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Abstract

Quantum graphs consists of differential operators acting on metric graphs
with matching conditions at its vertices. One of their main properties that
are studied is their eigenvalues which can be described by their quadratic
form. Using the quadratic form, quantum graphs with δ-interaction at its
vertices are investigated. By looking at how changes in the metric graph and
the matching conditions affect the quadratic form a number of useful tools
for analysing the ground state energy are formulated. They are then used
to show a sharp lower bound on the ground state energy for the Laplace
operator on such graphs, and to find the graph with the lowest ground state
energy. Similar methods are then used to find a non-sharp upper bound. The
results are then generalized from the Laplacian to the Shrödinger operator
with standard conditions, where the upper bound turn out to be part of a
more general theorem.
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Introduction

The study of quantum graphs originates from physics and chemistry, and
even though the study is purely mathematical, it is motivated mainly by
physics. The first person to study systems similar to quantum graphs was
the double Nobel laureate Linus Paul who studied free electrons in molecules
during the 1930s. To study quantum graphs is to study differential operators
on networks or metric graphs with certain conditions at its vertices. The
main aspects studied are usually the eigenfunctions and the eigenvalues of
the operator, which have clear physical interpretations.

The most common operator to study is different variants of the (magnetic)
Schrödinger operator, defined using the differential expression

(
i

d

dx
+ a(x)

)2

+ q(x).

The Schrödinger operator describes the motion of a free particle, for example
an electron, influenced by a magnetic potential a(x) and an electric potential
q(x).

One physical interpretation of a quantum graph is thus as an approximation
of a two or three dimensional system using a graph, where the matching
conditions corresponds to different kind of behavior at certain points.

In this thesis a special kind of quantum graph with so called δ-interaction
at its vertices is studied. The goal is to find lower and upper bounds for the
lowest eigenvalue of them, the so called ground state energy.
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Chapter 1

Quantum graphs

In this chapter quantum graphs are introduced, and some of their properties
are examined. Focus is on explaining the basic concepts and ideas as well as
introducing some of the questions that will be investigated later on. A more
complete description of quantum graphs containing more background theory
can be found in [3] or [8].

1.1 The definition of quantum graphs

A quantum graph consists of three things:

• a metric graph,

• a self-adjoint differential operator acting on the metric graph,

• matching conditions at the vertices of the metric graph.

The metric graph of a quantum graph will sometimes be referred to the un-
derlying graph of the quantum graph, and the operator as the associated
operator of the quantum graph. This chapter introduces these three com-
ponents together with some of the basic properties of quantum graphs. The
main focus is on the Laplace operator acting on a specific class of graphs
with so called δ-conditions, as well as on the Schrödinger operator.

9



Isak Trygg Kupersmidt The definition of quantum graphs

1.1.1 The metric graph

In discrete mathematics a graph is just a set of vertices that are connected
in a certain way. How they connect is usually described by a set of pairs
containing every two vertices that are connected, meaning that the edges
are just reduced to pairs of end points. A metric graph can be described as
a combinatorial graph where the edges have been assigned a specific length
or weight. Here another definition than the combinatorial one, namely one
where where the graphs are constructed by gluing intervals together, will be
used as it shifts the focus towards the edges.

Consider a set of N intervals E = {en}∞
n=1, where each edge ei is defined as

ei =




[x2i−1, x2i] : i ∈ [0, NC ]
[x2i−1, ∞) : i ∈ [NC + 1, N ],

and where NC is the number of compact edges of finite length in E. Let V
be the set of all end points of the edges in E. The intervals can then be
combined into a metric graph by dividing V into subsets Vm such that

Vm ∩ Vn = ∅ for m %= n, and V =
⋃

i

Vi.

Each Vm then corresponds to the vertices of the graph. Metric graphs can
thus be viewed as a number of closed intervals, who’s endpoints have been
identified with each other in a certain way. This construction is much more
useful than the combinatorial one, as it emphasises that the graph consists of
intervals, connected in a certain way. We give a formal definition of a metric
graph.

Definition. A set of N closed or semi-infinite intervals E together with a
partition of the set of their endpoints V into equivalence classes is called a
metric graph. The intervals in E are called edges of the graph, and the
equivalence classes of V are called the vertices of the graph. The end points
belonging to the same vertex are identified.

Note that the graph does not need to be realisable in the plane or Rn at all.
The definition does not limit the number of edges to a finite number, but
only graphs with a finite number of edges will be studied in this thesis.

Each edge em = [x2m−1, x2m] of a metric graph Γ has a length lm defined as
lm = x2m − x2m−1. The length of the whole graph is denoted by L(Γ) and is

10
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defined as the sum of the lengths of the individual edges of Γ. The length
can only be defined for graphs where each edge is of finite length.

A metric graph is said to be connected if there exists a path connecting any
two points on the graph. The spectrum of a disconnected graph is simply the
sum of the spectrum of the disconnected components, so they can be studied
separately. All graphs will thus be assumed to be connected. Graphs with
edges of infinite length lack some important properties, which makes many
of the interesting questions about quantum graphs trivial. All graphs will
thus also be assumed to be of finite length.

As a metric graph consists of intervals it is possible to define functions on
the interior of the edges. The biggest space of functions on a metric graph Γ
that will be considered is the Hilbert space L2(Γ). It is defined as the sum
of the individual L2-spaces that can be defined on the interior of the edges
en. Formally it is defined as

L2(Γ) =
⊕

en∈Γ
L2(en \ V ).

The scalar product in the space will be defined as the sum of the scalar
products on the separate edges by:

〈f, g〉 =
∫

Γ
f(x)g(x)dx =

∑

en∈Γ

∫

en

f(x)g(x)dx.

The values of the functions at the endpoints of the edges is a little trickier
question as two endpoints that belongs to the same vertices are considered
as the same point of the graph. To expand the functions to the end points
of the interval the following definition will be used:

f(xj) = lim
x→xj

f(x)

if xj is an endpoint and where the limits is the one sided limit taken from the
inside of the interval. In most cases the problem of the value of functions at
the endpoints will disappear as the functions will be assumed to be continuous
at the vertices. If the function is continuous at a vertex v, the notation f(v)
will be used to denote the value of the function at all endpoints belonging
to v. With the extension of the functions to the endpoints, the derivative
of any function from L2(Γ) can be defined on every edge and thus on the
whole graph. Instead of the usual derivative of the function, the normal
derivatives will be used at the endpoints. They are defined as

∂u(xi) =





lim
x→xj

d
dx

u(x) if xj = x2m+1, i.e. xj is the left end point,

− lim
x→xj

d
dx

u(x) if xj = x2m, i.e. xj is the right end point.

11
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Normal derivatives are thus the same as the usual derivative, but with a
possibly different sign at the endpoints of an interval. The virtue of this def-
inition will be made clearer later on as it makes the formulation of matching
conditions easier. The normal derivative in the left endpoints is also called
the outgoing derivative.

1.1.2 The differential operator

As a metric graph can be viewed as a number of intervals glued together,
it is possible to define a differential operator on the graph by defining it on
the interior of every edge separately, and adding conditions at the vertices.
Recall that a self-adjoint operator L is an operator on a vector space with an
inner product (e.g. the Hilbert space L2(Γ)) that is its own adjoint. A more
thorough description of self adjoint operators can be found in Appendix A.

The operators that are mainly studied for quantum graphs are the ones that
can be defined using the following formal expressions:

• The Laplacian L0 defined as

L0 = − d2

dx2 .

• The Schrödinger operator Lq defined as

Lq = − d2

dx2 + q(x),

where q(x) is called the electric potential.

• The magnetic Schrödinger operator Lq,a defined as

Lq,a =
(

i
d

dx
+ a(x)

)2

+ q(x),

where q(x) is called the electric potential and a(x) the magnetic poten-
tial.

The magnetic Schrödinger operator describes the movement of a quantum
particle influenced by a magnetic potential a(x) and an electric potential
q(x).

12
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Clearly the first two operators are special cases of the last one. Putting
a(x) ≡ 0 gives

Lq,a=0 = Lq,

and putting q(x) ≡ 0 as well gives

Lq=0,a=0 = Lq=0 = L0

which motivates denoting the Laplace operator with L0. Arbitrary self-
adjoint operators will be denoted by L without subscript.

In the text, we will not go into any details about the magnetic Schrödinger
operator, but focus on the first two. The magnetic Schrödinger operator are
only introduced for the completeness of the theory, and the potential a(x)
will usually be assumed to be identically equal to zero.

The electric potential q(x) is assumed to be real valued and in L2(Γ), and to
vanish sufficiently fast on infinite edges in the sense that

∫

Γ
(1 + |x|)|q(x)|dx < ∞.

In Chapter 3, the δ-distribution will also be used as a potential.

