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Abstract

The Laplace operator and squared Laplace operator on a branching graph
are studied. Boundary conditions connecting three functions at a vertex are
determined. It is shown that in general the boundary conditions are linear
relationships between derivatives of the same degree.

Introduction

The background to the study of quantum graphs, a graph considered to-
gether with an operator and certain boundary conditions, lies in the theory
of partial differential equations. The main interest of the square Laplace
operator can be seen to stem from the equations for free oscillations of a
plate, see Lifshitz and Landau in [7]. The equation

ρ∂2ζ

∂t2
+

Eh2

12(1− σ2)
∆2ζ = 0

is a partial differential equation in the time domain, where ρ is the density of
matter, ζ the distance function, t time, E the Young’s Modulus (the measure
of stiffness of the elastic material), h the height of the plate, σ the Poisson
ratio (the negative ratio of transverse to axial strain). Fourier transform can
be used on the equation to go from a time domain to a frequency domain.
Using a Fourier transform we get the following equation,

−ρk2u+
Eh2

12(1− σ2)
∆2u = 0

where,

u =

∫ ∞

−∞
ζektdt.

Setting −ρ =
Eh2

12(1− σ2)
= 1, we get the following partial differential equa-

tion for u,

∆2u = k2u.

This equation can be used to describe waves in rods. Our aim is to study
the system of three rods sharing one clamp with the three ends free. This
system is described by the square Laplacian ∆2 on a Y-graph with certain
boundary conditions at the vertex.
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A lot of focus in research is on inverse scattering problems, see [6], which
will not be covered in this report. The boundary, or matching, conditions
are what will be discussed in the following sections. The first section will
state definitions of concepts concerning unbounded operators and quantum
graphs. The second section will treat the negative Laplace operator on a
Y-graph and the necessary boundary conditions for it to be symmetric and
connected at a vertex. The third section will treat the case of a symmetric
Y-graph, with respect to the three angles between the branches, and the
square of the Laplace operator acting on it. The last section will treat the
general case of the square Laplace operator, with different angles between
each branch.

Operators and Graphs

A graph Γ consists of a finite set of edges E = {ej} and a set of vertices
V = {vi}, where each edge lies between two vertices (vi, vk). If two edges
share a vertex they are said to be connected and if all edges share one vertex
v the graph Γ is said to be a star graph. We will focus on a graph with three
edges sharing one vertex, which we will call a Y-graph. In order to uniquely
define this Y-graph each edge ej must have a length, making it a metric
graph,

Definition 1. A graph Γ is said to be a metric graph if each edge ej is
identified by an interval of the real line, i.e. ej = (0, lj ] where 0 < lj ≤ ∞.

We therefore extend the so-called Y-graph to be a metric graph with each
edge ej that can be identified with the interval [0,∞) with all the left end-
points identified. The edges emanate outward from the origin and we say
that the operators we are interested in are acting on functions fi(x), where
x is a point along an edge. The Y-graph with each branch parametrised by
a function fi, i = 1, 2, 3, can be seen in figure 1.
So far we have seen the Y-graph of interest and the functions on each edge,
but since we will be treating unbounded operators the domain of the oper-
ators needs to be defined. The space L2[a, b] is defined as

Definition 2. The space L2[a, b] is the collection of real (complex) valued
square integrable functions with the inner product between f and g defined as

〈f, g〉 =

∫ b

a
f(x)g(x)dx

and the norm of f defined as

‖f‖2L2[a,b] = 〈f, f〉 =

∫ b

a
|f(x)|2dx <∞.
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Figure 1: Y-graph equipped with functions on each branch.

We have defined three functions and their domains, one on each edge of the
Y-graph, and therefore we consolidate the Hilbert space with,

Definition 3. The space L2(Γ) on Γ consists of functions that are measur-
able and square integrable on each edge ej and such that

‖f‖2L2(Γ) =
∑

ej∈E
‖f‖2L2(ej) <∞

i.e., L2(Γ) is the orthogonal direct sum of spaces L2(ej). The scalar product
in this setting

〈f, g〉 =
3∑

j=1

∫

Γ
fj(x)gj(x)dx.

The operators acting on the functions will be the two differential operators,

• The operator of negative second differentiation - the Laplace operator:
LII = − d2

dx2
.

• The operator of fourth order differentiation: LIV = L2
II = d4

dx4
.

