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Abstract

Graph pebbling modeling started as a method for solving a com-

binatorial number theory conjecture by Erdős and Lemke. Using this

method, Chung proved the conjecture in 1989. Since then, the liter-

ature has grown considerably. Several variations and possible appli-

cations have been discussed, in graph theory, computer science and

network optimization.

The main focus in graph pebbling is graphs, mathematical struc-

tures modeling binary relations between vertices. To every vertex in

some graph we assign a number of pebbles. If two pebbles are moved

across an edge joining two distinct vertices, one pebble arrives and

one pebble is lost. This is called a pebbling step.

The basic question in graph pebbling asks if one may from a given

distribution of pebbles on a set of vertices move to another distribu-

tion on the same set via a series of pebbling steps.

In this Master’s thesis we approach the above question using two

models: a deterministic, which includes the notion of a pebbling

number, and a probabilistic, which includes the notion of a thresh-

old.

For both these models we clarify earlier proofs, and provide new

proofs, of foundational theorems in graph pebbling. These results

constitute the backbone for our discussion on recent research, which

concentrates on generalizing and extending central notions in graph

pebbling, for example the generalized idea of a pebbling number:

the pi-pebbling function. Simultaneously, a corollary to the so called

cover pebbling theorem is derived. This corollary lets us prove estab-

lished, and newly found, theorems.

Regarding applications in graph pebbling, we argue that one should

generalize existing results, and incorporate directed graphs into a

bigger part of the theory. We suggest how this can be done.

Keywords: Combinatorics; Discrete probability theory; Graph the-

ory; Graph pebbling; Pebbling number; Threshold; Cover pebbling

number; Pi-pebbling function
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Sammanfattning

Modellering med grafpebbling började som en metod för att lö-

sa en kombinatorisk och talteoretisk förmodan av Erdős och Lem-

ke. Genom att utnyttja denna metod bevisade Chung förmodandet

1989. Sedan dess har litteraturen växt avsevärt. Flera variationer och

möjliga applikationer har diskuterats, i grafteori, datavetenskap och

nätverksoptimering.

Huvudfokus för grafpebbling är grafer, matematiska strukturer

som modellerar binära relationer mellan noder. Varje nod i grafen

tilldelas ett antal pebblar. Om två pebbles (på svenska kiselstenar)

förflyttas över en kant som förenar två noder, så anländer en pebble

medan en försvinner. Detta kallas för ett pebblingssteg.

Den grundläggande frågan i grafpebbling är huruvida man kan

från en given fördelning av pebbles på en mängd noder förflytta sig

till en annan fördelning på samma mängd via en serie av pebblings-

teg.

I denna masteruppsats angriper vi ovanstående fråga utifrån två

modeller: en deterministisk, som inbegriper begreppet pebblingtal,

och en sannolikhetsteoretisk, som inbegriper begreppet tröskel.

För båda dessa modeller klargör vi tidigare bevis, och tillhan-

dahåller nya bevis, av fundamentala resultat i grafpebbling. Dessa

resultat utgör ryggraden för vår diskussion om ny forskning som

koncentrerar sig på att generalisera och utvidga centrala idéer i graf-

pebbling, till exempel den generaliserade idén av ett pebblingtal: pi-

pebbling-funktionen. Samtidigt härleder vi ett korollarium till satsen

om det så kallade täckande pebblingtalet. Detta korollarium låter oss

bevisa fastlagda, och nyfunna, satser.

Apropå tillämpningar i grafpebbling så argumenterar vi för att

man bör generalisera befintliga resultat, och inkorporera riktade gra-

fer i en större del av teorin. Vi föreslår hur detta kan göras.

Nyckelord: Kombinatorik; Diskret sannolikhetsteori; Grafteori; Graf-

pebbling; Pebblingtal; Tröskel; Det täckande pebblingtalet; Pi-pebbling-

funktionen
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1 Introduction

Consider a finite connected graph G, and a distribution of pebbles on the
vertices of G. Such a distribution is expressed by a configuration C on G.
The configuration C describes how many pebbles there are at each vertex
of G. The number of pebbles placed on each vertex is called the size of C;
in other words, the size of C is the number of pebbles distributed on the
vertices of G.

To construct a game we must first define the notion of a pebbling step:
Whenever it is possible, two pebbles are removed from a vertex u and one
pebble is placed on an adjacent vertex v. We say that the price at any vertex
(for example u) is two, and that the price of a pebbling step is one.1 The
game, which this thesis is preoccupied with, is about trying to find, for
any configuration C on G of some nonnegative size t, a series of pebbling
steps that fills a given vertex r of G with one pebble; such a vertex r is often
called the target vertex. This game is finite in the sense that t decreases by
one for each pebbling step. To emphasize: the size of C is per definition a
nonnegative integer.

Using the above definitions, we may describe graph pebbling as a game
between two players on a graph G: Carl the Configurer and Patricia the
Pebbler. To begin this game, Patricia buys t pebbles and then gives them
to Carl who distributes a configuration C of t pebbles onto the vertices of
G. Afterwards, Carl chooses a target vertex r. If Patricia can via a series of
pebbling steps place at least one pebble on r, then we will say that Patri-
cia has won the game and solved C, otherwise we will say that Carl won.
Given information about the graph G, Patricia’s challenge is to buy as few
pebbles as possible (since they are quite expensive), while Carl’s challenge
is to distribute a configuration of size t which is as hard as possible for Pa-
tricia to solve.2 3

1Two pebbles are removed at u, one pebble is added at v, and −2 + 1 = −1. Hence,
the price of a pebbling step is one.

2This paragraph was inspired by Hurlbert (2015).
3This game may be played with the computer based tool Algoraph (see http://

algoraph.cs.hope.edu/) which ”assist[s] in solving graph-related problems“ such as
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Graph pebbling may also be seen as a model of some transportation
of resources that are consumed in the transition from one station to an-
other. Thinking about such modeling problems one may be interested in
whether some amount of resources (i.e. pebbles) can be moved, given that
resources are lost in the process (i.e. paying the cost of some number of
pebbling steps), from one set of geographical locations (i.e. set of vertices)
to some other set of geographical locations.

One may regard questions about such modeling problems as determin-
istic or probabilistic. Because of this, two models are introduced in this
thesis: a deterministic model and a probabilistic model.

For the deterministic model we want to examine the so called pebbling
number for finite graphs G. Given a configuration C on G: if, for any vertex
r of G, one can via a series of pebbling steps move at least one pebble to
r, then C is said to be solvable. The pebbling number π(G) of G is then
defined as the minimum number t such that any configuration on G of
size t is solvable. The deterministic model is mainly analyzed in section
2.2.1 and 3.

For the probabilistic model we define the notion of a threshold. A thresh-
old function for a graph sequence G = (G1, G2, . . . , Gn, . . .), where Gn is a
graph on n vertices, is any function g(n) such that almost all configura-
tions on Gn of size t(n) is solvable if t(n)

g(n) → ∞ as n → ∞, and such that

almost no configuration on Gn of size t(n) is solvable if t(n)
g(n) → 0 as n→ ∞.

The threshold of G is the set of all threshold functions for G .
The study of pebbling numbers and threshold functions will occupy

most of this paper. In addition to this we study two more concepts that are
central to the theory of graph pebbling (especially in recent years): firstly,
the so called cover pebbling number, which tells us how many pebbles we
need to distribute on some set of graph vertices to fill not only one vertex,
but all vertices of the graph in question, with one pebble each; secondly,
the so called pi-pebbling function, a generalization of the pebbling number
which allows the price of a pebbling step to be greater than one.

graph pebbling problems.
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1.1 Purpose

The first aim of this thesis is to give foundational results regarding peb-
bling numbers and thresholds, and also to discuss generalizations of the
pebbling number and variations on graph pebbling.

The second aim is to give the reader more explicit proofs of earlier foun-
dational theorems in graph pebbling, and to give new proofs for estab-
lished theorems.

The third aim is that this thesis functions as an introduction to graph
pebbling, and is for this reason especially targeted at interested students
in their last year of pursuing a Bachelor of Mathematics.

1.2 Central question

One central question we ask is: Can graph pebbling modeling, as a pure
mathematical subject, be extended in such a way that it has a significant
impact on applications and the field of applied mathematics?

1.3 History

Graph pebbling modeling came out as a result of finding a method for
solving a combinatorial number theory conjecture by Erdős and Lemke
(Czygrinow et al., 2002). They conjectured that given a positive integer d
and integers a1, a2, . . . , ad, there exists a non-empty set Q ⊆ {1, 2, . . . , d}
such that:

d| ∑
i∈Q

ai,

and ∑
i∈Q

gcd(ai, d) ≤ d.

Originally the conjecture was solved by Kleitman and Lemke (1988).
Since the proof was detailed and contained an analysis of several cases,
a solution to the conjecture via graph pebbling modeling was suggested
by Lagarias and Saks in order to present a shorter and more comprehensi-
ble proof of Erdős’ and Lemke’s conjecture (Godbole et al., 2005). Chung
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(1989) followed this suggestion and (with minor mistakes) proved the con-
jecture using graph pebbling modeling (a correction to Chung’s proof was
later given by Clarke et al. (1997)). In the same paper Chung developed
the graph pebbling model by establishing further results concerning graph
pebbling. Since then, the literature has grown considerably with over 50
published papers on the subject (Hurlbert, 2005).

The theory of graph pebbling has been formalized and generalized
since Chung’s paper. There are many variations on graph pebbling to-
day, and possible applications are discussed. Several open problems and
difficult conjectures exist. For example the conjecture of Graham that the
pebbling number of a cartesian product of graphs is less than or equal to
the product of the pebbling numbers for each graph.

A recent overview of graph pebbling may be found in (Hurlbert, 2014)[16].

1.4 Disposition

In section 2 we introduce the reader to graph theory (2.1) and graph peb-
bling (2.2). The latter depends on the former. Using the definitions of
section 2.1 and 2.2, we derive some initial results concerning graph peb-
bling in section 2.2.1. These results will be the backbone of the analysis in
section 3 and 4.

The main objective in section 3.1 is to derive the pebbling numbers for
some well known graphs. In 3.2 we prove theorems concerning so called
diameter 2 graphs. That is, section 3 deals with the deterministic model of
graph pebbling.

In section 4 we analyze the probabilistic model of graph pebbling. Def-
initions and notations are introduced in 4.1, which will be sufficient for
our analysis in section 4.2 and 4.3. Section 4.2 constitutes the groundwork
for discussing thresholds for graph sequences in 4.3.

Section 5 explores recent research on graph pebbling. In section 5.1 we
look at a generalization of the notion of a pebbling number: the cover peb-
bling number in 5.1.1 and the pi-pebbling function in 5.1.2. Applications
and variations on graph pebbling are discussed in 5.2. Some suggestions
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on which directions the research on graph pebbling should take are dis-
cussed in 5.3; moreover: comments on graph pebbling on directed graphs
are made in this section.

Section 6 summarizes this thesis and its main conclusions, and gives
our answer to the question posed in 1.1 with which we began this venture.

Appendix A summarizes main results from sections 2.2.1, 3, 4 and 5.1.1.

Remark 1.1. Proofs not referring to some publicized paper are provided by the
author of this thesis.4

1.5 Terminology

An index and a nomenclature is appended at the end to help the reader
navigate and keep track of all the names and terms.

4More specifically, the author of this paper has proved Lemma 2.1, 2.2, 2.4, and Theo-
rem 2.8, where formulations of the propositions, and ideas for proving the propositions,
were provided by Hurlbert (2015)[17]. Moreover, the author was aware of Theorem 2.3,
but proved the theorem independently. Theorem 2.6 and 2.7 are results which the au-
thor understood as implicit theorems in the research literature on graph pebbling, and
because of this he made these implicit theorems explicit and proved them independently
thereafter. The proof of Theorem 3.1 is the author’s, but he had beforehand noticed the
suggestion by Hurlbert (2015) that the theorem could be proven using mathematical in-
duction. Theorem 3.2, 3.4–3.9 and Corollary 3.9.1 are independently proven by the au-
thor. The proof of 3.10 is a follow-up on a proof idea by Hurlbert (1991). The proofs
in section 3.2.1 is a presentation and clarification of two proofs in Pachter et al. (1995);
and the proofs in section 3.2.2 may be found in Clarke et al. (1997), but the structure of
the succession of theorems leading to the final result Theorem 3.18 (Theorem 1.7 in the
paper by Clarke et al. (1997)) is different in this thesis. Corollary 3.18.1 is found using a
result stated in (Hurlbert, 1999). Also, some days before the publication of this thesis, the
author came across a senior thesis on graph pebbling by Anna Blasiak (2008)[2] at Mid-
dlebury College which included a pedagogical approach to the proof of Lemma 3.14 and
which deeply influenced the author’s own proof of the lemma originally presented and
proven in (Clarke et al., 1997). Theorem 4.2–4.4 and 4.7 were formulated by Czygrinow
et al. (2002), but were never proven. Corollary 5.1.1 were proven by the author using
Theorem 5.1 which was proven by Sjöstrand (2004). Theorem 5.2–5.8 were formulated
by Sjöstrand, but never proven. Theorem 5.9 and 5.10 are independently proven by the
author of this thesis. The proofs of Theorem 5.11–5.13 are essentially a presentation of the
results originally found by Taylor (2005). All other proofs in this thesis are clarifications
of earlier proofs from the articles in the reference list.
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2 Preliminaries

2.1 Graph theory

In graph theory we study mathematical structures modeling binary rela-
tions. These structures are called graphs. There are two major types of
graphs: undirected and directed graphs. In section 2 to 4 we will study
undirected graphs. Directed graphs are discussed in section 5.

Graph theoretic definitions and notations will now be introduced.5

Definition 2.1 (Undirected graph). A finite undirected graph G is a pair of
disjoint sets (V(G), E(G)), such that E(G) is a subset of the set of unordered
pairs of the finite set V(G).6 7

For finite graphs G: V(G) is called the set of graph vertices, or the vertex
set, and E(G) is called the set of graph edges, or the edge set.

That x is a vertex (edge) of G means that x is in V(G) (E(G)).
An edge {x, y} is said to join the vertices x and y. We will say that x in

V(G) is adjacent to y in V(G) iff there is an edge {x, y} in E(G).
The number of vertices |V(G)| in G is denoted by n(G) – this number

is called the size of G.8

See Figure 1 for an example of a graph.

5An introduction to graph theory may be found in (Grimaldi, 2014: 565–640)[11], and
in (Bollobás, 1979: 1–6)[5]. The definitions in this section were partly inspired by these
two sources.

6An ordered pair (a, b) is a pair such that (a, b) is equal to (b, a) only if b = a. An
unordered pair (i.e. set of two elements) {a, b} is such that it is always equal to {b, a}.
Whenever we talk about ordered or unordered pairs, we (implicitly) talk about ordered
or unordered pairs of elements (such as the elements a and b).

7Note that E(G) is possibly empty (contains no elements).
8If A is a set, then the size |A| of A denotes the number of elements in A.
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Figure 1: The above picture is a representation of the graph G = (V, E)
where V = {a, b, c, d} is the vertex set V(G) of G, and E = {{a, b}, {a, c}}
is the edge set E(G) of G. The vertices of G are a, b, c and d, and the edges
of G are {a, b} and {a, c}. The edge {a, b} joins a and b, and {a, c} joins a
and c; hence, a is adjacent to b and c, while d is adjacent to no vertex. For
this graph, the number of vertices is 4, so the size n(G) of G is 4.

If not explicitly stated otherwise, a finite undirected graph G is called
a graph.9 For simplicity we call the graph vertices and graph edges of G
the vertices and edges of G.

Furthermore we make the remark that we will only consider simple
graphs in this thesis. Simple graphs are graphs which contain no graph loops
(an edge which joins a vertex to itself) and no multiple edges (a set of two
or more distinct edges that joins the same two distinct vertices).

Remark 2.1. In this thesis we will only consider simple graphs.

In Figure 2 a non-simple graph and a simple graph is represented.

9In section 5 we look at graphs that are not undirected, but directed.

9



Figure 2: To the left: A non-simple graph with a multiple edge between a
and b, and a graph loop at c. To the right: A simple graph with no multiple
edge and no graph loop.

In Remark 2.2 at the end of section 2.2 we will state an additional spec-
ification, besides the specification stated in Remark 2.1 above, of the types
of graphs studied in this thesis.

To continue:

Definition 2.2 (Subgraph). A graph H is a subgraph of a graph G whenever
V(H) ⊆ V(G) and E(H) ⊆ E(G).10

Equivalently we may write H ⊆ G if H is a subgraph of G.

Definition 2.3 (Spanning subgraph). H is a spanning subgraph of G iff11 H
is a subgraph of G and V(H) = V(G).

A short definition is needed before we continue: The edge e is said to
be incident with x, and incident with y, iff e = {x, y}.

Definition 2.4 (Vertex deletion). If H is a subgraph of G, then G − V(H)

(equivalently G− H) denotes the subgraph of G obtained by deleting the vertices
in V(H) and all edges incident with them.

10If A and B are two sets, then A ⊆ B denotes the fact that A is a subset of A, i.e. that
every element in A is an element in B.

11If and only if.

10



If x is a vertex in the vertex set of the graph G, then G− x is short hand
for G− {x}.

Definition 2.5 (Path). A path P in G of length n on n + 1 vertices is a series
of distinct vertices v1, v2, . . . , vn+1, with vi ∈ V(G) for i = 1, 2 . . . , n, n ≥ 1,
where {vi, vi+1} is an edge for i = 1, 2, . . . , n.12

Definition 2.6 (Connectivity). A graph G is connected iff for any two distinct
vertices u and v in the vertex set of the graph G, there is a path from u to v. A
graph G is disconnected (or unconnected) iff G is not connected.

In this thesis we will only consider connected graphs. This will be
motivated at the end of section 2.2.2.

See Figure 3 for an illustration of the concept of connectivity.

Figure 3: When the dashed edge {x, y} is removed, this graph becomes
disconnected, otherwise it is connected.

Definition 2.7 (Vertex-connectivity). The vertex-connectivity κ(G) of a graph
G (other than a complete graph13) is the minimum number of vertices in V(G)

whose deletion disconnects G.14

12Definition: x ∈ X iff x is an element in the set X.
13A complete graph Kn on n vertices is a graph with diameter 1 in which there is a

unique edge between any two distinct vertices of Kn.
14One may similarly define the edge-connectivity of a graph G as the minimum number

of edges in E(G) whose deletion disconnects G. Here one needs to define edge deletion
first. In any way, the notion of edge-connectivity will not be used in this thesis.
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Definition 2.8 (k-connectivity). The graph G is k-connected iff κ(G) ≥ k.

Note that all connected graphs (except the complete graphs) are 1-
connected.

Definition 2.9 (Distance and Diameter). Let G be a connected graph and x, y
two vertices in V(G). The distance dist(x, y) from x to y is the minimum length
of a path in G from x to y.

The diameter diam(G) of G is the maximum distance between two vertices of
V(G), that is maxx,y∈V(G) dist(x, y). 15 16

G is said to be a diameter k graph iff diam(G) = k. We may also reformu-
late the notion of adjacency as: u is said to be adjacent to v iff dist(u, v) = 1.

Diameter 2 graphs are studied in section 3.2.

Definition 2.10 (Neighborhoods). If G is a graph and v is a vertex of G, then
the neighborhood N(v) of v is the set of vertices in V(G) adjacent to v. If A ⊆
V(G), then N(A) is the set of vertices not in A but adjacent to at least one
a ∈ A.17

We end this section with the notion of a tree and a cut vertex.

Definition 2.11 (Tree). T is a tree iff for every pair of vertices in the graph T
there is exactly one path between them.18

Definition 2.12 (Spanning tree). T is a spanning tree of G iff T is both a span-
ning subgraph of G and a tree.

Definition 2.13 (Cut vertex). If G is a connected graph and x is a vertex of G,
then x is a cut-vertex for G iff G− x is disconnected.

15maxx∈D f (x) denotes the maximum value of the function f (x) taken over all ele-
ments x in D.

16One may extend this definition to include unconnected graphs by defining dist(x, y)
as ∞ when there is no path from x to y. But in this thesis, as mentioned before, we
will only consider connected graphs. Hence, to extend Definition 2.9 in order to include
unconnected graphs is superfluous.

