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Abstract

Cyclic homology is related to many mathematical areas as algebraic topology, K-theory
and differential geometry. In this thesis we will investigate some of the relations between
cyclic homology and T-equivariant cohomology of free loop spaces. In particular we will
prove that HC−

∗ (S•(X)) ∼= H∗
T(LX) for simply connected spaces X.
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Introduction

Cyclic homology is a homology theory for cyclic objects and has relations to many math-
ematical branches and illuminates interactions between these branches. For instance,
cyclic homology has connections to algebraic topology (in particular T-equivariant
(co)homology), differential geometry (cyclic homology generalizes the de Rham coho-
mology) and algebraic K-theory (in particular Lie algebra homology of matrices).

In 1983, John D.S. Jones proved in [Jon] that, given a simply connected topological
space X, the negative cyclic homology of the singular cochain algebra of X, denoted by
HC−

∗ (S•(X)), is isomorphic to the T-equivariant cohomology of the free loop space of
X, denoted by H∗

T(LX).

The purpose of this thesis is to reproduce the proof of this theorem and make it ac-
cessible for a broader public by giving giving necessary background, including theory
for (co)simplicial and (co)cyclic objects and some theory for equivariant (co)homology.
Some of the proofs are completely my own, and others are inspired by other proofs but
where I do it in my own way.

The thesis consist of three chapters (and an appendix). The first chapter deals with
(co)simplicial and (co)cyclic objects. In sections 1.4. and 1.5. we prove the existence
of T-actions on realizations of (co)cyclic spaces, without using any category theory (in
contrast to how it is proved usually).

The second chapter is the most technical part. Here we introduce Hochschild and cyclic
homology for simplicial and cyclic complexes, respectively and prove some homotopy-like
conditions.

In the third we introduce and motivate the notion of equivariant (co)homology, and
go into details on how to construct contractible spaces with free G-action. The chapter
ends with proving the main theorem and giving some applications of it.
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(Co)Simplicial and (Co)Cyclic objects

1.1. (Co)Simplicial Objects

Definition 1.1.1. The simplicial category ∆ is the category whose objects are the finite
ordered sets [n] = {0 < 1 < · · · < n}, n ∈ Z≥0, and whose morphisms are generated by

(a) face maps δi : [n] → [n + 1], 0 ≤ i ≤ n + 1, where δi is the unique injective
non-decreasing map that misses i ∈ [n+ 1] (i.e. i 6∈ Im δi), and

(b) degeneracy maps σi : [n + 1] → [n], 0 ≤ i ≤ n, where σi is the unique surjective
non-decreasing map that repeats i.

n + 1

n

44

i + 1

i

44

i

i − 1 // i − 1

0 // 0

δi : [n] → [n + 1]

n + 1

** n

i + 1

))
i // i

0 // 0

σi : [n + 1] → [n]

One can show that all non-decreasing maps [m] → [n] are generated by the faces and
the degeneracies described above.

Lemma 1.1.2. The faces δi and the degeneracies σi in ∆ satisfies the relations

δjδi = δiδj−1 for i < j,
σjσi = σiσj+1 for i ≤ j,

σjδi =





δiσj−1 if i < j
id[n] if i = j or i = j + 1

δi−1σj if i > j + 1.

(1.1)

Proof. Each of the equalities can be verified by just applying both sides of that equality
on arbitrary elements of their domain and checking that the image coincide. �

Definition 1.1.3. A simplical object X. in a category C is a covariant functor

X. : ∆
op → C.
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We will set Xn := X([n]), di := X(δi) : Xn → Xn−1 and si := X(σi) : Xn → Xn+1,
0 ≤ i ≤ n. Here di and si are called the faces and the degeneracies of X., respectively.
Note that that the faces and degeneracies of X. will satisfy the opposite relations of
(1.1), i.e.

didj = dj−1di for i < j,
sisj = sj+1si for i ≤ j,

disj =





sj−1di if i < j
idXn if i = j or i = j + 1
sjdi−1 if i > j + 1.

(1.2)

A cosimplicial object in a categeory D is a covariant functor

Y · : ∆→ D.

We will set Y n := Y ·([n]), δi := Y ·(δi) : Y n → Y n+1, 0 ≤ i ≤ n + 1 and
σj := Y (σj) : Y n → Y n−1, 0 ≤ j ≤ n − 1. Here δi and σi are called the faces and
the degeneracies of Y ·, respectively. Obviously the faces and degeneracies of Y · will
satisfy the relations of (1.1).

Lemma 1.1.4. (a) A collection of objects X0, X1, . . . in a category C with maps di :
Xn → Xn−1 and si : Xn−1 → Xn, that satisfies the relations of (1.2) defines a simplicial
object X. : ∆

op → C, where X.([n]) = Xn, X.(δi) = di and X.(σi) = si.

(b) A collection of objects Y 0, Y 1, . . . with maps δi : Y
n → Y n+1 and σj : Y

n+1 → Y n,
that satisfies the relations of (1.1) defines a cosimplicial object.

Proof. See Proposition 8.1.3 and Corollary 8.1.4 in [Wei]. �

Example 1.1.5. For any group G, let En(G) := Gn+1 and let di : En(G) → En−1(G)
and si : En−1(G)→ En(G) be given by

di(g1, . . . , gn+1) =

{
(g2, . . . , gn+1) if i = 0
(g1, . . . , gigi+1, . . . , gn+1) if i = 1, . . . , n,

and si(g1, . . . , gn) = (g1, . . . , gi, 1, gi+1, . . . , gn)

One can easily check that di and si satisfies relations of (1.2), so E.(G) will therefore,
by Lemma 1.1.4. (a), define a simplicial object E.(G) : ∆

op → Grp.

Example 1.1.6. Let ∆n = {(t0, . . . , tn) ∈ Rn+1 | ti ≥ 0, t0 + · · · + tn = 1} be the
geometric n-simplex, and let δi : ∆

n → ∆n+1 and σi : ∆
n → ∆n−1 be given by

δi(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn) i = 0, . . . n+ 1
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σi(t0, . . . , tn) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn) i = 0, . . . n− 1.

One can easily check that δi and σi satisfies the relations of (1.1), and hence ∆· : ∆→
Top defines a cosimplicial object according to Lemma 1.1.4. (b).

Definition 1.1.7. Given a simplicial space X. : ∆ → Top, one defines the geometric
realization |X.| of X. as the quotient

(
∐

Xn ×∆n)/ ∼

where ∼ is the equivalence relation generated by the relations (ϕ∗(x), y) ∼ (x, ϕ∗(y))
for any x ∈ Xn, y ∈ ∆m, and any ϕ ∈ Hom∆([m], [n]), and where ϕ∗ = X.(ϕ) and
ϕ∗ = ∆·(ϕ) (note that we said that the equivalence relation is generated by the relation
(ϕ∗(x), y) ∼ (x, ϕ∗(y)), and not that the relation itself is an equivalence relation).

Definition 1.1.8. We say that an element x ∈ Xp is non-degenerated if x cannot be
written on the form six

′. An element (x, u) ∈ Xp ×∆p is non-degenerated if x is non-
degenerated and u is an interior point of ∆p.
Now consider following lemma:

Lemma 1.1.9. Each point (x, u) ∈ Xp×∆p, p ∈ Z≥0 is, under the equivalence relation
∼, equivalent to a unique non-degenerated element (y, v) ∈ Xq ×∆q.

Proof. See Lemma 14.2 in [Ma2].

Example 1.1.10. For any space K that can be triangulated (i.e. is homeomorphic to
a union of a collection of geometric simplexes that only intersects in common faces (see
Definition 6.1 in [Arm]), we can order the vertices of that triangulation. Now there is
an associated simplicial set K. where

Kn =

{
(vk0 , . . . , vkn)

∣∣∣ vk0 , . . . , vkn are the vertices of some simplex of triang(K)
and k0 ≤ · · · ≤ kn (with repetition of vertices allowed)

}

and where
di(vk0 , . . . , vkn) = (vk0 , . . . , v̂ki , . . . , vkn)

and
si(vk0 , . . . , vkn−1) = (vk0 , . . . , vki , vki , . . . , vkn−1)

(in other words, di removes the i’th element, while si repeats the i’th element).

Obviously if (vk0 , . . . , vkn) ∈ Kn has no repeated vertices then it is non-degenerated (and
vice versa) and hence for every inner point u ∈ ∆n, we have that

(
(vk0 , . . . , vkn), u

)
is non

degenerate, and hence not identified with any other point than itself in
∐

i≤nKi×∆i (by
the lemma above). Hence for every n-simplex in the triangulation there is a correspond-
ing n-simplex in |K.| (and vice versa since the degenerated elements does not contribute
with geometric simplexes), and we get identification in such a way that K ∼= |K.|.
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1.2. (Co)Cyclic Objects

Definition 1.2.1. The cyclic category ∆C has the same objects as∆, and its morphisms
are generated by the ordinary face operators δi : [n]→ [n+ 1], the ordinary degeneracy
operators σi : [n] → [n − 1] and cyclic operators τn : [n] → [n], subject to the following
relations:

τnδi = δi−1τn−1 for 1 ≤ i ≤ n ,
τnδ0 = δn ,
τnσi = σi−1τn+1 for 1 ≤ i ≤ n ,
τnσ0 = σnτ

2
n+1 ,

τn+1
n = id[n] .

(1.3)

One should not think of morphisms of ∆C as a morphism of sets, since for sets, we have
that HomSet([n], [0]) = ∗, while in the cyclic category Hom∆C([n], [0]) contains n + 1
morphisms. The relations above is motivated by the fact that the cyclic permutation
(a0, . . . , an) 7→ (a1, . . . , an, a0) satisfies the relations of (1.3).

n

��

n

n − 1

44

1

0

44

0

Definition 1.2.2. A cyclic object in a category C is a covariant functor

X. : ∆Cop → C.

We set Xn := X.([n]), di := X.(δi), si := X.(σi) and tn := X.(τn).

A cocyclic object in a categeory D is a covariant functor

Y · : ∆C → D.

We set Y n := Y ·([n]), δi = Y ·(δi), σi := Y ·(σi) and τn = Y ·(τn).

Lemma 1.2.3. (a) A collection of objects X0, X1, . . . in a category C with maps di :
Xn → Xn−1, si : Xn → Xn+1 and tn : Xn → Xn, that satisfies the relations of (1.2) and
the opposite relations of (1.3), i.e.

ditn = tn−1di−1 for 1 ≤ i ≤ n ,
d0tn = dn ,
sitn = tn+1si−1 for 1 ≤ i ≤ n ,
s0tn = t2n+1sn ,
tn+1
n = idXn ,

(1.4)

defines a cyclic object X. : ∆C → C, where X.([n]) = Xn, X.(δi) = di, X.(σi) = si and
X.(τn) = tn.
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(b) A collection of objects Y 0, Y 1, . . . with maps δi : Y n → Y n+1, σi : Y n → Y n−1

and τn : Y n → Y n, that satisfies the relations of (1.1) and (1.3) defines a cocyclic object
Y · : ∆C → C, where Y ·([n]) = Y n, Y ·(δi) = δi, Y

·(σi) = si and Y
·(τn) = τn.

