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Abstract

The Ehrhart polynomial of a lattice polytope counts the number of
lattice points on the boundary and the number of lattice points strictly
in the interior of dilations of the polytope. In this thesis, we show that
there are infinitely many Ehrhart polynomials of lattice polygons which
are not the Ehrhart polynomial of any lattice triangle.

Let (b, i) be a given pair of non-negative integers. We give conditions
on (b, i) for there to be a lattice triangle with b boundary points and i
interior points. For b + 2(i − 1) = p, where p is prime, the condition is
particularly simple. This gives us a class of (b, i) for which we know there
are no lattice triangles. In addition, we conjecture the non-existence of
lattice triangles for other large classes of (b, i).

In the course of our work, we develop tools to study the patterns of
for which (b, i) there is a lattice triangle.

1



Acknowledgements

I would like to thank my supervisor Benjamin Nill for his suggestion
of this topic and his guidance along the way.

2



Contents

1 Introduction 4

2 Preliminaries 4
2.1 Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Lattice equivalences . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Ehrhart polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The normal form of a triangle with respect to a certain vertex 7

4 Formulas for the number of boundary points, interior points
and area of a lattice triangle 17
4.1 The formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Existence of lattice triangles for a given pair (b,i) . . . . . . . . . 19
4.3 Lines in the (b,i) plane . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conditions on (b,i) 27
5.1 Feasible composition of b with respect to i . . . . . . . . . . . . . 27
5.2 Necessary and sufficient conditions . . . . . . . . . . . . . . . . . 28
5.3 Proving non-existence of lattice triangles for a given pair (b,i) . . 29
5.4 Lattice triangles with prime normalized area . . . . . . . . . . . . 30

6 Patterns of non-existence of lattice triangles 31

7 Conclusions regarding Ehrhart polynomials 34

3



1 Introduction

The Ehrhart polynomial of a lattice polytope in Rn counts the number of lattice
points contained inside or on the boundary of dilations of the polytope. In
R2, there is a known relation between the number of boundary points b, the
number of interior points i and the area a of a lattice polygon; a result known
as Pick’s theorem. There is also an inequality limiting how many boundary
points a polygon can have given its number of interior points, known as Scott’s
inequality.

It is easy to show that for all (b, i) satisfying Scott’s inequality, a lattice
polygon having b boundary points and i interior points can be constructed.
Each pair (b, i) corresponds to a certain Ehrhart polynomial, and that Ehrhart
polynomial is said to be realized by a lattice polygon having b boundary points
and i interior points.

But what if we limit ourselves to lattice triangles? Can all Ehrhart polyno-
mials of lattice polygons, i.e. those who can be realized by a lattice polygon, be
realized by a lattice triangle as well? If not, under what conditions can they be?
Are there any patterns of when an Ehrhart polynomial of a lattice polygon can
be realized by a lattice triangle? This thesis will try to answer these questions.

In doing this, it will at the same time try to answer the question: given two
non-negative integers b and i, under what conditions is it possible to construct
a lattice triangle having b boundary points and i interior points?

To the thesis supervisor’s knowledge, most of these questions have not been
extensively investigated before. However, Higashitani [5, Theorem 0.1] has in-
dependently proved a result corresponding to Theorem 5.3 below in the more
general case of lattice simplices in Rn with prime normalized volume. Theorem
5.3 is a special case of Higashitani’s theorem, but it is proven independently in
this thesis.

2 Preliminaries

2.1 Polytopes

Definition 2.1. We say that a polytope in Rn is a lattice polytope if all the
vertices of the polytope has integer coordinates.

Definition 2.2. We will denote the set of vertices of a polytope P by VP.

Definition 2.3. Let P be a lattice polygon in R2. We will use the following
notation:

• a(P) is the area of P

• i(P) is the number of lattice points that lies strictly in the interior of P

• b(P) is the number of lattice points on the boundary of P
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2.2 Lattice equivalences

Definition 2.4. Let φ : R2 → R2 be an affine, bijective transformation. We
say that φ is a lattice equivalence if it maps Z2 onto Z2.

Proposition 2.1. Let φ : R2 → R2 be a lattice equivalence. Then

φ(x) = Mx + c (1)

where M is a 2× 2-matrix with integer elements with

detM = ±1 (2)

and c ∈ Z2.

Proof. A lattice equivalence is by definition an affine transformation, and affine
transformations have the form (1).

Let

M =

(
a11 a12
a21 a22

)

Since φ is assumed to map Z2 to Z2, we require that

(
a11 a12
a21 a22

)(
k11
k12

)
+

(
c1
c2

)
=

(
k21
k22

)
∈ Z2

for all k11, k12 ∈ Z. In particular, this means that

(k11, k12) = (0, 0) =⇒ c1 = k21 ∈ Z ∧ c2 = k22 ∈ Z

Hence, c ∈ Z2. Furthermore,

(k11, k12) = (1, 0) =⇒ a11 = k21 − c1 ∈ Z ∧ a21 = k22 − c2 ∈ Z

(k11, k12) = (0, 1) =⇒ a12 = k21 − c1 ∈ Z ∧ a22 = k22 − c2 ∈ Z

Hence, M has only integer elements.
By definition, a lattice equivalence is a bijection. Hence, φ−1 exists, which

implies that M−1 exists. M−1 has only integer elements, by the same argument
as for M . Since M and M−1 have only integer elements, both detM and
detM−1 are integers. But detM−1 = 1

detM , which is a contradiction unless
detM = ±1. Thus we have proved (2).

Proposition 2.2. Lattice equivalences maps lattice triangles to lattice triangles.

Proof. A lattice equivalence is an affine transformation. Affine transformations
preserves lines. Therefore, it preserves triangles. In particular, it preserves
lattice triangles, since lattice equivalences maps Z2 to Z2.

Corollary 2.3. The area, the number of interior points and the number of
boundary points of a lattice polygon in R2 are preserved under lattice equiva-
lences.
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Proof. Let φ = Mx + c be a lattice equivalence.
Affine transformations maps lines to lines. Let E be one of the edges of a

given lattice polygon and let x1 and x2 be two lattice points on E such that
there are no lattice points between them on E. Then φ(x1) and φ(x2) are
lattice points lying on the same edge of the image of the polygon under the
lattice equivalence. Call this edge of the image φ(E). Assume that there is a
point φ(x0) = y between φ(x1) and φ(x2) on φ(E). Then φ−1(y) = x0 is a
lattice point between x1 and x2 on E. But this is a contradiction, since we
assumed that there is no lattice point between x1 and x2 on E. Hence, the
same number of lattice points lies on φ(E) and E for an arbitrary edge E of
P , which means that φ preserves the number of boundary points of the whole
polygon.

The area of the polygon is preserved since detM = ±1, by Proposition 2.1.
From this it follows that the number of interior points are preserved, by

Theorem 2.4, given below.