17If A and B are two sets, then A ∩ B denotes the set of elements in A and B.
18Trees may also be defined through the notion of a cycle. A cycle of n vertices is a path

of n vertices v1, v2, . . . , vn were the additional edge {v1, vn} joins the two vertices v1 and
vn. Using this, we may say that a tree is an acyclic graph, a graph which contains no cycles
(that is, there is no subset E of the edge set of T and subset V of the vertex set T such that
the graph (V, E) constitutes a cycle).
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2.2 Graph pebbling

In graph pebbling we distribute pebbles on vertices of a graph. The simplest
operation on such a distribution is the pebbling step. This consists in a
removal of two pebbles from one vertex u, and a placement of one pebble
on some vertex v which is adjacent to u via an edge {u, v}.

A distribution of pebbles on some set of graph vertices, plus possible
pebbling steps, constitutes basic rules for a kind of pebbling game. Sev-
eral questions arise for this type of game. These questions are tackled in
sections 2.2.1 and 3. Relevant definitions are here introduced so that we
may answer such questions in a simpler language.

Definition 2.14 (Configurations). A configuration on G is said to be a function
C : V(G) → Z≥0.19 The expression C(v) denotes the number of pebbles on the
vertex v of G. If A ⊆ V(G), then C(A) = ∑v∈A C(v).

We call C(V(G)) the size of C and denote it by |C|.20 Let C(G) denote the set
of possible configurations on G. If H is a graph, then C(H) denotes C(V(H)).

In other words: A configuration C on G is a function which describes
the number of pebbles at each vertex of G, and the total number of pebbles
|C| (the size of C) which is accordingly distributed at the vertices of G.

Definition 2.15 (Pebbling step). Given a configuration C on G, a pebbling step
Su,v : C → C(G) from u to v satisfies21

Su,v(C)(x) =





C(x)− 2 if x = u,
C(x) + 1 if x = v,
C(x) otherwise.

Hence, a pebbling step Su,v applied to a configuration C results in a
new configuration C′ = Su,v(C). The new configuration C′ is said to be
derived from C in this case.

19The set Z≥0 denotes the set of nonnegative integers.
20Note that the concept of size is defined for three types of abstract entities: sets, graphs

and configurations. When applying the concept of size we will make it clear whether we
consider the size of a graph, or the size of a configuration on a graph.

21This definition of a pebbling step is similar to one found in (Vuong & Wyckoff,
2004)[26].

13



Notice that this implies that C(u) ≥ 2 must hold, otherwise Su,v(C) is
not in C(G), because for all configurations C on G it holds that C(x) ≥ 0
for all x in V(G).

Informally one may define a pebbling step as follows: Given an edge
{u, v} in the edge set E(G) of a graph G: Whenever u contains at least two
pebbles, a pebbling step u → v from u to v is a removal of two pebbles
from u and a placement of one pebble at v.

Definition 2.16 (Pebbling move). Given a configuration C on G, a pebble
can be moved to the vertex r in V(G) iff there exists a series of pebbling steps
S1, S2, . . . , Sn, n ≥ 1, such that for C′ = S1(S2 · · · (Sn(C))) we have C′(r) ≥ 1.

If one moves a pebble from a1 to an, n ≥ 3, passing the vertices ak,
2 ≤ k ≤ n − 1, one may write a1 → a2 → · · · → an. Furthermore, let
a→t b denote the fact that one moves a positive number of t pebbles from
a to the adjacent vertex b at a cost of t pebbles.22

When we want to move a pebble to some specified vertex r, we may
call r the target vertex, or just the target.23

If we can move a pebble to r, we say that we can pebble r; and when we
move a pebble to r, we say that we are pebbling r.

Definition 2.17 (Solvability). A configuration C on G is r-solvable iff one can
move a pebble to r in V(G). The configuration C is solvable iff it is r-solvable for
every r in V(G).

C is r-unsolvable iff it is not r-solvable, and unsolvable iff it is not solvable.

Definition 2.18 (Pebbling number). Let G be a graph and r a vertex of G. The
pebbling number π(G, r) of G for (or with respect to) r is the smallest integer m
such that for every configuration C on G of size m, C is r-solvable.

22What we pay, the cost, for the pebbling move a→t b is t since the number of pebbles
at a decreases by 2t (i.e. the price at a is 2t) and the number of pebbles at b then increases
by t.

23In Czygrinow et al. (2002) such a pebble r is called the root vertex. We use the term
target vertex instead (which was also used by Pachter et al. (1995)), since the term ”root
vertex“ is more associated with rooted trees in which a vertex, called the root vertex, is
selected.
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The pebbling number π(G) of G is defined as maxr∈V(G) π(G, r). This is
the smallest integer m such that for every configuration C on G of size m, C is
solvable.24

We may define π(G, r) as 1 plus the largest number mr such that a con-
figuration C on G of size mr is r-unsolvable. That is, the pebbling number
π(G) may be defined as 1 plus maxr∈V(G) mr.

See Figure 4 for an illustration of graph pebbling, and an example of
an unsolvable configuration.

Figure 4: An illustration of four pebbling steps beginning with an initial
configuration C of size 23 − 1 on a path P4 on four vertices. In this case, C
is unsolvable, so the pebbling number π(P4) of P4 is greater than 23 − 1.

The set of graphs G for which π(G) = n(G) + k, k ≥ 0, are called the
Class k graphs. In section 3.2.1 we find that every graph of diameter 2 is of
Class 0 or 1.

In section 3.2.2 we will use the notion of a bad configuration:

24It is proven in Theorem 2.5 in section 2.2.1 that every finite connected graph G has a
pebbling number π(G).
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Definition 2.19. C is bad configuration on G iff there is some vertex r in V(G)

such that the configuration C is r-unsolvable.

Finally we add to Remark 2.1 an additional specification of the scope
of this thesis:

Remark 2.2. In this thesis we will only consider finite connected graphs.

To motivate the above remark, consider the following argument: If G
is disconnected (i.e. not connected), then there exist (at least) two graphs
A and B for which there is no path from any vertex a in V(A) to some
vertex b in V(B).25 Thus one can not move a pebble to any b in V(B)
if all pebbles are distributed on the vertices of A. Hence, the pebbling
number π(G, b) does not exist for any vertex b in V(B), implying that
π(G) does not exist.26 (An example is presented in Figure 3 above: If
the dashed edge {x, y} is removed, then the pebbling number does not
exist for x, nor any other vertex of the graph). Since the pebbling number
of certain graphs will be the main subject of this thesis, we will not be
interested in the graphs for which π(G) does not exist. That is why we
exclude unconnected graphs.

2.2.1 First results

Consider an arbitrary connected graph G. We begin by giving three bounds
on the pebbling number π(G) of G.

Lemma 2.1 (Vertex bound). π(G) ≥ n(G).27

Proof. Placing one pebble on each vertex of G except at the target gives
an unsolvable configuration size n(G) − 1, since no vertex contains two
pebbles, and so r can not be pebbled because a pebbling step costs at least
two pebbles.

25Here, A and B are called components of G.
26Maybe there are purposes in which one may allow this case. Then it may be reason-

able to let π(G) = ∞.
27The vertex bound implies that every connected graph is of Class k for some nonneg-

ative integer k.
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Lemma 2.2 (Distance bound). π(G) ≥ 2diam(G).

Proof. Assume that π(G) ≤ 2diam(G) − 1, then one can place 2diam(G) − 1
pebbles on a vertex v with distance diam(G) from the target r, and since,
by Definition 2.9, the shortest path from v to r is of length diam(G) we need
at least 2diam(G) pebbles placed at v to move one pebble to r, if no other
vertex contains a pebble. Hence, there is an unsolvable configuration of
size 2diam(G) − 1, and so by contradiction π(G) ≥ 2diam(G).

Recall the principle of mathematical induction which states that whenever
P1, P2, . . . is a sequence of propositions such that if

(i) P1 is true, and

(ii) Pk+1 is true whenever Pk is true, for some positive integer k,

then Pn is true for all positive integers n (Beachy & Blair, 2006: 441)[3].

Theorem 2.3 (The generalized pigeonhole principle). Whenever n > km
items, k ≥ 1, are distributed among m containers, then there is at least one
container with at least k + 1 items in it. The principle is called the pigeonhole
principle when k = 1.

Proof. Suppose n > km items are distributed among m containers, but no
container contains k + 1 items. Then every container contains no more
than k items. Then the total number of objects distributed is at most km
and this is less than n, a contradiction since we distributed n items. Hence,
at least one container contains k + 1 items.

Lemma 2.4 (Pigeonhole bound). π(G) ≤ (2diam(G) − 1)(n(G)− 1) + 1.

Proof. When one has a configuration on G of size (2diam(G) − 1)(n(G) −
1) + 1 one must, avoiding the target r in V(G) with C(r) = 0, place at least
2diam(G) pebbles at some vertex v in V(G).28 Then one may pebble r from
v.

28This follows from the generalized pigeonhole principle using n = (2diam(G) −
1)(N(G) − 1) + 1, k = 2diam(G) − 1 and m = N(G) − 1 (so that n > km and one ver-
tex contains k + 1 = 2diam(G) pebbles).
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Corollary 2.4.1. π(G) ≤ 2diam(G)n(G).

Proof.

π(G) ≤ (2diam(G) − 1)(n(G)− 1) + 1

= 2diam(G)n(G)− 2diam(G) − n(G) + 1 + 1

≤ 2diam(G)n(G),

using Lemma 2.4 and noticing that n(G) and 2diam(G) are at least equal
to 1.

Summarizing Lemma 2.1, 2.2, 2.4 and Corollary 2.4.1, one has

Theorem 2.5.

max(n(G), 2diam(G)) ≤ π(G) ≤ (2diam(G) − 1)(n(G)− 1) + 1

≤ 2diam(G)n(G).

Hence, π(G) exists for every connected graph G, and it is somewhere
in the interval described by Theorem 2.5.

Figure 5: The complete graph K4.
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From Theorem 2.5 one can derive the pebbling number of Kn, where
Kn is the complete graph on n vertices. That is a graph with diameter 1 in
which there is a unique edge between any two distinct vertices (see Figure
5 for an example).

Corollary 2.5.1. π(Kn) = n.

Proof. Note that diam(Kn) = 1 and n(Kn) = n by definition of Kn. Thus,
the corollary follows from Theorem 2.5.

Theorem 2.6. Let t be a nonnegative integer. If k + (2t + 1) pebbles are dis-
tributed on the neighborhood N(r) of some vertex r, with |N(r)| = k, then at
least t + 1 pebbles may be moved to r.

Proof. Induction base: If k + 1 pebbles are distributed on k vertices, then
by the pigeonhole principle there exist a vertex a ∈ N(r) adjacent to r
containing two pebbles. The pebbling step a→ r then solves the problem.
Hence, the theorem is true for t = 0.

Induction step: Assume that the theorem is true for some 0 ≤ t < m. Let
k+(2(t+ 1)+ 1) pebbles be placed at N(r), then there is at least one vertex
a ∈ N(r) adjacent to r with two pebbles on it by the pigeonhole principle
and the fact that k + (2(t + 1) + 1) > k + 1 (since t + 1 > 0) pebbles are
distributed on the k vertices of N(r). Taking the pebbling step a → r at
a price of two pebbles at a, we have at least one pebble at r and at least
k + (2(t + 1) + 1) − 2 = k + (2t + 1) pebbles left distributed on N(r).29

Induction gives us that, additionally, at least t pebbles may be moved to r.
Thus we may move pebbles to r so that it contains at least t + 1 pebbles.

Conclusion: By induction, the theorem is true for every nonnegative
integer t.

We end this section by stating two other important bounds.

Theorem 2.7 (Subgraph bound). If H is a spanning subgraph of G, then
π(H) ≥ π(G).

29Even though the cost of the pebbling step a → r is one, the number of pebbles left
distributed on N(r) decreases by two, since the price at a is two, and the number of
pebbles at r increases by one, but r is not in N(r) while a is.
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Proof. Every pebbling step possible in H is possible in G, since every edge
in E(H) is in E(G) and V(H) = V(G).30 Thus, whenever a configuration
on H is solvable, it is solvable on G.

Figure 6: A graph with a cut vertex x.

Theorem 2.8 (Cut bound). If the graph G has a cut vertex x, then π(G) >

n(G).

Proof. Consider the two components A and B of G− x (see Figure 6). Pick
two arbitrary vertices a in V(A) and b in V(B). Now place 3 pebbles at a
and 1 pebble at each vertex of G except for x and b. This is a b-unsolvable
configuration of size n(G), since from the vertices of A one may at most
move one pebble to x, resulting in a situation with no vertex with more
than 1 pebble and b containing none.

30The reverse statement does not hold, since G may contain edges not in E(H).
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3 Pebbling numbers

3.1 Pebbling numbers for some families of graphs

In this section we find the pebbling number for some families of graphs.
Primarily the proofs take advantage of (1) the principle of mathematical
induction (as in Theorem 3.1), (2) finding a subgraph for which the peb-
bling number is already known (as in Theorem 3.2), and (3) effective use
of case analysis (as in Theorem 3.4).

3.1.1 Path graph

Figure 7: The path graph P4.

Let Pn denote the path on n vertices (thus of length n− 1). See Figure 7 for
an example.

Theorem 3.1. π(Pn) = 2n−1.

Proof. The proof is by mathematical induction.
Induction base: π(P1) = 1 = 20 since V(P0) = 1.
Induction step: Assume that π(Pk) = 2k−1 for some 1 ≤ k < n. Notice

that Pk+1 is Pk with one vertex ak+1 adjacent to the last vertex ak of Pk.
Case 1: If the target r is neither the first nor the last vertex of Pk+1,

then the sequence of vertices, including r, to the left or right of r, can be
seen as Pl with 1 ≤ l ≤ k. Consider a configuration C on Pk+1 of size
2k. Since 2k = 2 · 2k−1 pebbles are put into exactly two sets of vertices,
either the right path or the left path with respect to r contains 2k−1 ≥ 2l−1

pebbles. The configuration is thus r-solvable, since either the left or right
path Pl is r-solvable because π(Pl) ≤ π(Pk) by theorem 2.7 and since Pk is
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a spanning subgraph of Pl. So π(Pl) is at most 2k−1 since π(Pk) = 2k−1 by
induction.

Case 2: If the target r is the last vertex, then in the worst configuration
C there are no pebbles at r, and therefore the remaining 2k pebbles are dis-
tributed at the vertices of Pk+1− r = Pk. One must now move two pebbles
to the adjacent vertex v of r. In the worst case, one needs π(Pk) pebbles to
move one pebble to v, leaving no pebble behind.31 Since π(Pk) = 2k−1 by
induction, and thus 2k = 2π(Pk), we can move two pebbles to v and then
one to r. Hence, C is r-solvable. By symmetry C is also r-solvable if r is the
first vertex.

Conclusion: Case 1 and 2 completes the induction: Every configuration
on Pn of at least size 2n−1 is solvable. Noting that diam(Pn) = n − 1 we
have π(Pn) ≥ 2n−1 by the distance bound. Thus, π(Pn) = 2n−1.

31One such configuration on Pk is the one placing all 2k−1 pebbles at the opposite vertex
of r (the other end).
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3.1.2 Cycle graph

Figure 8: The cycle graph C8.

Using Theorem 3.1 one can find the pebbling number of the cycle graph
Cn for even numbers n. See Figure 8 respectively 9 for an example of an
even cycle respectively an odd cycle.

Theorem 3.2. π(C2k) = 2k, k ≥ 1.

Proof. Write C2k as a1 . . . ak−1akak+1 . . . a2k, k ≥ 1, and let a1 be the target.
A will denote the segment of vertices from a2 to ak and B the segment of
vertices from ak+2 to a2k. If one links the vertex a1 to a2 ∈ A or a2k ∈ B one
has the path Pk.

Consider a configuration C on C2k of size 2k, and recall Definition 2.14.
If C(A) ≥ 2k−1 or C(B) ≥ 2k−1, then C is solvable since π(Pk) = 2k−1 by
Theorem 3.1 and since either A or B, together with a1, may be seen as the
path Pk. Thus, assume that C(A), C(B) < 2k−1. Note that

|C| = C(A) + C(B) + C(ak+1)
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since C(a1) = 0.
One may always move bC(ak+1)/2c pebbles from ak+1 to either ak ∈ A

or ak+2 ∈ B.32 Hence, we may derive a configuration C′ satisfying C′(A) ≥
2k−1 or C′(B) ≥ 2k−1. This is because C(A) + bC(ak+1)/2c ≥ 2k−1 or
C(B) + bC(ak+1)/2c ≥ 2k−1, since otherwise

C(A) + bC(ak+1)/2c+ C(B) + bC(ak+1)/2c < 2k − 2;

but this can not hold since

C(A) + bC(ak+1)/2c+ C(B) + bC(ak+1)/2c
≥ C(A) + C(B) + C(ak+1)/2− 1/2 + C(ak+1)/2− 1/2

= |C| − 1

= 2k − 1.

So C is a1-solvable since C′ is. By symmetry C is r-solvable for every
r ∈ V(C2k).33 Notice that diam(C2k) = k, so π(C2k) ≥ max(2k, 2k) = 2k by
Theorem 2.5. This proves that π(C2k) = 2k.

32The floor function bc : R→ R, where R is the set of real numbers, maps a real number
x to the largest integer not exceeding x. In other words, bxc is the largest integer not
greater than x.

33To see symmetry, just note that when we have found the π(G, a1), we may find
π(G, a2) by rotating C2k by 360

2k degrees to the left.
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Figure 9: The cycle graph C5.

The proof of Theorem 3.3 mirrors that of 3.2 in considering two paths
in the cycle graph.

Theorem 3.3 (Pachter, 1995). π(C2k+1) = 2
⌊
2k+1/3

⌋
+ 1, k ≥ 1.

Proof. Denote C2k+1 by xak−1ak−2 . . . a2a1rb1b2 . . . bk−1y, where r is the tar-
get. Let PA denote the path ra1 . . . ak−1 and PB the path rb1 . . . bk−1. First
we show that π(C2k+1) > 2

⌊
2k+1/3

⌋
.

Suppose we are given 2
⌊
2k+1/3

⌋
pebbles. Place

⌊
2k+1/3

⌋
pebbles at x

and
⌊
2k+1/3

⌋
pebbles at y. This configuration C is r-unsolvable, since one

can at most move 2k−1− 1 to either ak−1 or bk−1, but one needs at least 2k−1

pebbles on one of them to move a pebble to r.
To see that one can move at most 2k−1− 1 pebbles to ak−1 or bk−1, notice

that
⌊
2k+1/3

⌋
≤ 2k+1

3 − 1
3 and that one can move

⌊
1
2
(

2k+1

3
− 1

3
)

⌋
≤ 1

2
(

2k+1

3
− 1

3
)
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pebbles from x to ak−1, and

⌊
1
4
(

2k+1

3
− 1

3
)

⌋
≤ 1

4
(

2k+1

3
− 1

3
)

pebbles from y to ak−1. Hence, one can move at most

⌊
(1/2 + 1/4)(2k+1/3− 1/3)

⌋
=
⌊
(3/4)(2k+1/3− 1/3)

⌋

=
⌊

2k−1 − 1/4
⌋

= 2k−1 − 1

pebbles to ak−1. By symmetry, the same holds for bk−1.
Hence, C is r-unsolvable. So π(C2k+1) > 2

⌊
2k+1/3

⌋
.

Let C be a configuration on C2k+1 of size 2
⌊
2k+1/3

⌋
+ 1, then

C(PA) +

⌊
C(x) + bC(y)/2c

2

⌋
≤ 2k−1 − 1. (3.1)

(3.1) holds since if the left hand side (LHS) of (3.1) is ≥ 2k−1, then one
can move bC(y)/2c pebbles from y to x and then

⌊
C(x)+bC(y)/2c

2

⌋
pebbles

from x to ak−1, so that there are a total of at least 2k−1 pebbles on the ver-
tices of PA, implying that C on PA is r-solvable. Hence, (3.1) may be as-
sumed as we analyze all other cases.

Similarly

C(PB) +

⌊
C(y) + bC(x)/2c

2

⌋
≤ 2k−1 − 1.34 (3.2)

(3.1) and (3.2) now gives

C(PB) + C(PB) +

⌊
C(x) + bC(y)/2c

2

⌋
+

⌊
C(y) + bC(x)/2c

2

⌋
≤ 2k − 2.

