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Introduction

In this thesis, we introduce Apolarity Theory and examine its unexpected ap-

plications in the study of Hilbert functions and Hilbert series, two key words

in the area of commutative algebra known as dimension theory. The idea is

simple; let k be a field and consider the two polynomial rings R = k[x0, ..., xn]

and S = k[y0, ..., yn]. Now, we want to think of the polynomials in R to

act like partial differential operators on the polynomials in S, this is what we

formally define as the apolarity action. From this innocent definition, we estab-

lish powerful tools that can be used to compute Hilbert functions of quotient

rings R/I. Later, we study the idea of Artinian Gorenstein rings and state

Macaulay’s theorem which gives a complete characterization of these rings, we

also give a proof for this theorem, using the developed tools from Apolarity

Theory.

In the first chapter of this thesis we define the meaning of Hilbert functions

and series for graded R-modules, and show how one can compute the Hilbert

series of R/I in specific cases without using Apolarity Theory.

In the first section of Chapter 2, we define the apolarity action, we then

explain the idea of nonsingular bilinear maps which is an an essential part of

the thesis. In Section 2.3 we introduce the ”perp”, an definition involving the

apolarity action which is important in our proof for Macaulay’s theorem. In

Section 2.4, we define the idea of Invere Systems and establish the remarkable

connection between Apolarity Theory and the computation of Hilbert funtions.

After developing all theory needed, we move on to Section 2.5 where we give

some general theory on Artinian rings, needed in order to understand the idea

of Gorenstein rings. In the last section, we state and prove Macaulay’s theorem.
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Chapter 1

Background

1.1 Graded rings and modules

Let R be a commutative ring with unity. We say that a ring R is graded if

we can write R =
⊕

d∈ZRd, where each Rd is an abelian subgroup of R, and

RiRj ⊆ Ri+j for all i, j ∈ Z.

Likewise whenever having a graded ring R, we say that an R-module M is

graded if we can write M =
⊕

d∈ZMd, where each Md is an abelian subgroup

of M , and RiMj ⊆Mi+j for all i, j ∈ Z.

Example 1.1. Let k be a field and consider the ring S = k[x1, ..., xn] of

polynomials in n variables with coefficients in k. Then, S is a graded ring

where Sd denotes the k-vector space consisting of homogeneous polynomials in

degree d. Such a grading, where deg xi = 1, is called the standard grading.

Note that deg xi = 1 implies that Sd = 0 for all d < 0.

Remark 1.2. (i) If R is a graded ring and I is a homogeneous ideal of R,

then

R/I =
⊕

d∈Z
(Rd + I)/I.

However, by the second isomorphism theorem we have Rd/(I ∩ Rd) ∼=
(Rd + I)/I, we will use this remark later.

(ii) Every Rd is an R0-module and R0 is a subring of R. Indeed it is enough
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to observe that 1 ∈ R0; to see this write 1 =
∑

d∈Z xd where xd ∈ Rd

then, for all n, we have xn = 1 · xn =
∑

d xdxn and, comparing degree by

degree we see that xn = xnx0 for all n. Thus we have

x0 = 1 · x0 =
∑

d∈Z
xdx0 =

∑

d∈Z
xd = 1,

and hence 1 ∈ R0.

1.2 Hilbert functions and Hilbert series

Let S = k[x0, ..., xn] with the standard grading described in Example 1.1. Note

that, for any graded S-module M = ⊕d∈ZMd, Md is a k-vector space for all

d ∈ Z. This allows us to give the next definition.

Definition 1.3. Let M =
⊕

d∈NMd
1 be a graded S-module. We define the

Hilbert function of M , HF(M,−) : N→ N, to be

HF(M,d) := dimkMd, for all d ∈ N.

Furthermore, we define the Hilbert series of M as

HS(M, t) :=
∑

d∈N
HF(M,d)td.

Example 1.4. Consider R = k[x0, x1, x2] and I = (x0, x1x2, x
2
2, x

3
1). Then,

R/I = k + I ⊕ (kx1 + I ⊕ kx2 + I)⊕ (kx21 + I).

Hence,

HF(R/I, 0) = 1, HF(R/I, 1) = 2, HF(R/I, 2) = 1;

thus we have

HS(R/I, t) = 1 + 2t+ t2.

1 When we use N as index instead of Z we simply mean that Md = 0 for all d < 0.
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Example 1.5. If we consider the polynomial ring S =
⊕

d∈N Sd, we see that

HF(S, d)=
(
d+n
d

)
, since

(
d+n
d

)
is the number of monomials needed to span Sd

as a k-vector space. With this we can compute the Hilbert series of S,

HS(S, t) =
∑

d∈N

(
d+ n

d

)
td =

1

(1− t)n+1
∈ N[[t]].

Definition 1.6. Let M =
⊕

d∈ZMd be a graded S-module. The shifting of

M of degree e is the graded S-module M(e) =
⊕

d∈Z[M(e)]d with the graded

structure given by

[M(e)]d := Md+e, for any d ∈ Z

If e is a positive integer, there is a relationship between the Hilbert series for

S(−e) and the Hilbert series for S, here we make the convention that
(
n
k

)
= 0

whenever k < 0,

HS(S(−e), t) =
∑

d≥0

(
n+ d− e
d− e

)
td =

∑

d≥0

(
n+ d− e
d− e

)
td−ete = te

∑

k≥0

(
n+ k

k

)
tk

= teHS(S, t).

Note that the same conclusion, i.e HS(M(−e), t) = teHS(M, t), holds for any

graded S-module M .

If M and N are graded S-modules and φ : M → N is a homomorphism of

modules, we say that the map φ is graded if φ(Mi) ⊂ Ni+j for some j ∈ Z.

We call such an integer j the degree of φ, denoted by deg(φ).

Lemma 1.7. Let M,N and P be graded S-modules. If

0→M → N → P → 0

is a short exact sequence (s.e.s) of graded S-modules with degree-0 maps, then

HS(N, t) = HS(M, t) + HS(P, t).

