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Abstract

A generating function is a formal power series that contains information
about a sequence of numbers. Applications of generating functions are
many. They are used in a broad field of study and are powerful tools
used in different type of computational problems. In this paper we shall
be mainly concerned about two applications: i) Exact Covering Sequence
(ECS): which refers to a finite sequence of residue classes in which every
non-negative integer is covered by one and only one congruent; by using
generating functions, cyclotomic polynomials and Möbius inversion formula,
we shall show whether any given set of residue classes can be an ECS. ii)
Calculation of the number of Square Roots of a given Permutation.: Here we
are going to use cyclic index of the symmetric group to create an exponential
generating function which shall provide us with the number of permutations
of a given set with possible square roots.
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0.1 Introduction
The concept of discrete mathematics has its origin in India, where they knew
how to find the number of the permutation of a set with n elements, and
the formula for the subsets of a given cardinality in a set of n elements.
Discrete Mathematics consists of several sub-areas such as: set theory,
number theory, probability, combinatorics. Combinatorial mathematics,
as we know it today, was for the first time introduced by Blaise Pascal,
Abraham de Moivre and Leonhard Euler, between 17th and 18th centuries.
One of the most remarkable parts of combinatorial mathematics is the topic
generating functions. The concept has shown to be a truly useful tool for
solving mathematical problems. Generating functions are like magic boxes
that are able to transform problems concerning sequence of numbers into
the world of functions.

There are many type of generating functions, including ordinary and
exponential generating functions, Bell series, Lambert series and Dirichlet
series. The field, in which the generating functions are being used is broad
with many applications. They could be used for finding averages, counting
polyominoes and proving congruences among combinatorial numbers, just
to name a few. The applications that We shall talk about in this paper are
exact covering sequence and square roots of permutations. We shall begin
our work with some general ideas followed by quick review of formal power
series. Next we move to generating functions where we start by ordinary
and exponential generating functions and gradually dig deeper into formal
Dirichlet series, Möbius function and inversion formula and zeta function.

A covering sequence {(ai, bi)}, i = 1, 2, . . . , k, is a set of finite residue
classes n ≡ ai (mod bi) - with the relation n = ai+tbi, t ∈ Z - , whose union
covers all positive integers. In an exact covering sequence, every positive
integer is covered by one and only congruent. The question that rises here is:
How can we know if a complete residue system is an exact covering sequence?
For a collection of pairs (ai, bi), i = 1, 2, . . . , k to be exact covering sequence,
it is necessary that the property ∑j 1/bj = 1 holds. But in order to have a
better understanding, we shall create the polynomial

ψs(z) =
∑

j:s|bj

zaj/bj ,



and show that it is divisible by the cyclotomic polynomial

Φs(z) =
∏

1≤k≤s
k:(k,s)=1

(z − e2πik/s) where s = 1, 2, 3, . . . .

Not all permutations have square roots, for instance, the permutations
σ = (1, 2), can not be expressed as τ2 = σ. Then we ask the question: How
many of the permutation of a given set Sn have square roots? And we shall
come to the conclusion that, whether a permutation σ has or not square
roots depends on the number of the specific type of cycles it is composed of.
To prove this and find the permutations with desired cycle types we shall
use cyclic index of the symmetric group - which is another useful application
of generating functions - along with Taylor expansion of hyperbolic cosine
function to create the necessary generating function

∑

n≥0
f(n, 2)xa t

n

n! = ex1t cosh(x2t
2/2)ex3t3/3 cosh(x4t

4/4)ex5t5/5 . . . .

which will provide us with the number of permutations of n letters that have
square roots.
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0.2 General Properties of Generating Functions
As the title suggests this section will be dedicated to generating functions
and some of their properties. To have a better understanding for generating
functions it is essential to to have a good grasp of the power series and some
of the properties it has. We will be dividing this section into five subsections,
which shall cover ordinary and exponential generating functions followed by
Dirichlet series and zeta function. Let us now start with some general ideas.

0.2.1 General Idea
A convenient way of representing the sequence of numbers 2, 4, 6, 8, 10, . . .
would be to use the formula an = 2(n + 1) for n = 0, 1, 2, . . .. Finding a
formula for a given sequence of numbers is not always as simple as it seems,
for example, the sequence of numbers {an}n≥0 = 2, 3, 5, 7, 11, 13, 17, 19, . . .
where an represents the nth prime number, has shown to be an impossible
task.

Generating functions contain information about sequence of numbers
in a compact form, and they are of great help for solving problems in
combinatorial mathematics. For example, the function g(x) = (2 + x)4,
generates the sequence of numbers 16, 32, 24, 8, 1, 0, 0, 0, . . .. To se this, we
expand g(x) and get (2 +x)4 = 16 + 32x+ 24x2 + 8x3 +x4, in which we can
clearly see that the coefficients of g(x) represent the sequence of numbers
mentioned above.

For a given function, it is straight forward to find the sequence of numbers
it generates. But what if, we have a sequence of numbers, or even the formula
that generates that sequence of numbers and want to find that very function
that generates it. Suddenly we feel that it gets trickier.

Just to give you a taste of the matter, let us take a look at Fibonacci
numbers F0, F1.F2, . . . and the recurrence relation

Fn+1 = Fn + Fn−1 (n ≥ 1;F0 = 0;F1 = 1),

that produces them. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . are the first
thirteen numbers in the Fibonacci sequence and you can easily continue and
get an exact non-complicated result.



Now, just to get a hint of what a generatingfonctionlogist could strive
for, we unveil the function,

F (x) = x

1− x− x2 ,

which is the generating function for Fibonacci numbers. The n:th Fibonacci
number Fn is the coefficient of xn in the expansion of F (x).

0.2.2 Formal Power Series
When an is a sequence of numbers, we call

∑∞
n=0

an = a0 + a1 + a2 + a3 + . . . ,

for a series. In other words a series is the sum of a sequence of numbers.
Infinite sequence can’t always be summed. We can clearly see, that the
sequence 1, 2, 3, . . . can’t be summed to anything that would make sense.
There are anyway many infinite sequences that give us some elegant results
when we sum them. For instance∑∞n=1 1/n2 = 1+1/22 +1/32 + . . . = π2/6.

A sequence of numbers can also be partially summed, but what we are
mostly interested in a series is when it reaches the limit of the partial
summation. And what we are really interested in is that: what happens
to a series when it reaches the limit?
Definition 0.2.1. A series ∑n an is called convergent if the limit lim

n→∞Sn
exists, where

Sn =
n∑

k=0
ak.

Otherwise, we say that the series is divergent.
A very useful series is the geometrical series which converges for |x| < 1

and diverges for every other value of x.
∞∑

k=0
xk = 1

1− x, where |x| < 1.

