
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Firing patterns and multistability in a neuron model

av

Johan Klint

2014 - No 27

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Firing patterns and multistability in a neuron model

Johan Klint

Självständigt arbete i matematik 15 högskolepoäng, Grundnivå

Handledare: Yishao Zhou

2014

1

Firing patterns and multistability in a neuron model

Johan Klint

2014

Abstract
Neuron cells are the basic unit of neural systems, and a prerequisite for all animal behavior and

human cognition. The complexity of a neural structure, such as the human brain, is truly remarkable

and any deeper aspects of its function may therefore appear difficult to grasp. Understanding a

single neuron’s function, with complex dendrite structure with up to 150 000 branches, connections

to up to 10 000 other neurons and axon extensions more than a meter long, is a great challenge for

the scientific community. However, with the use of modern computer technology, the

electrophysical and mathematical mechanisms behind neuron signal generation can be visualized. In

this work, the leech heart interneuron is modelled, and parameter ranges producing autonomous

action potentials with different firing patterns were explored. A Java program was developed as a

working tool for investigating this Hodgkin-Huxley type of model. The outcome from five explicit,

including Euler and Runge-Kutta fourth order, and one semi-implicit numerical method was

compared and their stability properties were discussed. The parameter space was explored with

respect to the maximum membrane conductance of sodium, calcium and leak ions, with the

parameters denoted gNa, gCaS and gleak, respectively. One intriguing feature of this neuron model is

the appearance of multistability, where the same parameter settings may generate different signal

output from the neuron model depending on the initial conditions of the state variables. This was

visualized by simulations and phase portraits.

2

Contents
Abstract ... 1

INTRODUCTION ... 3

The neuron and aim .. 3

The action potential .. 4

The leech heart interneuron ... 5

Different regimes of neuron bursting/silence ... 5

Hodgkin and Huxley equations .. 6

METHODS .. 8

The heart interneuron model .. 8

Simulations and phase portraits .. 9

Numerical methods ... 10

Temporal measurements .. 14

RESULTS AND DISCUSSION .. 15

Algorithm selection and optimization ... 15

Stability of Euler’s explicit method .. 18

Stability regions of Runge-Kutta methods .. 21

Explicit vs semi-implicit Euler methods ... 22

Exploring parameter space .. 24

Multistability ... 27

CONCLUSIONS ... 30

REFERENCES .. 31

APPENDICES ... 32

3

INTRODUCTION

The neuron and aim
Neurons are specialized cells for generating, integrating and/or transmitting electric signals in

multicellular organisms, and are the fundamental components for e.g. function of the human brain

and subsystems in the nervous system such as the control of heart rhythm. Neurons are often

connected in highly intricate networks, where transmission of electrical signals between the neuronal

cells is obtain by the action potentials, also called spikes. Action potentials are fast changes in the

membrane potential, which is the electrical charge separation between inside and outside of the

insulating cell membrane, and propagate in the cell membrane along tube-like cell extensions called

axons, and work as a means for long-distance communication within the organism.

The changing aspects of electrical potential across the cell membrane of neurons can be

mathematically modelled as dynamical systems. Earlier groundbreaking studies of the squid giant

axon (Hodgkin and Huxley et al. 1952) generated mathematical models with behaviors highly

resembling that of natural neuron cells, and in addition predicted results not included in the process

of constructing the equations.

Firing patterns of neuron cells are characterized by the temporal distribution of monitored action

potential spikes. Each kind of neuron produces firing patterns characteristic for that neuron cell type.

One common firing pattern is tonic spiking, or regular spiking, when the spikes occurs at regular

intervals with a certain frequency. Another common pattern is the burst, loosely defined as periods

during which spike frequency is relatively high, separated by periods during which frequency is

relatively low or spikes are absent altogether.

Making the situation more complex, experimental observations of biological neuron preparations

have revealed that the same neuron cell under different conditions may show different action

potential firing patterns, such as quiescence, tonic spiking and bursting (Cocatre-Zilgien and

Delcomyn, 1992). Mathematical analyses of neuron models have resolved that bifurcation

mechanisms are involved in the generation of action potentials, and transitions between different

firing patterns when the same neuron cell exhibit more than one firing pattern (Izhikevich, 2000).

By studying neuron models from simpler organisms such as the medical leech (Hirudo medicinalis),

we may gain deeper insights into the general mechanisms of neuron activity. The understanding

obtained from a simpler system may help us understand more complex nervous systems, such as the

neurons in the human brain, where also ethical reasons may restrict the opportunity to obtain

experimental data. Several models of the leech heart interneuron have been developed (Hill et al.,

2001, Malashchenko et al., 2011, Shilnikov et al., 2005 and 2008) using Hodgkin-Huxley type of

equations. These models successfully produce the bursting firing pattern seen in nature and in

addition, as parameters are varied, reproduce action potentials in a range of spiking patterns.

The aim of this study was to develop a computer software tool for investigating the parameter space

of a mathematical neuronal model (Malashchenko et al., 2011). Different numerical methods for

simulating neuron activity were analyzed in order to obtain reliable output from the model. The

results obtained from simulations using this software, were discussed with an attempt to understand

mechanisms behind the emergence of different output signals, and in addition the occurrence of

multistability was observed.

4

The action potential
In neurons, there is an active ion transport over the cell membrane sustaining a concentration

difference in specific ions inside the cell compared to outside. This results in a net electrical charge

separation over the insulating cell membrane, typically resulting in a voltage difference of

approximately -50 mV, i.e. more negative inside the cell compared to outside. This ion and charge

separation, together with the voltage-gated ion channels, is the driving force in the generation and

propagation of action potentials.

The action potential is characterized by an initial rapid electrical discharge of the membrane

potential, where the default negative voltage difference between the inside and outside of the cell

suddenly takes on positive values. Soon after this discharge, the membrane potential returns to its

negative resting value. This voltage spike in the membrane propagates from the triggering zone,

along the axon and reaches synapses where a release of signal molecules functions as a bridge over

the synaptic cleft for the signal to the reach and initiate responses in the target cell, which for

example could be triggering of an action potential in another neuron cell or contraction in a muscle

cell.

The travelling of an action potential along the axon is enabled by specific properties of ionic

permeability through the neuronal cell membrane. The main ions involved are Na, K and Ca (Fig. 1)

which cross the membrane through voltage gated channels, with different ion specificity. These

channels are large molecular structures inserted in the cell membrane, creating a passage for the

ions through the hydrophic and otherwise non-ion permeable phospholipid membrane. Also a leak

current is usually considered in neuron models. For the leak current, the ions involved are usually not

specified, but it represents a flow of ions through non-gated channels, i.e. channels not affected by

the membrane potential.

Figure 1. A comparison of the ion currents involved in the action potential of the squid giant axon and the leech heart

interneuron models. The ions flow through ion channels inserted in the cell membrane (CM). For the squid giant axon,

reversal values from the original paper (Hodgkin and Huxley, 1952) have been adjusted with -65 mV to get a scale with a

negative resting value. The leak ions are presented in the figure as a univalent cation, however, they may as well be anions

flowing in the opposite direction or be multivalent.

5

The generation of spikes may be driven by different mechanisms in different neurons. Often a spike

is generated as a result of combined signal input from other neurons. Spikes may also be

autonomously generated within a neuron cell, without direct input from outer neurons, which is the

case for the leech heart interneuron. These autonomously generated spikes may come in different

patterns, such as in a regular tonic spiking or in clusters of spikes denoted bursts, as mentioned

above.

The leech heart interneuron
The ease by which the neuronal system is prepared from the medical leech explains the extensive

use of it as a model organism in neuroscience since the late 19th century. An extensive review of the

results obtained from more than 100 years of studies on the leech neuronal network is presented by

Kristan et al. 2005. The medical leech has a relatively simple nervous system with approximately

10,000 neurons, most of which are found in the 21 segmental ganglia, which contain 400 neurons

each, most of them occurring in pairs.

In biology, a central pattern generator (CPG) is a neural network that produces a rhythmic output

signal without sensory feedback. The heart interneurons in a leech form a CPG and are located in

mutually inhibitory pairs in the anterior part of the leech, in ganglia 3 and 4. These interneurons act

as pacemakers, constituting the core of the leech heartbeat timing network. The pairwise

connections of the heart interneuron can pharmacologically be broken by addition of bicuculline.

These pharmacologically decoupled interneurons retain endogenous dynamics with bursting

activities, showing that being connected in a neuronal network is not required for creating bursting

activity, and thereby proves that these neurons are able to autonomously generate the bursting

signal pattern (Cymbalyuk et al. 2002).

The bicuculline decoupled neuron is sensitive to disturbance, which was apparent when attempting

to intracellularly measure membrane potential. When inserting the electrode into the cell, a small

leak current is introduced. This stopped the bursting activity, whereas non-disruptive extracellular

recording techniques preserve the autonomous spiking (Cymbalyuk et al. 2002). This indicates that

the leak current is of particular interest when investing the bursting activity of these neurons.

Different regimes of neuron bursting/silence
The pacemaker activity of the small network of heart interneurons is obtained by repetitive firing of

spikes, or bursting, occurring at regular time intervals. The signal is received by motor neurons as

inhibitory signals, relaxing the lateral heart muscles. Concomitantly, the respective heart interneuron

in the opposite side of same ganglion, also receives the inhibitory signal, which in turn will inhibit its

spiking, and results in activation of the motor neurons on this side of the leech. In this manner, the

both sides of the leech heart are timely coordinated, with alternate synchronous and peristaltic

contractions and a phase of approximately 10 seconds (Kristan et al. 2005).

A neuron cell can exhibit different regimes of signals: bursting, tonic spiking and subthreshold

oscillations and silence. The co-occurrence of several attracting regimes, i.e. multistability, is a

common phenomenon in neuron cell models, and has previously been studied in models of the leech

heart interneuron (Malashchenko et al., 2011, Cymbalyuk et al., 2005). A requirement for the

occurrence of multistability is the underlying complexity in the Hodgkin-Huxley type of

electrophysiological mechanisms in neuron cells, i.e. multivariable and non-linearity.

6

Bursting is characterized by a limited time of rapid oscillatory activity resulting in groups of spikes

separated by intervals of quiescence, which is apparent in a leech heart neuron model (Fig. 2a). It is a

common phenomenon in CPGs, which for example is involved in motor control. One mechanism

allowing for bursting activity is the occurrence is interplaying ionic currents which are voltage-gated

on various timescales.

Figure 2. Membrane potential and transmembrane currents occurring during the onset of a neuronal burst. The membrane

potential (a) shows a sequence of spikes forming a burst. Here a spike train of 31 action potentials, lasting for

approximately 4.5 s, is followed by an interburst interval of approximately 3 s. The sodium currents (b), where sodium ions

flows through voltage gated channels into the cell, causes the initial abrupt increase in membrane potential. The calcium

current (c) slowly builds up during the interburst intervals, and at the end of the interval, triggers the rapid onset of sodium

current. The leak current (d) repolarizes the membrane potential back to its resting potential.