Proof. The s.e.s

0→M → N → P → 0

induces a new s.e.s of k-vector spaces,

0→Md
α→ Nd

β→ Pd → 0, for any d ∈ N.
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Hence we have dimkNd = dimkMd + dimk Pd for all d ∈ N, and so

∑

d∈N
(dimkNd)t

d =
∑

d∈N
(dimkMd)t

d +
∑

d∈N
(dimk Pd)t

d.

Now we want to give an example of how Lemma 1.7 can be applied in order

to compute Hilbert series.

Definition 1.8. Let R be a commutative ring and f1, ..., fg ∈ R. We say that

{f1, ..., fg} is a regular sequence if

• f1 is a NZD in R;

• fi is a NZD in R/(f1, ..., fi−1) for i = 2, .., g.

Furthermore the quotient ring S/I is called a complete intersection if

the generators of I form a regular sequence.

Theorem 1.9. Let S/I be a complete intersection where I = (f1, ..., fg). Then

HS(S/I, t) =

g∏

i=1

(1− tei)

(1− t)n+1

where ei := deg(fi).

Proof. We proceed by induction on the number of generators for I.

If I = (f1), consider the s.e.s

0 −→ S(− deg(f1))
φ1−→ S

φ2−→ S/(f1) −→ 0, (1.1)

where φ1 is the map of multiplication by f1 and φ2 is the natural surjection.

Note that the shifting of S in (1.1) makes φ1 into a degree-0 map so that we

can apply Lemma 1.7,

HS(S/(f1), t) =
∑

d≥0

(
n+ d

d

)
td − te1

∑

d≥0

(
n+ d

d

)
td =

1− te1
1− tn+1

.

Now, assume that

HS(S/(f1, ..., fk), t) =

k∏

i=1

(1− tei)

(1− t)n+1
,
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set R′ := S/(f1, ..., fk) and consider the s.e.s of degree-0 maps,

0 −→ R′(− deg(fk+1))
α−→ R′

β−→ R′/(fk+1) −→ 0 (1.2)

where α is the multiplication by fk+1 and β is the natural surjection. The

assumption that S/I is a complete intersection is crucial for (1.2) to be a s.e.s,

since it gives us the injectivity of α. Applying Lemma 1.7 again we get

HS(R′/(fk+1), t) = (1− tek+1)HS(R′, t) = (1− tek+1)

k∏

i=1

(1− tei)

(1− t)n+1
.

Remark 1.10. In the above proof we have used thatR′/(fk+1) ∼= S/(f1, ..., fk+1)

which follows directly from the third isomorphism theorem for rings.





Chapter 2

Apolarity Theory and

Macaulay’s Theorem

2.1 Apolarity action

Let k be a field field with char(k) = 0. In this chapter we consider two poly-

nomial rings with the standard gradation, namely S = k[y0, ..., yn] =
⊕

d≥0 Sd

and R = k[x0, ..., xn] =
⊕

d≥0Rd, where Sj denotes the subset of S consisting

of homogeneous polynomials in degree j, we think of Rj similarly.

Here, we mainly follow the notes of A.V. Geramita [Ger96].

We want to think of the polynomials in R as partial differential operators

acting on the polynomials in S, which motivates the next definition.

Definition 2.1. The apolarity action

◦ : R1 × S1 → k

of R1 on S1 is defined as,

(a0x0 + · · ·+ anxn) ◦ (b0y0 + · · ·+ bnyn) :=
n∑

i=0

ai
∂

∂yi
(b0y0 + · · ·+ bnyn).

Example 2.2.

Consider f = 5x0 + x3 ∈ R1 and g = y0 + 2y3 + y5 ∈ S1, then

f ◦ g = 5 + 2 ∈ k.

7
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If α = (α0, ..., αn) with αi ∈ N then we will denote the monomial xα0
0 ·...·xαn

n

by xα, we define yβ similarly. If f = a0x
α0 + · · · + anx

αn ∈ Ri and g =

b0y
β0 + · · · + bky

βk ∈ Sj, we can extend the action of R1 on S1 by using the

usual properties of differentiation; namely, by considering

◦ : Ri × Sj −→ Sj−i

where

f ◦ g =
n∑

i=0

ai
∂

∂yαi
(g).

We will give an example to better illustrate the definition.

Example 2.3.

Let f = x3x5 + x21 ∈ R2 and g = y31 ∈ S3, then f ◦ g = 6y1 ∈ S1.

Remark 2.4. (i) In Example 2.3, note the importance of char(k) = 0, for

instance if char(k) = 2, then we would have f ◦ g ∈ k.

(ii) The apolarity action of R on S makes S into an R-module, namely for

r, r1, r2 ∈ R and s, s1, s2 ∈ S we have,

(1) r ◦ (s1 + s2) = r ◦ s1 + r ◦ s2
(2) (r1r2) ◦ s = r1 ◦ (r2 ◦ s)

(3) (r1 + r2) ◦ s = r1 ◦ s+ r2 ◦ s

(4) 1R ◦ s = s.

However, S is not a finitely generated R-module, because if we assume S

to be generated by f1, ..., fk, then any polynomial f ∈ S with

deg(f) > max{deg(fi) : i = 1, ..., k}

can never be obtained since the apolarity action lowers degree.

Definition 2.5. Let R be a commutative ring and let M,N and P be R-

modules. An R-bilinear map is a function

f : M ×N −→ P

such that for any r ∈ R, m,m1,m2 ∈M and n, n1, n2 ∈ N satisfies
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(i) f(rm, n) = f(m, rn) = r · f(m,n)

(ii) f(m1 +m2, n) = f(m1, n) + f(m2, n)

(iii) f(m,n1 + n2) = f(m,n1) + f(m,n2).

Now, if e ∈ k, r ∈ R and s ∈ S, we have that

(er) ◦ s = r ◦ (es) = e(r ◦ s).

