
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Solving polynomial equations over Z2 using DPLL methods

av

Assar Andersson

2014 - No 15

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Solving polynomial equations over Z2 using DPLL methods

Assar Andersson

Självständigt arbete i matematik 15 högskolepoäng, Grundnivå

Handledare: Samuel Lundqvist

2014

Solving polynomial equations over Z2 using DPLL

methods

Assar Andersson

June 15, 2014

Abstract

We start by proving some general properties of polynomials over
Z2, and their connection to the boolean formulas. Next, we present
computer representations, and algorithms to compute addition and
multiplication, of polynomials over Z2. Finally, we implement and test
some variations of the DPLL procedure to solve certain polynomial
equations over Z2. We also say something about why certain DPLL
variations preforms better than others.

1

Contents

1 Introduction 3

2 Theory 3
2.1 Preliminaries . 3
2.2 Boolean Polynomials . 4
2.3 Monomial orders . 7
2.4 Boolean formulas as boolean polynomials 8

3 Implementations 12
3.1 Addition and Multiplication of Boolean Polynomials 12
3.2 DPLL . 14

3.2.1 How to perform DPLL for boolean polynomials effi-
ciently . 16

3.2.2 Reductions . 18
3.2.3 Choose literal . 19

3.3 Run times . 20
3.3.1 Multiplication . 20
3.3.2 DPLL . 22

3.4 Further Development and Conclusions 24
3.4.1 Multiplication . 24
3.4.2 DPLL . 26

2

1 Introduction

The aim of this paper is to tighten the connection between the SAT-problem,
which is the problem of determining whenever a boolean formula is satisfiable
or not, and polynomial equations over Z2.

Various authors have studied algebraic approaches related to polynomi-
als over Z2 to decide if a boolean formula is satisfiable or not [6], [5], [3].
However, it appears that there still is a huge gap in performance between
these methods and the top of the line methods. It is still an open question
whether this is because we have not studied these methods enough, or that
there is simply no hope for these methods.

In this paper, we will adapt the Davis-Putnam-Logemann-Loveland (DPLL)
procedure, which is the base of most of the top of the line SAT-solvers [4],
to find solutions to polynomial equations over Z2. By doing so, we hope to
get a better picture of what we are missing in our algebraic approaches to
the SAT-problem.

We will begin by discussing some properties of polynomials over Z2, and
present some computer implementations for handling boolean polynomials.

2 Theory

In this section we will discuss some properties of polynomials over Z2.

2.1 Preliminaries

Definition 2.1. Let k be a field, and let f1, . . . , fm be polynomials in k[x1, . . . , xn].
Then

V (〈f1, . . . , fm〉) = {(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0 for all f ∈ 〈f1, . . . , fm〉}

is called the variety of the ideal generated by f1, . . . , fm.

Note that if

fi(a1, . . . , an) = 0 for all i ∈ {1, . . . ,m}, (1)

then (a1, . . . , an) ∈ V (〈f1, . . . , fm〉).
Since if (1) holds, then, for all f ∈ 〈f1, . . . , fm〉,

f(a1, . . . , an) = (g1f1 + · · ·+ gmfm)(a1, . . . , an) = g1 · 0 + · · ·+ gn · 0 = 0.

Conversely if (1) does not hold for some i ∈ {1, . . . ,m}, then (a1, . . . , an) /∈
V (〈f1, . . . , fm〉), since fi is a function in 〈f1, . . . , fm〉 such that fi(a1, . . . , an) 6=
0.

3

To simplify the notation we will often write write V (f1, . . . , fm) instead
of V (〈f1, . . . , fm〉). We may also view V as a function

V : Z2[x1, . . . xn]→ P(Zn
2),

where P(Zn
2) is the set of all subsets of Zn

2 .

Definition 2.2. Let xa11 · · ·xann be a monomial in a polynomial ring k[x1, . . . , xn].
The element (a1, . . . , an) ∈ Zn

+ is called the exponential vector of xa11 · · ·xann ,
and log(xa11 · · ·xann) := (a1, . . . , an).

Example 2.3. Let x1x
2
3 ∈ Z2[x1, x2, x3]. Then

log(x1x
2
3) = (1, 0, 2).

2.2 Boolean Polynomials

Definition 2.4. An element of the form xa11 · · ·xann ∈ Z2[x1, . . . xn], where
ai ∈ {0, 1}, is called a boolean monomial.

Definition 2.5. An element of the form f = m1 + · · ·+ms ∈ Z2[x1, . . . xn],
where mi are boolean monomials, for all i ∈ {1, . . . , s}, is called a boolean
polynomial.

Definition 2.6. For any element x
a1,1
1 · · ·xan,1

n +· · ·+xa1,s1 · · ·xan,s
n ∈ Z2[x1, . . . , xn].

Put

bool(x
a1,1
1 · · ·xan,1

n + · · ·+x
a1,s
1 · · ·xan,s

n) := x
b1,1
1 · · ·xbn,1

n + · · ·+x
b1,s
1 · · ·xbn,s

n ,

where bi,j = 0 if ai,j = 0 and bi,j = 1 otherwise.

Example 2.7. Let x2
1x2 + x3

3 ∈ Z2[x1, x2, x3]. Then

bool(x2
1x2 + x3

3) = x1x2 + x3.

Theorem 2.8. Let f ∈ Z2[x1, . . . xn]. Then V (bool(f)) = V (f).

Proof. Let f = m1 + · · · + ms be a polynomial in Z2[x1, . . . , xn]. Suppose
that

V (bool(f)) 6= V (f).

Then there must be a point (p1, . . . , pn) ∈ Zn
2 such that

bool(f)(p1, . . . , pn) 6= f(p1, . . . , pn).

This implies that there must exist at least one monomial mj = xa11 · · ·xann
in f such that

bool(mj)(p1, . . . , pn) 6= mj(p1, . . . , pn).

4

This implies that there exists at least one i ∈ {1, . . . n}, and ai ≥ 0 such
that

xaii (p1, . . . , pn) 6= xi(p1, . . . , pn).

This is that 1ai 6= 1 or 0ai 6= 0 for some ai ≥ 1, which is impossible. Thus
there cannot exist a polynomial f ∈ Z2[x1, . . . , xn] such that V (bool(f)) 6=
V (f)

Theorem 2.9. 1. There are 22n distinct subsets of Zn
2 .

2. There are 22n distinct boolean polynomials in Z2[x1, . . . xn]

3. V (f + g) = (V (f) ∩ V (g)) ∪ (V (g)c ∩ V (f)c)

4. V (fg) = V (f) ∪ V (g)

This is proven in [1], Theorem 8, Theorem 6, Theorem 10 and Theorem
9 respectively.

Theorem 2.10. The function V : Z2[x1, . . . xn]→ P(Zn
2) is onto.

