this thesis we have examined entanglement swapping in a broad class of
star-networks. We characterized local realist theories for such networks by
introducing the n-local assumption and from it we derived four Bell inequal-
ities: two inequalities involving qubit distribution with n bipartite sources,
one inequality involving qutrit distribution by the sources and one inequality
generalizing the concept to multipartite sharing of hidden variables.

For the case of bipartite qubit distribution we found a family of LHVs
used to prove tightness of our inequalities with respect to the n-local set and
it is left as an open question to prove or disprove the tightness property for
the multipartite inequality (69).

Having derived Bell inequalities we continued with numerical studies of
the inequalities and presented a range of examples of maximal violations for
the inequalities. This lead us to the conclusion that the optimal quantum
violations were decreasing for inequality (55) while remaining constant for in-
equality (30) and exponentially increasing for inequality (69). We continued
by numerical studies of various properties of the quantum sets for n = 2, 3
for inequality (30). We demonstrated equivalence between the quantum non-
bilocal set and the local polytope but maintain that the nonlinearity of the
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n-local assumption cause the quantum sets to have non-convex rather compli-
cated boundaries. Why the quantum non-bilocal set and the local polytope
coincide is an open question.

By observing basic symmetries of the Bob’s measurement we gave proof
of measurement settings yielding maximal violations of (30) for any n. Essen-
tially our introduced method strongly reduces the computational complex-
ity of analyzing the quantum properties in problems involving entanglement
swapping in star-networks. Furthermore we analytically derived the full char-
acterization of the quantum non n-local sets induced by parity measurements
showing unexpectedly simple structures.

We also studied the behavior of quantum correlations in presence of ex-
perimental imperfections. We studied inequality (30) and (55) in an unfair
scenario with inefficient detectors. Even though we show a critical detection
of 1√

2
for n = 2 clearly beating CHSH’s critical detection of 83%, this is not

a fair scenario since Bob is given a perfect detector. However we imposed
linear inefficiency on Bob and showed a critical detection efficiency of 0.791%
clearly outperforming CHSH. We emphasize that detection efficiency should
be studied once given a specific experimental situation since these can vary
significantly.

A remark on this: We have only been considering maximally entangled
states in our studies. It is known that for CHSH-inequality, using partially
entangled states one can lower the critical detection down to 67% due to
Eberhard’s inequality [40]. If anything similar is possible for our inequalities
remains an open question.

The derivation of white noise tolerance of the inequalities showed that
for a star-network of any number of sources we can keep the visibility per
source constant and observe quantum correlations. Evidently the increased
complexity of the system still allow the upper bound of noise-tolerance to
be equivalent to that of the much less complex CHSH-inequality. This al-
lows the practical construction of such star-networks. As for multipartite
inequality we reproduce the strongest results of noise tolerance in Mermin
inequality. Why star-networks yield nor stronger nor weaker critical bounds
than ordinary Bell nonlocality is a central unsolved question in this thesis.

Despite presenting a violation for qutrit distribution in the bilocal sce-
nario enforced through inequality (52) it is strongly believed that more power-
ful inequalities can be constructed. Studying the properties of star-networks
with more than two-outcome measurements is still an open problem. It may
be the case that a completely new approach to the problem is necessary.
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For Bell nonlocality it is known to exist inequalities with a critical noise
tolerance that improves with higher state dimensions [?]. Whether anything
similar is possible in star-networks is an interesting question. Besides this
motivation, strong qutrit inequalities may further reduce critical detection
efficiency in two-outcome measurement scenarios. It is the authors conviction
that such stronger Bell inequalities can be constructed.
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A Lemma 1

Here we prove lemma 1.

Lemma 1: Let xki be non-negative real numbers and m,n ∈ N, then

m∑
k=1

(
n∏
i=1

xki

)1/n

≤
n∏
i=1

(
x1
i + x2

i + ...+ xmi
)1/n

(156)

Proof:

Make use of the elementary fact that the arithmetic mean is always larger
than or equal to the geometric mean of a sequence. Exploit this fact to make
m inequalities on the form

n∏
i=1

(
xli

x1
i + x2

i + ...+ xmi

)1/n

≤ 1

n

n∑
i=1

xli
x1
i + x2

i + ...+ xmi
(157)

for l = 1, 2, ...,m. Sum the left and right hand sides over the m inequalities

m∑
l=1

n∏
i=1

(
xli

x1
i + x2

i + ...+ xmi

)1/n

≤ 1

n

n∑
i=1

m∑
l=1

xli
x1
i + x2

i + ...+ xmi

=
1

n

n∑
i=1

∑m
k=1 x

l
i

x1
i + x2

i + ...+ xmi
=
n

n
= 1 (158)

Multiplication of both sides of eq.(158) with
∏n

i=1 (x1
i + x2

i + ...+ xmi )
1/n

yields (156).
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[13] S. Gröblacher, T. Paterek et. al., ”An experimental test of non-local
realism”, Nature 446, 871-875 (2007).

[14] A. Aspect, “Introduction: John Bell and the second quantum revolu-
tion,” Introduction Speakable and unspeakable in quantum mechanics.
2nd edition, Cambridge University Press.

[15] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, ”Quantum cryptogra-
phy,” Rev. Mod. Phys. 74, 145 (2002).

[16] C. Bennett and G. Brassard, in Proceedings of the IEEE International
Conference on Computers, Systems and Signal Processing, Bangalore,
India (IEEE New York) pp. 175-179 (1984).

[17] A. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev.
Lett 67, 661-663 (1991).

[18] C. H. Bennet, G. Brassard and D. Mermin, ”Quantum cryptography
without Bell’s theorem,” Phys. Rev. Lett., 68, 557-559 (1992).

[19] D. Mayers and A. Yao, in Proceedings of the 39th IEEE Symposium on
Foundations of Computer Science (IEEE Computer Society, Los Alamos,
CA, USA, 1998), 503.

[20] M. A. Nielsen, I. L. Chuang, ”Quantum computation and quantum in-
formation,” Cambridge University Press (2000).

[21] J.-D. Bancal, N. Gisin, Y.-C. Liang, and S. Pironio, “Device-
inedpendent witness of genuine multipartite entanglement, ” Phys. Rev.
Lett. 106, 250404, (2011)

[22] J. Barreiro, J. D. Bancal, et. al., “Device-independent demonstration of
genuine multipartite entanglement,” Nature Physics 9, 559-562 (2013).

61



[23] S. Perseguers, G. J. Lapeyre Jr, D. Cavalcanti, M. Lewenstein and A.
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