The formal expressions above can be defined on different dense subsets of the
Hilbert space L2, and thus becoming different operators. Two very impor-
tant operators are the minimal and the maximal operators defined using
the Schrödinger differential expression. The minimal operator is defined on
C0(Γ \ V ) which is the set of all continuous functions with compact support
on each edge (i.e. that are zero in all vertices). The maximal operator is
defined on Sobolev space W 2

2 (Γ\V )) which is the set of all L2-functions with
their second derivative in L2 as well. This is basically the biggest subset of L2

that is mapped into L2 by the Schrödinger operator. Both of these domains
are dense in the set L2(Γ) and all interesting operators are defined on some
domain in between the domains of these two. The minimal and maximal
operator are studied in more detail in Appendix A.

1.1.3 Matching condition

The matching conditions describe the connection of the functions at the
vertices. From a physical point of view this can be interpreted as different
kinds of behavior of a quantum particle (recall that the Schrödinger operator

13
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describes particles). The matching conditions also are important in order to
make the operators self adjoint.

Some of the most studied kinds of conditions are the following:

• Dirichlet-conditions, requiring that all functions fulfills




ψ is continuous at v

ψ(v) = 0

at every vertex v ∈ V . Note that the first condition is implied by the
second one. It is included just to emphasis the similarity between this
and the next condition.

• Neumann-conditions or standard conditions, requiring that all
functions fulfills 




ψ is continuous at v
∑

xk∈V
∂ψ(xk) = 0

at every vertex v ∈ V .

• δ-conditions describing δ-interaction in the vertices. This is defined
as 




ψ is continuous at v
∑

xk∈v
∂ψ(xk) = αvψ(v)

at every vertex v ∈ V .

These are just a few of all possible matching conditions that makes the op-
erator self-adjoint. All possible matching conditions have been described in
many different ways, for example in [3] and [8].

1.1.4 Summary

The description of a quantum graph as a triplet of a metric graph, a dif-
ferential expression and matching conditions is very useful as it emphasize
the different aspects of a quantum graphs. As seen above, these three parts
are not independent. The matching conditions are defined at the vertices
of the metric graph, and the operator is defined on the metric graph using

14
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the matching conditions. For these reasons there are many different ways to
describe properties of quantum graphs, useful in different situations. When
one of the things change, so must the others. Usually it is not necessary to
go into the details of this. For example, we will later look at a graph and
what happens when one vertex is split in two. This creates a new graph, so
a new operator must be defined on it. There is however no ambiguity in how
to translate the old operator to the new graph, so this will not be commented
on. The matching conditions can however be chosen in many different ways,
so they will be discussed in detail.

1.2 The spectrum

The three parts introduced above constitutes a quantum graph. There are
of course many questions that can be asked about them, but the main thing
investigated is the spectrum of the graphs, which is the collection of eigenval-
ues of the operator acting on the underlying metric graph. Many questions
can be asked about the spectrum. The most basic one is how to determine
it, but also inverse problems and methods for estimating the spectrum have
been studied by many authors, for example in [1], [10] and [3].

As we will see later on, finding the spectrum of a graph can be very hard,
and an analytic solution to the equations describing the spectrum can often
not be found. This makes the question of estimates and bounds on the
eigenvalues relevant.

The main question that will be dealt with here is "how does the graph influ-
ence the eigenvalue?" and how that can be used to create upper and lower
bounds for the first eigenvalue.

1.2.1 The eigenvalues of a quantum graph

The spectrum of a quantum graph is the collection of eigenvalues of the dif-
ferential operator acting on the metric graph. The eigenvalues of an operator
L is the real values of λ for which there exists a function u that fulfills the
eigenvalue equation

Lu = λu.

If the graph has no infinite edge, as is always assumed here, then the spectrum
is purely discrete and grows towards infinity. The spectrum of all operators

15
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studied here is also bounded from below. This makes it possible to index
the eigenvalues as {λn}∞

n=0 such that λn ≤ λn+1. With this indexing, which
always will be used, the eigenvalues fulfils the Weyl asymptotics

λn

n2 → π2

L(Γ)2 as n → ∞.

Each eigenvalue λn has an associated eigenfunction un which is the function
that fulfills the equation

Lu = λnu.

As is known for self-adjoint operators, their eigenfunctions can be chosen
orthogonal, and spans the whole Hilbert space. It is possible that there
exists m orthogonal functions for which λ is an eigenvalue. We then say
that λ has multiplicity m. If the i:th eigenvalue has multiplicity m, then the
eigenvalues will be indexed such that

λi = λi+1 = ... = λi+m−1

meaning that the eigenvalues are counted as many times as their multiplicity.

For the Laplace operator the eigenvalue equation becomes

−u′′ = λu,

which has the solution

u(x) = A sin(
√

λx) + B cos(
√

λx).

As
√

λ occurs in every solution to the eigenvalue equation it is convenient
to introduce the variable k which is defined by k2 = λ. k will through out
the text be used as the square root of λ with out explicitly defining it as
such every time. By the square root, or

√·, we will always mean the square
root with the branch cut along the positive real axis. This means that k will
always be in the closed upper half-plane.

For λ = 0 another possible solution is

u(x) = Ax + B.

This solution does rarely fulfil any of the matching conditions studied here,
so it will usually not be important.
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1.2.2 The ground state energy

The physical interpretation of the eigenvalues is as the possible energy levels
of the system described by the differential operator. From that point of view
the lowest eigenvalue λ0 corresponds to the lowest possible energy state of
the system, which makes it interesting to examine. For this reason the first
eigenvalue is called the ground state or the ground state energy of the
system. The main goal of the following chapters is to determine an upper and
lower bound for the ground state energy of quantum graphs with δ-conditions
and quantum graphs with the Schrödinger operator.

1.2.3 Graphs with δ-conditions

An important part of this thesis is quantum graphs consisting of the Laplace
operator acting on finite graphs with δ-conditions. Recall that a graph with
δ-conditions is a graph that at every vertex vi ∈ V has the conditions





u is continuous at v∑

xk∈v

∂u(xk) = αvu(v)

for some αi ∈ R. αi will always be used to denote the constant in the
conditions at the vertex vi, and we define

α(Γ) = α =
∑

i

αi.

The αi of a quantum graphs are usually called the strengths of the graphs. For
simplicity, all requirements of the graphs studied in this thesis are collected
in the following definition.

Definition. A quantum graph consisting of a connected metric graph of
finite length and with a finite number of edges, the Laplace operators, and
δ-conditions is called a δ-graph.

An observation that will be useful later on is that for δ-graphs where αi %= 0
for any i, the constant function can not be an eigenfunction, as it does not
fulfill the vertex conditions at the vertices where αi %= 0. By adding vertices
to the interior of the edges, it is thus possible to ensure that there always
will be two vertices where the function attains different values.

17
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1.2.4 The spectrum of commuting operators

There are some standard techniques for calculating the eigenvalues of a dif-
ferential operator without having to do all the calculations. One of the most
useful of those is a theorem that states that the eigenfunctions of two com-
muting operators can be chosen to be equal. A more complete discussion of
this theorem, together with its proof, can be found in [9].

Proposition 1. Let A and B be two self-adjoint operators with

AB = BA

such that the domain of AB and BA are the same. Then the eigenfunctions
of A and B can be chosen to be equal.

An example of how this theorem can be used is when A = − d2

dx2 (the Lapla-
cian), and B : f(x) -→ f(−x). We can then see that B2 = I where I is
the identity. If u is an eigenfunction to B, then Bu = λu, and thus is
u = Iu = B2u = Bλu = λ2u. This shows that λ = ±1, so the eigenfunc-
tions of B must be even or odd, so it follows that the eigenfunctions of A
can be chosen to be even or odd. As the eigenfunctions of the Laplacian are
u(x) = A sin(kx)+B cos(kx), it follows that the eigenfunctions can be chosen
to be either A sin(kx) or B cos(kx). Dealing with these functions separately
makes the equations much simpler to work with.

It is worth noticing that this is only possible to do when there exists such an
operator, which usually happens when the graph has some kind of mirror or
rotational symmetry. It will for example be used in a following example of a
quantum graph in the form of a loop.

1.2.5 Examples

To illustrate the concepts introduced in this chapter, some examples of quan-
tum graphs will be introduced, and using the techniques presented above
their spectra will be calculated or described. The three graphs here are cho-
sen with care as they all illustrates important aspects of the spectrum of
quantum graphs. Some of these results will also be useful in the following
chapters.

18
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The interval

The simplest possible δ-graph is the interval with α1 = 0 and α2 = α,
illustrated in Figure 1.1.

α

L
0
0

Figure 1.1: The interval with δ-conditions with the strengths in each point
indicated (above), together with its parametrization (below).