During the burst in a leech heart interneuron model, sodium current (Fig. 2b) peaks result in rapid

depolarization of the membrane potential. The initial sodium current peak is triggered by a calcium

current (Fig. 2c) slowly building up during the interbursting intervals. Both sodium and calcium

currents results from the inflow of positive ions into the cells. In order to repolarize the membrane,

back to its resting state, a necessity is the leak current (Fig. 2d), representing the only electric current

out from the cell in this model. As above mentioned, this leak current could be positive ions flowing

out as well as negative ions flowing into the cell through non-gated ion channels, and is not further

specified.

Hodgkin and Huxley equations
The work of Hodgkin and Huxley (1952) is widely conceived as outstanding and lead them to being

awarded the Nobel Prize in Physiology or Medicine 1963. They created a mathematical model of the

excitable neuron cell as an electric-circuit analog, with a conductive capacitor as an analogue to the

cell membrane, and resistors as analogues to the different iron currents through voltage gated ion

channels in the cell membrane.

Their neuron model is mathematically expressed as a series of differential equations describing the

charge separation between the inside and outside of the cell membrane, and the current derived by

flow of ions through gated channels located inside cell membrane. The opening and closing of the ion

channels respond dynamically to the membrane voltage.

7

The Hodgkin-Huxley equations can be expressed as following (modified from Hodgkin and Huxley,

1952, Edelstein-Keshet, 1988):

𝑑𝑉

𝑑𝑡
=

1

𝐶𝑀
[𝐼 − 𝑔𝑁𝑎̅̅ ̅̅ ̅̅ 𝑚3ℎ(𝑉 − 𝑉𝑁𝑎) − 𝑔𝐾̅̅ ̅̅ 𝑛4(𝑉 − 𝑉𝐾) − 𝑔𝑙̅(𝑉 − 𝑉𝑙)]

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛

The differential equations describe the transmembrane voltage (V) as it is changing, and m, h, n ∈ [0,

1]. The variables m, h, n describe the sodium activation, the sodium inactivation and the potassium

activation respectively, affecting the conductivity of the ion channels, selectively permeable for the

corresponding ion. 𝐶𝑀 is the membrane capacitance.

The constants 𝑔𝑁𝑎̅̅ ̅̅ ̅̅ , 𝑔𝐾̅̅ ̅̅ , and 𝑔𝑙̅ relate to the theoretical maximum of conductance through the

corresponding ion, and is therefore an indirect measure of the density of functional channels in the

cell membrane. The current expressed as the variable I represents an input current that is introduced

experimentally, and does not correspond to a current in a non-manipulated neuron. The voltage

dependent functions α and β were tailored by Hodgkin and Huxley to fit the experimental data.

𝛼𝑚 =
0.1(25 − 𝑉)

𝑒
25−𝑉

10 − 1

𝛽𝑚 = 4𝑒−𝑉/18

𝛼ℎ = 0.07𝑒−𝑉/20

𝛽ℎ = 1/𝑒
𝑉+30

10
+1

𝛼𝑛 =
0.01(10 − 𝑉)

𝑒
10−𝑉

10
−1

𝛽𝑛 = 0.125𝑒−𝑉/80

The most prominent property of this model is its ability to generate the all or nothing signal,

described above as action potential or spike.

The model is generated form measurements in the squid giant axon, but in modified versions the

same type of equations can be fitted to describe membrane potential dynamics in other types of

neurons and in other organisms.

The variability of the ionic conductance, represented as constants such as 𝑔𝑁𝑎̅̅ ̅̅ ̅̅ , 𝑔𝐾̅̅ ̅̅ , and 𝑔𝑙̅, in

identified neurons with stereotypical function may vary through different developmental stages

8

within an individual or between different individuals in a population. It has previously been shown

that this variation may result in variable output from the same type of neurons with different

amount of ionic channels in the cytoplasmic membrane, but the signal may as well be similar despite

the variability in ionic conductance (Golewash, 2014). Because of the natural variability in the ionic

conductance between cells of the same neuron type, it was of interest to monitor the effect of

changing the parameter of ionic conductance on the output firing pattern in the neuron model of the

current study.

METHODS

The heart interneuron model
The leech heart interneuron has been modelled in using Hodgkin-Huxley type of equations. A

canonical model was constructed by Hill et al. 2001, where the ionic currents are modelled in 14

dimensions. This model was simplified to a four-dimensional model by Malaschenko et al. (2011)

where the voltage-dependent ionic currents were presented as the fast sodium (INa), slow calcium

(ICa) and leak (Ileak) currents. Although expressed slightly different, and with other variable name, this

model is constructed in a similar way as that of Hodgkin and Huxley. This model worked as the basis

for the current study:

𝑑𝑉

𝑑𝑡
=

1

𝐶𝑀
[−𝑔𝑁𝑎̅̅ ̅̅ ̅𝑓∞

3(−150, 0.028, 𝑉)ℎ𝑁𝑎[𝑉 − 𝐸𝑁𝑎] − 𝑔̅𝐶𝑎𝑆𝑚𝐶𝑎𝑆
2 ℎ𝐶𝑎𝑆[𝑉 − 𝐸𝐶𝑎𝑆] − 𝑔𝑙𝑒𝑎𝑘[𝑉 − 𝐸𝑙𝑒𝑎𝑘]]

𝑑ℎ𝑁𝑎

𝑑𝑡
= [𝑓∞(500, 𝐵ℎ , 𝑉) − ℎ𝑁𝑎]/0.0405

𝑑𝑚𝐶𝑎𝑆

𝑑𝑡
= [𝑓∞(−420, 0.0472, 𝑉) − 𝑚𝐶𝑎𝑆]/𝜏𝑚𝐶𝑎𝑆

𝑑ℎ𝐶𝑎𝑆

𝑑𝑡
= [𝑓∞(360, 𝐵ℎ𝐶𝑎𝑆, 𝑉) − ℎ𝐶𝑎𝑆]/𝜏ℎ𝐶𝑎𝑆

The voltage-dependent activation or inactivation of ion permeability (i.e. opening and closing of ion

channels) is modelled with the function 𝑓∞(𝐴, 𝐵, 𝑉) given by

 𝑓∞(𝐴, 𝐵, 𝑉) = 1/[1 + 𝑒𝐴(𝑉+𝐵)]

A negative value of 𝐴 implies activation during depolarization, whereas a positive value gives

inactivation. The voltage-dependent time ‘constants’ 𝜏𝑚𝐶𝑎𝑆 and 𝜏ℎ𝐶𝑎𝑆 determines how quickly the

activation or inactivation of ion current occurs. At the depolarized state, it is apparent that 𝜏ℎ𝐶𝑎𝑆 will

obtain a comparatively large positive value, slowing down the inactivation of the Calcium channels as

a result. Hence, ℎ𝐶𝑎𝑆 represents the slowest variable acting during the depolarization in the action

potential.

𝜏𝑚𝐶𝑎𝑆 = 0.005 + 0.134/[1 + 𝑒−400(𝑉+0.0487)]

𝜏ℎ𝐶𝑎𝑆 = 0.2 + 5.25/[1 + 𝑒−250(𝑉+0.043)]

In the model, nine parameters are defined, and have to be given values. These values are mostly

obtained from the canonical 14D model, but were modified in the simplified 4D model to maintain a

close resemblance to the measured behavior of the natural neuron. In this study, parameters values

9

were selected (Table 1) that showed the output signals of interest, and where multistability was

observable.

Table 1. Default values used in when simulating the model unless otherwise specified.

Parameter Variable Default value Unit

Membrane capacitance C 0.5 nS

Sodium conductance (maximum) gNa 250 nS

Sodium reversal potential ENa 0.045 V

Calcium conductance (maximum) gCaS 80 nS

Calcium reversal potential ECaS 0.135 V

Leak conductance (maximum) gleak 15.4 nS

Leak reversal potential Eleak -0.0502 V

Sodium half-inactivation potential Bh 0.031 V

Calcium half-inactivation potential BhCaS 0.06 V

Simulations and phase portraits
For simulations, a computer software (Fig. 3) was constructed in the Java programming language.

The object oriented Java language was chosen since it enabled detailed control over the algorithms,

and it has inbuilt classes helpful for creating a user interface. The Java version used was Java SE

Development Kit 7 Update 25 (64-bit) and programming environments used were TextPad

(https://www.textpad.com/) and JEdit (http://www.jedit.org/). The Java code used for the

simulations is presented in Appendix A, B and C.

The main program named HeartNeuron.java contains the algorithms for numerical simulation of the

model (Appendix A). As a user interface of the program, a control panel was constructed (Appendix

B), where the simulations could be run with the possibility to easily change starting conditions of the

state variables and to vary the parameter values. For visualizing the output, a graph plotting function

was constructed (Appendix C), which could be modified allowing the output to be visualized in

various ways.

10

Figure 3. A graphical presentation of the Java program used for simulation, consisting of three classes. The main program,

HeartNeuron.java, performs the simulation. The user interface KontrollPanel.java catches active changes of the user in the

control panel and sends them to the main program, which then recalculates the simulation. The output from the main

program consists of four one-dimensional vectors, visualized in an instance of the Graph4D.java class (Appendix C).

Dynamical systems, such as neuron models, can be visualized by plotting a phase portrait. It gives a

geometric representation of the solution trajectories in the dynamical system. The number of state

variables determines the number of dimensions required to plot a complete phase portrait of the

whole state space, in our case four. However, by only plotting a selected number of state variables,

three or less, may still give a useful presentation of the progression of the dynamical system in time.

In this study, only two state variables were chosen which allowed the portrait to be visualized on a

two dimensional page.

Numerical methods
Initially during the process of developing the software used for simulating the neuron model, the

Euler method was chosen for numerically calculating the progress throughout the simulation. The

Euler method was chosen because of the few steps in its algorithm, and the intuitive simplicity of its

derivation. After running simulations, it became apparent that the Euler method had limitations in

reproducing the expected bursting patterns at some of the parameter settings, unless extremely

short step size were chosen, which resulted in long simulation time. Therefore, alternative algorithms

11

were searched for and tested. In total, six one-step methods were selected for comparison, with a

range of complexity from the explicit Euler method to Runge-Kutta fourth order method. The

methods and their implementation were performed as described with derivation in Burden and

Faires, 1988.

The selection of methods were chosen based on the similarity in the algorithm construction, and

they are all in fact sometimes referred to as Runga-Kutta methods of various orders. The similarity in

construction allowed the methods to be readily implemented in the same computer software

developed in this study. Except for the semi-implicit Euler method, they are all explicit method, i.e.

the successive step in the calculations is expressed in terms of given or previously computed

quantities.

