
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

The theory of dynamical system and control applied to

macroeconomics

av

Magnus Irie

2015 - No 1

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





The theory of dynamical system and control applied to

macroeconomics

Magnus Irie

Självständigt arbete i matematik 15 högskolepoäng, Grundnivå

Handledare: Yishao Zhou

2015





Abstract

The basics of difference equations, mathematical control theory and the the-
ory of dynamical systems is presented and applied to macroeconomics. The
theory of dynamical systems and mathematical control theory is applied to
the problem of setting the interest rate at a level that minimizes a measure
of social costs. The theory of difference equations is used to briefly discuss
the widely debated theory of capitalism as laid out by economist Thomas
Piketty.
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The economic world is a misty region. The first explorers used unaided
vision. Mathematics is the lantern by which what was before dimly visible
now looms up in firm, bold outlines. The old phantasmagoria disappear. We
see better. We also see further.

- Irving Fisher
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Introduction

For anyone who wishes to formulate a set of comprehensible and coherent
thoughts, hoping to elucidate some aspect of reality, mathematics is an in-
dispensable tool. The indispensability lies in the ability of mathematics to
express concepts in an exact and stringent fashion, minimizing ambiguity.
Many conclusions of economics have far-reaching political consequences and
thus incentives to distort facts and theory are strong for parties with vested
interests. In addition, not only outright distortion but, merely uttering ideas
about the economy in an obscure fashion is problematic. Modern economics
is a science, and as such, it strives to present hypotheses about reality that
are testable. Obscurity in the formulation of economic hypotheses reduces
the testability of these hypotheses which impairs attempts of doing science.

Nothing is more stringent or has the ability to elucidate reality quite li-
ke mathematics. Mathematics has proven to be an priceless tool for almost
all sciences, aiding and guiding the minds of countless of scientists in their
inquiry of countless phenomenon, from Albert Einstein to Milton Friedman,
from relativity theory to permanent income theory. In economics, the virtue
of mathematics is that it imposes logical discipline; on any one wishes to
unravel the mysteries of the economic world and on the public discussion of
economic concepts. Without mathematics it would be too easy to formulate
and propagate incoherent theories while at the same time concealing these
incoherences behind mazy rethorics.

The purpose of this text is to offer a comprehensive introduction to one of
the most important areas of mathematics used in modern economics - mat-
hematical control theory. Mathematical control theory is about the ability
of a planer to steer a dynamical system - a system that evolves over time -
in some desirable direction. This could be solving the consumers problem of
determining the consumption behavior that maximizes utility over a period
of time, or solving the problem facing a central bank who wishes to set the
interest rate at a level that minimizes the detrimental effects of inflation and
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unemployment.

Introducing the methods of mathematical control theory applied to mo-
dern macroeconomics is not an easy task. When applied to modern macroe-
conomics, mathematical control theory utilizes every branch of mathematics
that most master students, or even Ph.D students, in economics have en-
countered throughout their education; Single- and Multivariable Calculus,
Foundations of Real Analysis, Linear Algebra, Ordinary Differential equa-
tions, Ordinary Difference equation etc. To cover even a single one of these
topics an entire book would be insufficient, hundreds of books would be nee-
ded. Thus, in the first chapter some of these topics will be covered - albeit
to a very limited extent. In subsequent chapters mathematical control theo-
ry is introduced as a means of controlling discrete-time, time-invariant,
linear dynamical systems. After reading this thesis, I hope the reader has
learned as much about the applications of mathematical control theory to
modern macroeconomics as I did writing it. Let’s begin!
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Kapitel 1

Foundations

1.1 Banach’s fixed point theorem
In this section the Banach fixed point theorem is presented along with the
relevant definitions and lemmas necessary for proving it. The theorem will
be an indispensable tool solving a major equation in later chapters, namely
the Bellman equation.

The following definitions and theorems are standard. I first learned of
them when reading Walter Rudin’s classical textbook Principles of mat-
hematical analysis (1976) [1]

1.1.1 Definition A set X, containing elements which we call points, is
a metric space if with any two points p, q ∈ X there is associated a real
number d(p, q), called the distance from p to q, such that

(i) d(p, q) > 0 if p 6= q; (.p, p) = 0
(ii) d(p, q) = d(q, p)
(iii) d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X

A function with the above properties is called a distance function.

1.1.2 Theorem The euclidean spaces, Rn, are metric spaces.

Proof Using d(x,y) = ||x − y|| all of the conditions in definition 1.1
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are satisfied.

1.1.3 Definition A sequence is a function f defined on the set of non-
negative integers J = {n ∈ Z : n ≥ 0}. When f(n) = xn for n ∈ J it’s
customary to denote the sequence f by the symbol {xn} or, if handling mul-
tiple sequences, xi(n), i ∈ J . The values of f , that is, the elements of xn, are
called the terms of the sequence. If A is a set and if xn ∈ A for all n ∈ J ,
then {xn} is said to be a sequence in A.

1.1.4 Definition A sequence {xn} in a metric space X is said to converge
if there is a point x ∈ X with the following property: For every ε > 0 there
is an integer N such that n ≥ N implies that d(xn, x) ≤ ε. In this case, x is
said to be the limit of {xn}. We write

lim
n→∞

xn = x.

If {xn} does not converge, it is said to diverge.
The following are some interesting examples of sequences

(i) If xn = 1 + (−1
2
)n, the sequence {xn} converges to 1

(ii) The Fibonacci sequence, {Fn}, with Fn = Fn−1+Fn−2, x1 = x2 = 1,
n = 3, 4, 5, ..., diverges

(iii) With Fn as in (ii) the sequence {xn}, with xn = Fn

Fn−1
converges

and limn→∞ xn = 1+
√
5

2
.

1.1.5 Definition A sequence {xn} in a metric space X is said to be
a Cauchy sequence if for every ε > 0 there is an integer N such that
d(xn, xm) < ε if n ≥ N and m ≥ N

1.1.6 Lemma In any metric space X, every convergent sequence is a
Cauchy sequence.

Proof If limn→∞ xn = x and if ε
2
> 0, then there is an integer N such

that d(xn, x) < ε
2
for all n ≥ N . Hence

d(xn, xm) ≤ d(xn, x) + d(x, xm) < ε

when n ≥ N and m ≥ N . Thus {xn} is a Cauchy sequence.
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As an example, if xn = 1 + (−1
2
)n then {xn} is a Cauchy sequence with

limn→∞ xn = 1. This sequece is illustrated in the metric space R2 in figure 1.
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Figur 1.1: Graph of the sequence xn = 1 + (−1
2
)n

1.1.7 Definition A metric space in which every Cauchy sequence is con-
vergent is said to be complete

1.1.8 Definition Let X be a metric space, x ∈ X and f maps X into X.
Then f is said to be continuous at x if for every ε > 0 there exists a δ > 0
such that

d(f(y), f(x)) < ε

for all y ∈ X for which d(y, x)δ. If f is continuous att very point of X then
f is said to be continuous on X.

1.1.9 Definition Let X be a metric space. I if f maps X in to X and if
there is a number β < 1 such that

d(f(x), f(y) ≤ βd(x, y)

for all x, y ∈ X, then f is said to be a contraction of X into X. β is called
the modulus of the contraction.

The following theorem is of the utmost importance for the purpose of
solving one of the central equations of this thesis. The theorem is called
Banach’s fixed point theorem after the Polish mathematician Stefan Ba-
nach. Worth noting is that this is not the most general fixed point theorem
but it is sufficient for the purpose at hand.
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1.1.10 Theorem If X is a complete metric space, and if f is a contraction
of X in to X, then there exists one and only one x ∈ X such that f(x) = x

Proof Pick any x0 ∈ X, and define {xn} recursively, by setting

xn+1 = f(xn), (n=0, 1, 2,...)

Choose c < 1 so that

d(f(x), f(y)) ≤ cd(x, y)

for all x, y ∈ X. For n ≥ 1 we have

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ c d(xn, xn−1)

. Inductively it follows that

d(xn+1, xn) ≤ cnd(x1, x0), (n=0, 1, 2,...)

If n ≤ m, it follows that

d(xn, xm) ≤
m∑

i=n+1

d(xi, xi−1) ≤ (cn+cn+1+...+cm−1)d(x1, x0) ≤
cn

1− cd(x1, x0).

This in turn implies that {xn} is a Cauchy sequence. Since X is complete,
limn→∞ xn = x for some x ∈ X. The uniqueness follows from the fact
that if f(x) = x and f(y) = y then

d(f(x), f(y)) = d(x, y) ≤ cd(x, y)

which is only possible if d(x, y) = 0, that is if x = y. Moreover, since f
is a contraction and therefore f is continous we have

f(x) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x

�

The purpose of this section has been fulfilled; the proof of the Banach fixed
point theorem has been presented. Rudin’s book has been a priceless resour-
ce when putting together this material. The relevance of the theorem might
not be apparent yet, however it will be an indispensable tool for proving the
existence and uniqueness of solutions to an important set of equations in the
dynamic programming theory - the branch of mathematical control theory
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that will be the central piece of this thesis.