Furthermore, we have that S is an R-module so that for any j ∈ N the apolarity

action gives a k-bilinear map,

Rj × Sj −→ k. (2.1)

If V and W are two k-vector spaces then, whenever having a k-bilinear map

◦ : V ×W → k given by (v, w) 7→ v ◦ w, we will have two induced k-linear

maps

φ : V −→ Homk(W,k) and ψ : W −→ Homk(V, k),

where φ(v) := φv with φv(w) = v ◦ w, similarly we define ψ(w) := ψw with

ψw(v) = v ◦ w.
With this, we are ready to state the definition of the ”perp”, but first let us

give the definition of nonsingular bilinear pairings and some basic propositions

that will be useful later.

2.2 Nonsingular bilinear map

Definition 2.6. If the maps φ and ψ are isomorphisms then the bilinear map

V ×W −→ k is called nonsingular.

We recall that if W and V are k-vector spaces and T : V → W is a linear

map, then

dim(Im(T )) + dim(ker(T )) = dimV.

In particular if dimV = dimW = n, in order to prove that T is an isomorphism,

it is enough to prove either injectivity or surjectivity and the one will imply

the other. We use this idea to prove the following proposition.
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Proposition 2.7. The bilinear map V ×W −→ k is nonsingular iff for any

basis {v1, ..., vn} of V and {w1, ..., wn} of W the n× n matrix (bij = vi ◦wj) is

invertible.

Proof.

V → Homk(W,k) is an isomorphism.

⇐⇒ It has trivial kernel.

⇐⇒ The only vector v satisfying φv(w) = 0 for all w is v = 0.

⇐⇒ The only vector v satisfying φv(wj) = 0 for all j is v = 0.

⇐⇒ The only αi satisfying φa1v1+...+anvn(wj) = 0 for all j are αi = 0.

⇐⇒ The only αi satisfying
∑

αibij = 0 for all j are αi = 0.

⇐⇒ The matrix (bij = vi ◦ wj) has trivial left null space.

⇐⇒ The matrix (bij = vi ◦ wj) is invertible.

By a similar proof, we can conclude that W → Homk(V, k) is an isomor-

phism iff the matrix (bij = vi ◦ wj) is invertible.

With Proposition 2.7 in mind, let us state the next proposition.

Proposition 2.8. The bilinear map

Rj × Sj −→ k

induced by the apolarity action, is nonsingular.

Proof. Let {xα1 , ...,xαn} be the monomials of Rj and {yα1 , ...,yαn} the mono-

mials of Sj, then the n× n matrix (bij = xαi ◦ yαj) is a diagonal matrix whose

determinant is different from 0, thus the matrix is invertible.

2.3 Perp ideal

Definition 2.9. If V ×W −→ k is a k-bilinear map and V1 ⊆ V is a subvector

space, we define the perp of V1, denoted V1
⊥, as

V1
⊥ := {w ∈ W : ψw(V1) = 0} ⊆ W
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Likewise, if W1 ⊆ W , we define

W1
⊥ := {v ∈ V : φv(W1) = 0}.

If F ∈ Sj, we define the annihilator of F as

Ann(F ) := {G ∈ R : G ◦ F = 0}.

With abuse of language, we occasionally write Ann(F ) = F⊥, but this has

nothing to do with Definition 2.9.

Example 2.10. Let F = ya00 · ... · yann ∈ Sj be a monomial, then we have

F⊥ = (xa0+1
0 , xa1+1

1 , ..., xan+1
n ).

Example 2.11. Let F ∈ Sj, and let ∂ ∈ R1. Then,

(∂F )⊥ = {G ∈ R : G ◦ (∂ ◦ F ) = 0}.

However, by (ii) in Remark 2.4, we have G◦ (∂ ◦F ) = (G∂)◦F . Hence, (∂F )⊥

consist of all G ∈ R such that G∂ ∈ F⊥, and this set can be constructed by

considering all elements in F⊥ that is divisible by ∂.

Proposition 2.12. Let V ×W −→ k be a nonsingular k-bilinear map where

n = dimk V = dimkW , if V1 ⊆ V with dimk V1 = t then,

dimk V1
⊥ = n− t.

Proof. Let {v1, ..., vt} be a basis for V1. We extend this basis for V1 to a basis

for V by Λ = {v1, ..., vt, vt+1, ..., vn}. Since

φ : V → Homk(W,k)

is an isomorphism, the basis {v1, ..., vn} for V will correspond to the basis

{φv1 , ..., φvn} for Homk(W,k). Now, for φv1 : W → k, it exist a w1 ∈ W such

that φv1(w1) = 1, and since

dim Im(φv1) + dim ker(φv1) = dimW,

we must have φvi(w) = 0 for any other w ∈ W . Similary, for φv2 , it exist a w2 ∈
W such that φv2(w2) = 1, and φv2(w) = 0 for all other w ∈ W , furthermore
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w1 6= w2 because otherwise φv1 and φv2 would not be linearly independent.

Hence, continuing this way , we construct the set Λ∗ = {w1, ..., wn} of elements

in W with the property that vi ◦wj = δij. This set is a basis for W ; to see this

note that the elements are linearly independent, because if we can write

wi = a1w1 + ...+ ai−1wi−1 + ai+1wi+1 + ...+ anwn,

for some wi, then we would have

φvi(wi) = φvi(a1w1 + ...+ ai−1wi−1 + ai+1wi+1 + ...+ anwn),

however φvi(wj) = 0 whenever i 6= j, contradiction.

We claim that

V1
⊥ = 〈wt+1, ..., wn〉.

Obviously wt+1, ..., wt ∈ V1⊥. Now let w = a1w1 + ... + anwn be an element of

V1
⊥ where ai ∈ k, then we have

vi ◦ w = ai and vi ◦ w = 0, for i = 1, .., t.

Hence, a1 = a2 = ... = at = 0, in other words w ∈ 〈wt+1, ..., wn〉. We conclude

that dimk V1
⊥ = n− t.

2.4 Inverse System

We will now give the definition of Inverse Systems.

