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Abstract

In this thesis we begin by looking at the wave equation with boundary
conditions. We find that certain solutions are discarded due to our C2-
requirement, although they by any means could be considered to be solu-
tions to our boundary value problem. But if these functions are considered
to be solutions to a partial differential equation, in what sense are they
differentiable? And in what function space will they lie?

To answer the first question, we introduce the notion of distributions, which
can be regarded as a generalization of the concept of a function. For example,
the Dirac delta function is not an ordinary function, but it is a distribution.
For distributions, we then introduce the notion of weak, or distributional
derivative, which is our desired generalization of the usual derivative.

To answer the second question we define Sobolev spaces, which are spaces
of functions that are sufficiently many times differentiable in the weak sense
and whose derivatives all belong to some Lp-space. We first define Sobolev
spaces for non-negative integers k, which means that the functions must be
k times differentiable in the weak sense. We then extend our definition of
Sobolev spaces to arbitrary real numbers. We also define Sobolev spaces for
functions defined on the boundary of some open subset of Rn. This can not
be done in exactly the same way as for other arbitrary bounded subsets of
Rn since the boundary has volume measure 0, and thus all integrals in our
usual Sobolev norm become 0.

We then derive some results concerning Sobolev spaces. First we define
the restriction to the boundary of a function in a Sobolev space, which is
not trivial since functions in Sobolev spaces are generally only defined up
to a set of measure zero, and thus a function in a Sobolev space can be
completely redefined on the boundary without affecting it as an object in
a Sobolev space. This restriction map is essential since Sobolev spaces are
closely related to partial differential equations with boundary conditions.

We then continue by proving that Sobolev spaces are continuously embedded
in certain Lp-spaces and Hölder spaces.

Finally, we apply our results regarding Sobolev spaces and distributions to
prove a theorem regarding existence and uniqueness of solutions to elliptic
boundary value problems.
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Chapter 1

Introduction

1.1 Motivational example, the wave equation

Let us begin by finding all solutions to the 1 + 1-dimensional wave equation

c2uxx = utt,

where c is a constant that can be interpreted as the speed with which the
wave propagates. We begin by finding solutions in the open half-plane t > 0.
The idea here is to introduce new variables, η and ξ defined by

η = x− ct and ξ = x+ ct.

By simply applying the chain rule, the wave equation becomes

c2 · 4 ∂u

∂ξ∂η
= 0 ⇐⇒ ∂

∂ξ

∂u

∂η
= 0.

By integrating this equation step by step we first see that uη is constant in
ξ and is thus a function of only η, say h(η). Let φ be an antiderivative of h,
then by integrating one more time we see that

u = φ(η) + ψ(ξ) = φ(x− ct) + ψ(x+ ct).

In the above expression, ψ and φ are more or less arbitrary functions. But
if we require u to be C2, then both φ and ψ must be C2.

Let us now move on to solve an initial value problem for the wave equation
in one dimension. Let f(x) and g(x) be two known functions on R. We
want to find all functions u satisfying

c2uxx = utt, x ∈ R, t > 0, (1.1)
u(x, 0) = f(x), x ∈ R, (1.2)
ut(x, 0) = g(x), x ∈ R. (1.3)
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The initial conditions mean that we know what the solution looks like at
t = 0 and also its rate of change. By our above solution to the wave equation
without initial conditions, we know what form our solution must have. So
our objective is to determine φ and ψ for which

f(x) = u(x, 0) = φ(x) + ψ(x), g(x) = ut(x, 0) = −cφ′(x) + cψ′(x).

By the fundamental theorem of calculus, G(x) =
∫ x

0
g(y)dy is an antideriva-

tive of g(x). Thus the second equation can be integrated, which yields

−φ(x) + ψ(x) = 1
c
G(x) +K

where K is an arbitrary constant. By combining this with the first formula,
we get

φ(x) = 1
2

(
f(x)− 1

c
G(x)−K

)
, ψ(x) = 1

2

(
f(x) + 1

c
G(x) +K

)

Thus our solution to the initial value problem is given by

u(x, t) = φ(x− ct) + ψ(x+ ct)

= 1
2(f(x− ct)− 1

c
G(x− ct)−K + f(x+ ct) + 1

c
G(x+ ct) +K)

= f(x− ct) + f(x+ ct)
2 + G(x+ ct)−G(x− ct)

2c

= f(x− ct) + f(x+ ct)
2 + 1

2c

∫ x+ct

x−ct
g(y)dy.

This result is known as d′Alembert′s formula.

We will now solve a specific initial value problem. It is in itself not of any
special interest, but with the solution we get, we can make an important
point about solutions to partial differential equations in general.

The initial value problem will be the following

uxx = utt, x > 0, t > 0, (1.4)
u(x, 0) = 2x for x > 0, (1.5)
ut(x, 0) = 1 for x > 0, (1.6)
u(0, t) = 2t for t > 0. (1.7)

Since the first quadrant is convex – and thus the lines x−t = c and x+t = c,
for some constant c, can run unbroken through the entire area – all solutions
will be of the form

u(x, t) = φ(x− t) + ψ(x+ t), x > 0, t > 0.
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If however, the lines x − t = c and x + t = c would not run through the
first quadrant unbroken, then the above expression would not be the general
solution, since in that case φ(x− t) could be replaced by φ1(x− t) in some
area and by φ2(x − t) in some other area where the two areas can not be
directly connected by a straight line. The same argument also applies to the
term ψ(x+ t).

We will try to find out what the functions φ and ψ look like. If t = 0 we
get 2x = u(x, 0) = φ(x) + ψ(x) and 1 = ut(x, 0) = −φ′(x) + ψ′(x), and for
x = 0, we have 2t = φ(−t) + ψ(t). Since the name of the variable doesn’t
matter, we call the lone variable in each equation s. The three equations
now become

2s = φ(s) + ψ(s) (1.8)
1 = −φ′(s) + ψ′(s) (1.9)
2s = φ(−s) + ψ(s) (1.10)

By integrating the second condition, we get

−φ(s) + ψ(s) = s+ C,

and by using this together with our first equation, we get

φ(s) = 1
2s−

1
2C, ψ(s) = 3

2s+ 1
2C for s > 0.

By the third equation, we have that

φ(s) = −1
2s−

1
2C for s < 0.

We can now put our solution together, we get that

u(x, t) = φ(x− t) + ψ(x+ t) = 1
2(x− t) + 3

2(x+ t) = 2x+ t if x > t > 0,

u(x, t) = φ(x− t) + ψ(x+ t) = 1
2(t− x) + 3

2(x+ t) = x+ 2t if 0 < x < t.

By looking at the limit as x goes to t (or t goes to x), one sees that the
solution is in fact continuous. However, it is not differentiable on the line
x = t and we therefore do not consider it to be a solution because of our C2

requirement. However, it does not really seem to be any good reason as to
why it should not be considered to be a solution. But if we consider it to
be a solution of our partial differential equation, in what sense does it have
a derivative? And if the function is not C2, in what function space does it
lie? To clarify in what sense the above limit is a solution to our PDE, we
must go to the theory of distributions. But first, we will go through some
useful function spaces and some important results from functional analysis.

For further reading, see [8].
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1.2 Some useful function spaces and results from
functional analysis

Definition 1.2.1. Ck(Ω), where Ω is an open subset of Rn.

We define Ck(Ω) as the space of continuous functions on Ω all of whose
derivatives up to order k are also continuous. That is u ∈ Ck(Ω) if ∂αu ∈
C(Ω) for every α ∈ Nn0 , |α| ≤ k, where N0 = {0, 1, 2, 3...}. α ∈ Nn0 means
that α is a multi-index, that is an n-tuple whose elements are non-negative
integers. The absolute value of a multi-index is defined as the sum of the
indices. If x is an n-dimensional vector, then xα is xα1

1 ...xαnn and ∂α is
defined as ∂α1

1 ...∂αnn .

We define C∞(Ω) in the same manner.

Definition 1.2.2. C∞0 (Ω)

We define C∞0 (Ω) as the space of infinitely many times differentiable func-
tions with compact support. The support of a function f is defined as the
closure of the set of points at which f 6= 0. For functions defined on Rn,
having compact support is equivalent to having bounded support.

For example, the function




0 if |x| ≥ 1
e
− 1

1−|x|2 if |x| < 1

is such a function.

Definition 1.2.3. The Schwartz space, S(Ω)

A function f ∈ C∞(Rn) is a Schwartz function if f and all its derivatives
tend to zero faster than any inverse power of x as |x| → ∞. That is, f is a
Schwartz function if there exists a constant C such that:

sup
x∈Rn

|xα∂βf(x)| ≤ Cα,β,f where α, β ∈ Nn0 .

We define the Schwartz space as the space of all Schwartz functions.

It can be proven that C∞0 (Rn) is dense in S(Rn) with respect to the standard
topology on S(Rn). See [3] for definition.

We will now define Lp-spaces and state a few results about them.

Definition 1.2.4. Lp-norm, ||f ||Lp(Ω) and the Lp(Ω)-space
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We define ||f ||Lp(Ω) for 1 ≤ p < ∞ as
(∫

Ω
|f(x)|pdx

) 1
p

, where the integral
is a Lebesgue integral.

For p =∞, we define ||f ||Lp(Ω) as ess sup
x∈Ω
|f(x)|.

Using this, we define Lp(Ω) to be the space

{f : f is measurable and ||f ||Lp(Ω) <∞}

When p = 2, ||f ||Lp(Ω) is a Hilbert space endowed with the inner product
〈f, g〉 =

∫

Ω
f(x)g(x)dx, where the integral is once again a Lebesgue integral.

We have that 〈f, f〉 = ||f ||2Lp(Ω).

It can be shown that C∞0 (Rn) is dense in Lp(Rn) for any p ≥ 1. Since
C∞0 (Rn) ⊂ S(Rn), it follows that S(Rn) is dense in Lp(Rn) for p ≥ 1.

In the definition of a norm, we require that ||v|| = 0 if and only if v is
the zero-vector. However, if we look at the definition of the Lp-norm, we
see that we can change the value of the function at any set if measure zero
without changing its norm. Thus we do not have that the function which is
constantly zero is the only function for which ||f ||Lp(Ω) = 0. To get around
this, we say that two functions are equal in Lp if they are equal almost
everywhere. Thus Lp-spaces are spaces of equivalence classes of functions,
where two functions are considered equivalent if the set on which they differ
have measure zero, i.e. they are equal almost everywhere.

We will now prove a very useful inequality concerning Lp-spaces, namely
Hölder’s inequality.

Lemma 1.2.1. If a ≥ 0, b ≥ 0 and 0 < λ < 1, then

aλb1−λ ≤ λa+ (1− λ)b

with equality if and only if a = b

Proof. The statement is obvious if b = 0. If b 6= 0, we can divide both
expressions by b. We now set t = a/b. Proving the statement has now been
transformed to proving that tλ ≤ λt + (1 − λ) with equality if and only
if t = 1. By methods of elementary calculus, it can easily be shown that
tλ − λt is strictly decreasing for t > 1 and strictly increasing for t < 1. It
thus attains its maximum value, which is 1 − λ when t = 1. For t = 1, we
have that 1λ = 1 = λ+ (1− λ). As was to be shown.
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Theorem 1.2.2 (Hölder’s inequality). Let 1 < p < ∞ and choose q to
satisfy that 1/p+ 1/q = 1, i.e. q = p/(p− 1), we call q the Hölder conjugate
of p. If f and g are measurable on Ω, then

||fg||L1(Ω) ≤ ||f ||Lp(Ω)||g||Lq(Ω). (1)

In particular, we have that if f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ L1(Ω).
We have equality if and only if a|f |p = b|g|q a.e. for some constants a, b 6= 0.

Proof. The statement is obviously true if ||f ||Lp(Ω) = 0 or ||g||Lq(Ω) = 0,
since that would imply that f or g is 0 a.e., which of course implies that
||fg||L1(Ω) = 0. The statement is also trivial if

||f ||Lp(Ω) =∞ or ||g||Lq(Ω) =∞.

We now observe that if the statement holds for two functions f and g, then
it also holds for every scalar multiple of f and g, since if f is replaced by af
and g is replaced by bg, then both sides of (1) are changed by a factor |ab|.
Because of this, it suffices to prove the statements for all functions f and g
for which ||f ||Lp(Ω) = ||g||Lq(Ω) = 1 with equality if and only if |f |p = |g|q
a.e. To do so, we just apply the above lemma with a = |f(x)|p, b = |g(x)|q
and λ = 1/p. This yields

|f(x)g(x)| ≤ |f(x)|p/p+ |g(x)|q/q. (2)

Integrating both sides yields

||fg||L1(Ω) ≤ p−1
∫
|f |p + q−1

∫
|g|q = 1/p+ 1/q = 1 = ||f ||Lp(Ω)||g||Lq(Ω).

Equality holds if and only if it holds a.e. in (2), and by the above lemma,
we have equality precisely when |f |p = |g|q a.e.

We will now prove another useful inequality concerning Lp-spaces. Namely
Young’s inequality.

Theorem 1.2.3 (Young’s inequality). Let 1 ≤ p ≤ ∞. If f ∈ L1(Rn) and
g ∈ Lp(Rn), then f ∗ g ∈ Lp(Rn) and

||f ∗ g||Lp(Rn) ≤ ||f ||L1(Rn)||g||Lp(Rn).