(3.3)

34The second term on the LHS of (3.2) denotes the number of pebbles that may be taken
to bk−1.
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Notice that |C| = C(PA) + C(PB) + C(x) + C(y) = 2
⌊
2k+1/3

⌋
+ 1.

Since C(PA) or C(PB) is not affected by the floor function bc : R → R,
the LHS of (2.3) is minimized when C(PA) = C(PB) = 0.

2
⌊
2k+1/3

⌋
+ 1 is an odd number,35 so only one of C(x) or C(y) is even.

Without loss of generality assume that C(x) is even.36

We want to move as many pebbles from x and y to ak−1. Since C(y) is
odd, in the worst case we may have a pebble left on x and one on y (this
happens whenever C(y) ≡ 3 (mod 4)).

If one wants to move as many pebbles as possible to bk−1, y will have at
most one pebble in the resulting configuration (whenever C(x) ≡ 0 (mod 4)),
or no pebble (whenever C(x) ≡ 0 (mod 2) and where C(x) is not divisible
by four).

Thus, when the LHS of (3.3) is to be minimized then

⌊
C(x) + bC(y)/2c

2

⌋
+

⌊
C(y) + bC(x)/2c

2

⌋
=

3
4

C(x)+
3
4

C(y)− 5
4
≤ 2k− 2,

(3.4)
The equality in (3.4) is motivated by (a) and (b) below.
(a):

⌊
C(x)+bC(y)/2c

2

⌋
denotes the case where C(y) ≡ 3 (mod 4), hence

C(y) = 4m + 3 for some m nonnegative integer in Z≥0. Using this we
have

⌊
C(x) + bC(y)/2c

2

⌋
=

⌊
C(x) + b2m + 3/2c

2

⌋

=

⌊
C(x) + 2m + 1

2

⌋

= C(x)/2 + m

= C(x)/2 + C(y)/4− 3/4.

(b):
⌊

C(y)+bC(x)/2c
2

⌋
denotes the case where (i) C(x) = 4m for some

m ∈ Z≥0 or (ii) C(x) = 2m for some odd m ∈ Z≥0.
35It is written on the form 2m + 1 for some nonnegative integer m
36By symmetry the same argument works for C(y) even.
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For (i) we have

⌊
C(y) + bC(x)/2c

2

⌋
= bC(y)/2 + 2m/2c

= C(y)/2− 1/2 + m

= C(y)/2 + C(x)/4− 1/2.

For (ii) we have

⌊
C(y) + bC(x)/2c

2

⌋
= b(C(y) + m)/2c

= (C(y) + m)/2

= C(y)/2 + C(x)/4.

From (a) and (b.ii)37 it follows that the minimum value of the LHS of
(3.3) is

C(x)/2 + C(y)/4− 3/4 + C(y)/2 + C(x)/4− 1/2,

and this is equal to

3
4

C(x) +
3
4

C(y)− 5/4.

This shows why the first equality in (3.4) holds.
Since

C(x) + C(y) = 2

⌊
2k+1

3

⌋
+ 1

≥ 2(
2k+1

3
− 2

3
) + 1

=
4
3
(2k − 1) + 1,

37The value calculated in (b.i) is less (1/2 less) than the value calculated in (b.ii).

28



we have

3
4
(C(x) + C(y))− 5

4
≥ (2k − 1) +

3
4
− 5

4

= 2k − 3
2

,

and this contradicts the fact that the LHS of (3.4) is ≤ 2k − 2, because
2k − 3

2 > 2k − 2.
Thus, by contradiction, either (3.1) or (3.2) is false, and in this case ei-

ther C on PA or PB is r-solvable, and so is C2k+1 by implication. Hence,
π(C2k+1, r) = 2

⌊
2k+1/3

⌋
+ 1.

Since r was arbitrary, the theorem follows using symmetry.

3.1.3 Wheel, friendship and fan graph

Figure 10: The wheel graph W4.

We will now find the pebbling number for the wheel graph Wn with n ≥ 4
vertices. Wn may be seen as containing a center vertex c adjacent to all
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vertices of a cycle graph Cn−1, which may be written as a1 . . . an−1. See
Figure 10 for an example.

Theorem 3.4. π(Wn) = n, n ≥ 4.

Proof. Pick a configuration C on Wn, n ≥ 4, of size n.
Case 1: The target is the center c of Wn. By the pigeonhole principle,

and the fact that |V(Wn − r)| = n − 1, at least one vertex v 6= r satisfies
C(v) ≥ 2. The vertex v is adjacent to c, so c may be pebbled. Thus, C is
c-solvable.

Case 2: The target is not the center of Wn, say a1.
Case 2a: If C(c) ≥ 2, then c→ a1 is a solution.
Case 2b: If C(c) = 1, then we have a distribution of n − 1 remaining

pebbles (noting that C(c) = 1) on n− 2 vertices (all vertices but c and r).
This gives us at least one vertex v 6= c, a1 with two pebbles and distance 1
to c.38 The pebbling move v→ c→ a1 solves the problem.

Case 2c: If C(c) = 0, then consider the graph G− c. Since |V(G− c)| =
n− 1 and |C| = n, there is at least one vertex v 6= c with C(v) ≥ 2.

If C(v) ≥ 4, then v→2 c→ r solves the problem.
If C(v) = 3, and no other v′ 6= c, v satisfies C(v′) ≥ 2 (else v → c, v′ →

c, c → r is a solution), then every vertex v′′ 6= c satisfies C(v′′) = 1 except
one, say x 6= c, r. Thus, one may take the path from v to r which does not
include x or c.

If C(v) = 2, and no other vertex contains at least two pebbles, then
every other vertex, except v and c, contains one pebble, and one may thus
take the left or right path of the cycle Cn−1 from v to r.

Using the vertex bound π(Wn) ≥ n, case 1 and 2 gives us π(Wn) = n,
n ≥ 4.

38That x 6= y, z means that x 6= y and x 6= z
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Figure 11: The friendship graph FR3.

Lets look at another graph which is constructed using the structure of
the cycle graph: FRn. This is the friendship graph which consists in n
copies of C3, where each vertex is adjacent to a center vertex c and where
c is a vertex in each copy of C3. We will call A a copy of C3 in FRn iff A
consists of two vertices adjacent to each other, each of them adjacent to the
center c of FRn.39 Note that n(FRn) = (n(C3)− 1)n + 1 = 2n + 1.

In Figure 11 we have FR3 with 7 vertices and three copies of C3.

Theorem 3.5. π(FRn) = 2n + 2, n ≥ 1.

Proof. Placing no pebble on c and r 6= c, 3 on one vertex which is not
adjacent to r and 1 pebble at all other vertices, one gets a r-unsolvable
configuration of size 2n + 1. Hence, π(FRn) ≥ 2n + 2.

Consider a configuration C on FRn of size 2n + 2.
Case 1: The target is the center c. If one places 2n + 1 on the remaining

2n vertices, one gets one vertex v with at least two pebbles on it. Since the
distance from v to c is 1, C is c-solvable.

39 A is a copy of C3 in FRn in the sense that A is C3 when all vertices in V(A) is adjacent
to the center c of FRn.
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Case 2: The target r is not c.
If C(c) ≥ 2, then C is r-solvable (c → r). If C(c) = 1, then C is solvable

by the pigeonhole principle, since one has a distribution of 2n + 1 pebbles
on 2n− 1 vertices, so there is at least one v 6= r adjacent to c with C(v) ≥ 2,
giving the solution v → c → r. Assume that C(c) = 0 in case 2i and 2ii
below.

If one places 2n + 2 pebbles on the vertices of (FRn − c)− r, then one
can not avoid having (2i) one copy A of C3 in FRn with C(A) ≥ 4, or (2ii)
two copies X and Y of C3 in FRn with C(X), C(Y) ≥ 3. Since if neither (2i)
or (2ii) holds, then C(A) ≤ 2 for all copies A of C3 in FRn, except maybe
one B with C(B) = 3, and so, since C(c) = 0, we have a distribution of no
more than 3 + 2(n− 1) = 2n + 1 pebbles, but this is a contradiction since
C was of size 2n + 2.

Case 2i: If C(A) = 4 one may move one pebble to the center c from
some vertex a in A. After the pebbling step there are 2n pebbles remaining
on 2n − 1 vertices (excluding c and r), so that there is at least one vertex
x 6= c, r satisfying C(x) ≥ 2. The pebbling move a → c, x → c → r now
solves the problem. If C(A) ≥ 5, where A = {a1, a2, c} and C(c) = 0,
then we may move two pebbles to c since C(ai) ≥ 4 for some i = 1, 2, or
C(a1), C(a2) ≥ 2.

Case 2ii: In this case one may move one pebble to the center from X
and the same for Y, using π(C3) = 3.

In both (2i) and (2ii), C is r-solvable.
By symmetry for target vertices not at the center, and the result of case

1, we have that every configuration C on FRn of size 2n+ 2 is solvable.
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Figure 12: The fan graph F5.

Let Fn denote the fan graph. This is the path Pn−1 with an extra vertex
an adjacent to all vertices of Pn−1. In Figure 12 we have F5 with vertices a1

to a4 representing P4, and where each vertex ai, 1 ≤ i ≤ 4, is adjacent to a5.

Theorem 3.6. π(Fn) = n, n ≥ 2.

Proof. Let C be a configuration on Fn of size n. Let the path Pn−1 be denoted
by a1, . . . , an−1 and let an be the vertex adjacent to all vertices in Pn−1.

Case 1: Let an be the target. A distribution of n pebbles on the vertices
of Pn−1 gives at least one vertex a ∈ Pn−1 with C(a) ≥ 2. The pebbling
step a→ an is then a solution.

Suppose the target is a1 in case 2 to 4.
Case 2: If C(an) ≥ 2, then an → a1 is solution.
Case 3: If C(an) = 1, then n− 1 pebbles are distributed on the remain-

ing n− 2 vertices of Pn−1 − a1, hence there is a a 6= a1, an with C(a) ≥ 2
and it follows that the pebbling move a→ an → a1 is a solution.

Case 4: C(an) = 0 and C(Pn−1 − a1) = n. If there are two distinct
vertices a, a 6= a1 with C(a), C(a′) ≥ 2, then a → an, a′ → an → a1 is a
solution. Otherwise there is at most one a 6= a1, an, with 2 ≤ C(a) ≤ 3,
and every other vertex a′ 6= a1, an satisfies C(a′) ≤ 1. In this case C(Pn−1−
a1) ≤ 1(n− 3)+ 3 (here n− 3 is the number of vertices excluding a1, an and
a), and since the equality must hold we have C(a′) = 1 for all a′ 6= a1, a, an.
This gives us some path from a to a1 using the fact that every pebbling
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step to an adjacent vertex closer to a1 results in the possibility of another
pebbling step. Moving pebbles in this way we see that C is a1-solvable.

Case 2 to 4 can be applied to all other vertices ai, 2 ≤ i ≤ n − 1. So
π(Fn, ai) ≤ n for 1 ≤ i ≤ n. Summarizing this with case 1 we have
π(Fn) ≤ n.

Since π(Fn) ≤ n and n(Fn) = n, π(Fn) = n follows by the vertex bound
π(Fn) ≥ n.

3.1.4 Complete bipartite graph

Figure 13: The star graph S4.

A complete bipartite graph Km,n, m, n ≥ 1, is a graph which can be parti-
tioned into two sets A and B such that for every two vertices a ∈ A, b ∈ B,
{a, b} is an edge in E(Km,n), but where there are no edges between vertices
in only A or only B. A special case is K1,k−1: the star graph Sk on k vertices
(an example is provided in Figure 13).
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Theorem 3.7. π(Sk) = k + 1, k ≥ 3.

Proof. The configuration placing 3 pebbles at some vertex x 6= c, and 1
pebble on all but one vertex v 6= c, is a v-unsolvable configuration of size
k. Thus π(Sk) ≥ k + 1.

Let C be a configuration on Sk of size k + 1.
Case 1: The target is the center c. When k + 1 pebbles are distributed

on k− 1 vertices, at least one vertex v 6= c adjacent to c satisfies C(v) ≥ 2
by the pigeonhole principle. So π(Sk, c) ≤ k + 1.

Case 2: The target r is not the center vertex. Consider a configuration
C on Sk of size k + 1. If there is one pebble at the center, then there is
at least one vertex v, among the remaining k − 2 vertices, adjacent to c
and satisfying C(v) ≥ 2; the pebbling move a → c → r would then be a
solution. Otherwise there is no pebble at the center. So if one places k + 1
pebbles at the remaining k − 2 vertices, by Theorem 2.6 and the equality
k + 1 = (k − 2) + (2 + 1), we may move two pebbles to the center, and
then finally move one pebble to the target. Hence, π(Sk, r) ≤ k + 1.

Case 1 and 2 gives π(Sk) ≤ k + 1. This π(Sk) = k + 1 since π(Sk) ≥
k + 1 as mentioned at the start of this proof.
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Figure 14: The complete bipartite graph K2,3.

While Theorem 3.7 above shows that complete bipartite graphs on the
form K1,k, k ≥ 2, are of Class 1, Theorem 3.8 and 3.9 below shows that Kn,m

is of Class 0 for all n, m ≥ 2. Figure 14 shows an example of a bipartite
graph K2,3 of the latter form, and by Theorem 3.8 this graph is of Class 0
and its pebbling number is therefore 2 + 3 = 5.

Theorem 3.8. π(K2,k) = k + 2, k ≥ 2.

Proof. K2,k may be seen as the graph in which every vertex in A = {a1, a2}
is linked to every vertex in B = {b1, . . . , bk}, where no other edges exists
except these. Let C be a configuration on K2,k of size k + 2.

Case 1: The target r is in A. Let r = a1. Suppose C(a2) < 4, for else
a2 →2 b1 → a1 is a solution.
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Case 1a: If C(a2) ≤ 1, then we have a distribution of at least k + 1
pebbles on B with |B| = k. Using the pigeonhole principle there exists a
vertex b in B which is adjacent to a1 and satisfies C(b) ≥ 2. So the pebbling
step b→ a1 solves our problem.

Case 1b: If 2 ≤ C(a2) ≤ 3, then we have a distribution of at least
k− 1 pebbles on B, for which there must exist a b in V(B) with at least one
pebble on it. a2 → b→ a1 is then a solution.

1a, 1b and symmetry, gives us that C is a-solvable for every a in A.
Case 2: The target r is in B. Let r = b1. If C(ai) ≥ 2 for some i = 1, 2,

then ai → b1 is a solution. So assume that C(ai) ≤ 1 for i = 1, 2. If
C(ai) = 1 for some i = 1, 2, then there is a distribution of at least k pebbles
on B− b1.40 Thus there exists a vertex b in B with at least two pebbles on
it, and b → ai → b1 is thus a solution. Otherwise C(ai) = 0 for i = 1, 2,
but then one places k + 2 pebbles on the set B − b1 of k − 1 vertices, for
which one can move two pebbles to a1 by Theorem 2.6, and then one to
b1. Symmetry gives that every configuration C on K2,k of size k + 2 is b-
solvable for all vertices b in B.

The vertex bound gives π(K2,k) ≥ k + 2. Hence, π(K2,k) = k + 2 by
case 1 and 2.

Theorem 3.9. π(Km,n) = m + n, m, n ≥ 3.

Proof. Consider a configuration C on Km,n of size m+n. Let A = {a1, . . . , am}
denote the left side of vertices of Km,n and B = {b1, . . . bn} the right hand
side. Suppose the target vertex is a1.

Case 1: There is a vertex b in B with at least two pebbles on it, then
b→ a1 is a solution.

Case 2: There is a vertex b in B with a pebble on it, and no other vertex
b′ in B with at least two pebbles on it. In this case C(A− a1) ≥ m which
implies, by the fact that |A− a1| = m− 1, that there is a vertex a 6= a1 in A
with C(a) ≥ 2, so that a→ b→ a1 is a solution.

40If A and B are sets of elements, then A− B is the set of elements in A but not in B.
A− x is shorthand for A− {x}.
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Case 3: C(b) = 0 for all b ∈ B. Then C(A − a1) = m + n ≥ m + 3.
Since we are distributing at least m + 3 pebbles on the set A− a1 of m− 1
vertices, for which (A− a1) ⊆ N(b1) holds, we can according to Theorem
2.6 move at least two pebbles to b1 using m+ 3 > m+ 2 = m− 1+ (2+ 1).

Thus, π(Km,n, a1) ≤ m + n.
One may use the same argument if the target r is any other vertex in A

or B, finding that π(Km,n) ≤ m + n. Thus π(Km,n) = m + n by the vertex
bound π(Km,n) ≥ m + n.

Using Theorem 3.1, with P2 = K1,1, Theorem 3.8 and 3.9 one finds that
the following holds:

Corollary 3.9.1. π(Kn,n) = 2n, n ≥ 1.

3.1.5 Petersen’s graph and the m-dimensional cube

Figure 15: Petersen ’s graph P.
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By Theorem 3.3 we know that π(C5) = 5. Using this we can prove that
the pebbling number of Petersen’s graph P is 10. See Figure 15 for an
illustration of P.

The proof below was inspired by a comment in ”A Survey of Graph
Pebbling“ (Hurlbert, 1991: 4)[14].

Theorem 3.10. π(P) = 10.

Proof. n(P) = 10 and the vertex bound gives us π(P) ≥ 10, so if we can
show that every configuration on P of size 10 is solvable, then π(P) = 10.

Pick a configuration C on P of size 10, with target r.
Case 1: If there is a neighbor of r, call it s, which contain one peb-

ble, then one can draw two cycles C5: A passing through r and B passing
through s. Since π(C5) = 5 we must have C(A) ≤ 4 and C(B) ≥ 6, for
else we may move a pebble to r if C(A) ≥ 5 because π(A) = 5. Since
C(B − s) ≥ 5 one can move a pebble to s, because π(C5) = 5 and B − s
is part of a C5-cycle, thus we will get C(s) = 2 and the we may move a
pebble to r.

Case 2: Else there is no neighbor of r which contains a pebble. In
this case we have 4 vertices (including r) which contain no pebble, since
deg(r) = 3. Now, r has three neighbors, each with degree 3, and ignoring
r we see that their degree is 2. We notice that the remaining 6 vertices are
the neighbors of the neighbors of r, and they come in pairs A = {a1, a2},
B = {b1, b2} and C = {c1, c2}.

A distribution of 10 pebbles on A, B and C gives that at least one of
them, say A, contain 4 pebbles (note that A can not contain five pebbles
or more, for then C(a1), C(a2) ≥ 2, or C(ai) ≥ 4 for some i = 1, 2; in the
first case we may move two pebbles from a1 and a2 to common neighbor
of a1, a2 and r, in the other case we have a solution since dist(ai, r) = 2
for i = 1, 2). One may immediately move two pebbles to a neighbor of
r, and then to r, if both a1 and a2 contains 2 pebbles, or if one of them
contains 4. Otherwise one of them contains 3 pebbles, say a1, and the other
1 pebble. Ignoring the two pebbles on a1, making it have 1 pebble, we have
a distribution of 8 pebbles on the remaining 6 vertices which constitute a
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cycle graph C6 in the following order M of vertices: a1c1b2a2c2b1 (consult
Figure 15 above).

We will now show that we can move 1 pebble to a1 so that it contains
4 pebbles, which shows that we can move a pebble to r through one of its
neighbors.

For every configuration C on M of size 8 we assume that C(a1) =

C(a2) = 1 by the above comments. C(b1), C(c1) ≤ 1 must hold, for else
b1 → a1 or c1 → a1 solves the problem. Since C(a2) = 1 is assumed,
C({b2, c2}) ≥ 4. If C(b2) = 3, then C(c1) = 0 for else b2 → a2 → a1

is a solution. But then C(c1) ≥ 2 since C({b2, c2}) ≥ 5, implying that
c2 → a2 → b2 gives four pebbles at b2, which solves the problem. A similar
argument shows that one can move one pebble to a1, or have four pebbles
on c2, if C(c2) = 3. If 2 ≤ C(b2), C(c2) ≤ 3 then C(c1) = C(b1) = 0, for
else one can move a pebble to a1. So C(b2) = C(c2) = 3. But then one can
move a pebble to b2 or c2 through a2, making b2 or c2 have four pebbles.