Definition 2.13. Let I be a homogeneous ideal of the ring R. The inverse

system of I, denoted I−1, is the R-submodule of S consisting of all elements

of S which are annihilated by I, i.e

I−1 = {G ∈ S : F ◦G = 0,∀F ∈ I}.

The inverse system I−1 is not generally an ideal of S. For instance consider

I = (x21), then y1 ∈ I−1 but, y21 /∈ I−1 since x21 ◦ y21 = 2.
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Remark 2.14. (i) If I is a homogeneous ideal of R then we can look at

[I−1]j := I−1 ∩ Sj.

Whenever saying that I−1 is graded we simply mean that I−1 can be

written as a direct sum

I−1 =
⊕

j∈N
[I−1]j,

but this does not mean that it is graded as an R-submodule of S.

This allows us to describe the inverse system of a homogeneous ideal degree

by degree, as the following example wants to illustrate.

Example 2.15. Let I = (x2) ⊂ k[x] then by definition we have

I−1 = {s ∈ S : x2 ◦ s = 0}

Now I−1 is graded so we can look at it in each degree. If ay ∈ S1, we have

x2 ◦ ay = 0; instead, for ay2 ∈ S2 we have x2 ◦ ay2 6= 0, continuing this way we

see that

I−1 = k ⊕ 〈y〉,

where 〈y〉 is the k-vectorspace generated by y.

It is not always as easy as in Example 2.15 to describe I−1. The following

provides a tool to compute I−1 in general . Since

Rj × Sj −→ k

is a pairing and Ij is a k-vector subspace of Rj, it makes sense to talk about

I⊥j . Now by definition we have,

Ij × I⊥j −→ 0

which gives

(I−1)j ⊆ I⊥j .

Actually, the following proposition holds.



2.4 Inverse System 2. Apolarity Theory and Macaulay’s Theorem

Proposition 2.16. Let I be a homogeneous ideal of R, then

(I−1)j = I⊥j .

Proof. The inclusion (I−1)j ⊆ I⊥j is given above. Suppose that G ∈ I⊥j , we

want to prove that F ◦ G = 0 for all F ∈ I. The following three cases covers

the proof.

Case 1: If deg(F ) = j then, since G ∈ I⊥j , we have F ◦ G = 0 for all

F ∈ Ij.

Case 2: If deg(F ) > j then, F ◦G = 0 because the apolarity action lowers

degree and deg(G) = j.

Case 3: If deg(F ) < j, choose a1, ..., an such that

n∑

i=1

ai = j − deg(F ).

It follows that deg(
∏n

i=1 x
ai
i F ) = j and so we have

(
n∏

i=1

xaii F ) ◦G = 0⇐⇒
n∏

i=1

xaii ◦ (F ◦G) = 0

which implies that F ◦G is annihilated by any monomial of degree j−deg(F ).

Note that deg(
∏n

i=1 x
ai
i ) = j−deg(F ) and F ◦G ∈ Sj−deg(F ), since the bilinear

pairing

Rj−deg(F ) × Sj−deg(F ) −→ k

is nonsingular, we have F ◦G = 0.

Example 2.17. If I is a monomial ideal, i.e an ideal generated by a finite set

of monomials, Proposition 2.16 allows us to describe the inverse system of I

in the following way. In each degree j, Ij is the k-vector space generated by

monomials of degree j. If we let A be the set of all monomials in Sj, we define

B := {f ∈ A : f(x0, ..., xn) /∈ Ij},

then I⊥j is generated by all elements in B as a k-vector space.



2. Apolarity Theory and Macaulay’s Theorem 15

Remark 2.18. Proposition 2.16 allows us also to obtain information

about the Hilbert series of R/I as follows; in any degree j , we have

HF(R/I, j) = dimk(Rj + I)/I = dimk(Rj/Ij),

which follows by Remark 1.2. Now consider the bilinear pairing

Rj × Sj −→ k,

since Ij ⊂ Rj, we have by Proposition 2.12, dimk I
⊥
j = dimk Rj−dimk Ij.

Furthermore, since (I−1)j = I⊥j , it follows that

HF(R/I, j) = dimk(I
−1)j, for any j.

At first sight it is not clear that Apolarity theory has anything to do with

Hilbert functions, the connection described above is quite remarkable, in par-

ticular we have a new tool to study Hilbert functions which might give us

new valuable information. After all the study of mathematical problems is the

study of describing them with different words.

We will now give a tool for computing the inverse system of I ∩ J where I

and J are homogeneous ideals of R.

Lemma 2.19. Let V × W −→ k be a nonsingular k-bilinear pairing with

dimk V = dimkW = n. If V1 and V2 are subspaces of V , then

(V1 ∩ V2)⊥ = V ⊥1 + V ⊥2 .

Proof. V1∩V2 ⊆ Vi, so that if w ∈ V ⊥i then w ∈ (V1∩V2)⊥ for i = 1, 2, thus we

have V ⊥i ⊆ (V1 ∩ V2)⊥ for i = 1, 2 which implies that V ⊥1 + V ⊥2 ⊆ (V1 ∩ V2)⊥.

For the other inclusion: Note that V ⊥1 ∩ V ⊥2 = (V1 + V2)
⊥. Since V ⊥1 and

V ⊥2 are k-vector spaces and the pairing in nonsingular we have

dimk(V
⊥
1 + V ⊥2 ) = dimk V

⊥
2 + dimk V

⊥
1 − dimk(V

⊥
1 ∩ V ⊥2 )

= (n− dimk V1) + (n− dimk V2)− dimk(V1 + V2)
⊥

= (n− dimk V1) + (n− dimk V2)− (n− dimk(V1 + V2))



2.4 Inverse System 2. Apolarity Theory and Macaulay’s Theorem

= n− dimk(V1 ∩ V2) = dimk(V1 ∩ V2)⊥.

Since we have proven one inclusion and the two k-vector spaces have the same

dimension, they must be equal.

Proposition 2.20. Let I and J be homogeneous ideals of R. Then

(I ∩ J)−1 = I−1 + J−1.