The explicit Euler method is a simple method performed by stepwise moving forward in time, and

calculating the progression of the state variables based on the calculated values of the differential

equations in the previous time point. For the scalar, autonomous version of this method, with step

size h, the initial value problem

𝑑𝑦

𝑑𝑡
= 𝑓(𝑦), 𝑦(0) = 𝑦0

can be discretized as

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑦𝑛)

The method generates a local truncation error of order one, O(h). Here the algorithm is presented

from the Java code, showing each step in the iterative numerical simulation.

Vn = V

V += h*calculateV(Vn, hNa, mCaS, hCaS);

hNa += h*calculatehNa(Vn, hNa, mCaS, hCaS);

mCaS += h*calculatemCaS(Vn, hNa, mCaS, hCaS);

hCaS += h*calculatehCaS(Vn, hNa, mCaS, hCaS);

The semi-implicit Euler method is highly similar to the Euler method but differs that after the new

value of the V is calculated, it is used for the following calculations within the same iteration.

A simplified version of the method with two coupled variables can be expressed as

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛)

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑔(𝑥𝑛+1, 𝑦𝑛)

In practice, when implemented for the neuron model, this means that the algorithm becomes even

simpler than the Euler method.

V += h*calculateV(V, hNa, mCaS, hCaS);

hNa += h*calculatehNa(V, hNa, mCaS, hCaS);

mCaS += h*calculatemCaS(V, hNa, mCaS, hCaS);

hCaS += h*calculatehCaS(V, hNa, mCaS, hCaS);

12

The Midpoint method, by evaluating the functions at two points at every step, a local truncation

error of order two, O(h2).

A scalar, autonomous version can be expressed as

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑦𝑛 +
1

2
ℎ𝑓(𝑦𝑛))

which was implemented in the code as

k1 = calculateV(V, hNa, mCaS, hCaS);

l1 = calculatehNa(V, hNa, mCaS, hCaS);

m1 = calculatemCaS(V, hNa, mCaS, hCaS);

n1 = calculatehCaS(V, hNa, mCaS, hCaS);

k2 = calculateV(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS + h*n1/2);

l2 = calculatehNa(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS + h*n1/2);

m2 = calculatemCaS(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS + h*n1/2);

n2 = calculatehCaS(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS + h*n1/2);

V += h*k2;

hNa += h*l2;

mCaS += h*m2;

hCaS += h*n2;

The Modified Euler method, generates a local truncation error of order two.

A scalar, autonomous version can be expressed as

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
[𝑓(𝑦𝑛) + 𝑓(𝑦𝑛 + ℎ𝑓(𝑦𝑛))]

which was implemented in the code as

k1 = calculateV(V, hNa, mCaS, hCaS);

l1 = calculatehNa(V, hNa, mCaS, hCaS);

m1 = calculatemCaS(V, hNa, mCaS, hCaS);

n1 = calculatehCaS(V, hNa, mCaS, hCaS);

k2 = calculateV(V + h*k1, hNa + h*l1, mCaS + h*m1, hCaS + h*n1);

l2 = calculatehNa(V + h*k1, hNa + h*l1, mCaS + h*m1, hCaS + h*n1);

m2 = calculatemCaS(V + h*k1, hNa + h*l1, mCaS + h*m1, hCaS + h*n1);

n2 = calculatehCaS(V + h*k1, hNa + h*l1, mCaS + h*m1, hCaS + h*n1);

V += h*(k1 + k2)/2;

hNa += h*(l1 + l2)/2;

mCaS += h*(m1 + m2)/2;

hCaS += h*(n1 + n2)/2;

13

The Heun’s method, generates a local truncation error of order two. Both the Modified Euler method

and Heun’s method are sometimes mentioned as Runge-Kutta methods of order two (Burden and

Faires, 1988).

Scalar, autonomous version can be expressed as

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

4
[𝑓(𝑦𝑛) + 3𝑓(𝑦𝑛 +

2

3
ℎ𝑓(𝑦𝑛))]

which in the code was implemented as

k1 = calculateV(V, hNa, mCaS, hCaS);

l1 = calculatehNa(V, hNa, mCaS, hCaS);

m1 = calculatemCaS(V, hNa, mCaS, hCaS);

n1 = calculatehCaS(V, hNa, mCaS, hCaS);

k2 = calculateV(V + h*k1*2/3, hNa + h*l1*2/3, mCaS + h*m1*2/3, hCaS + h*n1*2/3);

l2 = calculatehNa(V + h*k1*2/3, hNa + h*l1*2/3, mCaS + h*m1*2/3, hCaS + h*n1*2/3);

m2 = calculatemCaS(V + h*k1*2/3, hNa + h*l1*2/3, mCaS + h*m1*2/3, hCaS + h*n1*2/3);

n2 = calculatehCaS(V + h*k1*2/3, hNa + h*l1*2/3, mCaS + h*m1*2/3, hCaS + h*n1*2/3);

V += h*(k1 + 3*k2)/4;

hNa += h*(l1 + 3*l2)/4;

mCaS += h*(m1 + 3*m2)/4;

hCaS += h*(n1 + 3*n2)/4;

The Runge-Kutta fourth order method requires some more steps in the algorithm compared to Euler

method, but generally creates more precise estimations of the progress in the state variables.

The scalar, autonomous version of this method can be expressed as

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
[𝑓(𝑦𝑛) + 2𝑓(𝑦𝑛 +

1

2
ℎ𝑓(𝑦𝑛)) + 2𝑓(𝑦𝑛 +

1

2
ℎ𝑓(𝑦𝑛 +

1

2
𝑓(𝑦𝑛))) + 𝑓(𝑦𝑛

+ ℎ𝑓(𝑦𝑛 +
1

2
ℎ𝑓(𝑦𝑛 +

1

2
𝑓(𝑦𝑛)))]

The resulting local truncation error is of order four, O(h4). Below is an extraction from the Java

program showing the part encoding the algorithm.

k1 = calculateV(V, hNa, mCaS, hCaS);

l1 = calculatehNa(V, hNa, mCaS, hCaS);

m1 = calculatemCaS(V, hNa, mCaS, hCaS);

n1 = calculatehCaS(V, hNa, mCaS, hCaS);

k2 = calculateV(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS + h*n1/2);

l2 = calculatehNa(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS + h*n1/2);

m2 = calculatemCaS(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS + h*n1/2);

n2 = calculatehCaS(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS + h*n1/2);

k3 = calculateV(V + h*k2/2, hNa + h*l2/2, mCaS + h*m2/2, hCaS + h*n2/2);

l3 = calculatehNa(V + h*k2/2, hNa + h*l2/2, mCaS + h*m2/2, hCaS + h*n2/2);

m3 = calculatemCaS(V + h*k2/2, hNa + h*l2/2, mCaS + h*m2/2, hCaS + h*n2/2);

14

n3 = calculatehCaS(V + h*k2/2, hNa + h*l2/2, mCaS + h*m2/2, hCaS + h*n2/2);

k4 = calculateV(V + h*k3, hNa + h*l3, mCaS + h*m3, hCaS + h*n3);

l4 = calculatehNa(V + h*k3, hNa + h*l3, mCaS + h*m3, hCaS + h*n3);

m4 = calculatemCaS(V + h*k3, hNa + h*l3, mCaS + h*m3, hCaS + h*n3);

n4 = calculatehCaS(V + h*k3, hNa + h*l3, mCaS + h*m3, hCaS + h*n3);

V += h*(k1 + 2*k2 + 2*k3 + k4)/6;

hNa += h*(l1 + 2*l2 + 2*l3 + l4)/6;

mCaS += h*(m1 + 2*m2 + 2*m3 + m4)/6;

hCaS += h*(n1 + 2*n2 + 2*n3 + n4)/6;

The Java program was constructed in a way that it is easy to modify the algorithms. There is

therefore a possibility to further investigate different algorithms and evaluate with respect to the

outcome from the neuron model. All decimal variables were declared as the data type double, which

is of the format double-precision 64-bit IEEE 754 floating point, with a precision of approximately 16

digits.

It was apparent that the step size had influence on the result of the simulations. The bursting

patterns and multistability properties varied depending on which step size was chosen. Therefore,

different step sizes were tested, and the outcome form the simulations evaluated visually with

respect to bursting frequency and overall appearance of the output graph.

Temporal measurements
In order to evaluate the outcome form the simulations, a strategy had to be developed for obtaining

a quantitative measure of the firing pattern, which can be seen as a qualitative matter. Three

temporal quantities were chosen which characterizes the firing patterns: spiking frequency (i.e. the

spike firing rate), burst period (i.e. the time between the initiation of two subsequent spike trains)

and interburst interval duration (i.e. the time from the last spike in a spike train till the initiation of

the following spike train).

The third burst was chosen for the measurements in order to allow the dynamical system to stabilize

during the simulations, avoiding the irregularities sometimes apparent in the first burst of the

simulations. By counting the number of pixels between the top of the first spike and the last spike in

the selected burst, a measurement of the duration of a burst (a spike train) was obtained. In a similar

manner, by counting the number of pixels between the first spike of two succeeding bursts, the

period of the whole burst was obtained. Spike frequency was estimated by counting the number of

spikes in a burst of the simulation and divide by burst duration. Interburst interval was estimated by

subtracting the burst duration from the whole burst period.

15

RESULTS AND DISCUSSION

Algorithm selection and optimization
An optimal numerical algorithm for the simulations would accurately reproduce the pattern of the

bursts with the minimal number of calculations required. The requirement of accuracy and stability

in the simulations is obvious, and since the time factor is of importance an exaggerated number of

calculation steps would result in long waiting times during simulations.

Six numerical methods were chosen for evaluation: Euler’s explicit method, semi-implicit Euler

method, Midpoint method, Modified Euler, Heun’s method and Runge-Kutta’s fourth order method

(Table 2). The algorithms were tested for different step sizes. As expected, the algorithms generally

generate more exact simulations if shorter step sizes are chosen. However, this must be balanced

with the longer time required to perform the calculations, and the unavoidable round-off error

introduced when the step size is too minute and the decimal averaging in the in the arithmetic

calculations performed with finite number of digits on a computer starts to influence. It was

apparent during the simulations that the time factor was of greater importance than the rounding-

off error, since a test run using the minuscule step size of 1 ns (10-9 s) did not generate any visual

errors in the bursting pattern, although the test run required more than one hour to complete when

using the time-efficient Euler’s method.

Table 2. Comparison of six different numerical methods for simulating the nerve cell model. The properties of the bursting

pattern measured were spiking frequency (SF), burst period (BP) and interburst interval (IBI). The shaded regions show

where the values were stabilized as the step size was decreased.