2.3 Ehrhart polynomials

The notions in this subsection (i.e. section 2.3) is from [2].

Definition 2.5. Let P be a lattice polytope in Rn with vertex set VP =
{v1,v2, . . . ,vm}. The t-dilation of P , denoted tP , is the polytope defined
by the vertex set

VtP = {(tv1, tv2, . . . , tvm) ∈ Rn | t ∈ Z}

Definition 2.6. The Ehrhart polynomial of a lattice polytope P (in Rn),
denoted LP (t), is defined by

LP (t) := i(tP ) + b(tP )

where tP is the t-dilation of P .

Definition 2.7. We say that an Ehrhart polynomial LP (t) is realized by the
lattice polytope P (in Rn) if LP (t) = i(tP ) + b(tP ) for all integers t ≥ 1.

If a polynomial p(t) is such that p(t) = i(tP )+b(tP ) for some lattice polygon
P , then we say that p(t) is the Ehrhart polynomial of a lattice polygon.
Correspondingly, we say that p(t) is the Ehrhart polynomial of a lattice
triangle if p(t) = i(tT ) + b(tT ) for some lattice triangle T .

2.4 Known results

The following known results will be used.

Theorem 2.4 (Pick’s theorem [6]). Let P be a lattice polygon. Then

a(P ) = i(P ) +
b(P )

2
− 1
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Theorem 2.5 (Scott’s inequality [7]). Let P be a lattice polygon such that
i(P ) > 0. Then

b(P ) ≤ 2 · i(P ) + 7

and
b(P ) = 2 · i(P ) + 7 =⇒ VP = {(0, 0), (3, 0), (0, 3)}

In other words, if P is not the lattice triangle with VP = {(0, 0), (3, 0), (0, 3)},
then b(P ) ≤ 2 · i(P ) + 6.

Theorem 2.6 ([4, pp. 4-5]). Let b and i be non-negative integers. Then there
is a lattice polygon P such that b(P ) = b and i(P ) = i if and only if one of the
following conditions is true:

(i) i = 0 and b ≥ 3

(ii) i = 1 and b = 9

(iii) i ≥ 1 and 3 ≤ b ≤ 2i+ 6

3 The normal form of a triangle with respect to
a certain vertex

In this section, we will show that any lattice triangle in R2 can be transformed
to what we will call a normal form, while preserving the number of boundary
points, interior points and the area of the triangle. These are precisely the
quantities we are interested in, so it will suffice to study lattice triangles which
can be the normal form of some lattice triangle.

Definition 3.1. Let T be a lattice triangle. We say that x = (x1, x2) ∈ VT is
the lowest left-most vertex of T if and only if

x ∈ {(v11, v12) ∈ VT | ∀(w11, w12) ∈ VT : v11 ≤ w11} =: S

and
x2 = min {v12 | (v11, v12) ∈ S}

See Figure 1.

The following lemma is a known fact. For a proof (of a sharper version of
the lemma), see for example [1, p. 8].

Lemma 3.1. Let m,n ∈ Z. Then

gcd(m,n) = k =⇒ ∃a, b ∈ Z : am+ bn = k

and
∃a, b ∈ Z : am+ bn = k =⇒ gcd(m,n) | k
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Figure 1: v0 and v1 has the same x-coordinate, but the y-coordinate of v0 is
smaller. Hence, v0 is the lowest left-most vertex of this lattice triangle.

Theorem 3.2. Let T be a lattice triangle in R2 with vertex set VT . Let x0 be
the lowest left-most vertex of T . Consider the two edges between x0 and one of
the other vertices respectively. Let E1 and E2 be named in the following manner:

• If both edges lies on lines with finite slope: Let E1 be the bottom edge and
let E2 be the top edge.

• If one edge is parallel to the y-axis: Let the edge parallel to the y-axis be
called E2, and let the other edge be called E1.

Let the vertex on the other side of Ei be called vi, for i = 1, 2. See Figure
2. Let xi be the lattice point closest to x0 on Ei, for i = 1, 2. See Figure 3.
Furthermore, let φ(x) = M(x− x0), where

M =

(
a+ k(x12 − x02) b− k(x11 − x01)
−(x12 − x02) x11 − x01

)
(3)

where a, b ∈ Z is such that

a(x11 − x01) + b(x12 − x01) = 1 (4)

and k ∈ Z is such that

a(x21−x01)+b(x22−x02) = (−(x12 − x02)(x21 − x01) + (x11 − x01)(x22 − x02)) k+p
(5)
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Figure 2: Naming the edges and vertices of a lattice triangle.
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Figure 3: Naming the lattice points of a lattice triangle.
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for a unique p ∈ Z : 0 ≤ p < −(x12 − x02)(x21 − x01) + (x11 − x01)(x22 − x02).
Then φ is the unique orientation preserving lattice equivalence φ : R2 → R2

satisfying
φ(x0) = 0 (6)

φ(x1) = (1, 0)t (7)

φ(x2) = (p, q)t (8)

where gcd(p, q) = 1 and 0 ≤ p < q. Moreover, a, b and k satisfying (4) and (5)
can always be found.

Proof. Let φ(x) = Mx + c, where M =

(
m11 m12

m21 m22

)
, be a lattice equivalence

satisfying (6), (7) and (8).
Then

m11(x11 − x01) +m12(x12 − x02) = 1 (9)

m21(x11 − x01) +m22(x12 − x02) = 0 (10)

m11(x21 − x01) +m12(x22 − x02) = p (11)

m21(x21 − x01) +m22(x22 − x02) = q (12)

detM = m11m22 −m12m21 = 1 (13)

where 0 ≤ p < q and gcd(p, q) = 1.
We will show that (9)-(13) determines a unique M .
First of all, note that x11 − x01 and x12 − x02 can not both be zero, since

x1 6= x0. This means that gcd(x11 − x01, x12 − x02) always exists. We can
therefore assume that gcd(x11 − x01, x12 − x02) = d > 1. Then x11 − x01 = dk1
and x12 − x02 = dk2, for some k1, k2 ∈ Z. This means that (k1, k2) is a lattice
point on E1 between x0 and x1. But x1 was chosen to be the lattice point
closest to x0 on E1. Hence

gcd(x11 − x01, x12 − x02) = 1 (14)

by contradiction. This implies that

∃a, b ∈ Z : a(x11 − x01) + b(x12 − x02) = 1 (15)

by Lemma 3.1. In other words, (a, b) is a particular solution to the diophantine
equation (9). Therefore, (9) has the general solution

(m11,m12) = (a+ k(x12 − x02), b− k(x11 − x01))

for k ∈ Z.
At least one of x11 − x01 and x12 − x02 is not equal to zero, since x1 6= x0.