Proof. The inverse system is graded thus by Lemma 2.19 and Proposition 2.16

the result follows immediately

Remark 2.21. Let R = k[x0, ..., xn]. We recall that if I = (f1, ..., fk) and

J = (g1, ..., gt) are two monomial ideals of R, then I ∩ J is also a monomial

ideal generated by the elements hij = lcm(fi, gj). To see this, note that if

G ∈ I ∩ J , then every summand in G is divisible by some generator fi of I

and some generator gj of J ; thus every summand in G is divisible by some

hij = lcm(fi, gj). Conversely, if every summand in G is disvisible by some hij

then it most certainly is disvisible by some gj and fi. We use this idea in the

next example.

Example 2.22. Let R = k[x0, x1], and consider the monomial ideals I =

(x0, x
2
1x

2
0, x

3
1) and J = (x21, x

2
0). By Remark 2.21, we obtain

I ∩ J = (x20, x0x
2
1, x

3
1).

As in Example 2.15, we can construct (I ∩ J)−1 piece by piece in each degree.

Let ay0 + by1 ∈ S1, then ay0 + by1 is annihilated by every generator of I ∩ J .

Instead, for ay20 + by0y1 + cy21 ∈ S2, only by0y1 and cy21 are annihilated by every

generator of I ∩ J . Continuing this way, we see that

(I ∩ J)−1 = k ⊕ 〈y0, y1〉 ⊕ 〈y0y1, y21〉.

By using the same method as above, we see that

I−1 = k ⊕ 〈y1〉 ⊕ 〈y21〉 and J−1 = k ⊕ 〈y0, y1〉 ⊕ 〈y0y1〉.

From here, it is clear that

(I ∩ J)−1 = I−1 + J−1.
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2.5 Artinian rings

In the same notation as in the previous sections, we consider the polynomial

rings R = k[x0, ..., xn] and S = k[y0, ..., yn], together with the standard grada-

tion. Throughout, we will assume all ideals to be homogeneous.

Up to Remark 2.29, R is assumed to be a general commutative ring.

Definition 2.23. A commutative ring R is an Artinian ring if every descend-

ing chain of ideals

I1 ⊇ I2 ⊇ ... ⊇ Ik ⊇ ...

eventually stabilizes, i.e for some k, Ik = Ik+h, ∀h ≥ 0.

Likewise an R-module M is an Artinian module if every descending chain

of submodules eventually stabilizes.

Remark 2.24. Note that commutative ring R is said to be Noetherian if

every ascending chain of ideals

I1 ⊆ I2 ⊆ I3...

eventually stabilizes, i.e for some k, Ik = Ik+h, ∀h ≥ 0. For example every field

k is Noetherian, since a field only has two ideals. Furthermore, the polynomial

ring k[x1, ..., xn] in n variables is Noetherian, which follows by Hilbert’s basis

theorem [MR95, Theorem 3.6].

If R is an Artinian ring then it is also Noetherian, however the converse is

not true; for instance consider the ring of integers Z.

The ring R can be seen as a k-vector space, so can R/I. It should be noted

that a k-vector space and a k-module are the same, the definitions are word by

word identical. For the next proposition we will use two well-known theorems

in commutative algebra.

Theorem 2.25. [AM69, Theorem 8.7] (Structure theorem for Artinian rings)

An Artinian ring R is (up to isomorphism) a finite direct sum of Artinian local

rings.
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Theorem 2.26. [AM69, Corollary 5.24] (Hilbert’s Nullstellensatz) Let k be a

field and B a finitely generated k-algebra. If B is a field, then it is a finite

extension of k.

Remark 2.27. (i) We recall that an R-module M that does not have any

nonzero proper submodules is called a simple module.

(ii) Let R be a k-algebra, then R is a finite k-algebra if it is finite as a

k-module. Furthermore, R is said to be finitely generated if it exists a

finite number of elements a1, .., an ∈ R such that R = k[a1, ..., an]. Note

that if R is finite then it is also finitely generated, but the converse is not

true in general.

Proposition 2.28. Let k be a field and R a finitely generated k-algebra, then

R is Artinian if and only if R is a finite k-algebra.

Proof. First, assume that R is a finite k-algebra, in other words dimk R <∞.

Note that an ideal I of R is a k-vector subspace of R. Now, letting

I1 ⊇ I2 ⊇ I3 ⊇ ...

be a descending chain of ideals, we see that it must eventually stabilize, because

dimk I1 > dimk I2 > ...

and dimk R <∞.

Conversely, assume that R is Artinian. Then, by Theorem 2.25 , we can

write R as a finite direct sum of Artinian local rings, say

R =
n⊕

i=1

Ri.

Now, pick any Rt from the finite set {R1, ..., Rn} and let m be the maximal

ideal of Rt. Since R is a finitely generated k-algebra, i.e R = k[a1, ..., an] with

ai ∈ R, it follows that so is Rt. Considering the natural map

k → Rt/m,



2. Apolarity Theory and Macaulay’s Theorem 19

given by a 7→ a + m we see that Rt/m is a finitely generated k-algebra, fur-

thermore it is a field since m is a maximal ideal; thus, by Hilbert’s Nullstellen-

satz, it follows that Rt/m is a finite (algebraic) extension of k, in otherwords

dimk Rt/m <∞.

Now, consider Rt as a module over itself, since it is Artinian, let

0 = m0 ⊂ m1... ⊂ mn = m ⊂ Rt (2.2)

be the longest possible descending chain of submodules of Rt.

Now, fix i ∈ {1, ..., n}, and set N := mi/mi−1, note that then N is a simple

module, otherwise (2.2) would not have been the longest possible descending

chain of submodules. We claim that N ∼= Rt/m. Fix 0 6= n ∈ N and consider

the homomorphism

φ : Rt → N

given by r 7→ rn. Then, since φ is surjective, we have

Rt/ kerφ ∼= N.

If kerφ is a maximal ideal of Rt and hence equals m, we are done. If not, it

exist a proper ideal J of Rt with kerφ ⊂ J and so J/ kerφ is a proper ideal of

Rt/ kerφ; thus N contains a proper submodule, contradicting the definition of

N as a simple module and this proves the claim.