Proof. Let X ⊆ Zn
2 consist of one point A = (a1, . . . , an) ∈ Zn

2 . Then the
polynomial fA = t1t2 . . . tn + 1 ∈ Z2[x1, . . . xn] where ti = (xi + ai + 1) has a
root in (a1, . . . , an) but no other point. So V (fA) = {A} . If X consists of
the points A1, . . . , Am then X = {A1}∪· · ·∪{Am} = V (fA1)∪· · ·∪V (fAm) =
V (fA1fA2 . . . fAm).

Theorem 2.11. The function V induces a one-to-one correspondence
between the boolean polynomials f of n variables and subsets of Zn

2 .

Proof. Theorem 2.8 and Theorem 2.10 implies that V is onto. Now, since
there are just as many boolean polynomials in n variables as there are subsets
of Zn

2 , V must also be one-to-one.

Consider the set P(Zn
2) with Z2[x1, . . . , xn] and the subsets of Zn

2 , with
addition

A+B := (A ∩B) ∪ (Ac ∩Bc),

and multiplication
A ·B := A ∪B.

It follows from Theorem 2.10 that every A ∈ P(Zn
2) can be written as A =

V (f), for some f ∈ Z2[x1, . . . , xn]. Next, by Theorem 2.9 and the fact that
Z2[x1, . . . , xn] is a ring, we have that P(Zn

2) is a ring with the multiplication
and addition defined above. We also have that V : Z2[x1, . . . , xn]→ P(Zn

2)
is a ring homomorphism.

Further, Theorem 2.8 and Theorem 2.11 implies that the boolean poly-
nomials, with addition as in Z2[x1, . . . , xn] and bool(fg) as multiplication,
is a ring isomorphic to P(Zn

2), and the ring isomorphism is given by V .

5

Definition 2.12. Let f and g be members of some polynomial ring k[x1, . . . , xn].
Then we say that g|f , if there exists a polynomial h ∈ k[x1, . . . , xn], such
that f = gh.

Lemma 2.13. Let f and g be polynomials in Z2[x1, . . . , xn], such that g|f .
Then V (g) ⊆ V (f).

Proof. Suppose that g|f , so that f = gh, for some h ∈ Z2[x1, . . . , xn]. Then
V (f) = V (gh) = V (h) ∪ V (g), which implies V (g) ⊆ V (f)

Lemma 2.14. Let m = xi1 · · ·xis be a boolean monomial in Z2[x1, . . . , xn].
Then m(a1, . . . , an) = 1 if and only if m|xa11 · · ·xann .

Proof. Let f = xa11 · · ·xann such that m|f . Then, by Lemma 2.13,

V (m) ⊆ V (f). (2)

We also have that
f(a1, . . . , an) =

∏
aj=1

aj = 1. (3)

Now (2) and (3) implies that

m(a1, . . . , an) = 1. (4)

Conversely choose (a1, . . . , an), such that m(a1, . . . , an) = 1. Then aik = 1
for all k ∈ {1, . . . , s}. This implies that

m|xa11 · · ·x
an
n . (5)

Definition 2.15. The function Si from a set of points X = {p1, . . . , ps} to
{0, 1} such that Si(pi) = 1 and Si(pj) = 0 if i 6= j. is called the separator
of pi with respect to X

Proposition 2.16. The separator for a point A = (a1, . . . , an) ∈ Zn
2 , with

respect to Zn
2 , is a polynomial function, where the polynomial equals to the

sum of all boolean monomials m ∈ 〈xa11 · · ·xann 〉 ⊆ Z2[x1, . . . xn].

Proof. Let A = (a1, · · · an) ∈ Zn
2 , and put f = (x1 +a1 + 1) · · · (xn +an + 1).

It is easy to verify that f(x1, . . . , xn) = 1 if and only if (x1, . . . , xn) =
(a1, . . . , an). Hence f = SA. We see that

f =
∑

(p1,...,pn)∈Zn
2

xp11 · · ·x
pn
n (a1 + 1)1−p1 · · · (an + 1)1−pn ,

so xp11 · · ·x
pn
n is a term of f if and only if (a1 + 1)1−p1 · · · (an + 1)1−pn = 1.

This is if and only if ai = 0 whenever pi = 0, which is if and only if
xp11 · · ·x

pn
n ∈ 〈xa11 · · ·xann 〉.

6

This is also proved in [2].

Example 2.17. The separator SP for the point P = (1, 0, 1) in Z3
2 is the

sum of all boolean monomials in the ideal 〈x1x3〉. Those are x1x3 and
x1x2x3. So SP = x1x3 + x1x2x3.

Definition 2.18. Let A and B be two sets. Then A \B = {x ∈ A : x /∈ B}.

Proposition 2.19. If f, g ∈ Z2[x1, . . . , xn], then V (f)\V (g) = V (fg+g+1).

Proof. Put P ∈ Zn
2 , so that P /∈ V (f). Then

(fg+g+1)(P) = f(P)g(P)+g(P)+1 = 1·g(P)+g(P)+1 = 1⇒ P /∈ V (fg+g+1).
(6)

Next set P , so that P ∈ V (g), then

(fg+g+1)(P) = f(P)g(P)+g(P)+1 = f(P)·0+0+1 = 1⇒ P /∈ V (fg+g+1).
(7)

Finally set P , so that P ∈ V (f) and P /∈ V (g). Then

(fg + g + 1)(P) = 0 · 1 + 1 + 1 = 0⇒ P ∈ V (fg + g + 1). (8)

Now (6), (7) and (8) implies that V (f) \ V (g) = V (fg + g + 1)

Theorem 2.20. Let f ∈ Z2[x1, . . . xn] be a boolean polynomial and let P =
(p1, . . . , pn) ∈ Zn

2 . Then
P ∈ V (f)

if and only if f contains an even number of monomials xi1 · · ·xis, such that

xi1 · · ·xis |x
p1
1 · · ·x

pn
n

.

Proof. It follows from Lemma 2.14, that if f contains m monomials, such
that xi1 · · ·xis |x

p1
1 · · ·x

pn
n . Then f(p1, . . . , pn) =

∑m
i=1 1, which is 0 if m is

even and 1 if m is odd.

2.3 Monomial orders

In this section we introduce the concept of a monomial order.

Definition 2.21. A relation ≺ between the monomials of a polynomials
ring k[x1, . . . , xn] is said to be a monomial ordermonomial ordermonomial order if for any monomials
m1,m2,m3 ∈ k[x1, . . . , xn],

1. either m1 ≺ m2, m2 ≺ m1 or m1 = m2.

2. if m1 ≺ m2 and m2 ≺ m3, then m1 ≺ m3.

7

3. if m1 6= 1, then 1 ≺ m1.

4. if m1 ≺ m2, then m3m1 ≺ m3m2.

