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Abstract

Perturbation theory has a long history. In recent decades we have

seen many applications in enzymatic kinetics. We start with some

basic polynomial examples of regular perturbation theory, progress

to singular perturbation and a boundary-value problem of differential

equation, and then tackle a real application in the form of Total Quasi

Steady State from enzyme kinetics.
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1 Introduction

Perturbation theory has its roots in celestial mechanics and aerodynamics.

There are two particularly interesting victories that perturbation theory has

enabled. The first was the discovery of Neptune, and the second was the

theoretical foundation for aerodynamics.

The promise of perturbation theory is that it allows us to find approximate

solutions to a larger class of problems, for example, in differential equations,

than we could otherwise with analytical methods. It does this by giving us

approximate but rigorous solutions. In this article we will guide the reader

from a very simple and familiar example, a quadratic equation, all the way

to a useful research example in system biology: the total quasi steady state

in enzyme kinetics.

The article has been written with the goal that any student with a basic

understanding of calculus, differential equations and linear algebra will be

able to follow along. All the relevant biology and perturbation theory will

be explained as it becomes necessary.
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2 A regular perturbation

We are going to start with one of the simplest non-trivial examples imagin-

able, a quadratic equation:

x2 − 2x+ ε = 0. (1)

We know how to solve this analytically. The roots of the equation are

x1 = 1 +
√

1− ε and x2 = 1−
√

1− ε.

The case we are interested in is the one where ε is very small. In this case, we

can see that setting ε = 0 produces the roots x = 0 and x = 2 respectively.

In fact, for any given small ε we notice that the solution changes very little.

In that sense it’s a very ”boring” and predictable problem.

Can we make more rigorous the observation that a small change in ε only

brings about a small change in the solution? One way is to rewrite the part

of the solution containing ε as a Taylor series. Recall the definition of a

Taylor series for a function f(x) around a point a is

f(x) =
∞∑

n=0

fn(a)

n!
(x− a)n. (2)

The Taylor series for f(ε) = (1 − ε)1/2 around 0 (since we assume that ε is

very small) is thus
√

1− ε = 1− ε

2
− ε2

8
+O(ε3), (3)

where O(ε3) is some expression with a term ε3 in it. This is called Big-Oh

notation and it is commonly used to describe the limiting behaviour of a

function. If we take the limit of this expression as ε → 0, it’s obvious that
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our intuition is correct. That is, a small change in ε only brings about a

small change in the solution. We get

x1 = 2− ε

2
− ε2

8
+O(ε3), (4)

x2 =
ε

2
+
ε2

8
+O(ε3). (5)

What is the point of all this? We said in the beginning that perturbation

theory allows us to find approximate solutions to a larger class of problems,

but what we have done so far hasn’t given any indication of that being

true. After all, we already have an analytical formula for the quadratic

equation.

Let’s start over, but this time let’s assume we don’t have the quadratic

formula at our disposal. We will outline a method which would allow us to

get arbitrarly good approximations for polynomials of any degree.

Let’s assume the solutions of (1) in terms of x can be expressed in the form

of some power series of ε, where ε is a small number:

∞∑

0

akε
k = a0 + a1ε+ a2ε

2 + ... (6)

Another name for this type of series is perturbation series. We will now insert

this perturbation series into (1), and then expand that expression in terms of

powers of ε. We only have to do this for the first few terms of the perturbation

series to get a decent approximation. If we want to we can always add more

terms and get a more accurate approximation. We have

(a0 + a1ε+ a2ε
2 + ...)2 − 2(a0 + a1ε+ a2ε

2 + ...) + ε = 0. (7)
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We expand the expression using Big-Oh algebra. For example, for the first

term, we get: (a0 + a1ε+ a2ε
2)2 = a2

0 + 2a0a1ε+ (a2
1 + 2a0a2)ε2 +O(ε3). The

whole expression becomes

a2
0 − 2a0 + (2a0a1 − 2a1 + 1)ε+ (a2

1 + 2a0a2 − 2a2)ε2 = O(ε3), ε→ 0. (8)

Now we turn to the problem of determining the coefficients a0, a1 etc. Since

ε is treated as a variable, as opposed to as a parameter, we see that the

coefficients before each power of ε separately all have to be equal to zero. We

thus get the following system of equations for solving the coefficients:

a2
0 − 2a0 = 0, (9)

2a0a1 − 2a1 + 1 = 0, (10)

a2
1 + 2a0a2 − 2a2 = 0. (11)

Solving these equations in turn gives us, starting with the first equation,

a0 = 0 or a0 = 2. For a0 = 0 we have a1 = 1
2

and a2 = 1
8
. For a0 = 2 we have

a1 = −1
2

and a2 = −1
8
.

We said at the beginning that we assume the solution is in the form of a

perturbation series. We have two options for the coefficients of this pertur-

bation series, and these corresponds to the two approximate solutions of the

original equation. From the above and (6) we get

x1 =
1

2
ε+

1

8
ε2 +O(ε3), (12)

x2 = 2− 1

2
ε− 1

8
ε2 +O(ε3). (13)

This is exactly the same as our previous solutions in (4) and (5), without

the use of the quadratic formula. There was nothing we did that assumed a
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second degree polynomial. We have thus found a general method for finding

approximate solutions to polynomials of any degree with a small parameter

ε.
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3 A singular perturbation

In the last section we dealt with a so called regular perturbation problem. In

this section we will deal with a singular perturbation problem. What is the

difference? In a singular perturbation problem, the small ε matters for the

solution. In general, singular problems are interesting precisely because their

solutions can change significantly with just a small change in circumstances.

