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Abstract 

This bachelor thesis will examine how, and for what reason, some of the fundamental 

probabilistic concepts emerged. The main focus will be on the transition from empiricism to 

science during the 17
th

 and 18
th

 century. 
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1 Introduction 

*If you are in a room with 22 others, what is the probability that at least 2 of you have the 

same birthday? 

*If an ape hits a keyboard 5 times on random – what is the chance that it succeeds to write a 

real word found in the English dictionary? 

*A group of n mathematicians enter a restaurant and check their hats. The hat-checker is 

muddle-headed, and upon leaving, she redistributes the hats back to the mathematicians at 

random. What is the probability that no man gets his correct hat? 

The three straight-on questions above can all be usefully answered with knowledge of 

probability theory.  

TV-shows where numbered balls are picked on random and a hopeful attender prays for her 

exact sequence to show up. Gambling in casinos where people desperately try to come up 

with an unbeatable strategy. Stock brokers on the Wall Street who try risk-minimizing their 

portfolio. Public fears that are endlessly debated in terms of probability – meltdowns, 

earthquakes, muggings.  

Probability theory answers daily questions as well as it with huge relevance contributes to 

complex mathematical models in everything from financial economics, risk analysis, betting, 

and abstract models in physics, to in tradition non-mathematical fields like psychology and 

sociology.   
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2 Philosophical exposition of the probability concept 

Like all mathematical concepts, the probabilistic one has occurred gradually. The relation 

between probability and randomness (lack of pattern or predictability in events) was in many 

cases not known. As late as in the 19
th

 century, both the conceptual content and the severity of 

the mathematical method changed significantly. As our modern perception of mathematics 

and its relationship to reality has evolved – a considerable rigor has emerged. Due to this, 

every branch of mathematics must be developed with axioms as a basis. The theory should 

therefore be disengaged from its applications, and only consist of logical theories free from 

contradictions. Since probability theory, often has had its base in what we today consider the 

applications – adversities of becoming a tantamount part of the mathematical field occurred.  

It was rather considered to be in the suspect borderland of mathematics and philosophy – a 

role that it held until year 1933 when the Soviet mathematician Andrey Kolmogorov laid the 

modern axiomatic foundations of probability theory and therefore paved the way for an 

uncompromised acceptance of the field. These clarifications of the probabilistic fundaments 

have led to a leap-like progress with an extensive number of applications. [9] 

Even though the axiomatic revolution of the theory opened up for an acceptance, many would 

still not want to accept that their specific field could not be perfectly examined using 100% 

risk free, deterministic methods. In the field of quantum mechanics, Albert Einstein – by 

many considered one of the best physicists of all time – refused to accept the probabilistic 

impact. For example, finding an electron in a particular region around the nucleus at a 

particular time can impossibly be done with 100% surety. You can only find the probability of 

that occurrence. 

In 1943, Einstein said the following in a conversation with William Hermanns: 

"As I have said so many times, God doesn't play dice with the world." [10] 
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3 Games of chance in early times 

Even though there was no probabilistic theory to lean back on, games of chance have in 

thousands of years fascinated people. Groups of people from diverse areas of the world have 

since thousands of years ago, independent and without knowledge of each other invented 

games of chance. Several Babylonian gaming boards dating back to 2700 BC have been found 

complete with playing pieces and signs of that the game must have been driven with some 

kind of chance mechanism. There are also evidences of games of chance being played by 

ancient Egyptians and Chinese, dating back to 2100 BC. [11] 

Excavations in Egypt show that six-sided dice have been used at least since 1320 BC, but 

other chance-devices have turned up in even earlier Egyptian sites. Similar to excavations in 

Egypt, archeologists in the ancient Greek and Roman world consistently digs up a 

disproportionate big amount of “astragali”, the knucklebones of sheep and other vertebrates.  

The astragalus, colloquially speaking called “talus”, has six asymmetrical sides, but when 

thrown to land on a level surface, it can only come to rest in four ways. The ones found are 

often well polished and engraved, which undoubtedly contributes to the now plausible 

hypothesis that they were part of games. [12] 

Greek and Roman games of chance used four astragali in a simple “rolling of the bones”. 

With background in a study of the writings of the classical time the, in generally agreed, 

scoring was as follows. 

4 points: The upper side of the bone, broad and slightly convex. 

3 points: The opposite side, broad and slightly concave. 

1 point: The lateral side, flat and narrow. 

6 points: The opposite narrow lateral side, slightly hollow.  

 [22] 
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The empirical probabilities based on the tossing of a modern astragalus of a sheep are 

approximately 1/10 each of throwing a 1 or 6, and about 4/10 each of throwing a 3 or 4. 

With these approximated probabilities given, the probabilities associated with the four thrown 

astragali would have been as shown in the table below. These probabilities are obviously 

calculated using theory not yet invented when the game was played thousands of years ago. 

    10000*probability 

(1
4
) (6

4
)   1 

(3
4
) (4

4
)   256 

(1
3
3) (1

3
4) (6

3
3) (6

3
4) 16 

(3
3
1) (3

3
6) (4

3
1) (4

3
6) 256 

(1
3
6) (6

3
1)   4 

(3
3
4) (4

3
3)   1024 

(1
2
3

2
) (1

2
4

2
) (6

2
3

2
) (6

2
4

2
) 96 

(3
2
4

2
)    1536 

(1
2
6

2
)    6 

(1
2
34) (6

2
34)   192 

(3
2
16) (4

2
16)   192 

(3
2
14) (3

2
64) (4

2
13) (4

2
63) 768 

(1
2
63) (1

2
64) (6

2
13) (6

2
14) 48 

(1634)    384 

 

Above, (1
4
) means four astragali numbered one, (4

2
13) means two astragali numbered 4 and 

one astragalus each numbered 1 and 3. The best throw was (1634) – called the venus. Other 

outcomes of the games have a smaller probability, which indicates that the Greeks and 

Romans playing the game had not taken notice of the magnitudes of the corresponding 

relative frequencies. [13] 

The lack of mathematical knowledge and drawing conclusions from statistics is of course the 

reason to why the probabilities above could not be stated. Researchers’ today claim that there 

might have been religious reasons to the prevention of scientific studies of games of chance. 

Namely, the belief of that every event was predetermined by God – and therefore – there was 

no such thing as chance. [2] 
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4 The faltering steps before the 17th centuries breakthrough  

In spite of fact that the probability theory known today shows itself in so many different 

shapes, the development was initially slow. In the 17
th

 century, respectable discoveries in 

algebra, geometry and trigonometry had been general mathematical knowledge for centuries. 

For example, the well-known book Algebra written by the Persian mathematician Muhammad 

ibn Musa al-Khwarizmi was written 830 A.D, more than 600 years before the theory of 

probability was created.  