0.2.3 Ordinary Generating Functions
Definition 0.2.2. For the finite sequence of numbers a0, a1, a2, a3, . . . the
series

f(x) =
∞∑

n=0
anx

n,

is called the generating function of that sequence of numbers.
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A very simple example is the sequence 1, 1, 1, 1, 1, 1, 1, . . . and the function
generating it is the geometric series 1 + x+ x2 + x3 + x4 + . . . = 1/(1− x).
To generalize this idea, we can argue that the sequence a, ab, ab2, ab3, . . . is
generated by the function a+ abx+ ab2x2 + ab3x3 + . . . = a/(1− bx).

Next (simple) example would be the sequence 1, 2, 3, 4, . . . which has the
generating function 1 + 2x+ 3x2 + 4x3 + . . .. Now, if we would look closely
we could see that,

1 + 2x+ 3x2 + 4x3 + . . . = d

dx
(1 + x+ x2 + x3 + . . .) = d

dx

1
1− x

= 1
(1− x)2 =

∑

n≥0
(n+ 1)xn.

Unfortunately we can’t use the same method entirely to calculate the sequence
1, 4, 9, 16, 25, 36, 49, . . . so we need to tweak it a little,

1 + 4x+ 9x2 + 16x3 + . . . = 1 + 22x+ 32x2 + 42x3 + . . .

= d

dx
(x+ 2x2 + 3x3 + 4x4 + . . .)

= d

dx

∑

n≥0
(n+ 1)xn+1

=
∑

n≥0
(n+ 1)2xn.

Let us now take a look at Fibonacci numbers F0, F1, F2, . . . and find out
what generates it. In other words, we need to find an exact formula for the
function F (x) = ∑

n≥0 Fnx
n, which generates the Fibonacci sequence. We

know that Fibonacci numbers can be expressed by recurrence formula

Fn+1 = Fn + Fn−1, (n ≥ 1, F0 = 0, F1 = 1) (0.2.3.1)

and it gives us the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .. Now we multiply
the sequence with xn and sum it over n ≥ 1

∑

n≥1
Fn+1x

n =
∑

n≥1
Fnx

n +
∑

n≥1
Fn−1x

n ⇒

⇒ F (x)− x
x

= F (x) + xF (x)⇒ F (x) = x

1− x− x2 .

To expand x

1− x− x2 in partial fraction, we begin first with factorization
of the expression,

1− x− x2 = (1− xr+)(1− xr−), where (r± = 1±
√

5
2 )⇒
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x

1− x− x2 = x

(1− xr+)(1− xr−) .

Using partial fraction method we obtain

x

1− x− x2 = 1
r+ − r−

( 1
(1− xr+) −

1
(1− xr−)

)

= 1√
5


∑

j≥0
rj+x

j −
∑

j≥0
rj−x

j




= 1√
5


∑

j≥0
rj+ − rj−


xj ,

so it becomes clear now that the coefficient of xn for the n:th Fibonacci
number is

Fn = 1√
5


∑

j≥0
rn+ − rn−


 , where (r± = 1±

√
5

2 ), and n = 0, 1, 2, . . . .

Throughout this paper you will see the symbol f ogf←→ {an}∞0 which
means that the power series f is the ordinary power series generating function
or for short ogf of the sequence {an}∞0 .

If f ogf←→ {an}∞0 then we have the following rules:

• For integer m > 0

{an+m}∞0
ogf←→ f − a0 − . . .− am−1xm−1

xh
.

• For integer k > 0
{nkan}∞0

ogf←→ (x d
dx

)kf,

or, if P is a polynomial, then

P (x d
dx

)f ogf←→ {P (n)an}∞0 .

• For g ogf←→ {bn}∞0
fg

ogf←→
{ ∑

r+s=n
anbs

}∞

n=0
.
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This can be applied for more than two series. Let h ogf←→ {ct}∞0 then,

fgh
ogf←→

{ ∑

r+s+t=n
arbsct

}∞

n=0

.

• This rule is a direct consequence of the previous rule and is about
finding the kth root of a power series. Let integer k > 0

fk
ogf←→





∑

n1+n2+...nk=n
an1an2an3 . . . ank





∞

n=0

.

• This rule is about the result we get when multiplying power series f
by 1/(1− x)

f

1− x = (a0 + a1x+ a2x
2 + . . .)(1 + x+ x2 + . . .)

= a0 + (a0 + a1)x+ (a0 + a1 + a2)x2 + . . .

=
∞∑

n=0
xn
(

n∑

k=0
ak

)
,

in other words, for n ≥ 0

f

1− x
ogf←→

{
n∑

k=0
ak

}
.

0.2.4 Exponential Generating Functions
Definition 0.2.3. Let a0, a1, a2, a3, . . . be a sequence of real numbers. Then,
the function

f(x) = a0 + a1
x

1! + a2
x2

2! + a3
x3

3! + . . . =
∞∑

i=0
ai
xi

i! ,

is an exponential generating function of that sequence.

Let (1 + x)n =
(n

0
)
x0 +

(n
1
)
x1 +

(n
2
)
x2 + . . . +

(n
n

)
xn. This means that

equation (1 + x)n is the (ordinary) generating function of the sequence(n
0
)
,
(n

1
)
,
(n

2
)
, . . . ,

(n
n

)
, 0, 0, 0, . . .. We also know that,

(
n

k

)
= n!

(n− k)!k! = P (n, k)
k! , where P (n, k) = n!

(n− k)! ,
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(1 + x)n = P (n, 0)x
0

0! + P (n, 1)x
1

1! + P (n, 2)x
2

2! + . . .+ P (n, n)x
n

n! ,

in which, we can clearly see that (1 + x)n, aside from being the ordinary
generating function for the sequence

(n
0
)
,
(n

1
)
,
(n

2
)
, . . . ,

(n
n

)
, 0, 0, 0, . . ., is the

exponential generating function for P (n, 0), P (n, 1), . . . , P (n, n), 0, 0, 0, . . ..
If we also take a look at the Maclaurin series for the natural exponential
function

ex = 1 + x+ x2

2! + x3

3! + x4

4! + . . . ,

we will see that it is the exponential generating function for the sequence
1, 1, 1, 1, 1, 1, 1, . . . and at the same time, the ordinary generating function
for the sequence 1, 1/2!, 1/3!, 1/4!, 1/5!, 1/6!, 1/7!, . . .

The name of the exponential generating function comes from the fact
that the exponential generating function of the sequence {1, 1, 1, 1, . . .} is

ex = 1 + x+ x2

2! + x3

3! + . . . =
∞∑

n=0

xn

n! .

We are now going to investigate how the rules from the previous section,
which were applied to ordinary generating functions, are going to work for
exponential generating functions. We shall use the same symbols except the
letters ogf , which will be replaced with egf , short for exponential generating
function.

• If f egf←→ {an}∞0 , then f ′ egf←→ {an+1}∞0 . To see this, we differentiate
f ,

f ′ =
∞∑

n=1
nan

xn−1

n! =
∞∑

n=1
an

xn−1

(n− 1)! =
∞∑

n=0
an+1

xn

n! .