We also note that our operators are linear, i.e. fulfilling

Definition 4. Let X, Y be two vector spaces. A function L that maps every
vector u from the domain D(L) ⊂ X into a vector v = Lu of Y is called a
linear operator from X to Y if L preserves linear relations, that is, if

L(α1u1 + α2u2) = α1Lu1 + α2Lu2

for all u1, u2 from D(L) and all scalars α1, α2.
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A symmetric linear operator is defined as

Definition 5. A linear operator that satisfies the relationship

〈Lf, g〉 = 〈f, Lg〉
is said to be symmetric if the condition holds for all f and g in the domain
D(L).

The triple of metric graph, operator and conditions at the vertex V of the
Y-graph are what we define as a quantum graph.

Definition 6. A quantum graph is a metric graph Γ equipped with an op-
erator L acting on it, together with matching (vertex) conditions.

Second Order Linear Differential Operator

The three functions defined on the Y-graph with the Laplace operator act-
ing on them are defined on separate edges and their boundary values at
the origin are independent, with an angle of 2α between two of the edges,
according to figure 2. Each edge is parametrised by a real parameter x and
the corresponding functions are denoted by fj for j = 1, 2, 3. The boundary
values fj(0) and f ′j(0) should be connected by certain linear conditions to
be called matching conditions. The conditions should be chosen so that the
operator is symmetric as stated in the previous section.

Figure 2: Y-graph with angles 2α and π − α.

The Laplace operator LII = − d2

dx2
has the domain

⊕3
i=1W

2
2 [0,∞), consist-

ing of all functions fj from L2[0,∞) such that f ′′j ∈ L2[0,∞). The subscript
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II will be dropped for the remainder of this section and L will denote the
previous LII . Let us calculate the boundary form of the operator L,

〈Lf, g〉 − 〈f, Lg〉 =

3∑

j=1

{
∫ ∞

0
−f ′′

j gjdx+

∫ ∞

0
fjg

′′
j dx}

=
3∑

j=1

{−f ′
jgj |∞0 +

∫ ∞

0
f

′
jg

′
jdx+ fjgj |∞0 −

∫ ∞

0
f

′
jg

′
jdx}

=

3∑

j=1

{f ′
j(0)gj(0)− fj(0)g

′
j(0)}.

The question of which vertex conditions need be imposed upon a function
from the domain of the operator in order for the sum to be identically 0
is the same as making the operator symmetric. Here we assume that both
functions f and g satisfy the same conditions. The following two vertex
conditions can be considered on the Y-graph equipped with the negative
Laplacian,

Example 1. The Dirichlet condition with f1(0) = f2(0) = f3(0) = 0
satisfies the stated requirements and yields the boundary form equal to 0.
Imposing the Dirichlet condition at the origin vertex on the Y-graph is an
example of a decoupling condition, it disconnects the edges entering the ver-
tex. Under this condition the operator would be the direct sum of the operator
on each edge. The edges are in this case independent of each other.

Example 2. The Robin condition f
′
j(0) = hjfj(0), with hj ∈ R also sat-

isfies the requirements and yields a boundary form equal to 0. This is yet
another example of a decoupling condition. In a physical application this
would have the same result as the previous example, namely that the system
would fall apart at the origin due to the edges being independent of each
other.

A vertex condition for physical applications often require the functions to
be continuous at the vertex. In this case the edges are not independent.
This important vertex condition is referred to as the standard, Neumann or
Kirchoff conditions.

Example 3. The standard conditions are the following

{
f1(0) = f2(0) = f3(0)

f
′
1(0) + f

′
2(0) + f

′
3(0) = 0.

(1)

They are chosen so that the system is connected at the origin and the bound-
ary form is identically 0, since
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〈Lf, g〉 − 〈f, Lg〉 =
3∑

j=1

{f ′
j(0)gj(0)− fj(0)g

′
j(0)}

= g(0)
3∑

j=1

f
′
j(0)− f(0)

3∑

j=1

g
′
j(0) ≡ 0.

An example of a more general vertex condition than the above can be con-
sidered to be the δ-type condition

Example 4. The δ-type condition is considered to be the following,

{
f1(0) = f2(0) = f3(0)

f ′1(0) + f ′2(0) + f ′3(0) = hf(0) = hδ [f ]

for h ∈ R. These conditions reduce to the standard conditions when h = 0.

