SJALVSTANDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Chaitin’s incompleteness theorem

av

Erik Thormarker

2015 - No 11

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Chaitin’s incompleteness theorem

Erik Thormarker

Sjalvstandigt arbete i matematik 15 hogskolepodng, grundniva
Handledare: Erik Palmgren

2015

Abstract

In this thesis we look at an incompleteness result by Gregory
Chaitin. Roughly Chaitin’s result tells us that under certain assump-
tions on a formal system there exists a constant ¢ such that no state-
ments of the form ”C(n) > ¢”, where C'(n) is the Kolmogorov com-
plexity of a natural number n, are provable in that formal system.
After Chaitin’s result there has been a discussion concerning what the
theorem actually implies, we will give a summary of this discussion.
We also compare Chaitin’s result to Godel’s famous incompleteness
theorems and discuss if Chaitin’s result can be said to be as strong as
Godel’s result. Finally we will look at some developments in recent
years with a connection to Chaitin’s result.

Contents
1 Introduction

2 Preliminaries
2.1 Arithmetical theories .
2.2 Recursive functions . .
2.3 Provability
2.4 Turing machines
2.5 Kolmogorov complexity

3 Chaitin’s incompleteness theorem

3.1 Mainresult
3.2 Discussion
3.3 Summary of discussion

3.4 Chaitin’s theorem in relation to Godel’s theorems

4 Recent developments

4.1 Calude and Jurgensen (2005)

4.2 Tbuka et al. (2011) . .
4.3 Bienvenu et al. (2014)

5 Conclusions

References

14
14
15
20
21

24
24
28
31

34

36

1 Introduction

Chaitin’s incompleteness theorem is an incompleteness result in logic similar
to Godel’s famous incompleteness theorem. Much like in Godel’s original
proof Chaitin formalizes a paradox to obtain his result. To formalize the
paradox Chaitin uses Kolmogorov complexity, which is the idea of measur-
ing how complex a string is by the length of the shortest description that
produces the string when the description is used as input to a Turing ma-
chine. Chaitin’s result is that for a formal system there is a constant ¢ such
that no statements of the form ”"C(n) > ¢”, where C'(n) is the Kolmogorov
complexity of n, are provable in the system for any string n. However by an
elementary counting argument we see that such strings must in fact exist.
In fact it is even provable in the system that such strings must exist, but by
Chaitin’s result we can not prove for any specific string that it has such high
complexity. Thus this is an incompleteness result in the sense that there are
true statements that are not provable in the system.

In Section 2 we look at some preliminaries needed for discussing Chaitin’s
result. These include recursive functions, Turing machines and some basic
results about Kolmogorov complexity. We also state Godel’s two incomplete-
ness theorems as we will compare Chaitin’s theorem with Godel’s result later
in the text.

In Section 3 we state and prove the main result, Chaitin’s incompleteness
theorem. After this we summarize a discussion that started officially, as far
as this author knows, with van Lambalgen (1989) that criticized the principle

A set of axioms of complexity N cannot yield a theorem of com-
plexity substantially greater than N

that had been mentioned in connection with Chaitin’s result. We end the
section by comparing Chaitin’s result to Godel’s two incompleteness theo-
rems, asking whether Chaitin’s result is as strong as Godel’s in the sense
that we can prove statements equivalent to Godel’s using Chaitin’s theorem.
We also look at other similarities and differences between the two results.

In Section 4 we look at some recent results that are connected to Chaitin’s
result in some way. Calude and Jiirgensen (2005) suggests a new complexity
measure that satisfies the principle discussed in Section 3, however as we shall
see there are some problems with this approach. In Ibuka et al. (2011) we
look at some details of results that were suggested during the same discussion.
Finally in Bienvenu et al. (2014) the authors study the strength of the theory
we get if we add all true previously mentioned statements of the form ”C'(n) >
¢” as axioms of the theory. We will see that this new theory proves whether
any given Turing machine halts or not.

4

2 Preliminaries

We will follow Boolos et al. (2007) for most of the material in these prelimi-
naries.

2.1 Arithmetical theories

The language of arithmetic consists of a constant 0, the binary relation <,
the unary function s and the two binary functions - and +. The function
s is sometimes called the successor function. If we interpret the language
of arithmetic as we do in ordinary mathematics, where s(0) = 1, s(1) = 2
and so on, we get the standard interpretation. When we say a sentence in
the language of arithmetic is true this means that it is true in the standard
interpretation. We will tacitly assume throughout this text that the formulas
mentioned are in the language of arithmetic. By n for a natural number n we
mean the numeral of n which is shorthand for n applications of the function
s to 0. For simplicity we will usually omit the numeral notation, for instance
if we say 1 ¢(n) for some natural number n, then we mean the well defined
Fr ¢(7). The axioms of minimal arithmetic Q are (letting =’ be shorthand

for s(z))