Let us assume that x11 − x01 6= 0. Then (10) gives

m21 = −m22
x12 − x02
x11 − x01
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which implies that
∃k3 ∈ Z : m22 = k3(x11 − x01)

by (14) and m21 ∈ Z. This gives

m21 = −k3(x12 − x02)

So far, we have

M =

(
a+ k(x12 − x02) b− k(x11 − x01)
−k3(x12 − x02) k3(x11 − x01)

)

where a and b are known, while k and k3 are so far unknown, integers. But it
is easy to find k3, since

detM = k3(a(x11 − x01) + b(x12 − x02)) = k3 = 1

by (13) and (15). We get

M =

(
a+ k(x12 − x02) b− k(x11 − x01)
−(x12 − x02) x11 − x01

)

It remains to find k. Now,

a(x21−x01)+b(x22−x02)+k((x12−x02)(x21−x01)−(x11−x01)(x22−x02)) = p

by (11). Set

q = (x11 − x01)(x22 − x02)− (x12 − x02)(x21 − x01) (16)

We require that

q = (x11 − x01)(x22 − x02)− (x12 − x02)(x21 − x01) > 0

which is equivalent to

x22 − x02 >
x12 − x02
x11 − x01

(x21 − x01) (17)

where we have used that x11 − x01 > 0, by the way x1 and x0 are chosen.
Furthermore, x21 − x01 ≥ 0 by the way x2 and x0 are chosen. We have two
cases.

• Assume that x21−x01 = 0. Then x22−x02 = 1, since we immediately hit
a lattice point when moving along the y-axis. Then we require that 1 > 0,
by (17), which certainly is true.

• Assume that x21 − x01 > 0. Then we require that

x22 − x02
x21 − x01

>
x12 − x02
x11 − x01

In other words, we require that the slope of the line on which E1 lies is
smaller than the slope of the line on which E2 lies. This is always true,
by the way E1 and E2 are chosen.
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Hence q > 0. Furthermore, we must show that 0 ≤ p < q and gcd(p, q) = 1. We
have that

a(x21 − x01) + b(x22 − x02) = qk + p

By the division algorithm, k can be chosen such that 0 ≤ p < q, and this choice
is unique. Also,

µ1p+ µ2q

= [µ1a+ µ2(x12 − x02)] (x21 − x01) + [µ1b− µ2(x11 − x01)] (x22 − x02)

= λ1(x21 − x01) + λ2(x22 − x02) = 1

for some λ1, λ2 ∈ Z, since gcd(x21 − x01, x22 − x02) = 1 by the same argument
as for (14). But then

µ1 = λ1(x11 − x01) + λ2(x12 − x02) ∈ Z

µ2 = λ1a− λ2b ∈ Z
which implies that

gcd(p, q) = 1

by Lemma 3.1.
We have shown that if φ(x) = M(x− x0) is a lattice equivalence satisfying

(6), (7) and (8), then

M =

(
a+ k(x12 − x02) b− k(x11 − x01)
−(x12 − x02) x11 − x01

)
(18)

where a, b, k ∈ Z are chosen according to (4) and (5), and that such a choice is
always possible.

It remains to show that M is unique. Assume that φ1(x) = M1(x−x0) and
φ2(x) = M2(x− x0) both satisfy (6), (7) and (8). Then, by (18),

Mi =

(
ai + ki(x22 − x02) bi − ki(x11 − x01)
−(x22 − x02) x11 − x01

)

where ai, bi, ki ∈ Z satisfies (4) and (5). Then

ai(x11 − x01) + bi(x12 − x02) = 1

for i = 1, 2. But then (a2, b2) = (a1 + k0(x12 − x02), b1 − k0(x11 − x01)) for
some k0 ∈ Z, since if (a1, b1) is a particular solution to (9), then (a1 + k(x12 −
x02), b1 − k(x11 − x01)), where k ∈ Z, is the general solution. Hence

M2 =

(
a1 + (k0 + k2)(x12 − x02) b1 − (k0 + k2)(x11 − x01)

−(x12 − x02) x11 − x01

)

By (11), k0, k1 and k2 are such that both m = k1 and m = k0 + k2 satisfies

a1(x21 − x01) + b1(x22 − x02) = qm+ p

where 0 ≤ p < q and q is defined by (16). But then m is unique, by the division
algorithm. Hence, k1 = k0 + k2.

This means that M1 = M2. In other words, φ1 = φ2. Thus we have shown
that M is unique.
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Definition 3.2. Let T be a lattice triangle. Pick a vertex x of T and let φ be
the unique orientation preserving lattice equivalence corresponding to this x.
We say that (A,B,C), such that φ(T ) has the vertices (0, 0), (A, 0), (B,C), is
the normal form of T with respect to x. See Figure 4.

We will use the normal form of T as shorthand for ”the normal form of
T with respect to the lowest left-most vertex of T”. We will also allow ourselves
use the notation T = (A,B,C) for the normal form of T .

Regarding Definition 3.2, note the following:

(i) By this definition, the normal form of a given lattice triangle depends on
the choice of vertex. This means that a lattice triangle does not have a
unique normal form; rather, it has three possible normal forms. Since a
lattice triangle certainly is isomorphic to itself, this means that isomorphic
lattice triangles do not in general have the same normal form.

One could define normal form so that it has this property, by defining
one of the three images of a lattice triangle under the different lattice
equivalences to be the normal form of the triangle in question, according
to some criterion.

This property is not necessary for our current purposes, however. We are
only interested in the number of boundary points, interior points and the
area of a lattice triangle. Since these properties are preserved by lattice
equivalences, all possible normal forms of a triangle will have the same
number of boundary points, interior points, and the same area.

(ii) An alternative way to define a unique normal form for lattice triangles T is
to define it in terms of the Hermite normal form [3, Section 2.4.2] of the ma-

trix W =

(
v01 v11 v21
v02 v12 v22

)
, where VT = {(v01, v02), (v11, v12), (v21, v22)}.

Example 3.1. Let T be a lattice triangle with VT = {(6, 6), (2, 2), (2, 4)}. The
lowest left-most vertex of T is (2, 2), so we set x0 = (2, 2). Naming the lattice
points as in Theorem 3.2, we set x1 = (3, 3) and x2 = (2, 3). See Figure 5. This
gives x1 − x0 = (1, 1) and x2 − x0 = (0, 1).

By (4), we must find a particular solution of the diophantine equation m11 ·
1 +m12 · 1 = 1. One such solution is (m11,m12) = (1, 0). Therefore, the general
solution is (m11,m12) = (1 + n,−n), where n ∈ Z.

Now, by (5), we must find k ∈ Z such that

1 · 0 + 0 · 1 = (−1 · 0 + 1 · 1)k + p

⇔ 0 = k + p

where we require that 0 ≤ p < 1. The unique solution is k = 0, which gives
p = 0.

Let

M =

(
1 0
−1 1

)

14



Figure 4: The normal form of a lattice triangle T with respect to the lowest
left-most vertex of T . x0,v1 and v2 named according to Theorem 3.2.
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Figure 5: The lattice triangle defined in Example 3.1
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Figure 6: The normal form of the lattice triangle T defined in Example 3.1

Then φ(x) = M(x−x0) is the unique lattice equivalence satisfying (6), (7) and
(8) in Theorem 3.2, given the vertex x0.