The main breakthrough of the underlying theory - and therefore the actual start of what we 

today entitle probability theory – was in the 17
th

 century. Before then, the field of probability 

was with few exceptions completely nonmathematical. The Italian mathematician Girolamo 

Cardano wrote a book on games of chance around 1565, which was not published before 

1663. He managed to compute probabilities of simple events, like a number of dice showing a 

given number. On the other hand, the book contains deficient solutions derived through trial 

and error together with many unclear, confusing statements regarding various games. Cardano 

also takes part in one of the first attempts of solving the “problem of points” (which will be 

examined in chapter 5). There are in his reasoning traces of probabilistic arguments which 

should not be regarded, but he never arrives to a correct conclusion. He can due to these 

reasons not be consider the founder of the theory – but instead one of the first who tried 

getting an understanding. [2] 

“Even if gambling were altogether an evil, still,  

on account of the very large number of people who play, 

 it would seem to be a natural evil” [14] 

                                                                           – Girolamo Cardano 
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5 Blaise Pascal & Pierre de Fermat – The 1654 years foundation of probability 
theory 

 [23, 24] 

In year 1654, Blaise Pascal (19 June 1623 in Clermont-Ferrand, France – 19 

August 1662 in Paris, France) was asked some questions on games of chance. He 

communicated his solutions to Pierre de Fermat (17 August 1601 or 1607 in Beaumont-de-

Lomagne, France – 12 January 1665 Castres, France) for approval. A correspondence 

between the two of them ensued, in which the foundations of the theory of probability were 

laid. Taking the addition and multiplication rules for granted, they introduced what we today 

entitle the expected value by means of the “problem of points”, also called the “problem 

of division of the stakes”. Pascal also introduced recursion as a method for solving probability 

problems, and they together discussed the problem of Gambler´s ruin. The famous 

correspondence consists of seven letters between July and October 1654. During the same 

period of time Pascal wrote the important treatise on what is today known as the arithmetical 

triangle or Pascals triangle. [2] 

5.1 The problem of points 

The problem of points concerns a game of chance with two players with equal chances of 

winning each round, let us assume tossing coin. The players contribute the same amount of 

money to a prize pot, and agree that the first player to win a certain number of rounds will 

collect the entire prize. Now, if the game is interrupted by external circumstances and unlikely 

resumed anytime soon, before either player has achieved victory – how will the pot be divided 

fairly among the two? The starting insight for Pascal and Fermat was realizing that the 

division should primarily depend on the possible ways the game might have continued if not 

interrupted. Therefore, it is clear that a player with a 8–2 lead in a game to 10 has the same 

chance of winning as a player with a 98–92 lead in a game to 100, even though the intuition 

says that the later game should be of more even character. We now look at an example for the 

case of a 3–2 lead, in a game with 7 rounds. In case the game is played out before the 7
th
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round – namely if one player reaching 4 wins before – the players will finish the 7 rounds 

anyway.  

Fermat computed the odds for each player to win by writing down all possible outcomes. [2] 

 

The illustration above shows the different number of outcomes in terms of “number of wins”. 

Out of a “3–2”–situation, the one having the lead will achieve victory in 3 out of 4 cases. 

Therefore, he should be divided 3/4 of the total pot.  If extending the problem, and instead 

looking at the “1–0”–situation, it immediately gets a lot more time consuming to use the tree-

method as in the “3–2”–situation. We would then have the following illustration: 

[15] 

Since every round can have two different outcomes, player A winning or player B winning, 

we have 2
6
 possible combinations of the 6 remaining rounds. We now introduce the following 

notation, focusing on how many more wins needed to achieve victory, instead of the number 

of historic wins: If the game is interrupted and A lacks a, and B lacks b games in winning, we 

let e(a, b) denote A’s share of the total pot. By the same reasoning, in the general case these 

remaining a +b – 1 rounds have 12a b   possible outcomes. The cases favorable to A in 

relation to 12a b   will then give A’s fraction of the total stake. 
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In a letter from Pascal to Fermat dated August 24, year 1654 – Pascal writes:  

“Your method is very safe and is the one which first  

came to my mind in this research: but because the trouble  

of the combinations is excessive I have found an abridgement  

and indeed another method that is much shorter and more neat,  

which I would like to tell you here in a few words…” [1] 

In the further correspondence Fermat receives the main ideas and a complete table for a stake 

of 512, and the cases b = 6, a = 1,2,..., 6 and a stake of 512. [2] 

Pascal’s procedure may be presented in the following way: We assume a (a, b)-situation. It 

can be followed by either (a – 1, b) or (a, b – 1), both equally likely.  

Hence:  

(0, ) 1e n          and         
1

( , ) ,
2

e n n        1,2,...,n   

 
1

( , ) ( 1, ) ( , 1) ,
2

e a b e a b e a b                 ( , ) 1,2,....a b      

We now examine a few base cases. 

   
1 1 1

(2,1) (2 1,1) (2,1 1) (1,1) (2,0) .
2 2 4

e e e e e      

   
1 1 1

(3,1) (3 1,1) (3,1 1) (2,1) (3,0) .
2 2 8

e e e e e      

   
1 1 5

(3,2) (3 1,2) (3,2 1) (2,2) (3,1) .
2 2 16

e e e e e      

   
1 1 1

(4,1) (4 1,1) (4,1 1) (3,1) (4,0) .
2 2 16

e e e e e      

   
1 1 6

(4,2) (4 1,2) (4,2 1) (3,2) (4,1) .
2 2 32

e e e e e        

Pascal compared the terms yielded from the difference equation with the ones in his 

arithmetical triangle (which will be examined in chapter 9 as well), concluding that they differ 

only by a factor of 1/2 and by the boundary conditions. [2]  

First, consider the triangle for the first 6 rows: 
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One may if being observant see that all the denominators in the presented base cases 

correspond to the sum of all elements in a specific row of the triangle. The numerators all 

seem to be the sum of the b first elements in that row. Further, the following pattern seems to 

emerge: Considering e(a, b). If a + b = k, we look at the k
th

 row in the above presented 

triangle. For e(4, 2) we get:  

1 5 6
,

1 5 10 10 5 1 32




    
 

which is obviously correct. 

In general, this may be stated by the following expression:  

1 11 1

0 0

1 11 1
( , ) .

2 2

k a bb b

i i

k a b

i i
e a b

   

 

        
       

      
   

Pascal uses the method of induction to prove this formula. Since it holds for a + b = 2, he 

assumes that it holds for a + b = k and then proves that it as well holds for a + b = k + 1. 

Both Pascal and Fermat solved the problem of points using combinatorial methods. [2] 

Pascal may especially be credited introducing what is today known as the “expected value” 

when stating  
1

( , ) ( 1, ) ( , 1) .
2

e a b e a b e a b      

This would today be written as  

 
   | |

,
2

E X A E X B
E X


  

X: A’s share of the total stake. 

A: A wins next round. 

B: B wins next round. 
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6 The giant leap forward 

After the considered 1654 years start of probability theory – with Blaise Pascal and Pierre de 

Fermat as prominent figures – the development of the probabilistic field stagnated for nearly 

half a century. In 1708, a benchmark of a period of hectic activity with plenty of weighty 

publications was set. The development took off after the French mathematician Pierre 

Rémond de Montmort (27 October 1678 in Paris, France – 7 October 1719 in Paris, France) 

published his work. The list below presents the works of several, for the period and field, 

prominent mathematicians.  

 1708. Pierre Rémond de Montmort, Essay d‟Analyse sur les Jeux de Hazard. Paris 

 1709. Nicolaus I Bernoulli, De Usu Artis Conjectandi in Jure. Basel. 

 1712. John Arbuthnott, An Argument for Divine Province, taken from the constant 

Regularity observed in the Births of both Sexes. Phil. Trans. London. 

 1712. Abraham de Moivre, De Mensura Sortis. Phil. Trans. London. 

 1713. Jacob (also known as James or Jacques) Bernoulli, Ars Conjectandi. Basel. 

(Published 8 years after his death). 