Proof. We first consider the case when 1 < p < ∞. Let q be the conjugate
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of p in the Hölder’s inequality sense. Using Hölder’s inequality, we have

|(f ∗ g)(x)| =
∣∣∣∣
∫
f(x− y)g(y)dny

∣∣∣∣ ≤
∫
|f(x− y)|1/q|f(x− y)|1/p|g(y)|dny

≤
(∫
|f(x− y)|dny

)1/q (∫
|f(x− y)||g(y)|pdny

)1/p

= ||f ||1/qL1(Rn)

(∫
|f(x− y)||g(y)|pdny

)1/p
. (1.11)

Thus, by looking at the Lp-norm of (f ∗ g)(x), we get

||(f ∗ g)||pLp(Rn) ≤ ||f ||
p/q
L1(Rn)

∫
dnx

∫
dny|f(x− y)||g(y)|p

= ||f ||p/qL1(Rn)

∫
dny

∫
dnx|f(x− y)||g(y)|p

= ||f ||1+p/q
L1(Rn)

∫
dny|g(y)|p = ||f ||pL1(Rn)||g||

p
Lp(Rn)

since integrals over Rn are invariant under translations.

This proves the theorem for the cases when 1 < p < ∞. In the remaining
cases, the theorem follows directly from

|(f ∗ g)(x)| ≤
∫
|f(x− y)||g(y)|dny

if p = 1, and
|(f ∗ g)(x)| ≤ ||f ||L1(Rn)||g||L∞(Rn)

if p =∞. This finishes the proof.

Theorem 1.2.4 (Log-convexity of Lp-norms.). Let 1 ≤ p0 < p1 <∞, Ω be
a bounded open subset of Rn and f ∈ Lp0(Ω)∩Lp1(Ω). Then f ∈ Lp(Ω) for
every p0 ≤ p ≤ p1. Furthermore we have that

||f ||Lpα (Ω) ≤ ||f ||1−αLp0 (Ω)||f ||αLp1 (Ω).

for all 0 ≤ α ≤ 1, where the exponent pα is defined as 1/pα = (1− α)/p0 +
α/p1.

Proof. By using Hölder’s inequality with |f |(1−α)pα , |f |αpα , p = p0/(1−α)pα
and q = p1/(αpα) we have that

||f ||pαLpα (Ω) =
∫

Ω
|f |(1−α)pα |f |αpαdx ≤ ||f (1−α)pα ||Lp0/(1−α)pα ||fαpα ||Lp1/(αpα)

= ||f ||(1−α)pα
Lp0 (Ω) ||f ||αLp1 (Ω).

This finishes the proof.
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Definition 1.2.5 (Hölder continuity). A function f ∈ Ω, where Ω is an
open subset of Rn is said to be Hölder continuous with exponent 0 < α ≤ 1
if:

sup
x 6=y

|f(x)− f(y)|
|x− y|α < C

for some constant C.

If α = 1, we say that f is Lipschitz-continuous, and if α = 0, then it is
simply bounded.

Definition 1.2.6 (Hölder spaces Ck,α(Ω)). We define Ck,α(Ω) as the space
of continuous functions on Ω having continuous derivatives up to order k,
for which the k:th partial derivatives are Hölder continuous with exponent
α, 0 < α ≤ 1.

The Hölder space Ck,α(Ω) is endowed with the norm ||f ||Ck,α defined as

||f ||Ck(Ω) + max
|β|=k

|∂βf |C0,α

where β ranges over multi-indices and ||f ||Ck(Ω) = max|β|≤k supx∈Ω|∂αf(x)|.

Definition 1.2.7 (Boundedness and continuity for linear operators). A lin-
ear operator between two normed vector spaces, X and Y , is said to be a
bounded linear operator if there exists some constant M > 0 such that

||Lv||Y ≤M ||v||X

for all v in X.

The linear operator L between X and Y is said to be continuous if

xn → x implies that Txn → Tx.

Theorem 1.2.5 (Equivalence of boundedness and continuity for linear op-
erators). Let L be a linear operator between two normed spaces X and Y.
Then L is bounded if and only if it is a continuous linear operator.

Proof. We will first prove that boundedness implies continuity and then that
continuity implies boundedness.

Suppose L is bounded. Then for all vectors v and h in X, we have

||L(v + h)− L(v)|| = ||L(h)|| ≤M ||h||.

This shows that letting h tend to zero means that ||L(v + h)− L(v)|| tends
to zero, thus proving continuity.
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Now assume that L is continuous. Since L is continuous, it is of course
continuous at the zero vector. It thus exists a δ > 0 such that ||L(h) −
L(0)|| ≤ 1 for all vectors h in X for which ||h|| ≤ δ. Thus for all non-zero
vectors v in X we have

||L(v)|| =
∥∥∥∥
||v||
δ
L

(
δv

||v||

)∥∥∥∥ = ||v||
δ

∥∥∥∥L
(
δv

||v||

)∥∥∥∥ ≤
||v||
δ
· 1 = 1

δ
||v||.

This proves that L is bounded. Thereby proving the equivalence of the two
statements.

We will now state and prove the bounded linear transformation theorem,
often abbreviated as the B.L.T Theorem. Due to the way we will later on
define our Sobolev spaces, this theorem will be of fundamental importance.

Theorem 1.2.6 (The B.L.T Theorem). Let T be a bounded linear trans-
formation from a normed vector space V1 to a complete normed vector space
V2. Then T can be uniquely extended to a bounded linear transformation
(with the same bound) T from the completion of V1 to V2.

That this completion does in fact exist follows since every normed vector
space is also a metric space, with the metric being defined by d(x, y) =
||x− y||, and every metric space has a completion. This completion can for
example be created by considering equivalence classes of Cauchy sequences.

Proof. Let y be an element of the completion V1 of V1. There exists a
sequence {xn}∞n=1 ∈ V1 such that xn → y. Now look at ||T (xm)− T (xn)||.

We have that ||T (xm)− T (xn)|| = ||T (xm − xn)|| ≤ C||xm − xn|| since T is
assumed to be a bounded linear transformation. Since convergent sequences
are Cauchy, we have that ||xm − xn|| can be made arbitrarily small by
choosing m and n to be large enough. Thus ||T (xm) − T (xn)|| goes to
zero and hence {T (xn)} is Cauchy in V2. Since V2 is complete, the limit of
{T (xn)} exists.

We will now define the extension.

We define T (y) as limn→∞ T (xn). We now need to show that this extension
is well defined. Let {x′n} be another sequence such that x′n → y. Then
||T (x′n) − T (xn)|| = ||T (x′n − xn)|| ≤ C||x′n − xn|| which tends to zero as n
tends to infinity. This implies that T (y) is well-defined.

Next we need to show that T is linear. Let x, y ∈ V1 and a, b ∈ R, and let
{xn} and {yn} be two sequences such that xn → x as n → ∞ and yn → y
as n→∞. Then axn + byn → ax+ by as n→∞. We have that
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T (ax + by) = lim
n→∞T (axn + byn) = a lim

n→∞T (xn) + b lim
n→∞T (yn) = aT (x) +

bT (y).

Hence T is linear. Next we need to show that T is bounded. Let y ∈ V1, we
have

||T (y)|| = lim
n→∞ ||T (yn)|| ≤ lim

n→∞C||yn|| = C||y|| since T is bounded. Thus T
is bounded. If y ∈ V1, then we can choose {yn} = y for every n. It follows
that T has the same bound as T for y ∈ V1.

Finally, we now show uniqueness of the extension T . Assume that there is
another extension, call it T2. For any y ∈ V1 there is a sequence {yn} in V1
such that yn → y as n→∞.

T−T2 will be a bounded linear transformation, and hence continuous. Using
this linear map on the sequence {yn}, we see that (T −T2)(yn) = 0 for every
n. It thus follows that T (y) = T2(y) by continuity.

This finishes the proof.

We will now state some important definitions and results from functional
analysis.

Definition 1.2.8. We define a Banach space to be a complete normed vector
space, where complete means that every every Cauchy sequence has a well
defined limit in the space.

Definition 1.2.9. We define a Hilbert space to be a complete inner-product
space with a norm adhering from the inner product. We denote by 〈·, ·〉 the
inner product of the Hilbert space.

Definition 1.2.10. Let X be a vector space over some field K, which is
either R or C. A linear map from X to K is called a linear functional on X.

Definition 1.2.11. If X is a normed vector space, the space L(X,K) of
bounded linear functionals on X is called the dual space of X.

If H is a Hilbert space, we denote its dual space by H∗.

We will need the following lemma in order to continue with our theorem.

Lemma 1.2.7. If M is a closed subspace of H then H = M ⊕M⊥. That is,
each x ∈ H can be uniquely expressed as x = y+z where y ∈M and z ∈M⊥
and M⊥ is defined as {x ∈ H : 〈x, y〉 = 0 for all y ∈ M}. Furthermore, y
and z are the unique elements of M and M⊥ whose distance (in norm) to x
is minimal.
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Proof. The proof can be found in [4].

Theorem 1.2.8 (Riesz representation theorem). If f ∈ H∗, there is a
unique y ∈ H such that f(x) = 〈x, y〉 for all x ∈ X.

Proof. We begin by showing uniqueness. if 〈x, y〉 = 〈x, y′〉 for all x, then by
choosing x = y − y′, we conclude that ||y − y′||2 = 0, and thus y = y′.

We move on to proving existence. If f is the zero functional, then obviously
y = 0. If not, let M = {x ∈ H : f(x) = 0}. Then M is a proper closed
subspace of X, so M⊥ is non-empty. Now use the previous lemma. Pick
z ∈M⊥ with ||z|| = 1. Let u = f(x)z − f(z)x. We have that u ∈M , so

0 = 〈u, z〉 = f(x)||z||2 − f(z)〈x, z〉 = f(x)− 〈x, f(z)z〉.

Thus f(x) = 〈x, y〉 where y = f(z)z.

For further reading on functional analysis, see [4] and [5].

1.3 Distributions

A function is defined as a relation between a set of inputs and a set of
permissible outputs. Loosely speaking, a function is an object which takes
one value and assigns to it another value. However, there are some objects
which are very useful, and that resemble functions in how they interact
with operations such as integration, but that are not really functions. The
most famous example is probably the Dirac delta function. The Dirac delta
function is defined as the object, δ(t), which has the following properties

δ(t) ≥ 0 for −∞ < t <∞, (1.12)
δ(t) = 0 for t 6= 0, (1.13)
∫ ∞

−∞
δ(t)dt = 1. (1.14)

Unfortunately, there is no conventional function – which takes one value
and assigns to it another value – that posses the properties above. Since
if condition (1.13) hold, then condition (1.14) can not hold. However, the
object described above is very useful. It have been used throughout history
in calculations, which have in some sense turned out to be correct. We want
to describe a new class of object which in some sense resemble functions, but
that are not as strictly defined as taking values and assigning other values to
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them. Loosely speaking, we want to define an object that instead of taking
values at precise points, takes some sort of weighted average over intervals
of positive length. To make our definition exact, we will first need to define
something which we will call a test function.

The space of test functions is typically a space of functions which behave
nicely in some sense. Typically you want to be able to integrate against
them and you do not want to have any trouble with differentiating them.
We therefore typically let a test function be an infinitely many times differen-
tiable complex valued function defined on Rn, i.e. f : Rn → C, f ∈ C∞(Rn).
Since we generally do not want any trouble integrating against them, we
usually also want our test functions to vanish at infinity, therefore one often
let the set of test functions be either S(Rn) or C∞0 (Rn).

We will now define our distributions in a more concrete way. A distribution
is a mapping that assigns to each test function a complex value. So if f is
a distribution, we denote this value that f assigns to some test function φ
by f [φ]. Of course, we get different classes of distributions depending on
which space of test functions we choose. Since the Fourier transform is a
continuous bijection of the Schwartz space onto itself, it is natural to let
the space of test functions be the Schwartz space in connection with Fourier
analysis. A tempered distribution f is a mapping f : S(Rn)→ C which has
the following properties

(i) linearity: f [c1φ1 + c2φ2] = c1f [φ1] + c2f [φ2]

(ii) continuity: if φj → ψ as j →∞, then lim
j→∞

f [φj ]→ f [ψ],

for all test functions φk ∈ S(Rn) and all scalars ck.

We denote the set of tempered distributions by S′(Rn).

We will now state some properties of tempered distribution. We say that two
tempered distributions, f and g, are equal if f [φ] = g[φ] for all φ ∈ S(Rn).

For f, g ∈ S′(Rn), f + g is defined by (f + g)[φ] = f [φ] + g[φ], for all
φ ∈ S′(Rn). If c is a scalar, then the distribution cf is defined by (cf)[φ] =
c · f [φ]. Thus S′(Rn) is a linear space using these operations. We say that a
distribution f is zero on an open interval (a, b) if f [φ] = 0 for all φ ∈ S(Rn)
whose support is a subset of (a, b). Two distributions f and g are equal on
an open interval (a, b) if their difference, f − g is zero on (a, b). If f and g
are ordinary functions, then equality on an open interval (a, b) means that
f = g everywhere on (a, b) except possibly on a set of measure zero.

13



For a distribution that is an integrable function, f , we define f [φ] as
∫
fφ.