For k ≥ 0 we generalize the rule to,

{an+k}∞0
egf←→ ( d

dx
)kf.

• This rule is the same as the one for the ordinary generating functions.
If f egf←→ {an}∞0 , and P is a polynomial, then

P (x d
dx

)f egf←→ {P (n)an}∞0 .
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• This rule is about multiplying two generating functions. Let
f

egf←→ {an}∞0 and h egf←→ {cn}∞0 , then

fh =
{ ∞∑

r=0
ar
xr

r!

}{ ∞∑

t=0
ct
xt

t!

}
=

∞∑

r,t≥0
arct

xrxt

s!t! =
∞∑

n=0
xn
{ ∑

r+t=n

arct
s!t!

}
.

We multiply the last expression with n!/n! and get

∞∑

n=0

xn

n!

{ ∑

r+t=n

n!arct
r!t!

}
⇒ fh

egf←→
∑

r

(
n

r

)
arcn−r,

hence, fh is the generating function for the sequence
{
∑

r+t=n

(n
r

)
arcn−r

}∞

0
and more generally

fgh . . .
egf←→

{ ∑

r+s+t+...=n

n!arbsct . . .
r!s!t! . . .

}∞

0

,

and in the case, where we seek the coefficients of a multinomial,

fk
egf←→





∑

r1+r2+r3+...=n

(
n!

r1!r2!r3! . . .

)
ar1ar2ar3 . . .





∞

0

is the function to turn to.

0.2.5 Formal Dirichlet Series and Zeta Function
Definition 0.2.4. A formal power series of the form

f(x) =
∞∑

n=1

an
nx

= a1 + a2
2x + a3

3x + a4
4x + . . .

is called Dirichlet series generating function, which generates the sequence
{an}∞1 and will be denoted by

f(x) Dir←→ {an}∞1 .

In the cases of ogf and egf we are familiar with the function that generates
the sequence {1}∞1 , namely 1/(1 − x) ogf←→ {1}∞1 and ex

egf←→ {1}∞1 . The
question that we ask now is: what function generates {1}∞1 in our present
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case, the formal Dirichlit series? And the answer is, the Riemann zeta
function

ζ(x) =
∞∑

n=1

1
nx

= 1 + 2−x + 3−x + 4−x + . . . ,

one of the most important functions in analysis.
Next, we would like to know what sequence is generated by f(x)g(x),

where f(x) Dir←→ {an}∞1 and g(x) Dir←→ {bn}∞1 .

f(x)g(x) = (a1 + a22−x + a33−x + . . .)(b1 + b22−x + b33−x + . . .)
= (a1b1) + (a1b2 + a2b1)2−x + (a1b3 + a3b1)3−x

+ (a1b4 + a2b2 + a4b1)4−x + . . .

and it becomes clear that if f(x) Dir←→ {an}∞1 and g(x) Dir←→ {bn}∞1 , then

f(x)g(x) Dir←→



∑

d|n
adbn/d





∞

n=1

. (0.2.5.1)

Back to the zeta function, where ζ(x) Dir←→ {1}∞1 , we can obtain d(n),
which is the number if the divisors of n, by finding the sequence that is
generated by ζ2,

ζ(x) Dir←→



∑

d|n
1





∞

n=1

, thus, ζ2 Dir←→
∑

d|n
1 = d(n).

Definition 0.2.5. An arithmetic function f is called amultiplicative number
theoretic function, if f(n1n2n3 . . .) = f(n1)f(n2)f(n3) . . . for all integers
ni ≥ 1 where gcd(ni, nj) = 1 and i 6= j.

And since every positive integer can be uniquely express as a product of
prime numbers, n = pa1

1 p
a2
2 p

a3
3 . . . pak

k , the multiplicative number-theoretic
function can be expressed by f(n) = f(pa1

1 )f(pa2
2 )f(pa3

3 ) . . . f(pak
k ).

An example of a multiplicative function would be d(n), the number of
divisors of n. For instance

4 = d(6) = d(2 · 3) = d(2)d(3) = 2 · 2 = 4.

We are now going to take a look at an identity - and it uses -, that
multiplicative number-theoretic function satisfies.
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Theorem 0.2.1. Let f be a formal multiplicative number-theoretic function.
Then we have the formal identity

∞∑

n=1

f(n)
nx

=
∏

p

{1 + f(p)p−x + f(p2)p−2x + f(p3)p−3x + . . .}. (0.2.5.2)

And if we take the multiplicative function f(n) = 1 for all n, then we
obtain ζ(x) = ∏

p{1 + p−x + p−2x + p−3x + . . .} = 1/(∏p{1− p−x}) which is
the fundamental factorization of zeta function.

Definition 0.2.6. Let n = ∏k
i=1 p

ai
i be a positive integer, where pi is a

prime and ai ≥ 0. Then,

µ(n) =





+1, if 0 ≤ ai ≤ 1 and |pi| is even;
−1, if 0 ≤ ai ≤ 1 and |pi| is odd;
0, if 2 ≤ ai,

is the Möbius function.

Our next move is to find the reciprocal of the zeta function. We begin by
replacing f(n) in (2.5.2) with the Möbius function µ(n) and get the following
result. ∞∑

n=1

µ(n)
nx

=
∏

p

{1− p−x}, (0.2.5.3)

which implies that

1
ζ(x) =

∞∑

n=1

µ(n)
nx

, or equally, 1
ζ(x)

Dir←→ {µ(n)}∞1 ,

And to see the magic of this process at work, let us have two sequences
{an}∞1 and {bn}∞1 with the relation an = ∑

d|n bd where n is a positive
integer. What we would like to achieve now, is to invert this relation, and
solve it for bn in terms of an.

Since f(x) Dir←→ {an}∞1 and g(x) Dir←→ {bn}∞1 , by (2.5.1) it becomes
obvious that∑d|n bd

Dir←→ g(x)ζ(x). Knowing this, we can write the equality
f(x) = g(x)ζ(x), which implies that g(x) = f(x)/ζ(x), and by (2.5.1),
f(x)/ζ(x) Dir←→∑

d|n µ(n/d)ad. Thus,

bn =
∑

d|n
µ(n
d

)ad, n = 1, 2, 3, . . . (0.2.5.4)
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0.3 Exact Covering Sequence
Finding a set of congruences which could represent or cover a whole sequence
of numbers is indeed very fascinating. Our main goal in this section is
to focus on exact covering sequences, and we are going to use generating
functions, which are excellent tools in finding out whether a covering sequence
is exact or not.

0.3.1 Congruences
Definition 0.3.1. Let b be a positive integer. If n and a are integers, we
say that n is congruent to a modulo b if b|(n− a) and denote it

n ≡ a mod b.

This is called residue class with modulo n or an arithmetic sequence with
common difference b.