T has the normal form has the normal form (4, 0, 2). See Figure 6.

4 Formulas for the number of boundary points,
interior points and area of a lattice triangle

4.1 The formulas

Theorem 4.1. Let T be a lattice triangle with the normal form (A,B,C). Then

a(T ) =
AC

2
(19)

b(T ) = A+ gcd(B,C) + gcd(B −A,C) (20)

i(T ) =
AC

2
− A+ gcd(B,C) + gcd(B −A,C)

2
+ 1 (21)

17



Conversely, if ∃A,B,C, with A > 0 and 0 ≤ B < C, then for

a =
AC

2
(22)

b = A+ gcd(B,C) + gcd(B −A,C) (23)

i =
AC

2
− A+ gcd(B,C) + gcd(B −A,C)

2
+ 1 (24)

T with VT = {(0, 0), (A, 0), (B,C)} is a lattice triangle with

a(T ) = a

b(T ) = b

i(T ) = i

Proof. Let T be a lattice triangle with normal form (A,B,C). By Corollary
2.3, we can assume that T is on its normal form.

A is the length of the base and C is the height of T . Hence, a(T ) = AC
2 .

This proves (19).
We will now count the boundary points of T . There is a boundary point of T

at the origin; let us count this one separately. Let E1 be the edge between (0, 0)
and (A, 0). Let E2 be the edge between (0, 0) and (B,C). Let E3 be the edge
between (A, 0) and (B,C). Let bi be the number of lattice points, excluding
the origin, on Ei for i = 1, 2. Let b3 be the number of lattice points, excluding
(A, 0) and (B,C) on E3. Then b(T ) = 1 + b1 + b2 + b3. Let us compute the bi.

• Obviously,
b1 = A (25)

• Consider the point (B,C). It lies on the line with equation y = p
qx for

some p, q ∈ Z with gcd(p, q) = 1, by Theorem 3.2. Hence, C = p
qB. Since

C ∈ Z, this implies that q = 1 ∨ q|B. Now,

q = 1 =⇒ C = Bp =⇒ B|C =⇒ gcd(B,C) = B

=⇒ (B,C) = gcd(B,C)(1, p)

and
q|B =⇒ B = kq =⇒ C = pk =⇒ (B,C) = k(p, q)

for some k ∈ Z. But gcd(p, q) = 1, so gcd(B,C) = k. Hence

q|B =⇒ (B,C) = gcd(B,C)(p, q)

Since the set of lattice points, excluding the origin, on this edge is the set
{k(p, q) | k ∈ {1, 2, . . . , gcd(B,C)}}, the number of lattice points on this
edge is gcd(B,C). Hence,

b2 = gcd(B,C) (26)

18



• By the same argument as above, the number of lattice points, excluding
(A, 0), on the edge from (A, 0) to (B,C) is gcd(B − A,C). However, we
also wish to exclude the point (B,C) on this edge. Hence

b3 = gcd(B −A,C)− 1 (27)

By (25), (26) and (27)

b(T ) = 1 +A+ gcd(B,C) + gcd(B −A,C)− 1

= A+ gcd(B,C) + gcd(B −A,C)

This proves (20).
Finally, (21) follows from (19), (20) and Theorem 2.4.
Thus we have proved the first part of the theorem.
On the other hand, assume we have a, b and i, and A,B,C ∈ Z with A > 0,

0 ≤ B < C, such that (22), (23) and (24) are satisfied. Then T , with VT =
{(0, 0), (A, 0), (B,C)} is a lattice triangle such that a = a(T ), b = b(T ) and
i = i(T ). This proves the second part of the theorem.

4.2 Existence of lattice triangles for a given pair (b,i)

We can use Theorem 4.1 to make a brute force computation of for which pairs
(b, i) there exists at least one lattice triangle T such that b = b(T ) and i = i(T ).
Recall that Scott’s inequality (Theorem 2.5) puts a bound on b in terms of i.
Therefore, for every i, we only have to check the integers b satisfying Scott’s
inequality. For every i, we run through all integers b satisfying Scott’s inequality.
Given a pair (b, i), we want to find A,B,C such that A > 0, 0 ≤ B < C and
(23) and (24) are satisfied. This restricts our choices of A and C, since

b+ 2(i− 1) = AC

i.e. A and C must be integers whose product is b+ 2(i−1). Also, B is bounded
by C. Hence, given (b, i), there is a finite number of possible choices of A,B,C.
Given (b, i), we can run through all possible choices of A,B,C, looking for a
triple satisfying (23) and (24). If we let i run through all integers from 0 to some
positive integer n and then make a scatter plot of the (b, i) for which a lattice
triangle can be found, we get Figure 7 for n = 100 and Figure 8 for n = 1000.

4.3 Lines in the (b,i) plane

We note that, by the division algorithm, we can write A = Ck + r for some
integers k and r, where 0 ≤ r < C. Note that k 6= 0 if r = 0, since A > 0.

The following is a corollary to Theorem 4.1.

Corollary 4.2. Let T be a triangle with normal form (Ck + r,B,C), where k
and r are integers such that 0 ≤ r < C and k ≥ 0, with k > 0 if r = 0. Then

i(T ) =
C − 1

2
· b(T )− C · gcd(B,C) + gcd(B − r, C)

2
+ 1 (28)
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where
b(T ) = Ck + r + gcd(B,C) + gcd(B − r, C) (29)

Proof. We note that

gcd(B − (Ck + r), C) = gcd(C · (−k) +B − r, C) = gcd(B − r, C)

(20) gives
b(T ) = Ck + r + gcd(B,C) + gcd(B − r, C)

⇔ k =
b(T )− r − gcd(B,C)− gcd(B − r, C)

C
(30)

(21) and (30) gives

i(T ) =
C(Ck + r)

2
− Ck + r + gcd(B,C) + gcd(B − r, C)

2
+ 1

=
C − 1

2
· b(T )− C · gcd(B,C) + gcd(B − r, C)

2
+ 1

Corollary 4.2 means that C = c, for some positive integer c, determines a
family of parallel lines with the slope c−1

2 in the (b, i) plane, and all lattice
triangles with normal form (A,B, c), for some A = ck + r, with 0 ≤ r < c, and
B, lies on one of these lines. The intercept of a particular line is determined by
B and r. But 0 ≤ B < C and 0 ≤ r < C, so there are only finitely many lines
for a given C. The set of intercepts for a family of lines can be determined by
checking all possible choices of B and r given C. Note that different pairs (B, r)
can determine the same intercept.

