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Abstract

The category ShC1(C0) of equivariant sheaves on an arbitrary topological cate-
gory C can be constructed as a colimit in the 2-category of Grothendieck toposes
and geometric morphisms, and is therefore a Grothendieck topos. In this thesis
we investigate elementary properties of C-spaces and equivariant sheaves, re-
garded as spaces respectively local homeomorphisms over the space of objects
of C equipped with a continuous action, and how these properties depend on the
openness of C. We give direct proof, using Giraud’s theorem, that ShC1(C0) is a
Grothendieck topos for the case of a topological category C where the codomain
function is assumed to be open, thus extending Moerdijk’s brief sketch of a proof
of this proposition. We also show that the category of equivariant sheaves with
an open action is (equivalent to) an open subtopos of ShC1

(C0), for an arbitrary
topological category C.

Moerdijk’s site description for the equivariant sheaf topos of an open lo-
calic groupoid depends on defining an equivalence relation in terms of “open
subgroupoids” of the underlying localic groupoid. We apply a similar equiva-
lence relation to arbitrary topological groupoids over a fixed open topological
groupoid G. For the category of morphisms of topological groupoids h : H → G
such that this equivalence relation is open (i.e. has an open quotient map), this
is shown to define a functor Λ to the category of G-spaces.

Every G-space also determines a topological groupoid over G in a functorial
way. Brown, Danesh-Naruie and Hardy have shown that this functor, which
we denote by S, yields an equivalence between the category of G-spaces and
the category of topological covering morphisms to G. We generalize this result
to topological categories, which yields an alternative description of the cate-
gory of equivariant sheaves on a topological category C as the category of local
homeomorphic covering morphisms to C. In the case of an open topological
groupoid G we show that Λ is left adjoint to S. In this case, the equivalence by
Brown, Danesh-Naruie and Hardy turns out to be a special case of the adjunc-
tion Λ a S.
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Chapter 1

Introduction

An elementary topos can be described as a “generalized universe of sets”. A
Grothendieck topos is an elementary topos with some additional properties (the
existence of a set of generators and the existence of all small coproducts), and is
sometimes described as a “generalized space”. The standard definition, however,
is that a Grothendieck topos is a category equivalent to the category of sheaves
of sets on a (small) site. Equivalently, a category is a Grothendieck topos iff it
satisfies the conditions of Giraud’s theorem.

Given a Grothendieck topos, a site, for which the category is equivalent to
the category of sheaves on the site, is in general not unique. Giraud’s theorem
characterizes a Grothendieck topos in terms of a set of generators rather than
referring to a particular site. The theorem can be used for proving that a certain
category is a Grothedieck topos in cases when no explicit site description is
available. However, given a category that satisfies the conditions of Giraud’s
theorem one can construct a canonical site.

By a topological category we mean a category where the set of objects and
set of arrows are equipped with topologies that makes the structure maps con-
tinuous.1 In other words, a topological category is a category object (or an
internal category) in the category of topological spaces and continuous func-
tions. A topological groupoid is a topological category where every arrow is
invertible, and the operation of inverting an arrow is continuous.

An equivariant sheaf on a topological category (or groupoid) C is a sheaf (in
the sense of a local homeomorphism) over the space of objects of C equipped
with a continuous action. Such equivariant sheaves, together with the local
homeomorphisms between them that respects the action, form a category. This
category can be constructed as a colimit in the 2-category of Grothendieck
toposes and geometric morphisms, and is therefore a Grothendieck topos (see
[Moe88] and [Moe95]).

Similar to equivariant sheaves on C, a C-space is topological space over the
space of objects of C equipped with a continuous action. The C-spaces, together
with the continuous functions between them that respects the action, also form
a category.

1The term topological category has other, inequivalent, definitions compared to the one
we shall adopt (e.g. [AHS90]).

2
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1.1 Some related results

Representing Grothendieck toposes

A geometric morphism p : E1 → E2 between toposes E1, E2 is a pair of adjoint
functors p∗ a p∗ , where the left adjoint p∗, called the inverse image, preserves
finite limits. A point of a topos E is a geometric morphism from the topos of
sets and functions, Set, to E . In a sense, this is a generalization of the notion
of a point in point-set topology.

A topos E is said to have enough points if the class of all inverse image
functors p∗ of points p of E is jointly conservative. In [BM98] it is shown
that any Grothendieck topos with enough points is equivalent to the category
of equivariant sheaves on some topological groupoid where the domain and
codomain functions are open.

One may also consider “pointless spaces” called locales, were the primitive
notion is that of a lattice of open sets, and localic groupoids. Any Grothendieck
topos is known to be equivalent to the category of equivariant sheaves on some
(open) localic groupoid [JT84] (the more recent publication [Tow14] offers a
shorter proof of this proposition).

An application to mathematical logic

One application of equivariant sheaf toposes arise in connection to models of
certain first-order theories via the notion of “classifying topos”, which is briefly
described below. Since any such classifying topos is a Grothedieck topos, it can
be represented by the category of equivariant sheaves on a localic groupoid.

An interpretation of a first-order language L in a topos E is an extension
of the notion of a set-theoretic L-structure expressed in diagrammatic form in
Set. Given a theory T in L, one can in this way speak of models of T in a
topos. Loosely speaking, a topos Set[T] is said to be a classifying topos (over
Set) for T models if there is an equivalence, natural in E , between the category
of geometric morphisms E → Set[T] and the category of models of T in E , for
cocomplete toposes E .

A coherent formula is a first-order formula built using connectives >,⊥,∧,∃
and ∨. By allowing infinitary disjunction with only finitely many free variables
one obtains a geometric theory. A coherent (geometric) theory T is a set of
sequents of coherent (geometric) formulas.

For any geometric theory there exists a classifying topos. Conversely, any
topos is (equivalent to) the classifying topos of some geometric theory (see
[Joh02b, D3.1]). Grothendieck toposes which occur as the classifying topos of a
coherent theory are called coherent toposes. Deligne’s theorem states that any
coherent topos has enough points. Thus the classifying topos of any coherent
theory can be represented as the category of equivarant sheaves on a topological
groupoid G : G1 ⇒ G0, denoted ShG1(G0).

If ShG1
(G0) represents the classifying topos of a geometric theory T then

the underlying topological groupoid can be taken to consist of T models and
isomorphisms (of T models), see [BM98], [AF13]. The toposes with enough
points are the classifying toposes of geometric theories with enough models, in
the sense of that a sequent of geometric formulas is valid in T if it is valid in all
models of T in Set.
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A quotient theory of T can be described as a theory extension of T in the
same language. In [For13], the known correspondence of quotient theories of
a theory T and subtoposes of Set[T] is extended to subgroupoids of G and
subtoposes of ShG1(G0), where ShG1(G0) is the classifying topos of the theory
T. An intrinsic characterization of the subgroupoids H ↪→ G that are definable
by quotient theories (of T) in this way is also given in [For13].

1.2 This thesis

In this thesis we will treat category theory as performed within a classical uni-
verse of sets, with choice, and make extensive use of point-set arguments and
results in point-set topology. This thesis presents details and contains proofs
of some basic properties of equivariant sheaves that does not appear to have a
similar summarized and detailed presentation accessible in the literature.

In Chapter 2 the basic notions of the subject are introduced. We list useful
properties of open maps, local homeomorphisms, quotient maps and relevant
forgetful functors collected from various sources.

Chapter 3 contains a proof that the category of equivariant sheaves on a
topological category C, denoted ShC1

(C0), has all finite limits and all small
colimits. In this chapter we also investigate how certain properties of equivariant
sheaves (such as openness of the action) are related to the openness of the
underlying topological category. We prove a canonical isomorphism of C-spaces,
which shows that each C-space is essentially a quotient space with an action
induced by composition of arrows in C.

Chapter 4 contains a proof, using Giraud’s theorem, that for a topological
category C where the codomain function is open, ShC1(C0) is a Grothendieck
topos. Published lecture notes by Moerdijk contains a brief sketch of a proof
of this statement, also using Giraud’s theorem [Moe95]. Our proof fleshes out
Moerdijk’s sketch and emphasizes how the generators can be seen to arise via
the canonical isomorphism of C-spaces proved in Chapter 3. We verify the other
conditions in detail. Further, we also show that the category of equivariant
sheaves with an open action is equivalent to an open subtopos of ShC1(C0), for
an arbitrary topological category C.

Chapter 5 first summarizes material from [BDNH76] concerning topological
covering morphisms. These results are then extended to topological categories.
In particular, the category of equivariant sheaves on a topological category C
is shown to be equivalent to the category of local homeomorpic covering mor-
phism to C. Moerdijk’s site description for the equivariant sheaf topos of an
open localic groupoid in [Moe88] depends on defining an equivalence relation in
terms of “open subgroupoids” of the underlying localic groupoid. We apply a
similar equivalence relation to arbitrary topological groupoids over a fixed open
topological groupoid G. For the category of morphisms of topological groupoids
h : H → G such that this equivalence relation is open (i.e. has an open quotient
map), this is shown to define a functor Λ to the category of G-spaces. We prove
that Λ has a right adjoint and the adjunction restricts to the category of equiv-
ariant sheaves on G and the category of semi-local homeomorphic morphisms to
G. The equivalence of the category of topological covering morphisms to G and
the category of G-spaces, proved in [BDNH76], turns out to be a special case of
this adjunction, when the topological groupoid G is open.
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1.3 To the reader

This thesis is aimed at readers of the level equivalent to a master student
in mathematics, assuming familiarity with the basics of category theory and
the theory of (elementary and Grothendieck) toposes (as may be obtained via
[Mac97] and [MM92]). Especially, the reader is assumed to be familiar with
computing basic limits and colimits (products, equalizers, pullbacks and their
duals) in the category of topological spaces and continuous functions.

When a non-trivial statement appearing in Chapters 3–5 of this thesis is
known to the author to have been published somewhere else effort has been
make this clear and supply an explicit reference to the publication in question.

The reader may wish to consult the index of notation, which is included at
the end.



Chapter 2

Preliminaries

In this chapter we review and list some properties of the basic concepts of our
subject matter.

2.1 Open maps, local homeomorphisms and quo-
tient maps

We shall call a continuous function f : X → Y between topological spaces a
map, and will in this case also say that X is a space over Y . The category
of topological spaces and maps will be denoted Sp. It is well-known that this
category is both complete and cocomplete and that the forgetful functor (of
forgetting the topology) from Sp to the category of sets and functions, denoted
Set, preserves both limits and colimits (e.g. [Mac97, V.9]).

For convenience we will often use the same symbol(s) for the restriction of
a function to a subspace of its domain and to the original function. This will
in some cases lead to the same symbol(s) being used to denote functions with
different domains.

We will deal extensively with open maps and local homeomorphisms of topo-
logical spaces. A local homeomorphism p : X → Y is a map such that for each
x ∈ X there is an open set U ⊆ X such that x ∈ U , p(U) is open and the
restriction of p to U , p|U , is a homeomorphism onto its image. When we, in a
diagram, wish to emphasize that a map is open or a local homeomorphism, we
put a circle respectively a dot on the shaft of the arrow, as in diagram (2.1).
However, in diagrams in categories where all arrows are local homeomorphisms,
we may suppress this notation for readability.

Local homeomorphism are also called étale maps. We shall follow [Joh02b]
and not use the term (cf. C1.3). We shall, however, use the abbreviation LH for
local homeomorphism. The collection of topological spaces and LH’s between
them form a category LH.

Notice that every homeomorphism is an LH, and the inclusion E ↪→ X of an
open subset E ⊆ X (with the subspace topology) is an LH. Furthermore, the
restriction of an LH f : X → Y to an open subset E ⊆ X is an LH E → Y .

As the properties of LH’s and open maps of topological spaces, that we shall
need, are not conveniently summarized in the standard literature we list these
and supply proofs, or references to where proofs can be found:

6
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Lemma 2.1. Let X,Y and Z be topological spaces and the following diagram
be a pullback square in Sp

Y ×Z X X

Y Z

k f

g

(i) If f is open, then k is open.

(ii) If f is an LH, then k is an LH.

In other words, open maps and LH’s are stable under pullback.

Proof: See [MM92, Lemma IX.6.1] and [MM92, Lemma II.9.1], respectively. �
The following lemma describes an equivalent charaterization of LH’s, where

∆ takes x 7→ (x, x).

Lemma 2.2. Let X,Y be topological spaces. f : X → Y is an LH iff both f
and the diagonal map ∆ : X → X ×Y X are open.

Proof: See [MM92, Ex. II.10]. �

Lemma 2.3. Let X,Y and Z be topological spaces and the following diagram
be commutative (i.e. k = g ◦ f) in Sp

X Y

Z

f

k g

(i) If k and g are LH’s, then f is an LH.

(ii) If g is an LH and k is open, then f is open.

(iii) If f is surjective and k is open, then g is open.

(iv) If f is surjective and open and k is an LH, then f and g are LH’s.

Proof: (i) : omitted, see [MM92, Ex. II.10].
(ii) : This property is mentioned in [Moe95, II.3]. Let U ⊆ X be open and

let x ∈ U . Then there exist an open subset Vx ⊆ Y such that f(x) ∈ Vx, g(Vx)
is open and g restricted to Vx is a homeomorphism onto its image. Observe that
f
(
f−1(Vx) ∩ U

)
= f(U) ∩ Vx, so the set

W = g (f(U) ∩ Vx)

= g ◦ f
(
f−1(Vx) ∩ U

)
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is open. Since g|W is injective on Vx we have that

(g|Vx)
−1 ◦ g|Vx(f(U) ∩ Vx) = f(U) ∩ Vx

= g−1(W ) ∩ Vx.

So Vx ∩ f(U) is a subset of f(U) which is an open neighborhood of f(x). It
follows that f(U) is open. Hence f is open.

Using (i), Lemma 2.1 and Lemma 2.2 we can give an alternative proof.
Consider the following diagram in Sp

X ×Z Y Y

X Z

X

πY

πX g

k

f

1X

1X ×Z f•

•

◦

◦

◦

••

(2.1)

Since g is an LH and k is open, πX is an LH and πY is open. Then 1X ×Z f is
an LH by (i), which is open by Lemma 2.2. Hence f = πY ◦ (1X ×Z f) is open
as well.

(iii) : Let U ⊆ Y be open, then as f is surjective f
[
f−1(U)

]
= U. So

g(U) = g ◦ f
[
f−1(U)

]
is open.

(iv) : If follows from (iii) and Lemma 2.2 that g is open. Let y ∈ Y , then
as f is surjective there is a x ∈ X such that f(x) = y. Choose Vx ⊆ X open
such that x ∈ Vx and k|Vx is a homeomorphism onto k(Vx). Then f(Vx) is an
open neighborhood of y, and g is injective on this set, since k is injective on
Vx. Thus g restricted to the open set f(Vx) is open and injective and hence
homeomorphism onto its image. So g is an LH. If follows from (i) that f is also
an LH. �

Regarding (iii) in the preceeding lemma, we remark that a corresponding
proposition holds for injective maps. That is, g ◦ f open and g injective implies
f open (see e.g. [Bou89, Proposition I.5.1]).

The following lemma will also be useful.

Lemma 2.4. Let X, X ′, Y and Z be topological spaces and f : X → Z,
f ′ : X ′ → Z and k : X → X ′ be maps such that f = f ′ ◦ k. Let the following be
pullback diagrams in Sp:

Y ×Z X X

Y Z

Y ×Z X ′ X ′

Y Z

πX

πY f

g

πX′

π′Y f ′

g

If k is an LH, then the function 1Y ×Z k : Y ×Z X → Y ×Z X ′ is an LH. If k
is open, then 1Y ×Z k is open.
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Proof: 1Y ×Zk denotes the unique map making the following diagram commute
(in Sp)

Y ×Z X ′ X ′

Y Z

Y ×Z X

πX′

π′Y f ′

g

k ◦ πX

πY

1Y ×Z k

It follows from the so-called “pullback lemma” (or “two pullback lemma” or
“pullback pasting lemma”), see e.g. [Gol84, 3.13] or [Mac97, Ex. III.4.8], that
the top square in the following diagram (in Sp) is a pullback, since the outer
rectangle and bottom square are pullbacks

Y ×Z X X

Y ×Z X ′ X ′

Y Z

πX

1Y ×Z k k

πX′

g

πY f ′

From Lemma 2.1, 1Y ×Z k is open, respectively an LH, if k is. �

2.1.1 Quotient maps

If R is an equivalence relation on a space X, we denote the quotient space by
X/R and the quotient map by q : X → X/R. The equivalence class of an
element x ∈ X will be denoted [x]R. For reference, we list a couple of basic
facts about quotient maps.