All of the above examples in this section can be generalised in the following
manner,

i(S − I)



f1

f2

f3


 = (S + I)



f ′1
f ′2
f ′3




where I denotes the identity matrix and S is a unitary matrix containing
the information about the conditions. From this we can see that for S = −I
we get the Dirichlet condition and with S = I we obtain the Neumann
condition. For the standard conditions we have

S =



−1

3
2
3

2
3

2
3 −1

3
2
3

2
3

2
3 −1

3




Fourth Order Linear Differential Operator

Symmetric Angle

We now consider the operator of fourth order differentiation LIV =
d4

dx4

acting on a function on the metric Y-graph, with a symmetric angle of 2α
between two edges, see Figure 3. For α = 0 the branches f1 and f2 would
lie on the same branch and for α = π the branches f1 and f2 would lie along
f3. Therefore we restrict the angle α and require that α 6= 0, α 6= π. In
this section and the following we will be treating the same operator and for
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Figure 3: Y-graph with angles 2α and π − α.

simplicity the subscript IV will be dropped in these two sections, leaving L
in place of LIV .
The boundary form of the operator L may be evaluated with the aid of
partial integration as follows

〈Lf, g〉 − 〈f, Lg〉 =

=
3∑

j=1

(∫ ∞

0
f

(IV )
j gjdx−

∫ ∞

0
fjg

(IV )
j dx

)

=

3∑

j=1

(
f

′′′
j gj |∞0 − f

′′
j g

′
j |∞0 +

∫ ∞

0
f

′′
j g

′′
j dx− fjg

′′′
j |∞0 + f

′
jg

′′
j |∞0 −

∫ ∞

0
f

′′
j g

′′
j dx

)

=
3∑

j=1

(
− f ′′′

j (0)gj(0) + f
′′
j (0)g

′
j(0)− f ′

j(0)g
′′
j (0) + fj(0)g

′′′
j (0)

)
.

The boundary form above shows us that we need more vertex conditions
than in the previous section to ensure that the operator L is symmetric,
more precisely in total six are needed. Our aim is to describe conditions that
are straight forward generalisations of the standard conditions described in
the previous section. The first equation in ( 1), page 5, means that the
function is continuous even at the vertex. We reuse this condition requiring
f1(0) = f2(0) = f3(0).
Another additional condition can be obtained if we require that the tan-
gential lines to the graph of fj lie in the same plane. We should get one
condition. Let us discuss how to express this condition using derivatives of
fj . We solve this problem by introducing the coordinate system R3 by con-
sidering our Y-graph lying in the xy-plane in R3, according to figure 4. Let

7



Figure 4: Y-graph in R3 with angles 2α, π − α and π − α.

~aj be the tangent vector to the curves z = fj(xj) considered in R3. Further,
let φj denote the angles between the tangential lines f ′j and the xy-plane, it

can be observed that tanφj = f ′j(0). The vector ~a3 is parallel to the x-axis,
therefore has zero second coordinate and can be chosen equal to,

~a3 = (1, 0, tanφ3) = (1, 0, f ′3(0)).

The tangential vectors ~a1 and ~a2 may then be chosen equal to,
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~a1 = (− cosα, sinα, tanφ1) = (− cosα, sinα, f ′1(0))

~a2 = (− cosα,− sinα, tanφ2) = (− cosα,− sinα, f ′2(0)).

We want the branches of our Y-graph to be dependent and therefore find a
matching condition through examining the determinant of the vectors ~aj ,

det



− cosα sinα f ′1(0)
− cosα − sinα f ′2(0)

1 0 f ′3(0)


 = sinα(f ′1(0) + f ′2(0) + 2 cosαf ′3(0)) = 0.

The restrictions α 6= 0, π, mean that the value of sinα is non-zero and can
be divided in the last equality above. This gives us the matching condition
relating the first derivatives of fj ,

f ′1(0) + f ′2(0) + 2 cosαf ′3(0) = 0.

So far we have the following two matching conditions,

{
f1(0) = f2(0) = f3(0) = f(0)

f ′1(0) + f ′2(0) + 2 cosαf ′3(0) = 0
(2)

To find the remaining matching conditions we use these together with the
boundary form at the beginning of this section, but we write f

′
, f

′′
, f

′′′

instead of f
′
(0), f

′′
(0), f

′′′
(0) respectively for all derivatives below for sim-

plicity, since it is understood that we are investigating at the vertex. We
use the conditions in ( 2 ) in the third step below,
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〈Lf, g〉 − 〈f, Lg〉 =