More precisely, a singular perturbation problem is one where setting ε to 0

doesn’t give us a good approixmate solution.

A way to get some intuition in the matter is to imagine balancing a pen

on a table. It’s possible to get the pen to stay upright, but just a slight

perturbation of the pen results in it falling in one of many directions.

As before, we will use a quadratic equation to illustrate how this works,

εx2 − 2x+ 1 = 0, (14)

where ε is a very small number. This equation has the solutions

x1 =
1 +
√

1− ε
ε

, (15)

x2 =
1−
√

1− ε
ε

. (16)

The first thing we notice is that even though ε is very small, we can’t set it to

zero. If we were to do it in (14), we would only get a one degree polynomial.

The fact that we are losing solutions is a qualitative change and is indicative

that we are dealing with a singular perturbation problem.

Let’s try using the same method as we did before. We assume x can be

expressed in the form of a perturbation series. Inserting this in our equation
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gives us

ε(a0 + a1ε+ a2ε
2)2 − 2(a0 + εa1 + a2ε

2) + 1 = 0, (17)

which gets expanded into

(−2a0 + 1) + (a2
0 − 2a1)ε+ (2a0a1 − 2a2)ε2 +O(ε3), (18)

and leads to

−2a0 + 1 = 0, (19)

a2
0 − 2a1 = 0, (20)

2a0a1 − 2a2 = 0. (21)

The only solution to this system of equations is a0 = 1
2
, a1 = 1

8
, a2 = 1

16
.

This gives us only one of the roots,

x1 =
1

2
+

1

8
ε+O(ε2). (22)

Note that the a2 coefficient is included in the O(ε2) expression. By the

Fundamental Theorem of Algebra, we would expect to see two solutions.

What happened to the other root? We missed it because it’s not on the form

of a perturbation series. That is, the other solution diverges as ε → 0. So

what do we do?

The key here is that we can do a change in variable to turn the problem into

a regular perturbation problem:

x(ε) =
y(ε)

δ(ε)
. (23)

Here we are treating x as a function, y(ε) is O(1) and we want to determine

the re-scaling factor function δ(ε). Our original equation becomes

ε

δ2
y2 − 2

δ
y + 1 = 0. (24)

10



Our goal is to simplify this equation. We do this by dropping insignificant

terms. As we have seen, it turns out that the first term in the equation is

not insignificant, so we have to leave it in. Is there some other term that we,

to a first approximation, can drop?

All three terms in the above equation have some order of magnitude. The

method of dominant balance tells us to look for pairs that balance (∼),

where balance means they are of the same order of magnitude. We have

already determined that the first term can’t be dropped, so we have two

possibilities.

The first possibility is that ε
δ2
y2 ∼ 1, with 2

δ
being insignificant. ε

δ2
= 1 =⇒

δ = ε
1
2 . But then 2

δ
= 2√

ε
which isn’t small as ε→ 0.

The second possibility is that ε
δ2
y2 ∼ 2

δ
y, with 1 being insignificant. This

means ε
δ2

= 1
δ

which implies that δ = ε. This seems correct as both expres-

sions are O(1
e
), and 1 is small compared to this when ε→ 0. We get

P (x) = εx2 − 2x+ 1, (25)

εP
(y
ε

)
= y2 − 2y + ε, (26)

where the last part is exactly the same as our regular perturbation problem

in equation (1). As before, this gives us

y1 =
1

2
ε+

1

8
ε2 +O(ε3), (27)

y2 = 2− 1

2
ε− 1

8
ε2 +O(ε3), (28)
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which means that

x1 =
1

2
+

1

8
ε+O(ε2), (29)

x2 =
2

ε
− 1

2
+

1

8
ε+O(ε2). (30)

The first root approaches 1
2

as ε → 0, and the second root is our missing

solution that approaches ∞ as ε→ 0. This is the essence of singular pertur-

bation theory - to find the singular behavior and do a change of variable to

turn it into a regular perturbation problem.
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4 ODE and boundary theory

Boundary layer theory has its origins in aerodynamics and the work of

Prandtl. He discovered that fluids, like air around a plane and water around

some obstacle flow, are almost completely void of viscosity, or stickiness,

except for in a very thin region near the boundary of the plane of the ob-

stacle. This observation meant that one could treat these two phenomena as

separate problems - one where viscosity can be discarded, and one where it

matters a lot - as opposed to treating it as one big complex problem. This

simplified calculations greatly.

We will now give a basic example of this in the form of a boundary value

problem with differential equations. Recall that a boundary value problem

is one where we have some set of constraints that have to be fulfilled, called

boundary conditions. We will again look at a problem which we could solve

explicitly, but which we will instead use perturbation theory to analyze. In

a boundary value problem, we have two boundary value conditions and, in

a first approximation, they can’t both be satisfied at the same time. The

strategy we use is to split the problem in two - one where we are in a very thin

region at t = 0 (where we have a boundary condition), the so called “inner

region”, and one where we are in an “outer region”, which is everywhere else.