V(0 #)
Vavy(z' =y — z =y)
Vae(z+0=ux)
VaVy(z +y' = (z +y))
Vae(z-0=0
Vavy(z -y’ = (z-y) +)
Va(—z < 0)

VaVy(lz <y < (z <yVaz=y))
V(0 <z <> x #0)
VaVy(z' <y < (x <y Ay #2a))

The axioms of Peano arithmetic PA are those of Q together with the induc-
tion scheme

p(0) AVz(p(x) = p(2') = Vrp(z)
where p(z) is any formula. The standard interpretation is a model of PA
and is often referred to as the standard model.
We say a quantifier is bounded if it occurs as "3z < t(p(x))” or "V <
t(¢(x))” for a term t, with 3z < t(p(z)) being shorthand for Jz(x < tAp(x))
and Vo < t(yp(z)) shorthand for V(z <t — p(z)).

5

Definition 2.1.1. We call a formula of the form Jzp(z), where any quantifier
in ¢ is bounded, a ¥ -formula.

Definition 2.1.2. We call a formula of the form Vzp(z), where any quantifier
in ¢ is bounded, a II;-formula.

Theorem 2.1.3. A X-sentence is provable in Q if and only if it is true.

Proof. See Boolos et al. (2007) Theorem 16.13. O

2.2 Recursive functions

We can encode the natural numbers as 0,0",0”,0”, For any such encoded
natural numbers ng, ..., n,, we define the following functions:
the zero function

z(ng) =0

the successor function
s(no) = ny
and the class of projection functions

o B
PrOji (N0, cvey My eey M) = N

Definition 2.2.1. We call the zero function, the successor function and the
class of projection functions the basic functions.

Definition 2.2.2. For functions h, g, ...gx we define composition as defining
a function f by

f(no, ooy) = h(go(no, ooy Tn)y vy Gie(Moy <oy M)

Definition 2.2.3. For functions h, g we define primitive recursion as defining
a function f by

f(n0,0) = h(ng), f(no,ny) = g(no,n1, f(no,n1))

Definition 2.2.4. We call the functions definable through the basic func-
tions, composition and primitive recursion the primitive recursive functions.

We note that a primitive recursive function is a total function from the
natural numbers into the natural numbers.

Definition 2.2.5. For a function f(ng, ..., m, nm11) we define minimization
as

x L if f(ng,...;nm,x) =0and t <z = f(ng,...,Nm,t) >0

undefined , if no such z exist

min[f](ng, ..., ny) = {

Note that f(ng, ..., nm,t) > 0 implies f(no, ..., nm, t) is defined.

Definition 2.2.6. We call the functions definable through the basic func-
tions, composition, primitive recursion and minimization the recursive func-
tions.

Unlike our primitive recursive functions, the recursive functions are par-
tial functions from the natural numbers into the natural numbers. This is
because the use of minimization might make a recursive function undefined
for some n.

Definition 2.2.7. A set S C N is recursively enumerable if it is the domain
of some recursive function.

Definition 2.2.8. A function f : N — {0, 1} is the characteristic function
of aset S C N if

neS= f(n)

1
ngS= f(n)=0

Definition 2.2.9. A set S C N is recursive if it has a recursive characteristic
function.

Definition 2.2.10. We call a function f(n) representable in a theory T if
there exists a formula ¢(x,y) such that Fr Yy(¢(n,y) <> y = m) if and only
if f(n) = m. We then say that f is representable in T by ¢.

Theorem 2.2.11. FEvery recursive function is representable in Q by a -
formula.

Proof. See Boolos et al. (2007) Theorem 16.14. O

2.3 Provability

A Godel numbering is a way of encoding the formulas in the language of
arithmetic as natural numbers. We will not go in to details on this and
refer to Boolos et al. (2007) for a more detailed treatment. With modern
computers encoding complex information as binary numbers the claim that

Godel numberings are possible to construct is hardly implausible. We denote
the Godel number of a formula ¢ by "¢'. We also assume we can encode
derivations in a theory into the natural numbers using a Godel numbering.

We say a theory is recursively enumerable if the set consisting of the Godel
numbers of the theorems of the theory is recursively enumerable. Both our
theories Q and PA are recursively enumerable since one can show that it is
possible to define a recursive function that is defined for the natural number
n if and only if n is the Godel number of a theorem for which there exists a
proof in natural deduction whose only undischarged assumptions are among
the axioms or instances of axiom schemes of the theory. One way to find
such proofs is to in increasing order check all natural numbers and see if we
can find a natural number that is the Godel number of a proof satisfying our
requirements. If the reader finds the existence of the function described hard
to believe without seeing a detailed proof, then let us note that another way
to see why the function exists is through the notion of effectively computable
functions and Church’s thesis, both concepts will be explained in Section 2.4.

Given a recursively enumerable theory T extending Q we will for any
sentence ¢ assume that we can define a 3;-sentence Prp("¢ ™) that expresses
"there exists an y that is the Godel number of a derivation of ¢ in T”. A
theory is incomplete if there exists a sentence expressible in the language of
the theory which is neither provable nor disprovable in the theory. We say
a sentence of the language of a theory is undecidable in the theory if it is
neither provable nor disprovable.