=

3∑

j=1

(
− f ′′′

j (0)gj(0) + f
′′
j (0)g

′
j(0)− f ′

j(0)g
′′
j (0) + fj(0)g

′′′
j (0)

)

= −
( 3∑

j=1

f
′′′
j

)
g(0) + f

′′
1 g

′
1 + f

′′
2 g

′
2 + f

′′
3 g

′
3

− f ′
1g

′′
1 − f

′
2g

′′
2 − f

′
3g

′′
3 + fj(0)

( 3∑

j=1

g
′′′
j

)

= −
( 3∑

j=1

f
′′′
j

)
g(0) + f

′′
1 (−g′

2 − 2 cosαg
′
3) + f

′′
2 g

′
2 + f

′′
3 g

′
3

− (−f ′
2 − 2 cos f

′
3)g

′′
1 − f

′
2g

′′
2 − f

′
3g

′′
3 + f(0)

( 3∑

j=1

g
′′′
j

)

= −
( 3∑

j=1

f
′′′
j

)
g(0) + (−f ′′

1 + f
′′
2 )g

′
2 + (−2 cosαf

′′
1 + f

′′
3 )g

′
3

− f ′
2(−g′′

1 + g
′′
2 )− f ′

3(−2 cosαg
′′
1 + g

′′
3 ) + f(0)

( 3∑

j=1

g
′′′
j

)
.

Looking at the last expression above we search for conditions that connect
together derivatives of the same order and make the boundary form equal to
zero. We choose the following conditions as our final matching conditions,





2 cosαf
′′
1 (0) = 2 cosαf

′′
2 (0) = f

′′
3 (0)

3∑
j=1

f
′′′
j (0) = 0.

We now have the following six matching conditions for the operator L on
our Y-graph in figure 3,





f1(0) = f2(0) = f3(0) = f(0)

f ′1(0) + f ′2(0) + 2 cosαf ′3(0) = 0

2 cosαf
′′
1 (0) = 2 cosαf

′′
2 (0) = f

′′
3 (0)

3∑
j=1

f
′′′
j (0) = 0.

(3)

Under these conditions the fourth order operator L is symmetric (and even
self-adjoint). Let us consider two special cases.
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Example 5. In the case α = π
2 , cosα = 0 and the Y-graph resembles the

letter T. The boundary conditions in ( 2 ) become,

{
f1(0) = f2(0) = f3(0) = f(0)

f ′1(0) + f ′2(0) = 0

Under these conditions the boundary form of L becomes

〈Lf, g〉 − 〈f, Lg〉 =

= −
( 3∑

j=1

f
′′′
j

)
g(0) + (−f ′′

1 + f
′′
2 )g

′
2 + f

′′
3 g

′
3

− f ′
2(−g′′

1 + g
′′
2 )− f ′

3g
′′
3 + f(0)

( 3∑

j=1

g
′′′
j

)
.

We observe that two separate sets of matching conditions ensure that this
boundary form equals 0, namely





f1(0) = f2(0) = f3(0) = f(0)

f ′1(0) + f ′2(0) = 0

f
′′
1 (0) = f

′′
2 (0)

f
′′
3 (0) = 0
3∑
j=1

f
′′′
j (0) = 0,

and





f1(0) = f2(0) = f3(0) = f(0)

f ′1(0) + f ′2(0) = 0

f
′
3(0) = 0

f
′′
1 (0) = f

′′
2 (0)

3∑
j=1

f
′′′
j (0) = 0.

Example 6. We consider the case when α = π
3 , thus cosα =

1

2
. In this

case the boundary conditions in ( 3 ) become
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



f1(0) = f2(0) = f3(0) = f(0)

f ′1(0) + f ′2(0) + f ′3(0) = 0

f
′′
1 (0) = f

′′
2 (0) = f

′′
3 (0)

3∑
j=1

f
′′′
j (0) = 0.

The first two matching conditions coincide with the standard conditions in
( 1 ). This is expected since the Y-graph is symmetric with respect to the
angle between each branch when α = π

3 .

General Angle

Figure 5: Y-graph with angles α, β and γ.

In this section we examine a case similar to the previous section with the
operator L acting on the Y-graph, but with the exception that we let the
angle between each branch be different. We denote the angles by α, β and
γ according to figure 5 and require that α, β, γ 6= 0. As before the boundary
form for the operator L evaluates to

〈Lf, g〉 − 〈f, Lg〉 =

=

3∑

j=1

(
− f ′′′

j (0)gj(0) + f
′′
j (0)g

′
j(0)− f ′

j(0)g
′′
j (0) + fj(0)g

′′′
j (0)

)
.