 Step size explicit Euler’s method semi-implicit Euler method Midpoint method

 SF BP IBI SF BP IBI SF BP IBI

10 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

5 4.88 6.47 3.6 5.59 10.1 3.3 5.42 8.27 3.47

3.33 5 7.13 3.53 5.56 9.27 3.34 5.4 8.47 3.47

1 5.37 8 3.53 5.52 8.53 3.46 5.4 8.47 3.47

0.1 5.57 8.27 3.6 5.48 8.4 3.47 5.4 8.47 3.47

 Modified Euler Heun's method Runge-Kutta's fourth order

 SF BP IBI SF BP IBI SF BP IBI

10 n.d. n.d. n.d. n.d. n.d. n.d. n.d n.d. n.d.

5 5.4 8.47 3.47 5.42 8.27 3.47 5.4 8.47 3.47

3.33 5.4 8.47 3.47 5.4 8.47 3.47 5.4 8.47 3.47

1 5.4 8.47 3.47 5.4 8.47 3.47 5.4 8.47 3.47

0.1 5.4 8.47 3.47 5.4 8.47 3.47 5.4 8.47 3.47

For the explicit Euler method, a starting step size of 10 ms (Fig. 4a) generated semi-random artefacts

and apparent numerical errors in the calculations. This was obvious since irregular spikes were

generated with enlarged amplitude, i.e. with a membrane potential range exceeding what was later

seen at smaller step sizes generating stable bursting patterns. Already at a step size of 5 ms (Fig. 4b)

a regular bursting pattern was produced, indicating that the numerical calculations of Euler method

at this step size was close enough to allow the model to exhibit the behavior similar to what is seen

16

in the natural neuron. Decreasing the step size further resulted in a decrease in the number of bursts

during the simulation period, ending at 12 bursts during 100 s.

The most pronounced irregularities seen in the Euler’s method with the large step size of 10 ms

occurred in connection to the first spike in the bursts. This first spike in the bursts is of greater

magnitude than the other. This is mainly driven by the rapid influx of sodium, representing the most

rapid currents during the simulations (Fig. 2b). It therefor seems that the stability of the Euler

method is less when the system is in a rapid change. This stability issue could be put into the context

of looking at the magnitudes of the eigenvalues of the linearized system at the states when the spike

is generated. This will be further discussed below.

Figure 4. Using explicit Euler’s method and comparing the effect of different step size on the bursting patterns, i.e. the

progression of membrane potential in the neuronal model. The step size was varied from (a) 10 ms down to (f) 0.01 ms per

step.

The semi-implicit Euler method implicated a minor modification in the algorithm compared to the

explicit Euler method. The semi-implicit Euler method appeared more stable than the explicit (Fig. 5),

indicating that this method might be more useful in dynamical systems such as the periodic neuron

model.

17

Figure 5. Using semi-implicit Euler’s method and comparing the effect of different step size on the bursting patterns, i.e. the

progression of membrane potential in the neuronal model. The step size was varied from (a) 10 ms down to (e) 0.1 ms per

step.

For the Runge-Kutta’s fourth order method, the starting step size of 10 ms generated more stable

pattern compared to the Euler method, and the range of the membrane potential was more

confined. However, there were some abnormalities in the bursting affected by numerical errors from

the too large step size (Fig. 6a). The convergence of the pattern was quicker than for the Euler

method, and seemed stable already at 5 ms. Decreasing the step size further did not visibly improve

the bursting pattern, indicating that the method rapidly converged with the decreased step size.

18

Figure 6. Using Runge-Kutta’s fourth order method and comparing the effect of different step size on the bursting patterns.

The step size was varied from (a) 10 ms down to (e) 0.1 ms per step.

In the comparison it was apparent that the explicit Euler’s method, although having the advantage of

being a simple algorithm, did not give satisfactory results unless very short step size was chosen, <

0.1 ms (Table 2). The semi-implicit Euler method was more stable than the explicit method, and was

in addition slightly simpler in the algorithm, and therefore seems as a better choice for the periodic

neuron model simulations. The second order methods, i.e. Midpoint method, Modified Euler and

Heun’s method did generate good results, and in particular the Modified Euler. As expected, the

Runge-Kutta’s fourth order method did generate the best results, although the number of steps in

the algorithm did make the method comparably slow.

Due to the convincingly quick convergence of the Runge-Kutta fourth order method, it was chosen

for the subsequent analyses, and with the step size set to 0.1 ms. With these settings a simulation

required approximately 2 seconds to be completed on a standard office computer used in this study

(Processor: Intel(R) Core ™ i5-4670 CPU 3.40 GHz; System: Windows 7 Professional 64-bit.)

Stability of Euler’s explicit method
It was apparent from the simulations that if the step size was not short enough, the pattern was

disturbed for all numerical methods (Table 2, Fig. 4, 5, 6). The explanation for this lies in an intrinsic

instability of these methods, which interplays both with the step size and the eigenvalues of the

linearized system at each state.

To understand the mathematical background behind the instability of the Euler’s method, we can

start by looking at a simple model consisting of a scalar ordinary differential equation (ODE).

As a test problem, consider the initial value problem with a scalar linear ODE

19

𝑑𝑦

𝑑𝑡
= 𝜆𝑦(𝑡), with 𝑦(0) = 𝑦0

where λ ∈ ℂ is a parameter equivalent to the eigenvalue of a linear system.

The exact solution to the equation is

𝑦(𝑡) = 𝑦0𝑒𝜆𝑡

The equation is stable in the sense of Lyapunov (or not growing in magnitude) if real part of the

eigenvalue Re(λ) ≤ 0, and asymptotically stable if Re(λ) < 0. In the latter case the solution is

exponentially decaying, i.e. limt→∞ y(t) = 0. The imaginary part Im(λ) gives an oscillation of the

solution curve, which decrease in amplitude with time if the solution is asymptotically stable, and

increase in amplitude if the solution is unstable.

The numerical methods, such as Euler’s method, involve discretization of the initial value problem

into a difference equation. The step size, denoted h, is normally a small real number which is always

positive when time progress forward.

The explicit Euler’s method can be generally expressed as

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛)

When subjecting the scalar linear ODE to discretization using the Euler’s explicit method we obtain

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝜆𝑦𝑛

By regrouping the terms and emanating from the initial value we get

𝑦𝑛+1 = (1 + ℎ𝜆)𝑦𝑛 = (1 + ℎ𝜆)𝑛+1𝑦0

Hence, the Euler’s method is stable if

|1 + ℎ𝜆| ≤ 1

The method is apparently convergent in a disk in the complex plane centered at hλ = -1 and with the

radius 1. It is also apparent that the convergence is dependent on h, and as long as Re(λ) < 0

convergence is obtained if the step size is sufficiently small. In other words, for Re(λ) < 0 the method

is conditionally stable (stable for sufficiently small h), but for Re(λ) > 0 the method is unconditionally

unstable.

With the same reasoning, we can generalize to a linear system of ODEs. This can be expressed as

𝑑𝑦

𝑑𝑡
= 𝐴𝑦

where A is a d × d matrix which we suppose has a basis of eigenvectors. It can be shown that the

general solution can be written in the compact form

𝑦(𝑡) = ∑ 𝐶𝑖𝑒𝜆𝑖𝑡𝑢𝑖

𝑑

𝑖=1

20

where λ1, …, λd are the eignevalues, u1, …, ud are the corresponding eigenvectors, and C1, …, Cd are

coefficients.

Since the eigenvalues are in the exponents of the general solution, it means that the stability is

determined by the sign of the real parts of the eigenvalues. If all eigenvalues lie in the closed left

half-plane of the complex plane, i.e. the real part Re(λi) ≤ 0, then the origin is stable in the sense of

Lyapunov. Also, if all eigenvalues have a negative real part, i.e. the real part Re(λi) < 0, then the origin

is asymptotically stable. On the other hand, if for any eigenvalues the real part Re(λi) > 0, then the

solution is unstable.

If we apply discretization of the linear system of ODEs using Euler’s explicit method we get

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝐴𝑦𝑛 = (𝐼 + ℎ𝐴)𝑦𝑛.

If we let yn be expressed in the eigenbasis (u1, …, ud), we may write

𝑦𝑛 = 𝛼1
𝑛𝑢1 + 𝛼2

𝑛𝑢2 + ⋯ + 𝛼𝑑
𝑛𝑢𝑑.

If we now apply Euler’s explicit method, we find

𝑦𝑛+1 = (𝐼 + ℎ𝐴)(𝛼1
𝑛𝑢1 + 𝛼2

𝑛𝑢2 + ⋯ + 𝛼𝑑
𝑛𝑢𝑑)

= 𝛼1
𝑛(𝐼 + ℎ𝐴)𝑢1 + 𝛼2

𝑛(𝐼 + ℎ𝐴)𝑢2 + ⋯ + 𝛼𝑑
𝑛(𝐼 + ℎ𝐴)𝑢𝑑

= 𝛼1
𝑛(𝑢1 + ℎ𝐴𝑢1) + 𝛼2

𝑛(𝑢2 + ℎ𝐴𝑢2) + ⋯ + 𝛼𝑑
𝑛(𝑢𝑑 + hA𝑢𝑑)

= 𝛼1
𝑛(𝑢1 + ℎ𝜆1𝑢1) + 𝛼2

𝑛(𝑢2 + ℎ𝜆2𝑢2) + ⋯ + 𝛼𝑑
𝑛(𝑢𝑑 + hλ𝑑𝑢𝑑)

= 𝛼1
𝑛(𝐼 + ℎ𝜆1)𝑢1 + 𝛼2

𝑛(𝐼 + ℎ𝜆2)𝑢2 + ⋯ + 𝛼𝑑
𝑛(𝐼 + ℎ𝜆3)𝑢𝑑 = ∑ 𝛼𝑖

𝑛(1 + ℎ𝜆𝑖)𝑢𝑖

𝑑

1=1

Since u1, …, ud are eigenvectors. On the other hand we can also write

𝑦𝑛+1 = ∑ 𝛼𝑖
𝑛+1𝑢𝑖

𝑑

𝑖=1

and comparing these last two equations and using the uniqueness of representation, we have

𝛼𝑖
𝑛+1 = (1 + ℎ𝜆𝑖)𝛼𝑖

𝑛.

It follows from this that the origin is a stable fixed point if |1+hλi| ≤ 1, i = 1, 2, …, d, and is

asymptotically stable if |1 + hλi| < 1, i = 1, 2, …, d. This condition has to be fulfilled by all eigenvalues

in order for the system to be stable. As for the scalar ODE, the region of absolute stability of explicit

Euler’s method lies within a disk centered at hλ = -1 with a radius = 1.