Note that not all points (b, i) on a certain line are such that there exists a
lattice triangle T such that b = b(T ) and i = i(T ). Given a certain line, B and
r are given. On this line, the points for which there is a lattice triangle are
exactly those satisfying

b = Ck + r + gcd(B,C) + gcd(B − r, C)

for some k ∈ Z such that k ≥ 0, with k > 0 if r = 0, by Theorem 4.1.
The preceding remarks motivates the following definitions.

Definition 4.1. Let C > 0 be an integer. We say that i = sb+m is a line (in
the (b,i) plane) generated by C if

s =
C − 1

2
(31)

and ∃B, r ∈ {0, 1, . . . , C − 1} such that

m = 1− C · gcd(B,C) + gcd(B − r, C)

2
(32)

For a given C and a given pair (B, r) such that (31) and (32) are satisfied,
we say that i = sb + m is the line (in the (b,i) plane) generated by C
with intercept determined by (B,r), denoted LC,B,r.
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Definition 4.2. Let C, B and r be given integers, such that C > 0 and B, r ∈
{0, 1, . . . , C − 1}. We say that

LC,B,r ∩
{

(b, i) ∈ Z2 | b ≥ 3 ∧ b = Ck + r + gcd(B,C) + gcd(B − r, C)

for some integer k ≥ 0, with k > 0 if r = 0}
is the lattice triangle subset of LC,B,r, denoted SC,B,r.

Note that SC,B,r is non-empty for all triples (C,B, r) satisfying the condi-
tions in Definition 4.2. Given C,B and r, we get a line LC,B,r in the (b, i) plane.
We can choose an integer k such that b = Ck+r+gcd(B,C)+gcd(B−r, C) ≥ 3.
For such a k, T = (Ck + r,B,C) is a lattice triangle such that (b(T ), i(T )) =
(b, i), where i is given by the equation of LC,B,r. This means that (b, i) belongs
to SC,B,r, i.e. SC,B,r is non-empty.

Example 4.1. Let us investigate which lines are generated by C = 4. Recall
Corollary 4.2. The lines generated by C = 4 all have the slope 3

2 . The intercepts
are determined by B and r. Let d1 = gcd(B,C) and d2 = gcd(B − r, C).
gcd(B,C) and gcd(B− r, C) are divisors of C, so d1 and d2 are divisors of C. If
we first check all possible sums d1 +d2, and then for each given sum check if we
can find B, r ∈ {0, 1, . . . , C − 1} such that gcd(B,C) = d1 ∧ gcd(B−r, C) = d2,
we can find all intercepts.

For example, let d1 = 1 and d2 = 2. gcd(1, 4) = 1 and gcd(−2, 4) = 2, so
this is satisfied by, for example, B = 1 and r = 3. This means that L4,1,3 is the
line i = 3

2b− 5 is a a line generated by C = 4.
Checking all cases gives that

L4,1,0 : i =
3

2
b− 3

L4,1,3 : i =
3

2
b− 5

L4,2,0 : i =
3

2
b− 7

L4,1,1 : i =
3

2
b− 9

L4,0,2 : i =
3

2
b− 11

L4,0,0 : i =
3

2
b− 15

are the lines generated by C = 4. See Figure 9.
Furthermore

S4,1,0 = L4,1,0 ∩
{

(b, i) ∈ Z2 | b = 4k + 2 for some integer k > 0
}

S4,1,3 = L4,1,3 ∩
{

(b, i) ∈ Z2 | b = 4k + 2 for some integer k > 0
}
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S4,2,0 = L4,2,0 ∩
{

(b, i) ∈ Z2 | b = 4k for some integer k > 0
}

S4,1,1 = L4,1,1 ∩
{

(b, i) ∈ Z2 | b = 4k + 2 for some integer k > 0
}

S4,0,2 = L4,0,2 ∩
{

(b, i) ∈ Z2 | b = 4k for some integer k > 0
}

S4,0,0 = L4,0,0 ∩
{

(b, i) ∈ Z2 | b = 4k for some integer k > 0
}

where k > 0 in the cases of S4,1,3, S4,1,1 and S4,0,2 follows from the fact that
b ≥ 3.

We now give a corollary to Corollary 4.2.

Corollary 4.3. Let C > 0 be a given integer and let B, r ∈ {0, 1, . . . , C − 1}.
Then the intercept m of LC,B,r is such that

1− C2 ≤ m ≤ 1− C

Moreover,
LC,B,r has the intercept 1− C2 ⇔ B = r = 0

and

gcd(B,C) = gcd(B − r, C) = 1⇔ LC,B,r has the intercept 1-C.

Proof. We have

i(T ) =
C − 1

2
· b(T ) + 1− C · gcd(B,C) + gcd(B − r, C)

2

by Corollary 4.2.
The intercept is as small as possible if gcd(B,C) = gcd(B−r, C) = C which

is the case if and only if B = r = 0. This gives the intercept 1− C2.
The intercept is as large as possible if and only if gcd(B,C) = gcd(B−r, C) =

1. This gives the intercept 1− C.

Corollary 4.3 motivates the following definition.

Definition 4.3. Let C be a given positive integer.
We say that LC,0,0 is the minimum line generated by C, denoted

minL,C.
We say that LC,B,r is the maximum line generated by C, denoted

maxL,C, if gcd(B,C) = gcd(B − r, C) = 1.
We say that

{
(b, i) ∈ Z2 | C − 1

2
b+ 1− C2 ≤ i ≤ C − 1

2
b+ 1− C

}

- in other words, the (b, i) lying between the minimum and the maximum line
generated by C - is the region (in the (b,i) plane) generated by C.

We give another corollary to Corollary 4.2.
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Corollary 4.4. Let p be a prime number. Then there are exactly three lines in
the (b, i) plane generated by p. These are

Lp,B,r =

{
(b, i) ∈ Z2 | i =

p− 1

2
· b+m

}

where

m =





1− p, if r 6= B 6= 0

1− p(p+1)
2 , if r 6= B = 0 ∨ r = B 6= 0

1− p2, if B = r = 0

Moreover

Sp,B,r = Lp,B,r ∩
{

(b, i) ∈ Z2 | b = pk + r +m′ for some k ∈ Z
}

where

m′ =





2, r 6= B 6= 0

p+ 1, r 6= B = 0 ∨ r = B 6= 0

2p, B = r = 0

Proof. gcd(B, p), gcd(B − r, p) ∈ {1, p}, since p is prime. This gives precisely
the possibilities above.

Theorem 4.5. Let T be a triangle with normal form (Ck + r,B,C). Let n be
the number of lines in the (b, i)-plane generated by C. Then

π(C) + 1 ≤ n ≤
(
π(C)

2

)
+ π(C) (33)

where π(C) is the number of divisors of C.