The solutions of the eigenvalue equation are of the form

u(x) = A sin(kx) + B cos(kx),

or
u(x) = Cx + D.

For the linear functions the vertex conditions is

u′(0) = C = 0 and u′(L) = u(L),

which gives 



u(x) = 0,

DL = 0.

This gives that C = D = 0, so the linear function is not a solution.

For the other solution, we get

u′(x) = Ak cos(kx) − Bk sin(kx).

At the left endpoint we have the condition

u′(0) = 0 · u(0) = 0,

which implies that u′(0) = A = 0, so the function is just a cosine function.
In the right endpoint the function must fulfil

−u′(L) = αu(L),

which translates into

Bk sin(kL) = αB cos(kL).

19
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Rewriting it a little gives

k tan(kL) = α.

This equation not does have an analytic solution in the general case. We
can however draw some conclusions about the eigenvalues by considering the
function k tan(kL). The equation does not have any complex solutions for
αv > 0, and for αv < 0 it has two purely imaginary, where the second one is
just minus the first one, so both gives the same eigenvalues. We are however
only interested in solutions in the upper half-plane, due to the branch cut, so
only one imaginary solution (corresponding to a negative eigenvalue) exists.
The function behaves very similar to the tangent function, and drawing it on
the real axis for some L gives the graph in Figure 1.2.

Figure 1.2: k tan(k) plotted from −1 to 3π. Note that the function assume
each value exactly once between every singularity (indicated by the vertical
lines).

This shows that the solutions are bounded by the singularities of the func-
tion tan(kL). From the branch cut it follows that all negative solutions are
irrelevant. On the imaginary axis the function behaves a little differently,
which are shown in the graph in Figure 1.3 below.

20
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Figure 1.3: k tan(k) plotted from −i to 3πi. The function assume each
negative value once on the upper axis.

This shows that if α > 0, then there are no negative eigenvalues, but if α < 0
there will always be one. This means that for α > 0 and n > 0,

(
π

2L(n − 1)
)2

≤ λn ≤
(

π

2Ln
)2

(1.1)

which shows that λn in fact fulfils the Weyl asymptotic introduced earlier.
What happens when α reduces is that the lowest eigenvalue becomes smaller
and smaller without bound, and every other eigenvalue will converges to their
lower bound as can be seen in (1.1).

The star graph

An example of a graph where most of the eigenvalues can be calculated
explicitly is the symmetric star graph which is a common name for graphs
consisting of any finite number of edges of the same length joined together
at one vertex as shown in Figure 1.4.
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0

00

0

0 0

α

Figure 1.4: The symmetric star graph with δ-conditions. The strengths in
each vertex are indicated.

We solve the eigenvalue problem for a star graph with m edges. Parametrise
the graph such that each edges ends at the middle vertex. The linear function
can not be a solution here either, as the conditions at the outer vertices then
would require it to be constant, which does not fulfil the conditions in the
middle vertex. If the edges are indexed from 1 to m, then the function on
the i:th edge is given by ui(x) = Ai sin(kx) + Bi cos(kx).

The condition at the outer vertex of an arbitrary edge then gives:

u′(x) = Ai = 0.

In the middle vertex the conditions then becomes:




ui( L
m

) = uj( L
m

)
m∑

i=1
Bik sin( L

m
k) = αBi cos( L

m
k) .

The first condition is either fulfilled if Bi = Bj for all i, j, or if the function
is zero in the middle. If the function is zero in the middle vertex, the system
if reduced to 




ui(x) = Bi cos(kx)
m∑

i=1
Bi sin( L

m
) = 0.

This has the solutions

k = mπ

2L + nπ

L m, n ∈ N.

22
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where each eigenvalue have m−1 as the constants Bi can be chosen in m−1
independent ways. Note that these eigenvalues does not depend on α in any
way.

On the other hand, if

k %= mπ

2L + nπ

L m, n ∈ N,

then Bi = Bj must hold. This gives

km sin( L
m

k) = α cos( L
m

k)

which is the same equation as

km tan( L
m

k) = α.

The eigenvalues of the star graph are thus described by the solutions to the
equation above, as well as the singularities of the function m tan( L

m
k).

The loop graph

The loop graph is a graph consisting of a single loop. Its spectrum can be
calculated directly, but it is much easier to use Proposition 1. We parametrize
the graph as shown in Figure 1.2.5.

-
−L/2

L/2
α 0

.

This parametrization creates a very useful reflection symmetry of the graph.
Let S be the operator which takes u(x) to u(−x) on the loop. Then

SL0 = L0S
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since

LSu(x) = − ∂2

∂x2 u(−x) = −(−1)2u′′(−x) = −u′′(−x) = SLu(x).

From the definition of their domain, it is easy to see that they coincide.
Proposition 1 then states that their eigenfunctions can be chosen to coincide.
As S2u(x) = u(x), S2 = I, so the eigenvalues of S must be 1 or −1.

By definition, the only functions that fulfills u(−x) = ±u(x) are even or odd
functions. We know from earlier that the eigenfunctions of L0 are A sin(kx)+
B cos(kx). The constant function can not be a solution here either due to
the vertex conditins. For them to be even or odd A or B must be zero. This
gives that the eigenfunctions of S, and thus the eigenfunctions of L0, can
be chosen as A sin(kx) and B cos(kx). It is thus possible to calculate the
spectrum of the loop graph by looking at even and odd solutions separately.

If the function is even, then it is symmetric around zero. As it is defined on
a circle it must also be symmetric around the point L

2 . As sin(0) = 0, we get
the following:

A sin(L
2 k) = 0 ⇔ k = 2π

L n n ∈ N.

Furthermore, the function must fulfill

2Ak sin(kL/2) = αA cos(L
2 k) ⇔ k tan(kL/2) = α

2 . (1.2)

This is again very similar to the solutions to the interval.

For u(x) = B cos(kx) we instead get that




−B sin(0) = 0

−2B sin(L
2 k) = 0

This have the solution
k = L

2 πn.

The spectrum of the loop graph is thus given by the solutions to Equation 1.2
and by k = L

2 πn. It is easy to see that these two interlace. It is interesting
to once again note how some of the eigenvalues depends on α while some
does not, and how the ones that increase with alpha are bounded by the one
unaffected of it.
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1.3 The quadratic form and the Rayleigh quo-
tient

A very useful tool for analysing the spectrum of a quantum graph is the
quadratic form and the Rayleigh quotient. In this section some properties
of the quadratic form are introduced and examined, together with the basic
concept of the Rayleigh quotient.

For every operator L on a graph Γ, a quadratic form can be defined by

〈Lu(x), u(x)〉γ =
∫

Γ
Lu(x) · u(x)dx.

The subscript indicates in what space the quadratic form is from, and will
be dropped whenever there is no risk of ambiguity.

Interpreting the integral in the quadratic form formally it is possible to write
the quadratic form of the Schrödinger operator as

〈Lqu, u〉Γ =
∫

Γ
(−u′′(x) + q(x)u(x))u(x)dx

= −
∫

Γ
u′′(x)u(x)dx +

∫

Γ
q(x)|u(x)|2dx

=
∫

Γ
|u′|2dx +

∑

i

[
u′

i(x2i−1)ui(x2i−1) − u′
i(x2i)ui(x2i)

]
+

∫

Γ
q(x)|u(x)|2dx

=
∫

Γ
|u′|2dx +

∑

i

[
∂ui(x2i−1)ui(x2i−1) + ∂ui(x2i)ui(x2i)

]
+

∫

Γ
q(x)|u(x)|2dx.

= 〈L0u(x), u(x)〉 + 〈q(x)u(x), u(x)〉

This gives a way to extend the domain of the quadratic form as the intersec-
tion of the domain of 〈L0u(x), u(x)〉 and 〈q(x)u(x), u(x)〉. The expression

〈L0u(x), u(x)〉 =
∫

Γ
|u′|2dx +

∑

i

[
∂ui(x2i−1)ui(x2i−1) + ∂ui(x2i)ui(x2i)

]

is clearly defined for all functions with a derivative in L2 that are continuous
over the vertices, in other words it is defined for all u ∈ W 1

2 (Γ), where

W 1
2 (Γ) = {u ∈ L2(Γ \ V )|u is continuous on Γ}.

The second quadratic form

〈q(x)u(x), u(x)〉 =
∫

Γ
q(x)|u(x)|2
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is defined for all functions in L2 (which contains W 1
2 ) when q is nice. If the

potential is not nice, the domain can be smaller.

As will be shown later on, the function that minimizes the quadratic form is
the first eigenfunctions. Expanding the domain could thus make this property
untrue, if doing so adds an function whit a smaller value in the form, but as
it turns out, any function from W 1

2 that minimizes the quadratic form must
also be from W 2

2 .