Lemma 2.5. Let X,Y be topological spaces and R be an equivalence relation
on X. Then:

(i) a function f : X/R→ Y is continuous iff f ◦ q is continuous;

(ii) if g is a continuous function X → Y which is constant on the equivalence
classes of R, then there exist a continuous function f : X/R → Y such
that g = f ◦ q.

Proof: See e.g. [GG99, Theorem 2.13.2–2.13.3]. �
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Following [Bou89] we shall say that an equivalence relation is open if the
corresponding quotient map is open.

Lemma 2.6. For a topological space X, let R be an equivalence relation on X
and q : X → X/R be the corresponding quotient map. Then:

(i) q is open iff the restrictions of the projection maps X ×X → X to R are
open;

(ii) R is open as a subset of X ×X iff X/R is discrete;

(iii) q is open iff there exist an open map k : X → Y constant on the equivalence
classes of R and such that R is an open subset of X ×Y X.

Proof: (i): “⇒” If q is open, then as R is the pullback of q along itself, it
follows from Lemma 2.1 that the projection maps π1, π2 are open:

R X

X X/R

q

q

π1

π2

◦

◦

◦ ◦ (2.2)

“⇐” Suppose the projection maps π1, π2 : R → X are open. For U ⊆ X open
we have that q[U ] ⊆ X/R is open if q−1 (q[U ]) is open. But q−1 (q[U ]) equals
the set π2

[
π−1

1 (U)
]
:

π2

[
π−1

1 (U)
]

= π2 [{(x, y) ∈ R |x ∈ U}]
= {y ∈ X | ∃x ∈ U [x ∼R y]} ,

which is open. Hence q is open.
(ii) : “⇒” If R ⊆ X × X is an open subset then the restrictions of the

projection maps X×X → X to R are open. By (i), q is open. By commutativity
of

R X ×X

X/R X/R×X/R
∆

q × qq ◦ π1◦ ◦

•

where π1 : R → X is the projection onto the first component, we get from
Lemma 2.3 (iii) that the diagonal map ∆ is open. Let !X/R be the unique
map from X/R to the one point space. We have that !X/R is open and that
X/R×X/R is the pullback of !X/R along itself. By Lemma 2.2, !X/R is an LH.
This implies that X/R is discrete.

“⇐” If X/R is discrete, then the diagonal map ∆ : X/R → X/R ×X/R is
open. From the following pullback and Lemma 2.1 we obtain that R ⊆ X ×X
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is open:

R X ×X

X/R X/R×X/R

q × q

∆
◦

◦

(iii): “⇒” If q is open then q is such a map, for R = X ×X/R X is the
pullback of q : X → X/R along itself, as in (2.2).

“⇐” Since k is open, the projection maps π1, π2 : X ×Y X → X are open
by Lemma 2.1. Since R ⊆ X ×Y X is open, the restrictions of π1 and π2 to R
are open. By (i), q is open. �

The following result is implicit in [For13] and [Moe88]:

Lemma 2.7. Let X and Y be topological spaces and k : X → Y be an open map.
If R is an equivalence relation on X such that k is constant on the equivalence
classes of R and R is an open subset of X ×Y X, then the induced map g, such
that the diagram below commutes, is an LH.

X X/R

Y

k g

q

◦

Proof: As q is surjective, it follows from Lemma 2.3 (iii) that g is open. From
Lemma 2.6 (iii) it follows that q is open. By Lemma 2.2 it suffices to shows
that the diagonal map ∆ : X/R → X/R ×Y X/R is open to conclude that g is
an LH. We show that q ×Y q : X ×Y X → X/R ×Y X/R is open, and then it
follows that ∆ is open from the following commutative diagram and Lemma 2.3
(iii):

R X ×Y X

X/R X/R×Y X/R

q ×Y q

∆

q ◦ π1◦ ◦

•

where π1 : R→ X is the projection onto the first component.
Since g ◦ q = k and q is open, have that 1X ×Y q : X ×Y X → X ×Y X/R is

open by Lemma 2.4. A similar argument shows that q×Y 1X/R : X ×Y X/R→
X/R ×Y X/R is open. Hence (q ×Y 1X/R) ◦ (1X ×Y q) = q ×Y q : X ×Y X →
X/R×Y X/R is open. �

2.2 Topological categories

A category where the set of objects and set of arrows are equipped with topolo-
gies that makes the structure maps continuous is called a topological category.
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Alternatively, a topological category is a category object (or an internal cat-
egory) in Sp (cf. [Mac97, XII.1] or [Joh02a, B2.3]). A topological groupoid
is a topological category where every arrow is invertible, and the operation of
inverting an arrow is continuous.

We shall denote a topological category by C, or C : C1 ⇒ C0 when we wish
to indicate that the space C1 is the collection of arrows and the space C0 is
the collection of objects. When the category is a groupiod we instead use the
symbols G, G1 and G0 in the corresponding way. A topological category C thus
corresponds to a diagram in Sp of the form

C1 ×C0 C1 C1 C0

mC

sC

tC

uC

where mC is the composition, uC is the insertion of identities, tC is the codomain
function and sC is the domain function. For convenience we will, however, write
g ◦ f , 1x and f : x → y, for f, g in C1 and x, y in C0, in the usual way. For a
groupoid we use iG : G1 → G1 for the inverse function f 7→ f−1.

A functor or morphism of topological categories φ : D → C is a pair of maps
φ0 : D0 → C0 and φ1 : D1 → C1 such that the expected diagrams commute (see
[Mac97, XII.1]). Such morphisms are also called internal functors.

We shall denote the category of topological categories by TCat and the
category of topological groupoids by TGpd.

2.3 Equivariant sheaves and C-spaces
A C-space on a topological category C : C1 ⇒ C0 is a triple (e, E, αe) where e :
E → C0 is continuous and the action αe is a continuous function C1×C0

E → E
such that

e ◦ αe(g, x) = tC(g),

αe(1e(x), x) = x,

αe(f, αe(g, x)) = αe(f ◦ g, x),

(2.3)

where the pullback C1 ×C0 E is as in the diagram

C1 ×C0 E E

C1 C0

πE

πC1 e

sC

A morphism of C-spaces is a continuous function between spaces over C0 that
respect the action. That is, a morphism f : (e, E, αe) → (a,A, αa) is a map
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f : E → A such that e = a ◦ f and the following diagram commutes

C1 ×C0
E E

C1 ×C0
A A

αe

1C1
×C0

f f

αa

(2.4)

We will also use the point-set equation expressed by the commutativity of the
above diagram:

f ◦ αe(k, x) = αa(k, f(x)) (2.5)

where (k, x) ∈ C1 ×C0 E. We shall also call a morphism f : (e, E, αe) →
(a,A, αa) an equivariant morphism or an equivarant map, and say that (2.4)
and (2.5) expresses equivariance. The C-spaces form a category that we denote
SpC for reasons that will be come clear in the next section.

An equivariant sheaf on C, or a C-sheaf, is a C-space (e, E, αe) where e : E →
C0 is an LH. The equivariant sheaves on C, and the equivariant maps between
them, form a category denoted by ShC1(C0), and in the case of a groupoid
G : G1 ⇒ G0 by ShG1

(G0).
By Lemma 2.3 (i) the morphisms in ShC1

(C0) are also LH’s, and we will
also call such a map an equivariant LH.

2.3.1 Left C-objects
Recall from [MM92] (or [Mac97]) that the internal functors in Set does not in-
clude functors H : C→ Set (such as the hom-functors) for an internal category
C in Set. The concept of such functors can be reformulated by replacing the
object function H0 : C0 → Set by a coproduct of sets and a projection, as in

F =
∐

c∈C0

H0(c)→ C0, (c, x) 7→ c for x ∈ H0(c).

The arrow function H1 can be described by a single function specifying the
action of each arrow f : c→ d in C1 on elements x ∈ H(c). This is an “action”
C1 ×C0

F → F satisfying the conditions of (2.3).
This construction can be generalized to any category E with pullbacks and

any internal category C in E. A left C-object in E is a triple (a,A, αa) where
a : A → C0 is a morphism in E and αa : C1 ×C0

A → A is a morphism in E
that satisfies the conditions of (2.3) expressed in diagrammatic form.

A morphism φ : (e, E, αe) → (a,A, αa) of left C-objects is an arrow φ :
E → A in E that respects the action, in the sense of making the diagram
(2.4) commute, and such that e = a ◦ φ. The left C-objects in E form a
category denoted EC. If E is an elementary topos, this category EC of “internal
presheaves” is again an elementary topos ([MM92, Theorem V.7.1]).

Thus, accordingly, we have the category of left C-objects in Sp for any
topological category C. This category is clearly the category of C-spaces.

We can without loss of generality restrict ourself to considering only left
actions. For given an internal category C in a category E with pullbacks, there
is an equivalence between the category of right C-objects in E and left Cop-
objects in E (cf. [MM92, V.7]).
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2.3.2 Locales and sober topological spaces

We recall some properties of locales and sober topological spaces from [MM92].
A closed subset Y of topological space S is called irreducible if whenever F1 and
F2 are closed sets such that Y = F1 ∪F2 then Y = F1 or Y = F2. A topological
space S is called sober if every nonempty irreducible closed set is the closure of
a unique point.

A frame is a lattice with all finite meets and all joins and that satisfies the
infinite distributive law U ∧∨i Vi =

∨
i U ∧ Vi. The category of locales Loc is

the opposite of the category of frames and morphisms of frames. The functor
Loc : Sp → Loc that associates to a topological space S its locale Loc(S) of
open sets has a right adjoint pt : Loc → Sp that to each locale X associate
the “space” of points of X. A point of a locale X is by definition a morphism
1→ X, where 1 is the terminal object in the category of locales.

The unit of the adjunction Loc a pt is a homeomorphism iff the space S is
sober. For sober (topological) spaces the points of the space S is in a bijective
correspondence with the points of the locale Loc(S).

But locales may have no points at all. A localeX is said to be spatial (or have
enough points) when the counit of the adjunction Loc a pt is an isomorphism of
locales. This is equivalent to X being isomorphic to Loc(S) for some topological
space S. The full subcategory of Sp of sober topological spaces is equivalent to
the full subcategory of Loc of spatial locales.

It is sometimes assumed that all considered topological spaces are sober (e.g.
[Moe95, I.2], [Joh02b, C1.2]). We shall, however, make no such assumption.

2.4 Topos

In this thesis, topos will henceforth mean Grothendieck topos. The category
ShC1

(C0) of equivariant sheaves on a topological category C is known to be a
topos. Existing proofs of the general case (for an arbitrary topological category
C) depend on the construction of ShC1

(C0) as a colimit in the 2-category of
(Grothendieck) toposes and geometric morphisms (and the existence of such
colimits), cf. [Moe95, II.3] and [Moe88].

In this thesis we study properties of ShC1
(C0) and, in the case of a topological

category where the codomain map is assumed to be open, show, in a more direct
and “elementary” way, that it indeed is a topos using Giraud’s theorem, instead
of as a colimit of toposes.

In [Moe95] Moerdijk gives a brief sketch of proof that ShC1(C0) is topos, also
for a topological category C where the codomain map is assumed to be open,
using Giraud’s theorem.

2.5 Some useful functors

We list some relevant functors and some of their properties. As already men-
tioned, the forgetful functor Sp → Set, which forgets the topology, preserves
both limits and colimits ([Mac97, V.9]). There is a well-known equivalence
of categories LH/X ∼= Sh(X) (e.g. [MM92, Corollary II.6.3]). In particular,
LH/X has all small limits and colimits ([MM92, II.8, Proposition II.2.2]). The
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inclusion functor i : LH/X ↪→ Sp/X has a right adjoint and preserves finite
limits ([MM92, II.9,Corollary II.6.3]).

If a category E has finite limits then the forgetful functor E/B → E, tak-
ing an object A over B to A, has a right adjoint ([MM92, I.9]) and preserves
pullbacks ([Joh02a, A1.2]). Furthermore, a slice category E/B has finite limits
iff E has pullbacks ([Joh02a, A1.2.6]). Hence the forgetful functor Sp/X → Sp
preserves colimits and pullbacks.

For an internal category C in a category E with pullbacks, the forgetful
functor UE : EC → E/C0 of forgetting the action has a left adjoint ([MM92,
Theorem V.7.2]).

In the next chapter we prove that the forgetful functor U : ShC1
(C0) →

LH/C0, of forgetting the action, preserves finite limits and small colimits. We
denote the functor SpC → Sp/C0 which forgets the action by U ′.

We remark that there is also the forgetful functor V : ShC1
(C0) → SetC

which forgets the topology. As noticed in e.g. [For13], for the case of topological
groupoids, V is conservative and the inverse image part of geometric morphism.
We will will not prove these results for V as we will not use them. Given the
explicit construction of finite limits and small colimits in ShC1

(C0) in the proof
of Theorem 3.8 it is straightforward to prove that V preserve these limits. One
may then proceed as in Corollary 3.10 to show that V has a right adjoint.

Lemma 2.8. For a morphism f in LH/C0 or Sp/C0:

E A

C0

e a

f

(i) f is monic iff f : E → A is an injective function,

(ii) f is epic iff f : E → A is a surjective function,

(iii) f is an isomorphism iff f : E → A is a homeomorphism.

Proof: Monics, epics and isomorphisms in Set are the injective, surjective and
bijective functions, respectively.

“⇒”: Recall that in an arbitrary category a morphism f : E → A is monic
iff the following diagram is a pullback

E E

E A

1E

1E f

f

(2.6)
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and f : E → A is an epic iff the following diagram is a pushout:

E A

A A

f

f 1A

1A

(2.7)

By the text preceeding the lemma, the following inclusion functor and forgetful
functors all preserve pullbacks and colimits

LH/C0 ↪→ Sp/C0 → Sp→ Set. (2.8)

Hence, if f is monic the diagram in (2.6) is pullback in Set, so f is an injective
function. If f is an epic, the diagram in (2.7) is a pushout in Set, so f is sur-
jective function. An isomorphism in LH/C0 or Sp/C0 is a continuous function
with a continuous inverse, which is a homeomorphism.

“⇐”: Faithful functors reflect monics and epics. The inclusion functor
LH/C0 ↪→ Sp/C0 and the forgetful functors Sp/C0 → Sp and Sp → Set
are obviously all faithful. Composites of faithful functors are also faithful. So
if f in LH/C0 or Sp/C0 is an injective (surjective) function, then f is monic
(epic). If f is homeomorphism then f is clearly an isomorphism in LH/C0 or
Sp/C0. �

Regarding U , the following is also noticed in e.g. [For13]:

Proposition 2.9. The forgetful functors U : ShC1
(C0) → LH/C0 and U ′ :

SpC → Sp/C0, of forgetting the action, are conservative.

Proof: We must show that the functors are faithful and reflect isomorphisms.
It is clear that U and U ′ are faithful. To show that they reflect isomorphisms, let
φ : (e, E, αe)→ (a,A, αa) be a morphism in SpC (or in ShC1(C0)) such that φ :
E → A is an isomorphism in Sp/C0 (or LH/C0). Then φ is a homeomorphism.
If (f, y) ∈ C1 ×C0

A, x ∈ E and φ(x) = y then since

φ ◦ αe(f, x) = αa(f, φ(x))

we have
αe(f, φ

−1(y)) = φ−1 ◦ αa(f, y)

so φ−1 : A → E is also equivariant and hence is an isomorphism in SpC (or in
ShC1

(C0)). �



Chapter 3

Properties of equivariant
sheaves on topological
categories

In this chapter we prove a canonical isomorphism of C-spaces and investigate
how certain properties of equivariant sheaves depend on the openness of the
underlying topological category. We prove the existence of finite limits and all
(small) colimits in ShC1

(C0) and that the forgetful functor U : ShC1
(C0) →

LH/C0 (of forgetting the action) preserve these (co)limits.