This strategy is generalizable to multiple layers.

We start by looking for the outer solution, then the inner solution, then we

match them together into one unified solution.
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4.1 Outer solution

We are now going to look at a differential equation

εy′′ + 2y′ + y, y(0) = 0, y(1) = 1, 0 < x < 1. (31)

If we naively set ε = 0 we see that the resulting equation 2y′ + y has the

general solution Ce−
1
2
x. This can’t satisfy both boundary conditions at once.

If it satisfies y(0) = 0 we have y = 0 as the only solution, and if it satisfies

y(1) = 1 we have

yO = e
1
2

(1−x). (32)

We are going to assume this is a good approximation somewhere. It is valid

for the y(1) = 1 boundary condition, so we call this the outer solution.

Like the example in the last section, we missed something when we set ε = 0.

We have found one of the two solutions and now we want to the find the

other one with the help of pairwise balancing.

4.2 Inner solution

We are assuming the boundary layer is near 0, and that it has a thickness

δ(ε). By thickness we simply mean the order of magnitude where the ap-

proximation is valid. For example, in Figure 2 (see section 4.4) we can see

that at x = δ(ε) = ε (not derived until later in this section), the difference

between the approximation and the solution is negliable.

We introduce a re-scaling variable

x =
x

δ
. (33)
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Having two scales like this is typical for singular perturbation problems. Our

original equation (31) becomes

ε

δ2

d2y

dx2 +
2

δ

dy

dx
+ y = 0. (34)

We now do pairwise balancing, as before. Looking at the coefficients of the

above equation, we have the following orders of magnitude

O
( ε
δ2

)
, O
(1

δ

)
, O(1). (35)

We must have ε
δ2

present, so the question is if it balance one of the other

terms with one being insignificant, and if so, which one is insignificant. There

are two possibilities. Either we have

ε

δ2
∼ 1 =⇒ δ = ε

1
2 , (36)

but then 1
δ

is big compared to 1. Or we have

ε

δ2
∼ 1

δ
=⇒ δ = ε, (37)

in which case 1 is indeed insignificant.

We have, multiplying by ε, the inner equation

d2y

dx2 + 2
dy

dx
+ εy = 0. (38)

To a first approximation we can neglect the last term, so we have

d2y

dx2 + 2
dy

dx
= 0. (39)

Together with the other initial condition y(0) = 0 we get the general inner

solution, valid in a region of thickness ε close to x = 0,

yI = C(1− e−2x). (40)
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We now have an outer and inner solution, and we turn to matching these to

determine the value of the constant C.
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4.3 Matching and uniform approximation

The idea behind matching is that there is some edge or region between the

inner and outer solution, a region where both solutions are valid approxima-

tions. We find a uniform approximation by piecing together our inner and

outer solution, so that we have one single expression of the solution that is

valid everywhere in our interval.

The procedure we will follow works in this case, but it’s worth noting that it’s

not always this straightforward. For more details, consult a good textbook

such as Bender and Orszag [1].

If we imagine a particle tracing the x-axis rightward, as we exit the boundary

layer, i.e. as x → ∞, the value of yI should be equal to the value of yO as

x→ 0, that is

lim
x→∞

yI = lim
x→0+

yO ⇐⇒ lim
x→∞

C(1− e−2x) = lim
x→0+

e
1
2

(1−x). (41)

This is called a matching condition. The right-hand side equals e
1
2 , and thus

the left-hand side gives us that C = e
1
2 .

We now have two separate approximations. We would like to have one sin-

gle approximation that is valid everywhere. We do this by adding the two

approximations together and removing their common part to avoid double

counting. Intuitively, one of the approximations is great close to one of

the boundary conditions, ok in the middle, and terrible close to the other

boundary conditions. The other approximation is exactly the opposite. By

combining them, we get a smooth approximation of the whole solution:

yU = yo(x) + yI

(x
δ

)
− e 1

2 . (42)
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The common part comes from the matching condition earlier in this section.

In the inner region the other terms are negliable, and vice versa in the outer

region,

yU = e
1
2

(1−x) + e
1
2 (1− e−2x

ε )− e 1
2 (43)

= e
1
2 (e

−x
2 − e−2x

ε ). (44)

This is our uniform approximation for the whole solution. We can com-

pare this to the exact solution and see that it is indeed a good approxima-

tion.

4.4 Comparison with exact solution

We saw in the previous section what a good approximation to the solution

is. Our original equation (31) can however be solved exactly, so let’s do

that.

The characteristic polynomial εr2 + 2r + 1 = 0 has the solutions −1±√1−ε
ε

.