The domain of the quadratic form on a graph Γ is denoted by domQ(Γ). We
make a formal definition of the quadratic form.

Definition. The quadratic form of the Schrödinger operator Lq is defined
as

〈L0u(x), u(x)〉 + 〈q(x)u(x), u(x)〉
where L0 is the Laplacian with standard conditions. The form is defined
on the intersection of the domain of the two forms, which is W 1

2 (Γ) and the
subset of W 1

2 (Γ) where 〈q(x)u(x), u(x)〉 is defined. This means that

domQ(Lq) = {u ∈ W 1
2 ||〈q(x)u(x), u(x)〉| < ∞}.

Using that the quadratic form is defined on some subset of W 1
2 (Γ) makes

it possible to reconstruct the operator from the form. This means that the
quadratic form uniquely determines the operator, so if two operators have
the same quadratic form they actually are the same operators.

From now on the quadratic form will be used to define the Schrödinger oper-
ator, not the other way around, as it makes it easier to study the eigenvalues
and the similarities between different operators. The Schrödinger operator
Lq = − d2

dx2 + q will always be assumed to denote the operator defined by the
quadratic form of

〈L0u, u〉 + 〈qu, u〉
where L0 is the Laplacian with standard conditions. This means that the
boundary terms disappear, making the quadratic form

∫

γ
|u′(x)|2dx +

∫

Γ
q(x)|u(x)|2dx.

We start our analysis of the quadratic form with two basic theorems con-
cerning δ-graphs.
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Lemma 1.1. The quadratic form of the Laplace operator on a δ-graph is
given by

〈Lu, u〉 =
∫

Γ
|u′|2dx +

∑

v∈V

αv|u(v)|2

where V is the set of vertices of Γ.

Proof. Let ei denote the edges and V the set of vertices of Γ. Then

〈Lu, u〉Γ =
∫

Γ
−u′′(x)u(x)dx

=
∫

Γ
|u′|2dx +

∑

i

u′
i(x2i−1)ui(x2i−1) − u′

i(x2i)ui(x2i)

=
∫

Γ
|u′|2dx +

∑

i

∂ui(x2i−1)ui(x2i−1) + ∂ui(x2i)ui(x2i)

=
∫

Γ
|u′|2dx +

∑

v∈V

[ui(v)
∑

xk∈v

∂u(xk)
︸ ︷︷ ︸

=αvu(v)

]

=
∫

Γ
|u′|2dx +

∑

v∈V

αv|u(v)|2.

The last step is possible as the function u(x) is continuous over the vertices.

Another useful theorem that follows directly from the definition of the quadratic
form is the following regarding how the domain depends on the δ-conditions.

Lemma 1.2. Let L and L̂ be two Laplace operators acting on the same metric
graph Γ with different δ-conditions. Then the domain of the quadratic forms
of L and L̂ coincide.

Proof. The result follows directly from that there are no requirement on the
potential or the value of the derivative at certain point in the definition of
the domain of quadratic form.

Using the quadratic form of an operator L, it is possible to define the Rayleigh
quotient of a quantum graph.

Definition. The Rayleigh quotient R(u) of a quantum graph is the normed
quadratic form defined as

R(u) = 〈Lu, u〉
〈u, u〉
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for every function u(x) %= 0 in the domain of the quadratic form.

The Rayleigh quotient has the curious property that it is minimized by the
first eigenfunction, and that its minimal value is the first eigenvalue. This,
together with a generalization to all eigenvalues is described in Theorem 1.1
below.

Theorem 1.1. The first eigenvalue of a self-adjoint operator L is given by
the minimum value of the Rayleigh quotient on the domain of the quadratic
form. Further more,

λn(L) = min
u⊥ui,i<n

〈Lu, u〉
〈u, u〉 for u %= 0,

where ui denotes the i:th eigenfunction. The function from the domain of the
quadratic form that minimizes the expression above is the n:th eigenfunction.

Proof. Recall that the eigenvalues of a self-adjoint operator on a graph is
bounded from below, and that they are indexed such that λn ≤ λn+1.

Every function in the domain of a self-adjoint operator can be expressed as
a linear combination of its eigenvalues. So if {un}∞

n=0 denotes the eigenfunc-
tions of a self-adjoint operator L, then any function u in its domain can be
expressed as

u =
∞∑

n=0
〈u, un〉 un.

The Rayleigh quotient for a function u can thus be expanded as follows.

〈Lu, u〉
〈u, u〉 =

〈∑
n

L 〈u, ui〉 ui, u
〉

〈u, u〉

=

〈∑
n

λi 〈u, ui〉 ui, u
〉

〈u, u〉

=

∑
n

λn 〈u, ui〉 〈ui, u〉
〈u, u〉

≥ λ0

∑
n

| 〈u, ui〉 |2
∑
n

| 〈u, ui〉 |2

= λ0
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This shows that the minimal value of the Rayleigh quotient is λ0. The
inequality becomes an equality if and only if 〈u, ui〉 = 0 for all i %= 0, which
shows that if a function u minimizes the quadratic form then u must be the
first eigenfunction.

This proves the first statement of the theorem. To see the result for λn,
assume that we are only looking at functions orthogonal to the first n − 1
eigenfunctions. This means that 〈u, ui〉 = 0 for i < n. Using the calculations
above we see that

〈Lu, u〉
〈u, u〉 =

〈 ∞∑
i=n

L 〈u, ui〉 ui, u
〉

〈u, u〉

=

∞∑
i=n

λi| 〈u, ui〉 |2
∑
n

| 〈u, ui〉 |2

≥ λn

∞∑
i=n

| 〈u, ui〉 |2
∑
n

| 〈u, ui〉 |2

= λn

and
λn = 〈Lun, un〉

〈un, un〉 ≤ 〈Lu, u〉
〈u, u〉 .

for all functions u orthogonal to the first n − 1 eigenfunctions of L. In other
words

λn = 〈Lun, un〉
〈un, un〉 ≤ 〈Lu, u〉

〈u, u〉 .

This concludes the proof.

This theorem means that it it possible to look at the quadratic form and how
it changes to determine how different changes of the quantum graph effect
its spectrum.

The denominator of the quadratic form is the square of the norm of the
function, so for functions of norm 1 the Rayleigh quotient simply becomes
the quadratic form. An equivalent to finding the function that minimizes the
Rayleigh quotient is thus to find the function with norm 1 that minimizes
the quadratic form.
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Chapter 2

Estimates on the ground state
energy

A natural question to ask is if there exist a lower and an upper bound for
the ground state energy of a quantum graph, and if so, what they are. In
this chapter we examine how different parameters influence the ground state
energy in order to find bounds for it subject to some natural constraints of
the graph.

A related question to ask is what graph has the lowest or highest eigenvalue.
This question goes hand in hand with the previous one, and it is possible
that the two can be answered at the same time.

This chapter only deals with the Laplacian with δ-conditions. The results
will be generalized to the Schrödinger operator in Chapter 3. Many of the
results presented will be given for all eigenvalues, and some of the other
results can be generalized to all λn by following analogous arguments.

2.1 The length, the strengths and the eigen-
values of a graph

In this chapter a lower and an upper bound for the ground state energy will
be proven. There is, however, no general smallest or highest ground state
energy for δ-graphs, so the bounds can only be formulated in terms of some
characteristics of the graph.
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From the previous chapter we know that the eigenvalues of the star graph
can be made sufficiently small as long as the total lengths of the graph is
made sufficiently large. One might wonder if this is a special property of the
star graph (and the other graphs in the examples) or not. From the Weyl
asymptotics it follows that

λn ∼
(

π

Ln
)2

,

which tells us how the length of the graph affect the larger eigenvalues, but
nothing about the smaller one. One can thus ask if it is always true that the
eigenvalues become smaller if the graph is scaled with some factor greater
than one.

From the quadratic form it can be easily seen that if a function u(x) with
norm 1 minimizes the quadratic form for some graph Γ, then the function
û(x) = 1√

t
u(x

t
) minimizes the quadratic form of the graph Γt, created from

Γ by scaling it with a factor t. The factor 1√
t

is necessary in order to make
the norm of û(x) equal to 1.

Parametrising each edge Et
n of a graph with δ-conditions from 0 to L(Ei),

and plugging û(x) into the quadratic form gives

〈L0û(x), û(x)〉Γt =
N∑

n=1

∫

En

|û′(x)|2dx +
∑

v

αû(v)2

=
N∑

n=1

∫ L(Et
n)

0
|û′(x)|2dx +

∑

v

αû(v)2

= {s = x

t
}

=
N∑

n=1

∫ L(En)

0
t · |û′(st)|2ds +

∑

v

αû(v)2

=
N∑

n=1

∫ L(En)

0
t · 1

t3 |u′(s)|2ds +
∑

v

αû(v)2

=
N∑

n=1

∫ L(En)

0
t · 1

t3 |u′(s)|2ds + 1
t

∑

v

αû(v)2

= 1
t

·
(

1
t

N∑

n=1

∫ L(En)

0
|u′(s)|2ds +

∑

v

αu(v)2
)

where L(En) denotes the length of the n:th edge of Γ, and L(Et
n) the length
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of Et
n.