For non-linear systems, such as the leech heart interneuron, it is possible to linearize the system at

each state. Then a linearized system is obtained of the same form as above:

𝑑𝑦

𝑑𝑡
= 𝐴𝑦

This implicates that each state may have different eigenvalues, and the eigenvalues will change as

the state is changing with time.

21

For the linearized system, if it is possible to estimate the maximum values of the eigenvalues, the

stability can be assessed. If |1 + hλ| at any state > 1, the Euler method is no longer stable at this

particular state, and a disturbed pattern will be observed. However, as the state change with time

also the eigenvalues change. During the simulation, using Euler’s method, if |1 + hλ| returns to < 1,

also the system returns to a stable course.

Stability regions of Runge-Kutta methods
In a more general sense, the stability of a numerical method is decided by its stability function. As

seen above, Euler’s explicit method (which actually is a Runge-Kutta method of order one) has the

stability function

𝑅(ℎ𝜆) = 1 + ℎ𝜆

since if we let μ = hλ, the Euler’s method is stable when

|𝑅(𝜇)| = |1 + 𝜇| < 1.

The modified Euler’s function is actually a Runge-Kutta second order method and its stability function

can be obtained. Starting from the scalar discretized formulation

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
[𝑓(𝑦𝑛) + 𝑓(𝑦𝑛 + ℎ𝑓(𝑦𝑛))].

By using the test problem

𝑑𝑦

𝑑𝑡
= 𝜆𝑦(𝑡)

we get

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
[𝜆𝑦𝑛 + 𝜆(𝑦𝑛 + ℎ𝜆𝑦𝑛)] = 𝑦𝑛 + ℎ𝜆𝑦𝑛 +

ℎ2𝜆2

2
𝑦𝑛

and we obtain the stability function

𝑅(𝜇) = 1 + 𝜇 +
1

2
𝜇2

Similarly, the stability function for Runge-Kutta fourth order method is found to be

𝑅(𝜇) = 1 + 𝜇 +
1

2
𝜇2 +

1

6
𝜇3 +

1

24
𝜇4

This is agreeing with the Taylor series expansion of 𝑒𝜇 which is expected (Frank 2008).

In the region where |𝑅(𝜇)| < 1, the numerical method can be considered as stable. The appearance

of this stability region can be visualized in plots for the Runge-Kutta methods of different orders (Fig.

7).

22

Figure 7. The stability regions of Runge-Kutta methods, a. first order (Euler’s method) which is a circle centered at μ = -1, b.

second order, c. third order, and d. fourth order. The horizontal axis represents the real part, and the vertical axis

represents the imaginary part of μ.

Explicit vs semi-implicit Euler methods
Although the algorithms of the explicit and the semi-implicit Euler methods appear similar, they

differ in the efficiency during the simulations of the neuron model. As seen in table 2 and Figure 4, 5,

the semi-implicit method converges better, with the decreasing step size, to the stable values. Here

follows a mathematical analysis and stability comparison of the two methods.

Since the model exhibits periodicity, it is natural to compare the methods in a simple periodic

system, such as the harmonic oscillator.

𝑑𝑥

𝑑𝑡
= 𝑢

𝑑𝑢

𝑑𝑡
= −𝜔2𝑥

This two-dimensional dynamic system can be discretized using the explicit Euler method

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑢𝑛

𝑢𝑛+1 = 𝑢𝑛 − ℎ𝜔2𝑥𝑛

23

This results in the propagator

Ψℎ ((
𝑥

𝑢
)) = (

1 ℎ
−ℎ𝜔2 1

) (
𝑥

𝑢
) =: 𝑀(θ) (

𝑥

𝑢
) , 𝜃 = ℎ𝜔

The matrix M(θ) has eigenvalues

𝜆± = 1 ± √−ℎ2𝜔2 = 1 ± √−𝜃2

This means that for all h ≠ 0, the method will diverge from the cycle of the orbit of the oscillator,

since |λ+| = |λ-| > 1. Since det M(θ) > 1, the simulated oscillator will generate an orbit with

increasing diameter instead of the circular stable orbit which should be the result from this

dynamical model of an harmonic oscillator.

Discretizing the harmonic oscillator using semi-implicit Euler method gives

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑢𝑛

𝑢𝑛+1 = 𝑢𝑛 − ℎ𝜔2𝑥𝑛+1

which gives us

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑢𝑛

𝑢𝑛+1 = (1 − ℎ2𝜔2)𝑢𝑛 + (−ℎ𝜔2)𝑥𝑛

This results in the propagator

Ψℎ ((
𝑥

𝑢
)) = (

1 ℎ
−ℎ𝜔2 1 − ℎ2𝜔2) (

𝑥

𝑢
) =: 𝑀(θ) (

𝑥

𝑢
) , 𝜃 = ℎ𝜔

The matrix M(θ) has eigenvalues

𝜆± = 1 −
1

2
ℎ2𝜔2 ± √ℎ2𝜔2 (

1

4
ℎ2𝜔2 − 1) = 1 −

1

2
𝜃2 ± √𝜃2(

1

4
𝜃2 − 1)

Since

det 𝑀(𝜃) = 1 − ℎ2𝜔2 + ℎ2𝜔2 = 1

We know that |λ±|2 = 1. From this we can conclude that semi-implicit Euler method will result in a

conserved system which preserves the magnitude of the oscillation, which was not the case for the

explicit Euler method.

For h = 0, we have the two eigenvalues λ- = λ+ = 1. This reflects the situation when there is no step

size, and the system will stay at the initial values. Therefore h = 0 is not useful in practice. As h is

increased, the eigenvalues will get complementary positive and negative imaginary parts, and will

move along the unit circle in the complex plane. At ℎ = √2/𝜔h, both eigenvalues are purely

imaginary with the values ±i. When further increasing h to h = 2/ω, both eigenvalues meet at the real

negative value -1. For θ < 4, we get real negative values for both eigenvalues. The lower eigenvalue λ-

24

will have an increasing modulus with an increasing h, whereas the upper eigenvalue λ+ will tend to

zero along the negative real axis.

From these results it is apparent that the semi-implicit Euler method exhibits more stable properties

than the explicit Euler in a highly cyclic system such as the harmonic oscillator. These stability

properties may explain why also in the periodic neuron model, the semi-implicit Euler method

generated more accurate simulations.

Exploring parameter space
In the neuron model, there are nine defined parameters, together forming a nine-dimensional

parameter space. The approach for the exploration was to initiate the exploration from a set of

select default values, and then vary the parameters one by one in order to achieve over-viewable

results. For default values (Table 1) of the nine parameters used in the model, a point in the

parameter space was chosen where a rich signal output of the model was apparent, with silence,

subthershold oscillations and bursting (see below under multistability section). From these default

settings, the user interface of the Java program facilitated the variation of the parameters and

allowed the signal output, with different firing patterns, to be observed.

From previous studies (Cymbalyuk et al. 2002, Malashchenko et al. 2011) it was apparent that the

leak currents were of a particular significance, and small deviations in this parameter generated an

altered signal output both in the neuron biological preparations and in the mathematical model.

Therefor this parameter was firstly chosen to be examined in this study. However, the other

parameters were also explored with altered firing patterns as a result, but this data will not be

presented further.

When moving the gleak parameter far from the default value, in the range 4 < gleak < 5, the signal

output went from silence to spiking (Fig. 8). As the gleak parameter was further increased, a

concomitant increase in amplitude of the action potentials was observed.

Figure 8. The occurrence of tonic spiking when varying the gleak parameter: (a) silence at gleak = 4, (b) low amplitude tonic

spiking at gleak = 5, (c) increased amplitude of tonic spiking at gleak = 6.

When continuing increasing the gleak values, the amplitudes of the action potentials gradually

increased. At a distinct point, bursting started to appear at what appeared to be a bifurcation point

25

between the values gleak = 12.348 and gleak = 12.349 (Fig. 9). The bursts occurring after the

bifurcation point, were relatively long.

Figure 9. The transition from spiking to bursting occurred between gleak = 12.348 and 12.349. The gleak values in the figure

were (a) 12.347, (b) 12.348, (c) 12.349 and (d) 12.350.

The transition from silence to tonic spiking, and the transition from tonic spiking to bursting, were

visualized in phase portraits (Fig. 10). The same Java program was used, but the class Graph4D was

replaced with a phase portrait plotting class (Appendix C2). The two variables selected for

visualization were membrane potential (V) and the activation variable of the calcium current (mCaS).

The phase portraits show when the system goes to silence (Fig. 10a), a small oscillation (Fig. 10b),

greater oscillation (Fig. 10c) and finally an oscillation with a longer detour, i.e. bursting (Fig. 10d).

Figure 10. Phase portraits showing the transition from silence (a) to tonic spiking (b), and from tonic spiking (c) to bursting

(d). The gleak values were (a) 4, (b) 5, (c) 12.348 and (d) 12.349. The small square in each graph represents the starting

point for the simulation. The initial value for mCaS were set to 0.7.

When gleak was increased to a certain point, bursting disappeared (Fig. 11). The disappearance

bursting followed at a distinct point, after which silence occurred after a few initial bursts (Fig. 11b).

26

Figure 11. The bursting goes to silence as the gleak parameter changes between (a) 15.481 and (b) 15.482.

For further characterization, spiking frequency, burst period and interburst interval were estimated

as a selected set of parameters were varied. Three parameters were chosen, representing the

maximum conductance through the cell membrane of the leak (gleak), sodium (gNa) and calcium

ions (gCaS). Interestingly, the bursting pattern responded differently when varying these parameters.

When gleak was varied within the parameter range producing bursts, 12.349 < gleak < 15.481, there

was an increased spiking frequency in the middle part of the investigated interval. The overall change

in spiking frequency was moderate, and the frequency stayed within the range 5.1 – 5.6 (Fig. 12a).

The burst period, however, showed a more dramatic change when the gleak parameter was varied,

and decreased fourth fold as the gleak parameter was varied within the bursting range (Fig. 12b). In

contrast, the interburst interval increased slightly with increased gleak (Fig. 12c).

Figure 12. Bursting pattern depending on the gleak parameter. (a) spiking frequency was relatively stable, although a slight

increase was seen in the middle part of the range, (b) burst period decreased, while (c) interburst interval increased slightly.

The gNa is a parameter representing the maximum sodium current. Since this current is the fastest in

the model, and represents a strong inward current, it was of particular interest. Hypothetically it

could influence the spiking frequency due to a faster inflow of ions in the beginning of spikes,

however this was not apparent from the obtained results (Fig. 13a). Instead, the spiking frequency

was moderately upshifted in the middle part of the parameter region investigated, and decreased in

as the parameter was further increased. For the burst period and interburst interval, opposite

pattern compared to gleak was observed (Fig. 13b-c).