 1713. Pierre Rémond de Montmort, Essay. 2
nd

 Edition. Paris. 

 1716. Nicolaas Struyck, Uytreekening der Kanssen in het spelen, door de Arithmetica 

en Algebra, beneevens eene Verhandeling van Looterijen en Interest. Amsterdam.  

 1717. Nicolaus I Bernoulli, Solutio Generalis Problematis XV propositi à D. de 

Moivre, in tractatu de Mensura Sortis. Phil. Trans. London. 

 1717. Abraham de Moivre, Solutio generalis altera præcedentis Problematis. Phil. 

Trans. London. 

 1718. Abraham de Moivre, The Doctrine of Chances. 1
st
 edition. London.  

The works of especially the today well-known mathematicians de Montmort, de Moivre, & 

the Bernoulli family contained many excellent ideas, methods, and problem. Their works had 

such an impact on the field of probability theory, so that it took nearly a century to digest – 

and thereafter develop the presented material. A few decades after the presentations of the 

works in the list above – year 1738, de Moivre’s 2
nd

 version of “The Doctrine of Chances” 
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was published. The doctrine was by many accredited the role of something that can be likened 

to a Bible of probability theory, a role that it held until 1812 when it was superseded by the 

work of Pierre Simon de Laplace (23 Mars 1749 in Calvados, France – 5 Mars 1827 in Paris, 

France) – Théorie Analytique des Probabilités. [2] 
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7 Pierre Remond de Montmort & his Essay d’Analyse sur les Jeux. 

“In 1708 he [de Montmort] published his work  

on chances, where with the courage of Columbus  

he revealed a new world to mathematicians.” [16] 

                                                        – Isaac Todhunter  

Many claim that the two editions of de Montmorts Essay never came to enjoy the popularity 

that a respected probabilistic work would have deserved. Unlike the works of the Bernoulli 

family and de Moivre, Essay had deficient structure. The second edition – an expanded 

version of the first, with additions and generalizations – mixes the structure of a textbook and 

a scientific paper. Problems were stated in the text, and the associated, expanded theory often 

spread out in many places in the book. The Bernoulli family and de Moivre were – as if the 

pedagogical problems were not enough – well known mathematicians while de Montmort was 

considered an amateur by many. On the other hand, de Montmort inspired and stimulated 

curiosity in both the Bernoulli family and de Moivre. De Montmort developed the work of 

Fermat, solving problems of chance with means of the mathematical field combinatorics. At a 

time when card games gained popularity, a mathematical perspective of the theory of the 

games was needed. In the 1708 years edition of de Montmorts Essay, the first discussions of 

probabilistic art mentioning the problems of coincidences and derangements were presented. 

[2, 13]  

 [28] 

A symbolic insight into life around the  

gambling table, from Montmorts Essay.  
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De Montmort exemplified his theory in connection with the card game le Jeu du Treize. [3] 

In the 1713 years edition of Essay, he presented the rules as follows (translated from French):  

The players draw to see who will be the dealer.  

Let‟s call the dealer „Pierre‟, and let‟s suppose that there  

are as many other players as you like. Pierre takes a full deck  

of 52 cards, shuffles them, and deals them out one after the other,  

calling out „one‟ as he turns over the first card, „two‟ as he turns over the  

second, „three‟ as he turns over the third, and so on up to the thirteenth, which  

is a king. [„one‟, „two‟, „three‟, „four‟, „five‟, „six‟, „seven‟, „eight‟, „nein‟, „ten‟, 

„eleven‟,„twelve‟, „thirteen‟.] Now if, in this whole series of cards, he never once  

turns over the card he is naming, he pays out what each other player has put up  

for the game, and the deal passes to the player sitting to his right. But if  

in this sequence of thirteen cards he happens to turn over the card he is  

naming, for example, if he turns over an ace as he calls out „one‟, or a  

two as he calls out „two‟, or a three as he calls out „three‟, etc.,  

he collects all the money that is in play, and begins over  

as before, calling out „one‟, and then „two‟, etc. [5] 

Supposing that the dealer has n different cards sorted randomly. What is the probability of at 

least one coincidence as the dealer turns over the cards? 

De Montmort says that due to the difficulty of finding the dealer´s advantage, he simplifies 

the problem to include only one suit of 13 cards.  He then examines the problem for  

n = 2,…,5, in each case following the same principle. [2] 

He arguments in a way that is best explained using an example. 

7.1 Practical approach to derangements 

First, consider the following notation for the probability of at least one coincidence: .nP   

The base cases for 0,1n   yield 0 0,P   and 1 1.P   For 2n  there can only be two 

outcomes: {1} is in the first place and therefore, {2} is in the second place. Or the opposite, 

they are both in the wrong place. 2 1 2.P    
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The section below examines the somewhat more complicated cases for n = 3, 4, 5. 

Starting with the case for n = 3 which corresponds to using cards labeled 1 to 3.  

{1}, {2}, {3}. 

The three of these can be rearranged, permuted in 3! 6  ways, namely: 

{1}, {2}, {3}  {1}, {3}, {2}  {2}, {1}, {3}  

{2}, {3}, {1}  {3}, {1}, {2}  {3}, {2}, {1}  

Among these, there are: 

2 ways when {1} is in the first place. 

1 way when {2} is in the second place without {1} being in the first. 

1 way when {3} is in the third place without {1} being first or {2} being second. 

The probability of at least one coincidence will therefore be 
3

2 1 1 2
0.66666...

6 3
P

 
     

Continuing in the same manner for n = 4 the 4! = 24 possible permutations will be: 

{1}, {2}, {3}, {4} {1}, {2}, {4}, {3} {1}, {3}, {2}, {4} 

 {1}, {3}, {4}, {2} {1}, {4}, {2}, {3} {1}, {4}, {3}, {2} 

 

{2}, {1}, {3}, {4} {2}, {1}, {4}, {3} {2}, {3}, {1}, {4} 

 {2}, {3}, {4}, {1} {2}, {4}, {1}, {3} {2}, {4}, {3}, {1} 

 

{3}, {1}, {2}, {4} {3}, {1}, {4}, {2} {3}, {2}, {1}, {4} 

 {3}, {2}, {4}, {1} {3}, {4}, {1}, {2} {3}, {4}, {2}, {1} 

 

{4}, {1}, {2}, {3} {4}, {1}, {3}, {2} {4}, {2}, {1}, {3} 

 {4}, {2}, {3}, {1} {4}, {3}, {1}, {2} {4}, {3}, {2}, {1} 
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Among these, there are: 

 6 ways when {1} is in the first place. 

 4 ways when {2} is in the second place without {1} being first. 

 3 ways when {3} is in the third place without {1} being first or {2} being second. 

 2 ways when {4} is in the fourth place with {1}, {2}, {3} being out of their places. 

The probability of at least one coincidence will therefore be 
4

6 4 3 2 5
0.625

24 8
P

  
     

By following the same principle one may state the following for the case when n = 5.  

Out of the 5! = 120 permutations, there are: 

 24 ways when {1} is in the first place. 

 18 ways when {2} is in the second place without {1} being first. 

 14 ways when {3} is in the third place without {1} being first or {2} being second. 

 11 ways when {4} is in the fourth place with {1}, {2}, {3} being out of their places. 