Theorem 2.3.1. (Gddel’s first incompleteness theorem) Suppose T is a con-
sistent and recursively enumerable extension of Q, then T is incomplete.

Proof. See Boolos et al. (2007) Theorem 17.7. O

Originally Godel proved his first incompleteness theorem under the stronger
assumption of w-consistency, which means that if a theory proves ¢(0), ¢(0),
©(0")..., then the theory does not prove Jz—¢(x). Godel formalized a ver-
sion of the liar paradox ”This sentence is false.” to obtain his result. The
form stated in Theorem 2.3.1 is due to Rosser. We should mention that the
proof of Theorem 2.3.1 actually produces an explicit sentence that is in fact
undecidable in the theory.

Theorem 2.3.2. (The Hilbert-Bernays-Lb provability conditions) Suppose
T is a recursively enumerable extension of PA and let ¢ and ¢ be any sen-
tences, then the following conditions hold

1. If bx o, then bp Pro(Te™)

2. Fr Pre("p =) = (Pre(T¢) — Pro("¢7)
3. 1 Pro("¢?) — Pro("Pro("¢))
Proof. See Boolos et al. (2007) Lemma 18.2. O

In Godel’s second incompleteness theorem we talk about the consistency
of a theory T within T. We do this through the consistency sentence Con(T)
for T, which is usually taken to be

_|PI'T('_J__I)

Theorem 2.3.3. (Gddel’s second incompleteness theorem) Suppose T is a
consistent and recursively enumerable extension of PA, then I/r Con(T).

Proof. See Boolos et al. (2007) Theorem 18.3. O

We will not look at the modern standard proofs of Godel’s theorems
in this text, we will however look at alternative proofs that are related to
Chaitin’s theorem.

2.4 Turing machines

The Turing machine is a type of computing device with an infinite mem-
ory. Informally it can be thought of as a box moving over an infinite one
dimensional tape. The tape consists of cells and each cell contains either the
symbol 0, the symbol 1 or the delimiter symbol #. The box can move over
the tape, scanning one cell at a time and after the box has scanned a cell it
does the following;:

1. Sets the current cell content to 0,1 or #

2. Changes state (in the sense that the new state could be the same as the
current)

3. Moves one step left or right on the tape

Exactly which actions that are performed depends on the content of the
current cell and which one of the box’s finitely many different states the box
is currently in.

More formally, for a Turing machine M we have a finite state space () =
{90, q1, ---,qn} With go being the start state, an alphabet S = {1,0,#} and
a partial function § : @ x S — @ x S x {L,R}. if § is undefined for some
(gi, Si) € Q x S we say that T halts if it scans S; while in state ¢;. M starts

in state gy on a cell ¢y of the tape. The tape continues infinitely in both
directions from c¢g. The input, consisting of 1’s and 0’s, is in the, possibly
empty, consecutive finite sequence of cells from ¢y to the last cell ¢; with
i > 0 that does not contain #. All cells that do not contain the finite input
instead contains # when M starts. The output is in the, possibly empty,
consecutive finite sequence of cells from ¢y to the last cell ¢; with ¢ > 0 that
does not contain # when M halts. One step of computation consists of one
cell scanning along with actions 1 to 3 described above. By halt(M(n)) we
denote the number of steps before M halts on input n. If M does not halt
on input n we say that M is undefined for n and let halt(M(n)) = co. We
sometimes say that M loops if M does not halt. By M(n) | m we mean
that M halts on input n with output m. By M(n) 1 we mean that M does
not halt on input n. Following Li and Vitanyi (2008) we will throughout this
text identify the natural numbers with binary strings under the following
bijection

(6,0, (0,1), (1,2), (00,3), (0L, 4), (10,5), (11, 6), (000, 7), (001, 8), (010, 9), ...

i.e. the n:th natural number is identified with the n:th binary string of the
lexicographical order displayed above, letting the empty string € count as the
first binary string. We let |n| for a natural number n denote the length of
the binary string that we identify with n. It can be shown that

n| = [logy(n +1)]

Under this bijection we can think of Turing machines as partial functions from
the natural numbers to the natural numbers. We say a function f : N — N is
Turing computable if there exists a Turing machine M such that f(n) = m
if and only if M(n) | m and f(n) is undefined if and only if M(n) 1.

We will also use the following notation for strings: 0° and 1¢ are the binary
strings consisting of e 0’s and e 1’s respectively. Unless otherwise explicitly
stated we will always mean the string of e 1’s when we say 1¢ and not the
natural number 1 to the power of e, which is identified with the string 0. We
will also concatenate strings, by for instance 130n for n = 6 we mean the
string 111011.