The next section of this chapter will be an excursion in to the field of Diffe-
rence equations in general and linear difference equations in particular.
Difference equations, like the more familiar differential equations, describe
the evolution of systems over time. The difference between difference equa-
tions and differential equations is that the former treats time as discrete
whilst the latter treats time as continuous. People in the real wold, and espe-
cially when they participate in the economy, seem to treat time as discrete,
we plan in terms of what we are going to consume today or tomorrow, how
much we are going to save of our monthly income etc. Difference equations
are suitable for modeling economic systems both because of their discrete-
time outlook and their dynamic nature.

1.2 Difference equations
Everything changes and nothing stands still.
- Heraclitus

In the reality in general and in the economy in particular, only change is
constant. One of the mathematical tools used to model systems that evolve
over time is the difference equation. If economists hope to make accurate
predictions of phenomenon in the real world, using the mathematical tools
that incorporate time is essential.

The purpose of this sections is not to give formal definitions and theorems
of general difference equations, rather it’s a quick review of how a limited set
of difference equations are presented in the literature and of some of their
main properties. Many of the concepts and the definition can be found in [2].

1.2.1 Definition Let {xt}, t=0, 1, 2,... be a sequence in R and let f be a
function defined for t=0, 1, 2,... and all values of the elements in the sequence.
An n-th order difference equation is an equation on the form

xt+n = f(xt+n−1, xt+n−2, ..., xt+1, xt, t) (1.1)
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The general solution of (1.1) is a function xt = g(t : C1, ..., Cn) that depends
on n arbitrary constants C1, ..., Cn, and satisfies (1.1). It has the property
that every solution of (1) can obtained by assigning appropriate values to
these constant.

Example: The equation Fn+1 = Fn + Fn−1 associated with the Fibonacci
sequence is a second order difference equation.

1.2.2 Definition The difference equation (1.1) is said to be linear if it can
be written on the form

xt+n = a1(t)xt+n−1 + a2(t)xt+n−2 + ...+ at+n−2(t)x2 + at+n−1(t)x1

where ai(t), i = 1, 2, ..., n are arbitrary functions of time. If in addition,
ai(t) = a for all t, where a ∈ R, the equation is said to be autonomous.

1.2.3 Definition A system of first order difference equations in the n
sequences x1(t), ..., xn(t) can be expressed as

x1(t+ 1) = f(xn(t), ..., x2t, x1(t), t)

x2(t+ 1) = f(xn(t), ..., x2t, x1(t), t)

.........................................................

x3(t+ 1) = f(xn(t), ..., x2t, x1(t), t)

1.2.3 Definition If f is linear in the n sequences x1(t), ..., xn(t) the system
is said to be linear.

Note that, because we are handling multiple sequences, the usual notation
xt is replaced by xi(t).

A dense way of expressing linear systems of difference equations is by using
a matrix representation of them. Apart from being economical from a nota-
tional point of view it’s also a natural way of interconnect the mathematics
of difference equations with the mathematics of linear algebra.

The matrix representation of a linear system is

x(t+ 1) = A(t)x(t) + b(t)
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where x(t) :=




x1(t)
.
.

xn(t)


 and

A(t) =




a11(t) . . a1n(t)
. . . .
.

an1(t) . . ann(t)


 , b(t) =




b1(t)
.
.

bn(t)


 .

Hence A is an n × n matrix, x(t) is an n × 1 vector and b(t) is an n × 1
vector.

If in addition A(t) = A, that is, if all the elements of the matrix A(t) are
constants aij ∈ R the system reduces to

x(t+ 1) = Ax(t) + b(t) (1.2)

We now prove some important results concerning systems on the form (1.2).

1.2.4 Theorem The solution of a system on the form (1.2) is

x(t) = Atx(0) +
t∑

k=1

At−kb(k − 1)

Proof Inserting t = 0, 1..., we get

x(1) = Ax(0) + b(0)

x(2) = Ax(1) + b(1) = A2x(0) + Ab(0) + b(1)

x(3) = Ax(2) + b(2) = A3x(0) + A2b(0) + Ab(1) + b(2)

...

x(t) = Atx(0) + At−1b(0) + ...+ b(t− 1) = Atx(0) +
t∑

k=1

At−kb(k − 1)

�

1.2.5 Corollary If x(t+ 1) = Ax(t) then x(t) = Atx(0) t = 0, 1...
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1.2.6 Definition A matrix, A, is said to be stable if it has the property
that At → 0 when t→∞.

1.2.7 Lemma If the matrix A has eigenvalues of moduli strictly less than
1 then A is stable.

Proof From the diagonalization of A we have

At = P diag(λt1, ..., λ
t
2)P

−1.

For |λi| < 1 we have λti → 0 as t→∞. The lemma follows.

1.2.8 Lemma If the matrix A has eigenvalues of moduli strictly less than
1 then all the solutions to system x(t + 1) = Ax(t) + b are convergent and
limt→∞ x(t) = (At−1 + At−2 + ...+ A)b

Proof Because A has eigenvalues of moduli strictly less than 1 1.2.7
tells us that At → 0 when t → ∞. From theorem 1.2.4 we know that the
solution to the system with x0 given is

x(t) = Atx(0) +
t∑

k=1

At−kb(k − 1)

thus when t→∞ x(t)→ (At−1 + At−2 + ...+ A)b
�

1.2.9 Theorem If the matrix A has eigenvalues of moduli strictly less than
1 and if b(t) = b then all the solutions to system x(t + 1) = Ax(t) + b are
convergent and limt→∞ x(t) = (In −A)−1b where In is the identity matrix of
dimension n, t = 0, 1...

Proof According to Lemma 1.2.4 the solution to the system for a given
x(0) is

x(t) = Atx(0) + (At−1 + At−2...+ A+ I)b

. We have that
(At−1 + At−2 + ...+ A)(I − A) =

= (At−1 + At−2...+ A)− (At−1 + At−2...+ A)A = I − At.
But

(At−1+At−2+...+A)(I−A) = I−At ⇔ (At−1+At−2+...+A) = (I−At)(I−A)−1.
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(The existence of (I −A)−1 is guaranteed because since the eigenvalues of A
have moduli strictly less than one |I − A| 6= 0). From lemma 1.2.7 we have
that At → 0 when t→∞, so

(At−1 + At−2 + ...+ A)→ (I − A)−1 as t→∞

In conslusion,

Atx(0) + (At−1 + At−2...+ A+ I)b→ (I − A)−1b as t→∞

The limit (I − A)−1b is called the steady-state of the difference equation.
�

The basics of difference equations have been put in place. The rest of
this section is devoted to applying this knowledge to one of the latest and
most interesting controversies of modern macroeconomics - the famous capi-
tal growth theory of rockstar-economist Thomas Piketty and the problems
with it as laid out by economists Per Krusell and Anthony Smith. The basis
for this analysis can be found in [7].

1.3 1.3 Difference equations in action. Piketty
vs Krusell and Smith.

Some notation Since this part will be a comparison of the Pikitty growth
model and the standard textbook growth model (in the style of Solow, Cass
and Koopman) the reader must be made familiar with the standard notations
of theories of economic growth. Much of the controversy revolves around the
use of either net- or gross variables so the distinction between them is crucial.

Both models have a common accounting framework that can be represented
by the three following equations:

ct + it = yt (1.3)

kt+1 = (1− δ)kt + it (1.4)

yt = F (kt, ztl) (1.5)
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where ct denotes consumption, it denotes investments, kt denotes the ca-
pital stock, δ denotes the depreciation rate of capital and yt denotes gross
income/output/production. The function F with arguments kt and xtl is cal-
led the production function, which is a function of the capital stock kt and
the amount of labour l in the economy. zt is a process that describes how
technological progress affects the productivity of labour. All variables are
gross variables at time t. Moreover, net counterparts of the above gross va-
riables will be marked by a tilde, so for example net income will be denoted ỹt.

In addition to the above mentioned variables the models also use some im-
portant parameters, δ as above mentioned is the depreciation rate of capital
and g, the growth rate of the economy along a balanced growth path.

The two models arrive at very different conclusions when it comes to what
happens in the long run to the capital-income ratio k

y
. The Long-run-value

of a variable is the name economists have of what mathematicians call the
steady-state value. Employing the methods of finding the solutions to diffe-
rence equations and their steady state values we will compare the theoretical
implications of the two models and briefly discuss how reasonable the models
seem in light of their implications.

The following definition of a special kind of production function will also be
relevant.

Definition 1.2.5 For a function F in Rn is said to fulfill the Inada condi-
tions off it has the following properties.