27

Figure 13. Bursting pattern depending on the gNa parameter. (a) spiking frequency was relatively stable, although a slight

increase was seen in the middle part of the range, (b) burst period increased, (c) interburst interval decreased slightly.

The gCaS parameter represents a slow calcium current, with an inward direction which is similar to

the sodium current. Also the effect on the spiking pattern (Fig. 14a-c) was similar to that of gNa. This

could be explained by the two ions having the same inward direction, although acting in different

time scales.

Figure 14. Bursting pattern depending on the gCaS parameter. (a) spiking frequency was relatively stable, although

increased with increased gCaS, (b) burst period increased slightly, and (c) interburst interval decreased. Interestingly, the

bursting did not disappear as the parameter was increased, even up to gCaS = 1000 the bursting persisted (data not shown).

To get a more complete picture, the other parameter was varied and the effect on the spiking

frequency was observed (data not shown), although the frequency was never observed outside the

range 5 – 6 Hz. This indicates that other parameters, not defined in the model is the main regulators

of spiking frequency.

Changing the Eleak rapidly disrupted the bursting, if changed ever so little from the default value, in

both cases if increased or increased (data not shown).

Multistability
In more complex dynamical systems, which are multi-dimensional and non-linear, more than one

stable equilibrium may coexist in the state space. In other words, the given dynamical system may

have two or more stable behaviors existing in the phase plane, i.e. there may be bistability or

multistability.

A prerequisite for multistability, is that the attracting regimes are separated by a repelling regime.

The domain of attraction is the set of initial states in the state space that asymptotically lead to the

equilibrium. The separating regime can for example be a saddle periodic orbit or a saddle

equilibrium.

An example of a simple dynamical system with bistability.

𝑥̇ = 𝜇𝑥 − 𝑥3

𝑦̇ = −𝑦

28

As μ is varied from a negative value (Fig. 15a) to a positive value (Fig. 15b), two stable equilibria

occurs separated by the stable manifold of the saddle-equilibrium in (0, 0) represents the separatrix,

separating the two domains of attraction.

Figure 15. An example of bistability. As the bifurcation parameter μ is changed, a stable equilibrium (s) at (0, 0) turns to an

unstable saddle node (u) separating two stable equilibria.

In the leech interneuron model, bistability and even tristability was observed. For the tristability, the

regimes observed were: silence, subthreshold oscillations, tonic spiking and bursting (Fig. 16).

Figure 16. Multistability with three regimes. (a) decaying oscillations which goes to silence, (b) subthreshold oscillations, (c)

bursting. The simulations were run for 100 s. The initial values of the state variables were [V hNa hCaS] = [-0.047 0.99 0.012]

and mCaS = 0.5 (in a), 0.6 (in b), 0.7 (in c).

In the phase portraits, the stable regimes are visualized. The silence occurred after the values

stabilized near the initial values (Fig. 17a). The subthreshold oscillations occurred as a closed cycle

with small amplitude (Fig. 17b) which appeared to enclose the silent regime. Bursting appeared as a

larger excursion of the state variables (Fig. 17c). It was not concluded from the results if the

subthreshold oscillations were truly a stable regime, or if it actually was an unstable limit cycle where

the initial values were accidently selected in such a way that the values remained exactly on the

29

unstable cycle throughout the simulation period. This would be interesting task to investigate

further.

Figure 17. Phase portraits of three regimes where two of the four state variables are chosen for the axes: V and mCaS. The

simulations were rum for 100 s. The initial values of the state variables were [V hNa hCaS] = [-0.047 0.99 0.012] and mCaS = 0.5

(in a), 0.6 (in b), 0.7 (in c). The small square in each graph represents the starting point for the simulation.

Multistability and qualitative changes in phase portraits as a parameter is varied are typically studied

in bifurcation theory. Therefore, bifurcation analyses would be the natural continuation for exploring

multistability and for obtaining understanding of the mathematical background behind the

phenomenon seen in the neuron model.

30

CONCLUSIONS
The leech heart interneuron can be modelled using Hodgkin-Huxley type of equations, resulting in

the generation of firing patterns similar to measurements of the real neuron. One such extensive

canonical model is represented by 14 coupled differential equations (Hill et al. 2001). To perform a

rigorous analysis of this model is a difficult task. Therefore, simplified models have been proven to be

an important means for enabling deeper analyses and revealing aspects of action potential

generation.

In the work of Malaschenko et al. (2011) a 4-dimensional model is used, representing a simplification

of the 14D canonical model. Such a simplification may not always solely represent theoretical models

but may in fact be obtained in practice by addition of specific ion-channel inhibitors to the biological

systems. Making the simplification of the original model is therefore not only a means for theoretical

dissection of the generation of action potential, but may also potentially be validated experimentally.

A Java program developed in this study with the purpose of enabling the exploration of the

parameter range of the model of Malashchenko et al. 2014. During the development, different

numerical algorithms were tested. Numerical methods with different complexity, ranging from first

order explicit Euler to fourth order Runge-Kutta, produces similar bursting patterns in the leech

interneuron model provided that the step size in the algorithms is sufficiently small. However, the

methods differed in how small step size was required in order to obtain a stable output.

The 4D model is highly simplified compared to the original 14D canonical model. Still the model

exhibits a rich variety of stable regimes and includes multistability at certain parameter ranges. Along

a range of parameter values of gleak the regimes observed were: silence, tonic spiking, bursting with

increasing frequency and again silence. This confirmed the previous results (Mashchenko et al. 2011),

and showed the usefulness of the Java program in exploring the parameter space.

Two additional parameters were varied, gNa and gCaS, representing the maximum conductance for

each of the respective sodium and calcium ion. A biochemical interpretation of this parameter would

be the amount or concentration of functional voltage-gated ion channels in the cell membrane. It is

known that in general there is a great variation between individuals and within an individual at

different developmental stages.

Different parameters showed a broad spectrum of effects on the firing patterns. Generally the

bursting frequency was retained fairly constant 5-6 Hz, while burst duration varied depending on

which parameter was changed. When some parameters were changed, the bursting was not greatly

affected, while other (such as Eleak) rapidly abolished bursting when varied from the specified

default values.

The study of Hodgkin-Huxley type of equations has been proven to be fruitful in understanding

aspects of interneuron signaling, but at the same time challenging since it combines concepts from a

broad range of sciences such as mathematics, physics, biochemistry and biology. It is at the same

time a fascinating thought that in the intellectual attempts to grasp insights in neuron function, the

subject of study constitutes the basis for human perception itself.

31

REFERENCES
Burden, R. L., J. D. Faires (1988). Numerical analysis, fourth edition. PWS-KENT Publishing Company,

Boston, USA.

Cocatre-Zilgien, J. H., F. Delcomyn (1992). Identification of bursts in spike trains. Journal of

Neuroscience Methods 41:19-30.

Cymbalyuk, G. S., Q. Gaudry, M. A. Masino, R. L. Calabrese (2002). Bursting in leech heart

interneurons: Cell-autonomous and network-based mechanisms. Journal of Neuroscience 22:10580-

10592.

Cymbalyuk, G., A. Shilnikov (2005). Coexistence of tonic spiking oscillations in a leech neuron model.

Journal of Computational Neuroscience 18:255-263.

Edelstein-Keshet, L. (1988). Mathematical Models in Biology. Society for Industrial and Applied

Mathematics, Philadelphia.

Frank, J. (2008). Numerical modelling of dynamical systems. Chapter 10. Lecture notes available at

http://homepages.cwi.nl/~jason/Classes/numwisk/index.html

Golewash, J. (2014). Ionic current variability and functional stability in the nervous system.

BioScience 64:570-580

Hill, A. A. V., J. Lu, M. A. Masino, O. H. Olsen, R. L. Calabrese (2001). A model of a segmental oscillator

in the leech heartbeat neuronal network. Journal of Computational Neuroscience 10:281-302.

Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation

and Chaos 10:1171-1266.

Hodgkin, A. L., A. F. Huxley (1952). A quantitative description of membrane current and its

application to conduction and excitation in nerve. Journal of Physiology 117:500-544.

Kristan Jr., W. B., R. L. Calabrese, W. O. Friesen (2005). Neuronal control of leech behavior. Progress

in Neurobiology 76:279-327.

Malashchenko, T., A. Shilnikov, G. Cymbalyuk (2011). Six types of multistability in a neuronal model

based on slow calcium current. PLOS ONE 6:1-10.

Shilnikov, A., R. Gordon, I. Belykh (2008). Polyrhythmic synchronization in bursting networking

motifs. Chaos 18:037120.

Shilnikov, A., R. L. Calabrese, G. Cymbalyuk (2005). Mechanism of bistability: Tonic spiking and

bursting in a neuron model. Physical Review E 71:056214.

jEdit - HeartNeuron.java

2014-10-27 08:25 :: page 1

1 //Appendix A
2 //This is a Java application that models a leech heart interneuron
3
4 import javax.swing.*;
5 import java.awt.*;
6
7 class HeartNeuron extends JFrame {
8
9 //Output vektors
10 double [] vektor1 = new double[10000];
11 double [] vektor2 = new double[10000];
12 double [] vektor3 = new double[10000];
13 double [] vektor4 = new double[10000];
14
15 //deltaTime will sample every 1/100 second
16 //The model is run for 100 seconds
17 //i.e. vektor.length * deltaTime = 100
18 double deltaTime = 0.01;
19
20 //The actual deltaTime between iterations is deltaTime/timeSplit.
21 //Increasing the iterations will improve the accuracy of the numerical

method.
22 //E.g. using timeSplit = 100, the 100 seconds is divided into 100 * 10 000 =