Finally, we arrive at our generalization of derivative. Our motivation of
the formulation adheres from integration by parts. If f is a differentiable
function and φ is a test function, where our set of test functions can be the
Schwartz space, or smooth functions with compact support, or some other
space of functions which vanishes at ±∞, then by integration by parts, we
have ∫

R
f ′(x)φ(x)dx = −

∫

R
f(x)φ′(x)dx

for every test function φ. Now even if our notion of derivative only is valid
for differentiable functions (by definition) we see that the above condition
might be generalized. This inspires the following definition.

Definition 1.3.1. If f ∈ S′(R), a new distribution f ′ is defined by

f ′[φ] = −f [φ′]

for all φ in our space of test functions.

In the same manner, if f ∈ S′(Rn), we say that v is the α:th weak derivative
of f if ∫

Rn
f(x)∂αφ(x)dx = (−1)|α|

∫

Rn
v(x)φ(x)dx.

for every φ ∈ S(Rn).

As stated above, if f is an integrable function, then the derivative of f
using the above definition will coincide with the usual derivative of f as
distributions.

Using this definition, we can for example find the derivative of the Heaviside
function H, defined as {

0, x < 0
1, x ≥ 0

.

By the above definition, we have

H ′[φ] = −H[φ′] = −
∫ ∞

0
φ′(x)dx = −[φ]∞x=0 = −(0− φ(0)) = φ(0) = δ[φ].

Where the Dirac delta function as a distribution is defined by δ[φ] = φ(0).
Thus the distributional derivative of the Heaviside function is the Dirac delta
function.

For further reading on distributions, see [8].
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Chapter 2

Sobolev spaces

2.1 Definitions of Sobolev spaces

Recall our boundary value problem from chapter 1. We found a function,
which reasonably should be considered to be a solution to our boundary
value problem, but which was not differentiable and therefore was discarded
due to our C2-requirement. If we were to consider this function as a solution,
a few questions needed to be answered. The first was in which sense it
could be considered to be differentiable. This question was answered by the
definition of weak derivative. But the second question still remains. In which
function space does this function and other solutions to partial differential
equations lie? We previously noted that the Ck-requirements were far too
restrictive. It seems to require that the function is integrable in some sense,
and thus that it belongs to some Lp-space. However, Lp-spaces gives no
information about the behaviour of the functions weak derivatives. It seems
reasonable to require some regularity on the derivatives too. A way of doing
this is by demanding that the functions and all its derivatives up to some
specified order should be in some Lp-space. This is the idea upon which the
definitions of Sobolev spaces are built.

Definition 2.1.1 (H l(Ω),W l,p(Ω), H l
0(Ω), where l ∈ N0, 1 ≤ p < ∞ and Ω

is an open subset of Rn). We begin by defining

||u||l,Ω =


∑

|α|≤l

∫

Ω
|∂αu(x)|2dnx




1/2

, and

||u||W l,p(Ω) =


∑

|α|≤l

∫

Ω
|∂αu(x)|pdnx




1/p

.
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and

||u||Wk,∞(Ω) = max
0≤|α|≤k

||∂αu||L∞(Ω), p =∞.

We now define H l(Ω) as the completion of the inner-product space

{u ∈ C l(Ω), ||u||l,Ω <∞}

equipped with the inner product

〈u, v〉l,Ω =
∑

|α|≤l

∫

Ω
∂αu(x)∂αv(x)dnx

Similarly, we define H l
0(Ω) as the completion of C∞0 (Ω) with respect to the

norm ||u||l,Ω adhering from the inner product 〈u, v〉l,Ω and W l,p(Ω) as the
completion of the normed vector space {u ∈ C l(Ω), ||u||W l,p(Ω) < ∞} with
respect to the norm ||u||W l,p(Ω). W

l,p
0 is defined similarly to H l

0. It is worth
noting that W l,2 = H l.

For the rest of this section, we will mainly be concerned with H l(Ω) and
H l

0(Ω).

It follows from the definition of ||u||l,Ω that if l′ ≥ l, then ||u||l,Ω ≤ ||u||l′,Ω for
all u ∈ H l′(Ω). Every element of H l(Ω) can be regarded as an equivalence
class of Cauchy sequences. A sequence of C l(Ω)-functions, {ui} is Cauchy
with respect to ||u||l,Ω if and only if {∂αui} is Cauchy for every α ∈ Nn0 , |α| ≤
l. We may thus regard H l(Ω) as the set of all u ∈ L2(Ω) for which all weak
derivatives up to order l are again in L2(Ω). This combined with the fact that
C∞0 (Ω) ⊂ C l′(Ω) ⊂ C l(Ω) yields that H l′

0 (Ω) ⊂ H l′(Ω) ⊂ H l(Ω) ⊂ L2(Ω).

We will now try to generalize the definition of H l(Ω) and H l
0(Ω) so that we

no longer require l to be a non-negative integer.

When Ω = Rn, using Plancherel’s formula, we get that

||u||2l,Rn =
∫

Rn

∑

|α|≤l
k2α|û(k)|2 dnk

(2π)n .

The right hand side may differ by a multiple of (2π)n depending on your
Fourier transform conventions.

We can now replace ||u||l,Rn by the norm

||u||F,l =
[∫

Rn
(1 + |k|2)l|û(k)|2 dnk

(2π)n
]1/2

,
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because there are constants c and C depending only on n and l such that

c(
∑

|α|≤l
k2α) ≤ (1 + |k|2)l ≤ C(

∑

|α|≤l
k2α).

Therefore, the two norms are equivalent in the sense that a sequence of
functions converge in one norms if and only if it converges in the other, and
thus, the spaces defined as the completion with respect to one of the norm
is the same as the space defined as the completion with respect to the other.

Even though the sum from the first norm only makes sense for l ∈ N0, the
expression (1 + |k|2)l makes sense and is positive for all real l.
[∫

Rn
(1 + |k|2)l|û(k)|2 dnk

(2π)n
]1/2

makes sense for all functions u ∈ L2(Rn)

(though it may be +∞). We use this in order to define the following.

Definition 2.1.2 (Hs(Rn), s ∈ R). The space Hs(Rn) is defined as the
completion of:

{u ∈ L2(Rn), ||u||F,s <∞}
equipped with the inner product

〈u, v〉F,s =
∫

Rn
(1 + |k|2)sû(k)v̂(k) dnk

(2π)n .

Remark. By the B.L.T. theorem, the fact that Hs(Rn) is defined as the
completion of L2(Rn) with respect to the norm ||u||F,l and since the Schwartz
space is dense in L2(Rn), the following two statements follow:

1) The Fourier transform, u ∈ S(Rn)→ û ∈ S(Rn), has a unique extension
to a bounded linear map

Fs : Hs(Rn)→ {g : Rn → Cn, g is measurable, ||g||F,l <∞}.

The extension is one-to-one, onto and inner product preserving if the target
space is equipped with the inner product 〈f, g〉F,s.

For convenience, we will persist in denoting Fsu by û

2) For an n-dimensional multi-index α, there exists a unique extension of
the linear map u ∈ S(Rn) → ∂αu ∈ S(Rn) to a bounded linear map ∂α :
Hs(Rn)→ Hs−|α|(Rn).

For convenience, we will persist in using the notation ∂α.
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Definition 2.1.3 (Hs
0(Ω), s ≥ 0). If s is an integer, we continue to use

Definition 2.1.1. If s is not an integer, we define Hs
0(Ω) to be the completion

of C∞0 (Ω) under the norm || · ||F,l.

We will now define Hs(Ω) for negative s. The motivation of our defini-
tion comes from noting that Hs(Rn)∗ ∼= H−s(Rn), which is proven in the
following lemma.

Lemma 2.1.1. Let s ∈ R.

i) Let u ∈ Hs(Rn) and v ∈ H−s(Rn). Then the map

Hs(Rn)×H−s(Rn)→ C

(u, v)→
∫
û(k)v̂(k) dnk

(2π)n

is sesquilinear, which means that it is linear in the first argument and con-
jugate linear in the second. The map also obeys

∣∣∣∣
∫
û(k)v̂(k) dnk

(2π)n
∣∣∣∣ ≤ ||u||F,s||u||F,−s

ii) If L ∈ Hs(Rn), then there exists a v ∈ H−s(Rn) such that

Lu =
∫
û(k)v̂(k) dnk

(2π)n

also ||L|| = ||v||F,−s.

Proof. i) The linearity and conjugate linearity follows immediately from the
definition and linearity of the integral. The inequality can be shown using
Cauchy Schwarz as follows
∫
û(k)v̂(k) dnk

(2π)n ≤
∫
|(1 + |k|2)s/2û(k)||(1 + |k|2)−s/2v̂(k)| d

nk

(2π)n

≤ ||u||F,s||v||F,−s (2.1)

ii) Let L ∈ Hs(R)∗. It follows from the Riesz representation theorem that
there exists a g ∈ Hs(Rn) for which

Lu = 〈u, g〉F,s =
∫

(1 + |k|2)sû(k)ĝ(k) dnk

(2π)n .
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Also ||L|| = ||g||F,s. If we now choose the v ∈ H−s(Rn) which satisfies that
v̂(k) = (1 + |k|2)sĝ(k), this v fulfils the requirements of the lemma.

Definition 2.1.4 (Hs(Ω), s < 0). If s < 0 we define Hs(Ω) as the dual
space of H−s0 (Ω), i.e. Hs(Ω) := H−s0 (Ω)∗

We will also state a few definitions and a theorem which characterizes the
space H−1(Ω).

Definition 2.1.5. We will write 〈·, ·〉 to denote the pairing between H−1(Ω)
and H1

0 (Ω).

Definition 2.1.6. ||f ||H−1(Ω) is defined by

||f ||H−1(Ω) := sup{|〈f, u〉||u ∈ H1
0 (Ω), ||u||H1

0 (Ω) ≤ 1}

Theorem 2.1.2 (Characterization of H−1(Ω)). Let Ω be a bounded open
subset of Rn.

i) Let f ∈ H−1(Ω), then there exists functions, f0, f1, ..., fn ∈ L2(Ω) such
that

〈f, v〉 =
∫

Ω
f0v +

n∑

i=1
f ivxidx

where v ∈ H1(Ω),

ii) also

||f ||H−1(Ω) = inf





(∫

Ω

n∑

i=0
|f i|2dx

)1/2

: f satisfies i) for f0, ..., fn ∈ L2(Ω)





Proof. The full proof can be found in [3].

We now want to define the space H l(∂Ω) in a similar way as we defined
H l(Ω), but for functions that are only defined on the boundary ∂Ω of
Ω. However, we can not do this in the same way as before, since the n-
dimensional volume measure of ∂Ω is 0, and our previous norm therefore is
useless. So in order to proceed, we need to define a measure on the boundary.
We will do so by using local coordinates.
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Definition 2.1.7. A diffeomorphism is a differentiable map which is bi-
jective, and whose inverse is also differentiable. If the map and its inverse
are k times differentiable with continuous derivatives, we say that it is a
Ck-diffeomorphism.

Definition 2.1.8. a) Ω is said to have Ck boundary if for each point p ∈ ∂Ω,
there is an open neighbourhood b(p) around p and a Ck diffeomorphism
φp : b(p)→ Rn such that the following hold:

φp(b(p) ∩ Ω) = Rn+
and

φp(b(p) ∩ ∂Ω) = Rn−1

b) Ω is said to have smooth boundary if each φp (p ∈ ∂Ω) of a) is a C∞-
diffeomorphism.

From here on, we will assume that Ω is a bounded open subset of Rn with
smooth boundary.

A system (b(p), φp), p ∈ ∂Ω as in the previous definition is called a local
coordinate system for ∂Ω.

We will now define a few properties for functions defined on the boundary.
A function defined on the boundary, f : ∂Ω→ C, is said to be C∞ if there
exists a coordinate system (b(p), φp) such that f ◦ φ−1

p : Rn−1 → C is C∞.
We write this as f ∈ C∞(∂Ω).

We will now define Hs(∂Ω), s ∈ R for functions defined on the boundary.

Definition 2.1.9 (Hs(∂Ω), s ∈ R). Since the boundary of Ω is compact,
every open cover of ∂Ω has a finite subcover. More specifically, there exists

points, pi ∈ ∂Ω, i = 1, 2, 3, 4...., N , such that ∂Ω ⊂
N⋃

i=1
b(pi). Now one

can choose functions χi ∈ C∞0 (b(pi)), 1 ≤ i ≤ N , taking values in [0, 1] so

that
N∑

i=1
χi = 1 on some neighbourhood of ∂Ω. This collection of smooth

functions χi is called a partition of unity.

a) For smooth functions on the boundary, f , we define

||f ||2s,∂Ω =
N∑

i=1
||χif ◦ φ−1

pi ||2F,s,n−1
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b) We now define Hs(∂Ω) as the completion of C∞(∂Ω) under the norm
|| · ||s,∂Ω. Hs(∂Ω) is also equipped with the inner product

〈f, g〉s,∂Ω =
N∑

i=1
〈(χif) ◦ φ−1

pi , (χig) ◦ φ−1
pi 〉s,n−1.

The definition of the Sobolev norm on the boundary seems to depend on
how we choose the partition of unity used in the definition of the norm. We
will now proceed by proving that all the norms defined by using different
partitions of unity are in fact equivalent, and thus the completion with
respect to the different norms define the same space.