The last step follows as
û′(st) = 1√

t
· 1

t
u′(s)

and
û(v) = 1√

t
u(v) for all vertices v.

This is very similar to the quadratic form of the graph Γ (the unscaled one),
and it shows that the eigenvalues has a tendency to scale in some way with the
length of the graph. Letting t go to infinity pushes the value of the quadratic
form for all functions with a given norm, and thus the eigenvalues, towards
zero. Letting t go to zero will instead make the form go towards ±∞. This
shows that when looking for a bound of the spectrum it is necessary to do so
subject to a given total length of the metric graph, as it is always possible to
make the eigenvalues larger or smaller by simply scaling the metric graph.

It also follows that if a graph is scaled with t, and the strength α with 1
t
, then

the value of the quadratic form for a function on Γ, and its corresponding
function on Γt, will scale with 1

t2 in the sense that

λn(Γt) = 1
t2 λn(Γ).

In the examples earlier, the eigenvalues all depended positively on the strengths
of the δ-conditions. Looking at the conditions at the vertices it is not obvi-
ous that this will always be the case, but looking at the quadratic form it
is possible to formulate the following simple relation between the strengths
and the eigenvalues.

Lemma 2.1. The eigenvalues of a δ-graph depends positively (in fact non-
negatively) on each strength αv at the vertices of the graph.

Proof. As can be seen directly from the quadratic form in Theorem 1.1, in-
creasing any αv increases the value of the Rayleigh quotient for all functions.
This proves the statement.

Based on this lemma one might suggest that another good constraint is the
sum of the strengths, ∑

i αi. This idea, however, does not work properly if
some αv are negative. The argument is simple: let u(x) be the first eigen-
function of the δ-graph Γ. Then it minimizes the quadratic form
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〈Lψ, ψ〉Γ =
∫

Γ
|ψ′|2dx +

∑

v∈V

αv|ψ(v)|2.

From earlier it is known that there always exist two points where the eigen-
functions attain different values. It, thus, follows that there must be two
points v1 and v2 that can be viewed as vertices, provided that not all αi = 0,
such that u(v1) < u(v2). If both are positive, then decreasing α2 and increas-
ing α1 such that their sum is constant would make it possible to make the
quadratic form arbitrarily negative without changing the sum of the strength.
If u(v1) is smaller than zero, the same process is possible by decreasing α1
and increasing α2.

A better version of the constraint is that the sums of the absolute values
should be equal to a given number. The sum of the absolute values of indi-
vidual strengths will from now on be denoted by |α|.

The dependence of the eigenvalues on the strengths is different from the
dependence on the length. When the parameters αv increase on a given
graph, the eigenvalues do increase. They do not however go to infinity, but
converges to some value from below. The eigenvalues of a quantum graph
are thus bounded subject to the underlying metric graph and the strength.
This is shown and dealt with in details in [3].

2.2 A lower bound on the ground state en-
ergy

There are many possible approaches to the question of which δ-graph has the
lowest eigenvalues, and what those values are. In this section the Rayleigh
quotient is used to analyse how different changes in the matching condition
and in the metric graph effect the spectrum of δ-graphs.

2.2.1 How changes in the quantum graph affect the
eigenvalues

One of the most apparent property of a graph is how the edges connect,
and a fundamental question is how this affect the eigenvalues. A higher
connectivity does, on one hand, force more conditions on the values of the
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eigenfunction at the vertices due to the continuity criteria, but can on the
other hand it allow more freedom as the functions can be chosen such that
the derivatives cancel each other out. For example, in a vertex of degree
two the value of ingoing and outgoing derivatives must be equal, but if we
add another edge then the values of two of the derivatives can be chosen
independent of each other. The domain of the quadratic form does however
tell different story. As stated in Theorem 1.2 the domain of the quadratic
form does not depend on the values of the derivative at a specific point. This
gives the following very useful theorem.

Theorem 2.1. Let v be a vertex of the δ-graph Γ with the vertex condition




ψ is continuous at v
∑

xk∈v ∂ψ(xk) = αvψ(v)

and let Γ̂ be the graph obtained from Γ by separating the vertex v into two
vertices v′ and v′′ and endowing them with vertex conditions





ψ is continuous at v′
∑

xk∈v′ ∂ψ(xk) = αv′ψ(v′)
and





ψ is continuous at v′′
∑

xk∈v′′ ∂ψ(xk) = αv′′ψ(v′′)

such that αv′ + αv′′ = αv. Then

λ0(Γ̂) ≤ λ0(Γ).

Proof. Expressing λ0(Γ) and λ0(Γ̂) using the Rayleigh quotient gives:

λ0(Γ) =


 min

||u|| = 1
u ∈ domQ(Γ)

〈Lu, u〉


 and λ0(Γ̂) =


 min

||u|| = 1

u ∈ domQ(Γ′)

〈Lu, u〉


 .

Any u ∈ domQ(Γ) can be identified with a function û in domQ(Γ̂) with
R(u) = R̂(û) and ||u|| = ||û||. Either û is the function minimizing R̂, or
there exists some function where R̂ is even smaller. This gives that

λ0(Γ̂) ≤ λ0(Γ).

This result can be generalized with an analogous argument to all eigenvalues
of the graphs Γ and Γ̂.
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The theorem basically states that for any quantum graph, the graph created
from it by cutting it in its vertices or edges (as a vertex with αv = 0 can be
placed anywhere), and splitting the strengths between the new vertices, has
a lower ground state energy.

Another interesting question is how the distribution of the strengths over the
graph affect the ground state energy. Looking at the Rayleigh quotient it
becomes reasonable to assume that concentrating the strengths to one point
would decrease the eigenvalues as it makes it possible to "escape" the region
where a trial function is large, by choosing another function with a low value
at that point. This argument is quite hard to formalize, but a similar result
can be obtained by a simpler argument. We start with a lemma.

Lemma 2.2. In every δ-graph Γ where all αi has the same sign, there is a
vertex v′ such that changing the δ-conditions of Γ such that αv′ = ∑

v∈Γ αv =
α at v′, and putting standard conditions (αv = 0) at all other vertices, gives
a new quantum graph Γ̂ with

λ0(Γ̂) ≤ λ0(Γ).

Proof. Assume that all αi > 0, and let u ∈ domQ(Γ) be the function that
minimizes the Rayleigh quotient of Γ. Then u is the first eigenfunction of
Γ, corresponding to the eigenvalue λ0. Let v′ be the vertex where |u(x)|
attains the smallest value and Γ̂ be the graph created from Γ by putting
αv = 0 for all v %= v′ and αv′ = α. By Lemma 1.2 domQ(Γ) = domQ(Γ̂), so
u ∈ domQ(Γ′). Together with Lemma 1.1 this gives that

〈Lu, u〉Γ =
∫

Γ
|u′|2dx +

∑

v∈V

αv|u(v)|2 ≥
∫

Γ
|u′|2dx + α|u(v′)|2 = 〈Lu, u〉Γ̂.

From this it follows directly that

λ0(Γ̂) = min
||ψ||=1,ψ∈domQ(Γ)

〈Lψ, ψ〉Γ̂
〈ψ, ψ〉 ≤ 〈Lu, u〉Γ̂

〈u, u〉 ≤ 〈Lu, u〉Γ

〈u, u〉 = λ0(Γ).

The results for negative strengths follows by a similar inequality by choosing
the vertex where the function assumes its highest values instead.

This result can be generalized to δ-graphs where the signs of the strength
different, by first changing all the signs to negative ones, which reduces the
eigenvalues, and then applying the theorem.
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Theorem 2.2. Every δ-graph Γ has a vertex v′ such that changing the δ-
conditions of Γ such that αv′ = − ∑

v∈Γ |αv| at v′, and putting standard con-
ditions (αv = 0) at all other vertices, gives a new quantum graph Γ̂ with

λ0(Γ̂) ≤ λ0(Γ).

Proof. From Lemma 2.1 it is known that the eigenvalues depends positively
on each αi. Changing the matching condition of Γ by multiplying each pos-
itive αi with −1 would thus reduce the eigenvalues. From Lemma 2.2 it is
known that the graph created by moving all strengths into a certain vertex
reduces the values of all eigenvalues further. This proves the theorem.

The usefulness of this theorem is apparent as the condition in vertices with
αi = 0 is much easier to deal with. Consolidating all strengths at one point
also makes the dependence of the strength much more apparent.