We have that

yε(x) = c1e
−1+

√
1−ε

ε
x + c2e

−1−√1−ε
ε

x. (45)

With the help of the boundary conditions y(0) = 0, y(1) = 1 we see that

c2 = −c1 = − 1

e
−1+

√
1−ε

ε − e−1−√1−ε
ε

. (46)

We use a Taylor expansion as before and define

α1 =
1−
√

1− ε
ε

=
1

2
+O(ε), (47)

α2 = 1 +
√

1− ε = 2 +O(ε). (48)
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We can then express the solution as

yε(x) =
1

e−α1(ε) − e−α2(ε)ε

(
e−α1(ε)x − e−α2(ε)xε

)
. (49)

There are two terms in this solution. As ε → 0+, for fixed x ∈ (0, 1), all

the expressions involving division by ε disappear, i.e. all the a2 terms. The

solution becomes

yε(x)→ e
−x
2

e
−1
2

= e
1
2

(1−x). (50)

This is exactly the outer solution we got before in (32), satisfying y(1) = 1

but not y(0) = 0.

Notice that the above is just valid for a fixed x, as we will see below. If we

instead take (49) and notice that, for arbitrarily small ε, e−
α2(ε)
ε is 0. The

exact solution is thus (we distinguish between an approximation of the exact

solution, and the outer approximation):

yε(x) ≈ e
1
2 (e−

x
2 − e− 2x

ε ), 0 < ε� 1. (51)

When we graph (50) and (51) for any given ε we see that, outside of a small

region near 0, the outer approximation is indeed a good approximation. We

get the second graph by doing the same thing for the inner solution.

For the first graph, note that the outer approximation starts at y(0) = e
1
2 ,

and thus misses the contribution ε has on the solution for very small x val-

ues.

For the second graph, notice the agreement between the exact and inner

approximation in a region close to x = 0 (which we can move arbitrarily

closer by using a smaller ε).
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Figure 1: The full line is the outer approximation, ε = 0.1.

Figure 2: The full line is the inner approximation, ε = 0.1.
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5 Total Quasi Steady State

5.1 A biological problem

In enzyme kinetics we often come across chemical reactions like

E + S
k1⇀↽
k−1

C
k2−→ E + P (52)

This is an enzyme E and substrate S that combine, reversibly, to form a com-

plex C, which in turn gives us a product P and enzyme E back. k1, k−1, k2 are

rate constants. We won’t bother with the biological details too much, but will

instead look at how we can analyze the above as a dynamical system.

The law of mass action tells us that two molecules A and B forming complex

C, A+B
k−→ C are governed by dC

dt
= kAB. That is, the greater concentra-

tion of A or B we have, the faster the complex C is formed. This has been

experimentally verified by Guldberg and Waage in 1867, and many times

since.

With this law, we can translate our chemical reaction into a system of dif-

ferential equations:

dE

dt
= −k1ES + k−1C + k2C, (53)

dS

dt
= −k1ES + k−1C, (54)

dC

dt
= k1ES − k−1C − k2C, (55)

dP

dt
= k2C. (56)

In the study of enzyme kinetics, we normally have some initial conditions to

help us out: S(0) = S0, E(0) = E0, C(0) = 0, P (0) = 0.
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We see immediately that
dE

dt
+
dC

dt
= 0. (57)

Together with the initial conditions we get that

E + C = E0, (58)

which we can use to eliminate E from the equation. This is called a conser-

vation law. We also don’t care about P, as it doesn’t feed back into the other

equations. We are left with

dS

dt
= −k1(E0 − C)S + k−1C, (59)

dC

dt
= k1(E0 − C)S − k−1C − k2C. (60)

This is a two-dimensional system, which is much easier to deal with. Can we

do better? It turns out we can.

Very often, in practice, the substrate has a much higher concentration than

the enzyme. This means that C can be treated as constant after a short initial

period. By exploiting this fact, we can reduce the system to one equation.

This is called the Quasi-Steady State approximation.

Assume that C is constant ⇐⇒ dC
dt

= 0 after a short period of time. Then

we write
dS

dt
= −k2C (61)

with

C =
E0S

Km + S
, (62)

whereKm = k−1+k2
k1

is the so called Michaelis-Menten constant. We have

dS

dt
= − k2E0S

Km + S
(63)
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together with S(0) = S0 as initial condition. This is what is normally con-

sidered the QSSA, valid after some short amount of time has passed.

We can justify this with a procedure similar to one in the previous section,

as done by for example Lin and Segel [5]. Instead we are going to look at a

slight variation of this, namely what happens when the amount of substrate

isn’t much bigger than the amount of enzyme. This is the Total Quasi Steady

State assumption, discovered by Borghans and Segel 1996 [2].

5.2 TQSSA

The basic idea behind TQSSA is to perform a change of variable

S = S + C. (64)

This change of variable makes the approximation valid not just when the

substrate has a much higher concentration than the enzyme, but also, under

certain conditions, when they are roughly equal. This makes the TQSSA

valid for a wider range of parameters. We will see in the next few sections

what those conditions are.

We get the following system of equations from (59), (60) and (64)

dS

dt
= −k2C, (65)

dC

dt
= k1(E0 − C)(S − C)− (k−1 + k2)C. (66)

Together with initial conditions S(0) = S0, C(0) = 0, these are the rate

equations for the TQSSA.
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Figure 3: TQSSA phase plane. Initial state is S(0) = 0.1, C(0) = 0. E =

0.01, k1 = 10, k−1 = 1, k2 = 0.1.