Proof. See Proposition 9.6.4 in [Wei]. �

Lemma 1.2.4. Every morphism θ in∆C can be decomposed as θ = δi1 · · · δiaσj1 · · ·σjbτkn ,
where ia ≤ · · · ≤ i1 and j1 < · · · < jb.

Proof. This follows directly from the relations in (1.1) and (1.3). �

We present a cyclic space that will be of main importance in this thesis.

Example 1.2.5. For a fixed n ∈ Z≥0, we construct the cyclic set λn. , where
λn. ([m]) = Hom∆C([m], [n]), and di, si and ti are given by

diϕ = ϕ ◦ δi, siϕ = ϕ ◦ σi, tnϕ = ϕ ◦ τn

(easy to check that the relations in (1.2) and (1.4) are satisfied).

Example 1.2.6. Given an algebra A, we construct a cyclic module A. where An =
A⊗(n+1) and

di(a0, . . . , an) =

{
(a0, . . . , aiai+1, . . . , an) 0 ≤ i ≤ n− 2

(−1)|an|(|a0|+···+|an−1|)(ana0, a1, . . . , an−1) i = n

si(a0, . . . , an) = (a0, . . . , ai, 1, ai+1, . . . , an)

tn(a0, . . . , an) = (−1)n+|an|(|a0|+···+|an−1|)(an, a0, a1, . . . , an−1)

In this thesis we will be in particular interested in algebras on the form S∗(X) with
multiplication given by the cup product (see [Hat]).

1.3. T-action on realizations of cyclic spaces

In this thesis we will regard the circle as the topological group T = {z ∈ C | |z| = 1},
and will prove that there is a T-action on realizations |X.| of cyclic spaces X.. This is
done by introducing a new type of realization ≀X.≀ which is equipped with an T-action,
and then showing that ≀X.≀ is homeomorphic to |X.| (and therefore there is an T-action
on |X.| as well).
The equivalence of these two realizations is often shown using category theory. In this
section the equivalence will be shown without using any category theory, which is the
own work of the author.

We start by presenting a cocyclic set that is of importance in this section.
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Example 1.3.1. Let Λ·, be the cocyclic space Λ·([n]) = T × ∆n, where the face and
degeneracy maps are given by the products of the identity of T with the usual face and
degeneracy maps of ∆· (see Example 1.1.6.), and where τn is given by

τn(z, u0, . . . , un) = (ze−i2πu0 , u1, . . . , un, u0).

One verifies that Λ· is a cocyclic space by verifying that the relations of (1.1) and (1.3)
holds for δi, σi and τn

Definition 1.3.2. We introduce a new kind of geometric realization of cyclic spaces
given by the quotient

≀X.≀ =
(∐

Xn × Λn
)
/ ≈

where ≈ is generated by all relations (θ∗(x), (z,u)) ≈ (x, θ∗(z,u)) where x ∈ Xn,
(z,u) ∈ Λm (here z is the T-coordinate, an u is the ∆m-coordinate) and
θ ∈ Hom∆C([m], [n]).

This realization has a induced T-action on ≀X.≀ given by w.(x, (z,u)) = (x, (wz,u)),

(where w ∈ T and (x, (z,u)) ∈ ≀X≀). This action is well-defined as the action commutes
with the faces, the degeneracies and the cyclic operators.

Definition 1.3.3. Given a cyclic space X., we say that a pair of elements (x1, (z1,u1)),
(x2, (z2,u2)) ∈

∐
Xn × Λn are directly equivalent (or d.e.) via θ if there is some

θ ∈ Mor∆C such that x1 = θ∗x2 and (z2,u2) = θ∗(z1,u1). Note that d.e. elements are
≈-equivalent, but that the reverse is not true in general.

We say that map Ψ :
∐
Xn × Λn →∐

Xn × Λn preserves d.e. if whenever (x1, (z1,u1))
and (x2, (z2,u2)) are d.e., then Ψ(x1, (z1,u1)) and Ψ(x2, (z2,u2)) are d.e..

Theorem 1.3.4. There is a homeomorphism of spaces ≀X.≀ ∼= |X.|.

Proof. The idea of the proof can be explained in three main ideas.

1. We construct a map Ψ :
∐
Xn × Λn →∐

Xn × ({1} × int(∆n)) such that

i) (x, (z,u)) ≈ Ψ(x, (z,u))

ii) Ψ preserves d.e.

iii) Ψ restricted to
∐
Xn × ({1} × int(∆n)) is the identity map

In a similar manner we construct a map Ψ′ :
∐
Xn ×∆n → ∐

Xn × int(∆n) that
satisfies i).

2. Since (x, (z,u)) ≈ Ψ(x, (z,u)) ∈ Xm× ({1}× int(∆m)) ∼= Xm× int(∆m) (for some
m ∈ Z≥0), we can identify ≀X.≀ with the quotient

(
∐

Xn × int(∆n))/ ≈

11



where (x,u) ≈ (x′,u′) iff (x, (1,u)) ≈ (x′, (1,u′)).

In a similar manner it follows that |X.| can be identified with

(
∐

Xn × int(∆n))/ ∼

3. Now as Ψ preserves d.e., if (x1, (z1,u1)) and (x2, (z2,u2)) are d.e., then
Ψ(x1, (z1,u1)) = (x′1, (1,u

′
1)) and Ψ(x2, (z2,u2)) = (x′2, (1,u

′
2)) are d.e..

As u′
1 and u′

2 are inner points (i.e., none of their coordinates are zero), we must
have that (x′1, (1,u

′
1)) and (x′2, (1,u

′
2)) are d.e. via morphisms in ∆, since applying

τn will result on a T-coordinate different from 1 (this is not true in general if u′
1

and u′
2 are boundary points, which is easy to check). This means in particular

that (x′1,u
′
1) ∼ (x′2,u

′
2).

4. Now assume that (x, (1,u)) ≈ (x′, (1,u′). Then there exists a chain of direct
equivalences

(x, (1,u))
d.e.≈ (x1, (z1,u1))

d.e.≈ · · · d.e.≈ (xn, (zn,un))
d.e.≈ (x′, (1,u′))

Applying Ψ on this chain yields the following chain of direct equivalences

(x, (1,u)) = Ψ(x, (1,u))
d.e.≈ (x1, (z1,u1))

d.e.≈ · · ·

· · · d.e.≈ (xn, (zn,un))
d.e.≈ Ψ(x′, (1,u′)) = (x′, (1,u))

By 3. above it follows that Ψ(xk, (zk,uk)) and Ψ(xk+1, (zk+1,uk+1)) are d.e. via
morphisms in ∆. In particular that means (x, (1,u)) and (x′, (1,u′)) are equiva-
lent via morphisms in ∆, and hence we know that two elements of

∐
Xn× int(∆n)

are identified under ≈ only if they are identified under ∼. On the other hand,
if two elements are identified under ∼ then they are also identified under ≈
(as Mor∆ ⊂ Mor∆C). Hence ∼ and ≈ are the same equivalence relations on∐
Xn × int(∆n), and therefore it follows from 2. that ≀X.≀ ∼= |X.|.

Now in order to complete the proof we have to define Ψ which needs some preparing
lemmas.

Lemma 1.3.5. Assume that u ∈ ∆n is a point with zero-coordinates at positions i1 <
· · · < iℓ. Then u = δiℓ · · · δi1u′ for some inner point u′ ∈ ∆n−ℓ. Let Ψ1 :

∐
Xn × Λn →∐

Xn×Λn be the map sending (x, (z,u)) to the ≈-equivalent element (di1 · · · diℓx, (z,u′).
Ψ1 preserves d.e..

Proof. We just need to prove the cases when (x1, (z1,u1)) and (x2, (z2,u2)) are d.e. via
τn, δi and σi, since every morphism in ∆C is a composition of these.
We prove the case of direct association via τn. Assume we have only a zero in position

i in (tnx, (z,u)), i.e. (tnx, (z, u)) = (tnx, (e
−i2πũ, u0, . . . , ui−1, 0, ui+1, . . . , un)).
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Then the d.e. element (x, τn(z, u)) = (x, (ei2π(ũ+u0), u1, . . . , ui−1, 0, ui+1, . . . , un, u0))
has a zero in position i− 1.

Now Ψ1(tnx, (z,u)) = (ditnx, (e
−i2πũ, u0, . . . , ui−1, ui+1, . . . , un)) and Ψ1(x, τn(z,u)) =

(di−1x, (e
−i2πũ+u0 , u1, . . . , ui−1, ui+1, . . . , un, u0)) are obviously d.e. via τn−1.

If there would be several zeros, then we repeat the process above. For δi and σi we
prove the assertion in an analogous way as above. �

Lemma 1.3.6. Given a cyclic space X., for any element (x, (e−i2πũ, u0, . . . , un)) ∈ Xn×
Λn, there is some k < n + 1 such that (t−k

n x, τkn(e
−i2πũ, u0, . . . , un)) is on the form

(y, (e−i2πṽ, v0, . . . , vn)) where ṽ ≤ vn. Obviously, these two elements are equivalent
under ≈ (even d.e. via τkn)

Proof. We can w.l.o.g. assume that ũ ∈ [0, 1). We introduce a partial order on R/Z
by considering the order of the representatives in [0, 1) (so, for instance, 0.5 >

R/Z
2 as

0.5 > 0 in [0, 1)).

Assume to get a contradiction that there is some ũ ∈ [0, 1) and (u0, . . . , un) ∈ ∆n

such that

ũ > un in R (⋆)

ũ+ u0 > u0 in R/Z (⋆⋆)

ũ+ u0 + u1 > u1 in R/Z (⋆ ⋆ ⋆)

...

ũ+ u0 + . . .+ un−1 > un−1 in R/Z (⋆ · · · ⋆)

From (⋆⋆) we get that ũ+ u0 < 1 in R (otherwise ũ+ u0 = 1 + ε, where ε < u0, which
gives ũ+ u0 =

R/Z
ε <

R/Z
u0, contradicting (⋆⋆)). This is equivalent to

ũ < 1− u0 in R.

Now we put û := ũ + u0, which by above has the property û ∈ [0, 1). Hence (⋆ ⋆ ⋆) is
reduced to an inequality of the form û + u1 > u1, where û ∈ [0, 1), and hence we can
repeat the argument above to get

û < 1− u1 ⇐⇒

⇐⇒ ũ < 1− u0 − u1 in R.

Repeating this enough many times will yield the inequality

ũ < 1− u0 − u1 − . . .− un−1 = un in R,
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which contradicts (⋆).
From the contradiction we conclude that either ũ ≤ un or that there is some j ∈ Z;
0 ≤ j ≤ n− 1, such that

ũ+ u0 + · · ·+ uj ≤ uj .

Hence
(t−j−1

n x, (e−i2π(ũ+u0+···+uj), uj+1, . . . , un, u0, . . . , uj))

is an element on the form (y, (e−i2πṽ, v0, . . . , vn)) where ṽ ≤ vn and which is identified
with (x, (e−i2πũ, u0, . . . , un)) under ≈. This completes the proof. �

Lemma 1.3.7. Let Ψ2 :
∐
Xn×Λn →∐

Xn×Λn be a map sending an element (x, (z, u))
to the ≈-equivalent element (t−k

n x, τkn(z, u)) = (y, (e−i2πṽ, v0, . . . , vn)), where ṽ ≤ vn and
k is as small as possible (such map exists by previous lemma). Ψ2 preserves d.e.