The double cover of a graph

From any δ-graph Γ it is possible to construct a certain "double cover" defined
in the following way.

Definition. Let Γ be a δ-graph. The graph Γ2 created from Γ by

• for each edge between two vertices of a given length, adding another
edge between the same two vertices of the same length, and

• changing the matching conditions by doubling the strengths in every
vertex,

is called the double cover of Γ.

An example of a graph and its double cover can be seen in figure 2.1 below.
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Γ

α3

α1 α2

α4

Γ2

2 · α3

2 · α1 2 · α2

2 · α4

Figure 2.1: An example of Γ and Γ2, with the strengths in each vertex
indicated.

This operation might appear strange, but it will prove to be useful later on
due to the similarities of the eigenvalues of the loop graph and the interval.
An important property of the double cover of a graph is that the degree of
all vertices is even, as the number of connected edges is doubled. This makes
it much easier to cut the graph into a useful shape using Theorem 2.1. As
the total length of the double cover is twice that of the graph, a reasonable
guess is that the double cover has lower eigenvalues than the original graph.

The idea of using the double cover originates from an article by Kurasov
and Naboko [10], where graph graphs are cut using so called Eulerian path.
A Eulerian path on a graph is a path that visit every edge of the graph
exactly once, and starts and ends at the same vertex. It is a widely known
theorem (by Euler) that a graph has has an Eulerian path if and only if the
degree of all vertices is even. Such graphs can thus be cut into loops by
cutting each vertex such that only edges connected in the Eulerian path are
connected in the graph. In order for this to work, it must be shown that the
double cover in fact has a lower eigenvalues than the original graph.

This is formulated and proved in the next theorem.

Theorem 2.3. For any δ-graph Γ and its associated double cover Γ2,

λn(Γ2) ≤ λn(Γ).

Proof. Let un be the n:th eigenfunction of Γ. Let u2
n denote the extension of

un to Γ2 by letting it assume the same values on the corresponding points on
the added edges. Clearly u2

n satisfies the eigenvalue equation − d2

dx2 f = λnf
and the vertex conditions in every vertex of Γ2 (as the number of incoming

37



Isak Trygg Kupersmidt A general theorem for a lower bound.

functions have been doubled, the sum of the derivatives will be twice as big
which is captured in that the strengths have double value). This means that
λn(Γ) is an eigenvalue to the Laplacian on Γ2 as well, so all eigenfunctions
and all eigenvalues of Γ are also eigenfunctions and eigenvalues of Γ2. This
proves that λn(Γ2) ≤ λn(Γ).

In this section a number of theorems that estimate the eigenvalues of δ-graph
from below have been proved. None of the theorems gives however a lower
bound for all graphs. In the next section such an estimate will be proved by
combining these results.

2.3 A general theorem for a lower bound.

The main goal of this thesis is to find general bounds for the ground state
energy. In this section the previous results of this thesis are used to prove a
universal bound for the eigenvalues by combining them in a certain way.

The idea is to start with an arbitrary graph, and estimate the lowest eigen-
value from below using the theorems from the previous section until the
ground state of the interval is reached. In short the graph will be transformed
into its double cover and then cut into a loop graph using an Eulerian cycle.
It is then shown that the first eigenvalues of the loop graph coincide with the
first eigenvalue of the interval if all strengths are moved to one point.
Theorem 2.4. The lowest eigenvalue of a δ-graph with total length L and
with the sum of the absolute values of the strengths equal to |α| is bounded
from below by the lowest eigenvalue of the interval with the same length and
with all strengths equal to −|α| concentrated to one endpoint. Further more,
the eigenvalue of this graph is given by the square of the purely imaginary
solution to the equation

k tan(kL) = −|α|.

Proof. We make the following definitions.

• Let Γ be any δ-graph of length L.

• Let S be some δ-graph defined on the loop with the length 2L, and
with the same strengths as Γ distributed in a way specified later.
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• Let S0 be the δ-graph defined from S putting all strengths but one
equal to zero, and the strength in one vertex to −|α|.

• Let I|α| be the δ-graph of length L defined on the interval, with the
strengths 0 and −|α| in the endpoints.

The result then follows from the following sequence of inequalities:

λ0 (I) =
(d)

λ0 (S0) ≤
(c)

λ0 (S) ≤
(b)

λ0
(
(Γ)2

)
≤
(a)

λ0 (Γ)

Inequality (a) follows directly from Theorem 2.3.

Inequality (b) follows by the following reasoning. All the vertices of (Γ)2

have of even degree. Therefore there must exist an Eulerian cycle on the
underlying graph. Using such an Eulerian cycle, a loop graph S can be
obtained by a sequence of cuts in the vertices of the graphs in a manner
specified in Theorem 2.1. By the theorem each such cut reduces or preserves
each eigenvalue.

Inequality (c) follows directly from Theorem 2.2 and the fact that if αv =
0 and the degree of v is 2 then the vertex conditions does not imply any
extra restrictions on the domain and may be removed without affecting the
spectrum.

For equality (d), recall the results from the example where the first eigenvalue
of the loop graph were shown to be given by the equation

k tan(kL
2 ) = α/2,

and that the first eigenvalue of the quantum graph on the interval I|α|, is
given by the square of the smallest solution to

k tan(Lk) = α.

It follows that the first eigenvalues of the interval and the loop coincide as
length and the strengths of the loop is twice those for the interval. In other
words, λ0(I|α|) = λ0(S0), which proves the equality (d).

The strength of this proof is that it uses geometric ideas, and for any graph
an estimate can be calculated quite quickly. For any specific graph a better
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estimate can then be achieved if some of the steps of the proof can be skipped.
For example, if all the strengths are positive, then it is not necessary to change
them to negative one, which is stated in the the following corollary.

Corollary 2.1. The lowest eigenvalue of a δ-graph with total length L and
with only non-negative strengths summing to α, is bounded from below by the
lowest eigenvalue of the interval with the same length and with all strengths
equal to −|α| concentrated to one endpoint. Further more, the eigenvalue of
this graph is given by the square of the smallest solution to the equation

k tan(kL) = α.

Proof. This can be proved with the same argument as Theorem 2.4. As all
strengths are positive, Lemma 2.2 instead of Theorem 2.2 can be used, which
gives the that the loop with with the strength α at one vertex has a lower
ground state energy than Γ. The first eigenvalue of this loop graph is given
by the equation

k tan(kL) = α.

This completes the proof.

The difference between this corollary and Theorem 2.4, is that this proof uses
Lemma 2.2 instead of Theorem 2.2 which is possible as αi > 0 at all vertices.

If the the degree of all vertices is even then another step of the proof can be
skipped, giving another corollary.

Corollary 2.2. The lowest eigenvalue of a δ-graph where all vertices have
even degree with total length L and with the sum of the absolute values of the
strengths equal to |α| is bounded from below by the lowest eigenvalue of the
interval with the same length and with all strengths equal to −|α| concentrated
to one endpoint. Further more, the eigenvalue of this graph is given by the
square of the purely imaginary solution to the equation

k tan
(

k
L
2

)
= −|α|

2 .

Proof. The result can be proved in a completely similar way as Theorem 2.4,
but skipping the doubling of the edges. The resulting loop graph is thus of
the same length, giving the result.

The two corollaries can of course be combined into a result for even graphs
with only positive strengths.
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2.4 An upper bound on the ground state en-
ergy

Using the quadratic form it also possible to calculate an upper bound for λ0
on any specific graph. As the lowest eigenvalue is given by the function that
minimizes the Rayleigh quotient, such an estimate can easily be calculated
by just plugging in any function with norm 1 into it. This bound would of
course only be an approximation from above on the specific eigenvalue as in
general the chosen function will not be the real eigenfunction.

Every domain of a the quadratic form of any δ-graph contains a constant
function as it is infinitely differentiable and integrable on every compact
graph. The constant function also attains the same values at every point, so
it is also continuous everywhere. The constant function with norm 1 on any
graph of length L is

u(x) = 1√
L

.

Plugging this into any quadratic form gives an upper estimate on λ0 of the
graph, and can be calculated as:

〈
L

1√
L

,
1√
L

〉
= 1

L〈L1, 1〉 = 1
L

(∫

Γ
| d

dx
1|2dx +

∑

i

αi · 1
)

= 1
L

∑

i

αi. (2.1)

This means that λ0 can be bounded from above by what can be interpreted
as the average potential. As this can be done on any graph, the sum of
the potentials times the normalization constant 1

L will always be an upper
bound of the ground state energy. This estimate is neat in its simplicity,
but the proof does not tell us if this estimate is sharp, and what kind of
distribution of the potential would give an eigenvalue close to it. Looking
at the vertex conditions at any vertex with αi %= 0 shows that the constant
function does not fulfill the equation, so the estimate is not sharp (except
when the strengths sums to 0, but this is an already known result). This
estimate might thus appear very weak, but in Chapter 3 we will show that
it is in fact part of a more general result.