By case 2, C is either r-solvable or one pebble may be moved to a1 so
that it contains 2 pebbles. Remembering the 2 pebbles which we ignored,
a1 contains 4 pebbles and we can move a pebble to r via one of r’s neigh-
bors. By symmetry the same goes if a2 contains 3 pebbles at the start.
Using symmetry again, the same reasoning may be applied to B and C as
it was applied to the case when A contained at four pebbles.

Using the results of case 1 and 2, and symmetry on r (Petersen’s graph
may be seen, with respect to every vertex, as an inner cycle graph C5 where
each vertex is adjacent to some vertex of an outer cycle graph C5 which is
disjoint from the inner cycle graph), we conclude that every configuration
on P of size 10 is solvable. Hence, π(P) = 10.
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Figure 16: The 3-dimensional cube Q3.

Before we end, I present the classic proof of the fact that π(Qm) =

2m = |V(Qm)|where Qm is the m-dimensional cube (Chung, 1989: 468)[7].
In Figure 16 the 3-dimensional cube is represented.

Theorem 3.11 (Chung, 1989). π(Qm) = 2m for m ≥ 1.

Proof. Define qm as the number of vertices v of Qm which contain an odd
number of pebbles (so called odd vertices) for every configuration C on
Qm. The proof is by induction on m for the following two statements:

(i) If C is a configuration on Qm of size 2m, then C is r-solvable; and

(ii) if |C| > 2m+1 − qm, then two pebbles can be moved to r.

Induction base: π(Q0) = 1 = 20 since V(Q0) = 1. Thus, (i) holds in the
base case. Since n(Q0) = 1, q ≤ 1. So 20+1 − q ≥ 1, and then |C| > 1
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if |C| > 20+1 − q, which implies that two pebbles are placed at the only
vertex of Q0. Hence, (ii) holds in the base case.

Induction step: Assume that π(Qk) = 2k for all k < m. Partition Qm into
two (m − 1)-cubes Q and Q′.41 Pick a vertex r in V(Q) and an adjacent
vertex r′ in V(Q′). Let q be the number of odd vertices in V(Q) and q′ the
number of odd vertices in V(Q′). Set the size C(V(Q)) of C on Q equal to
p, and C(V(Q′)) = p′.

Assume that C(V(Qm)) = |C| ≥ 2m. If p ≥ 2m−1, then induction on (i)
gives us that one pebble may be moved to r, since k = m− 1 < m and r
is in V(Q). Thus, assume that p < 2m−1. Now, either (1a) q′ > p or (1b)
q′ ≤ p.

Case 1a: If q′ > p, then p′ = |C| − p = 2m − p > 2m − q′. By induction
on (ii) two pebbles can be moved to r′. From there one can move a pebble
to r since r and r′ are adjacent.

Case 1b: One can always move at least (p′ − q′)/2 pebbles to V(Q),
since taking away one pebble from each of the q′ odd vertices, (p′ − q′)
pebbles are left distributed on the vertices of Q′ for which all vertices con-
tain an even number of pebbles. So we may move (p′ − q′)/2 pebbles in
total from V(Q′) to V(Q). Thus, in the resulting configuration one has

p + (p′ − q′)/2 ≥ p + (p′ − p)/2

= (p + p′)/2

≥ 2m−1,

using q′ ≤ p. From this it follows that Q is r-solvable by induction on
(i).

Now (i) has been proven assuming (ii). We continue induction on (ii).
Suppose there are at least |C| = p + p′ > 2m+1 − q − q′ pebbles dis-

tributed on V(Qm). We will show that given such configurations C on Qm,
two pebbles may be moved to r in V(Q).

41Q and Q′ are structurally identical, so Qm is formed by taking equivalent vertices in
Q and Q′ and linking them together to form an edge of Qm
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Case 2a: If p > 2m − q, then two pebbles can be moved to r using
induction with k = m− 1 < m for which m = k + 1.

Case 2b: 2m− q ≥ p ≥ 2m−1. Since p ≥ 2m−1, Q is r-solvable, so at least
one pebble may be moved to r. Notice that

p′ = |C| − p

> 2m+1 − q− q′ − p

≥ 2m + p + q− q− p− q′

= 2m − q′,

since 2m ≥ p + q. By induction on (ii), two pebbles can be moved to
the vertex r′ in V(Q′) adjacent to r in V(Q), so that one can move a pebble
to r. In the resulting configuration, r contains at least two pebbles.

Case 2c: p < 2m−1. Notice that for any positive integer t satisfying
p′ ≥ q′ + 2t, t pebbles may be moved to V(Q), while p′ − 2t remain in
V(Q′) (since t pebbling steps costs 2t pebbles).

From the relation p + p′ > 2m+1 − q− q′ we have

p′ > 2m+1 − q− q′ − p = (2m − q′) + (2m − q− p)

≥ q′ + (2m − q− p), (3.5)

in which (3.5) follows from using q′ ≤ |V(Q′)| = 2m−1, and thus 2q′ ≤ 2m,
so q′ ≤ 2m − q′.

Thinking about solving the equation q′+ 2t = q′+ (2m− q− p) we see
that it is possible to move at least

t = b(2m − (q + p))/2c
=
⌊

2m−1 − (q + p)/2
⌋

= 2m−1 − d(q + p)/2e
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pebbles to V(Q). When we move t pebbles to the vertices of Q, we
have a remaining of more than 2m − q′ pebbles at Q′. To see this we note
that there are p′ − 2t remaining pebbles at the vertices of Q′, and so we
need to show that p′ − 2t > 2m − q′, but surely this is the case since p′ −
(2m − q− p) > (2m − q′) by (3.5) and

2t = 2m − 2d(q + p)/2e
< (2m − 2(q + p)/2)

= 2m − p− q.

On the vertices V(Q) we have a distribution of

p + t = p + 2m−1 − d(q + p)/2e
= 2m−1 + b(p− q)/2c
≥ 2m−1

pebbles. By (i), inductively assuming (ii), it follows that one pebble can
be moved to r, and since p′ > 2m − q′ we can move two pebbles to r′ by
induction on (ii), and then one to the adjacent vertex r so that in the final
distribution there are two pebbles at r.

Conclusion: By the principle of induction it follows that (ii) is true for
any m, and so is (i). This shows that π(Qm) ≤ 2m; and since π(Qm) ≥
max(2m, 2m) (noting that diam(Qm) = m), it follows that π(Qm) = 2m.

3.2 Pebbling numbers for diameter 2 graphs

Two theorems for diameter 2 graphs G are proven. In section 3.2.1 it is
shown that G must be of Class 0 or 1, and in section 3.2.2 it is shown that if
G is 3-connected, then G is of Class 0, and from this an important corollary
that almost all graphs are Class 0 follows.

The proofs in 3.2.1 are found in (Pachter et al., 1995: 70–1)[20]. Those
in 3.2.2 are found in (Clarke et al., 1997: 121–24)[8].
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Note that vertex-connectivity is defined for all graphs considered in
this section, since no graph is equal to a complete graph (because we only
consider diameter 2 graphs while a complete graph is a diameter 1 graph),
and since the vertex-connectivity is defined for all graphs other than the
complete graphs (confer Definition 2.7).

3.2.1 Every diameter 2 graph is of Class 0 or 1

To show that every diameter 2 graph is of Class 0 or 1 (Theorem 3.13), we
first need to prove an important lemma:

Lemma 3.12 (Pachter et al., 1995). If G is a diameter 2 graph with |V(G)| =
n ≥ 6, then every configuration C of size at least n, such that at least three
vertices receive at least two pebbles, is solvable.

Proof. Assume that we have such a configuration C on G, that is: there are
at least three vertices in V(G) which contain at least two pebbles.

Case 1: G has a cut-vertex. Then there are two components A and B of
G, and a vertex x of G neither among the vertices of A nor the vertices of B,
such that there exists some edge {a, x} with a ∈ A, and some edge {b, x}
with b ∈ B. Since diam(G) = 2, every vertex of A or B has an edge to x (for
else there is an vertex a in V(A) and a vertex b in V(B) with dist(a, b) ≥ 3
since one must pass x when moving pebbles between vertices in V(A) and
vertices in V(B), but this would contradict the fact that diam(G) = 2).

If x contains two pebbles, the configuration is solvable. Else, there ex-
ists at least two vertices in A or at least two vertices in B containing at
least two pebbles (since at least three vertices receive at least two pebbles).
In either case we can pebble two pebbles to x and then one pebble to an
arbitrary vertex in A or B.

Case 2: G is 2-connected. Let r be the target. We may assume that
C(x) ≤ 1 for all x in the neighborhood N(r) of r, for else C is solvable.

Suppose there are at least three vertices xi, 1 ≤ i ≤ k with k ≥ 3, that
satisfy C(xi) ≥ 2. No xi is in N(r) by our previous remark, and since
diam(G) = 2 it follows that every xi is adjacent to a neighbor yi of r. If
yi = yj but i 6= j, then one may move a pebble to yi from xi and again from
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xj, giving the solution yi → v. Hence yi 6= yj whenever i 6= j. Also all
yi are without pebbles, for else one may make the move xi → yi → r for
some i. Furthermore no xi can contain 4 pebbles since diam(G) = 2.

Since every neighbor of r contains at most 1 pebble, and every neighbor
yi of xi contains no pebbles, we must, since the size of the configuration is
n(G), have some xj with 3 pebbles on it, in this way compensating for the
fact that r contains no pebble. Relabelling gives us x1 with 3 pebbles.

The vertex x1 is not adjacent to any other xj (else we would pebble x1 so
that it had 4 pebbles) so dist(x1, xj) = 2 for all 2 ≤ j ≤ k since diam(G) = 2.
Hence there must exist k− 1 distinct vertices z12, z13, . . . , z1k such that z1j

is adjacent to both x1 and xj for 2 ≤ j ≤ k. Notice that no z1j is a neighbor
to r, for else x1 → z1j, xj → z1j, z1j → r is a solution. Also, z1j contains
no pebble for all 2 ≤ j ≤ k, for else one can pebble x1 so that it contains 4
using the pebble move xj → z1j → x1.

In other words: Every xj for 2 ≤ j ≤ k is adjacent to two vertices yj and
z1j that contains no pebbles. Noticing that the size of the configuration C
is n(G) we must compensate for this by saying that every xi, 1 ≤ i ≤ k,
contains 3 pebbles.

As before: x2 can not be adjacent to x3 (for else x3 → x2 gives x2 four
pebbles), so there is a vertex z23 which is not a neighbor of r and is adjacent
to x2 and x3 and distinct from x1, x2, . . . , xk, y1, y2, . . . , yk, z12, z13, . . . , z1k

and r, also z23 is without pebbles and this leaves us with one pebble to
add to some xi, 1 ≤ i ≤ k, giving a vertex with 4 pebbles on it (we are
pebbling 3k + 1 pebbles on the set {x1, x2, . . . , xk} of k pebbles). Thus C is
r-solvable using diam(G) = 2 so that every vertex can be pebbled from xi

for some i = 1, 2, . . . , k. Since r was arbitrary, C is solvable.

Given the above lemma we may give an upper bound on the pebbling
number for an arbitrary diameter 2 graph:

Theorem 3.13 (Pachter et al., 1995). π(G) = n(G) or π(G) = n(G) + 1 for
all graphs G with diameter 2.
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Proof. The lower bound n(G) ≤ π(G) is given by the vertex bound Lemma
2.1. We will show that π(G) ≤ n(G) + 1, from which the theorem follows.

Consider a configuration C on G of size n(G) + 1 where diam(G) = 2.
Case 1: G is 1-connected with diam(G) = 2. Then G has a cut vertex x.

Let r be our target.
If r = x, then a placement of n(G) pebbles on the two components

A and B of G − x gives one vertex a in V(A) or one vertex b in V(B)
with at least two pebbles on it, in any case one may pebble x, because
dist(x, v) = 1 for all v ∈ V(A) ∪ V(B) (otherwise dist(a, b) ≥ 3 for some
two vertices a in V(A) and b in V(B), for we must always pass x when
finding a path from a to b).42

If the target vertex r is in V(A) and C is a configuration on G of size
n(G) + 1, then either (i) C(x) ≥ 2, (ii) C(x) = 1, or (ii) C(x) = 0.

For (i) x → r is a solution.
For (ii) one has a distribution of n + 1 − 1 pebbles on n − 1 vertices,

making at least one v ∈ V(A) ∪ V(B) satisfy C(v) ≥ 2. v → x → r now
solves the problem.

For (iii) one has a distribution of n + 1 pebbles on n− 2 vertices, hence,
by Theorem 2.6, two pebbles may be moved to x, and then one to r. In
either case, C is solvable.

Case 2: G is 2-connected. Let r denote the target. The result is true for
|V(G)| ≤ 5 (tedious, but not hard calculations, verify this), so assume that
|V(G)| ≥ 6.

Distribute n(G) + 1 pebbles on V(G). If there are three vertices with
two pebbles or more, then G is solvable by Lemma 3.12. Hence, assume
that no more than two vertices contains two or more pebbles. Notice that
every neighbor of r contains no more than one pebble.

Case 2a: Two vertices x1 and x2 contains two or more pebbles. If there
is a neighbor y to r, adjacent to x1 and x2, then x1 → y, x2 → y, y → r.
Hence, assume that xi is adjacent to yi for i = 1, 2 with y1 6= y2. We must
have y1 and y2 containing no pebbles (else xi → yi → r is a solution for
some i = 1, 2). Thus, either x1 or x2 must contain three pebbles (since

42If A and B are two sets, then A ∪ B is the set of elements in A or B or both.
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we have a distribution of n(G) pebbles on N(G) − 3 vertices, placing at
most one pebbles on each vertex except x1 and x2, we must place at least
5 pebbles on x1 and x2). Suppose x1 is this vertex. There must be a vertex
z 6= y1, y2 adjacent to x1 and x2, for diam(G) = 2, but z cannot contain
any pebble since then one can pebble x1 so that it contains four pebbles,
solving the problem. Hence, we have four vertices v, y1, y2 and z which
contains no pebbles. Thus after distributing at most n− 4 pebbles on all
vertices in V(G), one needs to place 5 pebbles on x1 and x2 which contain
one pebble each, so one of x1 and x2 must contain four pebbles, this solves
the problem.

Case 2b: Only one vertex x contains two pebbles or more. Note that x
is adjacent to some neighbor y of r, for else x is adjacent to r and x → r
is a solution, or dist(x, r) ≥ 3 which contradicts that diam(G) = 2. Fur-
thermore, the vertex y contains no pebbles, for else x → y → r solves the
problem. Hence, one has a distribution of n(G) + 1 pebbles on n(G)− 2
vertices, where only x may contain more than one pebble, hence one must
place at least 4 pebbles at x, and at most n(G)− 3 pebbles at all remaining
vertices. Since the diameter of G is 2 we can move a pebble to r from x
using the fact that x contains 4 pebbles.

Case 2c: No vertex x contains more than one pebble. This is not possi-
ble since we have a distribution of n(G) + 1 pebbles on a set of n(G) + 1
vertices, so at least one vertex must contain at least two pebbles by the
pigeonhole principle.

In any case, C is solvable. The theorem now follows.

h

3.2.2 Every 3-connected diameter 2 graph is of Class 0

This section aims at showing that every 3-connected diameter 2 graph is
of Class 0. We begin by characterizing the bad configurations of size n(G)

on 2-connected diameter 2 graphs G (Lemma 3.14). Using this result we
describe, in Theorem 3.15 and 3.16, a family of graphs F which includes
every 2-connected diameter 2 graph G which is not of Class 0 (hence, G is
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of Class 1 by Theorem 3.13 and the fact that G has diameter 2). From this
it will follow that a graph must be Class 0 if it is a 3-connected diameter 2
graph.

Begin by recalling Definition 2.8 and the notion of k-connectivity.
Given a configuration C on G, let Si = {v ∈ G|C(v) = i} and si = |Si|.

Also, let A1A2 · · · Al, 2 ≤ l ≤ k, denote the set of vertices adjacent to
some a1 ∈ A1, a2 ∈ A2, . . . , al−1 ∈ Al−1 and some al ∈ Al, for any series
A1, A2, . . . , Ak, k ≥ 2, of sets. So for example, if A and B are two sets, then
AB denotes the set of vertices adjacent to some pair of vertices a in A and
b in B.

Recall Definition 2.19 where we defined a bad configuration C on G as
a configuration on G for which there is some target r in V(G) such that C
is r-unsolvable.

Lemma 3.14 (Clarke et al., 1997). For all 2-connected diameter 2 graphs G of
Class 1 we have s2 = 0 and s3 = 2 for any bad configuration C on G of size
n(G).43

Proof. Let C be a bad configuration of size n(G) for the target r in V(G)

(that is, C is r-unsolvable).
First, observe the following:

1. Every configuration C0 derived from C satisfies C0(v) < 4 for all
vertices v in V(G).

Otherwise, C is r-solvable since the diameter of G is 2, and so 4 peb-
bles at some vertex is enough to pebble any vertex of G.

2. N(r) ∩ (S2 ∪ S3) = ∅.44

Otherwise there is a vertex v in N(r) ∩ (S2 ∪ S3), and then one can
pebble r from v since C(v) ≥ 2 and v is in the neighborhood of r.
This contradicts the fact that C is a bad configuration for r; hence,
N(r) ∩ (S2 ∪ S3) = ∅.

43As stated in footnote 4: In structuring the proof of this lemma, the author was in-
spired by Blasiak (2008).

44The expression ∅ denotes the empty set, which is the set having no elements.
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3. S2S3{r} = S3S3{r} = S2S2{r} = ∅.

If v ∈ S2S3{r}, then one may move two pebbles to v using some
vertex x in S2 and some vertex y in S3, and afterwards pebble r from
v, contradicting the fact that C is r-unsolvable. Similarly there is no
vertex v in S3S3{r}, for else one may move two pebbles to v from two
distinct vertices of S3 and then one pebble to r. Also, S2S2{r} = ∅,
since otherwise there is a vertex v adjacent to two distinct vertices
in S2, and so one may move two pebbles to v, and then one to r,
contradicting that C is r-unsolvable.

4. S2S3S3 = S2S2S3 = ∅.

If v is in S2S3S3, then we can move two pebbles to v from one vertex
u in S2, and one vertex v1 in S3, and then we can from v move one
pebble to some other vertex v2 6= v1 in S3 so that v2 contains 4 peb-
bles, contradicting (1). Hence, S2S3S3 = ∅. Similarly, if v is in S2S2S3

then one may move two pebbles to v from two distinct vertices in
S2, and then pebble some vertex u in S3 from v, so that u contains 4
pebbles, contradicting (1) again.

5. S3 ∩ N(S2 ∪ S3) = ∅.

If there is a vertex v in S3 ∩ N(S2 ∪ S3), then one may move a pebble
to v in S3 from some vertex in S2 ∪ S3 which v is adjacent to (such
a vertex exists since v is in N(S2 ∪ S3) by assumption, otherwise
N(S2 ∪ S3) must be equal to ∅, and then (5) holds anyway). This
would give us a new configuration C0 with C0(v) = 4 from which
one can pebble r; this is a contradiction since C was r-unsolvable by
assumption. Hence, the distance between any pair of vertices v ∈ S3

and u ∈ S2 ∪ S3 is 2, and thus v can not be adjacent to any vertex in
S2 ∪ S3, and so v is not in N(S2 ∪ S3).

Using the above observations we may show that (a) the sets
{r}, {r}S2, {r}S3, S2S3 and S3S3 are all disjoint, and that (b) all the sets
listed in (a) are subsets of S0. The arguments are as follows:
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(a) The set {r} is disjoint from {r}S2, {r}S3, S2S3 and S3S3, otherwise r
is adjacent to itself (if {r} is not disjoint from {r}S2 or {r}S3) which
is not possible since it has distance 0 to itself, or r is a neighbor to
some vertex in S2 ∪ S3, contradicting (2).

The set {r}S2 is disjoint from {r}S3, since {r}S2∩{r}S3 = {r}S2S3 =

∅,45 where the last equality follows by (3). Similarly {r}S3 is disjoint
from S2S3 and S3S3 since {r}S3 ∩ S2S3 = {r}S2S3 = ∅ and {r}S3 ∩
S3S3 = {r}S3S3 = ∅, where the last equalities follows from (3).