(i) F (x) = 0 if x is the zero-vector in Rn

(ii) F is continously differentiable.
(iii) The function is strictly increasing. ∂F

∂xi
> 0 i = 1, 2, ..., n where xi

are the elements of the n-vector x
(iv) The function is concave in x
(v) limx→0

∂F
∂xi

=∞, i = 1, 2, ..., n

(vi) limx→∞
∂F
∂xi

= 0 i = 1, 2, ..., n

1.3.1 The textbook model of economic growth

In this model, labeled the textbook-model by Krusell and Smith, the following
assumptions are made
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(a.) The production function F (k, ·), satisfies the Inada conditions. In
addition, it’s assumed to be homogenous of degree 1, that is

αtF (kt, ztl) = F (αtkt, αtztl)

(b.) Investment, it, is a constant fraction s > 0 of output. That is,
it = syt

From (1.5) and (b) and we get it = sF (kt, ztl), substituting this into (1.4)
along with it = syt with we get

kt+1 = (1− δ)kt + sF (kt, ztl). (1.6)

Suppose the labour augmenting technological growth evolves according to
zt = (1 + g)t where g > 0 is the rate of technological growth. After dividing
both sides of (6) by zt we get

kt+1

zt
= (1− δ)kt

zt
+ s

F (kt, ztl)

zt
.

Defining x̂t = xt
zt

for all t we arrive at

(1 + g)k̂t+1 = (1− δ)k̂t + sF (k̂t, l⇔

k̂t+1 =
1− δ
1 + g

k̂t +
s

1 + g
F (k̂t, l). (1.7)

Does this equation have a steady state? And in that case, what is the steady
state? We know that g > 0, δ > 0 so | 1−δ

1+g
| < 1 so from theorem 1.2.4 it is

at least possible that there is a steady state. Now, in a steady state we have
kt+1 = kt so let’s examine if the the function

g(k̂t) :=
1− δ
1 + g

k̂t +
s

1 + g
F (k̂t, l) = k̂t+1

has a fixed point. Since F is concave by assumption, so is g. Since limk̂→0 g
′(k̂) =

∞ and limk̂→∞ g
′(k̂) = 1−δ

1+g
< 1 this guarantees that g will be steep enough

at the origin and flat enough for larger k so as to cross the 45 deg line where
k̂t+1 = kt. So there exists a fixed point, which we’ll call k̂∗. Is it stable? To

17



determine this we look at ∆k̂ = k̂t+1− k̂t by subtracting both sides of (7) by
k̂t. We get

∆k̂ = k̂t+1 − k̂t =
1− δ
1 + g

k̂t +
s

1 + g
F (k̂t, l)− kt =

s

1 + g
F (k̂t, l)−

g + δ

1 + g
k̂t

and thus ∆k̂ = 0 gives

0 =
s

1 + g
F (k̂t, l)−

g + δ

1 + g
k̂t.

For k̂t = k̂∗ we must have

s

1 + g
F (k̂t, l) =

g + δ

1 + g
k̂t

Since the slope of F is decreasing and the slope of g+δ
1+g

k̂t is constant we must
have that for k̂t > k̂∗ ⇒ s

1+g
F (k̂t, l) <

g+δ
1+g

k̂t, which implies ∆k̂ < 0 so k
decreases. Conversely k̂∗ < k̂t implies ∆k̂ > 0 and thus k̂t converges to the
steady state k̂∗. What is the steady state value k̂∗? ∆k̂ = 0 gives

s

1 + g
F (k̂t, l) =

g + δ

1 + g
k̂t ⇔ k̂t =

s

g + δ
F (k̂t, l)

Remembering that the entity of interest if k̂t
ŷt

and using (5) we get

k̂t
ŷt

=
s

g + δ

1.3.2 Piketty’s Second law of Capitalism k
y = s

g

Piketty’s model uses net variables instead of the textbook gross variables.
The difference might seem subtle at first but will prove to be crucial as to
the predictions of the model. The main assumptions behind this model are

(a.) The production function F̃ (k, ·) = F (k, ·) − δk, is positive and
increasing in k and satisfies an Inada condition; namely (vi)

F̃ ′k(k, ·)→ 0 when k →∞
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. it’s also assumed to be homogenous of degree 1, that is

αtF (kt, ztl) = F (αtkt, αtztl)

(b.) Net investment, defined as ĩt = it− δkt, is a constant fraction s̃ > 0
of net output. That is, it − δkt = s̃(yt − δkt)

The main differences are of course the translation in to net variables and
the relaxed assumptions on the nature of the production function F . These
assumption, along with (1.3), (1.4), and (1.5) yield the following. Substituting
the definition of net investments in to (1.4) and using ỹt = F̃ (k, ztl) we get

kt+1 = (1− δ)kt + it = kt + ĩt = kt + s̃F̃ (kt, ztl)

⇔
kt+1 = kt + s̃F̃ (kt, ztl) (1.8)

Some very interesting observations can be made at this stage, observations
that give us a hint of what predictions we can expect of this model. Rear-
ranging (1.8) we see that

∆k = kt+1 − kt = s̃F̃ (kt, ztl).

Since we assumed s̃ > 0 and that the production function F̃ (kt, ztl) is positive
and increasing in k, this implies that ∆k > 0 for all t. In other words, the
capital stock grows in every time period, no matter if the economy at large
grows, shrinks or what not, which is very counter-intuitive. We proceed, as
we did with the textbook model, to see what happens to the capital per
efficiency unit as time passes. Dividing by zt, we get

(1 + g)k̂t+1 = k̂t + s̃F̃ (k̂t, l).

Dividing by 1 + g gives the non-linear difference equation

k̂t+1 =
1

1 + g
k̂t +

s̃

1 + g
F̃ (k̂t, l). (1.9)

Does this equation have a steady state? By a similar argument as before
the concavity of F̃ (implied by (a)) implies the concavity of h(k̂t := 1

1+g
k̂t +

s̃
1+g

F̃ (k̂t, l). The limiting behavior of h′ in turn implies that there is a fixed
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point, call it k̂∗. Is the fixed point stable? Again, we examine ∆k̂t = k̂t+1− k̂t.
Subtracting both sides of (1.9) by k̂t we obtain

∆k̂ = k̂t+1 − k̂t =
1

1 + g
k̂t +

s̃

1 + g
F̃ (k̂t, l)− k̂t =

s̃

1 + g
F̃ (k̂t, l)−

g

1 + g
k̂t.

In the fixed point we must have s̃
1+g

F̃ (k̂t, l) = g
1+g

k̂t. Again, by (a) we have
that the slope of F̃ is decreasing as k →∞ and the slope of g

1+g
k̂t. Moreover

we have that the slope of F̃ as k̂ → 0 is infinite. Thus for k∗ > k we have
g

1+g
k̂t >

s̃
1+g

F̃ (k̂t, l) which implies ∆k̂ < 0. Conversely for k̂ < k̂∗ we have
∆k̂ > 0 and thus k̂ converges to the fixed point k̂∗. What is the steady state
value of k̂? Using ∆k̂ = 0 we obtain s̃

1+g
F̃ (k̂t, l) = g

1+g
k̂t ⇔

k̂t =
s̃

g
F̃ (k̂t, l)

and thus the capital-income ratio is

k̂t
˜̂yt

=
s̃

g

1.4 Comparing the models
So far we haven’t seen why reason for why any of the two models would be
better or worse than the other. Part of the reason for why the Piketty-model
is less reasonable is what it implies for the savings behavior. What we save is
essentially what we produce less what we consume. So let’s look at the steady
state consumption level. Remember that consumption ct = (1 − s̃)F̃ (kt, ztl)
So we have

ct
yt

=
F (kt, ztl)− it
F (kt, ztl)

=
(1− s̃)F̃ (kt, ztl)

F (kt, ztl)

From the steady state, k̂ˆ̃y = s̃
g
, we get

k̂g = s̃ˆ̃y ⇔ k̂g = s̃(F̂ (k, l)− δk̂)⇔

F (k̂, l) =
g + s̃δ

s̃
k̂ ⇔ F̂ (k̂, l)− δk̂

F (k̂, l)
=

g

g + s̃δ

With F̃
F

= g
g+s̃δ

we get
ct
yt

= (1− s̃) g

g + s̃δ
(1.10)
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The blow to Piketty’s second law of capitalism is the following; look at (1.10)
as g → 0 (as it will, according to Piketty’s predictions), what will happen to
the share of output going to consumption? According to (1.10) it will go to 0!
Hence, postulating that net saving s̃ will be constant as growth slows down,
as Piketty does, implies the share of output that is devoted to consumption
shrinks to 0.

With the textbook model, everything is different. According to textbook
model we get

ct
yt

=
F (kt, ztl)− it
F (kt, ztl)

=
F (kt, ztl)− sF (kt, ztl)

F (kt, ztl)
= 1− s

Hence, according to the textbook model, the share of output going to con-
sumption is constant and equal to 1−s. This seems intuitively more accurate
and it fits better with the observed data on the matter [7].
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Kapitel 2

The Bellman Equation

2.1 Problem formulation
In economics, the core of many models is different entities trying to opti-
mize their behavior, that is, to maximize or minimize some objective, sub-
ject to some constraints. A consumer maximizing utility subject to a budget
constraint, a firm minimizing costs for a given production volume or a cen-
tral bank minimizing the social cost of the detrimental effects of inflation
and unemployment. The branches of mathematical optimization and opti-
mal control theory are, naturally, the right tools to use when trying to model
optimizing behavior. The purpose of this chapter is to present some of the
more fundamental conclusions and theorems of discrete time dynamic
programming, a branch of optimal control theory.