Example 2.22. We have that≺lex, by xa11 · · ·xann ≺lex x
b1
1 · · ·xbnn iff minai<bi i <

minbi<ai i, is a monomial order, since

1. if xa11 · · ·xann 6= xb11 · · ·xbnn , then minai<bi i < minbi<ai i or minbi<ai i <
minai<bi i, and if xa11 · · ·xann = xb11 · · ·xbnn , then neither minai<bi i <
minbi<ai i or minbi<ai i < minai<bi i.

2. if minai<bi i < minbi<ai i and minbi<ci i < minci<bi i, then minai<ci i <
minci<ai i.

3. if xa11 · · ·xann 6= 1, then min0<ai i < minai<0 i.

4. if minai<bi i < minbi<ai i, then minai+ci<bi+ci i < minbi+ci<ai+ci i.

Proposition 2.23. There exist no monomial order ≺ such that bool(v) ≺
bool(w) ⇒ bool(uv) ≺ bool(uw), where u, v, w are boolean monomials in
Z2[x1, . . . , xn].

Proof. Let a, b be boolean monomials such that bool(a) ≺ bool(b), and
suppose that bool(a) ≺ bool(b), and put c = ab. Then, if

bool(v) ≺ bool(w)⇒ bool(uv) ≺ bool(uw).

Then
bool((ab)a) ≺ bool((ab)b)⇒ bool(ab) ≺ bool(ab),

which we do not allow.

2.4 Boolean formulas as boolean polynomials

Definition 2.24. A boolean formulaboolean formulaboolean formula of n variables is a function φ : {true, false}n →
{true, false} which consists of either

1. a single variable, φ = ψi, then φ(ψ1, . . . , ψn) = true⇔ ψi = true.

2. a conjunction of two boolean formulas, φ = ϕ1∧ϕ2, then φ(ψ1, . . . , ψn) =
true⇔ ϕ1(ψ1, . . . , ψn) = true and ϕ2(ψ1, . . . , ψn) = true.

3. a disjunction of two boolean formulas, φ = ϕ1∨ϕ2, then φ(ψ1, . . . , ψn) =
true⇔ ϕ1(ψ1, . . . , ψn) = true or ϕ2(ψ1, . . . , ψn) = true.

4. a negation of a boolean formula,φ = ¬ϕ, then φ(ψ1, . . . , ψn) = true⇔
ϕ(ψ1, . . . , ψn) = false.

Definition 2.25. A boolean φ(ψ1, . . . , ψn) is called satisfiablesatisfiablesatisfiable if there exists
(ψ1, . . . , ψn) ∈ {true, false}n such that φ(ψ1, . . . , ψn) = true.

8

Let φ(ψ1, . . . , ψn) be a boolean formula, and let a : {true, false} →
{0, 1}, be a one-to-one correspondence. Then, by Theorem 2.11, there exists
a unique boolean polynomial f ∈ Z2[x1, . . . , xn] such that

φ(ψ1, . . . , ψn)⇔ f(a(ψ1), . . . , a(ψn)) = a(φ(ψ1, . . . , ψn)).

From this point on, we will only care about what our polynomials eval-
uate to, thus we will write f = g if bool(f) = bool(g), for any polynomials
f, g ∈ Z2[x1, . . . , xn].

Definition 2.26. For each boolean formula φ(ψ1, . . . , ψn), let T0(φ)(x1, . . . , xn)
be the boolean polynomial such that

φ(ψ1, . . . , ψn) = true⇔ T0(φ)(x1, . . . , xn) = 0,

where ψi = true⇔ xi = 0.
Conversely, let T1(φ)(x1, . . . , xn) be the boolean polynomial such that

φ(ψ1, . . . , ψn) = true⇔ T1(φ)(x1, . . . , xn) = 1,

where ψi = true⇔ xi = 1.

Theorem 2.27. Let φ be a boolean formula. Then

1. if φ consists of a single variable, ψi, then T0(φ) = xi.

2. if φ consists of a negation, φ = ¬ϕ, then T0(φ) = 1 + T0(ϕ).

3. if φ consists of a conjunction φ = ϕ1 ∧ ϕ2, then T0(φ) = T0(ϕ1) +
T0(ϕ2) + T0(ϕ1)T0(ϕ2).

4. if φ consists of a disjunction φ = ϕ1 ∨ϕ2, then T0(φ) = T0(ϕ1)T0(ϕ2).

A proof of this can be found in [6] Theorem 3.1.

Lemma 2.28. Let φ be a boolean formula. Then

T1(φ)(x1, . . . , xn) = 1 + T0(φ)(x1 + 1, . . . , xn + 1).

Proof. It is clear that if

T1(φ)(x1, . . . , xn) = 1,

then
T0(φ)(x1 + 1, . . . , xn + 1) = 0.

Else, if
T1(φ)(x1, . . . , xn) = 0,

then
T0(φ)(x1 + 1, . . . , xn + 1) = 1.

Thus
T1(φ)(x1, . . . , xn) = 1 + T0(φ)(x1 + 1, . . . , xn + 1).

9

Theorem 2.29. Let φ be a boolean formula. Then

1. if φ consists of a single variable, ψi, then T1(φ) = xi.

2. if φ consists of a negation, φ = ¬ϕ, then T1(φ) = 1 + T1(ϕ).

3. if φ consists of a conjunction, φ = ϕ1∨ϕ2, then T1(φ) = T1(ϕ1)T1(ϕ2).

4. if φ consists of a disjunction, φ = ϕ1 ∧ ϕ2, then T1(φ) = T1(ϕ1) +
T1(ϕ2) + T1(ϕ1)T1(ϕ2).

Proof. By Lemma 2.28 and Theorem 2.27. If φ consists of a single variable,
ψi, then T1(φ)(x1, . . . , xn) = 1 +T0(φ)(x1 + 1, . . . , xn + 1) = 1 +xi + 1 = xi.

If φ consists of a negation, φ = ¬ϕ.

T1(φ)(x1, . . . , xn) = 1 + T0(φ)(x1 + 1, . . . , xn + 1) =

T0(ϕ)(x1 + 1, . . . , xn + 1) = 1 + T1(ϕ)(x1, . . . , xn).

If φ consists of a conjunction, φ = ϕ1 ∧ ϕ2, then

1 + T0(φ)(x1 + 1, . . . , xn + 1) =

(1 + T0(ϕ1) + T0(ϕ2) + T0(ϕ1)T0(ϕ2))(x1 + 1, . . . xn + 1) =

1 + (1 + T1(ϕ1)) + (1 + T1(ϕ2)) + (1 + T1(ϕ1))(1 + T1(ϕ2)) =

T1(ϕ1)T1(ϕ2).