From the above description of Turing machines we see that we can de-
scribe a Turing machine M completely by writing down the sequence of tu-
ples that represent the transition function ¢ of M. Much like we can create
a Godel numbering for formulas we can then create a Godel numbering for
the countable number of sequences of tuples that represent Turing machines.
As is done in for instance Rogers (1987) Section 1.8 we now simply take
one such listing by lexicographical order and we call this the standard Godel

10

numbering of Turing machines. What is important is that finding the Turing
machine with the standard Godel number n is effectively computable in the
sense defined below. After explaining what effectively computable means it
will be clear that if we use a lexicographical order, then our standard Godel
numbering will satisfy this requirement.

We introduce the notation ~ for Turing machines as: for two Turing
machines M; and Ms we have M; ~ M, if and only if M;(n) | m < M;(n) |
m and M;(n) 1< Ms(n) 1 hold for any natural numbers n and m. We will
also apply =~ to recursive functions by an analogue definition.

Definition 2.4.1. A Godel numbering ® of Turing machines is acceptable if
there exist recursive functions f and g such that ®, ~ Uy and ¥, ~ &)
for all natural numbers e, where VU is the standard Goédel numbering.

One of the most important theorems in the theory of Turing machines is
the existence of a universal Turing machine, meaning a Turing machine that
can simulate any other Turing machine.

Theorem 2.4.2. For any acceptable Godel numbering of Turing machines ®
there exists a Turing machine U such that U(0°1n) ~ ®.(n) for any natural
numbers n and e. We say that U is a universal Turing machine (with respect
to ®).

Proof. See Li and Vitényi (2008) Example 1.7.4. O

We will sometimes refer to an input p of a universal Turing machine U
as a program.

We say a function f is effectively computable if we can determine f(n) for
any natural number n using only explicit mechanic computations following
a list of precise instructions, no ingenuity or information except the list of
instructions should be required. Note that we allow for f to be a partial
function in the sense that our mechanical computations for computing f(n)
are not limited to a finite amount of steps, they may continue forever and
in this case f(n) is undefined. It is clear that any Turing computable func-
tion is also effectively computable. Turing’s thesis says that the converse
holds, that any effectively computable function is also Turing computable.
Since we can not give a precise mathematical definition of what an effectively
computable function is we can not prove Turing’s thesis. Church’s thesis is
the corresponding unprovable claim for recursive functions, namely that any
effectively computable function is recursive. Recursive functions and Tur-
ing machines are two independently developed models of computation and
therefore, as stressed in Boolos et al. (2007), the following theorem is a strong
indication both claims are correct.

11

Theorem 2.4.3. A function is Turing computable if and only if it is recur-
Stve.

Proof. See Boolos et al. (2007) Theorem 8.2. O

Since Theorem 2.4.3 shows that Turing’s and Church’s thesis are equiv-
alent they are sometimes referred to instead as the Church-Turing thesis.
Theorem 2.4.3 also shows that whether we choose to argue using recursive
functions or Turing machines is just a matter of personal preference. There
also exist many other equivalent models of computation. One direction in
the proof of Theorem 2.4.3 in Boolos et al. (2007) is to for any given Turing
machine construct a primitive recursive function that expresses the ”state of
the computation of the Turing machine” after ¢ steps of computation. One
then applies minimization to find the least ¢ such that the Turing machine
halts. Using Theorem 2.2.11 one can show that this means a Turing machine
M is representable by a >i-sentence in Q. Note that this also means that if
a Turing machine halts, then this is provable in Q. These facts will be used
often in this text.

2.5 Kolmogorov complexity

Using our bijection from the last section between binary strings and natural
numbers we make the following definition given a universal Turing machine

Definition 2.5.1. The Kolmogorov complexity of a natural number n de-
noted by C'(n) is the length of shortest binary string p such that U(p) = n.

Note that our choice of bijection between the natural numbers and bi-
nary strings also effects the complexity of a natural number. If a string n
satisfies C'(n) > |n| we say that n is random, thus Kolmogorov complexity
captures the intuitive idea that the shortest description of a random string is
the string itself, we can find no pattern that might enable a shorter descrip-
tion. Kolmogorov complexity was independently developed in the 1960’s by
Solomonoff, Kolmogorov and Chaitin. We refer to Li and Vitényi (2008) for
a detailed historical overview.

Theorem 2.4.2 shows that two Kolmogorov complexity measures defined
with respect to Godel numberings ® and ¥ respectively differ only by at
most a constant that is independent of the strings measured, this is because
Ug can run Uy at constant cost and vice versa. Note that it also follows from
Theorem 2.4.2 that

C(n) <|n|+e

12

where e is a constant independent of n. This is because we can create a
Turing machine ®., which given n as input outputs n.

It is important to note that one can show by arguments similar to those
in our discussion in the end of the previous section that in fact C(n) < w is
equivalent to a Yi-statement. Roughly this is because we saw that for our
universal Turing machine U we could express that U halts on input p with
output n by a X;-sentence and thus we can also express that U halts on some
input p of length less than or equal to w with output n by a X;-sentence.
From this we also see that C'(n) > w is equivalent to a II;-statement. We
state these facts as propositions to emphasize their importance.