We summarize the result in a theorem.

Theorem 2.5. The eigenvalues of a δ-graph Γ of length L is bounded from
above by

λ0(Γ) ≤ 1
L

∑

i

αi.
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Proof. The result follows directly from that the domain of every quadratic
form associated to a δ-graph contains a constant function, and (2.1).

An interesting question is then how close the ground state energy be pushed
towards this upper bound. Looking at the quadratic form there are reasons
to believe that λ0 increases when the strength are evenly distributed over
the graph, as it makes it impossible to "escape" the strengths by choosing a
function with a low value at the vertices with a high strength, and the other
way around. We try to capture this by looking at what the quadratic form
converges towards when we distribute the potentials evenly across the graph.
This can be done as a new vertex can be added anywhere on an edge. Let n
denote the number of charges, and fix a function u(x). The quadratic form
is then given by

∫

Γ
|u′(x)|2dx +

n∑

i=1

α

n
|u( i

n
L)|2 =

∫

Γ
|u′(x)|2dx + 1

L
n∑

i=1

α

n
L|u( i

n
L)|2.

Letting n go to infinity we see that the sum turns into an Riemann sum, and
thus

lim
n→∞〈Lu, u〉Γ = lim

n→∞

(∫

Γ
|u′(x)|2dx + 1

L
n∑

i=1

α

n
L|u( i

n
L)|2

)

=
∫

Γ
|u′(x)|2dx + 1

L
∫

Γ
α|u(x)|2dx

=
∫

Γ
|u′(x)|2dx + α

L

given that the norm of u is 1.

The function with norm 1 that minimizes this expression is clearly u(x) = 1√
L ,

which gives the value α
L , which is exactly what we were looking for.

As the quadratic form determines the operator, this shows a convergence of
the operator to an operator with λ0 = α

L in some sense. Convergence of
the quadratic form does however not necessarily imply convergence of the
spectrum, so this question is still open, but it gives a hint of where to look.
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Chapter 3

The Schrödinger operator

In this chapter the Schrödinger operator will be analysed. Focus is on the
relation between the Laplacian with δ-conditions and the Schrödinger opera-
tor with standard conditions, and how the results from the previous chapter
can be transferred to it. The starting point for this analysis is the quadratic
form of the two operators, and the similarities between them.

3.1 The quadratic form of the Schrödinger
operator

As seen in the earlier chapters, the quadratic forms is not only an invaluable
tool for analysing how changes in the operator effect the eigenvalues, but also
for finding similarities. Recall from Chapter 1 that the Schrödinger operator
is given by the differential expression

Lq = − d2

dx2 + q(x)

where q(x) is a real function such that q ∈ L1(Γ). The Schrödinger operator
is however defined using its quadratic form, which for continuous functions
is given by

〈L0ψ, ψ〉 = 〈L0ψ, ψ〉 + 〈qψ, ψ〉
=

∫

Γ
|ψ′|2dx +

∫

Γ
q(x)|ψ(v)|2.
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This looks very similar to the quadratic form of the Laplacian with δ-conditions,
making one wonder whether there exists any potential q(x) such that the
quadratic forms coincide (making them the same operator).

3.2 The Schrödinger potential and δ-conditions.

The similarities between the quadratic form of the two operators makes it
plausible to think that it might be possible to choose the potential of the
Schrödinger operator such that the two forms coincide.

In the following section the generalized function δv(x), sometimes called the
δ-distribution, will be very useful. We define it as the function δv(x) that
fulfills the following two properties:

• ∫
I δv(x)dx = 1 if v ∈ I,

• ∫
I f(x)δv(x) = f(v) for any interval I such that v ∈ I, and any function

f that is continuous in v.

Note that δ(x) is not in L1.

The potential q(x) = ∑
i αiδvi

(x) will from now on be called the δ-potential.
Using the intuitive interpretation of δ-conditions as point potential, and the
δ-distribution, the following theorem can be proved.

Theorem 3.1. The Schrödinger operator with δ-potential supported on its
vertices on a graph (defined using its quadratic form) coincides with the
Laplace operator defined on the set of functions from W 2

2 (Γ \ V ) satisfying
δ-conditions at its vertices.

Proof. Let ei denote the edges and V the set of vertices of Γ. Now put
q(x) = ∑

i αvi
δvi

(x). This gives that

〈q(x)ψ, ψ〉 =
∫

Γ

∑

i

αiδvi
(x)|ψ(x)|2dx

=
∑

i

αi

∫

Γ
δ(vi)|ψ(x)|2dx

=
∑

i

αi|ψ(vi)|2.
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The operator Lq is defined by the sum of the quadratic form of L0 and q(x).
In other words,

〈Lqψ, ψ〉 =
∫

Γ
|ψ′|2dx +

∑

i

αi|ψ(vi)|2.

This is exactly the same as for the Laplacian with δ-conditions. As we know
that the domain is not effected by conditions on the derivative at single
points, the domains of these two forms are the same.

A Schrödinger operator with a δ-potential can thus be regarded as a Laplace
operator with δ-conditions.

This theorem states that the class of quantum graphs examined in the pre-
vious chapters can be viewed as a special case of the Schrödinger operator
in the sense that they all correspond to a Schrödinger operator with the δ-
potential. The δ-conditions being only a singular case of a potential to the
Schrödinger operator begs the question if the earlier results for δ-graphs can
be generalized to the Schrödinger operator in any meaningful way, and what
conditions that must be put on q(x) for it to hold. In the following sections
this question will be investigated, and some useful generalizations will follow.

3.3 What results holds for the Schrödinger
operator?

The first thing that was dealt with with graphs with δ-conditions was how
the length and the potential influenced the eigenvalue. A similar argument
about the length is possible for the Schrödinger operator, and looking at the
quadratic form it is clear that if q(x) increase on an interval, so will the value
for the quadratic form for any function. A suitable analog of the criteria of
fixing the sum of the absolute value of the αi, is to fix

∫

Γ
|q(x)|dx,

as it transforms into our earlier condition when q(x) is equal to the δ-
potential. With this established, it is possible to move on to ask which
of the earlier theorems that can be generalized to the Schrödinger operator.

Some of the earlier results follows with the same methods. For example
Lemma 2.1, stating that the eigenvalues depend positively on the potential,

45



Isak Trygg Kupersmidt What results holds for the Schrödinger operator?

can be seen in a completely analogous way. The other results require some
more reformulation and will be dealt with one by one.

Theorem 2.1 shows that a graph can be cut such that the eigenvalues de-
creases. The idea there was to introduce new conditions at the new vertices
such that the strengths adds together to the old strength. For the Schrödinger
operator this makes no sense, instead the requirement is that the integral over
the potential at the two new vertices remains the same.

Theorem 3.2. Let v be a vertex of a quantum graph Γ with a Schrödinger
operator Lq acting on it, and let Γ̂q̂ be the graph obtained from Γ by splitting
v into two vertices v′ and v′′ and choosing q̂(x) such that:

• q(x) = q̂(x) for all x outside the vertex v,

• ∫
Γ̂ |q̂(x)|dx =

∫
Γ |q(x)|dx.

Then
λ0(Γ̂q̂) ≤ λ0(Γq).

Proof. As the only difference between Γq and Γ̂q̂ is that the eigenfunction
must not attain the same values in v′ as in v′′. It follows that domQ(Γq) ⊂
domQ(Γ̂q̂). Plugging this into the Rayleigh quotient gives:

λ0(Γ̂q) =


 min

||u|| = 1

u ∈ domQ (̂Γq̂)

〈Lu, u〉


 ≤


 min

||u|| = 1
u ∈ domQ(Γq)

〈Lu, u〉


 = λ0(Γq).

The next result about the Laplacian with δ-condition stated that there was
always possible to move all the strength to a certain point so that the first
eigenvalue decreased. An analogous argument is possible for the Schrödinger
operator.

Theorem 3.3. Every quantum graph Γq has a point v (that can be viewed
as a vertex) such that putting q̂(x) = −

∫

Γ
|q(x)|dx · δv(x) produces a new

quantum graph Γ̂q̂ with
λ0(Γ̂q̂) ≤ λ0(Γq).
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Furthermore, ∫

Γ
|q(x)|dx =

∫

Γ̂
|q̂(x)|dx.