If φ consists of a disjunction, φ = ϕ1 ∨ ϕ2, then

1 + T0(φ)(x1 + 1, . . . xn + 1) = 1 + (T0(ϕ1)T0(ϕ2))(x1 + 1, . . . xn + 1) =

1 + (T0(ϕ1)(x1 + 1, . . . xn + 1)T0(ϕ2)(x1 + 1, . . . xn + 1)) =

1 + (1 + T1(ϕ1)(x1, . . . xn))(1 + T1(ϕ2)(x1, . . . xn)) =

T1(ϕ1) + T1(ϕ2) + T1(ϕ1)T1(ϕ2).

Example 2.30. Let φ(ψ1, ψ2, ψ3) = (ψ1 ∨ ψ2) ∧ (¬ψ1 ∨ ψ3). Then

T1(φ) = T1((ψ1 ∨ ψ2) ∧ (¬ψ1 ∨ ψ3)) =

= T1(ψ1 ∨ ψ2)T1(¬ψ1 ∨ ψ3) =

= (T1(ψ1) + T1(ψ2) + T1(ψ1)T1(ψ2))(T1(¬ψ1) + T1(ψ3) + T1(¬ψ1)T1(ψ3)) =

= (x1 + x2 + x1x2)(1 + x1 + x3 + (1 + x1)x3) =

= (x1 + x2 + x1x2)(1 + x1 + x1x3) =

= x1 + x1 + x1x3 + x2 + x1x2 + x1x2x3 + x1x2 + x1x2 + x1x2x3 =

= x2 + x1x2 + x1x3,

10

and

T0(φ) = T0((ψ1 ∨ ψ2) ∧ (¬ψ1 ∨ ψ3)) =

= T0(ψ1 ∨ ψ2) + T0(¬ψ1 ∨ ψ3) + T0(ψ1 ∨ ψ2)T0(¬ψ1 ∨ ψ3) =

= T0(ψ1)T0(ψ2) + T0(¬ψ1)T0(ψ3) + T0(ψ1)T0(ψ2)T0(¬ψ1)T0(ψ3) =

= x1x2 + (1 + x1)x3 + x1x2(1 + x1)x3 =

= x1x2 + x3 + x1x3 + x1x2x3 + x2
1x2x3 =

= x3 + x1x2 + x1x3.

Definition 2.31. A boolean formula which consists of conjunction of clauses

φ(ψ1, . . . , ψn) = C1 ∧ C2 ∧ . . . ∧ Cs,

where each clause Ct consists of disjunctions of at most k literals

Ct = l1 ∨ l2 ∨ . . . ∨ lk,

where each literal li is either a single variable li = ψj , or a negation of a
variable li = ¬ψj, is said to be a k-CNF formulak-CNF formulak-CNF formula. The problem of finding a
solution to a k-CNF formula is called k-CNF-SAT.

It is well known that k-CNF-SAT is NP-complete for k ≥ 3 and P for
k < 3.

Theorem 2.32. Given f = f1 · · · fs ∈ Z2[x1, . . . , xn], where, for each
i ∈ {1, . . . , s}, fi is a boolean polynomial that contains at most k distinct
variables, for some k ≥ 3. Then, the problem of finding a point P ∈ Zn

2 such
that P /∈ V (f) is NP-complete.

Proof. Suppose that we have a point P /∈ V (f1 · · · fs). Then this can be
verified by checking P /∈ V (fi) for each i ∈ {1, . . . , s}. Since fi only contains
k distinct variables, fi contains at most 2k monomials. Since k does not
depend on the size of the input, there must be a constant upper bound B
on the time it takes to check if P /∈ V (fi). Thus, we have that the time
it takes to verify that a given solution is correct can be bounded by s · B,
where B is a constant and s is the number of polynomials in our product.
This implies that our problem is in NP.

Next, let C1 ∧ C2 ∧ . . . ∧ Cs be a 3-CNF formula of n variables and s
clauses. Then

T1(C1 ∧ C2 ∧ . . . ∧ Cs) = T1(C1)T1(C2) · · ·T1(Cs)

and since Ci contains at most 3 variables, so does the polynomial T1(Ci).
This implies that T1(C1)T1(C2) · · ·T1(Cs) satisfies the restrictions of our
problem. To complete the transformation, we have to set fi = T1(Ci) for
each i ∈ {1, . . . , s}. This can be done in polynomial time, since the number
of monomials in T1(Ci) does not depend on the number of variables in C1 ∧
C2 ∧ . . . ∧ Cs. This implies that our problem is NP-complete.

11

3 Implementations

In this section we will discuss implementations of boolean polynomials.

3.1 Addition and Multiplication of Boolean Polynomials

Let each boolean monomial xb11 · · ·xbnn be represented by its exponential
vector b1, . . . , bn, and let a boolean polynomial f = m1 + · · · + ms be a
list of boolean monomials. To be able to do elementary operations, such
as checking if f = g with reasonable effort, we should keep the polynomials
sorted, so that i < j ⇒ mi ≺ mj , for some monomial order ≺.

Algorithm 1 will act as addition of two sorted polynomials.

Algorithm 1 Addition of two boolean polynomials

Input: Two sorted polynomials f = mf,1 + . . .+mf,s and g = mg,1 + . . .+
mg,t.

Output: A sorted polynomial h = f + g
function Add(f, g)

sum← 0
i← 1
j ← 1
while i 6= s ∧ j 6= t do

if mf,i ≺ mg,j then
sum← sum+mf,i

i+ +
end if
if mg,j ≺ mf,i then

sum← sum+mg,j

j + +
end if
if mf,i = mg,j then

i+ +
j + +

end if
end while
while i 6= s do

sum← sum+mf,i

i+ +
end while
while j 6= t do

sum← sum+mg,j

j + +
end while

end function

12

We will divide our multiplication algorithm into three different functions.
One for multiplication of two boolean monomials, one for multiplication
between a boolean monomial and a boolean polynomial, and finally one for
multiplication of two boolean polynomials.

Algorithm 2 will act as multiplication of two boolean monomials.

Algorithm 2 multiplication of two boolean monomials

Input: Two boolean monomials m1 = xa11 · · ·xann and m2 = xb11 · · ·xbnn .
Output: A boolean monomial m1m2

function MUL-MON-MON(m1,m2)

return x
max(a1,b1)
1 · · ·xmax(an,bn)

n

end function

Before we create the algorithm for multiplication between a boolean
monomial u and a boolean polynomial f = m1 + . . . ,+ms, we should note
that Proposition 2.23 implies that just using Algorithm 2, for every mono-
mial mi, i ∈ {1, . . . , s} is not guaranteed to return a sorted polynomial.

We will consider two algorithms for multiplying a boolean monomial
with a boolean polynomial. The first is Algorithm 3, where we use the fact
that

u(m1 + . . .+ms) = u(m1 + . . .+mfloor(s/2)) + u(mfloor(s/2)+1 + . . .+ms).

If both u(m1 + . . . + mfloor(s/2)) and u(mfloor(s/2)+1 + . . . + ms) are sorted,
then we can use Algorithm 1 to tie them together.