3.1 A canonical isomorphism of C-spaces
By the following theorem, every C-space can be regarded as a quotient space
with an action induced by the operation of composition of arrows in C.
Theorem 3.1. For a C-space (e, E, αe), let D = C1 ×C0

E be the following
pullback

C1 ×C0
E E

C1 C0

πE

πC1 e

sC

(3.1)

Let R be the equivalence relation on D given by

(f, x) ∼R (g, y) iff αe(f, x) = αe(g, y), (3.2)

and D/R be the quotient space. Then D/R is a C-space when equipped with

[tC ] : D/R→ C0, [(f, x)]R 7→ tc(f),

αd : C1 ×C0
D/R→ D/R, (g, [(f, x)]R) 7→ [(g ◦ f, x)]R,

and the function [αe] : D/R → E, induced by the action αe on E and taking
[(f, x)]R 7→ αe(f, x), is an isomorphism of C-spaces ([tC ], D/R, αd) ∼= (e, E, αe).

17
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Proof: The function [αe] is clearly well defined, it is also continuous since
[αe] ◦ q = αe : D → E is continuous (Lemma 2.5), where q : D → D/R is the
quotient map.

Furthermore, [αe] has a continuous inverse given by x 7→ [(1e(x), x)]R, which
is the composition of the following maps

E C0 ×C0 E C1 ×C0 E D/R .
e×C0

1E

∼
uC ×C0

1E q

Indeed, we have that (f, x) ∼R (1tC(f), αe(f, x)).
This shows that [αe] is a homeomorphism. The function [tC ] is also well-

defined, and since the following diagram commutes

D/R E

C0

[αe]

∼

[tC ] e

we have that [tC ], which sends [(f, x)]R to tC(f), is continuous. Furthermore,
[tC ] an LH if e is an LH.

The quotient D/R carries a natural action αd, which is induced by αe:

C1 ×C0 D/R D/R

C1 ×C0 E E

(g, [(f, x)]R) [(g ◦ f, x)]R

(g, αe(f, x)) αe(g ◦ f, x)

1C1
×C0

[αe] [αe]
−1

αe

αd

This shows continuity of αd which clearly also satisfies the conditions of being
an action, given in (2.3).

Now, [αe] : D/R → E respects the action by construction and since the
forgetful functor U ′ : SpC → Sp/C0 is conservative (Proposition 2.9), [αe] is an
isomorphism of C-spaces. �

In particular, the conclusion of the theorem applies to equivariant sheaves
on C. For (e, E, αe) in ShC1

(C0) we thus have (e, E, αe) ∼= ([tC ], D/R, αd).

Proposition 3.2. For (e, E, αe) ∈ SpC, let D = C1 ×C0
E be the pullback in

(3.1) and R be the equivalence relation on D in (3.2). Then the quotient map
q : D → D/R is open iff the action αe is open.

Proof: The statement follows from the following commutative diagram

C1 ×C0
E

D/R E

αe

[αe]

∼

q

�



CHAPTER 3. PROPERTIES OF EQUIVARIANT SHEAVES 19

3.2 Openess of C and equivariant sheaves

Note that when e : E → C0 is an LH, the projection πC1
: C1 ×C0

E → C1 is
an LH:

C1 ×C0 E E

C1 C0

πE

πC1 e

sC

• • (3.3)

Proposition 3.3. For (e, E, αe) ∈ ShC1
(C0),

(i) if tC is open then αe is open,

(ii) if e is surjective, then αe is open iff tC is open.

Proof: (i): Consider the following diagram:

C1 ×C0
E

E

C1

C0

πC1

e

tCαe

•

•

(3.4)

If tC is open, so is tC ◦ πC1 . As e is an LH it follows from Lemma 2.3 (ii) that
αe is open.
(ii): ”⇐”: This is (i). ”⇒”: In the diagram (3.4), if αe is open then tC ◦πC1

=
e ◦ αe is open. If e is surjective we have that πC1

is also surjective. It follows
from Lemma 2.3 (iii) that tC is open.

(ii) also follows from Proposition 3.6 (ii) with the collection consisting of
only (e, E, αe). �

If the topological category is a groupoid G : G1 ⇒ G0 more can be shown.
We say that a topological groupoid is open when the domain and codomain
functions are open maps. For an open localic groupoid G, the statements of
the following proposition are mentioned in [Moe88]. We supply direct proof for
these statements, for the case of topological groupoids.

Proposition 3.4. For a topological groupoid G : G1 ⇒ G0:

(i) sG is open iff tG is open;

(ii) if G is open then mG is open;

(iii) if G is open and (e, E, αe) is a G-space, then αe is open.

Proof: (i): The inverse map iG is a homemorphism G1 → G1 such that i−1
G =

iG, and sG = tG ◦ iG.
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(iii): Consider the following commutative diagram in Sp

G1 ×G0
E E

G1 G0

G1 ×G0 E

π2

πG1 e

sG

αe

iG ◦ πG1

∼
θ

◦

◦

◦

(3.5)

where θ is the unique map such that αe = π2◦θ and iG◦πG1 = πG1 ◦θ. The map
θ is thus given by θ(f, x) = (f−1, αe(f, x)). We have that θ ◦ θ(f, x) = (f, x), so
θ is a homeomorphism. It follows that αe is open.

(ii): Follows from (iii) with the G-space (tG, G1,mG). �

Proposition 3.5. For an equivariant morphism f : (e, E, αe) → (a,A, αa) in
ShC1

(C0),

(i) if αa is open then αe is open;

(ii) if αe is open and f surjective, then αa is open.

Proof: The observations (i) and (ii) can be deduced from the basic diagram
expressing equivariance of f together with Lemma 2.3 and Lemma 2.4:

C1 ×C0
E E

C1 ×C0
A A

αe

1C1
×C0

f f

αa

• • (3.6)

(i): 1C1
×C0

f is an LH by Lemma 2.4, so if αa is open, we have that f ◦ αe
is open. Since f is an LH, αe is open by Lemma 2.3 (ii).

(ii): If f is surjective, so is 1C1
×C0

f . Since αa ◦ (1C1
×C0

f) is open, it
follows from Lemma 2.3 (iii) that αa is open. �

Proposition 3.6. Let C : C1 ⇒ C0 be a topological category.

(i) For (e, E, αe) in ShC1(C0), αe is open iff tC restricted to the (open) set
s−1
C (e(E)) is open.

(ii) If C0 can be covered by the union
⋃
ei(Ei) of the images ei(Ei) of a (small)

collection of equivariant sheaves (ei, Ei, αi) where each action αi is open,
then tC is open.

Proof: (i): Let e(E) = U . Since (e, E, αe) is an equivariant sheaf, all arrows in
C starting in U also end in U . In other words, we have that tC ◦ s−1

C (U) = U .
Furthermore, the set s−1

C (U) is closed under composition of arrows and contains
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uC(U) as a subset. We thus obtain a subcategory CU of C with the space of
objects U and space of arrows s−1

C (U) with the structure maps of C restricted
to these sets (and to s−1

C (U)×U s−1
C (U) in case of composition).

Observe that e : E → C0 is an LH also when regarded as function with
codomain U . Indeed, let eU : E → U be e with codmain U , so that eU (x) = e(x).
As U ⊆ C0 is open, the inclusion iU : U → C0 is an LH. It follows that eU is an
LH, since e = iU ◦ eU .

Furthermore, s−1
C (U)×U E is identical to C1×C0

E as a subset of C1×E, so
αe is defines an action αe : s−1

C (U)×U E → E. This means that (eu, E, αe) is an
equivariant sheaf on CU . The statement now follows from Proposition 3.3 (ii).

(ii): If (ei, Ei, αi), for i ∈ I for some (small) set I, is a collection of equivari-
ant sheaves on C such that each αi is open and the images ei(Ei) = Ui covers C0,
then the open sets s−1

C (Ui) covers C1 and tC restricted any of the sets s−1
C (Ui)

is open by (i). Then, for V ⊆ C1 open we have

tC(V ) = tC(V ∩ C1)

= tC

(⋃

i∈I

(
V ∩ s−1

C (Ui)
)
)

=
⋃

i∈I
tC
(
V ∩ s−1

C (Ui)
)
,

which is open. Hence tC is open.
Using that coproducts exists in ShC1

(C0), which is proved in Theorem 3.8
below, we can give another proof. The action on the coproduct (e,

∐
j Ej , αe) =∐

j∈J(ej , Ej , αj) satisfies

αe(U) =
⋃

j∈J
ij ◦ αj

(
(1C1 ×C0 ij)

−1(U)
)

for U ⊆ C1×C0

∐
j∈J Ej , where ij : Ej →

∐
j∈J Ej are the coproduct inclusions.

Since ij is an LH, we have that αe is open if each αj is open. The statement
now follows from Proposition 3.3 (ii). �

A topological category where the domain map is an LH is called s-étale in
[Moe95]. That a topological groupoid G is s-étale iff all the structure maps are
LH’s is mentioned in [Moe95, II.4]. We give a direct proof of this statement in
the next proposition, which also shows that in this case ShG1

(G0) = LHG .
From the following proposition we can conclude that in the case of a s-étale

topological groupoid G, the forgetful functor U : ShG1
(G0) → LH/G0 has a

left adjoint (see Section 2.5). In fact, U also has a right adjoint, for we shall
see in Corollary 3.10 that U : ShC1(C0) → LH/C0 has a right adjoint for any
topological category C : C1 ⇒ C0.

Proposition 3.7. Let G : G1 ⇒ G0 be a topological groupoid where tG or sG is
an LH. Then G is a groupoid object in LH and ShG1

(G0) is the category LHG.

Proof : LH has pullbacks, which are the pullback in Sp (see Lemma 2.1).
We have that sG is an LH iff tG is an LH, as iG is a homeomorphism and

sG = tG ◦ iG. In the diagram (3.5), let (e, E, αe) = (tG, G1,mG). If sG and
tG are LH’s, then πG1

and π2 are LH’s. So mG = π2 ◦ θ is also an LH. Since
1G0 = tG ◦ uG, uG is an LH. Hence all the structure maps of G are LH’s. It is
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straightforward to verify that the arrows in the diagrams expressing that G is
an internal groupoid are all LH’s (see [Mac97, XII.1]).

For an equivariant sheaf (e, E, αe) on G, the projection πG1
: G1×G0

E → G1

is an LH. Since tG ◦ πG1 = e ◦ αe, the action αe is also an LH. Furthermore, if
φ is an equivariant morphism, then 1G1 ×G0 φ is an LH by Lemma 2.4.

The notion of “left C-objects” can be applied to any category with pullbacks.
It is now clear from Section 2.3.1 that ShG1

(G0) is the category of left G-objects
in LH. �

3.3 Finite limits and colimits in ShC1
(C0)

In [Moe95, Proposition II.3.2] Moerdijk gives a brief description of how to con-
struct finite limits and colimits in ShC1

(C0). For the corresponding diagram in
LH/C0 there is a unique action making the limit in LH/C0 a limit in ShC1

(C0).
We explicitly construct these limits in the proof of the following theorem.

Theorem 3.8. ShC1
(C0) has all finite limits and all small colimits and the

forgetful functor U preserves these (co)limits.

Proof: It will be clear from construction that U preserves the (co)limits in
question.

Finite limits

It is sufficient to show that ShC1
(C0) has pullbacks and a terminal object, since

this implies that ShC1(C0) has all finite limits.
The terminal object in LH/C0 is 1C0 : C0 → C0. Given an LH e : E → C0,

the unique morphism in LH/C0 to the terminal object is e. If 1C0
: C0 → C0 has

an action α1, requiring equivarance of the map e : E → C0, for an equivarant
sheaf (e, E, αe), we would have that α1(f, sC(f)) = tC(f).

This is indeed an action on C0. With the pullback C1×C0
C0 of 1C0

along sC ,
we have that α1 = tC ◦ πC1 : C1 ×C0 C0 → C0, where πC1 : C1 ×C0 C0 → C1 is
the projection. The map α1 obviously satisfies the conditions of being an action,
given in (2.3), and if (e, E, αe) is an object in ShC1

(C0) then e : E → C0 is also
the unique equivariant morphism in ShC1

(C0) to (1C0
, C0, α1). So ShC1

(C0) has
a terminal object.

Concerning pullbacks, recall from Section 2.5 that the following inclusion
functor and forgetful functors all preserve pullbacks

LH/C0 ↪→ Sp/C0 → Sp→ Set. (3.7)

Given a pair of equivariant morphisms

(a,A, αa)
f−−−−→ (e, E, αe)

g←−−−− (b, B, αb)

we obtain the corresponding pullback in LH/C0, which is the sheaf P = A×EB
with map p : P → C0 the indicated arrow making following diagram commuta-
tive:
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P B

A E

C0

πB

πA g

f

b

a e

p

The equivariance of f and g imply that for an element (k, (x, y)) ∈ C1 ×C0
P

we have

g ◦ αb(k, y) = αe(k, g(y))

= αe(k, f(x))

= f ◦ αa(k, x).

We obtain the action on P as the unique map making the following diagram
commute in Sp:

P B

A E

C1 ×C0 P

πB

πA g

f

αb ◦ (1C1
×C0

πB)

αa ◦ (1C1
×C0

πA)

αp

On elements αp is given by

αp(k, (x, y)) = (αa(k, x), αb(k, y)) .

By construction, this action makes the projections πA and πB equivariant. Since
αa and αb are actions, αp satisfies the conditions of being an action in (2.3).

To show that this is a limit in ShC1
(C0) suppose r : (p′, P ′, α′p)→ (a,A, αa)

and s : (p′, P ′, α′p)→ (b, B, αb) are equivariant morphisms such that f ◦r = g◦s.
Since P is a pullback in LH/C0 we obtain a unique LH θ : P ′ → P such that
πA ◦ θ = r and πB ◦ θ = s. So θ(z) = (r(z), s(z)) for z ∈ P ′. It remains to show
that θ is equivariant.

But r and s are by assumption equivariant so, for (k, z) ∈ C1 ×C0
P ′,

θ ◦ α′p(k, z) =
(
r ◦ α′p(k, z), s ◦ α′p(k, z)

)

= (αa(k, r(z)), αb(k, s(z)))

= αp(k, θ(z)).

This completes the proof of the existence of finite limits.
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Colimits

It is sufficent to show the existence of all small coproducts and coequalizers for
all parallel pair of arrows. Recall that the inclusion functor and the forgetful
functors in (3.7) all preserve colimits.

The map sC : C1 → C0 induces a functor s∗C : LH/C0 → LH/C1 by
taking pullbacks along sC . This functor is the inverse image of a geometric
morphism between the toposes LH/C0 and LH/C1 ([MM92, Theorem II.9.2]).
In particular, s∗C has a right adjoint and hence preserves colimits.

We can, however, observe directly that the initial object in LH/C0, which
is the empty space ∅ over C0, together with the empty action yields the initial
object in ShC1

(C0). The unique map to any C-sheaf is also the empty map,
which is clearly equivariant.

We now consider arbitrary coproducts. Let {(ej , Ej , αj)}j∈J be a collection
of equivariant sheaves, where J is a set. Let e : E → C0 be the coproduct of
ej : Ej → C0 in LH/C0, with ij the corresponding coproduct inclusions. By
the above remark, this is the coproduct in Sp (and Set), so E =

∐
j∈J Ej . We

shall write the disjoint union as consisting of elements (j, y) where j ∈ J and
y ∈ Ej . Then e :

∐
Ej → C0 takes (j, y) 7→ ej(y) and the coproduct inclusions

satisfy ij(y) = (j, y), for y ∈ Ej .
Notice that if αe is an action on E such that all the coproduct inclusions ij

are equivariant, then for each j ∈ J we have

αe ◦ (1C1 ×C0 ij) = ij ◦ αj . (3.8)

This determines αe on the objects of C1 ×C0
E.

As s∗C preserves colimits we have that the induced map θ such that the
following diagram commutes, for each j ∈ J , is a homeomorphism

C1 ×C0 Ej
∐
j(C1 ×C0 Ej)

C1 ×C0

∐
j Ej

i′j

1C1
×C0

ij ∼ θ

where i′j are the coproduct inclusions C1 ×C0 Ej →
∐
j(C1 ×C0 Ej).