Proof. Let (x, θ∗(z, u)) and (θ∗x, (z, u)) be d.e. via θ ∈ Hom∆C([m], [n]).
Now Ψ2(x, θ∗(z, u)) = (t−k

n x, τknθ∗(z, u)) and Ψ2(θ
∗x, (z, u)) = (t−j

m θ∗x, τ jm(z, u)) are
obviously d.e. via τknθτ

−j
m . �

Lemma 1.3.8. Let L ⊆ ∐
Xn × Λn be the set of all elements of the form

(x, (e−i2πũ, u0, . . . , un)), where ũ ≤ un and where (u0, . . . , un) ∈ ∆n is an inner point.
Now define Ψ3 : L→ ∐

Xn × Λn, which takes an element (x, (e−i2πũ, u0, . . . , un)) to its
≈-equivalent element (tn+1 ◦ sn(x), (1, ũ, u0, . . . , un−1, un − ũ)).
If (x1, (z1, u1)) and (x2, (z2, u2)) are d.e., then Ψ3(x1, (z1, u1)) and Ψ3(x2, (z2, u2)) are
also d.e..

Proof. We have by Lemma 1.2.4. that every morphism ϕ can be decomposed as
ϕ = δi1 · · · δiaσj1 · · ·σjbτkn , where ia ≤ · · · ≤ i1 and j1 < · · · < jb. Now if two ele-
ments of L are d.e. via some θ, then θ is on the form σj1 · · ·σjbτkn , i.e. without any faces,
since faces takes the u-coordinate to boundary points.

Case 1: θ is on the form σj1 · · ·σjb .
We check that Ψ3(six, (e

−i2πũ, u0, . . . , un)) and Ψ3(x, σi(e
−i2πũ, u0, . . . , un)) are d.e.

in the same manner as in Lemma 1.3.5..

Case 2: θ is on the form σj1 · · ·σjbτkn .
If this is the case then θ has to be on the form

σ · σn−kσn−k+1 · · ·σn−1τ
k
n ,

where σ is a composition of degeneracies.
The reason why θ has to be on this form is because after applying τkn on
(e−i2πũ, u0, . . . , un) we get (e−i2π(ũ+u0+···+uk−1), uk, . . . , un, u0, . . . , uk−1). Now the only
way to get the last coordinate of u to be greater than or equal to ũ+ u0 + · · ·+ uk−1 is
to at least add the last k + 1 u-coordinates.
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Now by Case 1, it is enough to check that Ψ3 preserves direct equivalence for elements
that are d.e. via σn−kσn−k+1 · · ·σn−1τ

k
n . This is done again in the same manner as in

Lemma 1.3.5.. �

Continuation of the proof of Theorem 1.3.5. Now we can define Ψ as the compo-
sition Ψ := Ψ1Ψ3Ψ2Ψ1 :

∐
Xn × Λn →∐

Xn × ({1} × int(∆n)). As Ψ1,Ψ2,Ψ3 satisfies
properties 1 i) and ii), we conclude that Ψ does that as well. It’s also easy to check that
Ψ satisfies condition 1 iii).

We also set Ψ′ := Ψ1 (which satisfies 1 i)). This ends the proof.
�

Corollary 1.3.9. There is an T-action on |X.|.

Proof. Since |X.| ∼= ≀X.≀ (by Theorem 1.3.5.), it is sufficient to prove that there is an

T-action on ≀X.≀. Let f : T× ≀X.≀→ ≀X.≀ be given by

w × (x, (z, u0, . . . , um)) 7−→ (x, (wz, u0, . . . , un)) .

One can easily check that f commutes with the face, degeneracy and cyclic maps of Λ·,
which makes f well-defined, and will therefore define a T-action on ≀X.≀. �

1.4. Realization of cosimplicial and cocyclic spaces

In this section we define realizations of cosimplicial spaces, and prove that there is an
T-action on realizations of cocyclic spaces.

We will deal with spaces of continuous maps HomTop(X,Y ), equipped with the so-called
compact-open topology. Given a compact subset K ⊆ X and an open set U ⊆ Y , let
V (K,U) := {f ∈ HomTop(X,Y ) | f(K) ⊆ U}. The subsets V (K,U) defines a sub-basis
for the compact-open topology on HomTop(X,Y ). More details may be found in the
appendix of [Hat].

Definition 1.4.1. The geometric realization |Y ·| of a cosimplicial space Y · is the sub-
space of

∏
HomTop(∆

n, Y n) consisting of all sequences αn : ∆n → Y n such that the
diagram

∆n αn //

ϕ∗
��

Y n

ϕ∗
��

∆m
αm
// Y m

commutes for all ϕ ∈ Hom∆([n], [m]).

Theorem 1.4.2. There is a T-action on realizations of cocyclic spaces.
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Proof. The arguments here are similar to the arguments given in the previous section.
We will define a new kind of geometric realization ≀Y ·≀ of cocyclic spaces Y ·, where ≀Y ·≀
is the subspace of

∏
HomTop(Λ

n, Y n) consisting of all sequences α̃n : Λn → Y n such
that the diagram

Λn α̃n //

θ∗
��

Y n

θ∗
��

Λm
α̃m

// Y m

commutes for all θ ∈ Hom∆C([n], [m]).

Claim: A sequence {α̃n} ∈ ≀Y ·≀ is completely determined by its values on elements on
the form (1, u0, . . . , un) (i.e. with the T-coordinate fixed at 1).

Proof. For any element (e−2πũ, u0, . . . , un) ∈ Λn there is some k ∈ Z such that
τkn(e

−2πũ, u0, . . . , un) = (e−2πṽ, v0, . . . , vn), where ṽ ≤ vn (see the proof of Lemma 1.3.6.).
Hence

(e−2πũ, u0, . . . , un) = τ−k
n ◦ σn ◦ τn+1(1, ṽ, v0, . . . , vn−1, vn − ṽ) .

Since {α̃n} has to satisfy the commuting property above, it follows that

α̃n(e
−2πũ, u0, . . . , un) = τ−k

n ◦ σn ◦ τn+1(α̃n+1)(1, ṽ, v0, . . . , vn−1, vn − ṽ) . N

Now there is an obvious map Ψ : |Y ·| → ≀Y ·≀ where {αn} is sent to {α̃n} where

α̃n

∣∣
{1}×∆n = αn

(this determines {α̃n} completely by the claim above).

Now let Φ : ≀Y ·≀→ |Y ·| be the map sending {α̃n} to {αn} where

αn = α̃n

∣∣
{1}×∆n .

One can easily check that Ψ and Φ are continuous and each others inverses giving that

|Y ·| ∼= ≀Y ·≀ .
Now by the homeomorphism above, it is enough to show that there is an T-action on
≀Y ·≀ in order to complete the proof.

Define a T-action on ≀Y ·≀, where for any w ∈ T we set w.{α̃n} = {w.α̃n} where

w.α̃n(z,u) = α̃n(wz,u)

for any (z,u) ∈ Λn. This completes the solution. �
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1.5. Realization of λn[m] = Hom∆C([m], [n]).

For any n ∈ Z≥0 there is a cyclic space λ
n
. : ∆Cop → Top where λn[m] = Hom∆C([m], [n])

is endowed by the discrete topology and with di(ϕ) = ϕ ◦ δi, si(ϕ) = ϕ ◦ σi and
tm(ϕ) = ϕ ◦ τm.

In this section we will prove that |λn. | = T ×∆n which is a result we will be in need
of later on. In order to do that we need following lemma.

Lemma 1.5.1. Let X. be a simplicial space equipped with a G-action G ×Xn → Xn,
such that the G-action commutes with the faces and the degeneracies. Then there is an
induced G-action on |X.| and

|X./G| ∼= |X.|/G .

Proof. The induced G-action on |X.| is given by g(x, u) = (gx, u) (well-defined as the
G-action commutes with the simplicial morphisms).

Since the G-action on X. commutes with the simplicial morphisms, it doesn’t matter if
we first identify (x, ϕ∗(u)) with (ϕ∗(x), u) (i.e. realizing), and then identifying (x, ϕ∗(u))
with (gx, ϕ∗(u)) (and (ϕ∗(x), u) with (g.ϕ∗(x), u) (i.e. quoting out the G-action) or do-
ing it in the reversed order. This explains why |X./G| ∼= |X.|/G holds. �

Theorem 1.5.2. For every fixed n ∈ Z≥0 the realization of the cyclic space λn. is the
topological space Λn = T×∆n.

Proof. We start by ordering the vertices of ∆n as v0, . . . , vn where vi = (0, . . . , 0, 1, 0 . . . , 0)
(1 in the (i+ 1)-th place). Now triangulate R×∆n in the following way.

The vertex set of the triangulation is the set of all pairs (k, vi) where k ∈ Z and vi is
a vertex of ∆n. We order these vertices such that (k, vi) < (ℓ, vj) if either k < ℓ or k = ℓ
and i < j.

The geometric q-simplices of the triangulation are of two types. The first type consist
of all q-simplices that are spanned by vertices on the form

(k, vrs), (k, vrs+1), . . . , (k, vrq), (k + 1, vr0), (k + 1, vr1), . . . , (k + 1, vrs−1)

where r0 < · · · < rq (strict inequalities).
The second type consist of all q-simplices that are spanned by vertices on the form

(k, vrs), (k, vrs+1), . . . , (k, vrq−1), (k + 1, vr0), (k + 1, vr1), . . . , (k + 1, vrs)

where r0 < · · · < rq−1 (strict inequalities). The triangulation of R × ∆2 is visualized
here below
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Now let Σn be the simplicial set generated by this triangulation (see Example 1.1.10.).
We define an operation βq : Σ

n[q]→ Σn[q] where the vertices of βqσ are the same as the
vertices of σ except that the last vertex of σ, say (k, vs), is replaced by (k−1, vs) (which
becomes the first vertex of βqσ).

One can easily check that diβq = βq−1di−1, d0βq = dq, siβq = βq+1si−1 and s0βq =
β2q+1sq. That means that βq satisfies all relations of (1.4) but the last one. Actually

βq+1
q translates a q-simplex by −1.

Obviously, in our triangulation of R×∆n, we get geometrical simplices of all dimensions
between 0 and n + 1, but not of higher dimensions. Every geometric q-simplex where
q < n+ 1 is a face of some geometric (n+ 1)-simplex

(
(k, vr), (k, vr+1), . . . , (k, vn), (k + 1, v0) . . . (k + 1, vr)

)

(note that the geometric (n + 1)-simplices of R × ∆n has to be of the second type).

The (n+ 1)-simplex above is actually the simplex β
−k(n+2)
n+1 snβ

n−r
n ιn, where ι = 0×∆n.

Hence, as every non-degenerated (n + 1)-simplex can be generated by just using the
operations βq and si on ι, and as every q-simplex is a face of some (n + 1)-simplex, it
follows that every non-degenerated q-simplex of Σn (i.e. every geometric q-simplex of
the triangulation) can be generated using βq, si, di. Hence every simplex of Σn can bee
generated using βq, si, di.