But in order to prove that, we need to use the following lemma:

Lemma 2.1.3. Let ψ ∈ C∞0 (Rm) and let φ : Rm → Rm be a C∞ diffeomor-
phism. Then the map: C∞0 (Rm) → C∞0 (Rm), f 7→ (ψf) ◦ φ−1 extends to a
bounded linear map on Hs(Rm).

We also have that ||(ψf) ◦ φ−1||F,s,m ≤ C||f ||F,s,m

The proof idea is to apply the B.L.T. Theorem. Using that C∞0 (Rm) is dense
in Hs(Rm), we see that we can immediately apply the B.L.T. theorem if the
map is indeed a bounded linear transformation.

The complete proof can be found in [3].

Theorem 2.1.4. All norms defined using different partitions of unity are
equivalent.

Proof. Let (b(p), φp) and (b(p̃), φp̃) be two different coordinate systems and
let χi ∈ C∞0 (b(pi)), 1 ≤ i ≤ N and χ̃i ∈ C∞0 (b̃(p̃i)), 1 ≤ i ≤ Ñ be two
partitions of unity. Then if f ∈ C∞(∂Ω), we have that

(χif) ◦ φ−1
pi = 1 · (χif) ◦ φ−1

pi =
Ñ∑

j=1
χ̃j · ((χif) ◦ φ−1

pi )

=
Ñ∑

j=1
(χ̃jχif) ◦ φ−1

pi =
Ñ∑

j=1
(χ̃jχif) ◦ φ̃−1

p̃j
◦ φ̃p̃j ◦ φ

−1
pi

We now see that (χ̃jχi) ◦ φ−1
pi (x) will vanish except for when φ−1

pi (x) ∈
b̃(p̃j)∩ b(pi), which means that x ∈ φpi(b̃(p̃j)∩ b(pi)). And then φ−1

pi (x) will
be in the domain of φp̃j .

We now apply Lemma 2.1.3 with ψ = χi ◦ φ̃−1
p̃j
, φ−1 = φ̃p̃j ◦ φ

−1
pi , and f

replaced by (χ̃jf) ◦ φ̃−1
p̃j

.
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We wish to prove that there exists some constant, K, such that ||f ||2s,∂Ω,χ ≤
K · ||f ||2

s,∂Ω,χ̃, where ||f ||s,∂Ω,χ and ||f ||s,∂Ω,χ̃ are the two norms defined by
using different partitions of unity. Since χ and χ̃ are arbitrary partitions
of unity, this will finish the proof. We only need to show that that the
inequality holds one way, since the partitions of unity are arbitrary, and
thus by just changing the names we have proved the inequality the other
way too.

||(χif) ◦ φ−1||F,s,n−1 ≤
Ñ∑

j=1
||(χ̃jχif) ◦ φ̃−1

p̃j
◦ φ̃p̃j ◦ φ

−1||F,s,n−1

≤
Ñ∑

j=1
C||(χ̃jf) ◦ φ̃−1

p̃j
||F,s,n−1 ≤ C · Ñ · max

1≤j≤Ñ
||(χ̃jf) ◦ φ̃−1

p̃j
||F,s,n−1

Since we are dealing with a norm, which is non-negative , the same inequal-
ities are still true if we square every expression. Thus by taking the sum
over all indices i, we get:

N∑

i=1
||(χif) ◦ φ−1||2F,s,n−1 ≤ C2 · Ñ2 ·N · max

1≤j≤Ñ
||(χ̃jf) ◦ φ̃−1

p̃j
||2F,s,n−1.

This finishes the proof.

For further reading on Sobolev spaces, see [1] [2] and [3]. For further reading
on Fourier analysis, see [7] and [8].

2.2 Restrictions to the boundary

We will now study restrictions to the boundary, and their connection to
Sobolev spaces. Since a function in a Sobolev space is only defined up to
a set of measure zero, and since the volume measure of the boundary is
zero, any function in a Sobolev space can be completely redefined on the
boundary and still be considered to be the same object in the Sobolev space.
Thus we can not define an ordinary function restriction in a meaningful way
for Sobolev spaces. What we want to do is to approximate our function
by a sequence of other functions which behave nicely on the boundary, and
then define the restriction map as the limit of the restriction map of this
sequence.
Definition 2.2.1 (C l(Ω̄)). For an open subset Ω of Rn, we define C l(Ω̄) to
be the set of all functions u ∈ C l(Rn) for which the partial derivatives up to
order l, ∂αu, |α| ≤ l, are bounded and uniformly continuous on Ω. We write
C∞(Ω̄) = ∩∞l=0C

l(Ω̄).
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Theorem 2.2.1. Let l ∈ N and let Ω be an open subset of Rn with smooth
boundary. Now define the restriction map:

r : C∞(Ω̄)→ C∞(∂Ω)

u→ u|∂Ω

There exists a unique map

R : H l(Ω)→ H l−1/2(∂Ω)

and constants C1, C2 such that the following hold:

(1) R extends r. That means Ru = ru for all u in the domain of r, C∞(Ω̄).

(2) R is bounded. That means ||Ru||l−1/2,∂Ω ≤ C1||u||l,Ω.

(3) R is surjective.

(4) For every function f ∈ H l−1/2(∂Ω), there is a function u ∈ H l(Ω) such
that Ru = f and C2||f ||l−1/2,∂Ω ≥ ||u||l,Ω, i.e, R has a bounded right inverse.

(5) The kernel of R is H1
0 (Ω) ∩H l(Ω).

Remark. Theorem 2.2.1 is true for all real l > 1/2, with the exception that
when 1/2 < l < 1, R has kernel H l

0(Ω).

The proof of theorem 2.2.1 will be divided into parts. We will begin by
showing that r is bounded. Using this combined with a theorem that states
that C∞(Ω̄) is dense in H l(Ω), we can extend r – by applying the B.L.T.
theorem – to all of H l(Ω). We call this extension R. Part (1), that R
extends r, and part (2), that R is bounded will then follow immediately.
The uniqueness also follows since the extension of the B.L.T. theorem is
unique.

The boundedness of r will first be proven for Ω = Rn with ∂Ω = {xn = 0}.
This result will then be extended to Ω = Rn+ with ∂Ω = {xn = 0} and
finally this will be extended to any bounded open subset Ω of Rn, as in the
theorem.

We will then continue by showing that each f ∈ H l−1/2(∂Ω) can be extended
to some u ∈ H l(Ω) in a bounded way. This proves part (4), that R has a
bounded right inverse, which of course implies surjectivity, which is part (3).
In the same manner as with the boundedness, this result will first be proven
for Rn and then be extended to more general subsets.

We obviously have that r vanishes on C∞0 (Ω), which by construction is dense
in H l

0(Ω). This means, that r being bounded, implies that the kernel of R,
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which is the extension of r by continuity, will contain H l
0(Ω). But now

note, that if u ∈ H1
0 (Ω)∩H l(Ω), then there will exist a sequence of C∞0 (Ω)-

functions, uj , that converge to u with respect to the norm || · ||1,Ω. By part
(2) of theorem 2.2.1 with l = 1, we have

||Ru||1/2,∂Ω = ||Ru−Ruj ||1/2,∂Ω ≤ C||u− uj ||1,Ω.

Since uj converge to u in the norm || · ||1,Ω, Ru = 0.

Thus the kernel of R contains all ofH1
0 (Ω)∩H l(Ω). To prove part (5), it thus

suffices to show that any function in the kernel of R can be approximated
in the H1(Ω) norm by functions in C∞0 (Ω). In the same way as above, we
begin by showing this for Rn and then we generalize this result.

We will begin by examining the case when Ω = Rn. Since (x1, x2, ..., xn−1)
will be used a lot, we will denote (x1, x2, ..., xn−1) by x′ for convenience.

Lemma 2.2.2 (Restriction from Rn to Rn−1). Let s be a real number which
satisfies that s > 1/2. The linear transform

r : C∞0 (Rn)→ C∞0 (Rn−1) defined by
(ru)(x′, xn) = u(x′, 0).

has a unique extension to a bounded linear map

R : Hs(Rn)→ Hs−1/2(Rn−1).

Proof. The idea is to use the B.L.T. theorem. But in order to apply the
B.L.T. theorem, we must show that r is indeed bounded. This will be
proven if we can show there exists a constant C, depending only on s, such
that

||ru||F,s−1/2,n−1 ≤ C||u||s,n
for all u ∈ C∞0 (Rn). Once this is shown, the theorem will follow immediately
by applying the B.L.T. theorem.

For k ∈ Rn, we write k = (k′, kn) with k′ = (k1, k2, ..., kn−1). By using the
Fourier transform and the inverse Fourier transform, we get

∫
(r̂u)(k′)eik′x′ d

n−1k′

(2π)n−1 = (ru)(x′) = u(x′, 0)

=
∫∫

û(k′, kn)dkn2π e
i(k′·x′) d

n−1k′

(2π)n−1 .

By comparing the first and the last integral, we see that r̂u(k′) =
∫
û(k′, kn)dkn2π .
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Using this equality and Cauchy-Schwarz yields that

|(r̂u)(k′)|2 =
∣∣∣∣
∫
û(k′, kn)(1 + k′2 + k2

n)s/2(1 + k′2 + k2
n)−s/2dkn2π

∣∣∣∣
2

≤
[∫
|û(k′, kn)|2(1 + k′2 + k2

n)sdkn2π

] [∫ 1
(1 + k′2 + k2

n)s
dkn
2π

]

Setting kn = p
√

1 + k′2 in the second integral of the last expression yields
[∫
|û(k′, kn)|2(1 + k′2 + k2

n)sdkn2π

] [ 1
(1 + k′2)s−1/2

∫ 1
(1 + p2)s

dp

2π

]

≤ C2

(1 + k′2)s−1/2

[∫
|û(k′, kn)|2(1 + k′2 + k2

n)sdkn2π

]
,

where the constant C2 =
∫ 1

(1 + p2)s
dp

2π depends only on s. It is also finite,

since s > 1/2.

Using the previous inequality, we get that

||ru||2F,s−1/2,n−1 =
∫

(1 + k′2)s−1/2|r̂u(k′)|2 d
n−1k′

(2π)n−1

≤ C2
∫
|û(k′, kn)|2(1 + k′2 + k2

n)s d
nk

(2π)n = (C||u||F,s,n)2.

By applying the B.L.T. theorem, this finishes the proof.

Lemma 2.2.3 (Extension from Rn−1 to Rn). For any real number s > 1/2,
there exists a constant C, depending only on n and s, such that for each
f ∈ Hs−1/2(Rn−1) there is a u ∈ Hs(Rn) for which

Ru = f and ||u||F,s,n ≤ C||f ||F,s−1/2,n−1, where R is the map from the
previous lemma.

This proves that the restriction map has a bounded right inverse. This of
course also implies surjectivity.

Proof. We claim that if f ∈ S(Rn−1) , then the u determined by

û(k′, kn) = f̂(k′)2
√
πe−k

2
n/(1+|k′|2)/

√
1 + |k′|2

satisfies the desired conditions for that f .

Once this claim is proven, we will be able to extend the map f → u by the
B.L.T. theorem to Hs−1/2(Rn−1) and the theorem will follow.
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We begin by verifying that û is indeed in S(Rn). Every derivative of

e−k
2
n/(1+|k′|2)/

√
1 + |k′|2

is a polynomial in k multiplied by e−k2
n/(1+|k′|2)(1+|k′|2)−l/2 for some natural

number l. This will be bounded by a polynomial in k′ because of the factor
e−k

2
n/(1+|k′|2), and thus, as f ∈ S(Rn−1)→ f̂ ∈ S(Rn−1), û ∈ S(Rn).

We will need to verify that Ru = f . This can equivalently be stated as
verifying that f̂(k′) = F(u(k′, 0)), which by a result in Fourier analysis
equals

∫
û(k′, kn)dkn2π .

That this is true follows immediately from the definition of û(k′, kn) together
with

2
√
π

∫
e−k

2
n/(1+|k′|2) dkn

2π
√

1 + |k′|2 = 1√
π

∫
e−p

2
dp = 1.

Where we made the change of variables kn = p
√

1 + |k′|2 in the calculations.

The verification of the boundedness is as follows:

||u||2F,s,n =
∫

(1 + |k|2)s|û(k)|2 dnk

(2π)n

= 4π
∫

(1 + |k|2)s(1 + |k′|2)−1e−2k2
n/(1+|k′|2)|f̂(k′)|2 d

n−1k′

(2π)n−1
dkn
2π

= 2
∫

(1 + p2)se−2p2
dp

∫
(1 + |k′|2)s−1+1/2|f̂(k′)|2 d

n−1k′

(2π)n−1

=
∫

2(1 + p2)se−2p2
dp||f ||2F,s−1/2,n−1.

Setting C =
∫

2(1 + p2)se−2p2
dp finishes the proof.

We will now generalize these results to the case where Ω = Rn+ and ∂Ω =
Rn−1. In order to do so, we will need the following lemmas:

Lemma 2.2.4. Let l ∈ N0. The set of restrictions of functions in C∞0 (Rn)
to Rn+ is dense in H l(Rn+). In particular, C∞(Rn+) ∩ H l(Rn+) is dense in
H l(Rn+).
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Proof. The proof can be found in [3].

and

Lemma 2.2.5. Extension from Rn+ to R.