The collection of maps αj induces a unique map αe in Sp such that the
following diagram commutes, for each j ∈ J ,

C1 ×C0 Ej

∐
j Ej

C1 ×C0

∐
j Ej

1C1
×C0

ij

ij ◦ αj αe

This action satisfies equation (3.8), and thus makes each ij equivariant. We
verify that αe satisfies the conditions of being an action, where z ∈ Ej and
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ej(z) = w,

e ◦ αe(g, (j, z)) = e ◦ ij ◦ αj(g, z)
= ej ◦ αj(g, z)
= tC(g),

αe(1w, (j, z)) = ij ◦ αj(1w, z)
= (j, z),

αe(h, αe(g, (j, z))) = αe(h, (j, αj(g, z)))

= ij ◦ αj(h, αj(g, z))
= ij ◦ αj(h ◦ g, z)
= αe(h ◦ g, (j, z)).

To prove that (e, E, αe) is a colimit in ShC1(C0), let i′′j : (ej , Ej , αj)→ (y, Y, αy)
be another cocone. Then this yields a unique morphism φ : E → Y in LH/C0

such that φ ◦ ij = i′′j for each j ∈ J . And since

i′′j ◦ αj = αy ◦ (1C1 ×C0 i
′′
j )

holds by assumption for all j ∈ J , we get that φ is equivariant, that is:

φ ◦ αe = αy ◦ (1C1
×C0

φ).

Indeed, for z ∈ Ej

φ ◦ αe (g, (j, z)) = φ ◦ ij ◦ αj(g, z)
= i′′j ◦ αj(g, z)
= αy(g, i′′j (z))

= αy(g, φ ◦ ij(z))
= αy(g, φ(j, z)).

Hence φ is a morphism of equivariant sheaves. This completes the proof of the
existence of coproducts.

We thus turn to coequalizers. Since the sequence of functors in (3.7) pre-
serves colimits, a coequalizer diagram in LH/X yields a coequalizer diagram
in Sp and Set. Let f, g : (e, E, αe) → (a,A, αa) be a pair of parallel arrows in
ShC1(C0). Then the coequalizer q : A → A/R of f and g exist in LH/C0 and
makes the following diagram commute

E A A/R

C0

e a r

f

g

q

where R is the least equivalence relation generated by the relation R′ on A
where f(z) ∼R′ g(z) for z ∈ E.
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Since s∗C preserves colimits, we have that

C1 ×C0
E C1 ×C0

A C1 ×C0
A/R

1C1
×C0

f

1C1
×C0

g

1C1
×C0

q

is a co-equalizer diagram (over C1) in LH/C1, and in Sp.
The equivariance of f and g implies that for (k, z) ∈ C1 ×C0

E

αa(k, f(z)) = f ◦ αe(k, z),
αa(k, g(z)) = g ◦ αe(k, z).

So αa(k, f(z)) ∼R′ αa(k, g(z)), and hence q ◦ αa(k, f(z)) = q ◦ αa(k, g(z)). We
now obtain the action αq on C1×C0

A/R as the unique map making the following
diagram commute in Sp

C1 ×C0
E C1 ×C0

A C1 ×C0
A/R

A/R

1C1
×C0

f

1C1
×C0

g

1C1
×C0

q

q ◦ αa αq

Then, by construction, q is equivariant. The map αq, furthermore, satisfies the
conditions of an being action:

r ◦ αq(k, [x]R) = r ◦ αq ◦ (1C1
×C0

q)(k, x)

= r ◦ q ◦ αa(k, x)

= a ◦ αa(k, x)

= tC(k),

αq(1r([x]R), [x]R) = q ◦ αa(1a(x), x)

= [x]R,

αq(h, αq(k, [x]R)) = αq(h, q ◦ αa(k, x))

= q ◦ αa(h ◦ k, x)

= αq(h ◦ k, [x]R).

To show that (r,A/R, αq) is a colimit in ShC1
(C0), suppose s : (a,A, αa)→

(b, B, αb) is an equivariant morphism that satisfy s ◦ f = s ◦ g. Then there exist
a unique map φ in LH/C0 such that the following diagram commutes

E A A/R

B

f

g

s

q

φ

It remains to show that φ respects the action. That is, that

φ ◦ αq(h, [x]R) = αb(h, φ([x]R)).
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But

αb(h, φ([x]R)) = αb(h, φ ◦ q(x))

= αb(h, s(x))

= s ◦ αa(h, x)

= φ ◦ q ◦ αa(h, x)

= φ ◦ αq(h, [x]R),

so φ is an equivariant morphism. This completes the proof of Theorem 3.8. �

Corollary 3.9. For a topological category C : C1 ⇒ C0, let f : (e, E, αe) →
(a,A, αa) be a morphism in ShC1

(C0). Then,

(i) f is monic iff f : E → A is an injective function,

(ii) f is epic iff f : E → A is a surjective function,

(iii) f is an isomorphism iff f : E → A is a bijective function.

Proof: “⇒” If f is monic (epic) in ShC1(C0) then the diagram corresponding
to (2.6) (respectively (2.7)) is a pullback (pushout). Since U preserves finite
limits (and colimits), f is monic (epic) in LH/C0. By Lemma 2.8, f is an
injective (surjective) function. Any functor preserves isomorphisms, so if f is
an isomorphism in ShC1

(C0), then f is an isomorphism in LH/C0 and hence a
homeomorphism.

“⇐” U is conservative by Proposition 2.9 and hence reflect isomorphisms
in LH/C0. In particular, U is faithful and faithful functors reflect epics and
monics. The implication now follows from Lemma 2.8. �

The following is also noticed in e.g. [For13]:

Corollary 3.10. For a topological category C : C1 ⇒ C0, the forgetful functor
U : ShC1

(C0) → LH/C0 is the inverse image part of a geometric morphism
LH/C0 → ShC1

(C0). In particular, U has a right adjoint.

Proof: ShC1
(C0) is a topos by Section 2.4 and since U : ShC1

(C0) → LH/C0

preserves colimits, it follows from the Special Adjoint Functor Theorem that U
has a right adjoint (cf. [Joh02b, C2.2.10]). Since U also preserve finite limits it
is the inverse image part of geometric morphism LH/C0 → ShC1

(C0). �
The above corollary uses that ShC1

(C0), for an arbitrary topological category
C : C1 ⇒ C0, is a topos. This corollary will not be used in Chapters 4–5.



Chapter 4

Giraud’s theorem

In this chapter we show that the category ShC1
(C0) of equivariant sheaves on

arbitrary topological category C satisfies the conditions of Giraud’s theorem,
except for the existence of set of generators. Restricted to the case when the
codomain function of C is assumed to be open we prove the existence of a set of
generators, and hence that ShC1(C0) is a topos.

An explicit site description or a construction of a set of generators for the
general case appear not to have been published.

We also prove that the category of equivariant sheaves with an open action
is equivalent to an open substopos of ShC1

(C0), for an arbitrary topological
category C.

4.1 Giraud’s theorem

Giraud’s theorem for Grothendieck toposes, as stated in [MM92, Appendix], is
as follows.

Theorem 4.1. (Giraud) A category E with small hom-sets and all finite limits
is a Grothendieck topos iff it has the following properties:

(i) E has all small coproducts, and they are disjoint and stable under pullback,

(ii) every epimorphism in E is a coequalizer,

(iii) every equivalence relation R⇒ E in E is a kernel pair and has a quotient,

(iv) every exact fork R⇒ E → Q is stably exact,

(v) there is a small set of objects of E which generate E.

To clarify the meaning of the conditions (i) and (iv), we recall some def-
initions from [MM92, Appendix]. A “fork” is a commutative diagram of the
form

R E Q .
∂1

∂2

q (4.1)

28
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A fork is said to be exact if q is the coequalizer of ∂1 and ∂2, while these form
the kernel pair of q. The diagram (4.1) is stably exact if it remains exact after
taking pullbacks along any map Q′ → Q in E , that is, when the diagram

R×Q Q′ E ×Q Q′ Q×Q Q′ ∼= Q′,
q ×Q 1Q′ (4.2)

obtained from (4.1) by pullback is again exact.
A coproduct E =

∐
j∈J Ej of a family of objects Ej in E is disjoint when

every coproduct inclusion ij : Ej → E is monic and for every j 6= k in J the
pullback Ej ×E Ek is the initial object in E .

A coproduct E =
∐
j∈J Ej in E is stable under pullback if for any morphisms

Ej → Y , for j ∈ J , and E′ → Y , there is an isomorphism E′ ×Y
∐
Ej ∼=∐

(E′ ×Y Ej). This is equivalent to that for any morphism E′ → E in E ,
the pullbacks E′ ×E Ej along the coproduct inclusions ij : Ej → E yield an
isomorphism E′ ∼=

∐
j∈J(E′ ×E Ej).

4.2 The category of equivariant sheaves on a
topological category

Notice that ShC1
(C0) has small hom-sets, since Sp does. Finite limits exist in

ShC1
(C0) by Theorem 3.8. For convenience we prove the properties (i) − (iv)

of Theorem 4.1 for ShC1
(C0) in separate propositions.

Proposition 4.2. The category ShC1
(C0) of equivariant sheaves on a topological

category C : C1 ⇒ C0 has all small coproducts, and they are all disjoint and
stable under pullback.

Proof: By Theorem 3.8, ShC1(C0) has all finite limits and small colimits and
these are preserved by the forgetful functor U .

For a small set J , let fj : (ej , Ej , αj) → (a,A, αa) and f ′ : (e′, E′, α′e) →
(a,A, αa) be a collection of morphisms in ShC1

(C0). Let (e, E, αe) denote the
coproduct

∐
j∈J(ej , Ej , αj) and ij : (ej , Ej , αj) → (e, E, αe) be the coproduct

inclusions and f : (e, E, αe)→ (a,A, αa) be the unique map such that f ◦ij = fj
for each j.

Let (bj , E
′ ×A Ej , α′j) be the pullback of fj along f ′, and (b, E′ ×A E,αb)

be the pullback of f along f ′ in ShC1
(C0). The collection of equivariant maps

1E′ ×A ij : (bj , E
′ ×A Ej , α′j) → (b, E′ ×A E,αb) induces a unique equivariant

map θ :
∐
j∈J(bj , E

′ ×A Ej , α′j)→ (b, E′ ×A E,αb) such that θ ◦ i′j = 1E′ ×A ij
for each j ∈ J , where i′j are the coproduct inclusions (bj , E

′ ×A Ej , α
′
j) →∐

j∈J(bj , E
′ ×A Ej , α′j).

Since U preserves finite limits and all colimits, and LH/C0 is a topos, the
map θ is an isomorphism in LH/C0. Since U is conservative (Proposition 2.9),
we have that θ is an isomorphism in ShC1(C0). Hence coproducts in ShC1(C0)
are stable under pullback.

We now show that coproducts in ShC1
(C0) are disjoint. Coproducts in

ShC1
(C0) are preserved by the forgetful functor U and, since LH/C0 is a topos,

the corresponding coproduct in LH/C0 is disjoint. In particular, this means
that the coproduct inclusions functions ij are monic in LH/C0. Since the for-
getful functor U is faithful (it is conservative by Proposition 2.9), it reflects
monics, so each ij is monic in ShC1(C0) as well.
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For j 6= k in J , let (a,A, αa) be the pullback of ij along ik in ShC1
(C0). By

applying U , we have that A = ∅ as coproducts in LH/C0 are disjoint. There
is only one action on ∅, namely the empty action. Thus (a,A, αa) is the initial
object in ShC1(C0). �

Proposition 4.3. Every epimorphism in ShC1
(C0) is a coequalizer.

Proof: Let f : (e, E, αe) → (a,A, αa) be an epimorphism in ShC1
(C0). Since

the forgetful functor U preserves colimits, f is an epimorphism in LH/C0. Hence
f is a coequalizer in LH/C0. To proceed, we state and prove a relation between
kernel pairs and coequalizers mentioned in [MM92, Appendix] in a lemma.

Lemma 4.4. In a finitely complete category, if

B B′ Q
b1

b2

q

is a coequalizer diagram, then q : B′ → Q is also the coequalizer of its kernel
pair.

Proof: Consider the following diagram, where d1, d2 : B′ ×Q B′ → B′ is the
kernel pair of q and θ is the unique map making the diagram commutative

B′ ×Q B′ B′

B′ Q

B

d1

d2 q

q

b1

b2

θ

Then b1 = d1 ◦ θ and b2 = d2 ◦ θ. If q′ : B′ → Q′ is any arrow such that

B′ ×Q B′ B′ Q′
d1

d2

q′

commutes, then we have that q′ ◦d1 ◦θ = q′ ◦d2 ◦θ so also the following diagram
is commutative

B B′ Q′ .
b1

b2

q′

Hence there is a unique arrow p : Q → Q′ such that q′ = p ◦ q, and so q is the
coequalizer of its kernel pair. �

Let (e′, E×AE,α′) be the pullback of f along f in ShC1(C0), with equivariant
projection maps ∂1, ∂2 : E ×A E → E. Let k : (e, E, αe) → (q,Q, αq) be the
coequalizer of ∂1 and ∂2 in ShC1

(C0). Then, since f ◦ ∂1 = f ◦ ∂2, there is a
unique equivariant map g : (q,Q, αq)→ (a,A, αa) such that f = g ◦ k.

Since the forgetful functor U preserves finite limits and colimits (Theo-
rem 3.8), ∂1, ∂2 form the kernel pair of f while, by the preceding lemma, f
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is the coequalizer of ∂1 and ∂2 in LH/C0. So g is an isomorphism in LH/C0.
Since U is conservative (Proposition 2.9), we have that (q,Q, αq) ∼= (a,A, αa)
and f is a coequalizer in ShC1

(C0). �

Proposition 4.5. Every equivalence relation (r,R, αr) ⇒ (e, E, αe) in ShC1(C0)
is a kernel pair and has a quotient.

Proof: Let (∂1, ∂2) : (r,R, αr) � (e, E, αe) × (e, E, αe) be the representative
for an equivalence relation in ShC1

(C0). It is straightforward to verify that
(∂1, ∂2) : R � E ×C0 E is (the representative for) an equivalence relation in
LH/C0.

The quotient map q of ∂1 and ∂2 exists in ShC1
(C0) by Theorem 3.8 and is

preserved by the forgetful functor U . Since LH/C0 is a topos, ∂1 and ∂2 form
the kernel pair of some arrow u : E → D, where D is a sheaf over C0. To
continue, we prove a property of the quotient map of a kernel pair mentioned
in [MM92, Appendix].

Lemma 4.6. The kernel pair of some arrow is also the kernel pair of its quotient
map, when this morphism exist.

Proof: We use the same notation as in the proof of Proposition 4.5. By as-
sumption, ∂1, ∂2 : R ⇒ E is the kernel pair of u : E → D. Let q : E → E/R be
the corresponding quotient map.

Then as the following diagram commutes

R E D ,
∂1

∂2

u (4.3)

there is a unique f : E/R→ D such that u = f ◦ q. Now, if b1, b2 : B → E are
two arrows such that q ◦ b1 = q ◦ b2, then

u ◦ b1 = f ◦ q ◦ b1
= f ◦ q ◦ b2
= u ◦ b2.

So there is a unique arrow θ : B → R such that the following diagram commute

R E

E D

B

∂1

∂2 u

u

b1

b2

θ

In particular, b1 = ∂1 ◦ θ and b2 = ∂2 ◦ θ. Then θ is also the unique arrow
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making the diagram below commute

R E

E E/R

B

∂1

∂2 q

q

b1

b2

θ

This shows that R is the pullback of the quotient map, and that ∂1 and ∂2 is
the kernel pair of the quotient map q. �

Let the pullback of q along q in ShC1(C0) be (a,A, αa) with projections maps
π1, π2 : (a,A, αa)→ (e, E, αe). Since q ◦∂1 = q ◦∂2 there is a unique equivariant
map g : (r,R, αr)→ (a,A, αa) such that ∂1 = π1 ◦ g and ∂2 = π2 ◦ g.

The forgetful functor U preserves these limits and, by the preceding lemma,
∂1, ∂2 is the kernel pair of q in LH/C0. Hence g is an isomorphism in LH/C0.
Since U is conservative (Proposition 2.9), g is an isomorphism in ShC1

(C0).
Hence ∂1, ∂2 is a kernel pair in ShC1(C0). �

Proposition 4.7. Every exact fork in ShC1
(C0) is stably exact.