Algorithm 3 multiplication of a boolean monomial and a boolean polyno-
mial.
Input: A boolean monomial m and a boolean polynomial f = m1+. . .+ms

Output: A sorted boolean polynomial mf
function mul-mon-pol(m, f)

if f = m1 then
return MUL-MON-MON(m,m1)

else
f1 ← m1 + . . .+mfloor(s/2)

f2 ← mfloor(s/2)+1) + . . .+ms

return ADD(MUL-MON-POL(m, f1), MUL-MON-POL(m, f2))
end if

end function

Note that Algorithm 3 does not require f to be sorted. However it will
always return a sorted polynomial.

Our other way to perform multiplication of boolean polynomial f with
a boolean monomial xi1 · · ·xis is Algorithm 4. To see that this returns a
sorted polynomial, consider the following lemma.

13

Lemma 3.1. Let m1,m2 be boolean monomials, m1 ≺ m2. If xi|m1 and
xi|m2, or if if xi - m1 and xi - m2, then

bool(xim1) ≺ bool(xim2).

Proof. If xi|m1 and xi|m2, then bool(xim1) = m1 ≺ m2 = bool(xim2). If
xi - m1 and xi - m2, then bool(xim1) = x1m1 ≺ xim2 = bool(xim2)

Lemma 3.1 implies that f1 and f2 in Algorithm 4 will be sorted polyno-
mials.

Algorithm 4 multiplication of a boolean monomial and a boolean polyno-
mial.
Input: A boolean monomial m and a boolean sorted polynomial f = m1 +
. . .+ms

Output: A sorted boolean polynomial mf
function MUL-MON-POL(m, f)

for all xi do
if xi|m then

for all mj do
if xi|mj then

f1 ← f1 +mj

else
f2 ← f2 + xi ·mj

end if
f ← ADD(f1, f2);
f1 ← 0;
f2 ← 0;

end for
end if

end for
end function

A comparison between Algorithm 3 and Algorithm 4 is made in Section
3.3.1.

Finally, for our multiplication of two boolean polynomials, we will use
the same trick as in Algorithm 3. This may be implemented as in Algorithm
5.

3.2 DPLL

The Davis-Putnam-Logemann-Loveland (DPLL) procedure is widely used
in SAT-solvers [4]. In this section we will adapt the DPLL procedure to de-
termine if a product of boolean polynomials f1 · · · fs evaluates to zero every-
where without actually evaluating the product. We will write f1 · · · fs = 0,
if f1 · · · fs evaluates to zero everywhere.

14

Algorithm 5 multiplication between two boolean polynomials.

Input: Two sorted boolean polynomials f = mf,1 + . . .mf,s and g = mg,1 +
. . .+mg,t

Output: A sorted boolean polynomial h = fg
function MUL-POL-POL(f, g)

if f = mf,1 then
return MUL-MON-POL(mf,1, g)

else
f1 ← mf,1 + . . .mf,(floor(s/2))

f2 ← mf,(floor(s/2)+1) + . . .mf,s

return ADD(MUL-POL-POL(f1, g), MUL-POL-POL(f2, g))
end if

end function

Definition 3.2. Let f ∈ Z2[x1, . . . , xn] be a boolean polynomial. Then

d0
i (f) = f(x1, . . . , xi−1, 0, xi+1, . . . , xn),

and
d1
i (f) = f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

Example 3.3. Let f = x1 + x2 + x1x3, then

d0
3 = x1 + x2 + x10 = x1 + x2

d1
3 = x1 + x2 + x11 = x2

Proposition 3.4. Let f = f1f2 · · · fs, where f1, f2, . . . , fs are arbitrary
boolean polynomials in Z2[x1, . . . , xn]. Then

1. If fi contains the monomial ”1” for each i ∈ {1, . . . , s}, then f 6= 0.

2. If fi = 0 for some i ∈ {1, . . . , s}, then f = 0.

3. f 6= 0 if and only if d0
i (f) 6= 0 or d1

i (f) 6= 0, for any i ∈ {1, . . . , n}.

Proof. Suppose that fi contains the monomial ”1” for each i ∈ {1, . . . , s}.
Then

f1f2 · · · fs(0, . . . , 0) = 1 · 1 · · · 1 = 1,

which implies (1).
(2) is obvious.
Next suppose that f 6= 0. Then, for any i ∈ {1, . . . , n}, there exists a

point (p1, . . . , pi−1, pi, pi+1, . . . , pn) ∈ Zn
2 , such that

f(p1, . . . , pi−1, pi, pi+1, . . . , pn) = 1.

15

Since pi is either equal to 0 or 1, either f(p1, . . . , pi−1, 1, pi+1, . . . , pn) = 1 or
f(p1, . . . , pi−1, 0, pi+1, . . . , pn) = 1. If f = 0 then it is obvious that

d0
i (f) = 0

and
d1
i (f) = 0

for any i ∈ {1, . . . , n}. Thus (3).

We see that it is possible to determine if a product of boolean polynomials
f1 · · · fs evaluates to zero everywhere by using Proposition 3.4.

Example 3.5. Let f1f2 = (x1 + x1x2)(x2). Then, by Proposition 3.4

f1f2 6= 0⇔
(x1 + x1x2)(x2) 6= 0⇔

d1
1((x1 + x1x2)(x2)) 6= 0 or d0

1((x1 + x1x2)(x2)) 6= 0⇔
(1 + 1 · x2)(x2) 6= 0 or (0)(x2) 6= 0⇔

(d1
2(1 + 1 · x2)(x2) 6= 0 or d0

2(1 + 1 · x2)(x2)) or (0)(x2) 6= 0⇔
((1 + 1)(1) 6= 0 or d0

2(x2)(0) 6= 0) or (0)(x2) 6= 0⇔
(0)(x2) 6= 0⇔

0 6= 0,

which implies that f1f2 = 0.

If we make an algorithm out of this, then we get the DPLL procedure.
The ”X” in Algorithm 6 refers to a few optional lines which may re-

duce the search tree, and ”choose-literal” is a function which decides the
branching variable.

This will be discussed in Section 3.2.2 and Section 3.2.3, respectively

3.2.1 How to perform DPLL for boolean polynomials efficiently

In this section we will discuss implementation of boolean polynomials so
that the Algorithm 6 runs smoothly.

We will limit ourselves to the case f = f1 · · · fs ∈ Z2[x1, . . . , xn] where

fi ∈ Z2[xi1 , . . . , xik] ⊆ Z2[x1, . . . , xn]

for each i ∈ {1, . . . , s}, and k is so low so that 2k bits is a manageable
amount of memory. By Theorem 2.32, Algorithm 6 solves a NP-complete
problem if k ≥ 3.