We get some intuition of the behavior by inspecting the phase plane of the

above equations. With the help of XPP (see appendix for the source code

used), we can numerically simulate the system, as seen in Figure 3. There are

two things to note: (1) the steady state is at (0,0) (not shown in graph due to

numerical rounding error, but this can easily be seen looking at the equations

above) and (2) from the initial state there’s a rapid increase of concentration

in the complex C, after which it slowly decreases (quasi-steady state) until

it reaches steady state

The rapid increase of concentration in the complex C is just barely visible in

the top right corner. It can also be seen by looking at the initial conditions,

and then noticing that right after that the line is in the top right corner.
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5.3 Timescales

To analyze the problem rigorously using perturbation theory, we need to

find an expression that estimates these two time scales that the system is

operating with, tC for the fast initial period and tS for the slow quasi-steady

state period.

One way to get some intuition behind the use of different time scales is to

think about the difference between seconds and years. Some phenomena

happens on the scale of seconds or less, like many chemical reaction, whereas

the development of cities happens on a scale of years. If you blink, the city

landscape isn’t going to change before your eyes. Using different time scales

is a way to capture that observation in a rigorous fashion.

We are first going to calculate the timescales for the normal QSSA, to get

some intuition for the concept. We will then extend this to the TQSSA.

Exactly why these timescales are good is not obviously, but as we move into

the next section on Scaling the reasons will hopefully become more clear.

Essentially it’s about finding good approximations for when the (T)QSSA is

valid.

To get the fast time scale, we can estimate S as S0 since in that time period

the substrate concentration won’t change much and we just care about rough

orders of magnitudes for the timescales. From (60) we get

dC

dt
= k1E0S0 − (k1S0 + k−1 + k2)C. (67)

With the help of the initial condition C(0) = 0, we get the solution

C(t) = A(1− eλx), λ = (−S0k1 + k−1 + k2), A =
k1E0S0

S0k1 + k−1 + k2

. (68)
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The timescale here is tC = |λ−1|, which we can rewrite as

tC =
1

k1(S0 +Km)
. (69)

To get the other time scale we first use that dC/dt = 0 after some period

of time, which is the time period we care about. We get ts with the help

of an estimation technique by Segel [6]. This technique tells us to take

Smax − Smin = S0 divided by the maximum of |dS/dt| using S = S0 in (63).

This gives us

ts =
Smax − Smin

|dS/dt|max

(70)

=
Km + S0

k2E0

. (71)

So far we have only derived timescales for the normal QSSA. To get the

timescales for TQSSA, we use the substitution from (64). By doing so, and

assuming dC
dt

= 0 as before, (66) becomes

C2 − (E0 +Km + S)C + E0S = 0. (72)

We define a function f with the goal of solving for C as

f(C) = C2 − (E0 +Km + S)C + E0S. (73)

If we have a quadratic equation x2 + bx+ c, assuming there are two roots x1

and x2, then the quadratic equation can be factored into (x − x1)(x − x2),

where

x1x2 = c. (74)
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Is there a unique positive solution to (74)? No. We know f(0) = E0S > 0,

since a concentration can never be less than 0, and we know from the above

identity that c1c2 = E0S. Thus, assuming c1, c2 are solutions, c1c2 > 0, which

in turn implies that both roots are positive or both roots are negative.

Are there positive solutions? Yes. We have:

f(0) = E0S > 0, (75)

f(E0) = E2
0 − (E0 +Km + S)E0 + E0S (76)

= −KmE0 < 0. (77)

Using the Intermediate Value Theorem for continuous functions, there must

be a number c1 ∈ (0, E0), such that f(c1) = 0 is a solution. Moreover,

since we are dealing with a real polynomial, the Complex Conjugate Root

Theorem says that the complex roots appear in pair. Together with what we

saw above, this implies that both c1 and c2 are positive.

With this we get the following inequalities. First, the discriminant of f(c) is

positive:

(E0 +Km + S)2 − 4E0S > 0. (78)

For a quadratic equation x2+bx+c, we have another identity for its roots:

x1 + x2 =
−b+

√
b2 − 4c

2
+
−b−

√
b2 − 4c

2
= −b. (79)

Hence

c1 + c2 = E0 +Km + S ⇐⇒ c2 = E0 +Km + S − c1. (80)
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And we have our second set of inequalities:

c1 < E0 =⇒ c2 > Km + S, (81)

c1 > 0 =⇒ c2 < E0 +Km + S. (82)

With these inequalities, we can position the roots as follows:

0 < c1 < E0, (83)

0 < Km + S < c2 < E0 +Km + S. (84)

If E0 < Km + S there is only one solution that satisfies the conservation

law (58), since for c2 we would have a contradiction (since E can’t be nega-

tive):

0 < E0, E0 = E + c2, (85)

E0 < Km + S < c2 =⇒ E < 0. (86)

Assuming that the condition above holds, we thus have as our only solu-

tion

c1(S) =
E0 +Km + S −

√
(E0 +Km + S)2 − 4E0S

2
. (87)

We want to investigate what happens when S is very large. Multiplying both

sides with the conjugate we get

c1(S) =
E0S

E0 +Km + S +
√

(E0 +Km + S)2 − 4E0S
, (88)