Proposition 2.5.2. C'(n) < w is equivalent to a ¥,-statement.

Proposition 2.5.3. C(n) > w is equivalent to a I1;-statement.

13

3 Chaitin’s incompleteness theorem

3.1 Main result

Chaitin has given many versions' of his incompleteness theorem, here we
roughly follow a version given in Chaitin (1992a). We tacitly assume T,
unless otherwise stated, is an extension of Q for the remainder of this section.
Also note that if we have a finite amount of axioms, then we can always create
one single equivalent axiom through conjunction.

Theorem 3.1.1. (Chaitin’s incompleteness theorem) Assume the theory T
is finitely axiomatizable by an aziom A and also assume all statements of
the form "C'(n) > w” that are provable from A are true, then there ezists a
constant ¢ such that T contains no theorems of the form "C'(n) > C("A7) +

”

c”.

Proof. We can create a Turing machine M that takes as input a concatena-
tion 0F1"A7. M now, with the use of A, begins listing T. This could for
instance be done by in increasing order checking natural numbers m to see if
m is the Godel number of a proof in which the only undischarged assumption
is A. If this is the case, then the conclusion is a theorem of T. If T contains
a theorem of the form "C'(n) > ["A7| + 2k”, then M stops when finding the
first such theorem and outputs n.

Now assume towards a contradiction that M halts with output n. Then
for some constant cy; we have U(cp 017 A7) = M (017 A7) = n and therefore

Cn) <lem| +[FAT+k+1
But by our soundness assumption |"A7| 4+ 2k < C'(n) also holds so we have
ITAY 4+ 2k < |ep| +[TAT| +k+1

This is a contradiction for sufficiently large k£ and thus T can contain no
theorem of the form "C(n) > C(TA") + ¢” for ¢ = 2k and k sufficiently
large. O]

Remarks:

(i) It is important to note that while there are 2" binary strings of length
n, there are only 2" —1 binary strings of length strictly less than n. This
shows that there exists random strings of any length. Thus Theorem
3.1.1 proves that there exists true statements that are not provable in
the system. We will discuss this further in Section 3.4.

!See for instance Chaitin (1974) or Chaitin (1992b).

14

(ii) Chaitin (1992a) chooses to prove Theorem 3.1.1 for a prefix Kolmogorov
complexity measure (see Section 4.1), however such implementation
details will not matter for the discussion that follows in Section 3.2.

(iii) In Theorem 3.1.1 we assume that our theory is finitely axiomatizable,
this is quite a limitation. However we could for a stronger theorem
assume just that our theory is recursively enumerable, then there exists
a Turing machine M’, which given the input 0*1 searches the specific
theory T for the first theorem of the form described in the proof. In this
case we have "hard coded” the choice of theory into our Turing machine.
For any recursively enumerable theory we can create such a Turing
machine. When proving the theorem in this manner an alternative
formulation of the theorem would be ”there exists a constant ¢ such that
T contains no theorems of the form ”C'(n) > ¢”, this is indeed a common
way to state the theorem, see for instance Calude and Jiirgensen (2005).
This alternative proof hints that the connection between the complexity
of the axioms and the constant ¢ in our alternative formulation might
be weak, this is something we will discuss in the following section.

3.2 Discussion

What has been controversial in the past is not the validity of Chaitin’s the-
orem, but how to interpret it. In Theorem 3.1.1 the Kolmogorov complexity
of the Godel number of the axiom of the system appears as a rough (if not
to say very rough as the constant ¢ of the proof may be a very large num-
ber) upper bound for how great we can prove the Kolmogorov complexity
of any given string n to be. In what follows we will say ”"the complexity of
the axioms” instead of "the Kolmogorov complexity of the Godel number of
the axiom” as the detail how we identify a sentence with a binary string is
usually not explicitly discussed in the papers we will cite.

In Chaitin (1992b) Chaitin explains that what he the calls the spirit of
Theorem 3.1.1 has been expressed as:

A set of axioms of complexity N cannot yield a theorem of com-
plexity substantially greater than N

He writes that this description originated with the discussion in Chaitin
(1974):

We shall see that there are circumstances in which one only gets
out of a set of axioms what one puts in, and in which it is possible
to reason in the following manner. If a set of theorems constitutes

15

t bits of information, and a set of axioms contains less than ¢ bits
of information, then it is impossible to deduce these theorems
from these axioms.

In Chaitin (1982) Chaitin also expresses ambitions of a similar kind:

In contrast I would like to measure the power of a set of axioms
and rules of inference. I would like to [be| able to say that if one
has ten pounds of axioms and a twenty-pound theorem, then that
theorem cannot be derived from those axioms.

In van Lambalgen (1989) the author explains that the purpose of his paper
is to show that Chaitin’s mathematics does not support his philosophical
claims. To illustrate that one can prove t/x C(n) > ¢ for a constant ¢
without there being any explicit connection between ¢ and the Kolmogorov
complexity of the axioms of T van Lambalgen? sketches the following proof.