1 000 000 steps.
23 int timeSplit = 100;
24
25 //Starting values of the state variables
26 double startV;
27 double starthNa;
28 double startmCaS;
29 double starthCaS;
30
31 //Parameters
32 double C;
33 double gNa;
34 double ENa;
35 double gCaS;
36 double ECaS;
37 double gleak;
38 double Eleak;
39 double Bh;
40 double BhCaS;
41
42 //A canvas for drawing the graph
43 Graph4D graph;
44
45 //Constructor of the program
46 HeartNeuron(String title) {
47
48 super(title); //Set the name of the window displaying the graph
49 setLayout(new GridLayout(1, 1));
50 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
51
52 //Gives the state variables and parameters their default values
53 setDefault();
54
55 //Calculate the model

jEdit - HeartNeuron.java

2014-10-27 08:25 :: page 2

56 calculate();
57
58 //Create and draw the graph according to the calculations
59 graph = new Graph4D();
60 graph.redraw(vektor1, vektor2, vektor3, vektor4);
61
62 setSize(2000, 800); //Set the window size
63 add(graph); //Add the graph to the window
64 setVisible(true); //Make the window visible
65 }
66
67 //Method for resetting both state variables and parameters to default
68 public void setDefault() {
69 setDefaultState();
70 setDefaultParameters();
71 }
72
73 //Method for resetting state variables to default
74 public void setDefaultState() {
75 //State variables
76 startV = -0.047;
77 starthNa = 0.99;
78 startmCaS = 0.7;
79 starthCaS = 0.012;
80 }
81
82 //Method for resetting parameters to default
83 public void setDefaultParameters() {
84 //Parameters
85 C = 0.5;
86 gNa = 250;
87 ENa = 0.045;
88 gCaS = 80;
89 ECaS = 0.135;
90 gleak = 15.4;
91 Eleak = -0.0502;
92 Bh = 0.031;
93 BhCaS = 0.06;
94 }
95
96 //A function that calculates numerically the model using one of the numerical

methods:
97 // Euler method
98 // Semi-implicit Euler method
99 // Midpoint method
100 // Modified Euler method
101 // Heun's method
102 // Runge-Kutta's fourth order method
103 public void calculate() {
104 double V = startV;
105 double hNa = starthNa;
106 double mCaS = startmCaS;
107 double hCaS = starthCaS;
108
109 for (int i = 0; i < vektor1.length; i++) {
110
111 vektor1[i] = V*1000; //Membrane potential, 1 mV is 1 pixel

jEdit - HeartNeuron.java

2014-10-27 08:25 :: page 3

112 vektor2[i] = hNa; //Sodium inactivation
113 vektor3[i] = mCaS; //Calcium activation
114 vektor4[i] = hCaS; //Calcium inactivation
115
116 //An internal iteration making the calculations more accurate, i.e.

decreasing step size to deltaTime/timeSplit.
117 for (int j = 0; j < timeSplit; j++) {
118 double h = (deltaTime/timeSplit);
119
120 //The Euler method
121 double Vn = V;
122 V += h*calculateV(Vn, hNa, mCaS, hCaS);
123 hNa += h*calculatehNa(Vn, hNa, mCaS, hCaS);
124 mCaS += h*calculatemCaS(Vn, hNa, mCaS, hCaS);
125 hCaS += h*calculatehCaS(Vn, hNa, mCaS, hCaS);
126
127
128 /**
129 //The semi-implicit Euler
130 V += h*calculateV(V, hNa, mCaS, hCaS);
131 hNa += h*calculatehNa(V, hNa, mCaS, hCaS);
132 mCaS += h*calculatemCaS(V, hNa, mCaS, hCaS);
133 hCaS += h*calculatehCaS(V, hNa, mCaS, hCaS);
134 */
135
136 /**
137 //The Midpoint Method
138 double k1 = calculateV(V, hNa, mCaS, hCaS);
139 double l1 = calculatehNa(V, hNa, mCaS, hCaS);
140 double m1 = calculatemCaS(V, hNa, mCaS, hCaS);
141 double n1 = calculatehCaS(V, hNa, mCaS, hCaS);
142 double k2 = calculateV(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS +

h*n1/2);
143 double l2 = calculatehNa(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS +

h*n1/2);
144 double m2 = calculatemCaS(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS +

h*n1/2);
145 double n2 = calculatehCaS(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS +

h*n1/2);
146 V += h*k2;
147 hNa += h*l2;
148 mCaS += h*m2;
149 hCaS += h*n2;
150 */
151
152 /**
153 //The Modified Euler method
154 double k1 = calculateV(V, hNa, mCaS, hCaS);
155 double l1 = calculatehNa(V, hNa, mCaS, hCaS);
156 double m1 = calculatemCaS(V, hNa, mCaS, hCaS);
157 double n1 = calculatehCaS(V, hNa, mCaS, hCaS);
158 double k2 = calculateV(V + h*k1, hNa + h*l1, mCaS + h*m1, hCaS + h*n1);
159 double l2 = calculatehNa(V + h*k1, hNa + h*l1, mCaS + h*m1, hCaS + h*n1);
160 double m2 = calculatemCaS(V + h*k1, hNa + h*l1, mCaS + h*m1, hCaS +

h*n1);
161 double n2 = calculatehCaS(V + h*k1, hNa + h*l1, mCaS + h*m1, hCaS +

h*n1);

jEdit - HeartNeuron.java

2014-10-27 08:25 :: page 4

162 V += h*(k1 + k2)/2;
163 hNa += h*(l1 + l2)/2;
164 mCaS += h*(m1 + m2)/2;
165 hCaS += h*(n1 + n2)/2;
166 */
167
168 /**
169 //The Heun's method
170 double k1 = calculateV(V, hNa, mCaS, hCaS);
171 double l1 = calculatehNa(V, hNa, mCaS, hCaS);
172 double m1 = calculatemCaS(V, hNa, mCaS, hCaS);
173 double n1 = calculatehCaS(V, hNa, mCaS, hCaS);
174 double k2 = calculateV(V + h*k1*2/3, hNa + h*l1*2/3, mCaS + h*m1*2/3,

hCaS + h*n1*2/3);
175 double l2 = calculatehNa(V + h*k1*2/3, hNa + h*l1*2/3, mCaS + h*m1*2/3,

hCaS + h*n1*2/3);
176 double m2 = calculatemCaS(V + h*k1*2/3, hNa + h*l1*2/3, mCaS + h*m1*2/3,

hCaS + h*n1*2/3);
177 double n2 = calculatehCaS(V + h*k1*2/3, hNa + h*l1*2/3, mCaS + h*m1*2/3,

hCaS + h*n1*2/3);
178 V += h*(k1 + 3*k2)/4;
179 hNa += h*(l1 + 3*l2)/4;
180 mCaS += h*(m1 + 3*m2)/4;
181 hCaS += h*(n1 + 3*n2)/4;
182 */
183
184 /**
185 //The Runge-Kutta order four method
186 double k1 = calculateV(V, hNa, mCaS, hCaS);
187 double l1 = calculatehNa(V, hNa, mCaS, hCaS);
188 double m1 = calculatemCaS(V, hNa, mCaS, hCaS);
189 double n1 = calculatehCaS(V, hNa, mCaS, hCaS);
190 double k2 = calculateV(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS +

h*n1/2);
191 double l2 = calculatehNa(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS +

h*n1/2);
192 double m2 = calculatemCaS(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS +

h*n1/2);
193 double n2 = calculatehCaS(V + h*k1/2, hNa + h*l1/2, mCaS + h*m1/2, hCaS +

h*n1/2);
194 double k3 = calculateV(V + h*k2/2, hNa + h*l2/2, mCaS + h*m2/2, hCaS +

h*n2/2);
195 double l3 = calculatehNa(V + h*k2/2, hNa + h*l2/2, mCaS + h*m2/2, hCaS +

h*n2/2);
196 double m3 = calculatemCaS(V + h*k2/2, hNa + h*l2/2, mCaS + h*m2/2, hCaS +

h*n2/2);
197 double n3 = calculatehCaS(V + h*k2/2, hNa + h*l2/2, mCaS + h*m2/2, hCaS +

h*n2/2);
198 double k4 = calculateV(V + h*k3, hNa + h*l3, mCaS + h*m3, hCaS + h*n3);
199 double l4 = calculatehNa(V + h*k3, hNa + h*l3, mCaS + h*m3, hCaS + h*n3);
200 double m4 = calculatemCaS(V + h*k3, hNa + h*l3, mCaS + h*m3, hCaS +

h*n3);
201 double n4 = calculatehCaS(V + h*k3, hNa + h*l3, mCaS + h*m3, hCaS +

h*n3);
202 V += h*(k1 + 2*k2 + 2*k3 + k4)/6;
203 hNa += h*(l1 + 2*l2 + 2*l3 + l4)/6;
204 mCaS += h*(m1 + 2*m2 + 2*m3 + m4)/6;

jEdit - HeartNeuron.java

2014-10-27 08:25 :: page 5

205 hCaS += h*(n1 + 2*n2 + 2*n3 + n4)/6;
206 */
207
208 }
209 }
210 }
211
212 double calculateV(double V, double hNa, double mCaS, double hCaS) {
213 double VLocal = (-(gNa*Math.pow((1/(1 +

Math.exp(-150*(V+0.028)))),3)*hNa*(V-ENa)+gCaS*mCaS*mCaS*hCaS*(V-ECaS)+gleak*(
214 return VLocal;
215 }
216
217 double calculatehNa(double V, double hNa, double mCaS, double hCaS) {
218 double hNaLocal = ((1/(1 + Math.exp(500*(V + Bh)))-hNa)/0.0405);
219 return hNaLocal;
220 }
221
222 double calculatemCaS(double V, double hNa, double mCaS, double hCaS) {
223 double mCaSLocal = ((1/(1 + Math.exp(-420*(V + 0.0472)))-mCaS)/(0.005 +

0.134/(1 + Math.exp(-400*(V + 0.0487)))));
224 return mCaSLocal;
225 }
226
227 double calculatehCaS(double V, double hNa, double mCaS, double hCaS) {
228 double hCaSLocal = ((1/(1 + Math.exp(360*(V + BhCaS)))-hCaS)/(0.2 + 5.25/(1 +

Math.exp(-250*(V + 0.043)))));
229 return hCaSLocal;
230 }
231
232 //A method making redrawing the graph function accessible from outside the

object.
233 public void redrawGraph() {
234 graph.redraw(vektor1, vektor2, vektor3, vektor4);
235 System.out.println("Done calculating");
236 }
237
238 //Mehtods for returning the state variables
239 public double getV () {
240 return startV;
241 }
242
243 public double gethNa () {
244 return starthNa;
245 }
246
247 public double getmCaS () {
248 return startmCaS;
249 }
250
251 public double gethCaS () {
252 return starthCaS;
253 }
254
255 public double getC () {
256 return C;
257 }

jEdit - HeartNeuron.java

2014-10-27 08:25 :: page 6

258
259 public double getgNa () {
260 return gNa;
261 }
262
263 public double getENa () {
264 return ENa;
265 }
266
267 public double getgCaS () {
268 return gCaS;
269 }
270
271 public double getECaS () {
272 return ECaS;
273 }
274
275 public double getgleak () {
276 return gleak;
277 }
278
279 public double getEleak () {
280 return Eleak;
281 }
282
283 public double getBh () {
284 return Bh;
285 }
286
287 public double getBhCaS () {
288 return BhCaS;
289 }
290
291 //Methods for setting the state variables and parameters from outside the

object.
292 public void setV(double value) {
293 startV = value;
294 }
295
296 public void sethNa(double value) {
297 starthNa = value;
298 }
299
300 public void setmCaS (double value) {
301 startmCaS = value;
302 }
303
304 public void sethCaS (double value) {
305 starthCaS = value;
306 }
307
308 public void setC (double value) {
309 C = value;
310 }
311
312 public void setgNa (double value) {
313 gNa = value;