Now compare this to the cyclic set λn. , which is generated by using di, si and tq by
id[n] ∈ λn[n] (obviously if ϕ ∈ λnq , then ϕ = ϕ∗(id[n])). Hence λn is obtained from Σn

by identifying βq+1
q with the identity. Define a Z-action Z × Σn[q] → Σn[q] given by

n.σ = β
n(q+1)
q (σ).

This Z-action commutes with the faces and the degeneracies, and n ∈ Z acts on a
simplex by translating it −n steps in the Z-direction. The induced Z-action on the
realization |Σn

. | = R×∆n translates every point by −n in the R-direction.
Obviously, quoting out the action of Z on Σn

. is equivalent to identifying βq+1
q with
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the identity, which is, by previous reasoning, the cyclic space λn. . Hence

|λn. | = |Σn
. /Z| = |Σn

. |/Z = T×∆n

(the third equality follows from the previous lemma). �
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Hochschild and Cyclic homology

2.1. Hochschild homology

Often Hochschild homology is presented as a homology theory for algebras. However in
[Jon], J.D.S. Jones defines Hochschild homology for simplicial complexes over a ring R,
which we will do in this thesis as well.

In order to define Hochschild homology we need the notion of double complexes of
R-modules (and the total complexes of these).

Definition 2.1.1. A double complex of R-modules is a collection of R-modules Cn,m

indexed by Z×Z together with vertical differentials dv : Cn,m → Cn−1,m and horizontal
differentials dh : Cn,m → Cn,m−1 such that d2v = d2h = dvdh + dhdv = 0.

The total complex of C∗∗, denoted by TotC∗∗ is a chain complex with

TotnC∗∗ =
∏

n=p+q

Cp,q

and with a differential d := dv + dh (sometimes called the total differential).

Definition 2.1.2. Given simplicial chain complex of R-modules, E. : ∆
op → R−Ch, we

can define a double complex C∗∗(E.), where Cp,q(E.) = E.[p]q. The vertical differential
bv : E.[p]q → E.[p]q−1 is the ordinary differential of E.[p] and the horizontal differential
is given by (−1)qbh, where bh : E.[p]q → E.[p− 1]q is given by bh =

∑
(−1)idi.

The total complex of a of C∗∗(E.) is called the Hochschild complex of E. and is de-
noted by C∗(E.), and the total differential b = bv + (−1)qbh is called the Hochschild
boundary. The homology of C∗(E.) is called the Hochschild homology of E. is denoted
by HH∗(E.).

Example 2.1.3. This example will explore how the Hochschild homology as a homology
theory for algebras is related to Hochschild homology as a homology theory for simplicial
complexes. Given a d.g. algebra A, let A. = A,A⊗2, . . . be the simplicial complex
described in Example 1.2.6.. Then the Hochschild homology, viewed as a homology
theory for simplicial complexes, of A. will coincide with the Hochschild homology, viewed
as a homology theory for algebras, of A (see § 5.3 in [Lo1]).

Example 2.1.4. A very common homology theory for topological spaces is the singular
homology theory. Given a topological space U , the singular chain complex of U , de-
noted by S∗(U), is a chain complex with Sn(U) being the free R-module generated by
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all continuous maps α : ∆n → U , and with differential ∂α =
∑

(−1)iα ◦ δi, where δi
are the faces of the cosimplicial space ∆· (see Example 1.1.6.). The homology of S∗(U)
is denoted by H∗(U) and is called the singualar homology of U (singular homology are
treated in more detail in [Hat]). One can show that S∗ is a functor from the category of
topological spaces to the category of chain complexes of R-modules (given that we have
fixed some ring R).

Now to any simplicial space X. there is an associated simplicial chain complex S∗(X.) =
S∗(X0), S∗(X1), . . . of singular chain complexes (with faces and degenracies equal to
S∗(di) and S∗(si) respectively). Hence the Hochschild complex of S∗(X.) is the total
complex of

...

��

...

��

...

��

S2(X0)

∂
��

S2(X1)

∂
��

bhoo S2(X2)

∂
��

bhoo · · ·oo

S1(X0)

∂
��

S1(X1)

∂
��

−bhoo S1(X2)

∂
��

−bhoo · · ·oo

S0(X0) S0(X1)
bhoo S0(X2)

bhoo · · ·oo

We will denote the total homology of this double complex by HH(S∗(X.)). The goal
of this section is to establish an isomorphism HH(S∗(X.)) ∼= H∗(|X.|), given that X.

satisfies some conditions. The author could not find a proof for this isomorphism in the
literature, so a proof will be offered, by using other theorems that will be stated without
proof.

Definition 2.1.5. A bisimplicial object X.. in a category C is a bigraded sequence of
objects Xm,n in C together with horizontal faces and horizontal degenracies (dhi : Xm,n →
Xm−1,n and shi : Xm,n → Xm+1,n) that satisfies the simplicial relations in (1.2), as well as
vertical faces and vertical degeneracies (dvi : Xm,n → Xm,n−1 and svi : Xm,n → Xm,n+1)
that also satisfies the simplicial relations in (1.2).
This is equivalent to a covariant functor X.. : ∆

op ×∆op → C.

Lemma 2.1.6. For any CW-complex X, S∗(X) is a simplicial space and there is a
homotopy equivalence ϕ : |S∗(X)| → X given by

Sn(X)×∆n ∋ (f, p) 7−→ f(p) ∈ X

Proof. The second theorem of § 16.2 in [Ma2] together with Theorem 4.5 (Whitehead
theorem) in [Hat] will give the desired result. �
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Lemma 2.1.7. Given a bisimplicial R-module C.., let diag(C..) be the chain complex
with diagn(C..) = Cn,n in degree n and with differential d =

∑n
i=0(−1)idi where di =

dhi d
v
i . For any simplicial space X., we have that

H(Tot(C∗∗(S•(X.)))) = H(diag(C∗∗(S•(X.))))

Note that the left-hand side is the Hochschild homology of S∗(X.). Note also that
C∗∗(S•(X.) can be viewed as a bisimplicial set, since S∗(Xk) it self is a simplicial set
(see Lemma 2.1.6 or look forward for Definition/Lemma 2.3.2. where the simplicial
structure is explicitly given).

Proof. Theorem 8.5.1 (Eilenberg-Zilber theorem) and Theorem 8.3.8 in [Wei] will to-
gether give the desired result. �

Definition/Lemma 2.1.8. A bisimplicial space X.. can be realized either by
(a) realizing the simplicial space A., where Ak = |Xk,·|, or
(b) realizing the simplicial space B., where Bk = |X·,k|, or
(c) realizing the simplicial set D., where Dk = Xk,k

All these realizations are homeomorphic.

Proof. See the lemma at page 86 in [Qui]. �

Definition 2.1.9. A simplicial space is called good if for every n ∈ Z≥1 and every
0 ≤ i ≤ n, the inclusion si(An−1) →֒ An is a cofibration.

Lemma 2.1.10. If f : X. → Y. is a simplicial map between good simplicial spaces, such
that fn : Xn

∼→ Yn is a homotopy equivalence for each n ∈ Z≥0, then |X.| ≃ |Y.|.
Proof. See Proposition A.1.(ii),(iv) in [Seg]. �

Theorem 2.1.11. LetX. be a good simplicial CW-complex. ThenH(|X.|) = HH(S∗(X.)).

Proof. Obviously C∗∗(S•(X.)) can be regarded as a bisimplicial set C.. (since S∗(Xn)
itself is a simplicial space), which can be realized in the sense of Definition/Lemma
2.1.8. (a). That means that |C..| is the realization of the simplicial space A., where
An = |S∗(Xn)|.

Now let ϕn : An = |S∗(Xn)| → Xn be the simplicial map described in Lemma 2.1.6.
We have by Lemma 2.1.6. that An = |S∗(Xn)| ≃ Xn. Hence, as An and Xn are both
CW-complexes and homotopic, we have by Lemma 2.1.10. that their realizations are
also homotopic, i.e. that |C..| = |A.| ≃ |X.|, and hence

H(|C..|) = H(|X.|) (2.1)

Now we realize C.. in the sense of Definition/Lemma 2.1.8.(c) instead. Then we have
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that |C..| is the realization of the simplicial set D. where Dn = diagn(C..) = Sn(Xn).

Hence
HH∗(S•(X.)) = H∗(Tot(C••(S⋆(X))) = H∗(diag(C••(S⋆(X.)))

= H∗(D.) = H∗(|D.|) = H∗(|C..|) = H∗(|X.|)
The second equality follows from Lemma 2.1.5., the forth equality follows from the
equivalence of simplicial and singular homology, the last equality follows from (2.1). �

2.2. Cyclic homology

In this section we introduce cyclic homology.

Definition 2.2.1. Given a cyclic chain complex E. : ∆C → R-Ch, define

hp := tp+1sp : E.[p]→ E.[p+ 1] and Np :=

p∑

i=0

(−1)iptip : E.[p]→ E.[p].

The operator

Bp = (−1)q(1− (−1)p+1tp+1)hpNp : E.[p]→ E.[p+ 1]

is called Connes’ boundary and satisfies

B2 = 0, Bb = −bB
where b = bv + (−1)qbh is the the Hochschild boundary (the equalities are proved in 1.3
and 1.4 in [LQ]).

Definition 2.2.2. Given cyclic chain complex E. : ∆op → R − Ch, let R[u] be a
polynomial ring with |u| = −2, there is an associated double complex over R[u] given by

C−(E.) = R[u]⊗ C(E.)

where C(E.) is the Hochschild complex, and the differential is ∂ = b + uB (where b is
the Hochschild boundary and B is Connes’ boundary).
If C(E) is positively graded then C−(E) = R[u]⊗ C(E) is the following complex

...

��

...

��

...

��

· · · u2C2(E)oo

b
��

uC1(E)
uBoo

b
��

C0(E)
uBoo

· · · u2C1(E)oo

b
��

uC0(E)
uBoo

· · · u2C0(E)oo

The homology of the total complex of C−(E) is called the negative cyclic homology of
E and is denoted by HC−(E).
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2.3. Shuffle product and Connes’ Boundary

In this section we introduce shuffle products in order to prove some conditions for Connes’
boundary on simplical complexes S∗(X.) and S

∗(Y ·).

We will grade the singular cochain complex S∗(U) negatively, i.e.
S−n(W ) = HomZ(Sn(W ), R) in order to make the singular cochain differential of degree
−1. We will also use following sign convention for singular cochains:

∂̂(c)(x) = (−1)|c|+1c(∂x) (2.2)

where ∂̂ is the singular cochain differential and ∂ is the singular chain differential.

A type of product called the shuffle product ∇ will be of main importance in this section.
In order to define this product we need some preparing definitions.

Definition 2.3.1. A (p, q)-shuffle is a permutation ν ∈ Sp+q such that

ν(1) < ν(2) < · · · < ν(p) and ν(p+ 1) < ν(p+ 2) < · · · ν(p+ q) .

Definition/Lemma 2.3.2. Given a topological space U , the singular chain complex
S∗(U) is a simplicial set, with faces Fi(α) = α◦δi and degeneracies Di(α) = α◦σi, where
δi and σi are the faces and the degeneracies of the cosimplicial set ∆·. We denote the
faces and the degeneracies by capital letters in order to not mix them with the ordinary
faces and degeneracies when we are dealing with singular chains complexes of simplicial
spaces (which is in fact a bisimplicial set).