Theorem 3.2.1. Suppose T is as in Theorem 3.1.1, then there exists a
constant ¢ such t/r C(n) > ¢ for any string n.

Proof. We create a Turing machine ®, as follows: By listing® the theorems
of T, ®, on input m finds the first theorem in T of the form " ®,,(m) Jn”,
when such a theorem is found @, halts with output n. We now see that ®.(e)
is undefined, i.e. ®.(e) T, since otherwise we would be able to prove both
D (e) L n (if .(e) | n is true, then it is a true ¥;-sentence) and ®.(e) J/n in
T, which contradicts our soundness assumption about T. This shows that
Hr ®.(e))/ n for any n, so for any n we see that T + ®.(e) | n is consistent.
But from T + ®.(e) | n we can prove U(0°le) | n, from which we can prove
C(n) < e+ 1+ le|, and therefore C(n) > e+ 1 + |e| can not be provable in
T for any string n. m

Note in the proof above that we could have weakened our soundness as-
sumption on T to a consistency assumption, as we shall see in the proof of
Theorem 3.4.1 this is actually the case with Chaitin’s proof as well when we
assume T is an extension of Q. Since van Lambalgen can prove Chaitin’s the-
orem without referring to the complexity of the axiom he questions whether
there in fact is any interesting connection between the complexity of the
axioms of T and the minimal constant ¢t such that /r C(n) > cr for

2van Lambalgen credits Albert Visser and Dick de Jongh for the idea.

3We can use a method such as that described in the proof of Theorem 3.1.1 to list the
theorems, as previously we could just as well hard code our choice of theory in the Turing
machine, meaning we do not need to use the Godel number of a finite axiomatization as
input.

16

any string n. As van Lambalgen points out we for instance have no idea if
czrc > cpa, where ZFC is Zermelo-Fraenkel set theory with the axiom of
choice which is strictly stronger than PA. van Lambalgen also comments on
the basic fact that Theorem 3.1.1 speaks about the unprovability of certain
formulas asserting that the Kolmogorov complexity of a string is greater than
some constant, the theorem does not explicitly make a claim about general
formulas being unprovable due to the formulas themselves having too high
Kolmogorov complexity.

In Chaitin (1992b) Chaitin comments on what he calls the "heuristic
principle” described in the quote above from Chaitin (1974). He notes that
any set of axioms from which we can derive an infinite set of theorems must
violate this principle since only finitely many strings can have complexity
below any constant c¢. As a simple example he mentions the infinitely many
trivial theorems of the form n = n derivable from Vz(x = x). Chaitin
suggests rephrasing the principle as:

A set of axioms of complexity N cannot yield a theorem that
asserts that a specific object is of complexity substantially greater
than N.

and he goes on to explain:

It was removing the words “asserts that a specific object” that
yielded the slightly overly-simplified version of the principle that
we discussed above

Chaitin’s rephrasing changes the meaning of the principle, it is now a
trivial corollary of Theorem 3.1.1. Chaitin is quoted in Svozil (1993) on a
similar rephrasing:

A more technical statement is “You can’t prove a 10 pound the-
orem from a 5 pound set of axioms AND KNOW THAT YOU
HAVE DONE IT.” (Le., know that you've proven a theorem with
a particular complexity that substantially exceeds that of the ax-
ioms.) Restated in this slightly more careful fashion, it is now
obvious that my assertion is an immediate corollary of my basic
theorem that one can prove ” H(s) > n"* only if n < H(A)+O(1).

As Fallis (1996) comments, the claim “You can’t prove a 10 pound theorem
from a 5 pound set of axioms AND KNOW THAT YOU HAVE DONE IT” is
true, but also slightly misleading since Theorem 3.1.1 speaks about a general

4By H(z) Chaitin means prefix Kolmogorov complexity, see Remark (ii) after Theorem
3.1.1.

17

string n, whether that string is identified with a formula which happens to
be a theorem of the theory or not is irrelevant.

Raatikainen (1998) extends van Lambalgen’s criticism by showing that
the minimal constant ¢ such that T proves no sentences of the form C(n) > ¢
for any string n can be made close to 0 regardless of the strength of T. There
is a small mistake® in Raatikainen’s paper and the argument is extended in
Ibuka et al. (2011) so we follow the proof given there instead. It should be
noted that Ibuka et al. (2011) works with Turing machines that accepts no
input, in that case we define the Kolmogorov complexity of a string n as
the least e such that ®. | n with & being our Godel numbering of Turing
machines. Here we have however adapted the result to Turing machines that
do accept input (our machine Ag Tt soon to be defined just happens to ignore
any input) and therefore everything is as before.

Given an acceptable Godel numbering ® of Turing machines and a Kol-
mogorov complexity C(-) with respect to ® we make the following definition
for any recursively enumerable and consistent theory T

Definition 3.2.2. Define ¢} as the least ¢ such that T proves no statements
of the form C(n) > ¢ for any string n.