Theorem 0.3.1. If n and a are positive integers, then

n ≡ a mod b

if and only if there is an integer t for which n = a+ bt.

Definition 0.3.2. A covering system (also called complete residue system)
is a finite system of congruences

n ≡ ai mod bi, 1 < i < t,

if every integer n satisfies at least one of the congruences.

For instance, every possible integer is covered by the congruent system
A = {(1, 2), (0, 3), (0, 4), (2, 4)}, where each pair (ai, bi) ∈ A represent the
congruence relation n ≡ ai mod bi, (i = 1, 2, 3, 4).

Definition 0.3.3. An exact covering system is a covering system, in which
each integer is covered by one and only one congruence relation.

Since the integer n = 12 can be covered with both (0, 3) and (0, 4), the
covering system A = {(1, 2), (0, 3), (0, 4), (2, 4)} is not an "exact" one. But,
by removing (0, 3), it can easily become an exact covering system.



0.3.2 Roots of Unity and Cyclotomic Polynomials
Roots of Unity

The roots of the polynomial xn = 1 are called the roots of unity and they
form a group under multiplication. There are precisely n roots of unity when
solving the polynomial xn − 1. We are going to describe each root as ζkn,
1 ≤ k ≤ n, expressing them as kth powers of a fix primitive root ζn . These
roots are complex numbers and have the form

ζkn = (ζn)k =
(

exp
(2πi
n

))k

=
(

cos
(2π
n

)
+ i sin

(2π
n

))k
= cos

(2πk
n

)
+ i sin

(2πk
n

)
.

For a 1 ≤ d ≤ r such as d|n we have

ζdn = exp
( 2πi
n/d

)
= ζn/d.

As mentioned above, the roots of unity form a group under multiplication.
In other words, if ζk1

n and ζk2
n , then ζk1

n ζ
k2
n = ζk1+k2

n , where 1 ≤ k1 + k2 ≤ n
is also a root. Or more generally expressed

xn − 1 =
∏

1≤k≤n
(x− ζkn).

An nth root of unity ζ is called primitive if ζm 6= 1 for all m < n. The
primitive roots of unity are

ζkn, where gcd(k, n) = 1.

Now, if we have gcd(k, n) = m, where the integer m > 1, and we denote
k/m = t and n/m = s we can obtain

ζkn = ζmtn = ζtn/m = ζts,

and since gcd(s, t) = 1, the ζkn is a primitive sth root of unity.
We are now going to group the factors of the (xn − 1), and the result is

xn − 1 =
∏

1≤k≤n
(x− ζkn) =

∏

s|n

∏

1≤k≤s
gcd(k,s)=1

(x− ζks ).
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Cyclotomic Polynomials

Definition 0.3.4. The nth cyclotomic polynomial is a monic polynomial
with all nth primitive roots of unity as its roots, and is denoted

Φn(x) =
∏

1≤k≤n
k:(k,n)=1

(x− ζkn).

The number of k’s is the degree of the cyclotomic polynomials Φn(x) and
is denoted φ(n), and is called the Euler Phi Function. So, for 1 ≤ k ≤ n,

deg Φn(x) = φ(n) = |{1 ≤ k ≤ n : gcd(k, n) = 1}|.

Definition 0.3.5. Let ζ be a nth root of unity. The order of ζ , denoted
ord(ζ), is the smallest integer k > 0 that satisfies ζk = 1.

Theorem 0.3.2. Let n be a positive integer, then

xn − 1 =
∏

d|n
Φd(x) (0.3.2.1)

Proof. We know that the roots of the polynomial xn − 1 are the nth roots
of unity. And if ζ is an nth root of unity with d = ord(ζ), then ζ is a
primitive root of unity and therefore a root of Φd(x). And since d|n, ζ is a
root of ∏d|n Φd(x). But, both xn − 1 and ∏d|n Φd(x) are monic and thus,
the equality holds.

The first twelve cyclotomic polynomials are as follows

Φ1(x) = x− 1 Φ7(x) = x6 + x5 + . . .+ 1
Φ2(x) = x+ 1 Φ8(x) = x4 + 1
Φ3(x) = x2 + x+ 1 Φ9(x) = x6 + x3 + 1
Φ4(x) = x2 + 1 Φ10(x) = x4 − x3 + x2 − x+ 1
Φ5(x) = x4 + x3 + . . .+ 1 Φ11(x) = x10 + x9 + . . .+ 1
Φ6(x) = x2 − x+ 1 Φ12(x) = x4 − x2 + 1

Now, with help of Möbius inversion formula, we will obtain reasonably
explicit formula for Φn(x). For n = 1, 2, 3, . . ., ln(∏d|n Φd(x) = ln(xn − 1),
which implies that∑d|n ln(Φd(x)) = ln(xn−1). And by (2.5.4), we will have
ln(Φn(x)) = ∑

d|n µ(n/d) ln(xd − 1), and eventually arrive at

Φn(x) =
∏

d|n(xd − 1)µ(n/d). (0.3.2.2)

15



Just to see how this works, we will take a look at Φ18(x), which according
to our new formula is

(x− 1)µ(18)(x2 − 1)µ(9)(x3 − 1)µ(6)(x6 − 1)µ(3)(x9 − 1)µ(2)(x18 − 1)µ(1)

= (x− 1)0(x2 − 1)0(x3 − 1)1(x6 − 1)−1(x9 − 1)−1(x18 − 1)1

= (x3 − 1)1(x18 − 1)1/(x6 − 1)1(x9 − 1)1

= x6 − x3 + 1.

0.3.3 Exact Covering Sequence
An exact covering sequence (ECS) is a set of ordered pairs (ai, bi), ai ≥ 0
and bi ≥ 1 such as, for every n ≥ 0 there is one and only one pair of (ai, bi)
such that n ≡ ai mod bi. Our main goal in this subsection is to find out if
a given sequence is an exact covering sequence and we are going to use the
generating functions to achieve that goal.

Suppose that (ai, bi), (i = 1, 2, 3, . . .) is an exact covering sequence. Then
every n ≥ 0 can uniquely be written as n = ai+ tbi where t ∈ Z. With these
in mind, we can rewrite the geometric series

∞∑

n=0
xn =

k∑

i=1

∑

t≥0
xai+tbi =

k∑

i=1

xai

1− xbi
, (0.3.3.1)

and obtain
k∑

i=1

xai

1− xbi
= 1

1− x. (0.3.3.2)

Theorem 0.3.3. For a sequence of pairs (ai, bi), (i = 1, 2, 3, . . .) to be an
exact covering sequence, it must have the property (3.3.2).

A conclusion that can be drawn from this is that, in a ECS, the property∑
j 1/bj = 1 must hold. To see this, we multiply both sides of (3.3.2) by

1 − x and let x → 1. But we will gain a lot more by digging deeper in the
subject.