Definition 2.3.3. If α ∈ Sn(U) and β ∈ Sn(V ), let α× β ∈ Sn(U × V ) be given by

(α× β)(u) = α(u)× β(u)

for any u ∈ ∆n.

Now we are ready to define the shuffle product.

Definition 2.3.4. For any topological spaces U and V , the shuffle product ∇ : Sp(U)⊗
Sq(V )→ Sp+q(U × V ), is given by the sum

∑

ν=(p,q)-shuffle

sgn(ν)Dν(p+q) · · ·Dν(p+1)α×Dν(p) · · ·Dν(1)β .

Theorem 2.3.5. (a) (The Eilenberg-Zilber theorem) The shuffle product
∇ : S∗(U) ⊗ S•(V ) → S∗+•(U × V ) is a natural chain equivalence and has a natural
homotopy inverse, called the Alexander-Whitney map

AW : Sn(U × V )→ (S∗(U)⊗ S•(V ))n .
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(b) The shuffle product satisfies following properties

(i) ∂(α∇β) = ∂(α)∇β + (−1)|α|α∇∂(β)
(ii) α∇β = (−1)|α||β|β∇α
(iii) α∇(β∇γ) = (α∇β)∇γ

Proof. For (a) see Corollary 1.4., Ch. VI in [Bre] and for (b) see Theorem 5.2. in [EM].
�

Remark 2.3.6. If α is of odd homological degree, then it follows that α∇α = 0 by (ii)
in the lemma above.

Lemma 2.3.7. Let X. be a cyclic space and let Λ· be cocyclic space defined in Example
1.3.1. Then for any α ∈ Sq(Xn) and any β ∈ Sp(Λm) and any ϕ ∈ Hom∆C([m], [n]) we
have that

πm∗(ϕ∗α∇β) = πn∗(α∇ϕ∗β)

where πk is the projection map Xk × Λk → ≀X.≀ = |X.|.
Proof. Just check that for any u ∈ ∆p+q and any (p, q)-shuffle ν that

Dν(p+q) · · ·Dν(q+1)ϕ
∗α(u)×Dν(q) · · ·Dν(1)β(u)

≈ Dν(p+q) · · ·Dν(q+1)α(u)×Dν(q) · · ·Dν(1)ϕ∗β(u)

where ≈ is the equivalence relation described in Definition 1.3.2.. �

In next definition we need the notion of slant product

/ : S−n(U × V )× Sk(U)→ S−n+k(V ) .

Let α ∈ S−n(U × V ) and b ∈ Sk(U). Then the slant product of α and b, denoted α/b,
is given by the equality α/b(c) = α(b∇c) for any c ∈ Sn−k(V ). This definition of slant
product is due to [Jon], but is not standard terminology (there are authors who defines
slant product in a different way).

Definition 2.3.8. Let W be a space with a circle action f : T×W →W , and let

I : S−n(W )→ S−n+1(W ), J : Sn(W )→ Sn+1(W )

be given by the formulas I(x) = (−1)|x|f∗(x)/z and J(x) = (−1)|x|f∗(z∇x) where z is
the fundamental 1-cycle in S1(z) (i.e. the cycle that generates H1(T) = Z).

Lemma 2.3.9. I and J satisfies

∂̂I = −I∂̂, ∂J = −J∂

and
I2 = J2 = 0 .
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Proof. We prove the properties only for I, since the properties for J can be proved in
a similar manner. We have that

(δ ◦ I(x))[α] = −f∗(x)/z[dα] = −f∗(x)[z∇dα] = f∗(x)[d(z∇α)− dz︸︷︷︸
=0

∇α]

= f∗(x)[d(z∇α)] = (−1)|x|δf∗(x)[z∇α] = (−1)|x|f∗(δx)[z∇α] = −(I ◦ δ(x))[α]
In order to prove that I2 = 0, let µ : T× T → T be the multiplication map. Obviously
µ can be regarded as a T-action on T. Since group actions G ×W → W has to satisfy
g2.(g1.w) = (g2g1).w, it follows that

f(g2, f(g1, w)) = f(µ(g2, g1), w) . (2.3)

Now
I(I(x))[α] = (−1)|x|+1I(x)[f∗(z∇α)] = −x[f∗(z∇f∗(z∇α))]

(2.2)
= −x[f∗(µ∗(z∇z︸︷︷︸

=0

)∇α)] = 0

(z∇z = 0 by Remark 2.2.2.). �

Proposition 2.3.10. Given a cyclic set X. (endowed by the discrete topology) there is
a natural chain map ϕ : C∗(S•(X.)) → S∗(|X|) and a natural map h : C∗(S•(X.)) →
S∗+2(|X.|) such that ∂h− hb = Jϕ− ϕB, where ∂ is the singular chain differential.

Proof. We start by describing the chain map ϕ : C∗(S•(X.))→ S∗(|X.|).
Let πn : X[n]× Λn → ≀X≀ = |X| be the obvious projection map. If α ∈ Sq(Xn) then

ϕ(α) = πn∗(α∇κn) where κn is the fundamental singular n-simplex (i.e. κn : ∆n →
T×∆n is given by u 7→ (1, u)).

Now let di : Xn → Xn−1 be a the i’th face map. We have that for any u ∈ ∆q+n−1 that

(di∗α∇κn−1)(u) ≈ (α∇δi∗κn−1)(u)

(see Lemma 2.3.7.). Hence

π(n−1)∗(di∗α∇κn−1) = πn∗(α∇δi∗κn−1) (2.4)

One can also easily check that ∂κn =
∑

(−1)iδi∗κn−1 where ∂ is the singular chain
differential. Hence we have that

ϕb(α) = πn∗(∂α∇κn) + (−1)nπ(n−1)∗
(∑

(−1)idi∗α∇κn−1

)

= πn∗(∂α∇κn) + (−1)nπn∗
(
α∇

∑
(−1)iδi∗κn−1

)
(2.5)

= πn∗(∂α∇κn) + (−1)nπn∗(α∇∂κn)
= ∂πn∗(α∇κ) = ∂ϕ(α)

26



showing that ϕ is a chain map. The naturality of ϕ follows from the naturality of ∇ and
πk∗ (w.r.t. cyclic maps).

Now we prove the existence of a natural map h : C∗(S•(X.)) → S∗+2(|X.|) that sat-
isfy ∂h− hb = Jϕ− ϕB, for any cyclic discrete space X..

Since X. is a cyclic discrete set, it follows that for any q and n that Sq(Xn) is identified
with Xn (since the image of each map in Sq(Xn) is limited to a single point of Xn), so
we will denote a map in Sq(Xn) by its image in Xn.

We will prove the assertion by induction on the degree of x ∈ C∗(S•(X.)). We de-
fine h for singular 0-simplices, and then extend it by linearity (possible as S0(X) is
free). If x ∈ C0(S•(X.)) = S0(X0) is a singular 0-simplex, consider the element
Q = hb(x) + Jϕ(x)− ϕB(x).

Obviously hb(x) = 0 as b(x) ∈ C−1(S•(X.)) = 0. Now explicit computation gives
that Jϕ(x) − ϕB(x) is a constant map ∆1 → |X.| where every point of ∆1 is sent to
π0∗(x × 1). Obviously constant maps in S1(|X.|) are boundaries, so we conclude that
Q = ∂a for some a ∈ S2(|X.|). Now let h(x) = a and hence we get that

∂h(x)− hb(x) = Jϕ(x)− ϕB(x) ,

ending the base case.

Now suppose that we have defined h for all elements of degrees strictly less than n,
then we will define it for elements of degree n. We have that ϕ and ∇ are natural.
From the naturality of ∇ it follows that J is also natural with respect to cyclic maps.
Obviously f commutes with B (as f is a map of cyclic spaces). Moreover we want h to
be natural as well, which gives that every term in the equality

∂h− hb = ϕJ − ϕB

is natural with respect to cyclic maps. Hence for any x ∈ Sp(Xq) ⊂ Cn(S•(X.)) define
a cyclic map f : λq. → X. given by id[q] 7→ x (this determines f completely as λq. is
generated by using di, si and tℓ by id[q]). If we manage to construct h that satisfies the
required equality for id[q] ∈ Sp(λqq) (recall that for a discrete set A we can identify Sp(A)
with A), then we have managed to do that for x = f∗(id[q]) ∈ Sp(Xq).

Again let Q = hb(id[q]) + Jϕ(id[q])− ϕB(id[q]). Differentiating Q gives

∂Q = ∂h(b(id[q])) + ∂Jϕ(id[q])︸ ︷︷ ︸
=−Jϕ(b(id[q]))

− ∂ϕB(id[q])︸ ︷︷ ︸
=−ϕB(b(id[q]))

(2.6)

By the inductive hypothesis we have that

∂h(b(id[q])) = h(b2(idq)︸ ︷︷ ︸
=0

) + Jϕ(b(id[q]))− ϕB(b(id[q])) .
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Substituting ∂h(b(id[q])) with the right-hand side above in (2.6) will prove that ∂Q = 0,
making Q into a cycle of Sn+1(|λq. |) = Sn+1(T×∆q). Since Hn+1(T×∆q) = 0, it follows
that Q is a boundary, i.e Q = ∂a for some a ∈ Sn+2(|λq. |). Now let h(id[n]) = a and
hence Q = ∂h(id[q]) and the required equality is satisfied. �

Theorem 2.3.11. Given a cocyclic space Y · there is a natural chain map ψ : C∗(S•(Y ·))→
S∗(|Y ·|) and a natural map j : C∗(S•(Y ·))→ S∗+2(|Y ·|) such that ∂̂j − jb = Iψ − ψB,
where ∂̂ is the singular cochain differential.

The proof of this theorem is very technical, but as there are some misprints in [Jon], a
proof will be offered.

Proof. We start by describing the natural chain map ψ : C∗(S•(Y ·))→ S∗(|Y ·|).
Recall the definition of ≀Y ·≀ in § 1.4 and recall that ≀Y ·≀ is homeomorphic to |Y ·|.

Define a map ρn : Λk × ≀Y ·≀→ Y k given by (u, {αn}) 7→ αk(u). By the definition of ≀Y ≀
it follows that the diagram

Λn × ≀Y ·≀ ρn
//

θ×1
��

Y n

θ

��

Λm × ≀Y ·≀ ρm
// Y m

commutes.

For x ∈ Sq(Y (n)), let ψ(x) = ρ∗n(x)/κn, where κn is the fundamental n-simplex in
Λn. By the commuting diagram above it follows that ψ(δ∗i (x)) = ρ∗n−1(δ

∗
i x)/κn−1 =

ρ∗n(x)/δi∗κn−1.
Moreover, as ∂κn =

∑
(−1)iδi∗κn−1, and as ∂̂(x/a) = ∂̂(x)/a + (−1)|x|x/∂a (use The-

orem 2.3.5.(b)(i) and the sign convention (2.2) to verify this), it follows in a similar
manner as in (2.5) that ψ is a chain map.