We have here adapted the notation of Ibuka et al. (2011) to index ch
by the Godel numbering ® used in order to make things a little clearer.
Note that it would not be wrong for our purposes in this text to index the
Kolmogorov complexity C(.) by ® as well.

Lemma 3.2.3. Suppose S and T are two recursively enumerable and con-
sistent theories, then there exists a Turing machine Agrt such that for any
n

SFAsT ¥n
and
T VAS,T ¥n

Proof. (Proof idea) Let Agt be a Turing machine that ignores any input
given to it and instead runs ®.(e), where @, is the Turing machine from the
proof of Theorem 3.2.1. Only difference from Theorem 3.2.1 is that we alter
®, so that it in parallel list the theorems of two theories instead of just one.
We refer to Ibuka et al. (2011) for an alternative proof.]

We followed Ibuka et al. (2011) and stated Lemma 3.2.3 for two theories
since we will return to it in Section 4.2 and there we will discuss two theories
instead of just one. It is clear from our proof idea how one would define a
similar machine At for just one theory.

®http://mathforum.org/kb/plaintext.jspa?message]D=570656

18

Proposition 3.2.4. There exists an acceptable Godel numbering ® such that
o
cp < 1.

Proof. Put ®; = Ar. Since we somewhere in the standard Godel numbering
® find A, it is clear from Definition 2.4.1 that we can define an acceptable
Godel numbering by interchanging the index of the first Turing machine in
® with the index of At in ®. Since T I/ Ar J/n for any string n, T can not
prove that U(e0e)® does not halt with output n for any string n and thus it
can not prove C'(n) > 1 for any n. Note that by a small adjustment in how
our universal machine takes input (we could for instance let U run ®, with
empty input when U is given empty input) we could just as well have proved
cp < 0. []

By Proposition 3.2.4 we see that if we are allowed to manipulate the
Godel numbering used by our universal Turing machine, then the minimal
constant ¢ such that T proves no sentences of the form C(n) > ¢ for any
string n can be made less than or equal to 1 regardless of the strength or
complexity of T or it’s axioms. As Raatikainen (1998) comments, this shows
that van Lambalgen’s question how for instance czpc relates to cpa is not
well defined. One could argue that we can make it well defined by choosing
a fixed universal Turing machine U and then compare the constants with
respect to the complexity induced by U. One could also argue that the trick
used by Ibuka et al. (2011) and Raatikainen (1998) results in an acceptable
but very artificial Gédel numbering of Turing machines. Raatikainen (1998)
argues in response to this that it would be very hard to settle on one "natu-
ral” Godel numbering of Turing machines (we would also need to decide on
implementation details of the universal Turing machine U), let alone even
which computational model to use among the many known equivalent ones
(Turing machines, recursive functions, URM etc). Raatikainen (1998) also
argues that the goal here is not to create odd Godel numberings, but to il-
lustrate that the constant cr is effected by more or less accidental coding
choices. Let us also just note that it was the false principle

A set of axioms of complexity N cannot yield a theorem of com-
plexity substantially greater than N

that sparked our interest in these constants to begin with.

6Recall Definition 2.4.2 to understand why the input string is €0e, by that definition
running ®¢ with empty input on our universal Turing machine is done by giving the input
string e0e.

19

3.3 Summary of discussion
It is clear that any principle which claims

A set of axioms of complexity N cannot yield a theorem of com-
plexity substantially greater than N

is trivially false, at least under the complexity measure we discussed above.
Chaitin’s result on the other hand can be informally stated as

A set of axioms of complexity N cannot yield a theorem that
asserts that a specific object is of complexity substantially greater
than N

this is a fundamentally different statement and, depending on how interested
one is in proving statements about complexity of strings, a less useful one.
Had the former principle been true it would have indeed been an interesting
addition to our knowledge about sources of incompleteness in formal sys-
tems. As Chaitin himself notes in Chaitin (1974), what he has done in his
incompleteness theorem is that he has successfully formalised Berry’s para-
dox in a wide range of formal systems. Berry’s paradox’ is that with “the
smallest natural number not describable by fewer than a 100 words” we have
just described the number in less than a 100 words. To escape the paradox
our consistent formal systems must be unable to prove that a number is “not
describable by fewer than a 100 words”. Specifying that we look for ”the
smallest natural number” in Berry’s paradox is of course just a way of mak-
ing a unique selection among candidate numbers which are not describable by
fewer than a 100 words, in our proof of Theorem 3.1.1 we do this unique se-
lection by extracting the number from the first statement of the correct form
that we find as we list the theorems of our recursively enumerable theory T.
What Chaitin’s theorem shows is that for some sufficiently large constant ¢
we find no theorems of the form ”C'(n) > ¢” in T, it makes no claim about
what the minimal such c is. van Lambalgen gives a fundamentally different
approach to proving the same theorem, he instead uses the well known fact
that we can not determine if every Turing machine halts and notes that this
undecidability transfers to a complexity measure which use the Turing ma-
chines for measurement. As illustrated by van Lambalgen one way to find

TAt http://en.wikipedia.org/wiki/Berry_paradox we find:

Bertrand Russell, the first to discuss the paradox in print, attributed it to G.
G. Berry (1867-1928), a junior librarian at Oxford’s Bodleian library, who
had suggested the more limited paradox arising from the expression “the first
undefinable ordinal”.