To do this, the concept of a discrete-time system with output must be
introduced. Even though the term system has been used frequently in this
thesis so far, no formal definition has been made. To avoid speaking about
undefined concepts we now define a system. This definition of a system is
called the internal definition. The definitions are from [10] and [12] with
some notational changes to adapt them to the framework of this paper.

2.1.1 Definition A system or machine Σ = (T ,X ,U , φ) consists of:

• A time set T

• A nonempty set X called the state space of Σ

• A nonempty set U called the control-value or input-value space Σ
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• A map φ : Dφ → X called the transition map of Σ which is defined
on a subset Dφ of

{(τ, σ, x, ω)|σ, τ ∈ T , σ ≤ τ, x ∈ X , ω ∈ U [σ,τ)}

Such that the following properties hold:

• Nontriviality For each state x ∈ X , there is at least one pair σ < τ
in T and some ω ∈ U [σ,τ) such that ω is admissible for x, that is, so
that (τ, σ, x, ω) ∈ Dφ.

• Restriction If ω ∈ U [σ,µ) is admissible for x, then for each τ ∈ [σ, µ)
the restriction w1 := ω|[σ,τ) of ω to the subinterval [σ, τ) is also admissib-
le for x and the restriction w2 := ω|[τ,µ) is admissible for φ(τ, ω, x, ω1).

• Semigroup if σ, τ, µ are three elements of T so that σ < τ < µ, if
ω1 ∈ U [σ,τ) and ω2 ∈ U [τ,µ) and if x is a state so that

φ(τ, σ, x, ω1) = x1 and φ(µ, τ, x1, ω2) = x2,

then ω = ω1ω2 is also admitssible for x and φ(µ, σ, x, ω) = x2.

• Identity For each σ ∈ T and each x ∈ X , the empty sequence
◦ ∈ U [σ,σ)

2.1.2 Definition A system with outputs, (T ,X ,U ,Y , h, φ). is given by
a system Σ together with

• A set Y called the measurement map or output-values space

• A map h : T × X → Y called the measurement map.

2.1.3 Definition A discrete-time system with (or without) outputs is
one for which T = Z.

The above definitions are quite abstract and some examples are necessary to
de-mystify the definition of a system. In plain english one could summarize
the above definitions as follows. A system is a description of how some state
of affairs (elements of the state space in the above definition) evolves over
time (the elements in the time set). The change of the state of affairs over
time is governed by some ”rule” (the transition map). As the state off affairs
evolves over time, the system generates some, in principle, partly observable
changes - outputs. The inputs, or controls, are some external forces opera-
ting on the system that changes the evolution of the state of affairs. How the

24



inputs, or controls, affect the system is also described in the transition map.

Sometimes the ”rule” that governs the system is not known, that is, the tran-
sition map is at least partly unknown but the outputs of the system on the
other hand are observed. In that case, an external description of the system
is more intuitive. One can picture the system as a ”blackbox” that accepts
inputs and generates outputs. What happens in the ”blackbox” might be par-
tially obscured and therefore the observer of the system must examine the
systems ”input/output-behaviour”, that is, how different outputs change out-
puts. The following image illustrates the ”blackbox”-description of a system.

Now over to discussing the types of systems that will be encountered in
the rest of this thesis, namely discrete-time systems, defined in 2.1.3. For
instance, let xt ∈ Rn be a vector of state-variables, ut ∈ Rn be a vector of
control variables (or input variables), f = f(t, xt, ut) be a function of time t,
the state at time t, xt and the control ut that describes the evolution of the
system. Moreover, let yt = r(t, ut, xt) be outputs, described by a function r.
Then the discrete-time system with outputs at hand is

xt+1 = f(t, xt, ut) (2.1)

yt = r(t, xt, ut)

With a system like this in place, the formulation of the optimal control pro-
blems (OCP) that are of interest in this thesis, namely the dynamic pro-
gramming problem (DPP), is straight forward. We seek to solve

max{
T∑

t=0

r(t, xt, ut)} (2.2)

subject to
xt+1 = f(t, xt, ut).

Where T is the number of time periods we wish to consider.

As an example, consider the following discrete time system with outputs.

xt+1 = Axαt − ut
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yt =
√
ut

In this case
f(t, xt, ut) = Axαt − ut, 0 < α < 1, A > 0

and yt = r(t, xt, ut) =
√
ut. If we let xt denote the amount of capital that

a individual holds at time t, ut denote the consumption of the individual at
time t and let Axαt be the amount of wealth that the individual can produce
at time t with her capital, the above is a simple model of the individual’s
capital over time.

The individual strives to maximize utility over a time period, from time t = 0
to some time t = T in the future. The individual faces the following OCP

max
T∑

t=0

√
ut subject to xt+1 = Axαt − ut (2.3)

This thesis is all about solving problems similar to the above.

2.2 Dynamic programming equation and the
Bellman’s principle

One of the most important mathematical concept of this thesis is the Bell-
man equation also called the Dynamic programming equation. This
equation, which is the result of the Bellman’s optimality principle, simp-
lifies the problem (2.2) drastically. The optimality principle reads as follows.

Bellmans principle of optimality: An optimal policy has the property
that whatever the initial state and initial decision are, the remaining deci-
sions must constitute an optimal policy with regard to the state resulting
from the first decision. The principle is summed up in the following theorem.

2.2.1 Definition For each s = 0, 1..., T −1, T , let Vs(x) denote the optimal
value function

V (xs) = max
us,...,uT

T∑

t=0

r(t, xt, ut)

for the optimal control problem

max
T∑

t=0

r(t, xt, ut) subject to xt+1 = f(t, xt, ut), ut ∈ U

26



with x0 given.

2.2.2 Theorem The the sequence of value functions satisfies the equation

V (xs) = max
u∈U

[r(s, xs, us) + V (xs+1)] (2.4)

.
V (xT ) = max

u∈U
r(T, xT , uT ).

Proof : Suppose that xs is the state at time t = s. The optimal control
at this instant in time, u∗s, must satisfy the equation

max
us∈U

[r(s, xs, us) + V (xt+1)].

To see why we note that at time s the objective function
T∑

t=0

r(t, xt, ut)

can be written as

r(0, x0, u0) + r(1, x1, u1) + ...+ r(s, xs, us) +
T∑

t=s+1

r(t, xt, ut).

Since we are at time t = s all the prior controls have already been executed
and the cost up to time t = s, which we denote by S

S = r(0, x0, u0) + r(1, x1, u1) + ...+ r(s− 1, xs−1, us−1)

is a sunk cost (that is, a cost that has has already been paid and does not enter
in to the consideration of future control-choices). To maximize the objective
function from t = s up to the final time t = T then becomes the problem of
maximizing

S + r(s, xs, us) +
T∑

t=s+1

r(t, xt, ut).

But finding us that solves

max
u∈U

[S + f(s, xs, us) +
T∑

t=s+1

r(t, xt, ut)]

is the same as finding the us that solves (17), by the definition of V (xs+1) :

V (xt+1) = max
{u}Ts+1

[
T∑

t=s+1

r(t, xt, ut)].
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Because s arbitrary this equation holds for all time periods 0 ≤ t < T which
proves the theorem. �

Suppose that, as often is the case in economic applications, we want to solve
the above OCP with two special modifications:

• The time horizon extends beyond all finite limits and in to infinity

• The instantaneous value function has the form r(t, xt, ut) = βtr(xt, ut)
with 0 < β < 1

This type of problem arises when we, for instance, consider the individual
who wants to maximize utility over an infinite time horizon where future
consumption is less valuable (measured in utility) than present consumption.
The natural name for this problem is of course infinite horizon discounted
dynamic programming problem. Mathematically it can be presented as

max
∞∑

t=0

βtr(xt, ut) subject to xt+1 = f(xt, ut). (2.5)

Note that neither r nor f are explicit functions of time, because of this
the problem is often referred to as an autonomous problem. The Bellman
equation (or dynamic programing equation) for this problem is instead.

V (xs) = max[r(xs, us) + βV (xs+1)][2], [3]. (2.6)

Reasoning heuristically we arrive at something very similar to the finite ho-
rizon undiscounted problem. Since the problem is autonomous, the starting
time is irrelevant in the sense that all we care about it ”how much” time
has passed since the starting time rather than ”what was the starting time”.
Compare it to a 100m runner; one doesn’t care if the 100m run started at
3 o’clock or 5 o’clock, what is interesting is the time that has passed since
the run started. With this in mind, we can, with no loss of generality assume
that we start at time t = 0. At this time the optimal value function must,
according to Bellman’s principle, be such that the control at time t = 0, u∗0
solves

max
u0∈U

[β0r(x0, u0) + βV (x1)].