Now we define j : C∗(Y ·)→ S∗+2(|Y ·|). For x ∈ Sq(Y n) let

j(x) = ρ∗n(x)/h(ιn)

where h : C∗(λn. ) → S∗(|λn. |) is the map defined in the previous proposition and
ιn ∈ S0(λn. ) is the constant map ∗ 7→ id[n]. Now we have that

∂̂j(x) = ρ∗n(∂̂x)/h(ιn) + (−1)qρ∗n(x)/∂(h(ιn))

jb(x) = ρ∗n(∂̂x)/h(ιn) + (−1)qρ∗n−1(bhx)/h(ιn−1)

and hence

∂̂j(x)− jb(x) = (−1)qρ∗n(x)/∂h(ιn))− (−1)qρ∗n−1(bhx)/h(ιn−1) (2.7)
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Simplifying ρ∗n−1(bhx)/h(ιn−1):

In our case bh =
∑

(−1)iδ∗i . By the commuting diagram above we have that

ρ∗n−1(bhx)/h(ιn−1) =
∑

(−1)iρ∗n(x)/δi∗h(ιn−1)

Now define a cyclic map fi : λ
n−1
. → λn. given by id[n−1] → di(id[n]) fi completely as

every element λn−1
. is generated by using morphisms in ∆C on idn−1). Now obviously fi

induces a map on the realizations f̃i : Λ
n−1 → Λn which is the face map δi. Now since h is

natural with respect to cyclic maps it follows that
δi∗h(ιn−1) = f̃i∗h(ιn−1) = h(fi∗(ιn−1)) = h(di∗ιn). This gives

ρ∗n−1(bhx)/h(id[n−1]) = ρ∗n(x)/hbh(ιn))

Now since ιn ∈ S0(λ
n
n), it follows that ∂ιn = 0 and hence hbh(ιn)) = h(bhιn + ∂ιn) =

hb(ιn). This gives that

ρ∗n−1(bhx)/h(id[n−1]) = ρ∗n(x)/hb(ιn)) N

Substituting ρ∗n−1(bhx)/h(ιn−1) with ρ
∗
n(x)/hb(ιn)) in (2.7) gives

∂̂j(x)− jb(x) = (−1)qρ∗n(x)/∂h(ιn))− (−1)qρ∗n−1(x)/hb(ιn)

= (−1)qρ∗n(x)
/
(∂h(ι)− hb(ι))

Prop.
2.3.10.= (−1)qρ∗n(x)/Jϕ(ιn)− (−1)qρ∗n(x)/ϕB(ιn)

By looking at explicit formulas for each of the maps one can check that (−1)qρ∗n(x)/Jϕ(ιn) =
Iψ(x) and (−1)qρ∗n(x)/ϕB(ιn) = ψB(x). This completes the proof. �

We end this chapter with following definition.

Definition 2.3.12. A cocyclic space Y · is said to converge if the map ψ : C∗(S•(Y .)→
S∗(|Y ·|) induces an isomorphism on homology.

29



Connections to Equivariant (co)homology
and free loop spaces

In this chapter we establish some of the connections between cyclic homology and equiv-
ariant cohomology of free loop spaces. Spectral sequence arguments are used in many
occasions in § 3.3 and § 3.4, so the reader who is unfamiliar with spectral sequences may
read the appendix in preparation to these sections.

3.1. Equivariant (co)homology

In this section we will consider connected topological groups G that acts on topological
spaces X, where both G and X are of CW-complex homotopy type.

When G acts freely on X, then the quotient X/G is as nice as X is. E.g. if X is a
manifold and G acts freely on X, then X/G is a manifold as well.
The idea of G-equivariant homology, HG

∗ , is that whenever G acts freely on X, then
HG

∗ (X) computes the homology groups H∗(X/G).

If G acts non-freely on a topological space X, then X/G may be pathological and
not nice as X is.

Example 3.1.1. The circle T acts on the sphere S2 by rotating it. As the T-action
is trivial on the poles, the T-action is not free. Quoting out the T-action of S2 gives a
closed line segment which is not a manifold, even though S2 is.

If we puncture the sphere at the poles, the T-action becomes free and quoting out
the T-action gives an open line segment which is an open manifold precisely as the
(double-)punctured sphere.

In order to overcome the problem of pathology when quoting out non-free G-actions
of X, we are considering something similar to X, but not really X, namely a homotopy
equivalent space X × EG where EG is a contractible space with a free G-action. The
diagonal G-action on X×EG is obviously free. This gives rise to following more general
definition of G-equivariant homology.

Definition 3.1.2. Given a space X with some G-action G ×X → X where G is con-
nected of CW-complex homotopy type, then the equivariant homology is given by

HG
∗ (X) := H∗((X × EG)/G)
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where EG is a contractible space with a free G-action. The equivariant cohomology is
defined to be H∗

G(X) := H∗((X × EG)/G). The space (X × EG)/G is called the Borel
construction of the G-space X.

This definition will make sense only if EG exists, which we will prove in next section.
Now after generalizing the definition of equivariant (co)homology, it is natural to ask
whether this definition is really generalizing the original definition (restricted to spaces
on which G acts freely). In other words, if G already acts freely on X, is there an
isomorphism of homology H(X/G) ∼= H((X × EG)/G)?
Another question one may ask is if HG

∗ is independent of choice of space EG. These
questions are answered in the following theorem.

Theorem 3.1.3. (a) If G acts freely on X, then H(X/G) = H((X × EG)/G).

(b) The G-equivariant (co)homology is independent of choice of contractible space EG
with free G-action.

Sketch of proof of (a) We make the sketch of the proof in case X is connected.
The more general case will then follow easily. Let p : (X × EG)/G→ X/G be given by
(x, e) 7→ x. One can show that p is a fibration (see [Dol]). For every x ∈ X/G we have
that

p−1(x) = {(gx, e) | g ∈ G, e ∈ EG}
(gx,e)=(x,g−1e)

= {(x, e) | e ∈ EG} ∼= EG

Note that the last homeomorphism holds for all x ∈ X/G iff the G-action is free,
because otherwise there is some g 6= idG and x ∈ X such that gx = x and hence
(x, e) = (x, ge) ∈ (X ×EG)/G, while e and ge are not identified in EG (as G acts freely
on EG).

Hence there is a fiber bundle EG → (X × EG)/G → X/G which gives rise to a long
exact sequence of homotopy groups

· · · → πn(EG)→ πn((X × EG)/G) p∗→ πn(X/G)→ πn−1(EG)→ · · ·

(see Theorem 4.41. in [Hat]). Since EG is contractible we get that that p induces an
isomorphism p∗ : π∗((X × EG)/G)→ π∗(X/G). Since X and EG are homotopy equiv-
alent to CW-complexes it follows from the Whiteheads’ theorem that p is a homotopy
equivalence.

Proof of (b) Let EG and ẼG be contractible spaces with free G-action. From (a)
we get

H∗((X × EG)/G)
(a)
= H∗(((X × EG)× ẼG)/G)

= H∗(((X × ẼG)× EG)/G)
(a)
= H∗((X × ẼG)/G)

�
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3.2. Simplicial homotopies and EG

From now on we will denote the quotient (X × EG)/G by X ×G EG.

Definition 3.2.1. LetA. andB. be two simplicial objects in a category C. Two simplicial
maps f, g : A. → B. are called simplicially homotopic if there are morphisms hi : An →
Bn+1, 0 ≤ i ≤ n, in C such that d0h0 = f and dn+1hn = g and

dihj =





hj−1di if i < j
dihi−1 if i = j 6= 0
hjdi−1 if i > j + 1

sihj =

{
hj+1si if i ≤ j
hjsi−1 if i > j

(3.1)

We call {hj} a simplicial homotopy from f to g and write f ≃ g.

Proposition 3.2.2. Let A. and B. be simplical spaces, and let f, g : A. → B. be
simplicial maps. If there is a simplicial homotopy {hj} from f to g, then there is a
homotopy h : I × |A.| → |B.| from |f | to |g|.

Proof. See Corollary 11.10. in [Ma2]. �

In the previous section we proved some conditions for EG, but didn’t prove the ex-
istence of EG. Given a topological group G, recall from Example 1.1.5. the simplicial
space E.G where EnG = Gn+1 and where the the faces and the degeneracies are given
by

di(g1, . . . , gn+1) =

{
(g2, . . . , gn+1) if i = 0
(g1, . . . , gigi+1, . . . , gn+1) if i = 1, . . . , n

and
si(g1, . . . , gn+1) = (g1, . . . , gi, 1, gi+1, . . . , gn+1) .

The next theorem will display the connection between EG and E.G.

Theorem 3.2.3. Let G be a topological group with homotopy equivalent to a CW-
complex. The realization EG = |E.G| of the simplicial space E.G is a contractible space
with a free G-action.

Proof. We start by proving that G acts freely on EG. We start by defining a G-action
on EnG for n ≥ 0. Let g · (g0, . . . , gn) := (g0, . . . , gn−1, gng

−1). The action commutes
with the faces and the degeneracies, so it induces a G-action on the realization EG.
Now given any point ((g1, . . . , gn+1),u) ∈ EG, we may by Lemma 1.1.9. assume that
(g1, . . . , gn+1) is non-degenerated and u ∈ ∆n is an inner point. From the definition
of si, (g1, . . . , gn+1) is non-degenerated iff g1, . . . , gn are all different from the identity
(but there is no such restriction on gn+1). Now applying any g 6= id on this point gives
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((g1, . . . , gn, gn+1g
−1),u). Since g1, . . . , gn are still different from the identity, we con-

clude that ((g1, . . . , gn, gn+1g
−1),u) is a non-degenerated point, and can therefore not be

in the same equivalence class as ((g1, . . . , gn+1),u) because that contradicts the unique-
ness of the non-degenerated points in each ∼-equivalence class (see Lemma 1.1.9.). This
proves that G acts freely on EG.

Now we prove that EG is contractible. Let A. be a constant simplicial one-point space
(i.e. An = {∗} for all n, and the simplicial maps acts by triviality). Let ι : EnG → An

be the constant simplicial map, and let ρ : An → EnG be given by ∗ 7→ (1, . . . , 1).
Obviously ιρ = idA. , and hence |ι||ρ| = id|A.|. If we can show that ρι ≃ idE.G then it
follows from Proposition 3.2.2. that that |ρ||ι| = idEG and hence EG is homotopic to
|A.| = {∗}, which is equivalent to the contractibility of EG.

Let hi : EnG→ En+1G be given by
h0(g1, . . . , gn+1) = (g1 · · · gn+1, 1, . . . , 1)
h1(g1, . . . , gn+1) = (g1, g2 · · · gn+1, 1, . . . , 1)
h2(g1, . . . , gn+1) = (g1, g2, g3 · · · gn+1, 1, . . . , 1)

...
hn(g1, . . . , gn+1) = (g1, . . . , gn+1, 1)

One can easily check that d0h0 = ρι, dn+1hn = idE.G and that hi satisfies the rela-
tions of (3.1). This ends the proof. �

The last thing we do in this section is to construct EG ×G W as the realization of
some simplicial space, given that W is a space with a G-action.