Consider the s.e.s

0→ mn ↪→ Rt � Rt/mn → 0,

then we have

dimk Rt = dimkmn + dimk Rt/mn,

and since we know that dimk Rt/mn is finite, we need to calculate dimkmn.

Consider the s.e.s

0→ mn−1 ↪→ mn � mn/mn−1 → 0,

then, we have dimkmn = dimkmn−1+dimkmn/mn−1 and since dimkmn/mn−1 =

dimk Rt/mn, we need to calculate dimkmn−1. So, consider the s.e.s

0→ mn−2 ↪→ mn−1 � mn−1/mn−2 → 0,
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then, dimkmn−1 = dimkmn−2+dimkmn−1/mn−2, and now we have to calculate

dimkmn−2. Continuing this way, we see that dimk Rt < ∞, for any Rt in the

finite direct sum of R. Hence, dimk R <∞.

Remark 2.29. As a direct consequence of Proposition 2.28 we see that the

ring R/I is Artinian if and only if dimk R/I < ∞ which occurs if and only if

Ij = Rj for some j ∈ N.

2.6 Gorenstein rings

In the following, we denote the image of x ∈ R under the natural map R � R/I

by x̃, furthermore we let m be the maximal ideal m = (x0, ..., xn) of R and A

be a homogeneous quotient of R, i.e A = R/I for some homogeneous ideal I.

Definition 2.30. The socle of A, denoted Soc(A) is the subset of A defined

by

Soc(A) := (0 : m) = {g ∈ A : gm̃ = 0}

Let us give example in order to get confident with Definition 2.30.

Example 2.31. Consider A = k[x0, x1]/(x
3
0, x1), then

A = k ⊕ (kx̃0)⊕ (kx̃20).

It is clear that x̃20 ∈ Soc(A) and in fact we have Soc(A) = (x̃20).

Example 2.32. Consider A = k[x0, x1]/(x
2
0, x

2
1, x0x1), then

A = k ⊕ (kx̃0 ⊕ kx̃1).

Hence, it follows that Soc(A) = (x̃0, x̃1).

If A = k[x0, ..., xn]/I, then for a homogeneous element f ∈ A, we have

f ∈ Soc(A) =⇒ fx̃i = 0 for i = 0, ..., n, conversely if f is annihilated by x̃i

for i = 0, ..., n then it is annihilated by every element of m̃, thus f ∈ Soc(A).

Note that if A is an Artinian ring, we can write

A = k ⊕ A1 ⊕ ...⊕ A%,

where A% 6= 0, then A% ⊆ Soc(A). If this was not the case then we would have

an element 0 6= g̃ ∈ A with deg g > % so that Adeg % 6= 0.
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Definition 2.33. Let A be Artinian as above, i.e.

A = k[x0, ..., xn]/I = k ⊕ A1 ⊕ ...⊕ A%,

with A% 6= 0. The natural number % is called the socle degree of A, denoted

Soc(A).

Remark 2.34. The socle degree of A is the least postive integer such that

m%+1 ⊆ I. It is clear that any element of m%+1 is in I, otherwise this would

contradict the fact A%+1 = 0, and since Ak 6= 0 for k < %, it follows that % is

the least such integer.

Definition 2.35. The graded Artinian ring A is called a Gorenstein ring if

dimk Soc(A) = 1.

In particular, if A is Artinian with Soc(A) = %, then we see that A is Goren-

stein if and only if Soc(A) = A% and dimA% = 1. For example, the Artinian

ring A in Example 2.31 is Gorenstein, but the Artinian ring in Example 2.32

is not.

Proposition 2.36. Let A be an Artinian Gorenstein ring with Soc(A) = %.

Then

HF(A, d) = HF(A, %− d),

for d ∈ Z.

Proof. First note that A% ∼= k. So, for t 6= %, consider the pairing

At × A%−t −→ A% (2.3)

induced by the multiplication of the ring A. Since

dimk[Homk(A%−t, k)] = dimk A%−t,

which holds because A%−t is finite dimensional, the result follows if we can

prove that the pairing (2.3) is nonsingular; thus we have Homk(A%−t, k) ∼= At,

and this would conclude our proof.
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We proceed by proving that if a ∈ At and ab = 0 for all b ∈ A%−t then a = 0.

The set A%−t is generated by a finite set of monomials x̃α, where α = (a0, ..., an)

such that
∑n

i=0 ai = %− t, by assumption we have ax̃α = 0; thus

(ax̃α
′
)x̃i = 0,

for all i = 0, ..., n, where degα′ = % − t − 1, i.e. ax̃α
′ ∈ Soc(A). However,

deg ax̃α
′

= t + (% − t − 1) = % − 1, so that we must have ax̃α
′

= 0. If we

continue the process illustrated above we may step by step lower the degree of

ax̃α
′

and hence obtain ax̃i = 0 for i = 0, ..., n, and so a ∈ Soc(A). But, since

deg a = t 6= %, we have a = 0 and this completes the proof.

Remark 2.37. Let A be an Artinian ring, then A is Gorenstein if and only if

the pairing

At × A%−t −→ A%

is nonsingular for 0 ≤ t ≤ %. Indeed from Proposition 2.36 it follows that if A

is an Artinian ring with Soc(A) = % and dimA% = 1, then if A is Gorenstein,

the pairing

At × A%−t −→ A%

is nonsingular for 0 ≤ t ≤ %. Conversely if the pairing is nonsingular then A is

Gorenstein, to see this assume that A is not Gorenstein then it exist an element

0 6= a ∈ At, for some t < %, such that a ∈ Soc(A) and so every element in A%−t

is annihilated by a, contradicting the fact that the pairing is nonsingular.

We will soon state Macaulay’s theorem, but first let us give one remark on

the inverse system.