This holds for all instants of time and thus the Bellman equation (16) holds.
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So what do we need the Bellman equation for? It’s seems like it’s just a way
of reformulation one hard problem in to another hard problem. Where was
the gain from finding the Bellman equation? The answer is the following:
Suppose that we knew the value function. Inserting it in to the Bellman
equation we can solve for the sequence of optimal controls by the usual ”fist
order-condition”-method. Some methods for finding the value function are
listed bellow.

2.3 Computing the value function
Two types of computational methods for solving the dynamic programming
equation will be examined.

2.3.1 Guessing value function form

This is an ”undetermined coefficients”-approach where the form of the solu-
tion of V (x) is guessed and then verified. This method yields a solution that
is not necessarily unique and information on the uniqueness is not always
obtainable [3].

2.3.2 Value function iteration

By constructing a sequence of value functions and associated control func-
tions starting from V0 = 0 the value function is obtained as the limit of the
(conditionally) convergent sequence

Vt+1 = max
ut∈U
{r(xt, ut) + βVt(xt+1)

where xt+1 = f(xt, ut), t = 1, 2, ... is the state transition law. [3]

The second method, value function iteration, works, with guaranteed uni-
queness, under reasonable conditions on r and g. To prove this we need the
Banach fixed point theorem, derived in chapter 1, and a theorem due to Ame-
rican mathematician David Blackwell [6]. Blackwell’s theorem consists of a
number of conditions that, if fulfilled by a mapping, sufficiently proves that
the mapping in question is a contraction. We know, thru Banach’s theorem,
that every contraction on a complete metric has a unique fixed point, and
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thus to prove that the Bellman equation has a unique solution V (x) we need
only need to prove that the map T , where TV = max[r(x, u)+βV (f(x, u)], is
a contraction mapping. Note that the fixed point is the v such that TV = V .

We begin by stating Blackwells conditions. The proof is from [3]

2.3.1 Theorem Let T be an operator on a metric space of functions,
X, with the metric d(x, y) = sup0≤t≤T |x(t) − y(t)|. If the operator has the
following two properties

• Monotonicity: For any x, y ∈ X, x ≥ y implies T (x) ≥ T (y).

• Discounting: Let c denote a function that is constant at the real values
c for all points in the domain of definition of the function in X. For
any positive real c and every x ∈ X, T (x + c) ≤ T (x) + βc for some
0 ≤ β < 1.

Then T is a contraction mapping with modulus β.

Proof For all x, y ∈ X, x ≤ y+ d(x, y). Applying the two properties of
monotonicity and discounting, this gives

T (x) ≤ T (y + d(x, y) ≤ T (y) + βd(x, y).

Exchanging the roles of x and y and using the samel logic implies

T (y) ≤ T (x) + βd(x, y).

Combining these two inequalities gives |T (x)− T (y)| ≤ βd(x, y) or

d(T (x), T (y) ≤ βd(x, y).

�

2.3.2 Theorem Let r be a real valued, continuous, concave, and bounded
function. Let the set S = {x′, x, u : x′ ≤ f(x, u), u ∈ Rn} be convex and
compact.
We definite the operator

TV = max
u∈Rn

[r(x, u) + βV (f(x, u)], x′ ≤ f(x, u), x ∈ X
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Let Y be the (complete) metric space of continuous bounded functions that
maps X into the real line. The operator T maps a continuous bounded func-
tion V (x) into a continuous bounded function TV (proof omitted). Then the
operator T is a contraction.

Proof We verify Blackwell’s conditions. Suppose V (x) ≥ W (x) for all
x ∈ X, then:

TV = max
u∈Rn
{r(x, u)+βV (x′)} ≥ max

u∈Rn
{r(x, u)+βW (x′)} = TW, x′ ≤ f(x, u).

Thus T is monotone. Next, notice that for any positive constant c,

T (V+c) = max
u∈Rn
{r(x, u)+β[V (x′)+c]} = max

u∈Rn
{r(x, u)+βV (x′)+βc} = TV+βc

x′ ≤ f(x, u).

Thus T discounts. T satisfies both Blackwell’s conditions and is therefore
a contraction on a complete metric space. It follows from Banach’s theorem
that the Bellman equation has a unique fixed point V such that TV = V .
Moreover this unique fixed point is the limit of the sequence {T n(V0)} for
some initial value (V0) when n→∞

The value function iteration method is in essence a numerical method for
finding V . This entails that it’s hard to find closed form solutions by hand.
There are of course exceptions that are pretty easy to solve by hand. Bellow
follows one of those examples due to Brock and Mirman (1972) [14].

2.4 Solved problem: (Brock and Mirman, 1972)
Let u(c) = ln(c) be the utility function and f(k) = Akα, 0 < α < 1 be the
production function. Further let the depreciation rate of capital be δ = 1
We wish to solve the OCP

max
∑

βt ln(ct)

subject to the equation describing the evolution of capital as

kt+1 = f(kt)− ct
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with k0 given.

The first method for solving this problem is given by the method of va-
lue function iteration. Using this method we begin by starting from V0 = 0
and continuing until Vj has converged where

Vj+1 = max
c
{ln(c) + βVj(k

′)}.

k′ denotes the value of k in the next period, regardless of what the current
period is.

So from V0(k) = 0 we solve the one period problem:

max
c
{ln(c) + βV0(k)} = max

c
{ln(c)}

Subject to k′ = Akα − c. This is obviously solved by choosing c = Akα ⇒
k′ = 0. This then gives us

V1(k) = ln (Akα) = lnA+ α ln k

We continue by solving for V2(k), given by

V2(k) = max
c
{ln(c) + β(lnA+ α ln k′)}

Differentiating with respect to c we get the first order condition

1

c
− βα

Akα + c
= 0

⇔ c =
Akα

1 + βα

⇒ k′ =
βα

1 + βα
Akα

So
V2(k) = ln

A

1 + αβ
+ β lnA+ αβ ln

αβA

1 + αβ

Continuing like this, using the knowledge of geometric series, we find that c,
k and V converges to

c = (1− βα)Akα

k′ = βαAkα

V (k) =
1

(1− β)
{lnA(1− αβ) +

βα

1− αβ ln(Aβα)}+
α

1− βα ln k
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We now turn to a special kind of dynamic programming problem. One where
the the output function r(xt, ut) is quadratic in x and u and the transition
law function f(xt, ut) is linear. This problem is called the linear quadratic
optimal control-problem or, LQ control-problem for short.
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Kapitel 3

Optimal Linear Quadratic Control

3.1 Deterministic LQ-control problem
The above mentioned methods for solving the Bellman equation might be
suitable for problems not involving to many inputs. However, when the mo-
dels applied grow larger so does the computational power needed to solve the
dynamic programming problems encountered.

Luckily, many problems in macroeconomics are of - or can at least be ma-
de into - a certain sort of dynamic programming problem for which there
are simple but powerful methods available to solve. One of these simple but
powerful methods is linear quadratic dynamic programing, where the return
function is quadratic and the transition function is linear. Problems that
can be solved using linear quadratic dynamic programming are called linear
quadratic optimal regulator problems, or LQ-problems for short. [3]

A special case of the deterministic version of the LQ problem can be described
mathematically as follows; find a sequence {ut}∞t=0 that solves the OCP

max
{ut}∞t=0

[−
∞∑

t=0

{xTt Qxt + uTt Rut}] (3.1)

subject to
xt+1 = Axt +But, x0 given

Where Q is a positive semidefinite symmetric matrix and R is a positive
definite symmetric matrix. Moreover the system transition law is presented
in the state-space form, with the state-variable vector of size n×1, the state-
transition matrix A of size n× n, the control vector ut of size k × 1 and the
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scaling matrix B of size n× k. The Bellman equation for this problem is

V (x) = max
u
{−xTt Qxt − uTt Rut + V (x′)} (3.2)

where x′ = Ax + Bu. Guessing the form of the value function to be V (x) =
−xTPx and using the state space equation

x′ = Ax+Bu

we get

−xTPx = max
u
{−xTt Qxt − uTt Rut + (Ax+Bu)TP (Ax+Bu)} (3.3)

The first order necessary condition for (3.3) is

(R +BTPB)u = −BTPAx

⇔ u = −(R +BTPB)−1BTPAx

. If we define
F = −(R +BTPB)−1BTPA

we get u = Fx as the state feedback control. Substituting this u in to (3.3)
we get the algebraic matrix Riccati equation (ARE)

P = Q+ ATPA− ATPB(R +BTPB)−1BTPA.

[3]

By solving this equation for P we obtain the optimal state feedback control,
hence, solving this equation is the very core of the LQ-problem. The equation
is very difficult to solve by hand, luckily, there are computers that, in many
cases, can solve it for us.

3.1.1 Definition The pair of matrices (A,B) is said to be stabilizable if
there exists a matrix F for which (A−BF ) is a stable matrix.