Now, instead of letting each boolean monomial be represented by a
bitvector, let fi ∈ Z2[xi1 , . . . , xik] be represented by the k integers (i1, . . . , ik),
and the coefficient vector fi[] = (fi[1], fi[2], . . . , fi[2

k]), so that

16

Algorithm 6 DPLL for boolean polynomials.

Input: A list of polynomials f1, . . . , fs
Output: true if f1 · · · fs 6= 0, false if f1 · · · fs = 0

function DPLL(f1, . . . , fs)
f1, . . . , fs ← X(f1, . . . , fs)
for all fi do

if fi does not contain 1 then
not0← true

end if
if fi = 0 then

return false
end if

end for
if not0 then

return true
else

i=choose-literal(f1, . . . , fs)
return DPLL(d1

i (f1, . . . , fs)) or DPLL(d0
i (f1, . . . , fs))

end if
end function

fi =
∑

(a1,...,ak)∈{0,1}k
fi[a120 + . . .+ ak2k−1]xa1i1 · · ·x

ak
ik
.

Example 3.6. Let fi(x3, x5, x8) = 1+x3+x8+x3x5x8, then fi is represented
by

(i1, i2, i3) = (3, 5, 8),

and
(fi[1], . . . , fi[2

3]) = (1, 1, 0, 0, 1, 0, 0, 1).

Since fi[t] is supposed to represent an element in Z2, we only need 1 bit
for each fi[t] , t ∈ {1, . . . , 2k}. Thus, fi[] becomes a bitvector of 2k bits.

Definition 3.7. For two bitvectors f [], g[] of equal size.

1. Let f [] ∧ g[] be ”and” for each bit.

2. Let f [] + g[] be ”xor” for each bit.

3. Let ¬f [] be the complement of f [] (”not” for each bit).

4. For j ∈ {0, . . . , 2k − 1} Let f []/j be f [i]/j = f [i + j], for every i ∈
{0, . . . , 2k − j − 1} .

17

In order to get good performance, we should use a data type for fi[]
which allows us to perform the operations in Definition 3.7 quickly. We will
also define bitvectors h[] such that∑

(a1,...,ak)∈{0,1}k
h[a120 + . . .+ ak2k−1]xa1i1 · · ·x

ak
ik

becomes useful polynomials.

Proposition 3.8. For each t ∈ {1, . . . , k}, let, ht[] be the bitvector such that∑
(a1,...,ak)∈{0,1}k

ht[a120 + . . .+ ak2k−1]xa1i1 · · ·x
ak
ik

is the polynomial that contains all monomials m such that xit |m.
Then for each polynomial fi ∈ Z2[xi1 , . . . , xik],

d0
it(fi)[] = fi[] ∧ ¬ht[], (9)

and
d1
it(fi)[] = (fi[] ∧ ¬ht[]) + (fi[] ∧ (ht[]/(2

t))). (10)

Proof. A monomial m exists in d0
it

(fi) if and only if m exists in fi and
xit - m, thus (9).

Next, a monomial m exists in d1
it

(fi) if m or xitm exists in fi but not
both m and xitm, thus (10).

3.2.2 Reductions

If we somehow know that V (d1
i (f1, . . . , fs)) ⊆ V (d0

i (f1, . . . , fs)), then it is
safe to let f1 · · · fs ← d0

i (f1 · · · fs) before we choose literal.
The original DPLL uses three rules to speed up the search [4].

1. Unit Propagation: If a clause Ct only contains one literal φi, then it
is safe to assign φi such that Ct is satisfied.

For boolean polynomials, we may interpret this as if d0
j (fi) = 0 for

some j ∈ {i1, . . . , ik], then let f1, . . . , fs ← d1
j (f1, . . . , fs). Conversely

if d1
j (fi) = 0, then let f1, . . . , fs ← d0

j (f1, . . . , fs).

2. Monotone Literals: If a literal φi appears in some clause but ¬φi does
not appear in any clause, then φi may be assigned to true. Conversely
if ¬φi appears in some clause but φi does not appear, then φi may be
assigned to false.

For boolean polynomials we could interpret this as if, for some i ∈
[1, . . . , n],

d1
i (ft)|d0

i (ft),

18

for all t, then we have that V (d1
i (f1, . . . , fs)) ⊆ V (d0

i (f1, . . . , fs)), so
we may put

f1, . . . , fs ← d0
i (f1, . . . , fs).

Conversely, if
d0
i (ft)|d1

i (ft)

for all t, we may put

f1, . . . , fs ← d1
i (f1, . . . , fs).

In the special case, where f1, . . . , fs = T1(C1), . . . , T1(Cs), for some
3-CNF formula C1 ∧ . . . ∧ Cs, we have that

d0,1
i (ft)|d1,0

i (ft)

for all t, if and only if φi is a monotone literal of C1∧. . .∧Cs. However,
we will not implement this in this paper.

3. Clause Submission: If a clause Ct is a subset of another clause Cu,
then it is safe to remove Ct.
This is not used in modern implementations of DPLL [4], so we will

not consider this.

In this paper, we will test Algorithm 6 with an empty X and with X as
in Algorithm 7, which is 1 until we get f1 · · · fs = 0 or d1,0

j (fi) 6= 0 for all
i ∈ {1, . . . , s}, j ∈ {i1, . . . , ik].

3.2.3 Choose literal

In this section we will discuss the function ”choose-literal()” in Algorithm
6. This is a huge part of the DPLL algorithm.

Example 3.9. Consider f1f2 = (x1+x1x2)(x2). In Example 3.5, we showed
that f1f2 = 0. However, if we decided to assign a value to x2 first, then

f1f2 6= 0⇔
d0

2(f1f2) 6= 0 or d1
2(f1f2)⇔

(x1)0 6= 0 or (x1 + x1)1 6= 0⇔
0 6= 0

which is much better.

In this paper, we will test two different tactics for choosing literal. The
first is to just choose the first literal we can find in the polynomial min

i;fi 6=1
fi.

This can be implemented as in Algorithm 8.

19

Algorithm 7 X

Input: A list of polynomials f1, . . . , fs
Output: A list of polynomials g1, . . . , gs such that g1 · · · gs 6= 0 ⇔
f1 · · · fs 6= 0
function X(f1, . . . , fs)

while ¬ done do
done← true
for all fi do

for all i ∈ {1, . . . , s} do
if d0

ij
(fi) = 0 then

f1, . . . , fs ← d1
ij

(f1, . . . , fs)
done← false

else if d1
ij

(fi) = 0 then

f1, . . . , fs ← d0
ij

(f1, . . . , fs)
done← false

end if
end for

end for
end while
return f1, . . . , fs

end function

The second one is to choose the literal that appears most times in the
shortest polynomials. By a shorter we mean a polynomial which contains
fewer variables. This can be implemented as in Algorithm 9.