Remark 2.38. If R = k[x0, ..., xn] and S = k[y0, ..., yn] then for an ideal I of

R we have

I−1 is finitely genetaed R-submodule ⇐⇒ I is an Artinian ideal.
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To see this note that I−1 is finitely generated ⇐⇒ (I−1)j = 0 for all but

finitely many j however this happens if and only if HF(R/I, j) = 0 for all but

finitely many j and this occurs if and only if I is an Artinian ideal.

2.7 Macaulay’s theorem

Theorem 2.39. (Macaulay) LetR = k[x0, ..., xn] and let A = R/I be Artinian,

then

A is Gorenstein with Soc(A) = % ⇐⇒ I = Ann(F ) for some F ∈ S%.

The theorem tells us that whenever having an Artinian Gorenstein ring

R/I we see that I = F⊥ for some homogeneous F ∈ Sj and conversely taking

any homogeneous element F ∈ Sj we may construct the Artinian Gorenstein

ring A = R/F⊥; thus we have obtained a useful 1− 1 correspondence between

the Artinian Gorenstein rings and the perp of homogeneous elements in S.

In order to prove Macaulay’s theorem, we will follow the notes of A.V.

Geramita [Ger96].

2.7.1 Ancestor ideal

If R = k[x0, ..., xn] and V ⊆ Rj, we will define the set V : Ri as

V : Ri := {g ∈ Rj−i : gRi ⊆ V },

which is a k-vector subspace of Rj−i.

Definition 2.40. Let R = k[x0, ..., xn] and V ⊆ Rj. We define the set V as

V :=
[ 1∑

i=j

V : Ri

]
⊕ (V )

where
[ 1∑

i=j

V : Ri

]
= 〈V : Rj〉 ⊕ 〈V : Rj−1〉 ⊕ ...⊕ 〈V : R1〉

and (V ) = V ⊕R1V ⊕R2V ⊕ ...
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We will now give the first proposition needed in order to prove Macaulay’s

theorem.

Proposition 2.41. The set V described in Definition 2.40 is a homogeneous

ideal of R, and it is the largest ideal J of R for which

Jj+t = (V )j+t,

for all t ∈ N.

Proof. We will first prove that V is an ideal, recall that an ideal I is homoge-

neous if and only if whenever a = a1 + a2 + ...+ an ∈ I with ai homogeneous,

then ai ∈ I. Now if A,B ∈ V , then we may carry out the addition A + B

componentwise and we will obtain a new element in V , in other words V is

closed under addition.

If B ∈ V is an element of degree ≥ j, then B ∈ (V ); thus AB ∈ (V ) for

any A ∈ R. The only multiplication left to consider is whenever

B ∈ Rt (t ∈ N) and H ∈ 〈V : Ri〉,

for 1 ≤ i ≤ j.

Case 1: If t ≥ i then we may split every summand in B so that

B =
∑

k

FkGk,

where degGk = i and degFk = t− i. Then

BH = (
∑

k

FkGk)H =
∑

k

Fk(GkH),

but Gk ∈ Ri and H ∈ 〈V : Ri〉; so that by definition we must have HGk ∈ V .

Hence, Fk(HGk) ∈ (V ), and this completes the proof for the first case.

Case 2: If t < i, then degBH = t + (j − i) = (t − i) + j < j, and

BH ∈ Rt+j−i. We will prove that BH ∈
[∑1

i=j V : Ri

]
, more precisly we will

prove that

BH ∈ 〈V : Ri−t〉,
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i.e we want to prove that (BH)Ri−t ⊆ V . We have

(BH)Ri−t = H(BRi−t),

where degB = t; thus we are multiplying H by an element of Ri, and we have

chosen H such that HRi ⊆ V , so that (BH)Ri−t ⊆ V and this completes the

proof for the second case. To see why V is the biggest homogeneous ideal J of

R such that Jj+t = (V )j+t, for all t ∈ N, we will give a proof by contradiction.

Suppose that V ⊆ J , and that V i ⊂ Ji, for some i < j. Then, it exist an

element T ∈ Ji such that T /∈ 〈V : Rj−i〉, in other words, it exists an element

H ∈ Rj−i such that TH /∈ V . However, since H ∈ Rj−i and T ∈ Ji, we must

have TH ∈ Jj = V , contradiction.

The ideal V is called the ancestor ideal of V . Two more propositions are

needed before we can give a proof for Macaulay’s theorem.

Proposition 2.42. If F ∈ Sj and I = Ann(F ), then

(i) Ij = 〈F 〉⊥ in the pairing Rj × Sj −→ k.

(ii) I = 〈F 〉⊥ +mj+1.

Proof. i) I consist of all elements in R that annihilates F , and Ij is the subset

of Rj that annihilates F , which is precisely 〈F 〉⊥ by the definition of the perp.

ii) We will start with the inclusion 〈F 〉⊥ + mj+1 ⊆ I. The elements in

mj+1 are at least of degree j + 1, so they all annihilate F ∈ Sj, furthermore

〈F 〉⊥ = Ij by i); thus we may only consider the elements in 〈F 〉⊥ of degree

< j. Let G ∈ 〈F 〉⊥ with degG = t < j, then G ∈ 〈〈F 〉⊥ : Rj−t〉, and we

want to prove that G ◦ F = 0. By definition we have GRj−t ⊆ 〈F 〉⊥, so that

Gxα ∈ IJ = 〈F 〉⊥ for every monomial xα ∈ Rj−t, it follows that

(xαG) ◦ F = 0 ⇐⇒ xα ◦ (G ◦ F ) = 0,

which holds for every monomial xα ∈ Rj−t. By Proposition 2.8 the pairing

Rj−t × Sj−t −→ k
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is nonsingular, and since G ◦ F ∈ Sj−t, we have G ◦ F = 0.

For the inclusion I ⊆ 〈F 〉⊥ +mj+1, we have three different cases. If G ∈ I
and degG = j, then G ∈ Ij = 〈F 〉⊥. If degG > j, then G ∈ mj+1, and so the

last case is when degG = t < j. Let H ∈ Rj−t, so that GH ∈ Ij = 〈F 〉⊥,

but since H is arbitrary we have GRj−t ⊆ 〈F 〉⊥. Hence, G ∈ 〈〈F 〉⊥ : Rj−t〉, it

follows that G ∈ 〈F 〉⊥.