Proof. The lines generated by a certain C all have the same slope, but different
intercepts. We see in Corollary 4.2 that the intercepts are determined by the
sums gcd(B,C) + gcd(B − r, C) for different B and r.

gcd(B,C) and gcd(B−r, C) are both divisors of C, so they can each take on
π(C) possible values. Either gcd(B,C) = gcd(B − r, C), which can happen in

π(C) different ways, or gcd(B,C) 6= gcd(B − r, C), which can happen in
(
π(C)
2

)

different ways. Therefore, the maximum number of distinct sums gcd(B,C) +

gcd(B − r, C) is π(C) +
(
π(C)
2

)
. Note that we do not always have equality,

since different choices of gcd(B,C) and gcd(B − r, C) can give the same sum
gcd(B,C) + gcd(B − r, C).

However, if gcd(B,C) = gcd(B − r, C) = di|C, then gcd(B,C) + gcd(B −
r, C) = 2di, and 2di 6= 2dj if di 6= dj . This gives us at least π(C) distinct
sums. Assume that D = {d1, d2, . . . , dk} is the divisors of C, and assume that
d2 is the smallest divisor of C not equal to 1. Then 1 + 1 < 1 + d2 < 2d2,
since d2 > 1. In other words, there is at least one sum distinct from those
where gcd(B,C) = gcd(B,C), so the number of lines generated by C is at least
π(C) + 1.

Thus we have proved that the number of distinct sums gcd(B,C) + gcd(B−
r, C) is at least π(C) + 1 and at most π(C) +

(
π(C)
2

)
.
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Example 4.2. Recall Example 4.1.
The divisors of 4 are {1, 2, 4}. Hence, π(4) = 3. According to Theorem 4.5,

the number of lines generated by C = 4 is greater than or equal to 3 but less
than or equal to 6. We saw in Example 4.1 that C = 4 generates six lines.

Furthermore,

minL,4 = L4,0,0 : i =
3

2
b− 15

maxL,4 = L4,1,0 : i =
3

2
b− 3

5 Conditions on (b,i)

We note the following relation, which is just a reformulation of Pick’s theorem
(Theorem 2.4) using Theorem 4.1. It will be used repeatedly in this section.

Proposition 5.1. Let T be a triangle with integer vertices and with normal
form (A,B,C). Then

b(T ) + 2(i(T )− 1) = AC = 2 · a(T )

5.1 Feasible composition of b with respect to i

In this section, we will look for conditions on (b, i) for there to be a triangle T
such that b = b(T ) and i = i(T ).

Definition 5.1. Let b ≥ 3 and i ≥ 0 be integers. We say that b = n1 + n2 +
n3, where the nj are positive integers, is a feasible composition of b with
respect to i if the following conditions are satisfied:

nj ≤ b− 2, for j = 1, 2, 3 (34)

nj |b+ 2(i− 1), for j = 1, 2, 3 (35)

gcd(n2, n3) | n1 (36)

n1 even =⇒ [n2 even ⇔ n3 even ] (37)

n1 odd =⇒ ¬ (n2 even ∧ n3 even ) (38)

nj1 = nj2 for some j1 6= j2 =⇒ nj1 |nj3 , where j3 6∈ {j1, j2}
and j1, j2, j3 ∈ {1, 2, 3}

(39)

b+ 2(i− 1)

n1
= p, where p prime =⇒ n2 ∈ {1, p} ∧ n3 ∈ {1, p} (40)
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5.2 Necessary and sufficient conditions

Theorem 5.2. Let b ≥ 3 and i ≥ 0 be integers.

(i) Let T be a triangle with normal form (A,B,C) such that b = b(T ) and
i = i(T ). Then there exists a feasible composition b = n1+n2+n3 of b with
respect to i, such that n1 = A, n2 = gcd(B,C) and n3 = gcd(B −A,C).

(ii) Conversely, let b = n1 +n2 +n3 be a feasible composition of b with respect
to i. Assume that there exists integers A,B,C such that A > 0, 0 ≤ B < C
and 




A = n1

gcd(B,C) = n2

gcd(B −A,C) = n3

(41)

Then T with VT = {(0, 0), (A, 0), (B,C)} is a lattice triangle such that
b(T ) = b and i(T ) = i.

Proof. To prove (i), we will show that all the conditions in the definition of a
feasible composition of b with respect to i are necessary for there to be a triangle
T such that b = b(T ) and i = i(T ).

Let T be a triangle with normal form (A,B,C). By Theorem 4.1, we have
that b(T ) = A+ gcd(B,C) + gcd(B − A,C). This shows that we must be able
to find a composition of b into exactly three positive integers for there to be a
triangle with b = b(T ).

For the rest of the proof, let n1 = A, n2 = gcd(B,C) and n3 = gcd(B−A,C).
It is obvious that (34) is a necessary condition, since ni ≥ 1 for i = 1, 2, 3.
Now, b(T )+2(i(T )−1) = 2a(T ) = AC, by Proposition 5.1. This shows that

n1|b + 2(i − 1). Also, n2|C and n3|C. Since C|b + 2(i − 1), we conclude that
ni|b+ 2(i− 1) for i = 1, 2, 3. This proves that (35) is necessary.

n2 | B and n3 | B − n1, which means that B = k1n2 and B − n1 = k2n3 for
some k1, k2 ∈ N, so n1 = B − (B − n1) = k1n2 − k2n3. Hence, gcd(n2, n3) | n1,
by Lemma 3.1. We have proved that (36) is necessary.

Assume that n1 is even. Then

n3 even ⇔ B − n1 even ∧ C even ⇔ B even ∧ C even ⇔ n2 even

This proves that (37) is necessary.
Assume that n1 is odd. Then

n2 even =⇒ B even ∧ C even =⇒ B − n1 odd ∧ C even =⇒ n3 odd

Of course, this also means that n2 is odd if n3 is even. Thus, we have proved
that (38) is necessary.

Assume that nj1 = nj2 , for some j1 6= j2, where j1, j2 ∈ {1, 2, 3}. We have
the following three chains of implications:

n1 = n2 =⇒ n1|B ∧ n1|C =⇒ n1|B − n1 ∧ n1|C =⇒ n1|n3
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n1 = n3 =⇒ n1|B − n1 ∧ n1|C =⇒ n1|B ∧ n1|C =⇒ n1|n2
n2 = n3 =⇒ n2|B ∧ n2|B − n1 =⇒ n2|n1

This proves that nj1 |nj3 , where j3 ∈ {1, 2, 3} and j3 6∈ {j1, j2}, for all j1 6= j2.
Thus, we have proved that (39) is necessary.

Assume that b+2(i−1)
n1

= p where p is prime. Then C = p, by Proposition
5.1. This implies that

n2 =

{
p, B = 0

1, 0 < B < p
∧ n3 =

{
p, A ≡ B mod p

1, A 6≡ B mod p

Thus, we have proved that (40) is necessary.
This concludes the proof of (i).
Let A,B,C be integers such that A > 0, 0 ≤ B < C and satisfying (41). Let

T be a lattice triangle with VT = {(0, 0), (A, 0), (B,C)}. Then

b(T ) = A+ gcd(B,C) + gcd(B −A,C) = n1 + n2 + n3 = b

by (41) and

i(T ) = a(T )− b(T )

2
+ 1 =

b

2
+ i− 1− b

2
+ 1 = i

where we have used that

a(T ) =
AC

2
=
b+ 2(i− 1)

2
=
b

2
+ i− 1

by Proposition 5.1. Thus we have proved statement (ii).