 9 ways when {5} is in the fifth place with {1}, {2}, {3}, {4} being out of their places. 

 

The probability of at least one coincidence will therefore be: 

24 18 14 11 9 19
0.63333...

120 30

   
 

 

Using this technique to approach the problem, de Montmort avoided adding the “intersection” 

more than once. The picture below illustrates for the case when n = 3. 

Let A denote the case when {1} is in its correct 

place. 

Let B denote the case when {2} is in its correct 

place. 

Let C denote the case when {3} is in its correct 

place. 

 

A B C denotes the intersection: When they 

are all in the correct place. 
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Characteristic for the field of derangements is the following for the case when n = 3. 

A B A B C,

A C A B C,

B C A B C.







 

This characteristic is derived from the fact that if we know that n – 1 out of n elements are in 

the correct places – the n:th element will as well be placed correctly. If this would not be the 

case, as common in other fields of mathematics, we would instead have the following 

illustration: 

 

7.2 Theorems of coincidences 

De Montmort remarks that giving the general proof will take up too much space and then 

states the general solution in two forms: as a recursion formula, and an explicit solution as a 

series. [2] 

De Montmorts recursion formula may be presented as: 

  1 21
,

n n

n

n P P
P

n

  
                2,n        0 0,P     and      1 1P       (1) 

This yields: 

13

109339663
0.632120558.

172972800
P  

 

He, as mentioned, also states the solution in terms of an alternating series, which by means of 

the numbers in the arithmetic triangle yields: 

 
1

11 1
1 ... ,

2! 3! !

n

nP
n




                 1n            (2) 
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Since  

2 3

0

lim 1 ... e
! 2! 3!

kn
x

n
k

x x x
x

k


               (3) 

de Montmort could prove  

1

0
lim 1 0.632120558.n
n

P e


    

The relation between the two formulas (1) and (2) is not examined by de Montmort.  

Presumably though, he was probably aware that (1) may be written as 

1 2
1 ,n n

n n

P P
P P

n

 



  

 

and that (2) gives 

 
1

1

1
,

!

n

n nP P
n






 

 

from which he would easily have derived the relation between them. [2] 

7.3 Proof: 

In Essay de Montmort includes several of examples from which his proof could be found. [2] 

 

Let  nd i  denote the set of permutations with the first coincidence at place i. Note that 

   1 1 !nd n   since {1} is fixed first. The remaining numbers may then be permuted in

 1 !n  ways. For  2nd  we fix {2} at the second place and the remaining numbers may 

again be permuted in  1 !n  ways. Since {2} must be the first coincidence, we must deduct 

the number of permutations of both {1} and {2} being fixed, which is  2 !.n  

         12 1 ! 2 ! 1 1 .n n nd n n d d      
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In the general case, with the same method as above, we have: 

     11 ,n n nd i d i d i  
           2,n              1,2,..., 1.i n   

Using this recursion, de Montmort states the following table for the cases when  

n = 1, 2,…,8.  

Let      1 2 ... .n n n nd d d d n     

 

Since n numbers can be arranged in n! ways, and nd  represents the number of events with at 

least one coincidence, we get:  

.
!

n
n

d
P

n


 

When setting  0 ! ,nc n n d   de Montmort could give the following recursion formula 

 
1

1 1 ,
n

n nd nd


  
                 1,n                      0 0.d 

 

For given n, the probability that the first coincidence appears at the i:th place equals: 

   

1

.
! (1)

n n

n

d i d i

n d 


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He then stated the quite obvious: 

     1 10 1 ! d .n n nd n c n    
 

De Montmort finally arrives to the distribution of the number of coincidences by realizing the 

following: Out of a sequence of n numbers, the k coincidences may be chosen in 
n

k

 
 
 

 ways, 

and there must be no coincidence at the remaining n – k places. [2] 

This yields:  

   0 .n n k

n
c k c

k


 
  
   

In conclusion we have that  

 
 

0

1
0 1 ,

!

i
n

n n

i

p P
i


  

 

and in general  

 
   

0

0 11
.

! ! !

i
n k

n k

n

i

p
p k

k k i







  
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7.4 Conclusions of the theorems 

Returning to the card game Treize that first interested de Montmort – and gave fire to his great 

advance in the theory of derangements/coincidences, the following should now be known: 

k 0 1 2 3 4 5 … 13 

 13p k
 

0.368 0.368 0.184 0.061 0.015 0.003 … 1/13! 

Pierre-Rémond de Montmorts work occurs frequently in textbooks of probability and 

combinatorics today – and we may successfully by means of it answer the kind of questions 

asked in the introduction (by the author) of this composition.  

 A group of 7 mathematicians enter a restaurant and check their hats. The hat-checker 

is muddle-headed, and upon leaving, she redistributes the hats back to the 

mathematicians at random. What is the probability that no man gets his correct hat? 

 7
1

7

0

1 1 1 1 1 1 1
1 1 0.367857 .

! 2 6 24 120 720 5040

i

i

P e
i






            

“I very willingly acknowledge his [de Montmorts]  

Solution to be extreamly good, and own that he has in this,  

as well as in a great many other things, shewn himself entirely  

master of the doctrine of Combinations, which he has  

employed with very great Industry and Sagacity.” [8] 

 –Abraham de Moivre 

7.5 Anecdote of de Montmorts correspondence with the Bernoulli family 

While de Montmort with great success expanded the theory of combinations, he seems to 

have had a wide circle of friendship with other mathematicians. Apart from the – in their field 

– very prominent mathematicians Newton and Leibnitz, he also had contact of mathematical 

art with the Bernoulli family. The second edition of the Essay is therefore not only the work 

of de Montmort – even though he was the one compiling all the theory. [13] 

 

In his 1713 years edition of Essay, he includes 132 pages of letter between him and Johann 

and Nicolaus I Bernoulli. The correspondence is both friendly and scientific, showing their 

creativity and how they inspired each other to formulate and solve probabilistic problems with 

more and more complexity. It all started when de Montmort sent a copy of his Essay to Jacob 
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Bernoulli´s older brother, Johann (also known as Jean or John). [2]  

He answered in the following way in March 17 1710 (Published in Essay). 

 

“As I have received your beautiful Book only a  

long time after your last Letter, I have well wished to  

defer the response until I has received & read it, in order to be 

 in a state to tell you of my sentiment of it. Although a flow on the eyes, 

of which I am often inconvenienced, prevents much work on some things  

which demand long calculations, especially in the time of winter,  

I have not left to examine in the idle hours the principal ends  

of your Treatise, & to do myself, as much as the weakness  

of my eyes has permitted me, the calculation  

of the greater part of the Problems…”[3,4] 

De Montmort, who was rather unknown, humbly thanks Johann Bernoulli for the honor of 

reading his book and leaving important remarks. In his correspondence with Nicholas I 

Bernoulli from 1710 – 1712, the theory of coincidences examined in this chapter is frequently 

discusses – something that most likely contributed mighty to the theory. [2] 

26 February 1711, Nicolaus I Bernoulli wrote the following in a letter to de Montmort.  

“I have not yet attempted the general solution of the Problem on the  

Game of Treize, because it appears to me to be nearly impossible…” [5] 

Two years later, the problems of the described impossible kind were obviously conquered. 

The illustration below shows the family relationship with the important Bernoullis marked. 
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8 Jacob Bernoulli & his Ars Conjectandi. 