3.1.2 Theorem If (A,B) is stabilizable and R is positive definite an sym-
metric, Q is positive semidefinite and symmetric, then under the optimal rule
(A− BF ) is a stable matrix and the following holds. Consider the sequence
of matrices {Pj}∞0 given by the formula

Pj+1 = Q+ A
′
PjA− A

′
PjB(R +B

′
PjB)−1B

′
PjA, P0 = 0.
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The solution, P , to the ARE

P = Q+ A
′
PA− A′PB(R +B

′
PB)−1B

′
PA

is given by P = limj→∞ Pj

Proving this is beyond the scope of this paper, however a proof can be found
in theorem 5.1, chapter 3. in [15]

There is a more general formulation of the LQ-regulator problem where the
loss function also accepts cross-terms between state-variables and control
variables. This, generalized problem, can be expressed as finding {ut}∞t = 0}
that solves the OCP

max
{ut}∞t=0

[−
∞∑

t=0

{xTt Qxt + uTt Rut + 2xTt Sut}] (3.4)

subject to
xt+1 = Axt +But, x0 given

where the matrix S is of dimensions 1× k. To derive the corresponding Ric-
cati equation to this problem an algebraic approach will be used. To proceed,
we will need the following two lemma

3.1.4 Lemma Let matrix P be symmetric. For every control ut that forces
the system xt+1 = Axt +But → 0 as t→∞ we have that

∞∑

t=0

xTt (ATPA+ P )xt + 2uTt B
TPAxt + uTt B

TPBut = −xT0 Px0 (3.5)

Proof We will use the equality

xTt+1Pxt+1 = xTt (ATPA− P )xt + 2uTt B
TPAxt + uTt B

TPBut

which follows from simple insertion of xt+1 = Axt +But. We have that

N−1∑

t=0

xTt (ATPA−P )xt+2uTt B
TPAxt+u

T
t B

TPBut =
N−1∑

t=0

xTt+1Pxt+1−xTt Pxt =

= xT1 Px1 − xT0 Pxt + xT2 Px2 − xT1 Px1 + ...+ xTNPxN − xTN−1PxN−1
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⇔ −xT0 Px0 + xTNPxN =
N−1∑

t=0

xTt (ATPA− P )xt + 2uTt B
TPAxt + uTt B

TPBut

If we let N →∞ then t→∞ and so xt → 0 from which (3.5) follows �

3.1.5 Theorem If symmetric matrix P satisfies the discrete-time algebraic
Riccati equation (DARE)

P = Q+ ATPA− (ATPB + S)(R +BTPB)−1(ST +BTPA)

then ut = −(R +BTPB)−1(ST +BTPA) solves the problem (3.4).

Proof We have

xT0 Px0+
∞∑

t=0

xTt (−Q+ATPA−(ATPB+S)(R+BTPB)−1(ST +BTPA))xt+

2uTt B
TPAxt + uTt B

TPBut = 0

according to lemma 3.1.3. This in turn implies that
∞∑

t=0

{xTt Qxt + uTt Rut + 2xTt Sut} =
∞∑

t=0

{xTt Qxt + uTt Rut + 2xTt Sut}+

xT0 Px0+
∞∑

t=0

xTt (−Q+ATPA−(ATPB+S)(R+BTPB)−1(ST +BTPA))xt+

2uTt B
TPAxt + uTt B

TPBut

After canceling out the xTt Qxt-term and rearangeing we get
∞∑

t=0

{xTt Qxt + uTt Rut + 2xTt Sut} = xT0 Px0+

+
∞∑

t=0

{xTt ((ATPB+S)(R+BTPB)−1(BTPA+ST ))xt +uTt (R+BTPB)ut+

+2uTt (ST +BTPA)xt}
Now we use the ”completing the square”-method; (x+y)TA(x+y) = xTAx+
2xTAy + yTAy and obtain
∞∑

t=0

{xTt Qxt+uTt Rut+2xTt Sut} = xT0 Px0+
∞∑

t=0

(ut+(R+BTPB)−1(BTPA+ST )xt)
T ·
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(R +BTPB)(ut + (R +BTPB)−1(BTPA+ ST )xt)

It’s obvious that this attains it’s minimum when

ut + (R +BTPB)−1(BTPA+ ST )xt = 0⇔
ut = −(R +BTPB)−1(BTPA+ ST )xt

�

We immediately conclude that (3.1) is the special case of the above where
S = 0

3.2 3.2 Stochastic LQ optimal control problem
Introducing an element of probability is, as we shall see below, no problem
for the LQ-framework. The reason for the smooth transition from solving
non-stochastic LQ-problems to solving their stochastic counterparts is at the
center of the discussion of this section. This smooth transition is due to the
very useful principle of Certainty equivalence which says that the optimal
feedback law derived in the non-stochastic LQ-problem is unaffected by the
introduction of certain stochastic elements. This means that to solve for the
optimal feedback law in the stochastic LQ-problem we only have to solve
the non-stochastic problem. Noteworthy is the fact that this easy transition
from solving the deterministic LQ-problem to solving the stochastic version
is only possible under assumptions that sometimes limit the scope of the
solution method, nevertheless the certainty equivalence principle has proven
to be very useful. The following proof is from Ljungqvist and Sargent (2004)
[3]

3.2.1 Theorem Consider the OCP of maximizing

−E0

∞∑

t=0

βt{xTt Qxt + uTt Rut}, 0 < β < 1

subject to the stochastic dynamical system transition law

xt+1 = Axt +But + εt+1, x0 given

.
Given that the matrices R,Q,A,B fulfill the same assumptions as in the non-
stochastic LQ-problem, and that the n×1 vector of stochastic shock variables
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εt+1 are i.i normal distributed with mean zero and the n× n identity matrix
as covariance matrix, EεT ε, the optimal feedback law for this problem will
be the same as in the non-stochastic version, namely

F = −(R +BTPB)−1BTPA

ut = Fxt

Proof The Bellman equation of the above problem is

V (xt) = −max
ut

[xTt Qxt + uTt Rut + βEV (Axt +But + εt)]

We continue by using the method of guessing the form of the value function
to be

V (xt) = xTt Pxt + d.

Substituting this guess in to the Bellman equation and get

V (xt) = xTt Pxt+d = −max
ut
{xTt Qxt+uTt Rut+βE[(Axt+But+ε)

TP (Axt+But+εt)]+βd}

Proceeding we get

V (xt) = −max
ut

[
xTt Qxt+u

T
t Rut+βE




xTATPAx+
+

xTATPBu+ xTATPε+
+

uTBTPAx+ uTBTPBu+ uTBTPε+
+

+εTPAx+ εTPBu+ εTPε




+βd

]

The assumption that E[εt+1] = 0 reduces this equation to

V (xt) = x′tPxt+d−max
ut

[
x′tQxt+u

′
tRut+βE

(
xTATPAx+ xTATPBu+
uTBTPAx+ uTBTPBu

)
+βd

]

The first order condition of this is of course

2Ru+ 2βB′PAx+ 2βB′PBu = 0⇔

u = −(R +B
′
PB)−1B

′
PAx.
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So if the optimal feedback law is not changed, then what is the corresponding
Riccati equation and the matrix d? By substituting the optimal feedback law
in to the expression for the value function we arrive at the two expressions

d =
β

1− β tr(PE[εT ε])

P = Q+ βA′PA− β2ATPB(R + βBTPB)−1BTPA

Note that the ARE of this problem is identical to the ARE go the determi-
nistic discounted LQ-problem. Under the assumptions made the solution of
P can of course be obtained by iteration of the equation

Pj+1 = Q+ βATPjA− β2ATPjB(R + βBTPjB)−1BTPjA

3.3 3.3 Setting the interest rate
In this section the methods described above will be applied to solve the Cen-
tral Bank’s (CB) problem of setting the interest rate to minimize social cost.
The relevant variables in this section are the difference between the inflation
rate and the target inflation rate πt, output gap yt and the change in nominal
interest rate it.

The goal of the policy maker (in this case, the CB) is to minimize the social
cost of inflation and output-gap by using the change of the interest rate, it, as
a control variable. We assume that the CB wants a smooth"use of the interest
rate tool and therefore also consider drastic changes in the interest rate costly.
To summarize, the CB has the following single-period cost function

Lt = π̄2
t + λy2t + ν(it − it−1)2

The coefficients λ ≥ 0 and ν ≥ 0 denote the relative weights put on inflation
rate deviation from target, output-gap, and changes in the nominal interest
rate respectively. In the case where λ = ν = 0 the central bank is said to
follow a strict inflation targeting policy, otherwise the central bank is said
to follow a flexible inflation targeting rule. For instance, the Swedish central
bank, Sveriges Riksbank, follows a flexible inflation policy which in practice
means that not only deviations of inflation fram target but also deviations
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in output from target is counted as a loss.

The model of the economy that will be used is the model advanced by Svens-
son and Rudebusch (1998) [4]. In their paper they examine a set of policy
rules that are consistent with inflation targeting in a small macroeconomic
model of the US economy. In this text, their results will mainly be used to
illustrate an area of application of the linear quadratic regulator techniques
presented in the previous sections. The material in this section has benefited
tremendously from a mail correspondence between myself and Prof. Svens-
son. That said all the mistakes and potential representations errors are of
course my own.