Also, S2S3 ∩ S3S3 = S2S3S3 = ∅ from (4), so S2S3 and S3S3 are dis-
joint sets.

(b) We can not pebble r, so {r} ⊆ S0.

Furthermore, {r}S2 and {r}S3 are subsets of S0, since if v ∈ {r}Si,
i = 2, 3, and v /∈ S0, then C(v) ≥ 1 and so we may pebble v from
Si, i = 2, 3, so that v contains at least two pebbles, and then pebble
r since v was adjacent to r by assumption. This contradicts the fact
that C is r-unsolvable.

Similarly SiS3, i = 2, 3, are subsets of S0, for else there is a vertex v
with C(v) ≥ 1 adjacent to some vertex u in Si, i = 2, 3. From this
one may pebble v from u so that v contains at least two pebbles, and
then one may pebble that vertex x in S3 which is distinct from u and
adjacent to v, so that x contains 4 pebbles. This contradicts (4), and
so it follows that SiS3, i = 2, 3, are subsets of S0.

Counting the number of elements in each set {r}, {r}S2, {r}S3, S2S3

and S3S3, we have

(i) |{r}| = 1.

45If A, B and C are three nonempty sets, then AB ∩ BC = ABC, since if v ∈ AB and
v ∈ BC then v is adjacent to some vertex in A and some vertex in B, by being included
in AB, and also adjacent to some vertex in B and some vertex in C, by being included in
BC; it thus follows that v is adjacent to three vertices, one in A, one in B and one in C,
and this means that v is in ABC.
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(ii) |{r}S2| = |S2| and |{r}S3| = |S3|, since r can not be adjacent to
vertices in S2 or S3 by (2), but since the diameter is 2, each vertex
in S2 or S3 must be adjacent to some vertex v that is also adjacent
to r. Each such vertex v is distinct for each element of S2 and S3,
otherwise there would be a vertex adjacent to r and two vertices in
S2 or S3, which contradicts (3).

(iii) |S2S3| = s2s3. This follows by the following argument: By (5), S2

and S3 have no common edges, and since additionally the graph is
of diameter two, there is a vertex v adjacent between any pair of
vertices x in S2 and y in S3. Each such vertex v is unique for each
x and y, because otherwise there is a vertex v adjacent to either two
distinct vertices in S2 and one in S3, one vertex in S2 and two distinct
vertices in S3, or two distinct vertices in S2 and two distinct vertices
in S3; in any case, by (4), no alternative is possible, hence: each such
vertex v is unique. Thus, for each x in S2 there is a unique vertex v
for all vertices in S3, so |S2S3| = s2s3.

(iv) That |S3S3| = (s3
2 ) is shown by replacing S2 by S3 in the above ar-

gument (iii), and noting that we are here taking subsets of S3 of size
two when we determine |S3S3|.46

Thus, from (a) and (b), it follows that {r}, {r}S2, {r}S3, S2S3 and S3S3

are disjoint subsets of S3, where the size of each set is determined by (i)–
(iv). Hence,47

1 + s2 + s3 + s2s3 +

(
s3

2

)
≤ s0 = s2 + 2s3 (3.6)

The equality in (3.6) follows from three facts: |S2∪S3| = s2 + s3, C(S2) =

2s2 and C(S3) = 3s3. So when distributing n(G) pebbles on the vertices of
G we may place 1 pebble at each vertex. Hence, when one has placed one

46(n
k) is called the binomial coefficient of xk in (1 + x)n, and is equal to n!

k!(n−k)! , where
n! = n(n− 1) · · · 1, n ≥ 0 is an integer, is the factorial of n.

47If Ai are disjoint subsets of B for 1 ≤ i ≤ n, that is Ai ∩ Aj = ∅ and Ai ⊆ B for
1 ≤ i, j ≤ n, i 6= j, then |A1 ∪ A2 · · · ∪ An| = ∑n

i=0 |Ai| ≤ |B|.
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pebble at each vertex in S2 and S3 one has 2s2 + 3s3 − |S2 ∪ S3| = s2 + 2s3

pebbles left, and this number must be equal to s0 since these are the re-
maining pebbles not yet placed on the vertices of S0.

From (3.6) we have

s2
3 − (3− 2s2)s3 + 2 ≤ 0⇒ 483 ≥ 2s2 ⇔ s2 ≤ 1. (3.7)

If s2 = 1 then (3.7) translates into s2
3 − s3 + 2 = (s3 − 1

2)
2 + 7

4 ≤ 0, a
contradiction since the left expression is greater than or equal to 7

4 , and
hence greater than 0. So s2 = 0.

s2 = 0, with (3.7), gives us s2
3 − 3s3 + 2 = (s3 − 1)(s3 − 2) ≤ 0, hence

s3 = 1 or s3 = 2.49 If s3 = 1, then s0 = 2, and S0 = {r, v}. If there is a
path from a vertex in S3 to r, then it must pass v, for else there some x in
N(S3) with C(x) ≥ 1 and distance 1 to r, a contradiction since s → x → r
for some vertex s in V(S3) would then be a solution. Hence, all paths from
the vertices in S3 must go through v, making v a cut vertex. This implies
that G is not 2-connected, a contradiction. So s3 = 2.

Now, define F as the family of 2-connected diameter 2 graphs of Class
1. The smallest graph in F is the cycle C6 = rapcqbr (in this order), in
which the set {a, b, c} induces at least two edges. Given G ∈ F and a
graph Hp (respectively Hq) we can add the vertices of Hp (respectively Hq)
to V(G), including E(Hp) (or E(Hq)), to obtain a new graph in F , pro-
vided that every component of Hp (respectively Hq) has at least one vertex
adjacent to p (respectively q) and that each vertex in Hp (respectively Hq)
is adjacent to both a and c respectively b and c) an to not other vertex in
V(G). One may also obtain a new graph in F for any G ∈ F by adding
V(Hc) to V(G) for graphs Hc for which each vertex of Hc is adjacent to c,
to either a or b (or both), and to no other vertex in V(G). We may do the
same for graphs Hr (that is add V(Hr) to V(G) to obtain a new graph in
F ) whenever each vertex of Hr is adjacent to both a and b, and to no other
vertex of G, except possibly r.

48If 3 < 2s2 then −(3− 2s2) > 0 so s2
3 − (3− 2s2)s3 + 2 > 0, a contradiction.

49Both s3 = 0 and s3 ≥ 3 gives m ≤ 0, m ≥ 2, which is false.
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See Figure 17 for an illustration of graphs in F : In Figure 17 a solid line
between a graph H and a vertex x means that x is adjacent to all vertices
in H. Moreover, at least two of the three dotted dotted edges between
a, b and c exist, and the two arrows from Hc to a and b indicates that all
vertices in Hc must be adjacent to a or b or both. Squiggly lines from p
(respectively q) to Hp (respectively Hq) indicates that every component
in Hp (respectively Hq) has at least one vertex adjacent to p (respectively
q). Finally, the dotted arrow from Hr to r indicates that possibly, but not
necessarily, there is a vertex in Hr which is adjacent to r.

Figure 17: A graph in F .

Before reading the proof of Theorem 3.15 below, recall Definition 2.7,
the definition of the vertex-connectivity κ(G) of a graph G.50

50The theorems that follow will be a presentation, and an explication, of the proofs
found in (Clarke et al., 1997). However, at the same day as the deadline for this thesis,
I, the author of this thesis, noticed, while reading ”Graph Pebbling“ (Blasiak, 2008), that
the characterization of F as the family of 2-connected diameter 2 graphs of Class 1 is
probably faulty. I think this since Blasiak (2008: p. 33) argued that there is a graph G∗
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Theorem 3.15 (Clarke et al., 1997). If G ∈ F , then diam(G) = 2, κ(G) = 2,
and G is of Class 1.

Proof. One may consult Figure 17 to notice that diam(G) = 2 and κ(G) =

2. Thus, by Theorem 3.13, G is either of Class 0 or Class 1. The config-
uration C with C(v) = 0 for v ∈ {p, q, c, r}, C(v) = 3 for v ∈ {p, q}
and C(v) = 1 for all other vertices v ∈ V(G), is r-unsolvable of size
0 · 4 + 3 · 2 + 1 · (n(G)− 6) = n(G). Hence, G must be of Class 1.

Theorem 3.16 (Clarke et al., 1997). If diam(G) = 2, κ(G) ≥ 2 and G is of
Class 1, then G ∈ F .

Proof. Suppose diam(G) = 2, κ(G) ≥ 2 and that C is a bad configura-
tion on G of size n(G). Using the results of Lemma 3.14 we may de-
fine S3 = {p, q}, {r}{p} = {a}, {r}{q} = {b} and S3S3 = {c}, so
that S0 = {a, b, c, r}. For all configurations C′ derived from C we have
C′(r) = 0 and C′(v) < 4 for all v ∈ V(G) (else C is r-solvable because
diam(G) = 2).

Suppose {a, b, c} induce at most one edge, we will show that this sup-
position leads to a contradiction by showing that C is r-solvable in this
case, it then follows that {a, b, c}must induce at least two edges, and thus
G is a graph in F .

If c is neither adjacent to a nor b, then, because dist(c, r) = 2, there
exists a v /∈ S0 ∪ S3 (v /∈ S0 since v 6= a, b, r and v /∈ S3 since it is adjacent

which is not inF but which is a 2-connected diameter 2 graph of Class 1. After presenting
this counterexample, Blasiak (2008) made a slight modification to the characterization of
F which, she argues, correctly characterizes the family of 2-connected diameter 2 graphs
of Class 1, and then she proved similar theorems for this family of graphs. I have not yet
checked Blasiak’s (2008) argument in detail, but I think it is correct. Theorem 3.16 is, then,
probably false. However, as Blasiak (2008) herself notes, the proofs of the theorems with
the family F of graphs which we here present are similar to the proofs of the theorems
with Blasiak’s (2008) slightly modified characterization of F . Because of this, the reader
is encouraged to first read the proofs of Theorem 3.15 to 3.18 in this thesis, and then read
the paper by Blasiak (2008) and try to unravel what goes wrong in the proof of Theorem
3.16 presented in this thesis (something in the proof must be wrong if Blasiak’s argument
(2008), that there exists a 2-connected diameter 2 graph G∗ of Class 1 which is not in F ,
is true). If I had more time, I would try to clear up this problem. This footnote, then, is
here to make the reader aware, and to indicate that I am aware, of this problem which I,
because of time limitation, do not have time to remedy in this thesis.
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to r), hence C(v) ≥ 1, which is adjacent to c and r. But then one may move
two pebbles to c from p and q, and then to r from c through v.

If b is neither adjacent to c or a, then there is a common neighbor u /∈
S0 ∪ S3 of p and b, since dist(p, b) = 2, that can be used to move a pebble
from p to b through u, then moving a pebble from q to b gives a solution
since b is adjacent to r.

The case where we assume that a is neither adjacent to b nor c, is sym-
metric with respect to the case where b is neither adjacent to neither a nor
c.

Thus, all above cases leads to the contradiction that C is r-solvable,
hence our assumption that {a, b, c} induce at most one edge must be false.
It must then hold that at least two edges are induced by {a, b, c}, and thus
G ∈ F .

Theorem 3.17 (Clarke et al., 1997). For every diameter 2 graph G: G is of Class
0 iff κ(G) ≥ 2 and G /∈ F .

Proof. If diam(G) = 2 and G is of Class 0, then G /∈ F . Otherwise G would
be of Class 1 by Theorem 3.16, a contradiction. The vertex-connectivity
κ(G) of G can not be equal to 1, if it was G would not be of Class 0 by the
cut bound, Theorem 2.6.

If diam(G) = 2, G /∈ F and κ(G) ≥ 2, then G can not be of Class 1,
since in this case G ∈ F by Theorem 3.16, a contradiction.

Theorem 3.18 (Clarke et al., 1997). If diam(G) = 2 and κ(G) ≥ 3, then G is
of Class 0.

Proof. G /∈ F by Theorem 3.15 since κ(G) 6= 2 , thus the right side of the
equivalence in Theorem 3.17 is satisfied, so it follows that G is of Class
0.

Theorem 3.18 gives us an alternative proof to Theorem 10 that the peb-
bling number of Petersen’s graph is 10, since one may show that Petersen’s
graph in Figure 15 has diameter 2 and connectivity 3, thus by Theorem 3.18
it follows that π(P) = n(P) = 10.

A corollary to Theorem 3.18 is
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Corollary 3.18.1. Almost all graphs are Class 0.

This follows because almost all graphs are Class 0, since almost all
graphs have diameter 2, and at least connectivity 3, in the probabilistic
sense (Hurlbert, 1999).
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4 Thresholds

In this section a probabilistic model for graph pebbling is introduced. The
presentation is mostly based on ”On pebbling threshold functions for graph
sequence“ (Czygrinow et al., 2003)[9], especially the presentation of the
proofs of the theorems in section 4.2.2 and 4.3.

In the probabilistic model of graph pebbling one randomly and uni-
formly selects an element from Gn,t, the set of all configurations C on Gn

of size t = t(n). Since every pebble is the other alike,51 a distribution of t
pebbles on a set of n vertices is like a distribution of t unlabeled balls into n
labeled urns, and the number of ways to put t unlabeled balls into n labeled
urns is equal to (n+t−1

t ).52 Thus, for fixed n and t, |Gn,t| = (n+t−1
t ) is the

number of configurations of size t on n vertices.
In section 4.1 we outline the relevant definitions and notations for work-

ing with the probabilistic model for graph pebbling. Afterwards we give
several results relating to this subject.

Section 4.2 begins with a presentation of the existence theorem of a cen-
tral mathematical object for the probabilistic graph pebbling model (4.2.1):
a threshold. A threshold is a function which takes a sequence of graphs as
input, and gives a set of functions N → N called threshold functions as its
output. The existence theorem ensures us that every graph sequence has
a threshold.

The main results in section 4.2.2 is the general characterization of the
threshold functions for thresholds of graph sequences (Theorem 4.1), and
the relation between the threshold of a graph sequence H and the thresh-
old of a graph sequence G , where the edge set of each graph in the se-

51The fact that the pebbles are indistinguishable follows from Definition 2.14, which
tells us that if C is a configuration on G, and v a vertex of G, then C(v) is a nonnegative
integer. Hence, C(v) just counts the number of pebbles on v without distinguishing them
from each other; in other words, they are indistinguishable. If one could distinguish the
pebbles, C(v) would have to be an element in Zn for n ≥ 2, and then C(v) = (1, 2) in Z2,
for example, would express the fact that v contains 1 pebble of sort 1, and 2 pebbles of
sort 2. If the pebbles are distinct, the process of pebbling may be called Maxwell Boltzmann
pebbling. See (Godbole et al., 2005)[10] for an extended discussion of Maxwell Boltzmann
pebbling.

52See (Grimaldi, 2014: 24–5)[11] for an argument for this fact.
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quence H of n vertices is a subset of the graph with n vertices in the
graph sequence G (Theorem 4.5). The ambition is that section 4.2.1 sim-
plifies some of the inferences made in section 4.2.2 and 4.3.

Section 4.2.3 gives elementary results regarding the probabilistic model.
In particular we determine the threshold for the sequence of complete
graphs (Theorem 4.6), and relate the pebbling number of the graphs in
a given graph sequence G to the threshold of G (Theorem 4.7).

Section 4.2 is less technical than section 4.3.
Section 4.3 continues the characterization of thresholds for graph se-

quences: Section 4.3.1 gives a general bound for thresholds (Theorem 4.8),
section 4.3 more narrowly specifies bounds for the sequence of paths and
cycles (Theorem 4.11 and 4.12), and section 4.3.2 derives the threshold for
the sequence of stars and wheels (Theorem 4.13 and Corollary 4.13.1).

The goal of section 4 is to show how probability theory can be applied
in graph pebbling modeling, and to give an overview of relevant lemmas,
theorems and their corollaries, for the probabilistic model.

Some of the most important results in this section are shown in Table 2
in Appendix B.

4.1 Definitions and notation

We begin our analysis of the probabilistic model of graph pebbling by pre-
senting the definitions and notation which underpins it:

Definition 4.1 (Asymptotic notation). Let f and g be two functions N→N,
we say that f � g, or g� f , is equivalent to limn→∞ f (n)/g(n) = 0.

The set o(g) denotes { f | f � g}, and the set ω( f ) denotes {g| f � g}.
Moreover, f ∈ O(g) (or g ∈ Ω( f )) holds whenever there exists constants

c, k > 0 such that f (n)/g(n) < c for all n > k.
Let Θ(g) be defined as O(g) ∩Ω(g). By the inequality Θ( f ) ≤ Θ(g) we

mean that f0 ∈ O(g0) for every pair of functions f0 ∈ Θ( f ) and g0 ∈ Θ(g).
Finally, the relation f . g is equivalent to limn→∞ sup( f (n)/g(n)) ≤ 1.

Notice that by the above definition f ∈ o(g) iff g ∈ ω( f ).
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Denote by Gn a graph on n vertices, let C be a configuration on Gn, and
define t = t(n) = |C| for every n. The pebbling number π(Gn) of Gn is the
least integer t(n) such that Gn is solvable.

Let PG (n, t(n)) denote the probability that an element in Gn,t, the set
of all configurations C on Gn of size t(n) = |C|, chosen uniformly at ran-
dom53 is solvable.54

A graph sequence G is a sequence of graphs (G1, G2, . . . Gm, ...) where
V(Gm) = {vi|i = 1, 2, . . . , nm}. Often nm is taken to be equal to m. In other
cases it is taken to be equal to 2m, as in the sequence of cubes Q.

Definition 4.2 (Threshold function). For every graph sequence
G = (G1, G2, . . . , Gm, . . .), g is called a threshold function for G , equivalently g
is in the threshold th(G ) of G , iff as m→ ∞:

(i) PG (nm, t(m))→ 1 whenever t� g, and

(ii) PG (nm, t(m))→ 0 whenever t� g.

If nm = m, then Definition 4.2 reduces to the fact that g ∈ th(G ) iff as
m→ ∞:

(i) PG (m, t(m))→ 1 whenever t� g, and

(ii) PG (m, t(m))→ 0 whenever t� g.

4.2 Groundwork

Before moving to the relatively technical section 4.3 we do the ground-
work of an analysis of thresholds: Firstly, in section 4.2.1, we present
an existence theorem for thresholds. Secondly, in section 4.2.2, we relate

53This concept, uniformly randomly chosen, may be informally described as follows: If Ω
is a set of outcomes, then in a random experiment we say that we are uniformly randomly
choosing an outcome in Ω iff every outcome in Ω has the same probability of being cho-
sen. That is, every outcome is equally likely to happen. One may study this concept in
(Alm & Britton, 2008: 14, 73)[1]. In our special case, each configuration in Gn,t is equally
likely of being chosen.

54An introduction to probability theory, and random variables as discussed in Theorem
4.10 for example, may be found in (Ross, 2010: 1–96)[22].
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the threshold to the big-Theta function Θ from Definition 4.1, and pro-
vide some preliminary results regarding generic graph sequences. Thirdly,
in section 4.2.3, we calculate the threshold for the sequence of complete
graphs and relate the threshold of some arbitrary graph sequence G =

(G1, G2, . . .) to the pebbling number of each graph Gn, n ≥ 1, in G .

4.2.1 Existence of thresholds

It is not obvious that every graph sequence has a nonempty threshold. For
this reason we will assume the following:

Theorem 4.1 (Bekmetjev et al., 2003 [4]). Every graph sequence G has a nonempty
threshold th(G ).

The proof of Theorem 4.1 is technical and several pages long in (Bek-
metjev et al., 2003). A sketch of the proof is provided by Hurlbert (2014)[16].
Hurlbert (2014) mimics an earlier result by Bollobás and Thomason (1987)[6]
which says that ”monotone graph properties (...) have random graph
thresholds“. Without investigating the results by Bollobás and Thoma-
son (1987), we will briefly describe Hurlbert’s (2014) sketch of a proof of
Theorem 4.1.