Proof: Let the following diagram be an exact fork of equivariant sheaves

(r,R, αr) (e, E, αe) (q,Q, αq).
∂1

∂2

p (4.4)

If r : (q′, Q′, α′q)→ (q,Q, αq) is an equivariant morphism, we obtain the follow-
ing diagram by pulling back (4.4) along r in ShC1(C0)

(r,R, αr) (e, E, αe) (q,Q, αq)

(r′, R×Q Q′, α′r) (e′, E ×Q Q′, α′e) (q′, Q′, α′q)

∂1

∂2

∂1 ×Q 1Q′

∂2 ×Q 1Q′

p

πQ′

r (4.5)

Indeed, by the “pullback lemma” (cf. the proof of Lemma 2.4) the left-hand
rectangle in (4.5) is a pullback since the right-hand and outer rectangles are
pullbacks.

Let f : (e′, E ×Q Q′, α′e) → (a,A, αa) be the coequalizer of ∂1 ×Q 1Q′ and
∂2 ×Q 1Q′ in ShC1(C0). Since πQ′ ◦ (∂1 ×Q 1Q′) = πQ′ ◦ (∂2 ×Q 1Q′) there is a
unique equivariant LH g : (a,A, αa)→ (q′, Q′, α′q) such that g ◦ f = πQ′ .

Let (a′, A′, α′a) be the pullback of πQ′ along itself in ShC1
(C0), with projec-

tion maps π1, π2 : (a′, A′, α′a)→ (e′, E×QQ′, α′e). Since πQ′ ◦(∂1×Q1Q′) = πQ′ ◦
(∂2×Q 1Q′) there is a unique equivariant LH k : (r′, R×QQ′, α′r)→ (a′, A′, α′a)
such that π1 ◦ k = ∂1 ×Q 1Q′ and π2 ◦ k = ∂2 ×Q 1Q′ .
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By Theorem 3.8 finite limits and all colimits are preserved by U . Since
LH/C0 is a topos, the image of U on the upper “fork” in (4.5), i.e.

R×Q Q′ E ×Q Q′ Q′ ,
∂1 ×Q 1Q′

∂2 ×Q 1Q′

πQ′ (4.6)

is exact in LH/C0. So g and k are isomorphisms in LH/C0. Since U is conser-
vative (Proposition 2.9), we have that g and k are isomorphisms in ShC1

(C0).
This means that ∂1 ×Q 1Q′ , ∂2 ×Q 1Q′ is the kernel pair of πQ′ and that πQ′ is
the coequalizer of ∂1 ×Q 1Q′ and ∂2 ×Q 1Q′ . �

The main difficulty of proving Giraud’s theorem for the category of equiv-
ariant sheaves on an arbitrary topological category C lies in finding a set of
generators, condition (v). Notice, incidentally, that any elements that gener-
ates the equivariant sheaves on C with open actions (if there are any) must
themselves have open actions, by Proposition 3.5 (i).

Let ShC1
(C0) be the full subcategory of ShC1(C0) of equivariant sheaves with

open actions.

Proposition 4.8. For a topological category C : C1 ⇒ C0, ShC1
(C0) has a set

of generators.

Proof: We will describe a collection G of equivariant sheaves with open actions
such that for any (e, E, αe) in ShC1

(C0) and z ∈ E there is a (g,G, αg) ∈ G
and an equivariant morphism φ : (g,G, αg) → (e, E, αe) such that z ∈ φ(G).
For (e, E, αe) and (a,A, αa) in ShC1

(C0), two parallel arrows f, k : (e, E, αe)→
(a,A, αa) are equal if and only if f(z) = k(z) for all z ∈ E. This means that
f = k iff f ◦ φ = k ◦ φ for all arrows φ : (g,G, αg) → (e, E, αe) for elements
(g,G, αe) in G. In other words, G will be a collection of generators of ShC1

(C0).
This collection will be shown to be a set.

Let (e, E, αe) ∈ ShC1
(C0) and z ∈ E. Since e is an LH, there is an open

set U ⊆ C0 and a continuous section σ : U → E such that z ∈ σ(U) and
σ(U) is open (see e.g. [MM92, Proposition II.6.1]). Let D = C1 ×C0

E be the
pullback of e along sC and R be the equivalence relation on D in (3.2) (i.e.
where (h, x) ∼R (p, y) iff αe(h, x) = αe(p, y)).

Since the action αe is open, the quotient map q : D → D/R is open by
Proposition 3.2. And since σ(U) ⊆ E is open we have that Dσ = C1×C0 σ(U) ⊆
D is open, as follows from the following pullback diagram

• σ(U)

D EπE

◦ ◦

where πE : D → E is the projection. Hence Dσ/R = q (C1 ×C0
σ(U)) is open in

D/R, so the restriction of the LH [tC ] : D/R→ C0 (see Theorem 3.1) to Dσ/R
is an LH [tC ]σ : Dσ/R→ C0.
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Since Dσ/R ⊆ D/R is open, we also have that C1×C0
Dσ/R ⊆ C1×C0

D/R
is open:

C1 ×C0
D/R D/R

C1 C0

C1 ×C0
Dσ/R Dσ/R

[tC ]

sC

••

• •

Given the isomorphism [αe] : ([tC ], D/R, αd) → (e, E, αe) in ShC1(C0) of
Theorem 3.1, the action αd on D/R is open by Proposition 3.5 (i), since αe is
open. The restriction of αd to C1 ×C0

Dσ/R therefore yields a continuous open
function ασ : C1 ×C0

Dσ/R → D/R. Since the image of ασ lies in Dσ/R, and
Dσ/R ⊆ D/R is open and has the subspace topology, ασ : C1 ×C0 Dσ/R →
Dσ/R is open and continuous. As αd is an action on D/R, it follows that ασ
satisfies the conditions of an being action (given in (2.3)) on Dσ/R.

The restriction of the equivariant LH [αe] : D/R → E to the open subset
Dσ/R ⊆ D/R yields an equivariant LH [αe] : Dσ/R → E. Furthermore, we
have that z ∈ [αe] (Dσ/R) since [(1e(z), z)]R ∈ Dσ/R and [αe]

(
[(1e(z), z)]R

)
= z.

As the set of generators G, we choose a collection of equivariant sheaves
isomorphic to sheaves of the form ([tC ]σ, Dσ/R, ασ) as described above. G is
chosen as follows:

Observe that C1 ×C0
U is homeomorphic to C1 ×C0

σ(U) with mutually
inverse continuous functions given by

C1 ×C0
U C1 ×C0

σ(U) .
1C1
×C0

σ

1C1
×C0

e

The equivalence relation R on D, restricted to Dσ, induces an equivalence rela-
tion R′ on C1 ×C0 U . The equivalence relation R′ is given by (h, x) ∼R′ (p, y)
iff (h, σ(x)) ∼R (p, σ(y)), that is, iff αe(h, σ(x)) = αe(p, σ(y)). It follows that
the map θ : (C1 ×C0

U)/R′ → Dσ/R which takes [(h, x)]R′ 7→ [(h, σ(x))]R is a
homeomorphism.

Via the homeomorphism θ, (C1 ×C0 U)/R′ is a sheaf over C0:

(C1 ×C0 U)/R′ Dσ/R

C0

[(h, x)]R′ [(h, σ(x))]R

tC(f)

θ

∼

[tC ]σ•[tC ]U
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The action ασ on Dσ/R induces an open action αU on (C1 ×C0
U)/R′:

C1 ×C0
(C1 ×C0

U)/R′ (C1 ×C0
U)/R′

C1 ×C0
Dσ/R Dσ/Rασ

1C1
×C0

θ θ−1

αU

◦

◦ ◦

which on elements is given by

(h′, [(h, x)]R′) [(h′ ◦ h, x)]R′

(h′, [(h, σ(x))]R) [(h′ ◦ h, σ(x))]R

By construction, θ is equivariant. Since the forgetful functor U is conserva-
tive (Proposition 2.9), θ is an isomorphism in ShC1

(C0) between ([tC ]U , (C1×C0

U)/R′, αU ) and ([tC ]σ, Dσ/R, ασ).
Let G be the collection of triples ([tC ]U , (C1 ×C0

U)/R′, αU ) that are equiv-
ariant sheaves, where U ⊆ C0 is open, R′ is an equivalence relation on C1×C0

U
(such that [tC ]U and αU are well-defined), [tC ]U is the function [(h, x)]R′ 7→
tC(h) and αU is the operation (h′, [(h, x)]R′) 7→ [(h′ ◦ h, x)]R′ . The collection of
spaces C1 ×C0 U , for U ⊆ C0 open, form a set and the collection of equivalence
relations to put on each C1×C0

U is also a set. Hence G is a set. This completes
the proof. �

Restricting to the case when the codomain map is open we can now prove
the following.

Theorem 4.9. For a topological category C : C1 ⇒ C0 where the codomain map
is open, the category ShC1

(C0) of equivariant sheaves on C is a topos.

Proof : When tC is open the action on each equivariant sheaf on C is open by
Proposition 3.3. So ShC1

(C0) is the category ShC1(C0).
Using Giraud’s theorem, Theorem 4.1, the statement follows from Proposi-

tion 4.2, 4.3, 4.5, 4.7 and 4.8. �
We remark that although our proof of the existence of a set of generators is

somewhat different from Moerdijk’s description in [Moe95], they yield essentially
the same collection of generators.

If tC is not open, it is also clear that ShC1
(C0) does not equal ShC1(C0),

for the action on the terminal object (see Theorem 3.8) is open iff tC is open
(Proposition 3.3).

A monomorphism U � 1 in an (elementary) topos E induces a geometric
morphism E/U → E/1 ∼= E which is an inclusion (or embedding), see [Joh02a,
A4.5] . The direct image of this geometric morphism determines a subtopos of
E . Such a slice category of the form E/U for a monomorphism U � 1 is called
an open subtopos of E .
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Using that ShC1
(C0) is known to be a Grothendieck topos for an arbi-

trary topological category C (see Section 2.4), the following theorem says that
ShC1

(C0) is equivalent to an open subtopos of ShC1
(C0). However, the inclusion

functor ShC1
(C0) ↪→ ShC1(C0) is not to be confused with the direct image of

the induced geometric morphism.

Theorem 4.10. For a topological category C : C1 ⇒ C0, ShC1
(C0) is (equivalent

to) an open subtopos of ShC1
(C0).

Proof: Let 1 = (1C0 , C0, α1) be the terminal object in ShC1(C0). Using Propo-
sition 3.6, the image of each equivariant sheaf with an open action is an open
set V ⊆ C0 such that

tC
(
s−1
C (V )

)
= V and tC restricted to s−1

C (V ) is open. (4.7)

Let U be the union of all open subsets V ⊆ C0 that satisfies (4.7). Then U also
satisfies (4.7). Using Proposition 3.6, the equivariant sheaf (iU , U, αU ) where
iU : U ↪→ C0 is the inclusion, αU = tC ◦ πC1

: C1 ×C0
U → U and πC1

is the
projection onto C1, has an open action.

The inclusion iU is an injective equivariant LH (iU , U, αU ) → 1, and hence
a monic arrow in ShC1(C0) (by Corollary 3.9). So ShC1(C0)/(iU , U, αU ) is an
open subtopos of ShC1(C0).

Since αU is open, for any equivariant morphism f : (e, E, αe)→ (iU , U, αU )
we have that αe is open by Proposition 3.5 (i). Hence the forgetful functor F :
ShC1

(C0)/(iU , U, αU )→ ShC1
(C0), taking (e, E, αe)→ (iU , U, αU ) to (e, E, αe),

is a functor F : ShC1(C0)/(iU , U, αU )→ ShC1
(C0).

Obviously, F is faithful. Furthermore, any (e, E, αe) in ShC1
(C0) is in the

image of F . Indeed, it follows from Proposition 3.6 (i) that any such (e, E, αe)
is a sheaf over a subset of U . The map eU : E → U such that eU (x) = e(x)
for x ∈ E is an equivariant LH such that e = iU ◦ eU . F is also full, for if
f : (e, E, αe) → (a,A, αa) is a morphism in ShC1

(C0), then as both e and a
factor through U , f is a morphism in ShC1

(C0)/(iU , U, αU ). This means that
F is an equivalence ShC1

(C0)/(iU , U, αU ) ∼= ShC1
(C0). �



Chapter 5

Covering morphisms and
adjoints

For a topological groupoid G there is a functor, which we will denote S, mapping
G-spaces to topological groupoids over G. At the same time, a set of generators
for ShG1

(G0), where G is open, can be obtained (as certain quotient spaces
derived) from the open subgroupoids of G. The main purpose of this chapter is
to investigate how these constructions are related and if the method of obtaining
a set of generators for ShG1(G0) from the subgroupoids of G can be put in a
more general framework.

In Section 5.1 we summarize material from [BDNH76] concerning topological
covering morphisms and G-spaces, which we then, in Section 5.2, extend from
topological groupoids to topological categories, local homeomorphic covering
morphisms and equivariant sheaves. The conclusion from these sections is the
two equivalences, for a topological category C, between the category of C-spaces
and the category of topological covering morphisms to C and between ShC1

(C0)
and the category of local homeomorphic covering morphisms to C.

In Section 5.3 we consider an open topological groupoid G and generalize,
from open subgroupoids of G to arbitrary groupoids over G, the construction
of a set of generators for ShG1(G0). We define subcategories of TGpd/G for
which this construction defines a functor Λ to SpG respectively ShG1(G0).

Section 5.4 contains a proof that Λ is left adjoint to S. In Section 5.5 we
show that the open subcategories of an arbitrary topological category C generate
(in a slightly non-standard sense) the category of local homeomorphic covering
morphisms to C. This result combined with the adjunction Λ a S yields an
alternative proof that ShG1(G0) has a set of generators, for the case of an open
topological groupoid G.

5.1 Topological covering morphisms and G-spaces
Given a topological groupoid G : G1 ⇒ G0 a functor from the category of G-
spaces to the slice category TGpd/G is described in [BDNH76] (and [Moe88]).
We outline this construction. The functor in question will be denoted S, and
takes a G-space (a,A, αa) to the pair (Â, â) where â is a groupoid morphism of
Â : A1 ⇒ A0 into G. The groupoid Â has object space A0 = A and arrow space

37
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A1 = G1 ×G0
A with the pullback given by

G1 ×G0 A A

G1 G0

πA

πAG1
a

sG

(5.1)

The groupoid operations, illustrated in the diagram

A1 ×A0
A1 A1 A0

mA

sA

tA

uA

iA

(5.2)

are on elements given by

sA(k, x) = x,

tA(k, x) = αa(k, x),

uA(x) = (1a(x), x),

mA((k, x), (p, y)) = (k ◦ p, y),

(5.3)

and iA(k, x) = (k−1, αa(k, x)). The components of the groupoid morphism â
are

â0 = a,

â1 = πAG1
.

(5.4)

For a morphism k : (e, E, αe) → (a,A, αa) we have S(k) : (Ê, ê) → (Â, â)
with components S(k)0 = k and S(k)1 = 1G1

×G0
k.

In [BDNH76] it is shown that the category of G-spaces is equivalent to the
category of topological covering morphisms to G. A morphism φ : H → G in
TGpd is called a topological covering morphism if the function ψ = φ1×G0

sH :
H1 → G1 ×G0

H0 is a homeomorphism, where ψ is the unique function such
that following diagram commutes in Sp:

G1 ×G0
H0 H0

G1 G0

H1

φ0

sG

sH

φ1

ψ

(5.5)

Following [BDNH76] we shall also say that H is a covering grupoid of G when
there exist a topological covering morphism φ : H → G.
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Denote the full subcategory of TGpd/G with topological covering mor-
phisms into G by TCov/G. Then all the arrows in TCov/G are topological
covering morphisms, for in a commutative triangle of groupoid morphisms of
the form

H′ H

G

f

p g

with g a topological covering morphism, then f is a topological covering mor-
phism iff p is a topological covering morphism ([BDNH76, Proposition 1]).

The image of S on a G-space is a covering groupoid of G. The functor S is
one half of the equivalence TCov/G ∼= SpG . The other half of this equivalence is
the functor Γ : TCov/G → SpG , which takes an object (H, h) and a morphism
φ : (H′, h′)→ (H, h) of TCov/G into

Γ(H, h) = (h0, H0, tH ◦ ψ−1),

Γ(φ) = φ0,
(5.6)

where ψ is the homeomorphism H1
∼−→ G1×G0

H0. That Γ(φ) is an equivariant
morphism will be clear from the proof Theorem 5.5.