We define the art of conjecture, or stochastic art,  

as the art of evaluating as exactly as possible the probabilities  

of things, so that in our judgments and actions we can always base  

ourselves on what has been found to be the best, the most appropriate,  

the most certain, the best advised: this is the only object of the wisdom  

of the philosopher and the prudence of the statesman… 

… 

… It seems that to make a correct conjecture about any event whatever,  

it is necessary to calculate exactly the number of possible cases and  

then to determine how much more likely it is that  

one case will occur than another. [6] 

– Jacob Bernoulli  

 

Ars Conjectandi was nearly completed when Jacob Bernoulli passed away year 1705, but due 

to quarrels within the family, not published until 1713. [13] 

The composition consists of four parts: 

 

1  

The treatise De ratiociniis in Ludo Aleae by Huygens with annotations by Jacob 

Bernoulli.  He among other things, develops Huygens' concept of expected value. 

2  

The doctrine of permutations and combinations, including the twelvefold way. It also 

discusses the general formula for sums of integer powers, later used by de Moivre. 

3  

The use of preceding doctrines on various games of chance and dice games. Practical 

applications of the theory stated in part 2.   

4  

The use and application of the preceding doctrines on civil, moral, and economic 

affairs. This part is the shortest one, including the “golden theorem”. 
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The fourth part of Ars Conjectandi is by many, including Jacob Bernoulli himself, considered 

the most important one.   

 

“Therefore, this is the problem which I have  

decided to publish here after I have pondered  

over it for twenty years. Both its novelty and its  

great utility, coupled with its just as great  

difficulty, exceed in weight and value all  

the other chapters of this doctrine…” [2] 

– Jacob Bernoulli  

“The golden theorem”, today known as “the law of large numbers” is one of the most 

fundamental theorems of probability theory and statistics. It is based on the following 

reasoning stated by Bernoulli.  

 

“The more observations that are taken, the  

less danger will be of deviating from the truth.” [2] 

 

He continues adding that this is well known and that everyone knows that one or two 

observations will not be enough to determine the probability of an event. He describes a 

possible application of the theorem in the following way: 

 

…To illustrate this by an example, I suppose that without your  

knowledge there are concealed in an urn 3000 white pebbles and  

2000 black pebbles, and in trying to determine the numbers of these  

pebbles you take out one pebble after another (each time replacing the  

pebble you have drawn before choosing the next, in order not to decrease  

the number of pebbles in the urn), and that you observe how often a  

white and how often a black pebble is withdrawn. The question is,  

can you do this so often that it becomes ten times, one hundred  

times, one thousand times, etc., more probable (that is, it be  

morally certain) that the numbers of whites and blacks  

chosen are in the same 3 : 2 ratio as the pebbles in the  

urn, rather than in any other different ratio?” [7] 

– Jacob Bernoulli  
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[17] 

Swiss commemorative stamp of  

Jacob Bernoulli displaying the  

formula and a simulation  

of his “golden theorem”. 

 

8.1 Approach to the golden theorem: 

With modern terminology and notations, we consider: 

n independent trials with probability p for the occurrence of a certain event.  

ns  denotes the number of successes, and is binomially distributed (the distribution is further 

examined in its more natural context in chapter 9). We now look at the relative frequency 

.n nh s n  

We let E denote the event when ,nh p    and it may be proven that   1P E    for 

 , ,n n p    where   and   are any “small” positive numbers. This may be expressed in 

terms of “convergence in probability”, 

p

nh p as .n  

 

In his proof, Jacob Bernoulli considers a trial of t = r + s equally likely outcomes with r 

favorable. So that  .p r r s   Bernoulli first starts with the simplest case, namely p = 1/2 

for which he first gives a numerical example followed by a general proof. He then develops 

the proof for the general probability p. [2] 
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We take note of his own formulation of the theorem: 

“It must be shown that so many observations can be made that 

 it will be c times more probable than not that the ratio of the number  

of favorable observations to the total number of observations will be  

neither larger than (r + 1)/t nor smaller than (r – 1)/t.” [2] 

– Jacob Bernoulli  

His stated inequality  

1 1
,n

r r
h

t t

 
 

 

May be written as 

1 ,nh p t 
 

from which we see that 1/ t  corresponds to   and  1 1 c  to .  

8.2 Bernoullis theorem of large numbers: 

For any positive real number c, we have 

1
,

1
n

c
P h p

t c

 
   

 
 (1) 

for n = kt sufficiently large, for    , , , , ,k k r s c k s r c   where  , ,k r s c  denotes the 

smallest positive integer satisfying 

 
 1

, , t ,
1

m r s s
k r s

r

  



 (2) 

where m denotes the smallest positive integer satisfying 

 

 

1
.

1

e

e

Log c s
m

Log r r

  


  
 (3) 
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If given p, we may choose t as large as we like so that the interval of the relative frequency 

,n nh s n  becomes arbitrarily small. Jacob Bernoulli´s proof is lengthy and lacks of 

elegance, due to his omitted indices and, in some cases, unnecessary calculations. Bernoulli 

for some reason evaluated tail probabilities for both the right and the left tail, even though one 

follows from one another [2] – something that will therefore not be presented in the proof 

below.  

8.2.1 Proof: 

The expected number of successes np = kr is the “central term” in the expansion of   .
n

p q  

To its left, there are kr terms and to its right, ks terms. This is due to the fact that the 

expansion of  
n

p q  contains n + 1 = kr + ks +1 terms. 

We have to find n such that 

  ,
1

k n

c
P P s kr k

c
   


 

or equivalently, finding n such that 

.
1

k

k

P
c

P



 

We now look at the binomially distributed ns  and remind ourselves that it denotes the number 

of successes. 

    .

n n
n n nr s r s

p q r s t
r s r s t

   
        

    
 

Examining  
n

r s  in terms of the binomial theorem (as well thoroughly evaluated in chapter 

9) yields 

 
0

 ,
n

n x n x

i

x

ks

i kr

n

x
r s r s f

 

 
   

 
   
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where 
if  was set to represent the following: 

,kr i ks i

i

kr ks
f r s

kr i

 
 

  
 

         , 1, 2,..., .i kr kr kr ks       

Unlike Jacob Bernoulli, we will only give the proof of the right tail. This will be enough, with 

reference to the fact that if  for 0,1,2,...,i kr  is easily obtained from if  for 0,1,2,...,i ks  

by an interchange of r and s.  

 

Proving that kP , the central term of the series plus k terms to each side, is larger than 

 1 ,kc P  may be done by proving that 

1 1

,
k ks

i i

k

f c f


              , , .k k r s c   (4) 

By investigating the ratio  

 

 

 

1 11

1 1
1,

1

kr i ks i

i

kr i ks ii

kr ks
r s

kr i s rs i s kkr if

kr ksf ks i r rs ir k
r s

kr i

 

   

 
 

       
   

 
  

        0,1,2,..., 1,i ks    (5) 

the following can be stated: 

a) if  is a decreasing function of i for 0.i   

b)  0 max .if f  

c) 1i if f   is an increasing function of i for 0.i   

d) 0 k i k if f f f   for 1.i   

Now, by partitioning the tail probability into s – 1 terms, each containing k terms, the upper 

bound may be found from property a).  