The principle that we use in Algorithm 9 is that we give s(k−l) ”points”
to a literal i if xi appears in a polynomial ft, where t ∈ {1, . . . , s}, which
contains l distinct variables, and then we choose the literal i which gets the
most ”points”.

3.3 Run times

In this section we will test our algorithms. For this we used the 3-CNF
formulas in Table 1, which can be found in [7].

The first column in Table 1 is the name of the problems, the second
column shows the number of variables, the third column shows the number
of clauses, and the fourth column shows whenever the formula is satisfiable
or not.

3.3.1 Multiplication

In this section we test our multiplication algorithms. We have used C++
std :: bitset to represent each monomial, and then a std :: vector of monomi-

20

Algorithm 8 Choose the first literal.

Input: A list of boolean polynomials f1, . . . , fs
Output: An integer i such that xi exists in some polynomial fj , j ∈
{1, . . . s}
function choose-literal(f1, . . . , fs)

for all fi do
for all j ∈ {1, . . . , k} do

if fi contains xij then
return ij

end if
end for

end for
return 0

end function

Algorithm 9 Choose literal.

Input: A list of boolean polynomials f1, . . . , fs
Output: An integer i such that xi exists in some polynomial fj , j ∈
{1, . . . s}
function choose-literal(f1, . . . , fs)

for all i ∈ {1, . . . , s} do
v ← 1
for all j ∈ {1, . . . , k} do

if fi does not contain xij then
v ← v · s

end if
end for
for all j ∈ {1, . . . , k} do

if fi contains xij then
lij ← lij + v
if lij > limax then

imax ← ij
end if

end if
end for

end for
return imax

end function

21

Name Variables Clauses Satisfiable?

uuf50-01.cnf 50 218 No

uuf75-01.cnf 75 325 No

uuf100-01.cnf 100 430 No

uuf125-01.cnf 125 538 No

uuf150-01.cnf 150 645 No

uuf175-01.cnf 175 753 No

uuf200-01.cnf 200 860 No

uuf225-01.cnf 225 960 No

uf100-01.cnf 100 430 Yes

uf200-01.cnf 225 860 Yes

Table 1: cnf-3-sat formulas

als to represent our polynomials. We have two different ways of multiplying
boolean polynomials,

1. mul1, which is Algorithm 5 with Algorithm 3 as MUL-MON-POL.

2. mul2, which is Algorithm 5 with Algorithm 4 as MUL-MON-POL.

We will test our multiplication by attempting to solve a 3-CNF formula
C1 ∧ . . . ∧ Cs, which we convert into a product of polynomials f1 · · · fs =
T1(C1) · · ·T1(Cs). We will then try to compute

gi ←

{
1 i = 0

mul1,2(fi, gi−1) i > 1
(11)

for i ∈ {0, . . . , s} until the computations takes longer than 5 minutes.
We will measure the time it takes to compute gi given that gi−1. We will

also note the number of monomials in gi−1 and fi.
Note that this may not be the best way compute the product T1(C1) · · ·T1(Cs).

Next, since mul2 is expected to perform worse for larger monomials, we will
test

g ← muli(x1x2 · · ·xj , g15).

for each j ∈ {10, 20, . . . 50}. The results of this are displayed in Table 3.

3.3.2 DPLL

In this section we compare our variations of DPLL. We have four variations
of DPLL:

1. DPLL-first, which is Algorithm 6 with Algorithm 8 as choose-literal()
and nothing as X.

22

uuf50-01.cnf monomials mul1 mul2
g2 5·5 0s 0s

g3 17·2 0s 0s

g4 34·5 0s 0s

g5 170·5 0.10s 0.01s

g6 850·5 0.08s 0.01s

g7 3050·5 0.32s 0.09s

g8 15250·3 1.06s 0.19s

g9 45750·3 3.15s 0.42s

g10 86250·7 14.03s 2.12s

g11 132750·3 9.65s 0.94s

g12 398250·7 78.49s 15.81s

g13 1513350·5 237.29s 39.72s

g14 2368350·2 142.24s 8.56s

g15 2842020·2 178.44s 20.97s

g16 5684040·2 344.76s 20.39s

g17 8344800·5 - 300.07s

Table 2: Multiplication

mul1 mul2
x1x2 · · ·x10 73.64s 15.21s

x1x2 · · ·x20 29.48s 15.23s

x1x2 · · ·x30 27.11s 15.13s

x1x2 · · ·x40 26.97s 15.83s

x1x2 · · ·x50 27.77s 15.64s

Table 3: g ← m · g15

23

2. DPLL, which is Algorithm 6 with Algorithm 9 as choose-literal() and
nothing as X.

3. DPLL-first-X, which is which is Algorithm 6 with Algorithm 8 as
choose-literal() and Algorithm 7 as X.

4. DPLL-X, which is Algorithm 6 with Algorithm 9 as choose-literal()
and Algorithm 7 as X.

We will focus on cnf-3-sat, so we have used a C++ std : bitset of 23 bits,
with a vector 3 integers to represent our polynomials in Z2[xi1 , xi2 , xi3].
Then we have a std : vector of polynomials in Z2[xi1 , xi2 , xi3] to represent
the product.

We will measure the performance of each DPLL variation in time, decisions
and propagations, where time is the time it takes for the process to termi-
nate, decisions is the number of times we choose literal, and propagations
is the number of times we put f1, . . . , fs ← d0,1

ik
(f1, . . . , fs) in X. We will

not include the time it takes to convert the cnf-3-sat formula into a product
of boolean polynomials. We will also include the time it takes for Minisat,
which is one of the best sat solvers available [6], to solve the formulas. We
will begin with some unsatisfiable 3-CNF formulas problems to see how far
our DPLL variations can go. For convenience, we cancelled the computa-
tions after 5 minutes. The results are displayed in Table 4,5,6,7,8,9,10. To
get a better comparison with Minisat, we will remove the 5 minutes time
constraint and solve uuf-225-01.cnf with DPLL-X and Minisat. The results
are displayed in Table 11.

Finally, we will do the test our Algorithms on two satisfiable problems.
The results are displayed in Table 12 and Table 13.

3.4 Further Development and Conclusions

3.4.1 Multiplication

Table 3 and Table 2 indicates that Algorithm 4 is a faster than Algorithm
3. To further improve our multiplication we may consider reconstructing
Algorithm 5 to avoid re-computations in Algorithm 4.

However, we cannot hope to improve our multiplication algorithm so
much so that evaluating a product of polynomials, as in (11), competes with
our DPLL algorithms as as a 3-CNF-SAT solver. This is because, if we wish
to solve a 3-CNF formula with more than 100 variables with multiplication
of boolean polynomials, we may need to deal with polynomials with more
than 2100 monomials.