Now let us begin by expanding the left hand side of (3.3.2)

k∑

i=1

xai

1− xbi
=

∑

ω:ωB=1

A(ω)
ω − x, (0.3.3.3)

where B = lcm{bi}, and

A(ω) = lim
x→ω(ω − x)

k∑

i=1

xai

1− xbi
=

k∑

i=1
ωai lim

x→ω
ω − x
1− xbi

.
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Now, if ωbi 6= 1, then A(ω) = 0. Otherwise we will have the case where
limx→ω(ω−x)/(1−xbi) = 0/0 which leads us to to L’Hôpital’s rule. We can
see that d(ω−x)/dx = −1 and d(1−xbi)/dx = −bixbi−1 and have the limits
limx→ω d(ω−x)/dx = −1 and limx→ω d(1−xbi)/dx = −biωbi−1 which gives
us

k∑

i=1
ωai lim

x→ω
ω − x
1− xbi

=
k∑

i=1
ωai

−1
−biωbi−1

=
k∑

i=1

ωai+1

biωbi

=
∑

j:ωbj =1

ωaj+1

bj
,

and by taking a quick glance at (3.3.2) we can see that in the case where
a sequence covers exactly all the A(ω)’s vanish except for ω = 1, when
A(1) = 1. Knowing this, we obtain

k∑

j:ωbj =1

ωaj

bj
=
{

1, if ω = 1
0 otherwise .

(0.3.3.4)

We proceed by letting ωrm = exp(2πir/m), (m > 0 and gcd(r,m) = 1),
represent a primitive mth root of unity. Then we will have the form

∑

j:m|bj

ωaj

bj
=
{

1, if m = 1;
0 otherwise,

(0.3.3.5)

in the case when {(ai, bi)}ki=1 is ECS, we define polynomials that are
associated with the sequence {(ai, bi)}ki=1 in the following way

ψm(z) =
∑

j:m|bj

zaj

bj
.

For a finite system of congruences to be an exact covering sequence,
it is necessary that the polynomial ψm, for m > 0, to vanish at primitive
mth roots of unity, and ψ1(z) = 1. And every polynomial that vanishes at
primitive mth roots of unity, must be divisible by the cyclotomic polynomial

Φm(z) =
∏

1≤r≤m
r:(r,m)=1

(z − ωrm) where m = 1, 2, 3, . . . .
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The first few cyclotomic polynomials are

Φ1(z) = z − 1, Φ2(z) = z + 1, Φ3(z) = z2 + z + 1, Φ4(z) = z2 + 1, . . . .

And now by combining these last pages, we obtain the following theorem

Theorem 0.3.4. Let ai ≥ 0 and bi ≥ 1, then the set {(ai, bi)}ki=1, is an
exact covering sequence if and only if ∑j 1/bj = 1, and for each m > 1, the
polynomial ψm(z), is divisible by the cyclotomic polynomial Φm(z).

In his book generatingfunctionology [1], Herbert Wilf, gives us a good
example of how the set of the pairs (0, 4), (2, 4), (1, 4), (3, 4), (5, 12), (11, 12)
can be proven to be an exact covering sequence. We shall prove the same
thing with another set of congruences.

Example 0.3.1. We take the pairs (1, 2), (0, 4), (2, 4). We can right away
see that ∑j 1/bj = 1/2 + 1/4 + 1/4 = 1. Let us now check the divisibility
conditions:

ψ2(z) = z/2 + 1/4 + z2/4 divisible by Φ2(z) = z + 1;
ψ4(z) = 1/4 + z2/4 divisible by Φ4(z) = z2 + 1,

therefore, by theorem 3.4, the set of congruences {(1, 2), (0, 4), (2, 4)} is an
exact covering sequence.
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0.4 Square Roots of Permutations
In this section of our thesis, we shall mainly concentrate our work on the
question: How many, out of the total permutations of a given set Sn have
square roots? We shall also take it a little further by generalizing the idea in
order to find the number of the permutations of a given set with kth roots.

0.4.1 Permutations
Definition 0.4.1. A permutation of a set A is a function ϕ : A → A that
is both one to one and onto

Example 0.4.1. Let A = {1, 2, 3, 4, 5, 6} be a set. Then σ : 1 → 3 → 5 →
2→ 4→ 6→ 1 is one of its permutations. Or in a more standard notation

σ =
(

1 3 5 2 4 6
3 5 2 4 6 1

)
(0.4.1.1)

A more compact way of writing (3.2.1) would be (1 3 5 2 4 6 1) which
is called cycle-notation, and since it starts and ends with the same element
and goes through all of them, it says to have one cycle. And if we take a
look at an other permutation, say

τ =
(

1 3 2 5 4 6
3 1 5 4 2 6

)
= (1 3)(2 5 4)(6),

we can see that it is a product of disjointed cycles, namely, (1 3), (2 5 4) and
(6).

A question rises: How many permutations are there for a given set? Let
A be a set with n elements. The total amount of permutations the set A
can have is n!. A quick example would be to take a look at B = {1, 2, 3}
and all its 3! = 6 permutation which are (1 2 3), (1)(2)(3), (1 2)(3), (1)(2 3),
(1 3 2) and (1 3)(2).

The multiplication of permutations is not commutative and when written
in standard notation is always performed from right to left. For example,
consider the permutations

σ =
(

1 3 5 2 4 6
3 5 2 4 6 1

)
, and τ =

(
1 6 2 5 3 4
6 2 5 3 4 1

)
,



then,
στ = (1)(2)(3)(4)(5)(6), and τσ = (142)(3)(5)(5),

for example, στ(4) = σ(τ(4)) = 3 6= 2 = τ(σ(4)) = τσ(4)

0.4.2 The Cyclic Index of the Symmetric Group
In this subsection we are going to take a look at detailed information about
the cycles of a permutation. Let us first take a look at Stirling numbers of
the first kind .

Stirling Numbers of the First Kind, the unsigned Stirling numbers
of the first kind, or Stirling cycle numbers, is the number of permutations
of a set of n elements with precisely k cycles. The most common notation
for Stirling numbers of first kind is c(n, k).

Example 0.4.2. Let A = {1, 2, 3, 4}, then, cA(4, 2) is the number of the
partitions of A into two cycles which are

(1)(2 4 3), (1 2 3)(4), (1 2 4)(3), (1 4 2)(3), (1 4)(2 3), (1 3)(2 4),
(1)(2 3 4), (1 3 2)(4), (1 4 3)(2), (1 3 4)(2), (1 2)(3 4).

Now we are going to take this a little further and instead of considering
only the numbers of the cycles of a permutation, we shall try to find the
numbers of the cycles with respect to their lengths.