5.2 Topological covering morphisms of topolog-
ical categories and local homeomorphic cov-
erings

We now generalize the constructions in the previous section to topological cat-
egories. We begin by observing that leaving out the inverse arrow function the
functor S may be defined as a functor from the category of C-spaces to TCat/C
for a topological category C by the equations in (5.3) and (5.4). The definition
of a topological covering morphism can be applied to morphisms of topological
categories exactly as for topological groupoids.

For topological categories C,D, that φ : D → C is a topological covering
morphism amounts to the following.

Lemma 5.1. A morphism of topological categories φ : D → C is a topological
covering morphism iff the diagram

D1 D0

C1 C0

sD

φ1 φ0

sC

(5.7)

is a pullback.
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Proof: The statement follows from that pullbacks are unique up to isomor-
phism. �

We can also extend Proposition 1 in [BDNH76] to topological categories:

Proposition 5.2. Given a commutative diagram of topological categories

D′ D

C

f

p g

where g is a topological covering morphism. Then p is a topological covering
morphism iff f is a topological covering morphism.

Proof: We supply a different and shorter proof than the corresponding proof
in [BDNH76]. With D′ : D′1 ⇒ D′0, D : D1 ⇒ D0 and C : C1 ⇒ C0, consider
the commutative diagram

D′1 D′0

D1 D0

C1 C0

sD′

f0

sC

f1

sD

g1 g0

Using Lemma 5.1, the statement now follows from the “pullback lemma” (see
the proof of Lemma 2.4). �

Definition 5.3. We define a local homeomorphic covering morphism, or shortly
an LHc morphism, to be a topological covering morphism with components that
are LH’s. That is, φ : D → C is an LHc morphism if φ is a topological covering
morphism and φ0 : D0 → C0 and φ1 : D1 → C1 are LH’s.

Notice that if φ is topological covering morphism and φ0 is an LH, then by
Lemma 5.1 and Lemma 2.1 this implies that φ1 also is an LH, so φ is an LHc
morphism in this case.

Definition 5.4. Let TCov/C and LHCov/C be the full subcategories of TCat/C
of topological covering morphisms into C and LHc morphisms into C, respec-
tively.

By Proposition 5.2 the arrows in TCov/C are also topological covering mor-
phisms, and using Lemma 2.3 (i), the arrows in LHCov/C are LHc morphisms.
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The following theorem is a generalization (to topological categories) and an
extension (regarding the restriction to ShC1

(C0)) of Theorem 2 in [BDNH76].

Theorem 5.5. For a topological category C : C1 ⇒ C0 there is an equivalence
of categories TCov/C ∼= SpC and LHCov/C ∼= ShC1(C0):

TCov/C SpC

LHCov/C ShC1(C0)

Γ

∼

S

Γ

∼

S

Proof: The argument is essentially the same as in [BDNH76]. We have the
functors S : SpC → TCat/C and Γ : TCov/C → SpC as in the case for
groupoids. Each C-space (a,A, αa) yields a pair (Â, â) = S(a,A, αa) with Â the
category in (5.2) (without the inverse map) with structure maps as in (5.3) and
the morphism â to C as in (5.4). The image of S lies in TCov/C since the arrow
â1 ×C0

sA : A1 → C1 ×C0
A0 is the identity on C1 ×C0

A. So S is a functor
SpC → TCov/C.

Γ is given by (5.6). Thus each pair (D, d) ∈ TCov/C determines a C-space
Γ(D, d) = (d0, D0, tD ◦ψ−1

d ) where ψd is the homeomorphism D1
∼−→ G1×G0D0.

We have ΓS(a,A, αa) = (a,A, αa). Indeed, the homeomorphism A1
ψâ−−→

G1 ×G0 A0 is the identity and tA = αa. So ΓS is the identity on SpC .
Conversely, let SΓ(D, d) = (D̂, d̂), where D̂ : G1 ×G0

D0 ⇒ D0. It is

straightforward to verify that the morphism γd : (D̂, d̂) → (D, d) with com-
ponents (γd)1 = ψ−1

d , where ψd is the homeomorphism D1 → C1 ×C0
D0, and

(γd)0 = 1D0
is an morphism in TCov/C with an inverse that has components

ψd and 1D0
.

It remains to show naturality of γ : SΓ
·−→ 1, where 1 is the identity functor on

TCov/C. For φ : (D, d) → (D′, d′) we need to show that γd′ ◦ SΓ(φ) = φ ◦ γd.
On objects this is trivial. Concerning the arrow components, we have that
(SΓ(φ))1 = 1C1

×C0
φ0. Consider the map ψd′ ◦ φ1 ◦ ψ−1

d which is the dotted
arrow in the diagram

C1 ×C0
D0 D1

C1 ×C0
D′0 D′1

ψ−1
d

φ1

ψd′

∼

∼

For (f, x) ∈ C1 ×C0 D0 if ψ−1
d (f, x) = f ′ then d1(f ′) = f and sD(f ′) = x. And
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since

ψd′ ◦ φ1(f ′) = (d′1 ◦ φ1(f ′), sD′ ◦ φ1(f ′))

= (d1(f ′), φ0 ◦ sD(f ′))

= (f, φ0(x))

we have that ψd′ ◦φ1 ◦ψ−1
d = 1C1

×C0
φ0. Then φ1 ◦ψ−1

d = ψ−1
d′ ◦ (1C1

×C0
φ0),

so by the left rectangle of the commutative diagram

C1 ×C0
D0 D1

C1 ×C0
D′0 D′1

D0

D′0

ψ−1
d

1C1
×C0

φ0 φ1

ψ−1

d′

∼

∼

tD

φ0

tD′

we have that γ is a natural transformation. Commutativity of the outer rect-
angle expresses equivariance of Γ(φ) = φ0.

If (e, E, αe) is an equivariant sheaf and S(e, E, αe) = (Ê, ê) then that both
components of ê are LH’s, so ê is an LHc morphism. The image of Γ on an
object (D, d) in LHCov/C is obviously a C-sheaf. �
Corollary 5.6. S : SpC → TCat/C is full and faithful.

Proof: This follows from that TCov/C is a full subcategory of TCat/C and S
is a part of an equivalence of categories TCov/C ∼= SpC .

The following direct proof shows why S is full. Let φ : S(e, E, αe) →
S(a,A, αa), S(e, E, αe) = (Ê, ê) and S(a,A, αa) = (Â, â). As φ is a mor-
phism between the topological categories Ê and Â we have commutativity of
the following diagrams

C1 ×C0
E E

C1 ×C0
A A

C1 ×C0
E E

C1 ×C0
A A

sE = πE

φ1 φ0

sA = πA

tE = αe

φ1 φ0

tA = αa

(5.8)

where πE and πA are the obvious projections. Since φ is a morphism between
Ê and Â over C we have commutativity of

E A

C0

C1 ×C0 E C1 ×C0 A

C1

φ0

e a

φ1

πEC1
πAC1

(5.9)

where πEC1
and πAC1

are the projections onto the first component. The diagrams
to the left in (5.8) and (5.9) shows that φ1 = 1C1

×C0
φ0. Using this, the

diagrams to the right in (5.8) and (5.9) shows that φ0 is a an equivariant map
(e, E, αe)→ (a,A, αa). So we have φ = S(φ0) and S is full. �
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5.3 Construction of a functor qTGpd/G → SpG

Moerdijk’s site description for the equivariant sheaf topos of an open localic
groupoid in [Moe88] depends on defining an equivalence relation in terms of
“open subgroupoids” of the underlying groupoid (also see [For13]). In this
section we apply a similar equivalence relation to arbitrary objects in TGpd/G,
for a topological groupoid G : G1 ⇒ G0.

Given an object (H, h) in TGpd/G, with morphism h : H → G, take the
pullback Dh = G1 ×G0 H0:

G1 ×G0
H0 H0

G1 G0

πH0

sG

πG1 h0
(5.10)

Define a relation Rh on Dh, where

(f, x) ∼Rh (g, y) iff tG(f) = tG(g) and

∃k ∈ H1 [sH(k) = x ∧ tH(k) = y ∧ f = g ◦ h1(k)] .
(5.11)

In other words, (f, x) is related to (g, y) when there exists an arrow k : x → y
in H1 such that the following diagram commutes

h0(x)

•

h0(y)

f

g

h1(k)

This relation Rh is reflexive, symmetric and transitive, so Rh is an equivalence
relation on Dh. Let Dh/Rh denote the corresponding quotient space.

Definition 5.7. A semi-local homeomorphic groupoid morphism, or simply a
semi-LH morphism, is a morphism h of topological groupoids with the arrow
component h1 open and the object component h0 an LH. Let sLHTGpd(G)
denote the full subcategory of TGpd/G with objects pairs (H, h) where h :
H → G is a semi-LH morphism.

We summarize how semi-LH’s and LHc’s are related in a lemma. From the
diagram (5.12) below it is clear that the notion of a semi-LH morphism can
be regarding as a weakning of that of an LHc morphism, where the map ψ =
h1×G0

sH : H1 → G1×G0
H0 is required to be open instead of a homeomorphism.

Lemma 5.8. Let h : H → G be a semi-LH morphism between topological
groupoids H,G. Then:

(i) if G is open, then H is open;

(ii) if h is also covering morphism, then h is an LHc morphism.
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Furthermore, if h′ : H → G is an LHc morphism, then h′ is a semi-LH mor-
phism.

Proof: (i): Since h0 is an LH, the projection πG1 : G1 ×G0 H0 → G1 is an LH:

G1 ×G0
H0 H0

G1 G0

H1

πH0

πG1 h0

sG

sH

h1

h1 ×G0
sH◦

◦

• •◦

◦

◦

(5.12)

Since h1 is open we obtain from Lemma 2.3 (ii) that h1 ×G0
sH is open. Then

sH = πH0
◦ (h1 ×G0

sH) is open. So H is open by Proposition 3.4.
(ii): Since h0 is an LH, the statement follows from the comment following

the definition of an LHc morphism.
The last statement follows from that any LH is open. �

Proposition 5.9. Let G : G1 ⇒ G0 be an open topological groupoid. For
(H, h) ∈ sLHTGpd(G), the equivalence relation Rh in (5.11) on Dh = G1×G0

H0 is an open subset Rh ⊆ Dh ×G0 Dh, where Dh and Dh ×G0 Dh are the
following pullbacks (in Sp)

G1 ×G0
H0 H0

G1 G0

πH0

sG

πG1 h0• •

◦

◦ Dh ×G0 Dh Dh

Dh G0

πD2

tG ◦ πG1

πD1
tG ◦ πG1◦ ◦

◦

◦

(5.13)

Proof: We drop the subscript h on D and R in this proof. From (5.13), the
projection maps πD1 , π

D
2 : D ×G0 D → D and the map tG ◦ πG1 : D → G0 are

open.
Let θ be the composition of maps

D ×G0
D

(iG◦πG1
)×G0

πG1−−−−−−−−−−−−→ G1 ×G0
G1

mG−−−→ G1

then θ((f, x), (g, y)) = f−1 ◦ g. In the proof of Lemma 5.8 we showed that the
map h1×G0

sH : H1 → D is open for (H, h) ∈ sLHTGpd(G). Using this we get
that the map ψ′ = h1×G0

sH ×G0
tH : H1 → D×G0

H0 is open from Lemma 2.3
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(ii) and the commutative diagram

D ×G0
H0 H0

D G0

H1

πHD h0

tG ◦ πG1

tH

h1 ×G0
sH

ψ′◦
◦

• •

◦

◦

◦

where πHD is an LH since h0 is an LH. The unique map θ′ : D×G0 D → D such
that the following diagram commute in Sp:

D H0

G1 G0

D ×G0 D

h0

sG

πH0
◦ πD2

θ

θ′

◦

• •

◦

◦

is continuous and takes ((f, x), (g, y)) 7→ (f−1 ◦g, y). Similarly we have that the
function θ′′ : D×G0D → D×G0H0 which takes ((f, x), (g, y)) 7→ ((f−1◦g, y), x)
is continuous:

D ×G0
H0 H0

D G0

D ×G0
D

h0

tG ◦ πG1

πH0
◦ πD1

θ′

θ′′

◦

• •

◦

◦

Now, from the pullback

• D ×G0
D

H1 D ×G0
H0

ψ′

θ′′

◦

◦
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we see that R ⊆ D ×G0
D is open. �

Definition 5.10. Let qTGpd(G) denote the full subcategory of TGpd/G with
objects pairs (H, h) such that the equivalence relation Rh in (5.11) is open.

Recall from Section 2.1.1 that we call an equivalence relation open if the
corresponding quotient map is open. For an open topological groupoid G,
Lemma 5.8 and Proposition 5.11 show that we have the following relationship
of categories

TCov/G qTGpd(G)

LHCov/G sLHTGpd(G)

TGpd/G

Proposition 5.11. For a morphism of topological groupoids h : H → G where
G is open, let q be the quotient map q : Dh → Dh/Rh of the equivalence relation
of (5.11) on Dh = G1 ×G0

H0.

(i) If h is a semi-LH morphism, then q is open;

(ii) if h is a topological covering morphism, then q is open.

Proof: (i): tG ◦ πG1
: Dh → G0 is open, where πG1

is the projection onto G1,
and constant on the equivalence classes of Rh. Furthermore, Rh ⊆ Dh ×G0

Dh

is an open subset by Proposition 5.9. By Lemma 2.6 (iii), q is open.
(ii): The equivalence relation Rh in (5.11) on Dh coincides with the equiv-

alence relation in (3.2) in Theorem 3.1 for the G-space Γ(H, h) = (h0, H0, tH ◦
ψ−1
h ), where ψh : H1 → G1 ×G0

H0 is the homeomorphism associated with the
topological covering morphism h. That is, we have that

(f, x) ∼Rh (g, y) iff tH ◦ ψ−1
h (f, x) = tH ◦ ψ−1

h (g, y), (5.14)

for (f, x), (g, y) in G1 ×G0 H0.
Indeed, if (f, x) ∼Rh (g, y) then there an arrow k : x → y in H1 such that

f = g ◦ h1(k). Let gy = ψ−1
h (g, y), then h1(gy) = g and sH(gy) = y, so gy ◦ k is

defined. Since h1(gy ◦ k) = h1(gy) ◦ h1(k) = f and sH(gy ◦ k) = x we have that
ψ−1
h (f, x) = gy ◦ k. Hence tH ◦ ψ−1

h (g, y) = tH ◦ ψ−1
h (f, x).

If tH ◦ ψ−1
h (g, y) = tH ◦ ψ−1

h (f, x), gy = ψ−1
h (g, y) and fx = ψ−1

h (f, x) then
g−1
y ◦ fx is defined and satisfies

h1(g−1
y ◦ fx) = h1(g−1

y ) ◦ h1(fx) = g−1 ◦ f.

Hence, with k = g−1
y ◦ fx in H1 we have f = g ◦ h1(k) and sH(k) = sH(fx) = x

and tH(k) = tH(g−1
y ) = sH(gy) = y. So (f, x) ∼Rh (g, y).

Since the groupoid G is open and h is a topological covering morphism, it
follows from Lemma 5.1 and Proposition 3.4 that H is open. Hence the action
of (h0, H0, tH ◦ ψ−1

h ) is open. It follows from Proposition 3.2 that q is open. �
For (H, h) in TGpd/G and the equivalence relation Rh in (5.11) on Dh =

G1 ×G0 H0, let Dh/Rh denote the corresponding quotient space and [tG]h :
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Dh/Rh → G0 be the function [(f, x)]Rh 7→ tG(f). Then [tG]h is clearly well-
defined.

For G1 ×G0
Dh/Rh, the pullback of [tG]h along sG, define αh : G1 ×G0

Dh/Rh → Dh/Rh to be the function (k, [(f, x)]Rh) 7→ [(k ◦ f, x)]Rh . It is clear
from the definition of Rh that αh is also well-defined.

Proposition 5.12. Let G : G1 ⇒ G0 be an open topological groupoid. There is
a functor Λ : qTGpd(G)→ SpG defined on objects (H, h) in qTGpd(G) by

Λ(H, h) = ([tG]h, Dh/Rh, αh),

and on morphisms φ : (H, h)→ (H′, h′) in qTGpd(G) by

Λ(φ) ([(f, x)]Rh) = [(f, φ0(x))]Rh′ .

Proof: We drop the subscript h while showing that the assignment defines a
G-space.