 
2

1 1

1 ,
ks k

i i

k k

f s f
 

    
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which, when combining with property d), leads to the following inequality: 

 

01 1

2

1 1

.
1

1

k k

i i

k

ks k

i i

k k

f f
f f

s
f s f

 

 




 

 
(6) 

Therefore, to prove (4), it will be sufficient to prove 

 1 .o

k

f
c s

f
 

 

It follows from (5) that 

 

 

 

 0

1

... .
2

1

kr ks

kr k ks kk

kr ks
r s

rs s s k rs s kkrf rs s

kr ksf rs r r k rs r r k rs
r s

kr k

  

 
 

      
     

 
    

To find a lower bound for the above presented ratio, Jacob Bernoulli states that the k factors 

must lie between    rs s rs r   and 1. [2] Therefore, any fixed number between these limits 

can be chosen. Say,  1 ,r r  so that the first factors are larger and the following smaller 

than this number. Then, by an appropriate choice of k, the m:th factor, 1 ,m k   becomes 

equal to  1 .r r  That is 

  

 

1 1
,

rs s m s k r

rs r mr k r

   


 
 

with the following relation between k and m:  

 1
.

1

m r s
k

r

 


  

Therefore, examining the ratio 0 kf f  for the above stated value of k, we get that m factors are 

larger, or equal to  1 ,r r  and k – m factors larger than 1. We get 

0 1
.

m

k

f r

f r

 
  
   
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In conclusion, it thus sufficient to find m from 

 
1

1 ,

m
r

c s
r

 
  

 
 

which yields 

 

 

1
.

1

e

e

Log c s
m

Log r r

  
  

 

as stated in (3).  

From (7) we get (2). Finally, k is found as the larger one of the two integers  , ,k r s c  and 

 s, , ,k r c  and n is found as kt. 

This completes “the golden theorem”, or “the law of large numbers”. 

8.3 Conclusions of the law of large numbers 

Returning to one of the introductory quotes in this chapter, namely about the pebbles in the 

urn – Jacob Bernoulli could state the following: 

Set the number of white pebbles, r = 20 and the number of black pebbles, s = 20. From his 

earlier presented quote  

“It must be shown that so many observations can be made that 

 it will be c times more probable than not that the ratio of the number  

of favorable observations to the total number of observations will be  

neither larger than (r + 1)/t nor smaller than (r – 1)/t.” [2] 

– Jacob Bernoulli  

and the corresponding inequality 

1 1
,n

r r
h

t t

 
   

we may using our values set 

29 31
.

50 50
nh   
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Choosing c = 1000, giving a moral certainty of 1000/1001 for the inequality to hold, Bernoulli 

finds for the right tale m = 211, k = 511, and n = 25550. In conclusion – for 25550 

observations, it is at least 1000 times more probable that nh  will fall inside, than outside the 

specified interval. [2] 

Below, a matlab-simulation clarifies the meaning of Bernoullis golden theorem. We consider 

a set of 50 elements, of which 30 denote white pebbles, and 20 black pebbles. We pick, and 

then put back, a random one out of these 50 elements, and repeat the process for a different 

number of times (varying from 10 to 10000). After each time, we look at the ratio of white 

pebbles to the total number of pebbles, which by means of the law of large numbers, should 

approach 
30 30

0.6
20 30 50

 


 as the number of observations increase. 

 

The simulation clarifies, and clearly illustrates a tapered shape with less and less deviation 

from 0.6 as the number of random-chosen pebbles increases.  

The golden theorem is a lot easier proved using more modern methods, like the characteristic 

functions, which shortens and gives tons of more elegance to the proof.  
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9 Abraham de Moivre and his Doctrine 

Since both Jacob Bernoulli and Pierre Rémond de Montmort died young, and Nicolaus I 

Bernoulli had become Professor of law – it became the fate of de Moivre to fulfill the work 

that they all together, in such a splendid way started the century with. [2]  

Many would undoubtedly assert that he succeeded with verve. 

The section below examines one of the most fundamental parts of de Moivres work. 

 [18, 19] 

9.1 Normal Distribution 

The normal distribution is one of the most famous and useful tools in the field of probability 

theory. The credit for the discovery is often attributed the mathematician Abraham de 

Moivre (26 May 1667 in Champagne, France – 27 November 1754 in London, England). His 

writings have had a tremendous impact on the theory used today, even though de Moivre 

himself never drew all the necessary conclusions to get all credit for inventing the normal 

distribution. [13] 

The name of the distribution, “normal” – apart from that it has had several names during the 

time – has had more than one meaning. It has both meant orthogonal, and later on more 

carrying the meaning of common. [20] 

To get a better insight in the normal distribution one should first get familiar with another, 

quite simpler distribution – the binomial distribution. The theory of it is based on the theorem 

examined in the following section. 
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9.2 The binomial theorem 

The binomial theorem and its triangular arrangement is a discovery that Blaise Pascal is 

improperly credited with, since many mathematicians from around the world derived similar 

results hundreds of years earlier. The Indian mathematician Bhaskara seems to have known 

the general formulae for the number of n objects and the number of combinations of r among 

n objects about year 1150. [21] The arithmetical triangle and the construction of it were also 

derived in 1265, by the Arabian mathematician al-Tusi. [2] 

The importance in Pascal’s work lies in his systematic exposition and the related applications. 

The binomial theorem states: 

 
0

,
n

n k n k

k

n
p q p q

k





 
   

 
  

where 
n

k

 
 
 

 from the above described binomial theorem equals: 

 
!

.
k! !

n

n k
 

 

9.2.1 The binomial distribution  

 

The binomial distribution is one of the discrete distributions used for answering questions of 

the following kind: "If a fair coin is flipped 100 times, what is the probability of getting 

exactly 50 heads?”. Let X: number of heads. 

    
50 50

( 50) 0.5 * 1 0.5  0.0795892373871788.P X      

Or generally:  

( ) .k n k
n

P X k p q
k

 
   

 
 

Where X  is the stochastic variable corresponding to the number of heads, p = 0.5 is the 

probability for the number of favorable outcomes, q = 1 – p = 0.5 is the number of non- 

favorable outcomes. 
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The case where we extend the question to: "If a fair coin is flipped 3600 times, what is the 

probability of 1900 or more heads?” immediately impedes the calculating process in a time 

where there were no computers. Examining this would yield: 

3600 36003600 3600

0 1900 1900

3600 36001 1 1
.

2 2 2

k kn
k n k

k k k

n
p q

k k k





  

          
           

          
    

This gave fire to invention of the normal distribution, a discovery that has been part of laying 

the probabilistic foundation that impact the approximations and algorithms used today. 

 

9.3 Normal approximation to binomial distribution 

As the problem of adding together large amounts of (a + b)
n
 interested de Moivre, very few 

mathematicians had, due to its seemingly great difficulty and absence of intuitiveness, 

undertaken the task.  

Year 1733 a brief 7-page paper named “Approximatio ad summam terminorum biomii  

(a + b)
n
 in seriem expansi” was communicated privately to de Moivres friends. In which de 

Moivre presented interesting observations concerning the coefficients of the binomial 

expansions of (a + b)
n
. A few years later, 1738, his own translated version with some extra 

additions was included in The Doctrine of Chances (1738) and the first statements of what we 

today consider the “normal curve” were now published. [25] 

De Moivre wrote the following: 

“Altho‟ the Solution of problems of Chance often requires  

that several Terms of the Binomial (a + b)
n
 be added together,  

nevertheless in very high Powers the thing appears so laborious,  

and of so great difficulty, that few people have undertaken that Task:  

for besides Jacob and Nicolaus I Bernouilli, two great Mathematicians, 

I know of no body that has attempted it: in which, tho‟ they have shown 

 very great skill, and have the praise that is due to their Industry,  

yet some things were further required: for what they have done  

is not so much an Approximation as the determining  

very wide limits, within which they demonstrated that  

the Sum of the Terms was contained. “ [8] 
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In Abraham de Moivre´s year 1738 edition of “The Doctrine of Chances” he worked out the 

mathematics for the binomial expansion of (a + b)
n
 by analyzing the tosses of a coin.   