=
2E0

E0+Km
S

+ 1 +
√

(E0+Km
S

+ 1)2 − 4E0

S

→ E0 as S →∞. (89)
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Since we always have that (E0 +Km +S)2 ≥ E0S we can rewrite (89),

c1 =
2E0S

(E0 +Km + S) + (E0 +Km + S)
√

1− 4E0S
(E0+Km+S)2

(90)

=
2E0S(

E0 +Km + S
)(

1 +
√

1− 4E0S
(E0+Km+S)2

) . (91)

Recall that for an expression like
√

1− x the Taylor expansion around x = 0

is 1 − O(x). This converges for |x| < 1. In our case that means we can

simplify the above as

c1 =
2E0S(

E0 +Km + S
)(

1 +
(

1−O
(

4E0S
(E0+Km+S)2

))) (92)

≈ E0S

E0 +Km + S
. (93)

Let’s now look at when the following inequality holds

(E0 +Km + S)2 � E0S. (94)

This is equivalent to

1� (E0 +Km + S)2

E0S
=

(E0 +Km + S)

E0

(E0 +Km + S)

S
(95)

=
(

1 +
Km

E0

+
S

E0

)(
1 +

E0

S
+
Km

S

)
. (96)

This is true both when S is sufficiently large and when it is sufficiently small

compared to E0.

If S = E0 then

(
1 +

Km

E0

+
S

E0

)(
1 +

E0

S
+
Km

S

)
=
(

2 +
Km

E0

)(
2 +

Km

E0

)
� 1. (97)
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So if E0 < Km + S our approximation (94) is possible.

Doing calucations similar to what we did in beginning of this section, using

equation (94), we eventually end up with these two slightly modified time-

scales:

tC =
1

k1(E0 + S0 +Km)
, (98)

tS =
E0 + S0 +Km

k2 + E0

, (99)

with Km = k−1+k2
k1

as before. We will now analyze this problem like we did in

section 4. But first, we have to scale the system using our newly discovered

timescales.

5.4 Scaling

Lin and Segel defines scaling as follows:

Scaling amounts to nondimensionalizing so that relative magnitude of each

term is indicated by a dimensionless factor preceding that term [5].

We will now introduce scaled, dimensionless variables. We get these variables

by dividing by their respective scales. We have the two time variables

τ =
t

tC
, (100)

T =
t

tS
, (101)

where τ is the fast time scale, and T the slow one. We also scale C and S by
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their maximum:

c =
C

C0

, (102)

s =
S

S0

. (103)

S0 is max since S starts from some constant value S0 and then turns into

the complex C, as we saw before. We derive C’s max, C0, by using the

approximation we got for C in (94) and S = S0:

C0 =
E0S0

E0 + S0 +Km

. (104)

5.5 Outer solution

Now we need a small parameter ε to begin looking for the outer solution,

when the complex changes slowly. A necessary condition for the TQSSA to

hold is 0 < ε� 1 where

ε =
tC
tS

=
k2E0

k1(E0 + S0 +Km)2
. (105)

This comes from Borghans, and it makes sense given what we have learned

about timescales - you can only treat a city landscape as static if you are

looking at it on a short timescale. Assuming tC � tS we will calculate for

the outer region, using the procedure by Khoo and Heglund [4]. Translating

equation (65) and (66) with the help of the above equations and the chain

rule,
dc

dT
=
dC

dt

dt

dT

dc

dC
, (106)
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we get

dc

dT
=
tS
C0

[
k1

(
E0S0s− (E0 + S0s+Km)C0c+ (C0c)

2
)]

(107)

=
(E0 + S0 +Km)2k1

(k2 + E0)

(
s− E0 + S0s+Km

E0 + S0 +Km

c+
(C0)2

E0S0

c2
)

(108)

=
1

ε

(
s− E0 + S0s+Km

E0 + S0 +Km

c+ γc2
)

(109)

with

γ =
(C0)2

E0S0

=
E0S0

(E0 + S0 +Km)2
. (110)

We now have an equation of the form

ε
dc

dT
= γc2 − E0 + S0s+Km

E0 + S0 +Km

c+ s. (111)

We also note that as γ → 0, ε→ 0.

Similarly to what we saw in Section 3, as ε→ 0, we have that

γc2 − E0 + S0s+Km

E0 + S0 +Km

c+ s = 0. (112)

As justified in (95) to (98), γ � 1 when S is sufficiently large or small

compared to E0. Recall what we learned in Section 3. We have established

that, under certain conditions, the quadratic equation has only one solution.