24

uuf50-01-cnf DPLL-first DPLL-first-X DPLL DPLL-X Minisat

Time 116.01s 0.1s 0.05s 0.03s 0.004 s

Decisions 2145437 130 334 29

Propagations 0 2273 0 534

Table 4: DPLL 50 variables unsat
uuf75-01.cnf DPLL-first DPLL-first-X DPLL DPLL-X Minisat

Time - 1.64s 0.19s 0.12s 0.004s

Decisions - 1205 1058 67

Propagations - 25319 0 1551

Table 5: DPLL 75 variables unsat
uuf100-01.cnf DPLL-first DPLL-first-X DPLL DPLL-X Minisat

Time - 13.67s 0.92s 0.49s 0.004s

Decisions - 6797 3724 196

Propagations - 168606 0 5496

Table 6: DPLL 100 variables, unsatisfiable
uuf125-01.cnf DPLL-first DPLL-first-X DPLL DPLL-X Minisat

Time - 69.43s 4.08s 2.16s 0.008s

Decisions - 25201 13891 624

Propagations - 732184 0 21095

Table 7: DPLL 125 variables, unsatisfiable
uuf150-01.cnf DPLL-first DPLL-first-X DPLL DPLL-X Minisat

Time - - 15.99s 7.85s 0.036s

Decisions - - 45096 1775

Propagations - - 0 66998

Table 8: DPLL 150 variables, unsatisfiable
uuf175-01.cnf DPLL-first DPLL-first-X DPLL DPLL-X Minisat

Time - - 52.26s 25.77s 0.076s

Decisions - - 124453 4423

Propagations - - 0 186698

Table 9: DPLL 175 variables, unsatisfiable
uuf200-01.cnf DPLL-first DPLL-first-X DPLL DPLL-X Minisat

Time - - 164.67s 77.19s 0.30s

Decisions - - 346865 11614

Propagations - - 0 524127

Table 10: DPLL 200 variables, unsatisfiable

25

uuf-225-01.cnf DPLL-X Minisat

Time 415.06s 1.85s

Decisions 52122

Propagations 2517818

Table 11: DPLL-X , Minisat

uf100-01.cnf DPLL-first DPLL-first-X DPLL DPLL-X Minisat

Time - 0.52s 1.04s 0.56s 0s

Decisions - 268 4366 224

Propagations - 6578 0 6407

Table 12: DPLL 100 variables, satisfiable
uf200-01.cnf DPLL-first DPLL-first-X DPLL DPLL-X Minisat

Time - - 162.56s 74.53s 0.22 s

Decisions - - 341791 11160

Propagations - - 0 499964

Table 13: DPLL 200 variables, satisfiable

3.4.2 DPLL

From the results in Table 10,11,13 we can see that even though we have a
long way to go until we can compete with Minisat, we were able to solve
quite large 3-CNF formulas, and we should be able to see why DPLL with
Algorithm 9 as choose-literal() performs so much better than DPLL with
Algorithm 8 as choose-literal().

We can first conclude that if d0,1
i (f1, . . . , fs) = 0, for some i ∈ {1, . . . , n},

then it is crazy to not assign the opposite value to xi. Next if we choose the
branching literal i from a polynomial which only contains two variables, then
we will get at least one literal for ”free” in d0

i (f1, . . . , fs) or in d1
i (f1, . . . , fs),

and choosing the literal which appears in most such polynomials will give
us will give us the most variables for ”free” (with some exceptions).

However, this is not always be optimal.

Example 3.10. Consider the formula

(ψ1 ∨ ψ2) ∧ (¬ψ1 ∨ ψ2) ∧ (ψ1 ∨ ¬ψ2) ∧ (¬ψ1 ∨ ¬ψ2)∧

∧(ψ3 ∨ ψ4) ∧ (ψ3 ∨ ψ5) ∧ (ψ3 ∨ ψ6) ∧ (ψ3 ∨ ψ7) ∧ (ψ3 ∨ ψ8).

We see that ψ3 is the literal which appears in most clauses. Thus Algorithm
9 would suggest ψ3 as the branching literal. However choosing ψ3 would force
us to choose branching literal once more before we can conclude that the
formula is unsatisfiable, while choosing ψ1 or ψ2 would allow us to conclude
that the formula is unsatisfiable after our unit propagations.

26

For further improvements we may consider to take our time to look
for pairs xi, xj which appears in multiple polynomials. When each polyno-
mial f1, . . . , fs contains 3 variables we may even consider to look for triples
xi1 , xi2 , xi3 which appears in multiple polynomials.

However, in [4] it is proven that finding an optimal branching literal is
itself a NP-hard problem. Thus we cannot hope to always find an optimal
branching literal in polynomial time.

So far, we have not seen any benefits from viewing our clauses as boolean
polynomials. One could think that we could gain something by using the
fact that each boolean polynomial may represent any boolean formula of
k variables, and not just disjunctions of variables ψi or ¬ψi as in a k-CNF
formula. However, this might make it harder to choose the branching literal.

Example 3.11. Consider the 3-CNF formula

(ψ1 ∨ ψ2) ∧ (¬ψ1 ∨ ψ3) ∧ C3 ∧ . . . ∧ Cs.

In Example 2.30 we saw that

T1((ψ1 ∨ ψ2) ∧ (¬ψ1 ∨ ψ3) ∧ C3 ∧ . . . ∧ Cs) =

= (x1 + x2 + x1x2)(1 + x1 + x1x3)T1(C3) · · ·T1(Cs)).

If we are allowing 3 variables in each polynomial, then we might compress
this into

(x2 + x1x2 + x1x3)T1(C3) · · ·T1(Cs),

which will give us one less polynomial to check at each iteration of DPLL.
However, if we do this and we choose literal as in Algorithm 9, then we will
miss the fact that x1 appears in two polynomials with only two variables.

Thus we might suspect that converting a boolean formula into boolean
polynomials in order to perform a DPLL based algorithm will never serve
any real purpose.

References

[1] Tobias Andersen : Ekvationssystem i f ∈ Z2[x1, . . . , xn], Bachelor the-
sis, Stockholm University, 2013.

[2] Mark Anderstam : Solution methods to polynomial equations over Z2,
Bachelor thesis, Stockholm University, 2014.

[3] Michael Brickenstein, Alexander Dreyer : PolyBoRi: A framework for
Gröbner-basis computations with Boolean polynomials. J. Symb. Com-
put. 44 (2009), no. 9, 1326 – 1345.

27

[4] Paolo Liberatore : On the Complexity of Choosing the Branching Lit-
eral in DPLL. Artificial Intelligence Volume 116, Issues 1–2, January
2000, Pages 315–326

[5] Samuel Lundqvist : Elementary algebra related to the SAT problem,
Preprint, 2012.

[6] John Sass : Boolean polynomials and Gröbner bases: An algebraic
approach to solving the SAT-problem, Master thesis, Stockholm Uni-
versity, 2011.

[7] http://www.cs.ubc.ca/ hoos/SATLIB/benchm.html

28