Make D = G1×G0
H0 from (5.10) into a space over G0 via tG◦πG1

: D → G0.
By Lemma 2.5 the function [tG] : D/R → G0 is continuous since it makes the
following diagram commute

D

G0

D/R

tG ◦ πG1 [tG]

q

(5.15)

where q : D → D/R is the quotient map.
To show that α is continuous, let m denote the unique map making the

diagram below commute in Sp:

D = G1 ×G0
H0 H0

G1 G0

G1 ×G0
D

πH0

πG1 h0

sG

πH0
◦ π2

mG ◦ (1G1
×G0

πG1
)

m

◦

◦

◦

where π2 : G1 ×G0
D → D is the projection. Then m(g, (f, x)) = (g ◦ f, x) for

(g, (f, x)) ∈ G1 ×G0 D.
Since q is open and (5.15) commutes, 1G1 ×G0 q : G1×G0 D → G1×G0 D/R

is open by Lemma 2.4. From the following commutative diagram we show that
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α is continuous

G1 ×G0
D D

G1 ×G0
D/R D/R

m

α

q1G1
×G0

q ◦◦

If U ⊆ D/R is open, we get that (q ◦ m)−1(U) = (α ◦ (1G1
×G0

q))−1(U) =
(1G1

×G0
q)−1

(
α−1(U)

)
is open. But 1G1

×G0
q is surjective and open, and hence

(1G1
×G0

q)[(1G1
×G0

q)−1
(
α−1(U)

)
] = α−1(U) is open. Thus α is continuous.

For completeness we write out the straightforward verification that α satisfies
the conditions of being an action:

[tG] ◦ α(k, [(f, x)]R) = tG(k),

α(1tG(f), [(f, x)]R) = [(f, x)]R,

α(p, α(k, [(f, x)]R)) = [(p ◦ k ◦ f, x)]R

= α(p ◦ k, [(f, x)]R).

Now consider an arrow φ : (H, h)→ (H′, h′). We write

Λ(H, h) = ([tG]h, Dh/Rh, αh) ,

Λ(H′, h′) = ([tG]h′ , Dh′/Rh′ , αh′) ,

where Dh = G1 ×G0
H0, Dh′ = G1 ×G0

H ′0 and Rh and Rh′ are the equivalence
relations on Dh and Dh′ corresponding to (5.11).

The function Λ(φ) is well defined, for if (f, x) ∼Rh (g, y) then there is an
arrow k : x→ y in H1 such that the following diagram commutes

h0(x)

•

h0(y)

h1(k)

f

g

and since h0 = h′0 ◦ φ0 and h1 = h′1 ◦ φ1 we get (f, φ0(x)) ∼Rh′ (g, φ0(y))
via φ1(k) : φ0(x) → φ0(y). So the function [(f, x)]Rh 7→ [(f, φ0(x))]Rh′ is well
defined and makes the following diagram commute

Dh/Rh

G0

Dh′/Rh′
Λ(φ)

[tG]h [tG]h′

Now, qh′ ◦ (1G1
×G0

φ0) : Dh → Dh′/Rh′ is continuous and, as shown above,
constant on the equivalence classes of Rh′ , where qh′ : Dh′ → Dh′/Rh′ is the
quotient map. So the function Λ(φ) : Dh/Rh → Dh′/Rh′ is continuous by
Lemma 2.5.
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It remains to show that Λ(φ) respects the action, which is a straightforward
verification:

G1 ×G0
Dh/Rh Dh/Rh

G1 ×G0 Dh′/Rh′ Dh′/Rh′

(k, [(g, x)]Rh) [(k ◦ g, x)]Rh

(k, [(g, φ0(x))]Rh′ ) [(k ◦ g, φ0(x))]Rh′

1G1
×G0

Λ(φ)

αh

Λ(φ)

αh′

Clearly Λ(1(H,h)) = 1Λ(H,h) and Λ(φ ◦ ϕ) = Λ(φ) ◦ Λ(ϕ) holds for φ, ϕ such
that φ ◦ ϕ is defined. This completes the proof. �

We remark that coequalizers in Sp are not stable under pullback (see [DK70]).
Thus we can not in general conclude that G1×G0 Dh/Rh is (homeomorphic to)
the quotient of G1×G0

Dh under the equivalence relation induced by the equiv-
alence relation Rh on Dh.

Proposition 5.13. Let G : G1 ⇒ G0 be an open topological groupoid. If h :
H → G is a semi-LH morphism then Λ(H, h) ∈ ShG1(G0).

Proof: From Proposition 5.9, the equivalence relation Rh in (5.11) is an open
subset Rh ⊆ Dh ×G0

Dh. Since tG ◦ πG1
in (5.15) is open, [tG]h : Dh/Rh → G0

is an LH by Lemma 2.7. Hence Λ(H, h) is an equivariant sheaf. �

5.4 Adjunction Λ a S

For a G-space (e, E, αe), the image S(e, E, αe) is covering groupoid of G. When
the topological groupoid G is open, we have that S(e, E, αe) is an object in
qTGpd(G) by Proposition 5.11. With some abuse of notation, we use S, as
defined in the previous sections, to denote this functor SpG → qTGpd(G).

The next theorem shows that we have following pair of adjoints for an open
topological groupoid G:

qTGpd(G) SpG

sLHTGpd(G) ShG1(G0)

Λ

⊥

S

Λ

⊥

S

Theorem 5.14. For an open topological groupoid G : G1 ⇒ G0, Λ is left adjoint
to S : SpG → qTGpd(G). Furthermore, Λ restricted to sLHTGpd(G) is left
adjoint to S restricted to ShG1(G0).

Proof: In this proof we write Λ(H, h) = ([tG]h, Dh/Rh, αh), as in Proposi-
tion 5.12, and S(e, E, αe) = (Ê, ê), as in Section 5.1. First we observe that for
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a morphism g : (H, h)→ (Ê, ê) the following diagrams commutes as g : H → Ê
is a morphism of groupoids over G

H1 H0

G1 ×G0 E E

H1 G1 ×G0
E

G1

sH

g1 g0

πE = sE

g1

h1 πEG1
= ê1

where πE and πEG1
are the projections onto the second and first component,

respectively. Thus for k ∈ H1 the arrow component of g is given by

g1(k) = (h1(k), g0 ◦ sH(k)). (5.16)

We now describe the bijection

homSpG (Λ(H, h), (e, E, αe))
ϕ−−→ homqTGpd(G) ((H, h), S(e, E, αe))

The correspondence is as follows. Associate to f : Λ(H, h) → (e, E, αe) the
morphism ϕ(f) = g : (H, h)→ (Ê, ê) with components

g0 : H0 → E, g0(x) = f
([

(1h0(x), x)
]
Rh

)
,

g1 : H1 → G1 ×G0
E, g1(k) = (h1(k), g0 ◦ sH(k)) .

To show continuity of the components of g, we start with g0. This is just the
composition

H0 G0 ×G0
H0 G1 ×G0

H0 (G1 ×G0
H0)/Rh E

∼ uG ×G0
1H0 qh f

where qh : Dh → Dh/Rh is the quotient map. Concerning g1, notice that
sG ◦ h1(k) = h0 ◦ sH(k) = e ◦ g0 ◦ sH(k). We thus obtain g1 = h1 × (g0 ◦ sH) as
the unique map making the following diagram commute (in Sp):

G1 ×G0 E E

G1 G0

H1

e

sG

g0 ◦ sH

h1

h1 ×G0
(g0 ◦ sH)

◦

◦

To show that g : H → Ê defines a groupoid morphism we must show commu-
tativity of the left rectangle and the outer, middle and inner right rectangles
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of

H1 ×H0
H1 H1 H0

E1 ×E0
E1 E1 E0

mH
uH

mE
uE

g1 ×E0
g1 g1 g0

tH

sH

sE

tE

From this it then follows that g1◦iH = iE◦g1. That the identity g0◦sH = sE◦g1

holds follows directly from the definitions. To see that g0 ◦ tH = tE ◦ g1, use
that f respect the action in the following way

tE ◦ g1(k) = αe (h1(k), g0 ◦ sH(k))

= αe

(
h1(k), f

([(
1h0◦sH(k), sH(k)

)]
Rh

))

= f ◦ αh
(
h1(k),

[(
1h0◦sH(k), sH(k)

)]
Rh

)

= f
(
[(h1(k), sH(k))]Rh

)

= f
([(

1h0◦tH(k), tH(k)
)]
Rh

)

= g0 ◦ tH(k).

where we’ve used that (h1(k), sH(k)) ∼Rh
(
1h0◦tH(k), tH(k)

)
via k : sH(k) →

tH(k):

h0 ◦ sH(k)

h0 ◦ tH(k)

h0 ◦ tH(k)

h1(k)

1h0◦tH (k)

h1(k)

Concerning the identity maps, it holds that g1 ◦ uH(x) = uE ◦ g0(x):

g1(1x) = (h1(1x), g0(x))

=
(
1h0(x), g0(x)

)

= uE ◦ g0(x).

It remains to show that g1 ◦mH = mE ◦ (g1 ×E0 g1), which is straightforward:

g1 ◦mH(k, p) = (h1(k ◦ p), g0 ◦ sH(k ◦ p))
= (h1(k) ◦ h1(p), g0 ◦ sH(p))

= mE ◦ (g1 ×E0
g1)(k, p).

This shows that g : H → Ê is a morphism of groupoids. Observe that we also
have h = ê ◦ g as the following diagrams commutes

x f([(1h0(x), x)])

h0(x)

k (h1(k), g0 ◦ sH(k))

h1(k)

g0

h0 e

g1

h1 πEG1
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This completes the proof that g is a morphism in qTGpd(G).
Conversely, to g : (H, h) → (Ê, ê) associate f : Λ(H, h) → (e, E, αe) where

f([(k, x)]Rh) = αe(k, g0(x)), then the following diagram commutes

Dh/Rh E

G0

f

[tG]h e

We now show that f is well-defined, then continuity of f follows from Lemma 2.5
as f makes the diagram below commute

Dh

EDh/Rh

αe ◦ (1G1
×G0

g0)

f

qh

In addition, notice that as [tG]h = e ◦ f , if e and [tG]h are LH’s then continuity
of f will imply that f is an LH.

If (k, x) ∼Rh (p, y) then there is an arrow u : x → y in H1 such that
k = p ◦ h1(u), as in

h0(x)

•

h0(y)

k

p

h1(u)

Since g : H → Ê is morphism of groupoids we have that tE ◦ g1 = g0 ◦ tH .
Using that g1 satisfies (5.16) and that tE = αe, we thus have that g0 ◦ tH(u) =
αe(h1(u), g0 ◦ sH(u)). From this it follows that f is well defined:

αe(k, g0(x)) = αe(p ◦ h1(u), g0 ◦ sH(u)))

= αe(p, αe(h1(u), g0 ◦ sH(u)))

= αe(p, g0 ◦ tH(u))

= αe(p, g0(y)).

It remains to show that f respects the action, which is straightforward:

G1 ×G0
Dh/Rh Dh/Rh

G1 ×G0
E E

(p, [(k, x)]Rh) [(p ◦ k, x)]Rh

(p, αe(k, g0(x))) αe(p ◦ k, g0(x))

αh

1G1
×G0

f f

αe

This shows that f is an arrow in SpG (and in ShC1
(C0) if Λ(H, h), (e, E, αe)

are in ShC1
(C0)).
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This correspondence is bijective. From g : (H, h) → (Ê, ê) we, accordingly,
get f : Λ(H, h) → (e, E, αe) and then ϕ(f) = ḡ : (H, h) → (Ê, ê) has compo-
nents

ḡ0(x) = f
([(

1h0(x), x
)]
Rh

)

= αe(1h0(x), g0(x))

= g0(x),

ḡ1(k) = (h1(k), ḡ0 ◦ sH(k))

= (h1(k), g0 ◦ sH(k))

= g1(k).

where we used that ḡ1 and g1 satisfies (5.16). So ḡ = g. Conversely, from
f : Λ(H, h) → (e, E, αe) we get ϕ(f) = g : (H, h) → (Ê, ê) and then the
correspondence yield f̄ : Λ(H, h)→ (e, E, αe) where

f̄
(
[(k, x)]Rh

)
= αe(k, g0(x))

= αe

(
k, f

([(
1h0(x), x

)]
Rh

))

= f ◦ αh
(
k,
[
(1h0(x), x)

]
Rh

)

= f
(
[(k, x)]Rh

)
.

Hence f̄ = f and the correspondence is bijective. It remains to show naturality
in the arguments (H, h) and (e, E, αe).

To this end, let φ : (H, h) → (H′, h′) be an arrow in qTGpd(G). Commu-
tativity of the diagram

hom (Λ(H′, h′), (e, E, αe)) hom ((H′, h′), S(e, E, αe))

hom (Λ(H, h), (e, E, αe)) hom ((H, h), S(e, E, αe))

ϕ

hom(Λ(φ), (e, E, αe)) hom(φ, S(e, E, αe))

ϕ

holds if for any k : Λ(H′, h′)→ (e, E, αe) we have ϕ(k ◦ Λ(φ)) = ϕ(k) ◦ φ. This
identity indeed holds; equality on the object components follows from

(ϕ(k) ◦ φ)0(x) = k
([(

1h′0◦φ0(x), φ0(x)
)]
Rh′

)
,

ϕ(k ◦ Λ(φ))0(x) = k ◦ Λ(φ)
([(

1h0(x), x
)]
Rh

)

= k
([(

1h′0◦φ0(x), φ0(x)
)]
Rh′

)
,

and equality on the arrow components follows from

(ϕ(k) ◦ φ)1(p) = (h′1 ◦ φ1(p), ϕ(k)0 ◦ sH′ ◦ φ1(p))

= (h′1 ◦ φ1(p), ϕ(k)0 ◦ φ0 ◦ sH(p)) ,

ϕ(k ◦ Λ(φ))1(p) = (h1(p), ϕ(k ◦ Λ(φ))0 ◦ sH(p))

= (h1(p), (ϕ(k) ◦ φ)0 ◦ sH(p)) .
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Now, let k : (e, E, αe)→ (a,A, αa), then the following diagram also commutes

hom (Λ(H, h), (e, E, αe)) hom ((H, h), S(e, E, αe))

hom (Λ(H, h), (a,A, αa)) hom ((H, h), S(a,A, αa))

ϕ

hom(Λ(H, h), k) hom((H, h), S(k))

ϕ

as ϕ(k ◦ f) = S(k) ◦ϕ(f) for f : Λ(H, h)→ (e, E, αe). Explicitly, on objects we
have

(S(k) ◦ ϕ(f))0 (x) = k ◦ f
([

(1h0(x), x)
]
Rh

)
,

ϕ(k ◦ f)0 (x) = k ◦ f
([

(1h0(x), x)
]
Rh

)
,

and on arrows

(S(k) ◦ ϕ(f))1 (p) = (h1(p), k ◦ ϕ(f)0 ◦ sH(p))

ϕ(k ◦ f)1(p) = (h1(p), ϕ(k ◦ f)0 ◦ sH(p))

= (h1(p), k ◦ ϕ(f)0 ◦ sH(p)) .

This shows that ϕ is natural in both arguments and proves the adjunction
Λ a S.

By Proposition 5.13, for (H, h) in sLHTGpd(G) we have Λ(H, h) ∈ ShG1
(G0).

The components of ê (in S(e, E, αe) = (Ê, ê)) are LH’s for (e, E, αe) ∈ ShG1(G0),
so we have (Ê, ê) ∈ sLHTGpd(G). Both sLHTGpd(G) and ShG1(G0) are full
subcategories of qTGpd(G) respectively SpG . It follows that Λ restricted to
sLHTGpd(G) is left adjoint to S restricted to ShG1

(G0). �
Corollary 5.15. For an open topological grouopoid G, Λ is naturally isomorphic
to Γ on TCov/G.

Proof: S : SpG → TCov/G is part of an equivalence of categories (via Γ). This
implies that S is a part of an adjoint equivalence, [Mac97, Theorem IV.4.1].
The left adjoint of a functor is unique up to natural isomorphism, [Mac97,
Corollary IV.1.1]. �

5.4.1 Unit and conunit of the adjunction Λ a S

The unit of the adjunction Λ a S is η : 1
·−→ SΛ, where 1 is the identity on

qTGpd(G), with components
(
η(H,h)

)
0

: H0 → Dh/Rh, x 7→
[(

1h0(x), x
)]
Rh
,

(
η(H,h)

)
1

: H1 → G1 ×G0 Dh/Rh, k 7→
(
h1(k),

[(
1h0◦sH(k), sH(k)

)]
Rh

)
.