As earlier we search for six conditions to make the boundary form equal
to zero. The first condition of continuity is still applicable f1(0) = f2(0) =

12



Figure 6: Y-graph in R3 with angles α, β and γ.

f3(0) and ensures that the branches are connected at the vertex. We continue
in much the same way as in the previous section, by noting that the balance
equation means that the tangential lines to the graph of fj lie in the same
plane, from which we should get one condition. We solve this problem again
by introducing the coordinate system R3 and consider our Y-graph lying in
the xy-plane in R3, according to figure 6. Let ~aj be the tangent vector to
the curves z = fj(xj) considered in R3. Further, let φj denote the angles
between the tangential lines f ′j and the xy-plane, it can be observed that

tanφj = f ′j(0). The vector ~a3 is parallel to the x-axis, therefore has zero
second coordinate and can be chosen equal to,
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~a3 = (1, 0, tanφ3) = (1, 0, f ′3(0))

The tangential vectors ~a1 and ~a2 may then be chosen equal to,

~a1 = (− cos(π − β), sin(π − β), tanφ1) = (cosβ, sinβ, f ′1(0))

~a2 = (− cos(π − α),− sin(π − α), tanφ2) = (cosα,− sinα, f ′2(0))

We want the branches of our Y-graph to be dependent and therefore find a
matching condition through examining the determinant of the vectors ~aj ,

det




cosβ sinβ f ′1(0)
cosα − sinα f ′2(0)

1 0 f ′3(0)


 =

sinαf ′1(0) + sinβf ′2(0)− f ′3(0)(cosβ sinα+ sinβ cosα = 0.

Using the trigonometric reduction sinα cosβ + cosα sinβ = sin(α + β) we
get the following matching condition,

sinαf
′
1(0) + sinβf

′
2(0)− sin(α+ β)f

′
3(0) = 0.

Further, noting that sin(α + β) = sin(2π − γ) = − sin γ this condition can
be written as

sinαf
′
1(0) + sinβf

′
2(0) + sin γf

′
3(0) = 0

Thus, so far we have the following two matching conditions,

{
f1(0) = f2(0) = f3(0)

sinαf
′
1(0) + sinβf

′
2(0) + sin γf

′
3(0) = 0

To find the remaining matching conditions we use a rearrangement of the
conditions above




f1(0) = f2(0) = f3(0)

f
′
3(0) = −sinαf

′
1(0) + sinβf

′
2(0)

sin γ

together with the boundary form at the beginning of this section. In order
to use the stated rearrangement we require that γ is non-zero and γ 6= π so
that sin γ 6= 0. Below we write f

′
, f

′′
, f

′′′
instead of f

′
(0), f

′′
(0), f

′′′
(0) re-

spectively for all derivatives for simplicity, since it is understood that we are
investigating at the vertex. The boundary form of the operator L becomes,
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〈Lf, g〉 − 〈f, Lg〉 =

=
3∑

j=1

(
− f ′′′

j (0)gj(0) + f
′′
j (0)g

′
j(0)− f ′

j(0)g
′′
j (0) + fj(0)g

′′′
j (0)

)

= −
( 3∑

j=1

f
′′′
j

)
g(0) + f

′′
1 g

′
1 + f

′′
2 g

′
2 + f

′′
3 g

′
3

− f ′
1g

′′
1 − f

′
2g

′′
2 − f

′
3g

′′
3 + f(0)

( 3∑

j=1

g
′′′
j

)

= −
( 3∑

j=1

f
′′′
j

)
g(0) + f

′′
1 g

′
1 + f

′′
2 g

′
2 + f

′′
3

(
− sinαg

′
1 + sinβg

′
2

sin γ)

)

− f ′
1g

′′
1 − f

′
2g

′′
2 −

(
− sinαf

′
1 + sinβf

′
2

sin γ

)
g
′′
3 + f(0)

( 3∑

j=1

g
′′′
j

)

= −
( 3∑

j=1

f
′′′
j

)
g(0) +

(
f

′′
1 −

sinαf
′′
3

sin γ

)
g
′
1 +

(
f

′′
2 −

sinβf
′′
3

sin γ

)
g
′
2

− f ′
1

(
g
′′
1 −

sinαg
′′
3

sin γ

)
− f ′

2

(
g
′′
2 −

sinβg
′′
3

sin γ

)
+ f(0)

( 3∑

j=1

g
′′′
j

)
.