Let a = {a1, a2, a3, . . .} be a sequence of positive integers. n = a1 +
2a2 + 3a3 + . . . being finite, represents the cycles of different length which
the permutations of n letters can have. For instance, a3 = 5 means that n
has exactly 5 cycles of length 3. Let us call a = a(σ) the cycle type of the
permutation σ which tell us the number of cycles of different length that σ
can take on. Now let c(a(σ)) be the number of permutations of cycle type
a . Then we call

φn(x) =
∑

a1+2a2+...=n
a1≥0,a2≥0...

c(a)xa, (0.4.2.1)

the cycle index of the symmetric group Sn , where xa = ∏n
j=1 x

aj

j , is the
cycle index monomial of the permutation σ. These monomials xa, are just
dummy variables and have the purpose of showing the cycle structure of a
permutation.
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We need to find the number of permutations of n letters with the cycle
type a = {a1, a2, a3, . . .}, and the coefficient of xa in φn(x) will provide us
with just that. We are going to find the generating function

C(x, t) =
∞∑

n=1
φn(x) t

n

n! .

We begin by finding an exact formula for c(a).

Lemma 0.4.1. Let m, a and k be integers. The number of the ways that
we can choose ka elements from m distinct elements and arrange them into
a cycles of length k is

f(m, a, k) = m!
(m− ka)!kaa! .

Proof. We begin by choosing a ka-tuple from the set with m letters, which
can be done inm!/(m−ka)! different ways. There are k ways where k letters
can be arranged in a cycle retaining same permutational equality. And if we
have a numbers of cycles of the length k, then there will be ka arrangements
with same permutational equality. We also know that there are a! ways we
can arrange a cycles in a row. Therefore, in m!/(m − ka)!, there are kaa!
arrangements with same permutational equality.

So according to Lemma (4.1) if we have n elements and a sequence of
non-negative integers a = {a1, a2, a3, . . .} so that n = a1 + 2a2 + 3a3 + . . .,
then,

f(n, a1, 1)f(n− a1, a2, 2)f(n− a− 1− 2a2, a3, 3) . . . =

=
(

n!
(n− a1)!1a1a1!

)( (n− a1)!
(n− a1 − 2a2)!2a2a2!

)
. . . =

= n!
a1!a2!a3! . . . 1a12a23a3 . . .

,

is the number of ways we can form the elements in n into a1 cycles of length
1, a2 cycles of length 2, ..., and so on and so forth.

Theorem 0.4.1. Let a = {a1, a2, a3, . . .} be a sequence of non-negative
integers such that ∑j jaj = n. Then, the number of permutations of n
elements with a as the type of cycle is

c(a) = n!∏
j≥1 aj !jaj

.
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Continuing our search for the generating function, we calculate

C(x, t) =
∑

n≥0
φn(x) t

n

n!

=
∑

n≥0
tn

∑

a1+2a2+...=n
a1≥0,a2≥0...

xa1
1 x

a2
2 x

a3
3 . . .

a1!a2!a3! . . . 1a12a23a3 . . .

=


∑

a1≥0

(tx1)a1

1a1a1!




∑

a2≥0

(t2x2)a2

2a2a2!




∑

a3≥0

(t3x3)a3

3a3a3!


 . . .

= etx1et
2x2/2et

3x3/3 . . .

= exp


∑

j≥1

xjt
j

j




Theorem 0.4.2. The coefficient of tn/n! in

C(x, t) = exp


∑

j≥1

xjt
j

j




is the cycle index of Sn, which represents the number of permutations of n
letters with all possible cycle index monomials. And the coefficient of xatn/n!
is the number of permutations of n elements with cycle type a.

0.4.3 Square Roots
Theorem 0.4.3. A permutation σ has square roots if and only if the numbers
of cycles of σ that have each even length are even numbers.

Proof. we divide the cycles that a given permutation σ is composed of i four
different groups.

1 Even numbers of cycles with each odd length.

2 Odd numbers of cycles with each odd length.

3 Even numbers of cycles with each even length.

4 Odd numbers of cycles with each even length.

Now if σ has a square root then there exists a permutation τ such that
σ = τ2. Let us now take a look at the cycles of τ a see what happens when
we square it.
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(a1b1a2b2 . . . ambm), ()2
−→ (a1a2 . . . am)(b1b2 . . . bm),

(d1d3 . . . dmd2d4 . . . dm−1), ()2
−→ (d1d2d3 . . . dm−1dm),

no such cycle , ()2
−→ (c1c2 . . . cm−1cm . . . c2m).

This tells us that the only time a permutation can’t have square roots
is when it contains odd numbers of a cycle with each even length. In other
words, a permutations that is composed of the first three group mentioned
above has square roots. And since the numbers of the cycles with each
odd length are arbitrary, we say that a permutation σ has square roots if
and only if the numbers of cycles of σ that have each even length are even
numbers

We need now to find the generating function of the sequence

{f(1, 2), f(2, 2), f(3, 2), f(4, 2), . . .}

where f(n, 2) represents the number of the permutations of n elements that
have square roots. As we have mentioned before, a cycle type vector, a =
{a1, a2, a3, . . .} of a permutation with square roots must have even numbers
of even-indexed components, and the odd-indexed components are arbitrary.
Now, according Theorem 4.2, number of the permutations of n elements
with cycle type a = {a1, a2, a3, . . .} can easily be obtained by calculating
the coefficient of xatn/n! in the product

etx1et
2x2/2et

3x3/3 . . . .

We start by dividing C(x,t) in two parts. The first part, etx1et
3x3/3 . . .,

which contains only cycles with odd number of letters - and have been
proved to have a square root regardless of the number of cycles - will
remain untouched. The second part however, et2x2/2et

4x4/4 . . ., with cycles
containing even number of elements must be rewritten. Here we only need to
keep the even-indexed cycles that come in even numbers, and for achieving
that, we will turn to hyperbolic cosine function. So instead of using the
whole exponential series exit

i/i = 1 + tixi/i+ t2ix2
i /2i2 + t3ix3

i /6i3 . . ., where
i = 2, 4, 6, . . ., we use

cosh(xiti/i) =
∞∑

k=0

t2kix2k
i

i2k(2k)! , i = 2, 4, 6, . . .
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Then, by knowing f(n, 2) is the number of permutations of n elements
with square roots, we can construct a new generating function that will
provide us with that very sequence of numbers we are looking for. This
new generating function shall only contain the cycle index monomials of
permutations that have square roots. And since it is the total number of
those monomials for each n that is important, we can neglect all xj by letting
xj = 1 for all j’s. Then we shall have

∑

n≥0
f(n, 2) t

n

n! = et cosh(t2/2)et3/3 cosh(t4/4)et5/5 cosh(t6/6) . . .

= exp(t+ t3

3 + t5

5 + . . .)
∏

m≥1
cosh

(
t2m

2m

)

= exp
(1

2(log(1 + t)− log(1− t))
) ∏

m≥1
cosh

(
t2m

2m

)

= exp
(

log
√

1 + t

1− t

) ∏

m≥1
cosh

(
t2m

2m

)

=
√

1 + t

1− t
∏

m≥1
cosh

(
t2m

2m

)

= 1 + t+ t2

2! + 3 t
3

3! + 12 t
4

4! + 60 t
5

5! + 270 t
6

6! + . . . .