Let l ∈ N0. There exists a bounded linear operator

E+ : H l(Rn+)→ H l(Rn)

such that E+u(x) = u(x) for all u ∈ C∞(Rn+) ∩H l(Rn+), x ∈ Rn+.

Proof. The proof can be found in [3].

That theorem 2.2.1 holds when Ω = Rn+ and ∂Ω = Rn−1 can now be
shown by using lemma 2.2.2 and lemma 2.2.3, boundedness and existence of
bounded right inverse for Ω = Rn and ∂Ω = Rn−1, by constructing R = R̃E+
where R̃ is the restriction map from Rn to Rn−1 of lemma 2.2.2 and E+ is
the extension map from Rn+ to Rn of lemma 2.2.5.

The statement regarding the kernel of R will now be proven.

Lemma 2.2.6. Let R be the restriction map of theorem 2.2.1 with Ω = Rn
and ∂Ω = Rn−1, then the kernel of R is H l(Rn+) ∩H1

0 (Rn+).

Proof. We will begin by proving that H l(Rn+) ∩H1
0 (Rn+) is contained in the

kernel.

Every function uj ∈ C∞0 (Rn+) will naturally be in the kernel of the re-
striction map. Now since C∞0 (Rn+) is dense in H1

0 (Rn+), for every function
u ∈ H l(Rn+) ∩H1

0 (Rn+), there exists a sequence of functions, {uj}, that con-
verge to u with respect to the norm || · ||1,Rn+ .

By part 2) of theorem 2.2.1, with l = 1, we get:

||Ru||F,1/2,n−1 = ||Ru−Ruj ||F,1/2,n−1 ≤ C||u− uj ||1,Rn+ .

Since this holds for all j, and since ||u − uj ||1,Rn+ → 0 as j → ∞, it follows
that Ru = 0. Thus the kernel of R contains all of H l(Rn+) ∩H1

0 (Rn+).

To prove that the kernel of R is contained in H l(Rn+)∩H1
0 (Rn+), we will show

that any function in the kernel of R can be approximated in the H1(Rn+)
norm by functions in C∞0 (Rn+)

We now define a function φ which has the following properties:
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1. φ ∈ C∞(R)

2. φ(t) = 0 if |t| ≤ 1
2

3. φ(t) = 1 if |t| > 1

The proof will be carried out in two steps. In the first, we prove the following

If u ∈ H1(Rn+), we have some ε > 0 and we define uε(x) = u(x′, xn)φ(xn/ε),
then

||u− uε||21,Rn ≤ 2ψ/ε||Ru||2L2(Rn−1) + 2(1 + ψ)||u||21,Ωε , where

Ωε = {x ∈ Rn, xn < ε}, and ψ = max{φ′(t)2, 1/2 ≤ t ≤ 1}.
Since multiplication by φ(xn/ε) is a bounded operator on H1(Rn) and by
the standard density argument, we can use the B.L.T. theorem, and it thus
suffices to prove the claim for u ∈ C∞(Rn+). For u ∈ C∞(Rn+), we see that
uε is in H1

0 (Rn+), since by creating a sequence of functions, φj , which have
the following properties

1. φj ∈ C∞0 (R)

2. φj(t) = 0 if |t| ≤ 1
2 or |t| ≥ j + 1/2

3. φj(t) = 1 if j > |t| > 1,

we can regard uε as the limit of {uε,j}, where {uε,j} consists of u multiplied
with φj . Every function in {uε,j} will be in C∞0 (Ω) since both u and φj are
smooth, and thus so is their product. Also since φj has compact support,
so does uε,j . Once again using that multiplication by φ(xn/ε) is a bounded
operator on H1(Rn), {uε,j} converge in the norm, and since H1

0 (Rn+) is
complete, uε ∈ H1

0 (Ω).

By recalling the definition of the Sobolev norm as the sum of Lp-norms,
a bound for the sum of the Lp-norms for the function and its derivatives
will also be a bound for the Sobolev norm. With this in mind, we note the
following

Note that

||u− uε||2L2(Rn+) = ||(1− φ(xn/ε))u||2L2(Rn+) ≤
∫

0<xn<ε
|u(x)|2dnx (1)

by simply looking at the definition of 1 − φ(xn/ε) and observing that it
equals 0 for xn ≥ ε.
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We will now try to find similar bounds for the derivatives. For ∂

∂xj
, 1 ≤ j <

n, this is easy since 1− φ(xn/ε) is constant in xj , and the derivative is thus
zero. In a similar way as above, we get the following

For 1 ≤ j ≤ n− 1, we have that
∂

∂xj
[φ(xn/ε)u(x)] = φ(xn/ε)

∂u

∂xj
(x).

Thus
∥∥∥∥∥
∂

∂xj
(u− uε)

∥∥∥∥∥

2

L2(Rn+)
=
∥∥∥∥∥(1− φ(xn/ε))

∂u

∂xj
(x)
∥∥∥∥∥

2

L2(Rn+)

≤
∫

0≤xn≤ε

∣∣∣∣∣
∂u

∂xj
(x)
∣∣∣∣∣

2

dnx. (2)

And finally, when j = n, we have that
∂

∂xn
[u(x)− φ(xn/ε)u(x)] = [1− φ(xn/ε)]

∂u

∂xn
(x)− 1

ε
φ′(xn/ε)u(x).

Using that (a+ b)2 ≤ 2a2 + 2b2 on the above expression, we get that
∥∥∥∥
∂

∂xn
[u− uε]

∥∥∥∥
2

L2(Rn+)
≤ 2

∥∥∥∥[1− φ(xn/ε)]
∂u

∂xn
(x)
∥∥∥∥

2

L2(Rn+)
+2
∥∥∥∥

1
ε
φ′(xn/ε)u(x)

∥∥∥∥
2

L2(Rn+)
.

In the same manner as before, we see that the first term is bounded by

2
∫

0≤xn≤ε

∣∣∣∣
∂u

∂xn
(x)
∣∣∣∣
2
dnx. (3)

Since φ(t) is constant for |t| ≤ 1/2 and for |t| ≥ 1, we see that φ′(xn/ε)
vanishes for 0 ≤ xn ≤ ε/2 and for xn ≥ ε. Because of this, we see that

2||1
ε
φ′(xn/ε)u(x)||2L2(Rn+) = 2

ε2

∫

ε
2<xn<ε

φ′(xn/ε)2|u(x)|2dnx

= 2
ε

∫

1
2<y<1

φ′(y)2|u(x′, εy)|2dn−1x′dy ≤ 2ψ
ε

∫

1/2<y<1
|u(x′, εy)|2dn−1xdy

Where we have made the change of variables xn = εy and where ψ is defined
in the same way as before.

By the fundamental theorem of calculus, we see that

u(x′, εy) = u(x′, 0) +
∫ εy

0

∂u

∂xn
(x′, xn)dxn

= (Ru)(x′) +
∫ εy

0

∂u

∂xn
(x′, xn)dxn
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Now, once again using that (a + b)2 ≤ 2a2 + 2b2 together with Cauchy-
Schwarz, we see that

|u(x′, εy)|2 ≤ 2|(Ru)(x′)|2 + 2ε
∫ ε

0
| ∂u
∂xn

(x′, xn)|2dxn for all y ∈ (0, 1).

Thus

2||1
ε
φ′(xn/ε)u(x)||2L2(Rn+)

≤ 2ψ
ε

∫
|(Ru)(x′)|2dn−1x′ + 2ψ

∫

0<xn<ε
| ∂u
∂xn

(x)|2dnx. (4)

Adding (1), (2), (3) and (4) finishes the proof of step 1.

Step 2 is simply to finish the proof of Lemma 2.2.6. This is done by applying
the above result.

Let u ∈ H l(Rn+) be in the kernel of R. Using the result of step 1 and using
that u is by assumption in the kernel of R – and thus the 2ψ/ε||Ru||2L2Rn−1

term from step 1 is zero – we see that:

lim
ε→0
||u− uε||21,Rn+ ≤ 2(1 + ψ) lim

ε→0
||u||21,Ωε = 0

This finishes the proof.

This result can now be generalized to the case when Ω is an arbitrary open
subset of Rn. But in order to generalize the theorem, the following results
about H l(Ω) are needed.

Lemma 2.2.7 (Extension from Ω to Rn). Let Ω be a bounded open subset
of Rn with smooth boundary, let l ∈ N0 and let O be an open subset of Rn
for which Ω ∩O = ∅. Then there exists a bounded linear operator

E : H l(Ω)→ H l(Rn) for which

Eu(x) = u(x) a.e. for x ∈ Ω and

Eu(x) = 0 a.e. for x ∈ O.

Proof. The proof can be found in [3].

and

Lemma 2.2.8. Let Ω be a bounded open subset of Rn with smooth boundary
and let l ∈ N0. Then C∞(Ω) is dense in H l(Ω).
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Proof. Let u ∈ H l(Ω) and Eu ∈ H l(Rn) be its extension to Rn given by the
previous lemma with some O satisfying the properties of O in the previous
lemma (for example O = {x ∈ Rn, |x−y| > 1 for all y ∈ Ω}). Since C∞0 (Rn)
is dense in S(Rn), and S(Rn) is dense in H l(Rn) by construction, we have
that C∞0 (Rn) is dense in H l(Rn). Because of this, there is a sequence of
functions, fj ∈ C∞0 (Rn) that converges to Eu in H l(Rn). Now let P :
H l(Rn) → H l(Ω) be the operator that restricts functions on Rn to Ω. We
then have:

lim
j→∞

||u− Pfj ||l,Ω = lim
j→∞

||P (Eu− fj)||l,Ω ≤ lim
j→∞

||Eu− fj ||F,l,n = 0

This finishes the proof.

The general case of theorem 2.2.1 can now be proven by using the exten-
sion from Ω to Rn of lemma 2.2.8 together with the already proven case of
theorem 2.2.1 when Ω = Rn+.

The complete proof of theorem 2.2.1 can be found in [3].

For further reading, see [1], [2] and [3].

2.3 Embedding theorems for Sobolev spaces

We will now prove several embedding theorems for Sobolev spaces. In order
to do so, we must first go through some important concepts and definitions,
among these the definition of continuous embedding.

Definition 2.3.1 (Continuous embedding). Let X and Y be two normed
vector spaces, endowed with their respective norms || · ||X and || · ||Y , for
which X ⊂ Y . We say that X is continuously embedded in Y , which we
will denote by X ↪→ Y , if the inclusion operator i : X → Y, i(x) = x is a
continuous map. This is equivalent to the statement that there exists some
constant C such that:

||x||Y ≤ C||x||X ,∀x ∈ X.

In order to continue with the embedding theorems, we will need the following
extension theorem.

Theorem 2.3.1 (Extension from W 1,p(Ω) to W 1,p(Rn)). Let Ω be an open
subset of Rn with C1 boundary ∂Ω. For 1 ≤ p ≤ ∞, there exists a continuous
linear operator

E : W 1,p(Ω)→W 1,p(Rn)
with the properties
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1. Eu = u a.e. in Ω and

2. ||Eu||W 1,p(Rn) ≤ C||u||W 1,p(Ω).

Proof. The proof can be found in [6].

We also need to use the following density theorem:

Theorem 2.3.2 (C∞0 (Rn) is dense in W 1,p(Rn)).

Proof. The proof can be found in [1].

We will now begin by showing the embedding theorems for the case when
Ω = Rn. This result will later be used to generalize the theorem to more
general subsets.

Case 1 (p < n).

Theorem 2.3.3 (Sobolev-Gagliardo-Nirenberg-theorem). For 1 ≤ p < n.
Let p∗ be defined by

1
p∗ = 1

p
− 1
n
.

Then W 1,p(Rn) ↪→ Lp∗(Rn), which will be shown by showing that there exists
a constant C = C(n, p) such that

||u||Lp∗(Rn) ≤ C||∇u||Lp(Rn).

Before we start with the proof, we will tell a bit about p∗.

p∗ is called the Sobolev exponent corresponding to p and it is in fact the
only exponent for which the above inequality can hold. This can be shown
by the following scaling argument.

Since C∞0 (Rn) is dense in W 1,p(Rn), we may assume that u ∈ C∞0 (Rn)
instead. Given u ∈ C∞0 (Rn), define uλ(x) = u(λx) This will be our scaled
function for λ > 0.

If we apply the Sobolev-Gagliardo-Nirenberg-inequality to our function uλ(x),
we get

||uλ||Lp∗(Rn) ≤ C||∇uλ||Lp(Rn).

By making a change of variables on both sides, we get

1
λn/p∗

||u||Lp∗(Rn) ≤ C
λ

λn/p
||∇u||Lp(Rn)
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which is equivalent to

||u||Lp∗(Rn) ≤ Cλ1−n/p+n/p∗||∇u||Lp(Rn)

If this is to be true for all λ > 0 the exponent (1− n/p+ n/p∗) must be 0.
From this, it follows that p∗ must equal np/(n− p).

In order to continue with the proof of theorem 2.3.3, we must first prove the
following lemma.

Lemma 2.3.4. ||Πn
i=1f

1
n−1
i ||L1(Rn) ≤ (Πn

i=1||fi||L1(Rn−1))
1

n−1

Where fi is a function of (x1, x2, ..., xi−1, xi+1, ..., xn) and fi ≥ 0.

Proof. The proof will be carried out by induction on n.