5.3 Proving non-existence of lattice triangles for a given
pair (b,i)

Theorem 5.2 can be used to prove that for a certain pair (b, i) there is no lattice
triangle T such that b(T ) = b and i(T ) = i, by showing that there is no feasible
composition of b with respect to i.

Example 5.1. There is no triangle T such that b(T ) = 6 and i(T ) = 3.
Let b = 6 and i = 3. Then b+ 2(i− 1) = 10.
First, we use (34) and (35). The divisors of 10 less than or equal to 6−2 = 4

are D = {1, 2}. We want to find a composition of 6 using only the numbers in
D. The only such composition is 6 = 2 + 2 + 2.

But b+2(i−1)
n1

= 10
2 = 5. Since 5 is a prime number, we require that n2, n3 ∈

{1, 5} by (40). But n2 = n3 = 2 6∈ {1, 5}. Therefore, 6 = 2 + 2 + 2 is not a
feasible composition of 6 with respect to 3.

Hence, there is no feasible compositions of 6 with respect to 3. This implies,
by Theorem 5.2, that there is no triangle T such that b(T ) = 6 and i(T ) = 3.
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Example 5.2. There is no triangle T such that b(T ) = 15 and i(T ) = 11.
Let b = 15 and i = 11. Then b+ 2(i− 1) = 35.
Again, we begin by using (34) and (35). The divisors of 35 which are less

than or equal to 15− 2 = 13 are D = {1, 5, 7}. Then

{(n1, n2, n3) | 15 = n1 + n2 + n3 ∧ ni ∈ D, for i = 1, 2, 3}

= {(5, 5, 5), (7, 7, 1), (7, 1, 7), (1, 7, 7)}
We will show that none of these compositions is a feasible composition of 15
with respect to 11.

Let (n1, n2, n3) = (5, 5, 5). Then b+2(i−1)
n1

= 35
5 = 7. But 7 is a prime

number. Then n2, n3 ∈ {1, 7} by (40). But n2 = n3 = 5 6∈ {1, 7}. Hence,
(n1, n2, n3) = (5, 5, 5) is not a feasible composition of 15 with respect to 11.

The remaining compositions all have the property ni = 7 = nj for some
i 6= j. But 7 - 1. Hence, by (39), none of these compositions is a feasible
composition.

Hence, there is no feasible composition of 15 with respect to 11. This implies,
by Theorem 5.2, that there is no triangle T such that b(T ) = 15 and i(T ) = 11.

5.4 Lattice triangles with prime normalized area

Definition 5.2. The T be a triangle. We say that 2 · a(T ) is the normalized
area of T.

Theorem 5.3. Let b ≥ 3 and i ≥ 0 be integers such that b+ 2(i−1) = p, where
p is prime and p ≥ 3. Then there exists a triangle T such that b(T ) = b and
i(T ) = i if and only if (b, i) ∈

{
(p+ 2, 0), (3, p−12

}
.

Moreover, the triangles satisfying this condition are precisely those with the
normal form

(A,B,C) ∈ {(1, B, p) | B ∈ {0, 1, . . . , p− 1}} ∪ {(p, 0, 1)}

Specifically

(b(T ), i(T )) =

{
(3, p−12 ), (A,B,C) ∈ {(1, B, p) | B ∈ {2, 3, . . . , p− 1}}
(p+ 2, 0), (A,B,C) ∈ {(1, 0, p), (1, 1, p), (p, 0, 1)})

Proof. Let b ≥ 3 and i ≥ 0 be integers such that b + 2(i − 1) = p and let T
be a triangle with normal form (A,B,C). Then b+ 2(i− 1) = AC for positive
integers A and C, by Proposition 5.1, which implies that

(A,C) ∈ {(1, p), (p, 1)}

Assume that (A,C) = (p, 1). Then B = 0, since 0 ≤ B < C. Thus, the only
possible choice is T = (p, 0, 1). By using Theorem 4.1, we get

b((p, 0, 1)) = p+ 2
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and
i((p, 0, 1)) = 0

On the other hand, assume that (A,C) = (1, p). Then B ∈ {0, 1, . . . , C − 1}.
We get

b((1, B, p)) =

{
p+ 2, if B ∈ {0, 1}
3, if B ∈ {2, 3, . . . , p− 1}

and

i((1, B, p)) =

{
0, if B ∈ {0, 1}
p−1
2 B ∈ {2, 3, . . . , p− 1}

again by Theorem 4.1.

Note that Theorem 5.3 is also a special case of a theorem proved by Hi-
gashitani [5, Theorem 0.1].

Given a prime number p, Theorem 5.3 gives us an enumeration of all lattice
triangles having normalized area p.

Furthermore, Theorem 5.3 means that on the line i = − b
2 + (1 + p

2 ) in
the (b, i) plane, the only points (b, i) for which there exists a lattice triangle is
(b, i) ∈

{
(p+ 2, 0), (3, p−12 )

}
. This gives us classes of (b, i) for which we know

there are no lattice triangles.

Example 5.3. A lattice triangle has normalized area 5 if and only if its normal
form belongs to the set

{(1, 0, 5), (1, 1, 5), (1, 2, 5), (1, 3, 5), (1, 4, 5), (5, 0, 1)}

There is no lattice triangle T such that b(T ) = 5 and i(T ) = 1, since b(T ) +
2(i(T )− 1) = 5 but b(T ) = 5 6∈ {3, 7}.

6 Patterns of non-existence of lattice triangles

As noted at the end of the last section, Theorem 5.3 gives us classes of (b, i)
for which there are no lattice triangles. In this section, we will conjecture the
non-existence of lattice triangles for other large classes of (b, i).

Recall Corollary 4.2. Consider Figures 7 and 8. At least for small C, one
can clearly see the lines generated by different C. Consider the lines generated
by C = c and C = c+1 for some integer c ≥ 2. There seems to be some positive
integer k such that for b ≥ k there are no points (b, i) in the area in between
the maximum line generated by c and the minimum line generated by c+1. We
know the equations for these lines, thanks to Corollary 4.2 and Corollary 4.3.

The following proposition is used in Conjecture 6.2.