Therefore the sequence {f(n, 2)} begins with 1, 1, 1, 3, 12, 60, 270, . . ..

Now that we have explained how to find the number of permutations
with square roots, it would be good time to go a little further and try to
generalize the idea and find a way which would lead us to the number of
kth roots of a given permutation.

We let f(n, k) be the number of permutation with n letters which has the
jth roots, and we seek the exponential generating function for the sequence
{f(n, k)}n≥0. We start with some new notations. If p is a prime and k is an
integer, then, by e(p, k) we mean max{j}, where pj |k. Then, for each pair
of positive integers m and k, we define ((m, k)) as

((m, k)) =
∏

p|m
pe(p,k).

Now to the main theorem which is the generalization of Theorem 4.3.

24



Theorem 0.4.4. A permutation σ has kth roots if and only if for every m,
where m ∈ Z+, the number of the cycles of σ with length m is a multiple of
((m, k)).

Proof. We let σ = τk be a permutation of a set with n letters. Suppose
now, that σ has exactly νm cycles with the length m, for m = 1, 2, 3, . . ..
Then we consider that there is a cycle of the length r in τ . in τ , this would
contribute to gcd(r, k) cycles of length r/ gcd(r, k) in σ. Therefore the νm
cycles of length m in σ must come from cycles of length r in τ , where
r/ gcd(r, k) = m. If we now take a look at the equation r = gcd(r, k)m,
we will see that r must be a multiple of m((m, k)). Thus, all the cycles of
the length m in σ must come from cycles of lengths that are multiples of
m((m, k)) in τ . Conversely, every such cycle in τ must contribute a multiple
of ((m, k)) m-cycles in σ. Therefore, the number of m-cycles in σ must is a
multiple of ((m, k)).

Just to reduce the level of confusion, let us construct a kth root of a
permutation σ that satisfies the condition. We start by fixing m and write
g = ((m, k)). Then the number of cycles of σ with the length m is now
a multiple of g, so we put them together into g cycles of length m. Now
for each bundle, we construct a single new cycle of length mg by creating a
cycle with mg empty places. Then, for i, j = 1, 2, 3, . . ., we simply place the
ith element of the jth m-cycle in the ((i − 1)g + j)th position of the new
empty mg-cycle till all the elements are in their new positions. In this way
we have constructed a kth root of σ.

To see even more clearly how this works, we our now going to give an
example with a permutation that satisfies the condition.

Example 0.4.3. Let σ = (1, 6)(5, 7)(2, 3, 8)(4, 9, 11)(10, 12, 13) be a given
permutation. Our first step in the process would be to find out whether σ
satisfies the requirements to have, say a 3rd root. Then, ν2 = 2 is a multiple
of ((2, 3)) = 1, and ν3 = 3 is a multiple of ((3, 3)) = 3. Now we are going
to construct a τ so that τ3 = σ. Here we have two groups of m-cycles, with
m = 2, and m = 3. First with create different bundles of cycles with same
m, the νm/((m, k)) will tell us the number of the new cycles of the length
m((m, k)), that each bundle will give rise to. If νm/((m, k)) is the same as
the number of the cycles of the bundle in question, then those cycles will
remain the same in τ . In our case, ν2/((2, 3)) = 2 is the same as the number
of the cycles of length 2 of the bundle in question, so first part of τ will be
(1, 6)(5, 7).
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Now to the second bundle that contains the cycles with m = 3. Here
ν3/((3, 3)) = 1, and 3((3, 3)) = 9, which means that this one will give rise
to one cycle of length 9. We begin by constructing a cycle with nine empty
places. We place the elements of the first cycle of the bundle in the positions
1, 4 and 7 (2,−,−, 3,−,−, 8,−,−), then elements of the second cycle of
the bundle in positions 2, 5 and 8 (2, 4,−, 3, 9,−, 8, 11,−) and finally, the
elements of the last cycle in the remaining positions (2, 4, 10, 3, 9, 12, 8, 11, 13).
Combining this with the first part of τ will give us

τ = (1, 6)(5, 7)(2, 4, 10, 3, 9, 12, 8, 11, 13).

The exponential generating function of the sequence {f(n, k)}n≥0 can
be obtained using same method as in the case of square roots. Let expq(x)
denote the part of the exponential series of ex that contains only powers
that can be divided by q. That is,

expq(x) =
∑

j≥0

xjq

(jq)! , q = 1, 2, 3, . . . .

In exp1(x) = 1 + x+ x2/2! +x3/3! + . . ., all the powers of x are divisible
by q = 1. For exp2(x), we are going to use exp2(x) = cosh(x) = 1 + x2/2! +
x4/4! + . . .. How about q = 3? Here it gets a little tricky. We know that if
a power series converges to a function, then by using roots of unity, we can
pick out desired terms from that series. For example, the two square roots
of unity will provide us with

1n + (−1)n
2 =

{
1, if n even;
0, if n odd,

which clearly gives us even-powered terms from the series. Using same
principle with cubic, quartic, quintic, ... roots of unity, will give us the
necessary terms we are looking for. So for every r > 1, the rth roots of
unity give us the generalized formula

1
r

∑

ζr=1
ζnr =

{
1, if r|n;
0, otherwise .

And naturally the left side of the expression above can be expressed as

1
r

r−1∑

j=0
e2πijn/r.
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Then, the generating function for the sequence {f(n, k)tn/n!} is
∞∑

n=0
f(n, k) t

n

n! =
∞∏

m=1
exp((m,k))

(
tm

m

)
, (k = 1, 2, 3, . . .)

Here we have a table of the sequence {f(n, k)tn/n!}, for 0 ≥ n ≥ 7 and
2 ≥ k ≥ 6.

{f(n, k)tn/n!} n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7
k=2: 1 1 3 12 60 270 1890 14280
k=3: 1 2 4 16 80 400 2800 22400
k=4: 1 1 3 9 45 225 1575 11130
k=5: 1 2 6 24 96 576 4032 32256
k=6: 1 1 1 4 40 190 1330 8680

.
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0.5 A Short Summary and Further Horizon
We would like to conclude the work with a short summary of the previous
sections. We also would like to give the readers a brief taste, of some of the
many applications that generating functions have to offer. The applications
that we have chosen to take up are: probability theory, generating functions
proven congruence, rook theory and unimodality.

A Short Summary
Throughout this paper we have witnessed how the generating functions
could help us solve some relatively difficult problems. In pursuit of finding
permutation with square roots, we saw how the ordinary generating function
φ(x) = ∑

n≥0 c(n)xn, evolved to a "grand" exponential generating function
C(x,t) = ∑

n≥0 φ(x)tn/n!, from which we were able to construct a new
exponential generating function

∑

n≥0
f(n, 2) t

n

n! = et cosh(t2/2)et3/3 cosh(t4/4)et5/5 cosh(t6/6) . . .

which gave rise to the number of the permutations with n letters that had
square roots.