Looking at the last expression above we search for conditions that connect
together derivatives of the same order and make the boundary form equal to
zero. We choose the following conditions as our final matching conditions,





f
′′
1 (0)− sinαf

′′
3

sin γ
= 0

f
′′
2 (0)− sinβf

′′
3

sin γ
= 0

3∑
j=1

f
′′′
j (0) = 0

Since we have stated earlier that γ is non-zero and γ 6= π we rearrange and,
in total, have the following six matching conditions for the operator L on
the Y-graph in figure 5 and 6,
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



f1(0) = f2(0) = f3(0)

sinαf
′
1(0) + sinβf

′
2(0) + sin γf

′
3(0) = 0

sin γf
′′
1 (0)− sinαf

′′
3 = 0

sin γf
′′
2 (0)− sinβf

′′
3 = 0

3∑
j=1

f
′′′
j (0) = 0.

There is an interesting symmetry between the angles of the Y-graph and the
first derivatives, namely that the first derivatives of each branch is associated
with the angle subtending the other two branches, the angle opposite the
branch itself. We continue by considering some special cases.
Let us examine the cases when the angles α and β are equal to π.

Example 7. In the case α = π the value of sinα = 0 and we get a similar
case to Example 5, where two different sets of conditions ensure that the
boundary form is zero,





f1(0) = f2(0) = f3(0)

sinβf
′
2(0) + sin γf

′
3(0) = 0

sin γf
′′
1 (0) = 0

sin γf
′′
2 (0)− sinβf

′′
3 = 0

3∑
j=1

f
′′′
j (0) = 0,

and





f1(0) = f2(0) = f3(0)

sinβf
′
2(0) + sin γf

′
3(0) = 0

sin γf
′
1(0) = 0

sin γf
′′
2 (0)− sinβf

′′
3 = 0

3∑
j=1

f
′′′
j (0) = 0.

Example 8. In the case β = π the value of sinβ = 0 and this case is
similar to the previous example when α = π, giving the two different sets of
matching conditions,
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



f1(0) = f2(0) = f3(0)

sinαf
′
1(0) + sin γf

′
3(0) = 0

sin γf
′
2(0) = 0

sin γf
′′
1 (0)− sinαf

′′
3 = 0

3∑
j=1

f
′′′
j (0) = 0,

and





f1(0) = f2(0) = f3(0)

sinαf
′
1(0) + sin γf

′
3(0) = 0

sin γf
′′
1 (0)− sinαf

′′
3 = 0

sin γf
′′
2 (0) = 0

3∑
j=1

f
′′′
j (0) = 0.

Example 9. Further, let us examine the case when α, β, γ all are equal to
2π
3 . In this case

sinα = sinβ = sinγ = sin
2π

3
=

√
3

2
.

The matching conditions become





f1(0) = f2(0) = f3(0)√
3

2 f
′
1(0) +

√
3

2 f
′
2(0) +

√
3

2 f
′
3(0) = 0√

3
2 f

′′
1 (0)−

√
3

2 f
′′
3 = 0√

3
2 f

′′
2 (0)−

√
3

2 f
′′
3 = 0

3∑
j=1

f
′′′
j (0) = 0.

Dividing by
√

3
2 gives the following matching conditions





f1(0) = f2(0) = f3(0)

f
′
1(0) + f

′
2(0) + f

′
3(0) = 0

f
′′
1 (0) = f

′′
2 (0) = f

′′
3 (0) = 0

3∑
j=1

f
′′′
j (0).

These conditions are expected since they concur with the standard conditions
in ( 3 ) and with the results in Example 6.
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Conclusion

A final remark about the results achieved above can be made, namely that
in all three cases observed, the standard conditions are a set of linear re-
lationships between derivatives of the same degree. For the Laplace oper-
ator noting that the standard conditions are linear relationships is straight
forward. The standard conditions for the square Laplace operator in the
symmetric case can be realised to have a linear relationship since 2 cosα
is finite. Linear relationships in the case of a general angle between each
branch discussed in the fourth section can be realised since sinα, sinβ and
sin γ are all finite. The linearity of the matching conditions seems to extend
to an operator of any even order of differentiation, or perhaps to any order of
differentiation, but proving this would require further study. The symmetry
in the matching conditions in the general case would perhaps also extend to
a star graph with any finite, or perhaps infinite, number of branches, but
this would also warrant further study.
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