Proof. Let Γq be any quantum graph and u(x) be its first eigenfunction.
Then there is a point where |u(x)| attains its highest value. That point can
be regarded as a vertex, and we denote it by v. Now let Γ̂q̂ be the quantum
graph created from Γq by putting q̂(x) = − ∫

Γ |q(t)|dt · δv(x). The Rayleigh
quotient then gives:

λ0(Γ̂) =
∫

Γ
|u′|2dx +

∫

Γ̂
q̂(x)|u(x)|2dx

=
∫

Γ
|u′|2dx −

∫

Γ
|q(t)|dt ·

∫

Γ̂
δv(x)|u(x)|2dx

=
∫

Γ
|u′|2dx −

∫

Γ
|q(t)| · |u(v)|2dt

≤
∫

Γ
|u′|2dx −

∫

Γ
|q(t)| · |u(t)|2dt

≤
∫

Γ
|u′|2dx +

∫

Γ
q(t) · |u(t)|2dt

= λ0(Γ).

This is a very important result as it shows that the ground state of a
Schrödinger operator is bounded from below by a quantum graph with δ-
conditions. It does not only show that the potential with the lowest ground
state energy is a δ-potential, but also gives a valuable tool for generalizing
theorems for δ-graphs to the Schrödinger operator.

3.4 A lower bound for the ground state of the
Schrödinger operator.

In the previous section, some of the results from Chapter 2 was generalized
to the Schrödinger operator. A very interesting result was that the eigen-
values of the Schrödinger operator can always be estimated from below by
the Schrödinger operator with a δ-potential, and thus a δ-graph. This makes
it very simple to prove a generalization of Theorem 2.4 for the Schrödinger
operator.
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Theorem 3.4. The first eigenvalue of the quantum graph Γ given by the
Schrödinger operator acting on a metric graph with standard conditions are
bounded from below by the square of purely imaginary solution to

k tan(kL) = −
∫

Γ
|q(x)|dx

with equality when Γ is the interval with a negative δ-potential supported at
one endpoint.

Proof. Theorem 3.3 states that the first eigenvalue of a quantum graph Γq

can be estimated from below by the first eigenvalue of a graph Γ̂q̂, where
q̂(x) = − ∫

Γ |q(x)|dx · δv(x) for some vertex v of Γ. As Γ̂ can be regarded
as a quantum graph with δ-conditions, Theorem 2.4 applies, giving that the
eigenvalues of Γ̂q̂ is bounded from below by the square of the smallest non-
negative solution to

k tan(kL) = −
∫

Γ
|q(x)|dx.

As λ0(Γ̂q̂) ≤ λ0(Γq), this is a lower bound for the original graph as well.

The idea expressed in Theorem 3.3 that λ0 of a quantum graph with the
Schrödinger operator can be approximated from below by the ground state
of a quantum graph with δ-conditions means that every lower bound for
the graph δ-conditions applies to the Schrödinger operator. It is thus pos-
sible to directly generalize any lower bound for δ-graphs without proof, e.g.
Corollary 2.1 and Corollary 2.3.

Corollary 3.1. The lowest eigenvalue of the Schrödinger operator with stan-
dard conditions, where the potential q(x) ≥ 0 are bounded from below by the
square of the smallest non-negative solution to

k tan(kL) =
∫

Γ
|q(x)|dx.

Corollary 3.2. The lowest eigenvalue of the Schrödinger operator with stan-
dard conditions acting on a graph of even degree is bounded from below by
the square of the smallest non-negative solution to

k tan
(

k
L
2

)
= −1

2

∫

Γ
|q(x)|dx.
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3.5 A generalization of the upper bound

As seen in Chapter 2, the lowest eigenvalue of a graph with δ-conditions
can be bounded from above by the sum of the strength times 1

L . An ana-
logue theorem for the Schrödinger operator would be that λ0 is bounded by
1
L

∫
Γ q(x)dx, which in fact is true. This can be proved in a similar way by

calculating the value of the quadratic form of the constant function. Recall
that there was no δ-conditions that actually would give this eigenvalue.

Consider the Schrödinger equation with the Schrödinger operator Lq0 with
the potential identicaly equal to some constant q0:

−u′′(x) + q0u(u) = λu(x).

It is easily seen that u(x) = 1/L with the associated eigenvalue λ = q0/L is
a solution. The quadratic form of Lq0 is given by

〈Lq0u, u〉 =
∫

Γ
|u′(x)|2dx + q0

∫

Γ
|u(x)|2.

The constant solution minimizes both the first and the second integral as
the constant function attains the same value in all points, it also fulfills all
continuity criteria, so it is in the domain of the form. This shows that u(x) =
1
L must be the first eigenfunction. Using this it is possible to generalize the
earlier result to a sharp bound.

Theorem 3.5. The lowest eigenvalue of a Schrödinger operator, defined us-
ing the quadratic form, is bounded from above by average value of the poten-
tial. In other words,

λ0(Γ) ≤ 1
L

∫

Γ
q(x)dx

with equality when q(x) is constant. The Schrödinger operator with constant
potential thus has the highest ground state energy subject to the integral over
the value of the potential.

Proof. The result follows from the following chain of inequalities.

λ0(Γq) = min
||u||=1

〈Lqu, u〉 ≤ 1
L〈Lq1, 1〉 ≤

(a)

1
L〈Lq01, 1〉 =

(b)

1
Lλ0(Γq0) = q0

L
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Inequality (a) follows as

〈Lq1, 1〉 =
∫

Γ
q(x)dx

≤
∫

Γ
|q(x)|dx

=
∫

Γ
q0dx

= 〈Lq01, 1〉.

Inequality (b) follows as the constant function is the first eigenfunction of
Lq0 , which was proved in the beginning of this section.

A difference between this theorem and the one giving the lower bound is that
the upper bound does not depend on the structure of the underlying graphs.
The Schrödinger operator with a constant potential thus has the same λ0
on all graphs of the same length. This is explained by a constant function
being in the domain of all operators. Another, more interesting difference is
that this upper bound is subject to the integral over the potential, not the
integral over the absolute value of the potential. This means that it takes
more information into account.
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Summary

It Chapter 2 it was shown how certain of operations on quantum graphs with
δ-conditions change their spectrum. Using this, a lower bound on the ground
state energy of δ-graphs was derived by showing that for a fixed length and
fixed sum of the strengths, the graph with the lowest eigenvalue is the interval
with all strength in one endpoint. The value is described by the equation

k tan(kL) = −|α|.
By using the simple fact that the domain of every operator of a quantum
graph contains some kind of constant function, we got the result that

λ0(Γ) ≤ 1
L

∑

i

αi.

If there exists a graph where there is equality is still an open problem.

In Chapter 3 these results was generalized to the Schrödinger operator with
standard conditions, which showed how the strengths and the potential of
the Schrödinger operator relates to each other. For the Schrödinger operator
the upper bound also became strict.

Putting these findings together gives that the ground state of δ-graphs is
bounded from above by a Schrödinger operator with standard conditions de-
fined on the same metric graph, while the ground state of the Schrödinger
operator with standard conditions is bounded from below by a δ-graph de-
fined on the same metric graph.

There are however a few questions that were not completely answered. As
the potential that maximizes the ground state energy for the Schrödinger
operator is the constant, and the eigenvalues of a δ-graph is known to reduce
when the strength are concentrated to one point, it becomes reasonable to
think that the eigenvalue of a δ-graph can be made arbitrary close to

1
L

∑

i

αi.
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by distributing the strengths over sufficiently many vertices scattered over
the graph. If this is true, and what distribution the vertices should have, are
some of the questions left unanswered by this thesis.

Another question that is not touched on at all in this thesis is graphs with
other matching conditions. Even though most of the theorems are built on
specific properties of δ-graph, the same ideas could probably be applied to
other kinds of graphs as well, as well as to Schrödinger operators with other
conditions.
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Appendix A

Self adjoint operators

Let L be any operator defined on an dense subset Dom(L) of a Hilbert space
H. If 〈Lu, v〉 is a bounded functional with respect to u ∈ Dom(L), where v
is some element in H, then there exists an f ∈ H such that

〈u, fv〉 .

That the functional is bounded means that

| 〈Lu, v〉 | ≤ Cv||u||

for all u ∈ Dom(L).

The operator that takes v to fv is called the adjoint of L and is denoted by
L∗. The domain of the adjoint is all v for which the functional is bounded.
If Dom(L) = Dom(L∗) and Lu = L∗u for all u ∈ Dom(L), then L is said to
be self-adjoint.

Self-adjoint operators corresponds in some way to self-adjoint matrices in the
sense that many of the properties of the matrices can be transfered to them.
One of the most important property is that for any self-adjoint operator L
on an infinite (finite) Hilbert space, it is possible to choose the eigenvalues of
L orthogonal such that they span the whole H. This means that any u ∈ H
can be expressed as

u =
∞∑

n=0
〈u, un〉

where {un}∞
n=0 is the sequence of orthogonal eigenfunctions of L.
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