Let x′i = (x1, x2, ..., xi−1, xi+1, ..., xn). We begin with the case where n = 2.
Using Fubini’s theorem, we get
∫

R2
Π2
i=1fi(x′i)dx =

∫ ∞

−∞

∫ ∞

−∞
f1(x2)f2(x1)dx1dx2

= Π2
i=1

∫

R
fi(x)dx ≤ Π2

i=1||fi||L1(R).

Thus the initial case is proven. We continue by showing that if the statement
holds for some number n, then it also holds for the next number, n+ 1. By
keeping xn+1 fixed, by using Hölder’s inequality with p = n and q = n

n− 1
and finally by using the induction hypothesis for n, we get

∫

Rn
Πn+1
i=1 (fi(x′i))

1
ndx ≤ ||fn+1||

1
n

L1(Rn)

(∫

Rn
Πn
i=1(fi(x′i))

1
n−1dx

)n−1
n

≤ ||fn+1||
1
n

L1(Rn)Π
n
i=1

(∫

Rn−1
|fi(y, xn+1)|dy

) 1
n

. (1)

By integrating the product on the right hand side and using Hölder’s in-
equality again, this time with 1 = 1

n
+ ...+ 1

n
, we get

∫ ∞

−∞
Πn
i=1

(∫

Rn−1
|fi(y, xn)|dy

) 1
n

dxn+1 ≤ Πn
i=1||fi||

1
n

L1(Rn).

By integrating inequality (1) and using the last inequality, we see that
∫

Rn+1
(Πn+1

i=1 fi(x′i))
1
ndx1...dxn+1 ≤ (Πn+1

i=1 ||fi||L1(Rn))
1
n .

Thus the induction step is proven. The whole lemma now follows by induc-
tion.
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We can now proceed with the proof of theorem 2.3.3

Proof. of theorem 2.3.3:

As in the scaling argument, we may assume that u is in C∞0 (Rn) since
C∞0 (Rn) is dense in W 1,p(Rn). We will split the proof up in two cases, when
p = 1 and when 1 < p < n.

i) p = 1: Let i ∈ {1, ..., n} be fixed. Since u ∈ C∞0 (Rn) by assumption, we
have

|u(x)| = |u(x1, ..., xn)− lim
s→−∞

u(x1, ..., xi−1, s, xi+1, ..., xn)|

=
∣∣∣∣
∫ xi

−∞
∂iu(x1, ..., xi−1, s, xi+1, ..., xn)ds

∣∣∣∣

≤
∫

R
|∂iu(x1, ..., xi−1, s, xi+1, ..., xn)|ds

We define
fi(x′i) =

∫

R
|∂iu(x1, ..., xi−1, s, xi+1, ..., xn)|ds,

where once again x′i = (x1, ..., xi−1, xi+1, ..., xn).

Using the last inequality for every integer 1 ≤ i ≤ n and multiplying, we get

|u(x)| n
n−1 ≤ Πn

i=1(fi(x′i))
1

n−1 .

By integrating both sides in the above inequality, using lemma 2.3.4 and
raising both sides to the power (n− 1)/n yields

||u||
L

n
n−1 (Rn)

≤ (Πn
i=1||fi||L1(Rn−1))

1
n .

By replacing the fi in the above expression by its original definition, using
the inequality of arithmetic and geometric means we get

(Πn
i=1||fi||L1(Rn−1))

1
n = (Πn

i=1||∂iu||L1(Rn))
1
n ≤ 1

n

n∑

i=1
||∂iu||L1(Rn)

and finally we get that

1
n

n∑

i=1
||∂iu||L1(Rn) = 1

n

∫

Rn

n∑

i=1
|∂iu|dx

≤ 1√
n

∫

Rn

(
n∑

i=1
|∂iu|2

)1/2

dx = 1√
n
||∇u||L1(Rn). (1)

34



where the inequality holds since

1
n

n∑

i=1
|∂iu| ≤

1√
n

(
n∑

i=1
|∂iu|2

)1/2

which in turn can be shown to hold since
(

n∑

i=1
|∂iu|

)2

≤ n
n∑

i=1
|∂iu|2

which is ultimately true since

2|∂iu||∂ju| ≤ |∂iu|2 + |∂ju|2

by Cauchy Schwarz.

Setting C(n, p) = 1/
√
n finishes the proof for the case p = 1.

ii) 1 < p < n:

Let v = |u|γ for some γ ≥ 1 which will be determined later, and let q be the
conjugate of p. That is conjugate in the Hölder’s inequality sense.

By raising both sides of v = |u|γ by the power n/(n − 1) and integrating,
we get

||u||γ
L
nγ
n−1 (Rn)

= ||v||
L

n
n−1 (Rn)

.

and by using the result from the case p = 1, we see that

||v||
L

n
n−1 (Rn)

≤ 1√
n
||∇v||L1(Rn) = γ√

n

∫

Rn
|∇u||u|γ−1dx

≤ γ√
n
||∇u||Lp(Rn)||u||γ−1

L(γ−1)q(Rn). (2)

Where we have used Hölder’s inequality in the last step. We now make our
choice of γ. We choose γ to be equal to p(n− 1)

n− p . Thus our above estimate
is

||u||Lp∗(Rn) ≤
γ√
n
||∇u||Lp(Rn).

Setting C(n, p) = γ√
n

= p(n− 1)
(n− p)√n finishes the proof.

To continue with proving more embedding theorems, we will need the fol-
lowing embedding theorem for Lp-spaces.

Theorem 2.3.5. Let 1 ≤ p < q ≤ ∞, Then Lq(Ω) ↪→ Lp(Ω) if the measure
of Ω is finite.
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Theorem 2.3.6 (W 1,p(Ω) ↪→ Lq(Ω)). Let Ω be a bounded open subset of
Rn with C1 boundary, and let 1 ≤ p < n, with the corresponding Sobolev
exponent p∗. Then W 1,p(Ω) ↪→ Lq(Ω) for 1 ≤ q ≤ p∗.

Proof. Let u be a function on W 1,p(Ω). By theorem 2.3.1, there exists a
map, E, such that Eu = v, v ∈ W 1,p(Rn) and v|Ω = u. Using this together
with theorem 2.3.3, we get that

||u||Lp∗(Ω) ≤ ||v||Lp∗(Rn) ≤ C1||v||W 1,p(Rn) ≤ C2||u||W 1,p(Ω).

Since Ω was assumed to be bounded, we can use the embedding theorem for
Lp-spaces of theorem 2.3.5, thus

Lp∗(Ω) ↪→ Lq(Ω), 1 ≤ q ≤ p ∗ .

Putting these two statements together finishes the proof.

The above embedding theorem can in fact be generalized. It can be shown
that the embedding is in fact a compact embedding. We use the follow-
ing definitions to specify what that means and we then explicitly state the
compact embedding property as a theorem.

Definition 2.3.2 (Compact embedding). Let X and Y be two complete
normed vector spaces, where X is embedded in Y . We say that X is com-
pactly embedded in Y , which we denote by ⊂⊂, if the inclusion operator
i : X → Y is a compact operator. That means that that the images of
bounded sets in X are precompact sets in Y . Which in turn means that the
closure of the images of bounded sets in X are compact sets in Y .

Theorem 2.3.7 (Rellich-Kondrachov). Let Ω be a bounded open subset of
Rn with C1-boundary ∂Ω. Now let 1 ≤ p < n and denote by p∗ the Sobolev
exponent of p. Then W 1,p(Ω) ⊂⊂ Lq(Ω) for 1 ≤ q < p∗.

Proof. The proof can be found in [2].

Case 2 (n = p).

We begin with the case when Ω = Rn Before we begin with our proof, we
will show a small lemma for positive real numbers.

Lemma 2.3.8 (n · a · bn−1 ≤ (n+ 1) · bn + an). Let a and b be positive real
numbers and let n be a positive integer, then

n · a · bn−1 ≤ (n+ 1) · bn + an.
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Proof. The proof will be carried out in two steps, when b ≥ a and when
a > b. We begin with the case where b ≥ a.

If b ≥ a, then (n+ 1) · b · bn−1 + an ≥ (n+ 1) · b · bn−1 ≥ n · a · bn−1. Which
shows that the inequality holds in the first case.

When a > b, we will prove the inequality by studying the derivatives. We
have already shown that the inequality holds for a = b. It follows that if
(n+ 1) · bn + an grows faster than n · a · bn−1 as a function of a for all a > b,
the theorem will hold. The derivative of the first expression with respect to
a is n · an−1 and the derivative of the second expression with respect to a
is n · bn−1. Since we assume that a > b, the inequality for the derivatives
holds, and thus the theorem follows.

Theorem 2.3.9. W 1,p(Rn) ↪→ Lq(Rn) for any p ≤ q < ∞, which means
that n ≤ q <∞ since we assume that p = n.

Proof. As before, we use the standard density argument to justify that we
only consider u ∈ C∞0 (Rn). We use inequality (2) from the proof of part ii)
of theorem 2.3.3. This gives us

||u||γ
L
nγ
n−1 (Rn)

≤ γ||∇u||γ−1

L
n(γ−1)
n−1 (Rn)

.

If we now choose gamma to be equal to n and use lemma 2.3.8 with a =
||∇u||Ln(Rn) and b = ||u||Ln(Rn), the above inequality becomes

||u||n
L
n2
n−1 (Rn)

≤ n||∇u||Ln(Rn)||u||n−1

L
n(n−1)
n−1 (Rn)

.

≤ ||∇u||nLn(Rn) + (n+ 1)||u||nLn(Rn) ≤ C||u||nW 1,n(Rn)

If we now choose γ to be n + 1, then in the same manner as above, we get
that

||u||n+1

L
n(n+1)
n−1 (Rn)

≤ ||∇u||n+1
Ln(Rn) + n||u||n+1

L
n2
n−1 (Rn)

.

We now notice that the first term on the right hand side is smaller than
||u||n+1

W 1,n(Rn) And by the inequality attained from the case when γ = n, we
see that the second term is bounded by C||u||n+1

W 1,n(Rn) for some constant C.
Adding this together we see that

||u||n+1

L
n(n+1)
n−1 (Rn

≤ ||u||n+1
W 1,n+1(Rn).

By repeating this process for γ = n + 2, n + 3, n + 4, ..., n + k, n + k + 1
and by using that the inequality holds for the previous case, we can create
a sequence of numbers pk = (n+ k)n

n− 1 which tends to infinity and for which

||u||Lpk (Rn) ≤ ||u||W 1,n(Rn).
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Now for every q ≥ n where 1
q

= α

n
+ 1− α

pk
for α = αk ∈ [0, 1] for some

pk ≥ q, we can use the log convexity of Lp-norms to attain

||u||Lq(Rn) ≤ ||u||αLn(Rn)||u||1−αLpk (Rn)

≤ ||u||αLn(Rn)C||u||1−αW 1,n(Rn) ≤ C||u||
α+1−α
W 1,n(Rn) = C||u||W 1,n(Rn).

This finishes the proof.

Theorem 2.3.10. Let Ω be a bounded open subset of Rn with C1-boundary.
Then W 1,p(Ω) ⊂⊂ Lq(Ω) for all 1 ≤ q <∞.

Proof. Since closed and bounded subsets of Rn are compact in Rn, we have
that Ω is precompact in Rn. By the standard embedding of Lp-spaces (the-
orem 2.3.5) W 1,n(Ω) ↪→ W 1,p(Ω), for every p < n. Thus the statement of
the theorem is a consequence of theorem 2.3.6.

Case 3 (n < p <∞).

We will now prove some embedding theorems for Sobolev spaces into Hölder
spaces. In order to do so, we need the following inequality.

Theorem 2.3.11 (Morrey’s Inequality). Let n and p be two constants such
that n

p
< 1, i.e. n < p. Then there is a constant Cn,p depending only on n

and p such that

i) |u(y)− u(x)| ≤ Cn,p|y − x|1−
n
p ||∇u||Lp(B2|y−x|(x))

≤ Cn,p|y − x|1−
n
p ||u||W 1,p(B2|y−x|(x))

ii) |u(x)| ≤ Cn,p[||∇u||Lp(B2(x)) + ||u||Lp(B1(x))] ≤ Cn,p||u||W 1,p(B2(x))

for every u ∈ W 1,p(Rn). In this theorem, Br(x) is the open ball of radius r
centered at the point x. Note that this implies that

||u||C0,1−n/p(Rn) ≤ Cn,p||u||W 1,p(Rn).

by dividing both sides of inequality i) by |y−x|1−
n
p , adding this to inequality

ii), using that for every u ∈ W 1,p(Rn), ||u||W 1,p(Ω) ≤ ||u||W 1,p(Rn), where Ω
is a bounded open subset of Rn and finally by recalling the definition of the
Hölder norm.

38



Proof. To make the proof easier to follow, it will be divided up into three
steps. The first one is the following:

Let r > 0, then
∫

Br(x)
|u(y)− u(x)|dny ≤ rn

n

∫

Br(x)

|∇u(y)|
|y − x|n−1d

ny.

To show this, we examine the first integral by switching to spherical coordi-
nates centered at x. We write y = x+ tω with 0 ≤ t ≤ r and ω running over
the unit sphere Sn−1. We denote the usual surface area measure on Sn−1

by dσ(ω). Using the fundamental theorem of calculus, we see that:

|u(x+ tω)− u(x)| ≤
∣∣∣∣
∫ t

0

d

ds
u(x+ sω)ds

∣∣∣∣ ≤
∫ t

0
|∇u(x+ sω)|ds.