Though, whether de Moivre thought of his events as tossing coins or not, remains 

unimportant. What´s important is the elucidation that he derived events so dependent of 

chance, that the probabilities of favorable/ non-favorable outcome, to be equal.  

He wanted to find a function that approximated the shape that came about when the number 

of binomial events (coin flips) increased, with a continuous curve. He would then be able to 

calculate the sum corresponding to "If a fair coin is flipped 3600 times, what is the probability 

of 1900 or more heads?” in a much less strenuous way.  

The matlab-plot below illustrates the probability for different numbers of “heads” when 

tossing 2, 4 or 12 coins. The smooth shape seems clearer as the number of coins increases.  

 

Once again looking at the binomial theorem – and examining it for a few base cases: 

 
0

.
n

n k n k

k

n
a b a b

k





    
 

  

Examining (1 + x)
n
 using the theorem above yields the following for n = 1, 2, 3, 4, 5: 

 

1 + x  

1 + 2x + x
2
 

1 + 3x + 3x
2
 + x

3
 

1 + 4x + 6x
2
 + 4x

3
 + x

4
 

1 + 5x + 10x
2
 + 10x

3
 + 5x

4
 + x

5
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Now as 
n

k

 
 
 

represents the coefficient of kx  in the expansion of  1 ,
n

x  the following can 

be stated:  

1 1

1

n n n

k k k

      
      

     
 

The coefficients in each expansion, clearly correspond to the arithmetical triangle – with the 

following look for n = 0, 1 ,2 ,3 ,4 ,5. 

 

Below, we will familiarize with two theorems – in this context of fundamental relevance – 

composed by Abraham de Moivre.  

 

9.4 De Moivres approximation to the maximum of the symmetric binomial 

Abraham de Moivre approximated the biggest term in the binomial expansion of the 

symmetric binomial (p + q)
n
, p = q = 0.5, by the following.  

1
1

1 0.7976
2.168

0.5 2 1

n

n
n n

n n n

 
        
               

(1) 

9.4.1 Proof: 

As a benchmark of the proof, observe: 

 
1 1 1

1 1
2 2 2

n n
n   

     
   

. 

Since the middle term – due to symmetry –  is the biggest one in the expansion, the proof of 

the above stated approximation will be found advantageously by analyzing the following 
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term: 

 
1

.
0.5 2

n
n

n

  
  

  
 

 

We now introduce the following notation:  

 ( ) ( , , ) (1 ) ,k n k
n

b k b k n p p p
k

 
   

 
    0,1,..., ,k n      1,2,....n   

For n = 2m, we have 

 

2
2 1

( )
2

m
m

b m d
m d

  
    

   
, 0,1,..., ,d m         1,2,....m   

Since the middle term, as stated, will be the biggest one we set d = 0. 

  

1
2 2 1

1

2 (2 1) ( 1)
( ) 2 2 ,

1 2

m
m m

i

m m m m i
b m

m m i


 



   
 

  
  

taking the logarithm yields 

    
1

2 1

1

1
( ( ) 2

1

m
m

e e e

i

i m
Log b m Log Log

i m


 



 
   

 
  

                                           
1

1

1
2 1 2

1

m

e e

i

i m
m Log Log

i m





 
      

 
 .              (2) 

Now, by referring to Newtons series 

 
2 1

1

1
2 ,

1 2 1

k

e

k

x x
Log

x k





 
 

  


          

(3) 

the sum stated in (2) may be written as 

 
 

2 11 1
2 1

2 1
1 1 1 1

1 1
2 2 .

2 1 2 1

km m
k

k
i k k i

i
i

k m k m

   



   

 
 

  
  

            

(4) 

Now, once again referring to the work of the great mathematician presented in chapter 8 – 

Jacob Bernoullis formula for the summation of powers of integers:  

 

1
1

2

1

1

11 2 2

m mn
m m

i

mn n
i B n

m






 
    

  
  

                                                        
3 5

4 6

1 1
...,

3 54 6

m m
m m

B n B n    
     

   
 

where Bi represents the Bernoulli number. (Named after and first published by Jacob 
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Bernoulli in his Ars Conjectandi). [26] 

De Moivre could therefore ensure that the last sum in (4) could be written as 

 

 
 

     
2

1
2 1 2 22 1

2

1

1 1 1
1 2 1 1 ...,

2 2 2

k
m

k kk

i

m
i m k B m

k


 




      

        

(5) 

 

Setting  1 ,m m t  and inserting expression (5) into (4) yields 

 

  
 

2 1 2 1
2 22

1 1 2

2 1 ....
2 1 2 2 1

k k
k

k k k

Bt t
m t

k k k m

   


  

   
 

  
         

(6) 

 

To continue on, valuating the first of these three sums, de Moivre integrated (3) from x = 0 to 

x = t, and dividing by t. This yields: 

 

 
 

 
2 1

1 2

1

1
2 1

2 1 2 1

k

e e

k

t t
Log t Log t

k k t






 
   

  
  

  2

2 1
2 1 .

1
e e

m m
Log m Log

m m

 
    

  
 

 

The second sum in (6) may be found directly by means of Newton´s series stated in (3). 

 

  
2 1

1

1 1 1
2 1 .

2 1 2 1 2

k

e e

k

t t
Log Log m

k t





     
       

      
  

 

The third sum may successfully be written as 

  
 

 

2
1

2 2 2 22 2

2

1
1 ,

6 2 1

k

k

mB B
t t t

m m m m









  


  

 and  

 
 

 

2
1 1

lim .
6 2 1 12m

m

m m





 

 

De Moivre also found that the 3 following terms tend to –1/360, 1/1260 and –1/1680. (7) 
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Inserting these results into expression (2) yields the following  

        
1

2 2 1 2 2 2
2

e e e eLog b m m Log m mLog m Log
 

    
 

     

                                                                                                
1 1 1 1

...
12 360 1260 1680

      (8) 

Which clearly corresponds to the following: (9) 

      2 4 6 81
(2 ) Log 2 1 2 Log 2 Log 2

2 1 2 3 4 5 6 7 8
e e e

B B B B
m m m m       

   
 

        2 4 6 81
2 Log 2 1 2 Log 2 2 1 Log 2

2 1 2 3 4 5 6 7 8
e e e e

B B B B
m m m m Log m         

   

 

Finally, we note from the above stated expression (9) that  

   
1

2 Log 2 1 2 Log 2 2 Log 1
2

e e em m m m m
m

 
    

 
 (10) 

With knowledge of Jacob Bernoullis discovery of the constant e, one sees that since: 

 
1

lim 1

n

n
e

n

 
  

 
 and 11

lim 1

n

n
e

n





 
  
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the quantity in (10) 

 
1

2 Log 1 1
2

em
m

 
   

 
  

when n, and therefore m, is a big number. 