In finding how "exact", a covering sequence A = {(ai, bi)}, i = 1, 2, . . . , k
is, we used the ordinary generating function ∑k

n=0 x
n, and the congruence

relation n ≡ ai (mod bi) which equals n = ai + tbi where n ∈ Z+, and
obtained ∑k

i=1
∑
t≥0 x

ai+tbi . We performed summation over t and ended up
with

k∑

i=1

xai

1− xbi
= 1

1− x,

and by multiplying both sides with (1− x) and letting x→ 1 we arrived at
the conclusion that A is an exact covering sequence if and only if∑i 1/bi = 1.

These applications, beside being fascinating, have proven to be highly
practical. But they are not all what generating functions have to offer.
Taking a deeper look inside the world of generating functions we will find
many ways in how they are applied on a wide range of ideas and principles.



Generating Functions and Probability Theory
The probability mass function f(x) tells us how probable it is for the event
x, which is an element from a sample space Ω, to take certain values called
random variables X. For all t ∈ R which have expected value, a probability
generating function P (t) of X is expressed as PX(t) = ∑∞

x=0 f(x)tx.

Now, the common way of calculating expected value and variance of
X would be, E[X] = ∑

x∈Ω xf(x), and Var(X) = E[(X − E[X])2]. We
differentiate P (t) with respect to t and let t = 1 obtaining P ′(1) = ∑

x≥0 xf(x),
and since x takes only the values from the sample space, we can write
P ′(1) = ∑

x∈Ω xf(x). Now, we can express both expected and variance
of X in the terms of probability generating function P (t),

E[X] = P ′(1), Var(X) = P ′′(1) + P ′(1)[1− P ′(1)].

Sometimes, in order to have a better understanding of a random variable
X, we need to know more than just the expected value and the variance.
In those cases, we turn to the moments E[X1], E[X2], E[X3], . . . , E[Xk] of
the X, where the first moment represents the expected value and the second
moment is used in finding the variance of X. For calculating these moments,
one uses so-called moment generating function denoted

MX(t) =
{∑

x∈Ω e
tXfX(x), if discrete

∫∞
x=0 e

tXfX(x), if continuous .

With some algebra we easily come to the conclusion that for t = 0 the
different order of derivatives of moment generating function corresponds to
a moment with the respective order. Just to give an example, we can see
that M (1)

X (0) = ∑
x∈Ω xfX(x), which is equal to E[X1].

Proving Congruence
This subsection consists of one example that hopefully will give the reader
some understanding about how well the generating functions can help us to
prove congruence among combinatorial numbers.

Example 0.5.1. We know that the Stirling numbers of the first kind c(n, k),
have the generating function

n∑

k=0
c(n, k)xk = x(x+ 1) . . . (x+ n− 1). (0.5.0.1)
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We would like to find some basis for determining the oddness/evenness
of these numbers. We start by finding out what ∑n

k=0 c(n, k)xk (mod 2)
becomes. And since

(x+ h) ≡
{
x (mod 2), if h even ;
x+ 1 (mod 2), if h odd ,

our (5.0.1) (mod 2) becomes
n∑

k=0
c(n, k)xk ≡ x(x+ 1)x(x+ 1) . . . (mod 2)

= xdn/2e(x+ 1)bn/2c,

where the coefficients of xk in xdn/2e(x + 1)bn/2c is the sequence generated
by ∑∞n=0 c(n, k)xk (mod 2).

c(n, k) ≡ [xk]xdn/2e(x+ 1)bn/2c (mod 2)

=
[
xk−dn/2e

]
(x+ 1)bn/2c

=
(
bn/2c

k − dn/2e

)
.

This tells us that Stirling numbers of c(n, k), and the binomial coefficient( bn/2c
k−dn/2e

)
, both have the same parity. In particular, if k < dn/2e, then c(n, k)

is an even number.

Rook Polynomial
A rook polynomial RB(x) = ∑∞

k=0 aB,kx
k, is a ordinary generating function

that determines the number of the ways k non-attaching rooks - no two
rooks in the same row or column - can be placed on a chess-like board Bm×n
with m× n squares. The first few rook polynomials of a Bn×n boards are

RB1×1(x) = x+ 1
RB2×2(x) = 2x2 + 4x+ 1
RB3×3(x) = 6x3 + 18x2 + 9x+ 1
RB4×4(x) = 24x4 + 96x3 + 72x2 + 16x+ 1.
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B1×1(x) B2×2(x) B3×3(x) . . .

. . .

.
For a board Bm×n, the general formula for calculating all the values of

aB,k in RBm×n(x) would be

aB,k =





m!n!
(m− k)!(n− k)!k! , if k ≤ min(m,n)

0, otherwise.

These polynomials are of course for boards without any forbidden squares.
For instance, a 2 × 2 board with one forbidden square would have the
polynomial RBC

(x) = x2 + 3x + 1, where BC denotes that specific board.
But analysing each board that contains forbidden squares tends to be an
exhausting task, specially as the size of the the boards increases.

A way of solving this problem is to divide the board C into pairwise
disjointed sub-boards C1, C2, C3, . . . , Cn, then

RBC
= RBC1

+RBC2
+RBC3

+ . . .+RBCn
.

As you may have realized by now, the boards and their conditions get more
complicated and unfortunately we wont be able to cover all those situations
here. However, for further reading we recommend John Riordan works on
this subject.

Unimodality
A sequence is called unimodal if it has a maximum point that it rises to
and then falls from. The set {(nk

)}nk=0, which contains the coefficients from
a binomial expansion is an excellent example of that. In combinatorics,
unimodality is common among sequences. Proving unimodality for a sequence
can sometimes be a difficult task, but generating functions, although not
always being the definitive method, are of great help for finding unimodality.

31



We need now to turn to a stronger property than unimodality, namely,
logarithmic concavity. The sequence c0, c1, c3, . . . , cn of positive numbers is
called log concave if log cx is a concave function of x. In other words

cx−1cx+1 ≤ c2
x, x = 1, 2, 3, . . . , n− 1.

By replacing ‘≤’ with ‘<’ our sequence turns from log concave to strictly log
concave. And if a sequence of positive numbers {ck}nk=0 is log concave, then
it is also unimodal. Otherwise it would have three consecutive elements
such as ck−1 > ck < ck+1 which is a contradiction to the assumption of
logarithmic concavity.

Now according to the Theorem 4.27 [1, p. 146], if all the zeros of a given
polynomial p(x) = c0 + c1x+ . . .+ cnx

n are real and negative, then p(x) is
a generating function whose sequence of coefficients {ck}nk=0 is strictly log
concave. And as mentioned above, it is also unimodal.
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