Proposition 6.1. Let C be a positive integer. Let (b, i) be the point where
maxL,C and minL,C+1 intersect. Then

(i) b = 2(C2 + C + 1) and i = C(C + 1)(C − 1)
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(ii) T with VT = {(0, 0), (2C(C + 1), 0), (1, C)} is a lattice triangle such that
b = b(T ) and i = i(T )

Proof. Recall Definition 4.3. maxL,C has the equation

i =
C − 1

2
b+ 1− C

and minL,C+1 has the equation

i =
(C + 1)− 1

2
b+ 1− (C + 1)2 =

C

2
b− (C2 + 2C)

by Corollary 4.2 and Corollary 4.3. They intersect when

C − 1

2
b+ 1− C =

C

2
b− (C2 + 2C)

⇔ b = 2(C2 + C + 1)

which gives

i =
C

2
2(C2 + C + 1)− (C2 + 2C) = C(C + 1)(C − 1)

This proves (i).
To prove (ii), we must show that (b, i) = (2(C2 + C + 1), C(C + 1)(C − 1))

belongs to the lattice triangle subset of at least one of maxL,C or minL,C+1.
Consider maxL,C . By Definition 4.2, the lattice triangle subset is

{
(b, i) ∈ Z2 | b = Ck + r + 2 for some non-negative k ∈ Z

}

where r is such that gcd(B−r, C) = 1, where in turn B is such that gcd(B,C) =
1. This is satisfied by, for example, the choice B = 1 and r = 0. Hence, there
is a lattice triangle at (b, i) = (2(C2 +C + 1), C(C + 1)(C − 1)) if we can find a
positive integer k such that

2(C2 + C + 1) = Ck + 2

⇔ k = 2(C + 1)

which obviously can always be done. This proves (ii).

We formulate the following conjecture.

Conjecture 6.2. Let C ≥ 2 be an integer.
Then there are no lattice triangles T such that

b(T ) > 2(C2 + C + 1) ∧ C − 1

2
b(T ) + 1− C < i(T ) <

C

2
b(T )− C(C + 2)

Furthermore, by Proposition 6.1, there is lattice triangle T such that

b(T ) = 2(C2 + C + 1) ∧ i(T ) = C(C + 1)(C − 1)

By computation, the conjecture has been verified to hold for triples (C, b, i)
such that C ≤ 11, i ≤ 1500 and b ≤ 2 · 1500 + 7 = 3007.
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See figure 10.
Note that for C = 1, the conjecture would claim there are no lattice triangles

such that

b(T ) > 6 ∧ 0 < i(T ) <
b(T )

2
− 3

We see that

i(T ) <
b(T )

2
− 3⇔ b(T ) > 2i(T )− 6

which is almost true, by Scott’s inequality (Theorem 2.5); however, by the same
theorem we know that there is exactly one lattice triangle violating this, namely
T with VT = {(0, 0), (3, 0), (0, 3)}. T is such that b(T ) = 9 and i(T ) = 1. With
the exception of this triangle, the conjecture holds for C = 1 as well.

Let c ≥ 2 be a given integer. According to Conjecture 6.2 there are no lattice
triangles for (b, i) in the region between the maximum line generated by c and
the minimum line generated c+ 1 for b > 2(c2 + c+ 1). But consider Figure 11.
According to the conjecture, there are no lattice triangles for (b, i) between the
maximum line generated by 2 and the minimum line generated by 3 for b > 14
(set C = 2 in the conjecture). However, we see that regions generated by c′ > c,
here c′ = 30, intersect the aforementioned region. In other words, there are lines
generated by larger C’s intersecting that region. This means it is not obvious
that there are no lattice triangles in the region in question.

To prove the conjecture, one must show that there are no lattice triangles on
the lines intersecting the regions claimed to have no lattice triangles, i.e. that
for each line intersecting such a region, the intersection of the region and the
lattice triangle subset of the line is empty.

7 Conclusions regarding Ehrhart polynomials

Recall Definition 2.6. The following theorem can be shown. We will prove it
only for lattice triangles.

Theorem 7.1 ([2], pp. 38-40). The Ehrhart polynomial of a lattice polygon P
in R2 is

LP (t) = a(P )t2 +
b(P )

2
t+ 1

Proof. Let T be a lattice triangle with normal form (A,B,C). Then tT has the
normal form (tA, tB, tC). This gives

a(tT ) =
tA · tC

2
=
AC

2
t2 = a(T )t2

and
b(tT ) = tA+ gcd(tB, tC) + gcd(tB − tA, tC)

= t(A+ gcd(B,C) + gcd(B −A,C) = b(T )t

34



F
ig

u
re

11
:

E
x
am

p
le

of
h

ow
re

gi
on

s
cl

ai
m

ed
to

h
av

e
n

o
la

tt
ic

e
tr

ia
n

g
le

s
a
re

in
te

rs
ec

te
d

b
y

re
g
io

n
s

g
en

er
a
te

d
b
y

la
rg

er
C

’s
.

35



by Theorem 4.1. Finally,

LP (t) = i(tT ) + b(tT ) = a(tT )− b(tT )

2
+ 1 + b(tT ) = a(tT ) +

b(tT )

2
+ 1

= a(T )t2 +
b(T )

2
t+ 1

where we have used Pick’s theorem (Theorem 2.4) for the second equality. We
have thus proved the theorem for lattice triangles.

Lemma 7.2. Assume that P is a lattice polygon in R2 with Ehrhart polynomial
LP (t) = p

2 t
2 + b

2 t+ 1, where p ≥ 3 is a prime number. Then

LP (t) can be realized by a lattice triangle⇔ b ∈ {p+ 2, 3}

Proof. From the Ehrhart polynomial, we see that a(P ) = p
2 . Hence, the nor-

malized area of P is prime. By Theorem 5.3, P can be a lattice triangle if
and only if b(P ) ∈ {3, p+ 2}. Hence, P can be a lattice triangle if and only if
b ∈ {3, p+ 2}, by Theorem 7.1.

Example 7.1. LP (t) = 5
2 t

2 + 7
2 t + 1 can be realized by a triangle, since the

coefficient of t is p+ 2, with p = 5.
LP (t) = 5

2 t
2 + 3

2 t+ 1 can be realized by a triangle, since the coefficient of t
is 3.

However, LP (t) = 5
2 t

2 + 9
2 t + 1 can not be realized by a triangle, since the

coefficient of t is 9, which is neither p+ 2, with p = 5, nor 3.

Theorem 7.3. There are an infinite number of Ehrhart polynomials of lattice
polygons in R2 which can not realized by a lattice triangle.

Proof. Let q(t) = p
2 t

2 + 5t + 1, where p is prime. If this polynomial is realized
by a lattice polygon P , then a(P ) = p

2 and b(P ) = 5. Such a polygon exists if

5 ≤ 2i+ 6 = 2

(
p

2
− 5

2
+ 1

)
+ 6⇔ p ≥ 2

by Theorem 2.6 and Theorem 2.4. This inequality is certainly satisfied by all
primes p.

q(t) can be realized by a lattice triangle if and only if 5 ∈ {3, p+ 2} by
Lemma 7.2. This is satisfied if and only if p = 3.

But there are infinitely many primes larger than 3. Hence, there are in-
finitely many Ehrhart polynomials of lattice polygons which are not Ehrhart
polynomials of lattice triangles.
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