jEdit - HeartNeuron.java

2014-10-27 08:25 :: page 7

314 }
315
316 public void setENa (double value) {
317 ENa = value;
318 }
319
320 public void setgCaS (double value) {
321 gCaS = value;
322 }
323
324 public void setECaS (double value) {
325 ECaS = value;
326 }
327
328 public void setgleak (double value) {
329 gleak = value;
330 }
331
332 public void setEleak (double value) {
333 Eleak = value;
334 }
335
336 public void setBh (double value) {
337 Bh = value;
338 }
339
340 public void setBhCaS (double value) {
341 BhCaS = value;
342 }
343
344 //Main, that creates instances of the program and the control panel.
345 public static void main (String[] args) {
346 HeartNeuron neuron = new HeartNeuron("Heart Neuron");
347 Kontrollpanel kontroll = new Kontrollpanel(neuron);
348 }
349 }

jEdit - Kontrollpanel.java

2014-08-14 08:48 :: page 1

1 //Appendix B
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6 import javax.swing.event.*;
7
8 class Kontrollpanel extends JFrame implements ChangeListener{
9 HeartNeuron neuron;
10
11 SpinnerModel control1;
12 SpinnerModel control2;
13 SpinnerModel control3;
14 SpinnerModel control4;
15 SpinnerModel control5;
16 SpinnerModel control6;
17 SpinnerModel control7;
18 SpinnerModel control8;
19 SpinnerModel control9;
20 SpinnerModel control10;
21 SpinnerModel control11;
22 SpinnerModel control12;
23 SpinnerModel control13;
24 SpinnerModel control14;
25
26
27 //The constructor
28 Kontrollpanel(HeartNeuron parent) {
29 neuron = parent;
30 reset();
31 }
32
33
34 void reset(){
35
36 JPanel panel = new JPanel();
37 panel.setLayout(new GridLayout(14, 1));
38
39
40 panel.add(new TextArea("V", 1, 0, 3));
41 control1 = new SpinnerNumberModel(neuron.getV(), -0.1, 0.1, 0.001);
42 JSpinner spinner1 = new JSpinner(control1);
43 control1.addChangeListener(this);
44 panel.add(spinner1);
45
46 panel.add(new TextArea("hNa", 1, 0, 3));
47 control2 = new SpinnerNumberModel(neuron.gethNa(), 0, 1, 0.01);
48 JSpinner spinner2 = new JSpinner(control2);
49 control2.addChangeListener(this);
50 panel.add(spinner2);
51
52 panel.add(new TextArea("mCaS", 1, 0, 3));
53 control3 = new SpinnerNumberModel(neuron.getmCaS(), 0, 1, 0.1);
54 JSpinner spinner3 = new JSpinner(control3);
55 control3.addChangeListener(this);
56 panel.add(spinner3);
57

jEdit - Kontrollpanel.java

2014-08-14 08:48 :: page 2

58 panel.add(new TextArea("hCaS", 1, 0, 3));
59 control4 = new SpinnerNumberModel(neuron.gethCaS(), 0, 1, 0.001);
60 JSpinner spinner4 = new JSpinner(control4);
61 control4.addChangeListener(this);
62 panel.add(spinner4);
63
64 panel.add(new TextArea("C", 1, 0, 3));
65 control5 = new SpinnerNumberModel(neuron.getC(), 0, 1, 0.1);
66 JSpinner spinner5 = new JSpinner(control5);
67 control5.addChangeListener(this);
68 panel.add(spinner5);
69
70 panel.add(new TextArea("gNa", 1, 0, 3));
71 control6 = new SpinnerNumberModel(neuron.getgNa(), 0, 1000, 10.0);
72 JSpinner spinner6 = new JSpinner(control6);
73 control6.addChangeListener(this);
74 panel.add(spinner6);
75
76 panel.add(new TextArea("ENa", 1, 0, 3));
77 control7 = new SpinnerNumberModel(neuron.getENa(), 0, 0.1, 0.005);
78 JSpinner spinner7 = new JSpinner(control7);
79 control7.addChangeListener(this);
80 panel.add(spinner7);
81
82 panel.add(new TextArea("gCaS", 1, 0, 3));
83 control8 = new SpinnerNumberModel(neuron.getgCaS(), 0, 1000, 10.0);
84 JSpinner spinner8 = new JSpinner(control8);
85 control8.addChangeListener(this);
86 panel.add(spinner8);
87
88 panel.add(new TextArea("ECaS", 1, 0, 3));
89 control9 = new SpinnerNumberModel(neuron.getECaS(), 0, 0.3, 0.005);
90 JSpinner spinner9 = new JSpinner(control9);
91 control9.addChangeListener(this);
92 panel.add(spinner9);
93
94 panel.add(new TextArea("gleak", 1, 0, 3));
95 control10 = new SpinnerNumberModel(neuron.getgleak(), 0, 50, 0.1);
96 JSpinner spinner10 = new JSpinner(control10);
97 control10.addChangeListener(this);
98 panel.add(spinner10);
99
100 panel.add(new TextArea("Eleak", 1, 0, 3));
101 control11 = new SpinnerNumberModel(neuron.getEleak(), -0.1, 0.1, 0.001);
102 JSpinner spinner11 = new JSpinner(control11);
103 control11.addChangeListener(this);
104 panel.add(spinner11);
105
106 panel.add(new TextArea("Bh", 1, 0, 3));
107 control12 = new SpinnerNumberModel(neuron.getBh(), 0, 0.1, 0.001);
108 JSpinner spinner12 = new JSpinner(control12);
109 control12.addChangeListener(this);
110 panel.add(spinner12);
111
112 panel.add(new TextArea("BhCaS", 1, 0, 3));
113 control13 = new SpinnerNumberModel(neuron.getBhCaS(), 0, 0.1, 0.001);
114 JSpinner spinner13 = new JSpinner(control13);

jEdit - Kontrollpanel.java

2014-08-14 08:48 :: page 3

115 control13.addChangeListener(this);
116 panel.add(spinner13);
117
118 panel.add(new TextArea("Default", 1, 0, 3));
119 control14 = new SpinnerNumberModel(0, -5, 5, 1);
120 JSpinner spinner14 = new JSpinner((control14));
121 control14.addChangeListener(this);
122 panel.add(spinner14);
123
124 setContentPane(panel);
125 setSize(200,600);
126 setVisible(true);
127 }
128
129 public void stateChanged (ChangeEvent evt) {
130 Object source = evt.getSource();
131 if (source == control14) {
132 neuron.setDefault();
133 reset();
134 } else {
135 neuron.setV((double)control1.getValue());
136 neuron.sethNa((double)control2.getValue());
137 neuron.setmCaS((double)control3.getValue());
138 neuron.sethCaS((double)control4.getValue());
139 neuron.setC((double)control5.getValue());
140 neuron.setgNa((double)control6.getValue());
141 neuron.setENa((double)control7.getValue());
142 neuron.setgCaS((double)control8.getValue());
143 neuron.setECaS((double)control9.getValue());
144 neuron.setgleak((double)control10.getValue());
145 neuron.setEleak((double)control11.getValue());
146 neuron.setBh((double)control12.getValue());
147 neuron.setBhCaS((double)control13.getValue());
148 }
149
150 neuron.calculate();
151 neuron.redrawGraph();
152 }
153 }

jEdit - Graph4D.java

2014-08-14 08:48 :: page 1

1 //Appendix C1
2
3 import java.awt.*;
4
5 class Graph4D extends java.awt.Canvas {
6
7 double [] vektor1;
8 double [] vektor2;
9 double [] vektor3;
10 double [] vektor4;
11
12 int graphWidth = 1500; //Indicates how many pixels the graph will be drawn
13
14 void redraw(double [] v1, double [] v2, double [] v3, double [] v4) {
15 vektor1 = v1;
16 vektor2 = v2;
17 vektor3 = v3;
18 vektor4 = v4;
19 this.repaint();
20 }
21
22 public void paint(Graphics g) {
23 g.setColor(Color.black);
24 //Left side of graph
25 g.drawLine(100, 200, 100, 400); //Vertical line
26 g.drawLine(95, 300, 100, 300); //Draws a line indicating 0 mv
27 g.drawLine(95, 350, 100, 350); //Draws a line indicating -50 mV
28
29 //Right side of graph
30 g.drawLine(graphWidth+100, 200, graphWidth+100, 400); //Vertical line
31 g.drawLine(graphWidth+100, 300, graphWidth+105, 300); //Draws a line

indicating 0 mV
32 g.drawLine(graphWidth+100, 350, graphWidth+105, 350); //Draws a line

indicating -50 mV
33 g.drawString("0 mV", graphWidth+110, 305); //Writes 0 mV
34 g.drawString("-50 mV", graphWidth+110, 355); //Writes 50 mV
35
36 g.drawLine(1400, 370, 1400 + graphWidth/10, 370); //Bar indicating seconds
37 g.drawString("10 s", 1465, 390);
38
39 //g.drawLine(95, 600, 105, 600); //Draws a line indicating 0 A current
40
41 //Drawing the black line
42 for (int i = 1; i < vektor1.length; i++) {
43 g.drawLine(100 + (i-1)*graphWidth/vektor1.length, 300 -(int)vektor1[i -

1], 100 + i*graphWidth/vektor1.length, 300 -(int)vektor1[i]);
44 }
45 }
46 }
47

jEdit - Graph4D.java

2014-08-14 08:49 :: page 1

1 //Appendix C2
2
3 //Graph state plane
4 import java.awt.*;
5
6 class Graph4D extends java.awt.Canvas {
7
8 double [] vektor1;
9 double [] vektor2;
10 double [] vektor3;
11 double [] vektor4;
12
13 int graphWidth = 1500; //Indicates how many pixels the graph will be drawn
14
15 void redraw(double [] v1, double [] v2, double [] v3, double [] v4) {
16 vektor1 = v1;
17 vektor2 = v2;
18 vektor3 = v3;
19 vektor4 = v4;
20 this.repaint();
21 }
22
23 public void paint(Graphics g) {
24 g.setColor(Color.black);
25
26 g.drawLine(100, 300, 500, 300);
27 g.drawLine(300, 100, 300, 500);
28 g.drawString("V = 0.1", 285, 95);
29 g.drawString("mCaS = 1", 505, 305);
30
31 //Indicate initial values
32 g.drawRect(300 + (int)(vektor3[0]*200) - 2, 300 - (int)(vektor1[0]*4) - 2,

4, 4);
33
34 //Drawing the black line
35 for (int i = 1; i < vektor1.length; i++) {
36 g.drawLine(300 + (int)(vektor3[i-1]*200), 300 - (int)(vektor1[i-1]*4), 300

+ (int)(vektor3[i]*200), 300 - (int)(vektor1[i]*4));
37 }
38 }
39 }
40