From the remaining part of (9) we see that 

     6 82 41 1
2 1 Log 2 2 1 0.7739.

2 1 2 3 4 5 6 7 8 2
e e e

B BB B
Log m Log m          

   
 

We then finally arrive to the part where only the following expression needs to be evaluated  

   
1

( ) 2 1 1 0.7739.
2

e eLog b m Log m


     

     
1/2 1/2

2 1 2m m
 

     

0.7976 0.7976 0.7976 2
( ) .

2 1 2
b m

m m n B n
   


 

where  

1 1 1 1
1 ...

12 360 1260 1680 .B e
   

  

which equals the expression stated in (1). 
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The proof is of huge importance since it clearly demonstrates the methods found in de 

Moivres other proofs. [2] The only part of the proof that may not be consider satisfactory, is 

deriving the constant 2.168 found from the exponential of the following expression: 

 2 1/12 1/ 360 1/1260 1/1680eLog     . 

We look at the sum  

 
 

2

1

,
2 1 2

k

k

B

k k



 
   

that gives the sequence 1/12 1/ 360 1/1260 1/1680   … 

By publishing only the first four terms, de Moivre avoided the discussion of the properties of 

the series, namely whether it was divergent or convergent. 

Deriving the first 10 terms in the series yields 

 

 0.0833 0.0028 0.0008 0.0006 0.0008      

                                 0.0019 0.0064 0.0296 0.1796 1.3924.       

 

The terms start increasing after the fourth term, which clarifies why de Moivre chose to stop 

there. 

 

Here, de Moivre desisted from proceeding farther until his friend, the mathematician James 

Stirling proved that

1 1 1 1
1 ...

12 360 1260 1680B e
   

 actually equals 2 .  [2] 

A statement that de Moivre credited Stirling with by phrasing the following: 

 

“…I own with pleasure that this discovery, besides that it has saved trouble,  

has spread a singular Elegancy on the solution.” [8] 

 

 

 

 

 

 

The table below shows the exactness of the approximation for different m 
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 2
2 1

2

m
m

m

  
  
  

 
0.7976 2m  

m = 3 0.3125 0.3256 

m = 8 0.1964 0.1994 

m = 10 0.1762 0.1783 

m = 50 0.0796 0.0798 

m = 400 0.0282 0.0282 

 

9.5 De Moivres approximation to b(m)/b(m + d). 

Continuing on in the same manner, de Moivre came up with an approximation to  

b(m)/b(m + d). The methods used in the proof are very similar to the approximation to b(m) 

above. 

  
( ) 1

1
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e e

b m
Log m d Log m d

b m d

   
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   
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1 2 .
2

e e e

m d
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   
         
   

 

 

This being admitted, de Moivre could ensure himself that if n = 2m being infinitely great, then  
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2( ) 2
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m
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m
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m

   
   

            
       

  

9.5.1 Proof: 
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1 1 1 1
1 1 1

2 2
e e e

d d d
m d Log m d Log Log

m m m

          
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   1 1 .e e

d d
m d Log m d Log

m m

   
         

   
  

By means of the following taylor expansion  
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1 2 3

1

1
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2 3

k

k

e

k

x x
Log x x x

k


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
       for 1,x    

one may continue in the following manner: 
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2 22
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 
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and the approximation  

222( ) 2 ( )
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n
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b m d d b m d
Log e

b m n b m


   
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was proven.  

 

In conclusion, we note that 

2 2 2 22 2 2 2
( ) 0.7976 2

( ) ( ) .
( ) 2

d d d d

n n n n
b m d

e b m d b m e e e
b m n n
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

          

 

9.6 Conclusions of the theorems. 

As the starting point of de Moivres work was to come up with an easier way of deriving cases 

when several terms of the binomial (a + b)
n
 be added together, he applied his newly found 

knowledge in the following manner: 

2 2
2

2

2

2 2
d/

2

0 0

2 2 4
.

2 2 2

n

n

d k x
d n

xn n
d

k d

P e e dx e dx
n n  

  



 

      

He found two inflection points (points on a curve at which the curve changes from 

being concave to convex or vice versa). 

Inflection point 1: 
1

.
2 2

n
n  
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Inflection point 2: 
1

.
2 2

n
n  

Which clearly corresponds to setting 
1

.
2

d n   

To calculate the integral for small values of d, de Moivre expanded the exponential function 

and integrated the resulting series. [2]  

 

For the sum of seven terms, this yields: 

2
0.682688.

n
P   

He derives the accuracy of the approximation for various values of n and concludes with the 

following quote: 

“Still, it is not to be imagined that there is any  

necessity that the number n should be immensely great:  

for supposing it not to reach beyond the 900
th

 power, nay not even  

beyond the 100
th

, the rule here given will be tolerably accurate,  

which I have confirmed by Trials.” [8] 

 

He also calculated the integral for the values d n and 
3

2
d n by means of numerical 

integration, namely Newton’s three-eight’s rule. [2] (This rule will not be further examined 

here).  

 

He landed in the following: 

 

0.95428,
n

P   

 3 2
0.99874.

n
P   

 

 

 

 

 

The table presented below compares de Moivre´s results with the correct values: 
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 De Moivre´s approximations Correct value 

2n
P  

0.682688 0.682689 

n
P  0.95428 0.95450 

 3 2 n
P  0.99874 0.99730 

 

With the notation of today, the above stated correspond to deviations of one, two, and three 

times the standard deviation. 

By applying the newly examined approximations on a more applied problem, de Moivre 

could now calculate the probabilities of coin-tossing in a much less strenuous way. If 

repeating the experiment of tossing 3600 coins unpleasantly many times, one should now be 

very aware of the following:  

Since   

1 1
3600 1800 30,

2 2
n n n      

 

“…then the probability of the Event‟s neither appearing oftner than  

1830 times, nor more rarely than 1770, will be 0.682688.” [8] 

 

and the kind of problems that gave fire to the, of huge importance, approximations were now 

with enormously greater elegance examined. 

De Moivre completes his analysis of the binomial by extending the theorems to the general 

case for p and q – the skew binomial. He writes: 

 

“If the Probabilities of happening and failing be in any  

given Ratio of inequality, the Problems relating to the sum of (a + b)
n
  

will be solved with the same facility as those in which the Probabilities  

of happening and failing are in Ratio of equality”. [8] 

 

 

 

He established 
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2

21
( , , ) .

2

d

npqb np d n p e
pq



   

From which it is easily derived that 

 
2

2

2

0

4
.

2

d

npq

x

dP e dx


   

 

The proof is omitted, but with no difficulty derived using only the methods and results from 

the previous proofs presented in this chapter. 

 

 

9.7 Further developments 

Some would claim that a chapter describing the emergence of the normal distribution should 

instead be dedicated to “the prince of mathematicians”, Carl Friedrich Gauss (30 April 1777 – 

23 February 1855). Abraham de Moivre never used the concept of “probability density 

function” and nor did he ever interpret his theorems as anything more than an approximation 

for the binomial coefficients. [7] 

Gauss invented the two-parameter distribution, depending on both the expected value and the 

standard deviation. He among other things used it for estimating errors in astronomical 

observations. [27] 

The details of Gauss’ work will not be presented further here.  

A normal distribution density function has the following look with modern notation.  

 
 

2

22
1

, , .
2

x

f x e



 
 




  
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