By using this on the first integral, we have
∫

Br(x)
|u(y)− u(x)|dny =

∫ r

0
dt

∫

Sn−1
dσ(ω)tn−1|u(x+ tω)− u(x)|

≤
∫ r

0

∫

Sn−1
dσ(ω)tn−1

∫ t

0
ds|∇u(x+ sω)|

=
∫

Sn−1
dσ(ω)

∫ r

0
ds

∫ r

s
dt tn−1|∇u(x+ sω)|

=
∫

Sn−1
dσ(ω)

∫ r

0
ds
rn − sn
n

|∇u(x+ sω)|

≤ rn

n

∫

Sn−1
dσ(ω)

∫ r

0
ds|∇u(x+ sω)| = rn

n

∫

Br(x)

|∇u(y)|
|y − x|n−1d

ny.

Where the last step can be seen to hold by going back to an integral over
Br(x) where the function |∇u(x+sω)| becomes |∇u(y)| and the denominator
|y − x|n−1 is the Jacobian determinant. This proves the first step.

We will now prove the bound on |u(y)− u(x)| where x, y ∈ Rn.

Set r = |y − x|. By the triangle inequality, we have that:

|u(y)− u(x)| ≤ |u(y)− u(w)|+ |u(w)− u(x)|,

for every w.

We will now take the average over w in Br(x) ∩ Br(y), which, has volume
Cnr

n for some constant Cn which depends only on the dimension n. We
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thus get

|u(y)− u(x)|

≤ 1
Cnrn

∫

Br(x)∩Br(y)
|u(y)−u(w)|dnw+ 1

Cnrn

∫

Br(x)∩Br(y)
|u(w)−u(x)|dnw

≤ 1
Cnrn

∫

Br(y)
|u(y)− u(w)|dnw + 1

Cnrn

∫

Br(x)
|u(w)− u(x)|dnw

≤ 1
Cnn

∫

Br(y)

|∇u(w)|
|y − w|n−1d

nw + 1
Cnn

∫

Br(x)

|∇u(w)|
|x− w|n−1d

nw

Where the second step is true since Br(x) ∩ Br(y) ⊂ Br(x) and Br(x) ∩
Br(y) ⊂ Br(y).

By using Hölder’s inequality, we get that

∫

Br(x)

|∇u(w)|
|w − x|n−1d

nw ≤
[∫

Br(x)
|∇u(w)|pdnw

]1/p


∫

Br(x)

1

|w − x|
(n−1)p

(p−1
dnw



p−1
p

.

We see that the second integral in this expression converges if

(n− 1)p
p− 1 < n ⇐⇒ n− 1

n
<
p− 1
p

= 1− 1
p
⇐⇒ n < p.

Since this is true by assumption, the second integral converges. By switching
to spherical coordinates, we now have that
∫

Br(x)

1

|w − x|
(n−1)p
p−1

dnw =
∫ r

0
dt

∫

Sn−1
dσ(ω) tn−1

t
(n−1)p
p−1

= Ωn−1
p− 1
p− nr

p−n
p−1

where Ωn−1 is the surface area of Sn−1.

Using this inequality in the expression acquired by using Hölder’s inequality,
and putting that inequality into the already derived inequality for |u(y) −
u(x)|, and finally using that Br(y) ⊂ B2r(x) – thus justifying putting every-
thing under the same integral – we get

|u(y)− u(x)| ≤ Cn,pr1−n
p

[∫

B2r(x)
|∇u(w)|pdnw

] 1
p

.

Which is the desired bound for |u(y)− u(x)|.

Note that this means that ||u||C0,k(Rn) ≤ C||u||W 1,p(Rn) where k = 1− n/p.

We will finally prove the bound for |u(x)|.
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Using the triangle inequality, we see that |u(x)| ≤ |u(y) − u(x)| + |u(y)|.
Averaging this expression over y ∈ B1(x) and denoting the volume of the
unit sphere by V1, we see that

|u(x)| ≤ 1
V1

∫

B1(x)
|u(y)− u(x)|dny + 1

V1

∫

B1(x)
|u(y)|dny

≤ Cn,p||∇u||Lp(B2(x)) + 1
V

1/p
1
||u||Lp(B1(x))

by using the previously proven inequality for |u(y)−u(x)| and the fact that

1
V1

∫

B1(x)
|u(y)|dny =

∫

B1(x)

(( 1
V1
|u(y)|

)p)1/p
dny

≤
[

1
V1

∫

B1(x)
|u(y)|pdny

]1/p

= 1
V

1/p
1
||u||Lp(B1(x)).

This finishes the proof.

Intuitively, Morrey’s inequality means that existence and certain regularity
of the weak derivatives implies Hölder continuity for the function, after
possibly having been redefined at some set of measure zero.

Definition 2.3.3. A function ũ is called a version of u if ũ = u a.e.

Theorem 2.3.12 (W 1,p(Ω) ↪→ C0,α(Ω̄)). Let Ω be a bounded open subset of
Rn with C1-boundary and let n < p < ∞. Then W 1,p(Ω) ↪→ C0,α(Ω̄) with
α = 1− n

p
. This means that u has a version ũ ∈ C0,α(Ω̄) and the estimate

||ũ||C0,α(Ω̄) ≤ C||u||W 1,p(Ω)

holds.

Note that the above inequality is very similar to Morrey’s inequality. Because
of this, the proof idea will be to extend u from a function on Ω to a function
on Rn using the extension of theorem 2.3.1 and then use Morrey’s inequality.

Proof. Let u ∈ W 1,p(Ω). Note that Ω satisfies the conditions for the ex-
tension of theorem 2.3.1 by assumption. We can thus extend u to v by
v = Eu ∈ W 1,p(Rn). Since C∞0 (Rn) is dense in W 1,p(Rn), there exists a
sequence {ui}i∈N ∈ C∞0 (Rn) for which

lim
i→∞
||ui − v||W 1,p(Rn) = 0

By Morrey’s inequality, we have that ||ui−uj ||C0,α(Rn) ≤ C||ui−uj ||W 1,p(Rn)
for all i, j ≥ 1. By letting j → ∞, we see that there exists a function ũ ∈
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C0,α(Rn) for which limi→∞||ui− ũ||C0,α(Rn) = 0 since C0,α(Rn) is complete,
and therefore the limit of functions in the space still lie in the space.

Since limi→∞||ui−ũ||C0,α(Rn) = 0, limi→∞||ui−Eu||W 1,p(Rn) = 0 and Eu = u
a.e. in Ω, we see that ũ = u a.e. in Ω, so ũ is a version of u which satisfies

||ũ||C0,α(Rn) ≤ C||v||W 1,p(Rn).

By applying part ii) of theorem 2.3.1 which states that E is continuous, the
above inequality proves the embedding.

By using some properties of Hölder spaces together with some results about
compact operators, the above theorem can be generalized.

Theorem 2.3.13. Let Ω be a bounded open subset of Rn with C1-boundary
and let n < p <∞. Then W 1,p(Ω) ↪→ C0,α(Ω̄) for all 0 < α < α∗ = 1−n/p.

Proof. The proof can be found in [6].

We will now collect all Sobolev embeddings from previous theorems into one
theorem, thus formulating the more general Sobolev embedding theorem.

Theorem 2.3.14 (Sobolev embeddings).

Let Ω be a bounded open subset of Rn with C1-boundary, and 1 ≤ p <∞.
Then we have the following embeddings

1. kp < n : W k,p(Ω) ↪→ Lq(Ω) for all 1 ≤ q ≤ pk,
1
pk

= 1
p
− k

n
. Also, the

embedding is compact for all q < p∗.

2. kp = n : W k,p(Ω) ↪→ Lq(Ω) for all 1 ≤ q < ∞. And the embedding is
compact for all q.

3. kp > n : W k,p(Ω) ↪→ C l,α(Ω̄) for l = [k− n/p] ∈ N0 and 0 < α ≤ α0 =
k − l − n/p. The embedding is compact for α < α0.

These statements follow from the previous embedding theorems by induc-
tively bounding the norm of W k,p(Ω) by the norm of W k−1,p(Ω) using the
previous embedding theorems until finally k = 1, after which we are done.

The previous theorem about embedding theorems can be strengthened. For
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example, it can be shown that Sobolev spaces are not only compactly embed-
ded into Lp-spaces, but that in fact if mp < n, n−mp < k < n where m is a
non-negative integers, k is a non-negative integer satisfying that 1 ≤ k ≤ n
and p satisfies that 1 ≤ p <∞ then

W j+m,p(Ω)→W j,q(Ωk),

where j is a non-negative integer.

As a special case, when k = 1, we have

W j+m,p(Ω)→W j,q(Ω).

In particular, when j = 0

Wm,p(Ω)→ Lq(Ω).

Our C1-condition on the boundary is also more restrictive than what is
necessary. In fact, it suffices that Ω satisfies the cone condition, which
means that there exists some finite cone K such that each x ∈ Ω is a vertex
of a finite cone Kx contained in Ω and congruent to K.

The full proofs of these theorems can be found in [1].

However, the proofs of the more general Sobolev embedding theorems are
much longer, but they add quite little to the interesting proof ideas and
concepts used for proving the embedding theorems.
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Chapter 3

Elliptic boundary value
problems

In this chapter, we will use the methods and theorems of previous sections
to investigate the solvability of elliptic partial differential equations.

We will mainly be concerned with studying boundary value problems of the
form {

Lu = f in Ω
u = 0 on ∂Ω

Where Ω is a bounded open subset of Rn, u : Ω → R is the unknown
function and where f : Ω→ R is given and L denotes a second-order partial
differential operator.

The justification of this limitation will come right after we have made some
fundamental definitions.

We will study second-order partial differential operators which will be on
one of the following forms

Lu = −
n∑

i,j=1
(ai,j(x)uxi)xj +

n∑

i=1
bi(x)uxi + c(x)u

or
Lu = −

n∑

i,j=1
ai,j(x)uxi,xj +

n∑

i=1
bi(x)uxi + c(x)u.

If we let a(x) be a n× n-matrix valued function of x and we let b(x) be an
n-dimensional column vector valued function of x, the first expression can
be written as

Lu = ∇ · (a∇u) + bT∇u+ cu
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Because of this, we say that the partial differential equation Lu = f is in
divergence form if Lu is on the first form. Consequently we say that it is in
non-divergence form it is written in the other form.

If ai,j(x)(i, j = 1, ..., n) are C1-functions, then an operator in divergence
form can also be written in non-divergence form and vice versa. From here
on, we will also assume that the n× n-matrix a(x) is symmetric, i.e. ai,j =
aj,i(i, j = 1, ..., n).

We will now define what we mean by an elliptic partial differential operator

Definition 3.0.4. The partial differential operator L is said to be (uni-
formly) elliptic if there exists a constant, K > 0, such that

n∑

i,j=1
ai,jηiηj ≥ K|η|2

for a.e. x ∈ Ω and for every η ∈ R.

Ellipticity thus means that for each fixed point x, the symmetric n×n-matrix
a(x) is positive definite with smallest eigenvalue greater than or equal to K.

We will look at the weak solutions of our elliptic boundary value problem.
To clarify what that means, we must first define what a weak solution means.

Let us consider our first boundary value problem where L is written on
divergence form. We will assume that all ai,j(x), bi(x) and c(x) are bounded.
Furthermore we assume that f ∈ L2(Ω).

If we for the moment assume that u is indeed a smooth solution, then we
can multiply both sides of the partial differential equation Lu = f by a
smooth test function v ∈ C∞0 (Ω) and then integrate over Ω. By integrating
the first term on the left hand side by parts – which is easy since the partial
differential operator is in divergence form – and use that there will be no
boundary terms since v = 0 on ∂Ω, we get

∫

Ω

n∑

i,j=1
ai,juxivxj +

n∑

i=1
biuxiv + cuvdx =

∫

Ω
fvdx.

Since C∞0 (Ω) is dense in H1
0 (Ω), we see that the same identity holds if the

smooth function v is replaced by any v ∈ H1
0 (Ω). Also, the identity still

makes sense if only u ∈ H1
0 (Ω). We choose H1

0 (Ω) instead of H1(Ω) to
guarantee that the boundary condition u = 0 on ∂Ω holds.
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Definition 3.0.5. i) The bilinear form B[·, ·] associated with the divergence
form elliptic partial differential operator L is given by

B[u, v] :=
∫

Ω

n∑

i,j=1
ai,juxivxj +

n∑

i=1
biuxiv + cuvdx

for u, v ∈ H1
0 (Ω).

ii) We say that u ∈ H1
0 (Ω) is a solution of our boundary value problem if

B[u, v] = 〈f, v〉L2(Ω)

for all v ∈ H1
0 (Ω).

With the characterization of H−1(Ω) from the first section of chapter 2 in
mind, we can look at the boundary value problem





Lu = f0 −
n∑

i=1
f ixi in Ω

u = 0 on ∂Ω
. (1)

Where f i ∈ L2(Ω). We note that the right hand term f = f0 −
n∑

i=1
f ixi in

fact belongs to the dual space H−1(Ω) of H1
0 (Ω).

Definition 3.0.6. We say that u ∈ H1
0 (Ω) is a weak solution of (1) if

B[u, v] = 〈f, v〉

for all v ∈ H1
0 (Ω), where 〈·, ·〉 is the pairing of H−1(Ω) and H1

0 (Ω).