In the Svensson-Rudebusch model the inflation rate in period t+ 1 depends
on the inflation rate in the four previous periods, the output gap in period
t and on an exogenous stochastic shock variable ηπ:t+1 of the kind discussed
in the above section on stochastic LQ-problems. Further the output gap in
period t+1 depends on the output gap in the two previous periods and on the
difference between the average nominal interest rate and the average inflation
rate in the past four periods. In addition, the output gap also depends on a
stochastic shock variable ηy:t+1, with the same characteristics as ηπ:t+1. Hence
the two equations, together with coefficients estimates made by Svensson and
Rudebusch based on US data, can be summarized as

πt+1 = 0.7πt + 0.1πt−1 + 0.28πt−2 + 0.12πt−3 + 0.14yt + ηπ:t+1 (3.6)

yt+1 = 1.16yt − 0.25yt−1 − 0.1(̄it − π̄t) + ηy:t+1. (3.7)

.
Remember that we have π̄t = 1

4

∑3
j=0 πt−j and īt = 1

4

∑3
j=0 it−j as the average

inflation and nominal interest rate respectively. From the above equations we
conclude that firstly, inflation is persistent and depends on past inflation. Se-
condly, that output gap is not as persistent and that it depends negatively
on the real interest rate (rt = it − πt).

The above model fits perfectly in to the stochastic LQ-problem framework
that was established above. We can rewrite the model in state space-form
and thus the problem translates to

max
ut

[−E
∞∑

t=0

{xTt Qxt + uTt Rut + 2xTt Sut}], 0 < β < 1
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subject to
xt+1 = Axt +Bit + ηt+1

where

xt =




πt
πt−1
πt−2
πt−3
yt
yt−1
it−1
it−2
it−3




,A =




0.7 0.1 0.28 0.12 0.14 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0.025 0.025 0.025 0.025 1.16 −0.25 −0.025 −0.025 −0.025
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0




B =




0
0
0
0

−0.025
0
1
0
0




, ηt =




ηπ:t
0
0
0
ηy:t
0
0
0
0




, Q =




1/16 1/16 1/16 1/16 0 0 0 0 0
1/16 1/16 1/16 1/16 0 0 0 0 0
1/16 1/16 1/16 1/16 0 0 0 0 0
1/16 1/16 1/16 1/16 0 0 0 0 0

0 0 0 0 λ 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ν 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




,

S =




0
0
0
0
0
0
−ν
0
0




and R = ν

According the theory presented in the previous section, the optimal feedback
rule will take the form ut = Fxt where F = −(Q + BTPB)−1(BTPA + ST )
where the matrix P is the limit of the sequence

Pj+1 = R + ATPjA− ATPjB(Q+ βBTPjB)−1(BTPjA+ ST )

Because this is a 9-dimensional system the Riccati-equation cannot be solved
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by hand, computer based methods are used. The intricacies of these methods
are presented in the appendix.

For instance, let λ = 1 and ν = 0.5 then, after 39 steps, the sequence {Pj}
corresponding to these parameters has converged with a 15 decimal precision.
The optimal feedback matrix is given by

F = −(0.8780, 0.3032, 0.3799, 0.1299, 1.3294,−0.3312, 0.4679,−0.0652,−0.0331).

Bellow follows a graphical comparison between the open-loop and closed-loop
responses to shocks in inflation and output.

43



.

44



Kapitel 4

Matlab script appendix

% Appendix to 3.1 Setting the interest rate
% Purpose: In this script, the procedure for obtaining the solution to the
% Riccati equation by the itereation method is presented.
%I begin by defining the relevant matrices, A,B,R,Q.
A=[0.7 -0.1 0.28 0.12 0.14 0 0 0 0;

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0.025 0.025 0.025 0.025 1.16 -0.25 -0.025 -0.025 -0.025
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0];

B=[0; 0; 0; 0; -0.025; 0; 1; 0; 0];
Q=[1/16 1/16 1/16 1/16 0 0 0 0 0;

1/16 1/16 1/16 1/16 0 0 0 0 0
1/16 1/16 1/16 1/16 0 0 0 0 0
1/16 1/16 1/16 1/16 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0];

R=0.5;
S=[0; 0; 0; 0; 0; 0; -0.5; 0; 0];
rank(ctrb(A,B)); % checking the rank of the controlability matrix.

% Since the rank=9 as is the dimension of the
% system, the system is controlable.

% I begin the Riccati equation iteration by selecting beta and an initial
% value for P, P=0. The iteration continues until the difference between
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% the largest elements of two consecutive P’s in the sequence
% of matrices is at most 0.0000000000001.
beta=1;
dif=1;
i=1;
P0=[0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0];

while dif>0.0000000000001
F0=-inv(R+B’*P0*B)*(S’+B’*P0*A);
nextP=Q+A’*P0*A+(A’*P0*B+S)*F0;
Pdif=nextP-P0;
dif=max(abs(Pdif));
dif=max(dif’);
i=i+1;
P0=nextP;

end;
% The solution to the Riccati equation is given by P and thus, the feedback
% matrix is given by F.
P0;
F0;

.
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Kapitel 5

Mathematica script appendix

I begin by defining the relevant matrices, A, B, Q, R, S, with the help of the
matrices Cx and Ci. I also define the parameters lambda and nu, defined in
the text. The system ssm is also created.

A = {{0.7,−0.1, 0.28, 0.12, 0.14, 0, 0, 0, 0},A = {{0.7,−0.1, 0.28, 0.12, 0.14, 0, 0, 0, 0},A = {{0.7,−0.1, 0.28, 0.12, 0.14, 0, 0, 0, 0},

{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0},{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0},{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0, 0, 0},{0, 0, 1, 0, 0, 0, 0, 0, 0},{0, 0, 1, 0, 0, 0, 0, 0, 0},

{0.025, 0.025, 0.025, 0.025, 1.16,−0.25,−0.025,−0.025,{0.025, 0.025, 0.025, 0.025, 1.16,−0.25,−0.025,−0.025,{0.025, 0.025, 0.025, 0.025, 1.16,−0.25,−0.025,−0.025,

−0.025}, {0, 0, 0, 0, 1, 0, 0, 0, 0},−0.025}, {0, 0, 0, 0, 1, 0, 0, 0, 0},−0.025}, {0, 0, 0, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 1, 0}};{0, 0, 0, 0, 0, 0, 0, 1, 0}};{0, 0, 0, 0, 0, 0, 0, 1, 0}};

MatrixForm[A];MatrixForm[A];MatrixForm[A];

B = {{0}, {0}, {0}, {0}, {−0.025}, {0}, {1}, {0}, {0}};B = {{0}, {0}, {0}, {0}, {−0.025}, {0}, {1}, {0}, {0}};B = {{0}, {0}, {0}, {0}, {−0.025}, {0}, {1}, {0}, {0}};

MatrixForm[B];MatrixForm[B];MatrixForm[B];

lambda = 1;lambda = 1;lambda = 1;

ny = 0.5;ny = 0.5;ny = 0.5;

K = {{1, 0, 0}, {0, lambda, 0}, {0, 0, ny}};K = {{1, 0, 0}, {0, lambda, 0}, {0, 0, ny}};K = {{1, 0, 0}, {0, lambda, 0}, {0, 0, ny}};
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Cx = {{0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0, 0}, {0,Cx = {{0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0, 0}, {0,Cx = {{0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0, 0}, {0,

0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0,−1, 0, 0}};0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0,−1, 0, 0}};0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0,−1, 0, 0}};

MatrixForm[Cx];MatrixForm[Cx];MatrixForm[Cx];

Ci = {{0}, {0}, {1}};Ci = {{0}, {0}, {1}};Ci = {{0}, {0}, {1}};

MatrixForm[Ci];MatrixForm[Ci];MatrixForm[Ci];

ssm = StateSpaceModel[{A,B,Cx,Ci}, SamplingPeriod→ 0.5];ssm = StateSpaceModel[{A,B,Cx,Ci}, SamplingPeriod→ 0.5];ssm = StateSpaceModel[{A,B,Cx,Ci}, SamplingPeriod→ 0.5];

Q = Transpose[Cx].K.Cx;Q = Transpose[Cx].K.Cx;Q = Transpose[Cx].K.Cx;

MatrixForm[Q];MatrixForm[Q];MatrixForm[Q];

R = Transpose[Ci].K.Ci;R = Transpose[Ci].K.Ci;R = Transpose[Ci].K.Ci;

S = Transpose[Cx].K.Ci;S = Transpose[Cx].K.Ci;S = Transpose[Cx].K.Ci;

MatrixForm[S];MatrixForm[S];MatrixForm[S];

I use the LQRegulatorgains to obtain the optimal gain matrix F. Note
that F in this script is -F in the PDF.