Our above quadratic is, to a first approximation, thus

s− E0 + S0s+Km

E0 + S0 +Km

c = 0. (113)

Thus we obtain our outer solution (note the subscript ’O’ as in the author’s

first name):

cO =
E0 + S0 +Km

E0 + S0s+Km

s. (114)
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If we substitute this into equation (65), after scaling for the slow timescale,

we get an expression for the outer solution of s:

ds

dT
= − E0 + S0 +Km

E0 + S0s+Km

s, s(0) = 1. (115)

We can solve this by separation of variables:

∫
E0 + S0s+Km

(E0 + S0 +Km)s
ds =

∫
−dT. (116)

The left hand side is an equation of the form:

∫
a+ bx+ c

(a+ b+ c)x
dx [u = a + bx + c] (117)

⇐⇒ 1

a+ b+ c

∫
u

u− a− cdu (118)

⇐⇒ 1

a+ b+ c

∫ ( a+ c

u− a− c + 1
)
du (119)

⇐⇒ a+ c

a+ b+ c

∫
1

u− a− cdu+
1

a+ b+ c

∫
1du (120)

⇐⇒ (a+ c) lnx

a+ b+ c
+

bx

a+ b+ c
+ constant. (121)

This makes the solution to (117)

E0 +Km

E0 + S0 +Km

ln s+
S0

E0 + S0 +Km

s = −T + constant. (122)

Using the initial condition s(0) = 1, and the fact that t = 0, we get the

constant
S0

E0 + S0 +Km

. (123)

This gives us the outer solution for s, sO:

(E0 +Km) ln sO(T ) + S0(sO(T )− 1) + (E0 + S0 +Km)T = 0. (124)
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5.6 Inner solution

The outer solution can’t satisfy the initial conditions for our problem, which

is why we have an inner solution where the complex changes quickly. Pro-

ceeding as with the outer solution, we scale (65):

ds

dτ
=
tC
S0

(
− k2C0c

)
(125)

=
−k2E0

k1(E0 + S0 +Km)2
c (126)

= εc. (127)

As ε → 0, the above becomes ds
dτ

= 0. That is, s is approximately constant

at this fast time scale. Together with the initial condition s(0) = 1, we have

the inner solution for s

sI(τ) = s(0) = 1. (128)

For c we get, using s = sI = 1,

dc

dτ
=
tC
C0

(
k1E0S0s− k1C0(E0 + S0s+Km)c+ k1C

2
0c

2
)

(129)

= −γc2 − c+ 1. (130)

We solve this by separation of variables, like before:

dc

−γc2 − c+ 1
= dτ. (131)

By Bézout’s identity for polynomials, there exists polynomials C and D such

that
1

P (x)Q(x)
=

C

Q(x)
+

D

P (x)
, (132)
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where CP+DQ = 1. We will use this in the partial fraction step below.

Let ∆ = 1 + 4γ. We investigate the denominator in (132):

− γc2 − c+ 1 = −γ
(
c− −1 +

√
∆

2γ

)(
c+

1 +
√

∆

2γ

)
(133)

=⇒ 1

−γc2 − c+ 1
=

1

−γ
(
c− −1+

√
∆

2γ

)(
c+ 1+

√
∆

2γ

) (134)

= − 1√
∆

(
1

c− −1+
√

∆
2γ

− 1

c+ 1+
√

∆
2γ

)
(see above identity). (135)

Integrating (132) we get

−1√
∆

(∫ dc

c−
√

∆−1
2γ

−
∫

dc

c+
√

∆+1
2γ

)
= τ + constant (136)

⇐⇒ −1√
∆

ln

∣∣∣∣
c−

√
∆−1
2γ

c+
√

∆+1
2γ

∣∣∣∣ = τ + constant (137)

⇐⇒ 1√
∆

ln

∣∣∣∣
c+

√
∆+1
2γ

c−
√

∆−1
2γ

∣∣∣∣ = τ + constant (138)

⇐⇒ ln

∣∣∣∣
2γc+

√
∆ + 1

2γc−
√

∆ + 1

∣∣∣∣ = (τ + constant)
√

∆. (139)

Note that | −
√

∆ + 1| =
√

∆− 1. c(0) = 0 makes the constant

1√
∆

ln

√
∆ + 1√
∆− 1

, (140)

which gives us

ln

∣∣∣∣
2γc+

√
∆ + 1

2γc−
√

∆ + 1

∣∣∣∣ = τ
√

∆ + ln

√
∆ + 1√
∆− 1

(141)

=⇒
∣∣∣∣
2γc+

√
∆ + 1

2γc−
√

∆ + 1

∣∣∣∣ =

√
∆ + 1√
∆− 1

e
√

∆τ . (142)
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Note that 2γc +
√

∆ + 1 > 1 > 0 and 2γc −
√

∆ + 1 < 0. That the second

inequality is true is not obvious, but we will see that this is indeed the case

in the next section.

We then have:

(2γc+
√

∆ + 1)(
√

∆− 1) = (
√

∆− 2γc− 1)(
√

∆ + 1)e
√

∆τ (143)

⇐⇒ 2γc(
√

∆− 1) + 4γ =
(
− 2γc(

√
∆ + 1) + 4γ

)
e
√

∆τ (144)

⇐⇒ c(
√

∆− 1) + c(
√

∆ + 1)e
√

∆τ = 2(e
√

∆τ − 1) (145)

=⇒ cI(τ) =
2(e
√

∆τ − 1)

(
√

∆ + 1)e
√

∆τ + (
√

∆− 1)
(146)

⇐⇒ cI(τ) =
2(e
√

1+4γτ − 1)

(
√

1 + 4γ + 1)e
√

1+4γτ +
√

1 + 4γ − 1
, (147)

which is our inner solution for c. Note that this is a different result from

what Khoo and Heglund got. It seems as if their result is incorrect.