By using integration by parts on the right hand side and by using that v
vanishes on the boundary, we see that

〈f, v〉 =
∫

Ω
f0v +

n∑

i=1
f ivxidx.

We will now justify why we limit ourselves to considering boundary value
problems on which the value on the boundary is zero. The justification is due
to the possibility to transform boundary value problems with a prescribed
non-zero boundary into problems which are zero on the boundary.
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Suppose that ∂Ω is C1 and that u ∈ H1
0 (Ω) is a weak solution to the bound-

ary value problem {
Lu = f in Ω
u = g on ∂Ω

.

This means that the restriction to the boundary of u – in the sense of section
2 of chapter 2 – is g, but also, the bilinear form identity needs to hold for
all v ∈ H1

0 (Ω). If this should be possible, then g has to be the restriction
to the boundary of some H1(Ω)-function, call it w. But then ũ defined by
ũ := u−w belongs to H1

0 (Ω) and is a weak solution to the boundary problem
{
Lũ = f̃ in Ω
ũ = 0 on ∂Ω

where f̃ is defined by f̃ := f − Lw ∈ H−1(Ω).

Thus solving boundary problems with non-zero boundary can be reduced to
solving boundary problems with zero boundary and finding a H1-function
which has g as its restriction to the boundary.

We will now prove a general theorem concerning solvability and uniqueness
of solutions to expressions on bilinear form under certain conditions. Our
approach will later on be to show that these conditions do indeed hold for
our special bilinear form attained from our elliptic partial linear operator.

Theorem 3.0.15 (Lax-Milgram Theorem). For this proof, assume that H
is a real Hilbert space, with norm denoted by || · || and inner product denoted
by (·, ·). We continue to denote by 〈·, ·〉 the pairing of H with its dual space.

Now assume that B : H × H → R is a bilinear mapping for which there
exists constants a, b > 0 such that

|B[u, v]| ≤ a||u||||v||, u, v ∈ H

and
b||u||2 ≤ B[u, u], u ∈ H.

We sometimes say that that a bilinear map B is coercive if the second prop-
erty holds.

If the above conditions hold, there exists a unique element u ∈ H such that

B[u, v] = 〈f, v〉

for all v ∈ H.
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Proof. The proof idea is to use the Riesz representation theorem in two steps.
First we have that for each fixed element u ∈ H, the mapping v → B[u, v] is a
bounded linear functional on H. We can thus apply the Riesz representation
theorem to see that there exists a unique element w ∈ H for which

B[u, v] = (w, v), v ∈ H

It is obvious that w corresponds to u in some way, so let us write Au = w,
which yields

B[u, v] = (Au, v), v ∈ H.
The idea here is to use the Riesz representation theorem again, this time
using that

〈f, v〉 = (w2, v)

for some element w2 ∈ H. Now if we can show that A is actually a bounded
linear operator which is one-to-one and whose range is all of H, then we can
choose our u such that Au = w2, thus yielding

B(u, v) = (Au, v) = (w2, v) = 〈f, v〉.

We will therefore prove that A behaves nicely as an operator. We begin by
proving that it is a bounded linear operator. If λ1, λ2 ∈ R and u1, u2 ∈ H,
then for each v ∈ H we have that

(A(λ1u1 + λ2u2), v) = B[λ1u1 + λ2u2, v]

= λ1B[u1, v] + λ2B[u2, v] = λ1(Au1, v) + λ2(Au2, v) = (λ1Au1 + λ2Au2, v).

This equality holds for each v ∈ H, and so A is linear.

Also, ||Au||2 = (Au,Au) = B[u,Au] ≤ |B[u,Au]| ≤ a||u||||Au||.

Thus ||Au|| ≤ a||u|| and so A is bounded.

Next we will prove that A is one-to-one and that the range of A, R(A), is
closed in H. To prove this, we use

b||u||2 ≤ B[u, u] = (Au, u) ≤ ||Au||||u||

Thus b||u|| ≤ ||Au|| This proves that A is one-to-one since if Au = Av, then
b||u − v|| ≤ ||Au − Av|| = 0 and thus u = v. This also proves that R(A) is
closed since if we have a convergent sequence in R(A), then every element
in that sequence can be written as A(uj) (since the sequence is in the range
of A), also, this sequence is a Cauchy sequence since it is convergent. By
our inequality, Auj being Cauchy implies that uj is Cauchy, and since H is
complete, uj has a limit in H, call it u. Denote by y the limit of Auj , then
||y − Au|| ≤ ||y − Auj ||+ ||Auj − Au|| ≤ ||y − Auj ||+ a||uj − u|| since A is
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bounded. Thus ||y−Au|| can be made arbitrarily small by choosing j to be
sufficiently large. It follows that Auj will converge to Au, which is in R(A),
and since A is one-to-one, this limit is unique.

We will now prove that the range of A is all of H. This will be shown by
contradiction. If the range of A is not all of H, then since R(A) is closed,
there would exist some non-zero element in R(A)⊥, call it w. But for this
element, 0 = (Aw,w) = B[w,w] ≥ b||w||2. Since b is assumed to be greater
than zero, this implies that ||w|| = 0 for w 6= 0, which is a contradiction.
Thus the range of A is all of H.

We can now put the pieces together as we previously said we would do. By
the Riesz representation theorem there exists a w2 ∈ H for which 〈f, v〉 =
(w2, v) for all v ∈ H. Then by using that A is a bijective map from H onto
itself, we can choose u such that Au = w2. For this u we have

B[u, v] = (Au, v) = (w, v) = 〈f, v〉
for all v ∈ H.

It remains to prove uniqueness. Assume that u and ũ are two elements
of H for which B[u, v] = B[ũ, v] = 〈f, v〉. Then their difference, u − ũ
satisfies that B[u − ũ, v] = 0. But if we now set v = u − ũ, we get that
b||u− ũ||2 ≤ B[u− ũ, u− ũ] = 0. Thus u = ũ.

This finishes the proof.

It is worth noting that if B was symmetrical, i.e. B[u, v] = B[v, u], then
B[u, v] would define a new inner product on H, on which we could imme-
diately apply the Riesz representation to attain our proof. However, this is
not nearly as useful. The major importance of the Lax-Milgram theorem
is that it does not require our bilinear form to be symmetric. Since what
we will use this theorem for is to prove uniqueness and existence of weak
solutions to boundary value problems by showing the the requirements for
the theorem hold for our bilinear form adhering from an elliptic partial dif-
ferential operator. In these cases, we can not in general assume that the
bilinear form is symmetric.

We will now return to our specific bilinear form

B[u, v] :=
∫

Ω

n∑

i,j=1
ai,juxivxj +

n∑

i=1
biuxiv + cuvdx

for u, v ∈ H1
0 (Ω). As stated above, we will try to verify the conditions for the

Lax-Milgram theorem. This can be done if we allow one minor alteration.

But before we continue, we will need the following lemma
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Lemma 3.0.16. ab ≤ εa2 + b2

4ε , ε > 0

Proof. 0 ≤ ((2ε)1/2a− b

(2ε)1/2 )2 = 2εa2 − 2ab+ b2

2ε .

The statement follows by adding 2ab to both sides and dividing by 2.

We will also need the following inequality due to Poincaré.

Theorem 3.0.17 (Poincaré’s inequlity). Let Ω be a bounded open subset of
Rn. Let u ∈ W 1,p

0 (Ω) for some 1 ≤ p < n. Then the following inequality
hold

||u||Lq(Ω) ≤ C||∇u||Lp(Ω)

for each 1 ≤ q ≤ p∗, where p∗ is the Sobolev exponent associated with p and
where the constant C depends only on p, q, n and Ω.

In particular, since p∗ > p, we have that

||u||Lp(Ω) ≤ C||∇u||Lp(Ω).

Proof. The Sobolev exponent gives a hint of where we’re going. Recall the
Sobolev-Gagliardo-Nirenberg inequality which states that

||u||Lp∗ (Rn) ≤ C||∇u||Lp(Rn)

where p∗ satisfies that 1/p∗ = 1/p− 1/n.

Now, since u ∈ W 1,p
0 (Ω), there exists functions, um ∈ C∞0 (Ω), (m = 1, 2, ..)

which converge to u in W 1,p(Ω) (by construction of W 1,p(Ω)). We now
extend each function um to Rn by defining it to be zero on Rn−Ω. We now
apply the Sobolev-Gagliardo-Nirenberg inequality to the extended functions
which yields that ||u||Lp∗ (Ω) ≤ C||∇u||Lp(Ω) since Ω is bounded and we
thus have no problems with convergence. Since furthermore, we have that
||u||Lq(Ω) ≤ C||u||Lp∗ (Ω) if 1 ≤ q ≤ p∗, this proves the theorem by putting
the two inequalities together.

Theorem 3.0.18 (Energy estimates). There exists constants a, b > 0 and
c ≥ 0 such that

|B[u, v]| ≤ a||u||H1
0 (Ω)||v||H1

0 (Ω)

and
b||u||2H1

0 (Ω) ≤ B[u, u] + c||u||2L2(Ω)

for all u, v ∈ H1
0 Ω).
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Proof. We can make a rough estimate to attain

|B[u, v]| ≤
n∑

i,j=1
||ai,j ||L∞(Ω)

∫

Ω
|∇u||∇v|dx+

n∑

i=1
||bi||L∞(Ω)

∫

Ω
|∇u||v|dx+ ||c||L∞(Ω)

∫

Ω
|u||v|dx

≤ a||u||H1
0 (Ω)||v||H1

0 (Ω)

for some choice of big a.

Now recall the ellipticity condition that we have on L, namely that there
exists some constant K such that

n∑

i,j=1
ai,j(x)ηiηj ≥ K|η|2

for a.e x ∈ Ω and for all η ∈ Rn.

By integrating this inequality, we see that

K

∫

Ω
|∇u|2dx ≤

∫

Ω

n∑

i,j=1
ai,jux1uxjdx = B[u, u]−

∫

Ω

n∑

i=1
biux1u− cu2dx

≤ B[u, u] +
n∑

i=1
||bi||L∞(Ω)

∫

Ω
|∇u||u|dx+ ||c||L∞(Ω)

∫

Ω
u2dx

We can now use lemma 3.0.16 and integrate to see that
∫

Ω
|∇u||u|dx ≤ ε

∫

Ω
|∇u|2dx+ 1

4ε

∫

Ω
u2dx, ε > 0

By choosing ε > 0 small enough to satisfy

ε
n∑

i=1
||bi||L∞(Ω) <

K

2

and then inserting this expression into the previous inequality yields

K

2

∫

Ω
|∇u|2dx ≤ B[u, u] + C

∫

Ω
u2dx

where C is chosen to be large enough (a more exact number can be given in
terms of ε but it is not of any importance).

By now using Poincaré’s inequality for p = 2, i.e.

||u||L2(Ω) ≤ C||∇u||L2(Ω)
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it follows that

b||u||2H1
0 (Ω) ≤ C2||∇u||2L2(Ω) ≤ B[u, u] + c||u||2L2(Ω)

for appropriate choices of b > 0 and c ≥ 0.

This finishes the proof.

If c = 0, in the above energy estimates, then B[·, ·] satisfies the conditions for
the Lax-Milgram theorem. However, if c > 0, which it very well might be,
then B[·, ·] does almost, but not really, satisfy the conditions. The following
existence theorem will deal with that possibility. Note that if c = 0 in the
following theorem, we have existence of a unique solution to the boundary
value problem.

Theorem 3.0.19. There is a number c ≥ 0 such that for each µ ≥ c and
each function f ∈ L2(Ω), there exists a unique weak solution, u ∈ H1

0 (Ω) of
the boundary value problem

{
Lu+ µu = f in Ω
u = 0 on ∂Ω

Proof. Take c from the previous theorem and let µ ≥ c. Now define a new
bilinear form by

Bµ[u, v] = B[u, v] + µ(u, v), (u, v ∈ H1
0 (Ω)

This bilinear form corresponds to the operator Lµu = Lu+ µu and satisfies
the hypothesis of the Lax-Milgram theorem. Now fix f ∈ L2(Ω) and define
〈f, v〉 by 〈f, v〉 := (f, v)L2(Ω). This is a bounded linear functional on L2(Ω),
and is thus a bounded linear functional on H1

0 (Ω) (since H1
0 (Ω) ⊂ L2(Ω)).

We now apply the Lax-Milgram theorem to find a unique function u ∈ H1
0 (Ω)

which satisfies
Bµ[u, v] = 〈f, v〉

for all v ∈ H1
0 (Ω). This u is consequently the unique weak solution of the

boundary value problem above.

Example 3.0.1. Consider the boundary value problem
{
−∆u = f in Ω
u = 0 on ∂Ω

We have that B[u, v] =
∫

Ω
∇u∇vdx by using integration by parts.
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By Poincaré’s inequality we have

||u||2H1
0 (Ω) ≤ b(||u||2L2(Ω) + ||∇u||2L2(Ω))

≤ C||∇u||2L2(Ω) = C

∫

Ω
|∇u|2dx = CB[u, u] (3.1)

By dividing both sides by C, we see that the previous theorem holds with
c = 0. Thus, there exists a unique weak solution to the equation.

For further reading on elliptic partial differential equations, see [2].
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