Theorem 3.2.4. Let W be a space on which G acts on. The space EG ×G W is the
realization of the simplicial space [n] 7→ Gn ×W and where

di(g1, . . . , gn, w) =





(g2, . . . , gn, w) if i = 0
(g1, . . . , gigi+1, . . . , gn, w) if i = 1, . . . , n− 1
(g1, . . . , gn−1, gnw)

and
si(g1, . . . , gn, w) = (g1, . . . , gi, 1, gi+1, . . . , gn, w) .

Proof. The space EG×W is obviously the realization of the simplicial space E.G×W
(where the the faces and the degeneracies acts on E.G as usual and by triviality on W ).
From Lemma 1.5.1. we have that EG ×G W = |E.G ×G W |. Recall that the G-action
on EnG is given by g · (g1, . . . , gn+1) = (g1, . . . , gn+1g

−1).
Now let α : EnG×GW → Gn×W be given by (g1, . . . , gn, gn+1, w) 7→ (g1, . . . , gn, g

−1
n+1w).

One can easily check that α is well defined and bijective. If we endow Gn ×W with the
faces and the degeneracies given in the theorem, α becomes a simplicial bijective map,
i.e. a simplicial isomorphism. Hence α induces a homeomorphism on the realizations.�
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3.3. Connections to T-equivariant (co)homology

In this section we prove that HC−
−∗(S

•(Y ·)) = H∗
T(|Y ·|) as R[u] modules (|u| = −2).

Definition 3.3.1. Suppose A. is a simplicial object in an abelian category A. To each
such object there is an associated chain complex C∗(A.) where Cn(A.) = An and the
differential is the sum ∂ =

∑
(−1)idi.

The normalized chain complex of this simplicial object is the quotientN∗(A.) = C∗(A.)/D∗(A.)
where D∗(.A) ⊆ C∗(A.) is the subcomplex generated by all degeneracies (i.e.
Dn(A.) =

∑
si(An−1)).

Lemma 3.3.2. Given a simplicial object A. in an abelian category A, then H(C∗(A.)) =
H(N∗(A.)).

Proof. See Theorem 8.3.8 in [Wei] �

The singular chain groups Sn(X) is a good example of a simplicial object in an abelian
category (the category of R-modules), and we will denote N∗(S•(X)) by simply N∗(X).

Lemma 3.3.3. Given a simplicial space X., HH(S∗(X.)) = HH(N∗(X.)).

Proof. If C∗∗(S•(X.)) and C∗∗(N•(X.)) are filtrated by columns the projection map
C∗∗(S•(X.)) → C∗∗(N•(X.)) becomes a map of filtration. As the projection map is a
quasi-isomorphism on each column (see previous lemma) it follows that their total ho-
mology are isomorphic by Theorem A.2.2.. �

Definition 3.3.4. Given a topological spaceW with a circle action f : T×W →W there
are associated double complexes U−(W ) = R[u]⊗S∗(W ) and U+(W ) = R[u−1]⊗S∗(W )
(|u| = −2), with total differentials on the form ∂U = ∂ + uJ (for definition of J , see
Definition 2.3.8.). In particular this means that U−(W ) is a second quadrant double
complex while U+(W ) is a first quadrant double complex. U+(W ) is visualised in the
diagram below

...

��

...

��

...

��

. .
.

S2(W )

∂
��

u−1 ⊗ S1(W )
uJoo

∂
��

u−2 ⊗ S0(W )
uJoo

S1(W )

∂
��

u−1 ⊗ S0(W )
uJoo

S0(W )
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We also define the double complex V −(W ) = R[u] ⊗ S∗(W ) with total differential
∂V = ∂̂ + uI (for definition of I see Definition 2.3.8 ) which is third quadrant dou-
ble complex.

Proposition 3.3.5. Let W be a space with a circle action f : T×W →W .
(a) There is an isomorphism of homology H∗(U+(W )) ∼= HT

∗ (W ).
(b) There is an isomorphism of (co)homology H∗(V −(W )) ∼= H∗

T(W ).

Proof. (a) Let π2 : S∗(V × W ) → S∗(W ) be given by α × β 7→ β. Let M∗ be the
Hochcshild complex of the simplicial complex [n] → N∗(Tn ×W ) where faces and de-
generacies are induced from the faces and degeneracies in Theorem 3.2.4. By Theorem
2.1.9. and Lemma 3.3.2 it follows that H(M∗) = H(ET×T W ) = HT(W ) (in order to
apply Theorem 2.1.9. we need to to have that si(Tn×W ) →֒ Tn+1×W is a cofibration,
but this follows as it is a CW-subcomplex inclusion which are always cofibrations (see
Cor 1.4., Ch VII in [Bre])).

Note that the Hochschild complex can be defined for any collection of complexes C1, C2, . . .
equipped with faces that satisfy didj = dj−1di whenever i < j (the degenracies has no
role in the definition of Hochschid homology). Such a collection of complexes is called a
semi-simplicial complex.

Now define a semi-simplicial complex [n] 7→ An = N∗(T)⊗n ⊗N∗(W ) where the faces of
A1 = N∗(T)⊗N∗(W ) are given by

di(α⊗ β) =
{
π2(α∇β) i = 0
f∗(α∇β) i = 1 .

For Ai, i > 1 the faces are given by

di(αk1⊗· · ·⊗αkn⊗β) =





π2(αk1∇αk2)⊗ αk3 ⊗ · · · ⊗ αkn ⊗ β i = 0
αk1 ⊗ · · · ⊗ µ∗(αki∇αki+1

)⊗ · · · ⊗ αkn ⊗ β i = 1, . . . , n− 1
αk1 ⊗ · · · ⊗ αkn−1 ⊗ f∗(αkn∇β) i = n

One can easily check that if i < j then didj = dj−1di (so the above construction is really
a semi-simplicial complex).

Now define a map η : C∗∗(A.)→M∗ given by

N∗(T)⊗n ⊗N∗(W ) ∋ αk1 ⊗ · · · ⊗ αkn ⊗ β 7−→ αk1∇ · · ·∇αkn∇β ∈ N∗(Tn ×W )

One can easily check that η commutes with the horizontal and vertical differentials (so
it is really a map of complexes).

If we filter C∗∗(A.) as 0 ⊂ A0 ⊂ A0 ⊕ A1 ⊂ · · · ⊂ C∗∗(A.) and M∗ by columns,
η becomes a map of filtered complexes. Now as η : N∗(T)⊗n ⊗ N∗(W )

∼→ N∗(Tn ×W )
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is a chain equivalence follows easily from Lemma 3.3.2. and from the fact that ∇ is a
chain equivalence), it follows that the total homology of C∗∗(A.) andM∗ are isomorphic.

Now let E(z) →֒ N∗(T) be the exterior subalgebra generated by a 1-cycle z ∈ N1(T)
that generates H1(N∗(T)) = R. Now we can construct a simplicial complex [n] 7→ Bn =
E1(z)

⊗n⊗N∗(W ) where the faces are inherited from A. and the degeneracies si are given
by inserting 1 ∈ R = E0(z) in position i.

Obviously the inclusion E(z) →֒ N∗(T) is a chain equivalence, so by spectral sequence
argument we conclude that C∗∗(A.) ≃ C∗∗(B.).

Now let L∗∗ be the double complex obtained by normalizing C∗∗(B.) with respect to
the degeneracies of B.. That is Lp,∗ = Bp/

∑
si(Bp−1). Filtering L∗∗ and C∗∗(B.) by

rows we get by Lemma 3.3.2. and spectral sequence arguments that the projection map
Tot(C∗∗(B.))→ Tot(L∗∗) is a chain equivalence.

Finally we have that L∗∗ =
⊕

n∈Z≥0
E1(z)

⊗n ⊗ N∗(W ) and we have for every n ≥ 2

that the induced horizontal differential (−1)n+p
∑

(−1)idi = (−1)pdn. This equality
follows as d0 = · · · = dn−1 = 0, which follows from the fact that z∇z = 0 (see Remark
2.3.6.).

On E1(z) ⊗ N∗(W ) we have that the induced zeroth face d0 is trivial as d0(z ⊗ β) =
π2(z∇β) is a degenerated element and hence trivial in N∗(W ) (this is why we are working
with N∗(W ) instead of S∗(W )). Hence L∗∗ is on the form

...

��

...

��

...

��

N2(W )

∂
��

E1(z)⊗N1(W )
−d1oo

∂
��

E(z)⊗2 ⊗N0(W )
id⊗d2oo

N1(W )

∂
��

E1(z)⊗N0(W )
d1oo

N0(W )

As N∗(W ) ≃ S∗(W ) and as (−1)|β| id⊗n−1⊗dn(z ⊗ · · · ⊗ z ⊗ β) = z ⊗ · · · ⊗ z ⊗ J(β),
the map U+(W )→ L∗∗ given by u−k ⊗ α 7→ z⊗k ⊗ α is a map of double complexes that
induces a chain equivalence on columns, which by spectral sequence arguments yields
TotL∗∗ ≃ U+(W ). Since H∗(TotL∗∗) = HT

∗ (W ), the theorem follows.

(b) Just dualize the arguments above. �

The next step is to prove that when a cocyclic space Y · converges (recall the definition
of convergence in Definition 2.3.12.) then HC−(S∗(Y ·)) = H∗(V −|Y ·|) and thereby
HC−(S∗(Y ·)) = H∗

T(|Y ·|) (by the proposition above).
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Lemma 3.3.6. (a) Given cyclic set X., there is a natural R[u]-module map
ζ : C−(S∗(X.))→ U−(|X.|) such that the induced map

C(S∗(X.)) = C−(S∗(X.))/uC
−(S∗(X.))→ U−(|X.|)/uU−(|X.|) = S∗(|X.|)

is the chain map ϕ defined in Proposition 2.3.10..

(b) Given cocyclic space Y ·, there is a natural R[u]-module map
ξ : C−(S∗(Y ·))→ V −(|Y ·|) such that the induced map

C(S∗(Y ·)) = C−(S∗(Y ·))/uC−(S∗(Y ·))→ U−(|Y ·|)/uU−(|Y ·|) = S∗(|Y ·|)

is the chain map ψ defined in Theorem 2.3.11..

Proof. (a) Recall that the total differential of C−(S∗(X)) is ∂− = b + B and that the
total differential of U−(|X.|) is ∂U = ∂ + J . That means ζ has to satisfy following
equality

ζ ◦ (b+B) = (∂ + J) ◦ ζ
Now we make an ansatz where ζ =

∑
ζnu

n and ζn : C(S∗(X.))→ S∗+2n(|X.|) is R-linear.
Hence the equality above is equivalent to

ζnb+ ζn−1B = ∂ζn + Jζn−1 (3.2)

for every n > 0.

We construct ζn inductively by setting ζ0 = ϕ and ζ1 = h (maps defined in Propo-
sition 2.3.10.) which are proved to satisfy (3.2).

Suppose that we have constructed ζn for n ≥ 2 and that satisfy (3.2). Now we con-
struct ζn+1 inductively on the degree d of the argument. By naturality it is sufficient to
construct ζn+1 for id[q] ∈ Sp(λqq), p+ q = d (this is motivated in the proof of Proposition
2.3.10.).