Essentially, Hurlbert (2014) utilizes the concept of multisets55. To fur-
ther give the reader an idea of the proof we define Mn as the set of all
multisets of the set [n] = {v1, v2, . . . , vn} of n distinct vertices vi, 1 ≤ i ≤ n,
and Mn(t) as the set of multisets in Mn of size t. Hurlbert (2014) directs
our attention to Mn(t) since every ”configuration of size t is simply a t-
multiset [a multiset of size t (the sum of the multiplicities of each element
in the multiset)] of n vertices“56 that is: Mn is the set of all possible config-

55A multiset generalizes the concept of a set. It is a set-like object where order is ig-
nored, and it allows multiple instances of its elements. For example {a, b} is a multiset
where a and b has multiplicity one; and {a, a, b} is a multiset where a has multiplicity
two, and b has multiplicity one. Here {a, a, b} is equal to {b, a, a} since order is ignored.

56To exemplify this statement by Hurlbert (2014) let G be a graph on 5 vertices
{a, b, c, d, e, f }. Then the multiset {a, a, a, b, b, c, c, d, f , f , f , f } describes a configuration on
the vertices of G, where there are 3 pebbles on a, 2 pebbles on b, 2 pebbles on c, 1 pebble
on e, and 4 pebbles on f . This is a configuration on G of size 3 + 2 + 2 + 1 + 4 = 12.
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urations on [n]. Furthermore, we say that Fn ⊆Mn is a family of Mn. We
may take Fn to be the family of all solvable configurations on [n].

The proof sketch by Hurlbert (2014) may now be explained as the exe-
cution of the following two tasks: (1) finding the probability Pt(Fn) that a
randomly chosen element of Mn(t) is in Fn, and (2) showing that t∗(n) =
min{h|Ph(Fn) ≥ 1/2} is in th(F ), where F = (F1, F2, . . . , Fn, . . .) is a
sequence of families. Completing task (1) we explicitly find the value of
Pt(Fn) for arbitrary t and n,57 and completing task (2) we find a threshold
function for F , and thus a threshold function for any series of sets Gn,t,
n = 1, 2, . . ., of configurations C on Gn of size t(n) = |C|.

4.2.2 Preliminary results

In this section we relate the threshold to the big-Theta function Θ (The-
orem 4.2), and present some preliminary results regarding generic graph
sequences G = (G1, G2, . . . , Gn, . . .) and H = (H1, H2, . . . , Hn, . . .).

Theorem 4.2. th(G ) = Θ(g) iff g ∈ th(G ).

Proof. If th(G ) = Θ(g), then g ∈ th(G ) since g ∈ Θ(g) because g(n)/g(n) =
1 < 2 for all n ≥ 1.

If g ∈ th(G ), then if f ∈ th(G ) we must have f (n)/g(n) < c for all
n > k and some k (that is f ∈ O(g), for else f (n)/g(n) → ∞ as n → ∞, so
f � g. We may now pick t so that f � t � g, in this case PG (n, t) → 1
since t � g and g ∈ th(G ) and PG (n, t) → 0 since f � t and f ∈ th(G ) –
a contradiction. Thus f ∈ O(g). Similarly f ∈ Ω(g) (for else g � f and a
similar argument applies).

The theorem now follows.

In the following, we assume that V(Hn) = V(Gn) for any n ≥ 1.

Theorem 4.3. If E(Hn) ⊆ E(Gn), then PG (n, t) ≥ PH (n, t).

57In fact, Hurlbert (2014) calculates Pt(Fn) to |Fn(t)|/(n+t−1
n ). This is understandable

since |Fn(t) is the number of solvable configurations of size t on [n], and (n+t−1
n ) is the

number of possible configurations of size t on [n]; thus, dividing the former by the latter,
we get the probability that a randomly chosen element in Mn(t) of all possible configu-
rations of size t on [n] is solvable, this follows by classic probability theory.
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Proof. Notice that V(Hn) = V(Gn) = n. Since E(Hn) ⊆ E(Gn) and the
edge set of the two graphs coincide, every Hn-solvable distribution is Gn-
solvable, because for every initial distribution of t pebbles on Hn every
possible pebbling move in Hn is by implication possible in Gn.

Lemma 4.4. If PG (n, t) ≥ PH (n, t) for all n, then th(G ) ≤ th(H ).

Proof. Let PG (n, t) ≥ PH (n, t) for all n.
We need to show that th(G ) ≤ th(H ). This is equivalent to Θ(g) ≤

Θ(h) for g ∈ th(G ) and h ∈ th(H ). By Definition 4.1 we need to show
that whenever g0 ∈ Θ(g) = th(G ) and h0 ∈ Θ(h) = th(H ) (where the
equalities follows by Theorem 4.2), it follows that g0 ∈ O(h0).

Suppose g0 /∈ O(h0). Then g0/h0 → ∞ as n → ∞. Hence g0 � h0.
Choose t so that g0 � t � h0. Since g0 ∈ th(G ) and h0 ∈ th(H ) we
have PG (n, t) → 0 (g0 � t) and PH (n, t) → 1 (t � h0). So the inequal-
ity PG (n, t) ≥ PH (n, t) gives us 0 ≥ 1 in the limit. A contradiction. By
reductio ad absurdum g0 ∈ O(h0), and this ends the proof.

Theorem 4.5. If E(Hn) ⊆ E(Gn) for all n, then th(G ) ≤ th(H ).

Proof. The theorem follows by Theorem 4.3 and Lemma 4.4.

4.2.3 Elementary results

Now we will explicitly calculate the threshold for the sequence of com-
plete graphs (Theorem 4.6), and relate the threshold of a graph sequence
G to the pebbling number of each graph in G (Theorem 4.7).

Let K = (K1, K2, . . . , Kn, . . .) denote the sequence of complete graphs
where Kn is a complete graph on n vertices. The first five graphs in this
sequence may be seen in Figure 18.
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Figure 18: The first five graphs K1, K2, K3, K4, K5 (in that order starting
from the upper left corner) in the sequence K = (K1, K2, . . . , Kn, . . .) of
complete graphs.

Theorem 4.6 (Czygrinow et al., 2002). th(K ) = Θ(n1/2).

Proof. The number of configurations of size t on n vertices is equal to the
number of ways to put t unlabeled balls into n labeled urns, and this num-
ber is equal to (n+t−1

t ).58

Moreover, if C is a configuration on Kn of size t, then for the set B =

{Configurations C on Kn| C is not solvable} we have |B| = (n
t), since this

is the number of distributions where there is at most one pebble at each
vertex for t(n) ≤ n− 1, and each such distribution is unsolvable according
to the proof of Lemma 2.1 (for t(n) ≥ n, Kn is solvable by Corollary 2.5.1).

It follows that

P(B) =
(n

t)

(n+t−1
t )

.

Since

(n
t)

(n+t−1
t )

=

n!
(n−t)!t!
(n+t−1)!
(n−1)!t!

=

n!
(n−t)!

(n+t−1)!
(n−1)!

=
n(n− 1) · · · (n− t + 1)

(n + t− 1)(n + t− 2) · · · (n− 2)

58See the second paragraph in section 4 for an extended reasoning of this fact.
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we have

P(B) =
n(n− 1) · · · (n− t + 1)

(n + t− 1)(n + t− 2) · · · (n− 2)
=

(
(n + t− 1)(n + t− 2) · · · (n− 2)

n(n− 1) · · · (n− t + 1)

)−1

≤
(

n + t− 1
n

)−t
= (1 + t/n− 1/n)−t ≤ (et/n − 1/n)−t ≈ (et/n)−t

= e−t2/n,

where we have used the series expansion ex = ∑∞
k=0

xk

k! , and where
1/n ≈ 0 for large n.59

Now,

lim
n→∞

−t2

n
=

{
−∞ if t� n1/2 (thus t2 � n),
0 if t� n1/2.

Hence,

lim
n→∞

P(B) = lim
n→∞

e−t2/n =

{
0 if t� n1/2,
1 if t� n1/2,

so that

lim
n→∞

PK (n, t) = lim
n→∞

(1− P(B)) =

{
1 if t� n1/2,
0 if t� n1/2.

The theorem follows by Definition 4.2.

Theorem 4.7. For any graph sequence G and function g(n) = π(Gn) we have
th(G ) ⊆ O(g).

Proof. For every g0 ∈ th(G ) we have to show that there exists constants
c, k > 0 such that g0(n)/g(n) < c for all n > k.

If g0 /∈ O(g), then g0(n)/g(n) → ∞ as n → ∞. But then for an distri-
bution on Gn of size t(n) with g0(n)� t(n)� g(n) we have PG (n, t)→ 1,

59The series expansion of ex is explained in Principles of Mathematical Analysis (Rudin,
1976: 178)[25].
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since t(n) � g(n) = π(Gn), and PG (n, t) → 0 since g0(n) � t(n) and
g0 ∈ th(G ).

Define Q = (Q1, Q2, . . . , Qm, . . .) where Qm the m−dimensional cube
with 2m vertices.

Corollary 4.7.1. th(Q) ⊆ O(n(Qm)).

Proof. g(nm) = π(Qm) = 2m = n(Qm) by Theorem 2.11.

Corollary 4.7.2. If diam(Gn) = 2 for all n, then th(G ) ⊆ O(n).

Proof. g(n) = π(Gn) ≤ n + 1 by Theorem 3.2.

Corollary 4.7.3. Define d(n) = diam(Gn). th(G ) ⊆ O(2d(n)n).

Proof. g(n) = π(Gn) ≤ 2d(n)n by Corollary 2.4.1.

For a special case of Corollary 4.7.3: If d(n) ≤ d for all n, then th(G ) ⊆
O(n).

4.3 Thresholds for graph sequences

In this section we derive (i) a bound for the threshold of an arbitrary graph
sequence (section 4.3.1), (ii) bounds for the thresholds of the sequence of
paths and cycles (4.3.2), and (iii) the thresholds for the sequence of stars
and wheels (4.3.3).

Note: To avoid applying the floor or ceiling function all too much, we
let all large real constants, such as 1/ε when ε > 0 is small, be integers;
that is, 1/ε will denote the smallest integer greater than or equal to 1/ε.

4.3.1 General bound for thresholds

We begin by deriving a bound for the threshold of an arbitrary graph se-
quence.

Theorem 4.8 (Czygrinow et al., 2002). For all graph sequences G : th(G ) ⊆
o(n1+ε) for all ε > 0
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Proof. Pick an arbitrary constant ε > 0. Chose uniformly at random a
configuration C on Gn of size t(n). Let P(n) denote the probability that C
is solvable.

The theorem follows if we can show that every configuration of size
t(n) with t(n) ∈ Ω(n1+ε) implies that P(n) → 1. Since in this case we
have t(n) ≥ cn1+ε for some c > 0, and then we can not have g(n) � t(n)
for g ∈ th(G ) since this would give us P(n) → 0 (since g(n) � t(n) and
g ∈ th(G )), but P(n) → 1 (since t(n) ∈ Ω(n1+ε)). Thus g ∈ o(n1+ε) by
contradiction.

Let Hl denote a graph on l vertices. Let Tl denote a spanning tree of Hl.
As discussed in Theorem 4.2, every Hl-solvable distribution is Tl-solvable,
hence π(Hl) ≤ π(Tl). In ”Pebbling graphs“ (Moews, 1992)[19] it is shown
that π(Tl) ≤ π(Pl) = 2l−1, hence π(Hl) < 2l. This result will be used
below.

Define the following: let δ > 0 be arbitrary, and t ≥ cn1+ε for some
c > 0 and some fixed positive constant n. Let l = (1 + δ)/ε and k = 2l.
Consider a graph Gn with n vertices. Let Gn(v) be a connected subgraph
of Gn containing l vertices including v ∈ V(Gn), furthermore let |CGn(v)|
denote the number of pebbles distributed on the vertices of Gn(v).

Gn(v) is called a l-neighborhood of Gn, and it is called k-bounded when-
ever |CGn(v)| < k. Below we show that there exists no k-bounded l-neighborhood.
This implies that every l-neighborhood has at least k pebbles distributed
on it. The above observation that π(Hl) < 2l implies that π(Gn(v)) < 2l,
so every configuration of size k is Gn(v) is solvable.

P(There exists a k-bounded l-neihbourhood)

≤ P(Gn(v) is k-bounded for every v)

= n
k−1

∑
i=0

P(|Gn(v)| = i) = n
k−1

∑
i=0

(l+i−1
i )(n−l+t−i−1

t−i )

(n+t−1
t )

. (4.1)

Here the first equality follows from the fact that if Gn(v) is k-bounded,
then there are less than k pebbles distributed on it.
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P(|Gn(v)| = i) =
(l+i−1

i )(n−l+t−i−1
t−i )

(n+t−1
t )

holds, since (a) there are (n+t−1
t ) number of ways to distribute t unla-

beled balls on n labeled vertices (i.e. the number of possible configura-
tions on Gn(v) of size t); and (b) multiplying (l+i−1

i ) – the number of ways
to place i unlabeled pebbles on l labeled vertices (the vertices of Gn(v)) –
with (n−l+t−i−1

t−i ) – the number of ways to place the remaining t− i unla-
beled pebbles on the (n− l) remaining vertices of Gn – we have the num-
ber of favorable distributions for the event {|Gn(v)| = i}. Dividing the
number of favorable distributions for the event {|Gn(v)| = i} – which is
(l+i−1

i )(n−l+t−i−1
t−i ) by (b) – by the number of possible configurations on

Gn(v) of size t – which is (n+t−1
t ) by (a) – we get the above equation.

Continuing on (4.1) we have

n
k−1

∑
i=0

P(|Gn(v)| = i) = n
k−1

∑
i=0

(l+i−1
i )(n−l+t−i−1

t−i )

(n+t−1
t )

=
n

(n+t−1
t )

k−1

∑
i=0

(
l + i− 1

i

)(
n− l + t− 1

t

) i−1

∏
j=0

t− j
n− l + t− 1

≤ n
(n+t−1

t )

k−1

∑
i=0

(
l + i− 1

i

)(
n− l + t− 1

t

)(
t

n− l + t− 1

)i

=
n

(n+t−1
t )

k−1

∑
i=0

(
l + i− 1

i

)(
t

n− l + t− 1

)i (n + t− 1
t

) l

∏
j=1

n− j
n + t− j

≤ n
k−1

∑
i=0

(
l + i− 1

i

)(n
t

)l

= C1n
(n

t

)l
(4.2)

≤ C1c−l(n1−εl)

= C2n−δ. (4.3)

In (4.2) and (4.3), C1 = ∑k−1
i=0 (l+i−1

i ) and C2 = C1c−l are constants with
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respect to n.
Since δ > 0, C2n−δ → 0 as n → ∞. Thus with probability 0 there

exists a k-bounded l-neighborhood. Hence, with probability 1 every l-
neighborhood contains at least k pebbles. So P(n) → 1 as n → ∞, con-
cluding what we wanted to show.

4.3.2 Sequence of paths and cycles

After calculating a general bound for the threshold of graph sequences
in Theorem 4.8, we continue by finding bounds for the thresholds of the
sequence of paths.

Let P denote the sequence (P1, P2, . . . , Pn, . . .) where Pn is the path on
n vertices. To find th(P) we need an important lemma, and Markov’s
inequality.

When Czygrinow et al. (2002) proved Theorem 4.11 below, they no-
ticed that Lemma 4.9 below holds, but without proving this fact. Since
Theorem 4.11 is dependent on Lemma 4.9, we prove the lemma in this
thesis:

Lemma 4.9. Pn (with V(Pn) = {v1, v2, . . . , vn}) is solvable iff ∑n
i=1 C(vi)/2i−1 ≥

1.

Proof. Label the vertices of Pn as v1, v2, . . . , vn, where vi is adjacent to vi+1

and vi−1 for 2 ≤ i ≤ n− 1, v1 is adjacent to v2, and vn−1 is adjacent to vn.
Define the weight W of C as W = ∑n

i=1 C(vi)/2i−1.60

If one moves a pebble from vi to vi−1 the weight W, then all terms in W
are constant except possibly C(vi)

2i−1 and C(vi−1)
2i−2 . As a result of the pebbling

move vi → vi−1, the sum C(vi)
2i−1 + C(vi−1)

2i−2 is changed to C(vi)−2
2i−1 + C(vi−1)+1

2i−2 ,

where we have derived a new configuration C0 with C0(vi) = C(vi)−2
2i−1 ,

C0(vi−1) =
C(vi−1)+1

2i−2 and C0(v) = C(v) for all other vertices v.

The weight of C0 is the same as the weight W of C since C(vi)−2
2i−1 +

C(vi−1)+1
2i−2 = C(vi)

2i−1 + C(vi−1)
2i−2 . Hence, the value of the weight W of a con-

60Here i − 1 denotes the distance form vi to v1, and 2i−1 is the number of pebbles on
need to place at vi to get to v1, given that no other pebbles are placed at any other vertex
in V(Pn).
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figuration on Pn does not change as one moves towards v1. So if Pn is
solvable we must in the end have a configuration C1 derived from C satis-
fying C1(v1) = 1. Thus, C1(v1)/21−1 = 1, and so the weight of W must be
at least equal to 1. Thus, Pn can not be solvable if W < 1. In other words:
Pn is solvable iff W ≥ 1.

To proceed we need to use Markov’s inequality. The first part of the
proof below is found in (Ross, 2010: 77-78)[22].

Theorem 4.10 (Markov’s inequality). For any nonnegative random variable X
and a > 0, P(X ≥ a) ≤ E(X)

a .

Proof. If X is a nonnegative continuous random variable with density f ,
then for a > 0

E(X) =
∫ ∞

0
x f (x)dx

=
∫ a

0
x f (x)dx +

∫ ∞

a
x f (x)dx

≥ 0 +
∫ ∞

a
x f (x)dx

≥
∫ ∞

a
a f (x)dx

= a
∫ ∞

a
f (x)dx

= aP(X ≥ a),

thus P(X ≥ a) ≤ E(X)
a .

If X is a nonnegative discrete random variable with probability mass
function p, then
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E(X) = ∑
x:p(x)>0

xp(x)

= ∑
x:p(x)>0,x<a

xp(x) + ∑
x:p(x)>0,x≥a

xp(x)

≥ 0 + ∑
x:p(x)>0,x≥a

xp(x)

≥ ∑
x:p(x)>0,x≥a

ap(x)

= a ∑
x:p(x)>0,x≥a

p(x)

= aP(X ≥ a),

thus P(X ≥ a) ≤ E(X)
a .61

Using Lemma 4.9 and Markov’s inequality, we may find the threshold
for P .

Theorem 4.11 (Czygrinow et al., 2002). th(P) ⊆ Ω(n).

Proof. Chose a configuration uniformly at random from all configurations
on Pn of size t(n). Let P(n) denote the probability that the configuration is
solvable.

If t(n) � n implies P(n) → 0, then the theorem follows. Since if f ∈
th(P) but f /∈ Ω(n) we would have f (n) � n, and we could pick t(n)
such that f (n) � t(n) � n which would imply P(n) → 1 (since f (n) �
t(n)) and P(n) → 0 since t(n) � n by the yet to be proven result. So we
show that t(n)� n implies P(n)→ 0.

61Here we present another proof of Markov’s inequality when X is a nonnegative dis-
crete random variable: Let A be the event {X ≥ a}. Let 1A be equal to 1 whenever the
relation described by A holds, and equal to 0 otherwise. X ≥ a1A in this case. Since if
1A = 1 then X ≥ a, which was true since 1A = 1 and thus the event A occurs, and if
1A = 0 then X ≥ 0 which always holds since X is a nonnegative. Taking expectations on
both sides of X ≥ a1A we have E(X) ≥ E(a1A) = aE(1A) = a(0P(X < a) + 1P(X ≥ a)),
so E(X) ≥ aP(X ≥ a) and thus P(X ≥ a) ≤ E(X)

a .
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We show that the probability that W ≥ 1, and thus by Lemma 4.8 that
Pn is solvable, tends to 0 as n→ ∞ whenever t� n.

Define t(n) = n/ω for some ω → ∞. Notice that E(C(vi)) = t/n,
since it is as likely to put a pebble on vi as any other vertex vj, i 6= j, and
n · t/n = t = the number of pebbles distributed on Pn, thus E(C(vi)) =

1/ω → 0 for every i = 1, 2, . . . , n. Hence,62

E(W) =
n

∑
i=1

E(C(vi)

2i−1

= 1/ω
n

∑
i=1

1
2i−1

< 2/ω → 0.

By Markov’s inequality P(W ≥ 1) ≤ E(W)/1→ 0.