5.7 Matching and uniform approximation

As before in section 4.3, we are looking for a common limit, and our matching

condition as ε→ 0, τ →∞, and T → 0 is

lim
ε→0

[yO(T )|T=0] = lim
ε→0

[yI(τ)|τ=∞]. (148)

For the substrate s this is

lim
ε→0

[sO(T )|T=0] = lim
ε→0

[sI(τ)|τ=∞] (149)

⇐⇒ lim
ε→0

[sO(T )|T=0] = lim
ε→0

1. (150)
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We don’t have an explicit expression for sO, but the right hand side above is

obviously 1, and evaluating the implicit expression for sO(0) from (125) we

see that sO(0) = 1 is indeed a solution:

(E0 +Km) ln sO(0) + S0(sO(0)− 1) = 0. (151)

The matching condition in (149) is thus simply equal to 1.

For the complex c we have

lim
ε→0

[cO(T )|T=0] = lim
ε→0

[cI(τ)|τ=∞]. (152)

For cO(T ) at T = 0 we have

cO(0) =
E0 + S0 +Km

E0 + S0s(0) +Km

s(0) (153)

=
E0 + S0 +Km

E0 + S0 +Km

(154)

= 1 as ε→ 0. (155)

As we established earlier, γ � 1.We use this to proceed similarly to how we

did in (92) to (94), and approximate the expression
√

1 + 4γ as 1+O(1+4γ) ≈
1 as γ → 0. We then have for cI(τ):

cI(τ) =
2(e
√

1+4γτ − 1)

(
√

1 + 4γ + 1)e
√

1+4γτ +
√

1 + 4γ − 1
(156)

=
2(e(1+O(1+4γ))τ − 1)

(2 +O(1 + 4γ))e(1+O(1+4γ))τ +O(1 + 4γ)
(157)

≈ 2(eτ − 1)

(2 +O(1 + 4γ))eτ
(158)

=
2(1− 1

eτ
)

2 +O(1 + 4γ)
(159)

=
2(1− 1

eτ
)

1 +
√

1 + 4γ
→ 2

1 +
√

1 + 4γ
as τ →∞. (160)
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Even though the expressions for cO and cI look different, they are both equal

to 1 in the limiting case as (161)→ 1 as τ → 0 and γ → 0. This corresponds

to how well the TQSSA approximation works. Note that this would not

be the case if we chose differently in the inequality after equation (142).

Equation (153) is thus

≈ 2

1 +
√

1 + 4γ
. (161)

We note that Khoo finds the following for equation (153):

≈ 2

1 +
√

1− 4γ
. (162)

Now we turn to the matter of finding an uniform approximation. We proceed

as we did before in section 4.3, taking the common part and subtracting the

difference:

su = sO + sI − 1 = sO, (163)

cu = cO + cI − 2(1 +
√

1 + 4γ)−1. (164)

This is our uniform solution to the problem posed in the beginning of this

section. We have thus found a single approximation of to substrate S and

complex C in equation (52), valid when 0 < ε� 1.

Chemical reactions like (52) arise all the time in the field of enzyme kinetics,

and 0 < ε� 1 is surprisingly often true in practice, or in vivo, which is what

biologists call observations of living organisms. By simplifying a system of

differential equations into (163) and (164) as we have done, calculations are

greatly simplified in a rigorous fashion. This has many practical applications,

but these are outside the scope of this article.

38



6 References

[1] Carl M Bender and Steven A Orszag. Advanced Mathematical Methods

for Scientists and Engineers I. Springer Science & Business Media, 1999.
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7 Appendix

7.1 TQSSA XPP code

# tqssa.ode

# k = k1, l=k_1, m=k2

#

s’=-m*c

c’=k*(e-c)*(s-c)-(l+m)*c

par e=0.01, k=10, l=1, m=0.1

init s=0.1, c=0

@xp=s, yp=c

# xlo=0, ylo=0, xhi=1, yhi=1

@ total=400

@ nmesh=51

done

To reproduce, download XPP and load the above code. Press ”V 2” and

choose S on the x-axis for the phase plane, press ”I G” to simulate from the

initial conditions, then ”W F” to fit the resulting graph to the window. If

we press ”S G” we get a confirmation that there’s a steady state at at (0,0)

to a rounding error becuase of numerical errors, and that it is stable. For

more information, consult the official XPP manual available online.
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7.2 Mathematica code

f[x_] := E^((1/2) (1 - x)) (* outer approx *)

g[x_] := E^(1/2) (E^(-x/2) - E^(-2 x/err)) (* exact *)

h[x_] := E^(1/2) * (1 - E^(-2*x/err)) (* inner approx *)

err = 0.1

Plot[{f[x], g[x]}, {x, 0, 1.7}, PlotRange -> {0, 1.7}, PlotStyle ->

{Dashing, Directive[Dashed], Directive[Thick]}]

Plot[{h[x], g[x]}, {x, 0, 1}, PlotRange -> {0, 2},

PlotStyle -> {Dashing, Directive[Dashed], Directive[Thick]}]
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