The counit ε : ΛS
·−→ 1SpG has components

ε(e,E,αe) : ΛS(e, E, αe)→ (e, E, αe), [(k, x)]Rê 7→ αe(k, x).

Proposition 5.16. Each G−space is isomorphic to Λ(H, h) for some (H, h)
in qTGpd(G). Each G−sheaf is isomorphic to Λ(H, h) for some (H, h) in
sLHTGpd(G).
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Proof: By Corollary 5.6, the right adjoint S is full and faithful. It follows
that the components of the conunit are isomorphisms [Mac97, Theorem IV.3.1].
Hence (e, E, αe) in SpG is isomorphic to ΛS(e, E, αe) and (a,A, αa) in ShC1

(C0)
is isomorphic to ΛS(a,A, αa). �

Given the isomorphism of G-spaces in Theorem 3.1 and the isomorphism
obtained via the counit of the adjunction Λ a S, we now describe how these two
are related. In fact, they express the same isomorphism. For if the pair (Ê, ê)
is the image of S on the G-space (e, E, αe) the equivalence relation Rê in (5.11)
reduces to the equivalence relation R in Theorem 3.1, given by (3.2). Although
part of this was used in the proof of Proposition 5.11 for the image of Γ on an
object in TCov/G, we write out the details for a G-space (e, E, αe).

If (f, x), (g, y) ∈ G1×G0
E are such that (f, x) ∼Rê (g, y), then tG(f) = tG(g)

and there is an arrow k : x→ y in E1 = G1 ×G0 E such that

ê0(x)

•

ê0(y)

f

g

ê1(k)

commutes. So ê1(k) = g−1 ◦ f . Hence k = (g−1 ◦ f, x) and y = tE(k) =
αe(g

−1 ◦ f, x). We now have that

αe(f, x) = αe(g ◦ g−1 ◦ f, x)

= αe(g, αe(g
−1 ◦ f, x))

= αe(g, y),

and so (f, x) ∼R (g, y).
Conversely, if αe(f, x) = αe(g, y) then tG(f) = tG(g) and k = (g−1 ◦ f, x) is

an arrow x→ y in Ê such that f = g ◦ ê1(k). Hence (f, x) ∼Rê (g, y).

5.5 Generators for LHCov/G and ShG1
(G0)

In this section we show how a set of generators for LHCov/G and ShG1
(G0),

for an open topological groupoid G, can be dervied from the adjunction Λ a S.

Definition 5.17. Let C : C1 ⇒ C0 be a topological category. An open subcate-
gory of C is a pair of open subsets U0 ⊆ C0, U1 ⊆ C1 such that

(i) U1 is closed under composition,

(ii) uC(U0) ⊆ U1,

(iii) sC(U1), tC(U1) ⊆ U0.

If C is a groupoid and U1 is also closed under taking inverses, then the pair U0,
U1 is called an open subgroupoid of C.

For a topological category (groupoid) C, let O(C) denote the set of all open
subcategories (subgroupoids) of C. Although the open subcategories of C aren’t
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necessarily in LHCov/C the next proposition could be said to show that the
open subcategories of C generate LHCov/C.
Proposition 5.18. Let C be a topological category. For any parallel pair of
morphisms f, g : (D, d) → (D′, d′) in LHCov/C, f = g iff f ◦ φ = g ◦ φ for all
φ : (U , u)→ (D, d) (in TCat/C) with (U , u) any element in O(C).

Proof: We first make some observations regarding morphisms in TCat/C
with codomain objects in LHCov/C.

Let (Ê, ê) be the image of S on an equivariant sheaf (e, E, αe). From the
argument preceding (5.16) we can conclude that the arrow component of a
morphism g : (D, d)→ (Ê, ê) in TCat/C is given by

g1(k) = (d1(k), g0 ◦ sD(k))

for k ∈ D1. That is, such a morphism is determined by its object component g0.
Now, let d′ : D′ → C be an object in LHCov/C and ψd′ be the corresponding
homeomorphism D′1 → G1 ×G0 D

′
0. From the proof of Theorem 5.5 we have

that γd′ : (D̂′, d̂′) → (D′, d′), where (D̂′, d̂′) = SΓ(D′, d′), with components
(γd′)0 = 1D′0 and (γd′)1 = ψ−1

d′ is an isomorphism in TCat/C with an inverse

γ−1
d′ that has components (γ−1

d′ )0 = 1D′0 and (γ−1
d′ )1 = ψd′ .

For any morphism g : (D, d)→ (D′, d′) in TCat/C we thus have that γ−1
d′ ◦g :

(D, d)→ (D̂′, d̂′) has arrow component

(γ−1
d′ ◦ g)1(k) = (d1(k), (γ−1

d′ ◦ g)0 ◦ sD(k))

= (d1(k), g0 ◦ sD(k)).

So g = γd′ ◦ γ−1
d′ ◦ g has arrow component g1 = ψ−1

d′ (d1(k), g0 ◦ sD(k)) and is in
this way determined by its object component.

Now, let f, g : (D, d)→ (D′, d′) be a pair of parallel morphisms in LHCov/C.
Since the morphisms f and g are determined by their object components, it is
sufficient to show that if g0 ◦ φ0 = f0 ◦ φ0 for all morphisms φ : (U , u)→ (D, d)
in TCat/C, for any (U , u) in O(C), then f0 = g0.

Let x be an element in D0 and σ : U0 → D0 be a section through x,
where U0 ⊆ C0 is open. Let N = s−1

C (U0) ∩ t−1
C (U0); then U0 and N defines

an open subcategory U ′ of C, the full subcategory of C on U0. Let u′ denote
the inclusion of U ′ into C. If φ : (U ′, u′) → (D, d) is a morphism in TCat/C
with object component φ0 = σ then the arrow component is given by φ1(k) =
ψ−1
d (k, σ ◦ sC(k)) for k ∈ N . If φ is to be a morphism of topological categories

we must also require that φ0 ◦ tC = tD ◦ φ1, that is

σ ◦ tC(k) = tD ◦ ψ−1
d (k, σ ◦ sC(k)) (5.17)

for k ∈ N . Accordingly, we restrict attention to the subset of N consisting of
elements such that this condition is satisfied and define U1 = {k ∈ N | k satisfies
(5.17)}. We now show that U1 and U0 define a subcategory of C:

(i) U1 is closed under composition: For arrows k, p in U1 such that k ◦ p is
defined (in C) let

k′ = ψ−1
d (k, σ ◦ sC(k)), (5.18)

p′ = ψ−1
d (p, σ ◦ sC(p)). (5.19)
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Then k′ ◦ p′ is defined in D since k and p satisfies (5.17). Since

ψd(k
′ ◦ p′) = (d1(k′ ◦ p′), sD(p′))

= (d1(k′) ◦ d1(p′), σ ◦ sC(p))

= (k ◦ p, σ ◦ sC(k ◦ p))
(5.20)

we have tD ◦ ψ−1
d (k ◦ p, σ ◦ sC(k ◦ p)) = tD(k′), which equals σ ◦ tC(k) by

(5.17). Hence k ◦ p is in U1.

(ii) For x ∈ D0 we have ψ−1
d (1d0(x), x) = 1x. Hence uC(U0) ⊆ U1.

(iii) That sC(U1), tC(U1) ⊆ U0 is clear since U1 ⊆ s−1
C (U0) ∩ t−1

C (U0).

We now show that U1 is an open subset of C1. Since d0 ◦ σ is the identity
on U0 and, for k in N ,

d0 ◦ tD ◦ ψ−1
d (k, σ ◦ sC(k)) = tC ◦ d1 ◦ ψ−1

d (k, σ ◦ sC(k))

= tC(k)

we obtain a unique map θ such that the following diagram commute in Sp

D0 ×C0
D0 D0

D0 C0

N

π2

π1 d0

d0

tD ◦ ψ−1
d ◦ (1N ×C0

(σ ◦ sC))

σ ◦ tC

θ

•

• •

•

Then, for k ∈ N ,

θ(k) =
(
σ ◦ tC(k), tD ◦ ψ−1

d (k, σ ◦ sC(k))
)
.

We can now see that U1 ⊆ N is open:

• D0

N D0 ×C0
D0

∆

θ

◦ ◦

where ∆ is the diagonal. We thus have that U : U1 ⇒ U0 is an open subcategory
of C. Let u denote the inclusion of U into C.

With φ : (U , u)→ (D, d) given by φ0 = σ and φ1(k) = ψ−1
d (k, σ ◦ sC(k)), for

k ∈ U1, we now have that sD◦φ1 = φ0◦sC and tD◦φ1 = φ0◦tC by construction.
It is also true that uD ◦ φ0 = φ1 ◦ uC as 1σ(x) = ψ−1

d (1x, σ(x)). Considering
composition, let k, p ∈ U1 be such that k ◦ p is defined. Let k′ = φ1(k) and p′ =
φ1(p), as in (5.18) and (5.19). Then from (5.20) we have that k′ ◦p′ = φ1(k ◦p).
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By construction, d0 ◦ φ0 and d1 ◦ φ1 are the inclusion maps U0 ↪→ C0 and
U1 ↪→ C1. This shows that φ is a morphism of categories over C and completes
the proof. �

Proposition 5.19. Let G be an open topological groupoid. The set

{SΛ(U , u) | (U , u) ∈ O(G)}

generates LHCov/G.

Proof: For each (U , u) in O(G), the unit η of the adjunction Λ a S yields
an universal arrow from (U , u) to S. For an equivariant sheaf (e, E, αe), each
arrow φ : (U , u) → S(e, E, αe) (in sLHTGpd(G) and also in TGpd/G, since
sLHTGpd(G) is a full subcategory) can then be written as φ = φ′ ◦ ηu for a
unique arrow φ′ : SΛ(U , u)→ S(e, E, αe).

By Corollary 5.15 there is a natural isomorphism τ : Γ→̇Λ on LHCov/G.
Then Sτ is a natural isomorphism SΓ→̇SΛ on LHCov/G. For (H′, h′) in
LHCov/G there is also an isomorphism γh′ between SΓ(H′, h′) and (H′, h′)
(see the proof of Theorem 5.5).

If f, g : (H′, h′) → (H, h) is a pair of morphisms in LHCov/G such that
f 6= g then by Proposition 5.18 there is a morphism φ : (U , u) → (H′, h′), for
some (U , u) in O(G), such that f ◦ φ 6= g ◦ φ. Let φ′′ = (Sτh′) ◦ γ−1

h′ ◦ φ, then
φ′′ = φ′ ◦ ηu for a unique φ′ : SΛ(U , u)→ SΛ(H′, h′):

(U , u)

SΛ(U , u) SΛ(H′, h′) SΓ(H′, h′) (H′, h′)

φ
ηu φ′′

φ′ (Sτh′ )
−1

∼ ∼
γh′

We now have that f ◦ γh′ ◦ (Sτh′)
−1 ◦ φ′ 6= g ◦ γh′ ◦ (Sτh′)

−1 ◦ φ′. �

Proposition 5.20. Let G be an open topological groupoid. The set

{Λ(U , u) | (U , u) ∈ O(G)}

generates ShG1(G0).

Proof: The functor Γ is a part of an equivalence LHCov/G ∼= ShG1
(G0).

Such a functor maps a set of generators in the one category into a set of gener-
ators in the other. Applying Γ to the set of generators of LHCov/C in Propo-
sition 5.19 and using that ΓS is the identity on ShG1

(G0) (Theorem 5.5), the
statement follows. �
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5.6 Summary

For an open topological groupoid G : G1 ⇒ G0 the following diagram summa-
rizes the results of the present chapter, where the inner and outer triangles of
both top and bottom are commutative up to natural isomorphism:

TCov/G qTGpd(G)

LHCov/G sLHTGpd(G)

SpG

ShG1(G0)

TGpd/G
Γ

∼
S

Γ
∼

S

SΛ

⊥

SΛ

⊥

S

Λ

>

>

Λ

S

The above diagram also displays TCov/G (LHCov/G) as a reflective subcate-
gory of qTGpd(G) (sLHTGpd(G)).

In summary we have, with some abuse of notation, used S to denote the
functors

SpG → TCov/G, with restriction ShG1
(G0)→ LHCov/G, (5.21)

and

SpG → qTGpd(G), with restriction ShG1(G0)→ sLHTGpd(G), (5.22)

which operates in the same way. As the functors given in (5.21) S is a part of
an equivalence and is both left and right adjoint to

Γ : TCov/G → SpG respectively Γ : LHCov/G → ShG1
(G0),

and as the functors given in (5.22) S is right adjoint to

Λ : qTGpd(G)→ SpG respectively Λ : sLHTGpd(G)→ ShG1
(G0).



Chapter 6

Future work

The main direction we would like to extend this work is the open question of
finding a manageable set of generators for ShC1

(C0) for an arbitrary topological
category C, instead of those arising from the construction of ShC1

(C0) as a
colimit of toposes (see [Moe88]).

As the other conditions of Giraud’s theorem have been proved for the general
case in Chapter 4, to give an elementary proof that ShC1(C0) is a (Grothendieck)
topos, all that it is left to provide is an explicit description of a set of genera-
tors. This task has partly been accomplished in Proposition 4.8, where a set of
generators are described for the full subcategory of ShC1

(C0) with objects the
equivariant sheaves with open actions.

Perhaps the existence of a set of generators could be proved via the results
of Chapter 5. One may note that the proof in Section 5.5 of the existence of a
set of generators for ShG1

(G0), for an open topological groupoid G : G1 ⇒ G0,
depends only on the existence of a functor from a full subcategory of TGpd/G
that contains the open subgroupoids of G and the local homeomorphic covering
morphisms to G into ShG1(G0), which is left adjoint to S. Proving the existence
of such a functor would therefore be an alternative way of proving the existence
of a set of generators of ShC1

(C0) for an arbitrary topological category.
A suggestion for future work is to try equivalence relations different from

the one given in (5.11), which might yield a functor similar to Λ, possibly for
topological categories (instead of groupoids).
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Index of notation

Categories

Set the category of sets and functions
Sp the category of topological spaces and (continuous) maps
LH the category of topological spaces and local homeomorphisms

SpC the category of C-spaces
Sh(X) the category of sheaves (of sets) on a topological space X
ShC1

(C0) the category of equivariant sheaves on C : C1 ⇒ C0

ShC1
(C0) the full subcategory of ShC1(C0) of equivariant sheaves with

open actions
TGpd the category of topological groupoids
TCat the category of topological categories
TCov/C the category of topological covering morphisms into C
LHCov/C the category of local homeomorphic covering morphism into C
sLHGpd(G) the full subcategory of TGpd/G with objects semi-local

homeomorphic morphisms into G
qTGpd(G) the full subcategory of TGpd/G with objects pairs (H, h) such

that the equivalence relation in (5.11) is open, see Definition 5.10
Loc the category of locales
C/c slice category
CD functor category
Cop opposite category of C
G,H topological groupoids
C,D topological categories
G : G1 ⇒ G0 topological groupoid G with object space G1 and arrow space G0

C : C1 ⇒ C0 topological category C with object space C1 and arrow space C0

Operations

×,∏ product∐
coproduct

∼=, ∼ isomorphism

Functors

T a S T is left adjoint to S

T
·−→ S natural transformation from T to S
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Arrows

epic arrow / epimorphism

monic arrow / monomorphism

inclusion

◦ open map

• local homeomorphism

Other

1 terminal object or identity morphism
0 initial object

(a,A, α) object in ShC1
(C0) or SpC

x ∼R y x is related to y in the relation R
[x]R equivalence class of x in the equivalence relation R (if x is an

element of the set on which R is defined)
[φ] ([φ]h) a function φ defined on a quotient (with index h)
� end of proof

Structure maps

The structure maps of a topological category C : C1 ⇒ C0 are denotes as in the
diagram

C1 ×C0 C1 C1 C0

mC

sC

tC

uC

The inverse component of a topological groupoid G : G1 ⇒ G0 is denoted
iG : G1 → G1.

Abbreviations

LH local homeomorphism
LHc local homeomorphic covering
map continuous function between topological spaces
semi-LH semi-local homeomorphic
topos Grothendieck topos, from Section 2.4 and onwards