Corollary 4.11.1. For every ε > 0, th(P) ⊆ Ω(n) ∩ o(n1+ε).

Proof. From Theorem 4.8 and 4.11.

Corollary 4.11.1 says essentially that for every ε > 0, every threshold
function t(n) of th(P) can not be smaller than n or as large as n1+ε.63

Now, let C = (C1, C2, . . . , Cn, . . .) where Cn is the cycle graph on n
vertices.

Theorem 4.12 (Czygrinow et al., 2002). th(C ) ⊆ Ω(n).

Proof. The proof is similar to that of Theorem 4.11. So pick a configuration
uniformly at random from the set of all configurations on Cn of size t(n)
with t(n)� n, and set t(n) = n/ω for some ω → ∞. Label the vertices as
v1, v2, . . . , vn, which denotes Pn with v1 adjacent to vn.

Define W1 = ∑k
i=1 C(vi)/2i−1 and W= ∑n

i=k+1 C(vi)/2n−i+1. By Lemma
4.8, the probability that Cn is solvable is equal to the probability that W1 ≥
1 or W2 ≥ 1, since one can either solve Cn by making the path v1, v2, . . . , vk

62∑∞
i=0

1
2i = 2, so ∑R

i=0
1
2i < 2 for all integers R > 0.

63More specifically: there exists c, k such that n/t(n) < c for all n > k, and
limn→∞ t(n)/n1+ε = 0. Confer Definition 4.1.

72



solvable, which happens iff W1 ≥ 1; or one can make it so that 2 pebbles
are placed at vn for the path vk+1, vk+2, . . . , vn, which happens iff W2 ≥ 1.

Now E(W1) = ∑k
i=1 E(C(vi))/2i−1 = 1/ω ∑k

i=1 1/2i−1 < 2/ω → 0,
and similarly E(W2) <

2
ω → 0.

Thus the probability that Cn is solvable is equivalent to P(W ≥ 1 ∪
W2 ≥ 1) ≤ P(W ≥ 1) + P(W ′ ≥ 1) ≤ E(W)/1 + E(W ′)/1, and this tends
to 0.

Corollary 4.12.1. For every ε > 0, th(C ) ⊆ Ω(n) ∩ o(n1+ε).

Proof. From Theorem 4.8 and 4.12.

4.3.3 Sequence of stars and wheels

In this section we derive the threshold for the sequence of stars. From
this result the threshold for the sequence of wheels is easily found using
Theorem 4.6 and Theorem 4.2.

Let S denote the sequence of stars (S1, S2, . . . , Sn, . . .) where Sn is the
star on n vertices.

Theorem 4.13 (Czygrinow et al., 2002). th(S ) = Θ(n1/2).

Proof. For each n, choose a configuration uniformly at random from the
set of all configurations on Sn of size t(n). Let P(n) be the probability that
C is solvable.

Since E(Sn) ⊆ E(Kn), Theorem 4.1 and 4.4 gives us that t(n) � n1/2

implies P(n)→ 0. Now, we show that t(n)� n1/2 implies that P(n)→ 1.
Define t(n) = ωn1/2 for some ω → ∞. By Theorem 2.5, π(Sn) = n. So

assume that t(n) < n for all n, else P(n)→ 1 and we are done.
Define q = 1− P(n). We will find an upper bound for q and show that

this bound approaches 0 as n→ ∞.
If C is unsolvable, then one of (i)–(iii) holds:

(i) C(c) ≤ 1 for the center c (else one may pebble to any vertex of Sn

from c);
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(ii) there exists at most one vertex v ∈ V(Sn) with C(v) ≥ 2 (if there
exists two vertices v1, v2 for which C(v1), C(v2) ≥ 2 we may pebble
so that C(c) ≥ 2, and then C is solvable, a contradiction), and

(iii) C(v) < 4 for all v ∈ V(Sn) for diam(Sn) = 2.

Thus, the number of unsolvable configurations satisfying (i) to (iii) is
no more than the number of configurations C having no v with C(v) > 1
plus the number of configurations having one, and only one, v with 2 ≤
C(v) ≤ 3. This number is

(
n
t

)
+ (n− 1)

(
n− 2
t− 2

)
+ (n− 1)

(
n− 2
t− 3

)
.64

Since there are (n+t−1
t ) possible distributions of size t at the vertices of

Sn, we have

q =
(n

t) + (n− 1)(n−2
t−2) + (n− 1)(n−2

t−3)

(n+t−1
t )

=

(
1 +

t(t− 1)
n

+
t(t− 1)(t− 2)
n(n− t + 1)

)
(n

t)

(n+t−1
t )

<

(
1 +

t2

n
+

t3

n(n− t)

)(
n

n + t

)t−1

(a)
.
(

1 + ω2 +
ω3n1/2

n−ωn1/2

)
e−t(t−1)/(n+t)

(b)
.
(

1 + ω2 +
ω3n1/2

n−ωn1/2

)
e−ω2/2. (4.4)

64For (n
t) one distributes so that each of the n labeled vertices contains no more than one

pebbles. (n−2
t−2) is the number of ways one can place two pebbles at one specified vertex,

then one pebble at each vertex of the n− 2 remaining vertices using the remaining t− 2
pebbles; one can do this for any vertex except the center vertex, and so one can do it for
n− 1 vertices; summing gives us (n− 1)(n−2

t−2) number of ways to place two pebbles at one
vertex, and one pebble on the remaining vertices. Regarding the expression (n− 1)(n−2

t−3)

one does the same as for (n− 1)(n−2
t−2) but begins by placing three pebbles at some vertex

v 6= c so that only t− 3 pebbles remain.
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To see that (a) ( n
n+t )

t−1 . e−t(t−1)/(n+t) we show that n
n+t . e−t/(n+t).

Note that n
n+t (e

−t/(n+t))−1 = n
n+t et/(n+t). Now, n/(n + t) → 0 as n → ∞

since the fact that t > 0 implies that n + t > n and thus n/(n + t) < 1.
Similarly t/(n + t) < 1 since n > 0 and n + t > t. Thus n

n+t et/(n+t) →
0e0 = 0 as n→ ∞. This shows that ( n

n+t )
t−1 . e−t(t−1)/(n+t).

To see that (b) e−t(t−1)/(n+t) . e−ω2/2 we first remember that ω =

t/n1/2, so ω2 = t2/n. Hence,

e−t(t−1)/(n+t)(e−ω2/2)−1 = e−t(t−1)/(n+t)eω2/2

= e−t(t−1)/(n+t)+ω2/2

= e−t(t−1)/(n+t)+t2/2n

≈ e−t2/(n+t)+t2/2n

≈ e−t2/n+t2/2n

= e−t2/2n

= e−ω2/2

which goes to 0 as ω → ∞.
The expression in (4.4) tends to zero for ω → ∞. To show this, we

consider two cases: Either (i) ω < n1/2 − 1 or (ii) ω ≥ n1/2 − 1.
For (i) n − ωn1/2 > n1/2, so the right side of the last expression is at

most [1 + ω2 + ω3]e−ω2/2 which tends to 0 as ω → ∞.
For (ii) n − ωn1/2 = n − t ≥ 1 (since t < n), so the last expression

is at most [1 + ω2 + ω3n1/2]e−ω2/2 ≤ [1 + ω2 + ω3(ω + 1)]e−ω2/2 (using
ω + 1 ≥ n1/2) and this tends to 0 as ω → ∞.

Hence, q→ 0 whenever t� n1/2.

Let W be equal to (W1, W2, . . . , Wn, . . .) where Wn is the wheel graph
on n vertices.

Corollary 4.13.1 (Czygrinow et al., 2002). th(W ) = Θ(n1/2).

Proof. Notice that E(Sn) ⊆ E(Wn) ⊆ E(Kn). Since the threshold for both
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S and K is Ω(n1/2) (recall Theorem 4.6), the same must be true of W by
Theorem 4.2.
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5 About the research on graph pebbling

In section 1 to 4 we were concerned with the foundations of graph peb-
bling. The main topics have been the pebbling number for the determinis-
tic model (3.1), and the threshold for the probabilistic model (4.3). Let us
now discuss some recent research in graph pebbling (5.1), say something
about variations and applications in the theory of graph pebbling (5.2),
and finally lay forward normative statements on what research in graph
pebbling should concentrate on (5.3).

5.1 Recent research

The pebbling number π(G) is the minimum number of pebbles such that
any configuration C on G is solvable. A configuration C on G is solvable
iff we can move at least one pebble to any vertex. This analysis feels lim-
ited. Because if we define a cover of t vertices in V(G) as a distribution in
which there is at least one pebble on t vertices in V(G), and if we, given a
configuration C on the set A of vertices, define the fact that A can be cov-
ered as the fact we may from C derive a new configuration on A such there
is a cover of all vertices in A, then we may extend the notion of solvabil-
ity into the notion of t-solvability: The configuration C on G is t-solvable
iff every subset A of V(G) of size t may be covered. Let π(G, t) denote
the minimum number of pebbles such that any configuration C on G is
t-solvable.

Another approach is based on pebbling price. Traditionally, when peb-
bling we had to ”pay“ one pebble for a pebbling step. But what if we let
the price be arbitrary, and not necessarily equal to one? For example we
may define the price at every vertex vi in V(G) as pi, where pi ≥ 2 for
1 ≤ i ≤ n(G). In this way we can define a price function P : V(G) → Z≥2

on G. A pebbling step from u to v may then be defined as the function
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Su,v : C(G)→ C(G) such that

Su,v(C)(x) =





C(x)− P(x) if x = u,
C(x) + 1 if x = v,
C(x) else.

Notice that S(C) is in C(G), so C(u) ≥ P(u) must hold for a pebbling step
to be possible.

Now we may generalize the notion of a pebbling number into the no-
tion of a pi-pebbling function π(G, P, t). This is the minimum number k such
that any configuration C on G of size k with price function P is t-solvable.
The expression π(G, 2P, n(G)), where 2P(v) = 2 for any vertex v in V(G),
is called the cover pebbling number and is denoted by γG.

The pi-pebbling function was introduced by Taylor (2005)[24], and the
cover pebbling number was studied by Sjöstrand (2004)[23]. In fact, Sjös-
trand studied the cover pebbling number in a more general fashion by
defining the notion of a w-cover: A w-cover is a distribution of pebbles
such that each vertex v has at least w(v) pebbles on it. What we defined as
a cover is in Sjöstrand’s notation a w-cover where w(v) = 1 for all vertices
v. Using this remark, we see that we may extend the pi-pebbling function
into a more generalized version, call it the generalized pi-pebbling function
π(G, P, t, w), which asks for the minimum number k such that for any con-
figuration C on G of size k we may pebble t vertices vi, 1 ≤ i ≤ t, of V(G)

such that each vertex vi contains at least w(vi) pebbles, or equivalently that
each vi satisfies C(vi) ≥ w(vi).65 The expression π(G, 2P, n(G), w) will be
denoted by γG(w). Thus, the cover pebbling number γG is γG(w) where
w(v) = 1 for all v in V(G).

Before proceeding to the next section, we must define the concept of a
directed graph:

Definition 5.1 (Directed graph). A finite directed graph G is a pair of finite sets
(V(G), E(G)) such that E(G) is a subset of the set of ordered pairs of V(G).66

65Note that π(G, P, t) is π(G, P, t, w) where w(v) = 1 for all v ∈ V(G).
66Consult footnote 6 for a definition of ordered (and unordered) pairs.
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Informally, we may think of directed graphs as graphs where we al-
low one-way edges (a, b) which says that we can only go from vertex a to
vertex b, but not from b to a. An example is presented in Figure 19.

Figure 19: A representation of the directed graph G = (V, E) with vertex
set V = {a, b, c} and edge set E = {(a, b), (c, a), (c, b)}.

5.1.1 Cover pebbling numbers

One of the most important theorems regarding cover pebbling numbers,
the cover pebbling theorem, was proven by Sjöstrand (2004). For our pur-
poses, we formulate a part of this theorem:

Theorem 5.1 (The cover pebbling theorem). Let G be a directed or undirected
connected graph. Let w be a function V(G) → Z≥1. To find γG(w), it is suffi-
cient to consider simple initial configurations where all pebbles are placed on one
single vertex in V(G).

Moreover, we conjecture that the price function may be arbitrary in
Theorem 5.1, since the proof of the cover pebbling theorem in (Sjöstrand,
2004) seems to be manipulable so that one may allow the price at every
vertex to be arbitrary. That is, we conjecture that there is a similar theorem
for π(G, P, n(G), w) for any price function P 6= 2P.
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Conjecture 1. Let G be a directed or undirected connected graph. Let w be a
function V(G) → Z≥1. To find π(G, P, n(G), w) for any price function P, it is
sufficient to consider simple initial configurations on G.

Reflecting on Theorem 5.1 we may formulate it as follows: If S(G) is
the set of simple initial configurations on G, then the w-cover pebbling
number of G is found by finding the minimum number k such that we
may from any configuration C in S(G) of size k obtain a w-cover.

Noting this, we will derive a corollary from Theorem 5.1. In (Sjöstrand,
2004) it is stated that, in the light of Theorem 5.1, it is easy to compute
the cover pebbling number for Pn, Cn, Qn, Kn, the complete multipartite
graph Kn1,n2,...,nk , where n1 ≥ n2 ≥ · · · ≥ nk, and Wn. We will derive these
cover pebbling numbers using Corollary 5.1.1, and also derive the cover
pebbling number for the fan graph Fn and friendship graph FRn.

Define the cost from u to v as 2dist(u,v), and the cost cost(u) of vertices u
in V(G) as the sum ∑v∈V(G) 2dist(u,v).

Corollary 5.1.1. The cover pebbling number γG of G is maxu∈V(G) cost(u).

Proof. Consider a simple initial configuration on G of size k. By the defi-
nition of a simple initial configuration this configuration distributes all k
pebbles on one vertex u. To move one pebble to v 6= u we need 2dist(u,v)

pebbles on u. For this move 2dist(u,v)− 1 pebbles are consumed, and 1 peb-
ble is placed on v. Ignoring the pebble on v, and calculating this as a cost,
we see that 2dist(u,v) is the cost for filling v with one pebble from u.

To move a pebble to w 6= u, v we need to place 2dist(u,w) pebbles at
u, consuming all pebbles in this move together with a placement of one
pebble at w. Continuing in this way for all vertices and summing we get
cost(u)− 1. Placing one extra pebble at u gives ∑v∈V(G) 2dist(u,v) = cost(u).
Thus, any simple configuration of size maxu∈V(G) cost(u) placing all peb-
bles on any vertex u in V(G) is n(G)-solvable.

Theorem 5.2 to 5.8 proves the cover pebbling number for the graphs
mentioned by Sjöstrand (2004) using Corollary 5.1.1.

Theorem 5.2. γPn = 2n − 1, n ≥ 1.
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Proof. Since the cost of the last (or first) vertex r is 20 + 2 + 22 + · · · +
2n−1 = 2n − 1,67 and the cost is less than this number for any other vertex
v 6= r of Pn since they are generally closer to other vertices, the theorem
follows from Corollary 5.1.1.

Theorem 5.3. γC2n = 3(2n − 1), n ≥ 1.

Proof. The cost of any vertex u is 20 + 2 · 21 + 2 · 22 + · · · + 2 · 2n−1 + 2n,
since u has distance 0 to itself, and distance k to two vertices for each 1 ≤
k ≤ n− 1, and distance n to one vertex. This is equal to

1 + 4(1 + 2 + · · ·+ 2n−2) + 2n = 1 + 4(2n−1 − 1) + 2n

= 3(2n − 1).

Theorem 5.4. γC2n+1 = 2n+2 − 3, n ≥ 1.

Proof. The cost of any vertex u of C2n+1 is 20 + 2 · 21 + 2 · 22 + · · ·+ 2 · 2n

since u has distance 0 to itself and distance k to two vertices for each 1 ≤
k ≤ n. This cost is equal to

1 + 4(1 + 2 + · · ·+ 2n−1) = 1 + 4(2n − 1)

= 2n+2 − 3.

Theorem 5.5. γQn = 3n, n ≥ 0.

Proof. The cost of any vertex is 3n.
To see this, pick an arbitrary vertex u.
Induction base: For n = 0, clearly cost(u) = 1 for the only vertex u of

Q0.
Induction step: Suppose that cost(u) = 3n for any vertex u of Qn for

some n ≥ 1. We show that γQn+1 = 3n+1. Partition Qn+1 into two cubes

67Follows from the geometric sum G(n) = x0 + x1 + · · ·+ xn−1 = xn−1
x−1 , n ≥ 1, with

x = 2.
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Qn and Q′n. Let u be a vertex of Qn. The cost cost(u, Qn+1) for u with
respect to Qn+1 is the cost cost(u, Qn) times 3, since one needs cost(u, Qn)

pebbles at u to cover every vertex of Qn with one pebble, then to pebble
the vertices of Q′n one needs to pay the cost of moving two extra pebbles
to every vertex in V(Qn) so that one may move a pebble from every vertex
in V(Qn) to one, and only one, adjacent vertex in V(Q′n), and this costs us
2cost(u, Qn) pebbles, since we need two pebbles at every vertex in V(Qn)

for this to be possible.
Summing theses costs we get cost(u, Qn+1) = 3cost(u, Qn). Using

cost(u, Qn) = 3n by induction, we conclude that cost(u, Qn+1) = 3n+1.
Conclusion: Thus, by the principle of mathematical induction,

cost(u, Qn) = 3n is true for all n ≥ 0.

Theorem 5.6. γKn = 2n− 1, n ≥ 1.

Proof. It costs 2(n− 1) pebbles to move one pebble to each vertex in V(Kn)

from any vertex v in V(Kn), and then one finally places one vertex at v to
get the cost 2(n− 1) + 1 = 2n− 1.

Theorem 5.7. γKn1,n2,...,nk
= 4n1 + 2n2 + · · · + 2nk − 3, where n1 ≥ n2 ≥

· · · ≥ nk ≥ 1, k ≥ 2.

Proof. The cost of any vertex at the set with n1 vertices is 4n1 + 2n2 + · · ·+
2nk − 3, and the cost for a vertex in the set of ni, 2 ≤ i ≤ k, vertices is

4ni + 2
k

∑
j=1,j 6=i

nj − 3 ≤ 4n1 + 2n2 + · · ·+ 2nk − 3,

where the inequality follows from n1 ≥ ni for all i 6= 1.
To show that the cost is 4n1 + 2n2 + · · · + 2nk − 3 for every vertex in

the set of n1 vertices (and thus by the above inequality that this is the
maximum cost), consider a vertex u in the set of n1 vertices. One needs
2n2 + 2n3 + · · · + 2nk pebbles to move one pebble to each of the vertex
not in the set of vertices which u is included in, then one needs 4(n1 − 1)
pebbles at u to move one pebble to each vertex, except u, in the set of
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vertices which u is included in (since the distance is 2 to such vertices),
then finally placing one pebble at u we have

cost(u) = 4(n1 − 1) + 2n2 + 2n3 + · · ·+ 2nk + 1

= 4n1 + 2n2 + · · ·+ 2nk − 3.

Theorem 5.8. γWn = 4n− 9, n ≥ 4.

Proof. The cost of the center vertex is 2(n− 1) + 1 = 2n− 1. The cost of
any other vertex u is

1 + 2 · 3 + 4(n− 4) = 1 + 6 + 4n− 16

= 4n− 9,

since u has distance 0 to itself, three neighbors, and distance 2 to any other
vertex thanks to the center vertex adjacent to all vertices of Wn.

So the maximum cost is 4n− 9 since 4n− 9 ≥ 2n− 1 because 2n ≥ 8
for n ≥ 4.

Before continuing, I prove two theorems not mentioned by Sjöstrand
(2004).

Theorem 5.9. γFn = 4n− 7, n ≥ 2.

Proof. Let Fn consists of the path a1a2 · · · an−1 with an adjacent to all ver-
tices ai, 1 ≤ i ≤ n− 1.

cost(an) = 2(n − 1) + 1 since dist(an, ai) = 1 for all n − 1 vertices ai,
1 ≤ i ≤ n− 1.

cost(a1) = cost(an−1) = 1 + 2 · 2 + 4(n − 3) = 4n − 7 since both a1

and an−1 are adjacent to two vertices, and with distance two to any other
vertex (except themselves).

cost(ai) = 1 + 2 · 3 + 4(n − 4) = 4n − 9, 2 ≤ i ≤ n − 2, since ai is
adjacent to three vertices, and distance two to all other vertices (except
itself).
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The maximum of these numbers is 4n− 7 for n ≥ 2.