F = LQRegulatorGains[ssm, {Q,R, S}];F = LQRegulatorGains[ssm, {Q,R, S}];F = LQRegulatorGains[ssm, {Q,R, S}];

I connect the optimal gain matrix to the system.

ctrlssm = SystemsModelStateFeedbackConnect[ssm, F ];ctrlssm = SystemsModelStateFeedbackConnect[ssm, F ];ctrlssm = SystemsModelStateFeedbackConnect[ssm, F ];

A set of impulse response diagrams are created for initial states corre-
sponding to shocks to inflation and output respectively.

cloop1 = OutputResponse[{ctrlssm, {1, 0, 0, 0, 0, 0, 0, 0, 0}},cloop1 = OutputResponse[{ctrlssm, {1, 0, 0, 0, 0, 0, 0, 0, 0}},cloop1 = OutputResponse[{ctrlssm, {1, 0, 0, 0, 0, 0, 0, 0, 0}},

0, {t, 0, 60}];0, {t, 0, 60}];0, {t, 0, 60}];

cloop2 = OutputResponse[{ctrlssm, {0, 0, 0, 0, 1, 0, 0, 0, 0}},cloop2 = OutputResponse[{ctrlssm, {0, 0, 0, 0, 1, 0, 0, 0, 0}},cloop2 = OutputResponse[{ctrlssm, {0, 0, 0, 0, 1, 0, 0, 0, 0}},

0, {t, 0, 60}];0, {t, 0, 60}];0, {t, 0, 60}];

oloop1 = OutputResponse[{ssm, {1, 0, 0, 0, 0, 0, 0, 0, 0}},oloop1 = OutputResponse[{ssm, {1, 0, 0, 0, 0, 0, 0, 0, 0}},oloop1 = OutputResponse[{ssm, {1, 0, 0, 0, 0, 0, 0, 0, 0}},

0, {t, 0, 30}];0, {t, 0, 30}];0, {t, 0, 30}];

oloop2 = OutputResponse[{ssm, {0, 0, 0, 0, 1, 0, 0, 0, 0}},oloop2 = OutputResponse[{ssm, {0, 0, 0, 0, 1, 0, 0, 0, 0}},oloop2 = OutputResponse[{ssm, {0, 0, 0, 0, 1, 0, 0, 0, 0}},

49



0, {t, 0, 30}];0, {t, 0, 30}];0, {t, 0, 30}];

cloop3 = OutputResponse[{ctrlssm, {−1, 0, 0, 0, 0, 0, 0, 0, 0}},cloop3 = OutputResponse[{ctrlssm, {−1, 0, 0, 0, 0, 0, 0, 0, 0}},cloop3 = OutputResponse[{ctrlssm, {−1, 0, 0, 0, 0, 0, 0, 0, 0}},

0, {t, 0, 60}];0, {t, 0, 60}];0, {t, 0, 60}];

cloop4 = OutputResponse[{ctrlssm, {0, 0, 0, 0,−1, 0, 0, 0, 0}},cloop4 = OutputResponse[{ctrlssm, {0, 0, 0, 0,−1, 0, 0, 0, 0}},cloop4 = OutputResponse[{ctrlssm, {0, 0, 0, 0,−1, 0, 0, 0, 0}},

0, {t, 0, 60}];0, {t, 0, 60}];0, {t, 0, 60}];

oloop3 = OutputResponse[{ssm, {−1, 0, 0, 0, 0, 0, 0, 0, 0}},oloop3 = OutputResponse[{ssm, {−1, 0, 0, 0, 0, 0, 0, 0, 0}},oloop3 = OutputResponse[{ssm, {−1, 0, 0, 0, 0, 0, 0, 0, 0}},

0, {t, 0, 30}];0, {t, 0, 30}];0, {t, 0, 30}];

oloop4 = OutputResponse[{ssm, {0, 0, 0, 0,−1, 0, 0, 0, 0}},oloop4 = OutputResponse[{ssm, {0, 0, 0, 0,−1, 0, 0, 0, 0}},oloop4 = OutputResponse[{ssm, {0, 0, 0, 0,−1, 0, 0, 0, 0}},

0, {t, 0, 30}];0, {t, 0, 30}];0, {t, 0, 30}];

{ListPlot[oloop1,PlotRange→ All,{ListPlot[oloop1,PlotRange→ All,{ListPlot[oloop1,PlotRange→ All,

PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},

Joined→ True,Joined→ True,Joined→ True,

PlotLegends→ {“Inflation”, “Output gap” ,PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap”,

“Federal funds rate”},“Federal funds rate”},“Federal funds rate”},

PlotLabel→ “Open-loop response to positive inflation shock”]PlotLabel→ “Open-loop response to positive inflation shock”]PlotLabel→ “Open-loop response to positive inflation shock”]

ListPlot[cloop1,PlotRange→ {{0, 60}, {−0.5, 1.3}},ListPlot[cloop1,PlotRange→ {{0, 60}, {−0.5, 1.3}},ListPlot[cloop1,PlotRange→ {{0, 60}, {−0.5, 1.3}},

PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},

Joined→ True,Joined→ True,Joined→ True,

PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap” ,

“Federal funds rate”},“Federal funds rate”},“Federal funds rate”},

PlotLabel→PlotLabel→PlotLabel→

“Closed-loop response to positive inflation shock”]};“Closed-loop response to positive inflation shock”]};“Closed-loop response to positive inflation shock”]};

{ListPlot[oloop2,PlotRange→ All,{ListPlot[oloop2,PlotRange→ All,{ListPlot[oloop2,PlotRange→ All,
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PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},

Joined→ True,Joined→ True,Joined→ True,

PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap” ,

“Federal funds rate”},“Federal funds rate”},“Federal funds rate”},

PlotLabel→ “Open-loop response to positive output shock”]PlotLabel→ “Open-loop response to positive output shock”]PlotLabel→ “Open-loop response to positive output shock”]

ListPlot[cloop2,PlotRange→ {{0, 60}, {−0.5, 1.3}},ListPlot[cloop2,PlotRange→ {{0, 60}, {−0.5, 1.3}},ListPlot[cloop2,PlotRange→ {{0, 60}, {−0.5, 1.3}},

PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},

Joined→ True,Joined→ True,Joined→ True,

PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap” ,

“Federal funds rate”},“Federal funds rate”},“Federal funds rate”},

PlotLabel→ “Closed-loop response to positive output shock”]};PlotLabel→ “Closed-loop response to positive output shock”]};PlotLabel→ “Closed-loop response to positive output shock”]};

{ListPlot[oloop3,PlotRange→ All,{ListPlot[oloop3,PlotRange→ All,{ListPlot[oloop3,PlotRange→ All,

PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},

Joined→ True,Joined→ True,Joined→ True,

PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap” ,

“Federal funds rate”},“Federal funds rate”},“Federal funds rate”},

PlotLabel→ “Open-loop response to positive output shock”,PlotLabel→ “Open-loop response to positive output shock”,PlotLabel→ “Open-loop response to positive output shock”,

PlotLabel→ “Open-loop response to negative inflation shock”]PlotLabel→ “Open-loop response to negative inflation shock”]PlotLabel→ “Open-loop response to negative inflation shock”]

ListPlot[cloop3,PlotRange→ {{0, 60}, {−1.3, 0.5}},ListPlot[cloop3,PlotRange→ {{0, 60}, {−1.3, 0.5}},ListPlot[cloop3,PlotRange→ {{0, 60}, {−1.3, 0.5}},

PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},

Joined→ True,Joined→ True,Joined→ True,

PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap” ,

“Federal funds rate”},“Federal funds rate”},“Federal funds rate”},

PlotLabel→PlotLabel→PlotLabel→
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“Closed-loop response to negative inflation shock” ]};“Closed-loop response to negative inflation shock” ]};“Closed-loop response to negative inflation shock” ]};

{ListPlot[oloop4,PlotRange→ All,{ListPlot[oloop4,PlotRange→ All,{ListPlot[oloop4,PlotRange→ All,

PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},

Joined→ True,Joined→ True,Joined→ True,

PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap” ,

“Federal funds rate”},“Federal funds rate”},“Federal funds rate”},

PlotLabel→ “Open-loop response to negative output shock”]PlotLabel→ “Open-loop response to negative output shock”]PlotLabel→ “Open-loop response to negative output shock”]

ListPlot[cloop4,PlotRange→ {{0, 60}, {−1.3, 0.5}},ListPlot[cloop4,PlotRange→ {{0, 60}, {−1.3, 0.5}},ListPlot[cloop4,PlotRange→ {{0, 60}, {−1.3, 0.5}},

PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},PlotStyle→ {Dashing[Medium],Dotted, Joined},

Joined→ True,Joined→ True,Joined→ True,

PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap”,PlotLegends→ {“Inflation”, “Output gap” ,

“Federal funds rate”},“Federal funds rate”},“Federal funds rate”},

PlotLabel→ “Closed-loop response to negative output shock” ]};PlotLabel→ “Closed-loop response to negative output shock” ]};PlotLabel→ “Closed-loop response to negative output shock” ]};
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Kapitel 6
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