Proposition 2.43. Let A = R/I be an Artinian graded ring with Soc(A) = j

and dimk Aj = 1, then

A is Gorenstein ⇐⇒ I = Ij +mj+1.

Proof. Assume A to be Gorenstein. We start by proving the inclusion I ⊆
Ij + mj+1. We have Soc(A) = j, which simply means that every element

G ∈ R of degree ≥ j + 1 is in I, so that Ik = (mj+1)k for k ≥ j + 1. In degree

j, we have Ij ⊆ Ij ⊆ Ij +mj+1 and of course Ij +mj+1 ⊆ I (in degree j); thus

we get the equality in degree j. For the case where G ∈ I with degG = t < j

we have GRj−t ⊆ Ij, hence G ∈ (Ij)t, by the definition of an ancestor ideal.

In order to prove Ij + mj+1 ⊆ I, we first note that since Soc(A) = j we

must have mj+1 ⊆ I and we have just shown that I + mj+1 = Ij in degree j;

thus what is left to prove is (Ij)t ⊆ It for t < j. Consider the pairing

Rt/It ×Rj−t/Ij−t −→ Rj/Ij

given by (a+It, b+Ij−t) 7→ ab+Ij, and choose G ∈ (Ij)t, then GRj−t ⊆ Ij which

implies that G̃x̃α = 0 in the pairing above for every x̃α with deg xα = j − t.
Since the pairing is nonsingular (Remark 2.37) we have G̃ = 0 and so G ∈ It
which completes the proof.

Conversely, let us assume that I = Ij + mj+1. In order to prove that R/I

is Gorenstein, it will be sufficient to prove that the pairing

Rt/It ×Rj−t/Ij−t −→ Rj/Ij

is nonsingular for every 0 ≤ t ≤ j (Remark 2.37). Let H̃ ∈ Rt/It and suppose

that H̃x̃α = 0 for every x̃α with deg x̃α = j − t, so we have

HRj−t ⊆ Ij =⇒ H ∈ (Ij)t.
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However, by assumption, we have I = Ij+mj+1 so that H ∈ It, in other words,

H̃ = 0 and this completes the proof.

We are now ready to prove Macaulay’s theorem (Theorem 2.39).

Proof. (Macaulay’s theorem) Let A = R/I and suppose that I = Ann(F ) with

F ∈ Sj. The apolarity pairing

Rj × Sj −→ k

is perfect, since Ij = 〈F 〉⊥ by Proposition 2.42, it follows by Proposition 2.12

that 1 = dimk I
⊥
j = dimk Rj − dimk Ij; in other words dimk (Rj/Ij) = 1. Now

we have F ∈ Sj so that all elements of degree ≥ j + 1 annihilates F , that is,

mj+1 ⊆ I; hence A is an Artinian ring of socle degree j and dimk Aj = 1. By

Proposition 2.43 we have

A is Gorenstein ⇐⇒ I = Ij +mj+1.

However, Ij = 〈F 〉⊥, and by Proposition 2.42 we have I = 〈F 〉⊥ + mj+1, this

completes the proof for one implication.

Conversely, let us assume that A = R/I is Gorenstein with Soc(A) = j. By

Proposition 2.43, we have

I = Ij +mj+1.

Now, since A is Gorenstein, we must have dimk(Rj/Ij) = 1; thus it exist an

F ∈ Sj such that Ij = 〈F 〉⊥.What remains to prove is that I = Ann(F ). Let

J = Ann(F ), then Jj = Ij, however by Proposition 2.42 we have

J = Ann(F ) = Jj +mj+1;

but since Ij = Jj, it follows that Ann(F ) = Ij +mj+1 = I.

Remark 2.44. (i) Let F = ya00 · ... · yann ∈ Sj be a monomial, by Example

2.10, we have F⊥ = (xa0+1
0 , ..., xan+1

n ); thus R/F⊥ is Artinian. Now, by

Macaulay’s theorem, A = R/F⊥ is Gorenstein with Soc(A) = degF = j,

furthermore by Proposition 2.36, HF(R/F⊥, d) is symmetric.
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(ii) Let F = ya00 · ... · yann . Then, HF(R/F⊥, d) is the number of nonzero

elements of form x̃0
b0 · ... · x̃nbn , with

∑n
i=0 bi = d. Now, x̃0

b0 · ... · x̃nbn is

nonzero if and only if 0 ≤ bi < ai + 1 for i = 0, ..., n, which follows since

F⊥ = (xa0+1
0 , ..., xan+1

n ). Thus, HF(R/F⊥, d) is the coefficient of xd in the

generating function

(1+x+· · ·+xa0)(1+x+· · ·+xa1)·...·(1+x+· · ·+xan) =

∏n
i=0(1− xai+1)

(1− x)n+1
.

Since the generators of F⊥ is a regular sequence, by Theorem 1.9, the

formula above for finding HF(R/F⊥, d) was expected. We give an example to

illustrate how (ii) in Remark 2.44 can be used.

Example 2.45. Consider R = k[x0, x1], and let F = y20y1 ∈ S3. Then, we

have F⊥ = (x30, x
2
1), and our generating function is

f(x) = (1 + x+ x2)(1 + x) = x3 + 2x2 + 2x+ 1.

Thus,

HF(R/F⊥, 1) = 2, HF(R/F⊥, 2) = 2, HF(R/F⊥, 3) = 1;

and it is easily seen that we actually have

R/F⊥ = k ⊕ (kx̃0 ⊕ kx̃1)⊕ (kx̃0
2 ⊕ kx̃0x̃1)⊕ (kx̃0

2x̃1).

Note that in Example 2.45, we have that HF(R/F⊥, d) is symmetric and

furthermore R/F⊥ is Gorenstein with Soc(R/F⊥) = degF = 3, as expected

by (i) in Remark 2.44.
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