Theorem 5.10. γFRn = 8n− 3, n ≥ 1.

Proof. The cost of the center vertex is

2(n(FRn)− 1) + 1 = 2n(FRn)− 1

= 2(2n + 1)− 1

= 4n + 1,

since it is adjacent to any other vertex, and distance 0 to itself.
The cost of any other vertex is

2 · 2 + 4(n(FRn)− 3) + 1 = 4 + 4(2n− 2) + 1

= 8n− 3,

since these are adjacent to the center vertex and one vertex in some copy
of C3 in FRn, and distance to all other vertices (except themselves).

Since 8n− 3 ≥ 4n + 1, because 4n ≥ 4 for n ≥ 1, the maximum cost is
8n− 3.

5.1.2 The pi-pebbling function

Going back to Taylor’s (2005) pi-pebbling function we find an interesting
theorem concerning π(G, P, n(G)). This theorem reduces the workload of
finding π(G, P, n(G)− 1).

Theorem 5.11. For any graph G, π(G, P, n(G)− 1) + 1 = π(G, P, n(G)).

Proof. Place k + 1 = π(G, P, n(G)− 1) + 1 on V(G). Pick a vertex v1 with
at least 1 pebble. We may ignore one pebble on v1 and consider the graph
G− v1. This graph may be covered since |V(G− v1)| = n(G)− 1, G− v1 ⊆
G and we have a distribution of k = π(G, P, n(G)− 1) pebbles on G.

One always cover n− 1 vertices when one covers n vertices, so
π(G, P, n(G)) > π(G, P, n(G)− 1).

The theorem now follows.
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Taylor (2005) also found three bounds on π(G, P, t) which reduced to
Theorem 2.5 in the case t = 1 and price function 2P. Furthermore, he
computed π(G, P, t) for complete graphs, path graphs and star graphs.
Thus the pi-pebbling function was successfully used. We will state and
prove two of these three bounds to illuminate how one may reason about
the pi-pebbling function.

Theorem 5.12. Number the vertices of the graph G such that the price pi of a
vertex vi satisfies pi ≤ pi+1, then for n(G) = n 6= t

n

∑
i=t+1

(pi − 1) + pn(t− 1) + 1 ≤ π(G, P, t).

Proof. Place (pi − 1) pebbles on each vi for t + 1 ≤ i ≤ n− 1. Place pnt− 1
pebbles on vn. Then there are t vertices vi, 1 ≤ i ≤ t, which contains no
pebble, and we have a distribution of ∑n−1

t+1 (pi − 1) + pnt− 1 pebbles on
V(G). One can only move pebbles from vn, and since pnt− 1 pebbles are
placed on vn one may move one pebble from vn no more than t− 1 times.
So one can at most pebble t − 1 vertices from vn (even if one passes vi,
t + 1 ≤ i ≤ n− 1, so one can not take advantage from them in this regard),
but one needs to pebble t vertices. Hence,

π(G, P, t) >
n−1

∑
t+1

(pi − 1) + pnt− 1

=
n

∑
i=t+1

(pi − 1) + pn(t− 1).

Theorem 5.13. Let d be the diameter of the graph G and let pi ≤ pi+1 for all
vertices vi in V(G), then

π(G, P, t) ≤ t






n

∏
i=n−(d−1)

(pi)− 1


 (n− 1) + 1


 .
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Proof. (t = 1) π(G, P, 1) ≤ (∏n
i=n−(d−1)(pi)− 1)(n− 1) + 1, since if

(∏n
i=n−(d−1)(pi) − 1)(n − 1) + 1 pebbles are placed on the vertices of G,

either every vertex contains at least on pebble, or one vertex u contains

∏n
i=n−(d−1)(pi) pebbles. From u one can pebble to any other vertex, since

diam(G) = d and using ∏n
i=n−(d−1)(pi) pebbles we can traverse any path

of length d since pn−(d−1)pn−(d−2) · · · pn is the largest amount of pebbles
one needs to traverse such a path.

(t ≥ 2) Since π(G, P, 1) is the minimum number of pebbles we need to
pay to pebble any vertex. Hence, we see that π(G, P, 1) ≤ tπ(G, P, t) since
we may use π(G, P, 1) to pebble one arbitrary vertex, then ignore that this
vertex has one pebble on it, and place π(G, P, 1) pebbles again on V(G)

so as to pebble any other vertex. Continuing like this a number of t times
gives the stated result.

5.2 Variations and applications

I will now comment on some known variations and applications in graph
pebbling modeling.

The optimal pebbling number πopt(G) of G is the minimum number of
pebbles that may be distributed on the vertices of G such that at least one
pebble may be moved to any vertex in V(G). In (Wyels, 2003)[27] it was
shown that πopt(C3t+r) = 2t + r for nonnegative integers t and 0 ≤ r ≤ 2.
This was essentially proven by extending the proof that
πopt(P3t+r) = 2t + r for nonnegative integers t and 0 ≤ r ≤ 2 (Pachter et
al., 1995)[20].

Let G and H be two graphs. Then the Cartesian product G × H of G
and H denotes the graph with vertex set V(G)×V(H), and edge set68

68Cartesian products for sets may be explained as follows: If A and B are two arbi-
trary sets, the Cartesian product A× B is the set of ordered pairs (a, b) such that a ∈ A
and b ∈ B. This may be generalized to include products of a number of n sets. For-
mally, the product of n sets A1, A2, . . . , An is A1 × A2 × · · · × An = {(a1, a2, . . . , an)|∀i =
1, 2, . . . , n, ai ∈ Ai}. The notation A2 denotes A× A, and An for positive integers n may
is generalized in the obvious way.
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E(G× H) = {
(
(g, h), (g′, h′)

)
|g = g′ and (h, h′) ∈ V(H)2}

∪ {
(
(g, h), (g′, h′)

)
|h = h′ and (g, g′) ∈ V(G)2}.

A famous conjecture is the following:

Conjecture 2 (Graham’s conjecture). For any two graphs G and H,

π(G× H) ≤ π(G)π(H).

This conjecture was already formulated in 1989 by Chung. Interest-
ingly, Wyels (2005) showed that

πopt(G× H) ≤ πopt(G)πopt(H)

for any two graphs G and H.
Pebbling numbers for Cartesian products of graphs was studied in

(Rongquan & Ju Young, 2000)[21]. They showed that

π(Km,n × G) ≤ π(Km,n)π(G)

for any graph G.
Hurlbert (2005)[15] argues that since graph pebbling is very much alike

games such as ”Cops and Robbers“ and ”Chip-Firing“, and since these
games have been successfully applied in graph theory and theoretical com-
puter science, one may expect a similar impact from the theory of graph
pebbling. One may think of the cost of a pebbling step as a toll or as the
loss of money, information, oil or electrical charge. Since the mentioned
substances are often expressed in real numbers, we may prefer to consider
configurations taking real values on graph vertices.

A variation of graph pebbling that allows one to move real valued
”pebbles“ is that of efficient pebbling (Pachter, 1995). Instead of moving
pebbles, we may move sand, that is: a substance divisible into infinitesi-
mal amounts. We place piles of sand on the vertices of some graph, then
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whenever we move sand from one vertex to another, we lose half of it.
Thus, if we distribute 2diam(G) units of sand on V(G), we may move a unit
of sand to any vertex of G.

We may manipulate the above game to fit other needs. For these rea-
sons, let ε = 1

t > 0 where t is some positive integer. Place 2diamG sand
on the vertices V(G) of G. A step consists in moving ε units of sand to a
price of 2ε units of a sand at the vertex from which one moves sand. We
ask for which graphs it is possible to move one unit of sand to any vertex
of G. Let t be the least amount of pebbles such that for any distribution of
t2diam(G) pebbles on V(G) one can move one unit of sand to any vertex in
V(G). In this case we define the quanta εG = 1

t . If no such t exists, εG is
set to be equal to 0.

An efficient graph G is a connected graph G for which εG > 0. This
tells us that if 2diam(G) units of energy are distributed on V(G), and if the
energy comes in sufficiently small quanta εG, then one may move one unit
of energy to any vertex of G.

Pachter et al. (1995) characterized the efficient graphs as those graphs
which has a special property called the ”antipodal property“. He also
showed that for every smallest integer t such that 2t ≥ (n(G) − 2) for
G = Kn − e, e ∈ E(Kn),69 we have εG = 1

t .
Pacther et al. (1995) also studied how the number of edges in a graph

G relates to π(G). The intuition is supposedly that the pebbling number of
a graph G decreases as we add edges to E(G) by joining pairs of vertices
of G. What Pacther et al. (1999) showed was that if G is a connected graph
with n(G) ≥ 4, then: if |E(G)| ≥ (n−1

2 ), then π(G) = n(G). We encourage
the reader to study the relation between the number of edges in a graph G
and the pebbling number of G.

One may finally be interested in studying complexity in graph pebbling.
This subject tries to answer questions regarding how much time it takes

69The graph Kn − e, where e ∈ E(Kn), is the graph obtained by deleting the vertex e
from Kn, this is the subgraph of Kn containing the same vertices as Kn and all edges of Kn
except e. In general, if F is a subset of E where G = (V, E) is a graph, then G− F is defined
as (V, E− F), where E− F = {x ∈ E|x /∈ F}. ”Deleting“ F from G, i.e. performing the
operation G− F as previously defined, is called edge deletion.
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to solve a graph pebbling problem, such as the following question: Given
a diameter 2 graph G, how long does it take to compute that π(G) is of
Class 0 or 1?70

5.3 Future research and directed graphs

Considering Hurlbert’s comment (2005) on real valued configurations, we
may continue the generalization of the pi-pebbling function which was
initiated by Taylor (2005), and let configurations C on graphs G to be func-
tions from V(G) to R≥0.71

Consider the problem of moving oil around a network. The nodes sym-
bolizes destination, such as Stockholm and Paris. If there is an edge from
Stockholm to Paris, one may transport oil from Stockholm to Paris (with a
truck, boat, etcetera). The price of this edge is the amount of oil that is lost
in the process of transporting oil from Stockholm to Paris. Maybe the oil
company sets this cost to be the average loss of oil per ride. In any way,
this edge should not necessarily be regarded as an undirected edge. What
if the road from Stockholm to Paris is different from the road from Paris
to Stockholm in significant ways regarding the loss of oil? If it is, then one
may want to view the road from Paris to Stockholm as more or less pricey.
Thus, if one wants to study applications such as these (transportations in
networks), one should not neglect studying directed graphs. In this thesis
we have mainly studied undirected graphs. This is true to the title of this
thesis. The foundations of graph pebbling is almost exclusively busy with
analyzing undirected graphs, and that should be remedied.

Investigations on directed graphs in graph pebbling have been done
by Gundam and Higgins (2004)[12]. When pebbling on directed graphs,
they argued, we should only consider strongly connected directed graphs G.

A strongly connected directed graph
→
G is defined as a graph

→
G where any

two vertices u and v of
→
G are mutually reachable, where we define mutual

reachability between two distinct vertices u and v as the existence of a

70The answer is that this can be done in O(n(G)4) time, see (Herscovici, 2011)[13].
71The set R≥0 denotes the set of nonnegative real numbers.
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path from u to v, and the existence of a path from v to u. Because of this
we make the observation that strongly connected directed graphs contains
no sources, an unreachable vertex, and no sinks, a vertex from which one
cannot move pebbles.72 For example, in Figure 19 above we see that b is a
sink and c is a source.

Gundam and Higgins (2005) presented a theorem that may be used to
classify strongly connected directed graphs. Using this theorem they char-
acterized some graphs as strongly connected directed graphs, and derived
the pebbling numbers for these graphs. Their paper is introductory. One
should investigate graph pebbling on directed graphs in more detail, for
the purpose of interest and for the purpose of future applications. Graph
pebbling results concerning directed graphs should be an elementary part
of the theory of graph pebbling.

See Figure 20 for an example of a directed graph with no source and no
sink, hence, a strongly connected directed graph. Call the graph in Figure

20 the strongly connected directed friendship graph
→

FR2 with vertices ai,

1 ≤ i ≤ 5. We will calculate the pebbling number of
→

FR2 as an example of
how one may solve graph pebbling problems on directed graphs.

The longest (directed) path to a1 is of length 2. It can begin at either

the left or right copy of C3 in
→

FR2. If 4 · 2− 1 pebbles are distributed on
→

FR2, one of the two copies contain 4 pebbles, from which one can pebble
a1 (since a1 will be the end vertex of a directed path P3: either in the path
a4a5a1, or in the path a2a3a1, and the pebbling number with respect to a1

for both these paths is 4 (see Theorem 3.1)).

The longest path to some vertex in one of the copies of
→

FR2 is of length
4, such as the path from a2 to a5. One needs to pass a3, a1 and a4 to arrive at
a5. Ignoring a5, if we place 16 pebbles on the vertices a1 to a4, we will have
16 pebbles on a path of length 4 including all vertices. This configuration
is solvable by Theorem 3.1. Symmetrically, the same argument may be
applied to the path a4a5a1a2a3 of length 4 with a3 as the end vertex.73

72Note: One should thus reformulate Theorem 5.1, the cover pebbling theorem, and
only allow strongly connected directed graphs when mentioning directed graphs.

73When pebbling a4 or a2 in
→

FR2 the longest path is of length 3 (the path a2a3a1a4 for
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The above shows that π(
→

FR2) = 16 since the configuration placing 15
pebbles at a2 is a5-unsolvable.

Figure 20: The strongly connected directed friendship graph
→

FR2.

An open problem presented in (Gundam & Higgins, 2004)[12] is

Open Problem 1. If
→
G and

→
H are two strongly connected directed graphs, does

Graham’s conjecture hold? That is: Is it true that π(
→
G ×

→
H) ≤ π(

→
G)π(

→
H)?

Additionally we formulate two open problems:

Open Problem 2. Find the pebbling number π(
→

FRn) for the strongly connected

directed friendship graph
→

FRn on n vertices.

Open Problem 3. Find the pebbling number π(
→
Qn) for the strongly connected

directed n-dimensional cube
→
Qn.

I suggest that future research will use more general notions of graph
pebbling. Allowing configurations to be real valued, and to let them be
dependent on some price function. t-solvability should be investigated
rather than solvability only. Directed graphs is an important study, since
there are reasons that studying them will raise the probability of finding
new possible applications. Also, I want to suggest that one provides a
clear example when graph pebbling was successfully, and not trivially,

a4, and the path a4a5a1a2 for a2). One may show that 9 pebbles is sufficient to pebble a2
or a4.
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used in applications; because I have not yet seen such an example, and
if one wants graph pebbling to be viewed as part applied mathematics,
one must point to an application which is not trivial.74 It would definitely
be even more interesting if one could somehow apply the probabilistic
model to directed graphs, since many empirical problems involve not only
networks which are best described by directed graphs, but also degrees of
uncertainty and thus probability.

74The following may be an example of a trivial application of mathematics: providing
mathematics for the pleasure of those who work with mathematics. I will not discuss
what constitutes trivial mathematics, so I hope that the reader’s intuitive understanding
of this concept is similar to mine. One may certainly philosophize about this, the value
of mathematics and so on.
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6 Summary and conclusion

Foundational theorems in graph pebbling have been proven in section 2
to 4.

In section 2.2.1, Theorem 2.5, we derived lower and upper bounds for
pebbling numbers.

In section 3.1 we proved the pebbling numbers for several types of
graphs, such as the path, cycle and the n-dimensional cube. The results
are summarized in Table 1 in appendix A.

In section 3.2 we characterized diameter 2 graphs. When G is a graph
of diameter 2, it is either of Class 0 or of Class 1. This was proved in 3.2.1,
Theorem 3.13. Moreover, if G is a 3-connected diameter 2 graph, then G is
of Class 0. This was proved in 3.2.2, Theorem 3.18.

In section 4 the probabilistic model of graph pebbling was introduced.
Preliminary results and elementary results were provided in section 4.2.
Section 4.3 may be seen as the central part of section 4, where the thresh-
old for a number of graph sequences are derived, such as the sequence of
paths or the sequence of cycles. A general bound for the threshold of any
graph sequence was given in section 4.3.1, Theorem 4.8. The thresholds
derived in section 4.2.2 and 4.3 are found in Table 2, appendix A.

Section 5 discussed recent research. The pi-pebbling function and cover
pebbling number were discussed in 5.1. In 5.1.1 the cover pebbling theo-
rem was stated, and a corollary of this theorem was derived: Corollary
5.1.1. This corollary helped us prove the cover pebbling number for some
common graphs. A summary of these results are found in Table 3 in ap-
pendix A. Some theorems and proofs were provided in 5.1.2 to illuminate
how one may reason about problems regarding the pi-pebbling function.

Section 5.2 outlined some variations and possible applications on graph
pebbling. In section 5.3 we made suggestions on where the research on
graph pebbling should continue. More importantly we argued that graph
pebbling on directed graphs should be studied more. We showed how
one may reason about problems in graph pebbling modeling regarding di-
rected graphs, and formulated three open problems. Thus one ought, and
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one can, increase the research on graph pebbling on directed graphs. We
also asked the reader to provide a clear example of when graph pebbling
modeling was successfully applied to a real world problem.

The deterministic model and the probabilistic model in graph pebbling
have been studied. Generalizations have been made and possible appli-
cations have been suggested. These have given us reasons to believe that
graph pebbling will have a significant impact on applications. This is the
strength of our results, and answers our central question in the introduc-
tion: ”Can graph pebbling modeling, as a pure mathematical subject, be
extended in such a way that it has a significant impact in the field of ap-
plied mathematics?“ The answer is ”reasonably yes“. In section 5.3 we in
fact showed how such an extension may be done.

We may summarize the above by saying that graph pebbling is a rich
subject. Its richness comes from the fact that its foundations have been
stringently submitted, and it also lies in its many variations and appli-
cations, and in its possibility to have ”a significant impact in the field of
applied mathematics“.

The thresholds for the sequence of paths, cycles and cubes should be
proven. More graph sequences may be studied, and we encourage the
reader to do this. The pi-pebbling function should be merged with the
notion of a w-cover, and similar results as in section 2.2.1 and 3 should be
derived for the pi-pebbling function. This, together with a more detailed
account of graph pebbling on directed graphs, will benefit the search for
possible applications. Furthermore, one may benefit by studying the pi-
pebbling function in a probabilistic context, since uncertainty is often ex-
pected in real world problems. Also, one should try to answer Conjecture
1 and 2, and the reader is encouraged to solve Open Problem 1 to 3. Filling
all these holes would strengthen the theory of graph pebbling significantly.

In conclusion: Graph pebbling is a rich subject, with many holes to fill.
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A Tables of results

In this section three tables are presented which summarizes the results
from section 3, 4.2.2, 4.3 and 5.1.

Table 1: Summary of results from section 3.
Graph Pebbling number Class 0 Class 1

Kn n Yes No

Pn 2n−1 No No

C2n 2n No No

C2n+1 2
⌊

2n+1

3

⌋
+ 1 No No

Wn n Yes No

FRn 2n + 2 No Yes

Fn n Yes No

Sn, n ≥ 3 n + 1 No Yes

K2,n, n ≥ 2 n + 2 Yes No

Km,n, m, n ≥ 3 m + n Yes No

P 10 Yes No

Qn 2n No No

Table 2: Summary of results from section 4.2.2 and 4.3.
Graph sequence Threshold

K Θ(n1/2)

Q = (Q1, Q2, . . . , Qm, . . .) th(Q) ⊆ O(n(Qm))

P th(P) ⊆ Ω(n) ∩ o(n1+ε) for every ε > 0

C th(C ) ⊆ Ω(n) ∩ o(n1+ε) for every ε > 0

S Θ(n1/2)

W Θ(n1/2)
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Table 3: Summary of results from section 5.1.
Graph Cover pebbling number

Pn 2n − 1

C2n 3(2n − 1)

C2n+1 2n+2 − 3

Qn 3n

Kn 2n− 1

Kn1,n2,...,nk , n1 ≥ n2 ≥ · · · ≥ nk 4n1 + 2n2 + · · ·+ 2nk − 3

Fn 4n− 7

FRn 8n− 3
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