For d = 0, let w = ζnB(id[0]) − Jζn(id[0]). By using the equality (3.2) and that
b(id[0]) = 0, one gets easily that w is a cycle of degree 2n + 1 ≥ 3 of S∗(|λ0. |) and
hence also a boundary (as H2n+1(|λ0. |) = H2n+1(T) = 0). This means that w = ∂a for
some a ∈ S2n+2(|λ0. |), and we let ζn+1(id[0]) = a, and hence (3.2) is satisfied.

Now assume that we have defined ζn+1 for elements of degree < m. Now if id[q] ∈ Sp(λq. )
where p + q = m, we can in a similar manner as above show that w = ζn+1b(id[q]) +
ζnB(id[q]) − Jζn(id[q]) is a boundary and the arguments continues as above. This ends
the inductive step.
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(b) As in the proof of (a) we construct a map ξ : C−
∗ (S•(Y ·)) → S∗(|Y ·|) such that

ξ =
∑
ξnu

n and ξn : Cn(S
•(Y ·))→ S2n(|Y ·|) is R-linear. The ξi has to satisfy

ξnb+ ξn−1B = ∂̂ξn + Iξn−1 (3.3)

Given some x ∈ S−q(Y m) let ξn(x) = ρ∗m(x)/ζ(id[m]) where id[m] ∈ Sm(λmm). Now
the equality in (3.3) follows from the equality in (3.2) in the same way as Theorem
2.3.11. follows from Proposition 2.3.10.. �

Theorem 3.3.7. Let Y · be a cocylic space. If Y · converges, then

HC−
∗ (S•(Y ·)) = H∗

T(|Y ·|)

Proof. We show thatHC−
∗ (S•(Y ·)) = H∗(V −(|Y ·|)). Filtering C−(S•(Y ·)) and V −(|Y ·|)

by columns ξ becomes a map of filtered complexes, and induces ψ : ukC(S∗(Y ·) →
ukS∗(|Y ·|) as a map between the (−k)’th columns. As we are assuming that Y · con-
verges ψ is a quasi-isomorphism, and hence the equality of homology follows from spectral
sequence arguments (see Theorem A.2.2.). �

3.4. Free loop spaces

Given that a space X is simply connected, we prove that HC−
∗ (S•(X)) = H∗

T(LX).
Before going in more depth about this, suppose X is a topological space and E. is
a cyclic space. From these two objects one can construct a cocylic space XE

. where
XE [n] = HomTop(E.[n], X), and δiα = α ◦ di, σiα = α ◦ si and τnα = α ◦ tn, and di, si
and tn are the faces, the degeneracies and the cyclic operators of E., respectively.

Lemma 3.4.1. Let E. be a cyclic set and X a topological space. There is a homeomor-
phism between the realization |XE | of the cocyclic spaceXE and the space HomTop(|E.|, X).

Proof. We define a map Φ : |XE | → HomTop(|E|, X), sending {αn : ∆n → XE [n]} ∈
|XE | to α ∈ HomTop(|E.|, X) where α is given by α(en,un) = [αn(un)](en).
To verify that Φ is a homeomorphism (continuous with a continuous inverse) is left as

an easy exercise for the reader. �

Now we define free loop spaces.

Definition 3.4.2. The space

LX = HomTop(T, X),

equipped with the compact-open topology, is called the free loop space of X.
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Recall from Lemma 1.2.4. that every morphism β ∈ Hom∆C([n], [m]) can be decom-
posed as α ◦ τkn where α ∈ Hom∆([n], [m]). This means in particular that

Hom∆C([n], [m]) ∼= Hom∆([n], [m])× Zn+1

(the isomorphism is explicitly given by β = α ◦ τkn 7→ (α, k)).

Recall from Example 1.2.5. the cyclic space λ0. where λ0n = Hom∆C([n], [0]). Obvi-
ously Hom∆([n], [0]) = ∗, and hence λ0n = ∗ × Zn+1

∼= Zn+1.

Now given a space X, we can construct a cocyclic space Xλ0
. . As a space Xλ0

. [n] = Xn+1

(since #(λ0. [n]) = n+ 1).

Lemma 3.4.3. If X is simply connected, then Xλ0
. converges.

Proof. See § 5 in [BS]. �

Before proving the main theorem of this thesis recall from Example 1.2.6. that any
algebra A, defines a cyclic module A. = A,A⊗2, A⊗3, . . . . The negative cyclic homology
of A. will be denoted by HC−

∗ (A). The singular cochain complex of a space X, S∗(X),
can be viewed as a differential graded algebra with with multiplication given by the cup
product

∪ : Sp(X)× Sq(X)→ Sp+q(X)

where ∪ is the composition

Sp(X)× Sq(X)
AW ∗
→ Sp+q(X ×X)

d∗→ Sp+q(X)

where AW ∗ is the dual of the Alexander-Whitney map (see Theorem 2.3.5,) and d∗ is
the dual of the diagonal map d : X → X ×X, d(x) = (x, x).

Theorem 3.4.4. If X is simply connected, there is an isomorphism

HC−
∗ (S•(X)) ∼= H∗

T(LX) .

Proof. We have by Lemma 3.4.1., 3.4.3. and Theorem 3.3.7. that HC−
∗ (S•(Xλ0

. )) ∼=
H∗

T(Hom(|λ0. |, X)). By Theorem 1.5.2., |λ0. | = T and hence HC−
∗ (S•(Xλ0

. )) ∼= H∗
T(LX).

Thus it is enough to show that HC−
∗ (S•(Xλ0

. )) ∼= HC−
∗ (S•(X)) in order to complete

the proof.

Filter C−
∗ (S•(Xλ0

. )) and C−
∗ (S•(X)) by columns, and let θ : C−

∗ (S•(X))→ C−
∗ (S•(Xλ0

. ))
be the map induced by the dual of the Alexander-Whitney map, AW ∗ : Sp(X)⊗Sq(X)

∼→
Sp+q(X×X). One can easily verify that AW ∗ is a map of cyclic complexes, which makes
θ into a map of double complexes.

As the Alexander-Whitney map is a chain equivalence, θ induce quasi-isomorphisms
S∗(X)⊗n ∼→ S∗(Xn) on the columns of the complexes, which by spectral sequence argu-
ments gives that the the total homology of the both double complexes are isomorphic.

�
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3.5. Applications

In 1999 M. Chas and D. Sullivan founded a new mathematical branch called string
topology (see [CS]), which is the study of homology theories on free loop spaces. String
homology, which is the T-equivariant homology of free loop spaces, is one of the homology
theories that are of importance.

Hence it is not surprising that the isomorphism HC−
∗ (S•(X)) ∼= H∗

T(LX) for simply
connected spaces X has applications in this branch, especially if one wants to study
string homology of spheres Sn, n ≥ 2 and complex projective spaces CPm, m ≥ 1 (as
they are simply connected).

Examples where this isomorphism is applied may be found in [VP] where M. Vigué-
Poirrier offers isomorphisms that may be of importance in the study and computation
of H∗

T(LX;K) for simply connected spaces X and where char(K) = 0.
For fields with char(K) > 0 there are theoretical and computational contributions by

M. El-Haouari and B. Ndombol in [EN1] and [EN2].

Even if it is hard to compute T-equivariant cohomology, it is not impossible, and has
been done for several spaces.

For instance H(LS2k+1;Q) = Q[u] ⊕ Q[y] where |u| = 2 and |y| = 2k, computed in
[Bas] (cyclic homology was however not involved in the computation).

For char(K) > 0 there is an isomorphism of algebras

H∗
T(LS

2q+1;K) =
K[u]⊗ Γ(sx, y)

< u⊗ γn(sx), γn(sx)⊗ y >, n ∤ p

(proved in [EN2]). In contrast to the previous example, this computation involved study
of negative cyclic homology.
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Appendix A - Spectral sequence of a
filtration

This is a brief introduction to spectral sequences where we just present results needed
in the thesis. The subject is treated in more detail in many books, e.g. [Wei].

A.1. Introduction

Definition A.1.1. A homological spectral sequence starting with Ea in an abelian cat-
egory A consist of following data:

1. A family {Er
p,q} of objects of A defined for p, q ∈ Z and r ≥ a.

2. Maps dr : Er
p,q → Er

p−r,q+r−1 that are differentials in the sense that drdr = 0.

3. Er+1
p,q is isomorphic to the homology of Er

∗∗ at the spot Er
p,q.

Definition A.1.2. A filtration of a chain complex C is a chain of subcomplexes
· · · ⊆ Fp−1C ⊆ FpC ⊆ · · · of C. We say that the filtration is exhaustive if C = ∪FpC
and complete if lim←−C/FpC = C.

A map f : C → D of filtered complexes is called a map of filtered complexes if
f(FpC) ⊆ FpD

Theorem A.1.3. A filtration F of a chain complex C naturally determines a spectral
sequence starting with E0

p,q = FpCp+q/Fp−1Cp+q and E1
p,q = Hp+q(E

0
p,∗)

Proof. See Theorem 5.4.1 in [Wei] �

Theorem A.1.4. (Eilenberg-Moore Comparison Theorem) Let f : C → D be a
map of filtered complexes of modules, where both C and D are complete and exhaustive.
Suppose that for some r ≥ 0 the induced map f r : Er

p,q(C)→ Er
p,q(D) is an isomorphism

for all p, q ∈ Z. Then f∗ : H∗(B)→ H∗(C) is an isomorphism.

Proof. See Theorem 5.5.11 in [Wei]. �
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A.2. Spectral sequence of a double complex

Definition A.2.1. Let C be a double complex. We may filter Tot(C) by the columns
of C, by letting

FnC =

{
Cp,q if p ≤ n
0 if p > n

· · · ∗ ∗
· · · ∗ ∗
· · · ∗ ∗
· · · ∗ ∗

∣∣∣∣∣∣∣∣

0 0 · · ·
0 0 · · ·
0 0 · · ·
0 0 · · ·

This gives rise to a spectral sequence where E1
p,q = Hq(Cp,∗).

Theorem A.2.2. Let C∗∗ and D∗∗ be double complexes such that Cp,q = Dp,q = 0 in
the forth quadrant (i.e. when p > 0 and q < 0). Assume that f : Tot(C∗∗)→ Tot(D∗∗) is
a map of filtered complexes where the filtration is taken with respect to columns. If the
induced map fp : Cp,∗ → Dp,∗ is a quasi-isomorphism for all p ∈ Z, then H(Tot(C∗∗)) =
H(Tot(D∗∗)).

Proof. We have that f1p,q : E1
p,q(C) → E1

p,q(D) is an isomorphism since f1p,q = Hq(fp),
where the right-hand side is an isomorphism by assumption. As Tot(C∗∗) and Tot(D∗∗)
are exhaustive and complete, we may apply Theorem A.1.4., and that completes the
proof. �

One can also filter a double complex by rows, which is the same as exchanging rows
and columns and then filtering by columns. This results in the following theorem.

Theorem A.2.3. Let C∗∗ and D∗∗ be double complexes such that Cp,q = Dp,q = 0 in
the second quadrant (i.e. when p < 0 and q > 0). Assume that f : Tot(C∗∗)→ Tot(D∗∗)
is a map of filtered complexes where the filtration is taken with respect to rows. If the
induced map fp : C∗,p → D∗,p is a quasi-isomorphism for all p ∈ Z. Then H(Tot(C∗∗)) =
H(Tot(D∗∗)). �
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