20

the index of such an unpredictable Turing machine is that if we are given a
recursively enumerable theory such as T we can always create a Turing ma-
chine that searches for a contradictory proof about it’s own output among
the theorems of the theory. Raatikainen then notes that by manipulating
the Godel numbering used by our complexity measure we can make the con-
stant c arbitrarily small, regardless of any property of T. This illustrates that
we can not give too much meaning to specific results obtained under some
certain universal Turing machine. To give concrete examples: which exact
strings that are random will vary under different universal Turing machines,
but intuitive ideas such as ”"the least string of length of L is not random” will
be true for any universal Turing machine Ug (Up denotes a universal Turing
machine with respect to an acceptable Gédel numbering ®) for sufficiently
(depending on Ug) large L. This is simply because for any ® there exists
an e such that ®, is the Turing machine which given L as input outputs the
least string of length L and as mentioned in Section 2.4 |L| = [log,(L + 1)].

3.4 Chaitin’s theorem in relation to Godel’s theorems

As we have seen both Chaitin’s and Godel’s theorems make use of paradoxes,
in the case of Chaitin’s result it is Berry’s paradox and in Godel’s case it is the
liar paradox. van Lambalgen (1989) remarks that while Chaitin’s theorem,
much like Godel’s first theorem, proves the existence of unprovable sentences
in a formal system, it does not give us an explicit construction of such a
sentence the way Godel’s result does. Of course, if we allow ourselves to
manipulate the Gédel numbering used by our fixed universal Turing machine,
we can as Raatikainen (1998) points out make ®y J/n unprovable for any n
and thereby, under some assumptions about the operation of our universal
Turing machine, make for instance C'(0) > 1 unprovable. Chaitin’s theorem
does however not in general give us an explicit example of an undecidable
sentence.

It should be noted that Theorem 3.1.1 (Chaitin’s theorem) makes a sound-
ness assumption, we assume that all statements of the form "K(n) > w”
provable in our formal system are true, Theorem 2.3.1 (Gddel’s first theo-
rem) on the other hand only make the weaker assumption of consistency. It
is under this soundness assumption Chaitin’s result is usually proved®. We
could however make do with just the assumptions of Theorem 2.3.1 when
proving Theorem 3.1.1, namely that T is a recursively enumerable and con-
sistent extension of Q, this is the way it is done in for instance Kritchman
and Raz (2010).

8This is discussed by Carl Mummert at http://math.stackexchange.com/a/1002601

21

Theorem 3.4.1. Suppose T is a consistent and recursively enumerable ex-
tension of Q, then there exists a true sentence that is not provable T

Proof. First we need to show that the soundness assumption of Chaitin’s
theorem (Theorem 3.1.1) can be replaced by a consistency assumption. To
see why this works, assume towards a contradiction that T proves a false
statement of the form "C(n) > w”. Since this means that the ¥;-formula
C(n) < w is true we see that T also proves C(n) < w, which means that T
is inconsistent.

Now, as noted in Section 2.5, since there exists random strings of any
length it follows from Chaitin’s theorem that there exists an ¢ such that true
sentences of the form C(n) > ¢ are not provable in T. Note here that we
have not proved that T is incomplete. Since T is an extension of Q we can
not appeal to Theorem 2.1.3 and say that a ¥;-sentence C'(n) < ¢ is provable
in T only if C'(n) < ¢ is true. We could however add an assumption that T
is w-consistent, from this it follows that C'(n) < ¢ is provable in T only if
C(n) < ¢ is true and then we have in fact that T is incomplete.

Finally note that any extension of Q as noted in Section 2.4 is strong
enough to formalize Turing machines and therefore also strong enough to
formalize Kolmogorov complexity. O

We saw above that Chaitin’s result is as strong as the original version
of Godel’s first incompleteness theorem in the sense that it shows under
an assumption of w-consistency that recursively enumerable theories whose
arithmetic fragment is as strong as Q are incomplete. If we only want to use
an assumption of consistency we can prove that there exists true unprovable
sentences. We can also note that roughly the same amount of theory is needed
regardless if we prove incompleteness through Godel’s or Chaitin’s approach,
usually that theory needed is recursive functions and a Godel numbering of
derivations.

One can now ask if Chaitin’s result implies Godel’s second theorem.
Kritchman and Raz (2010) showed that this in fact is the case.

Theorem 3.4.2. Suppose T is a consistent and recursively enumerable ex-
tension of PA, then t/p Con(T).

Proof. (Informal proof idea) Let ¢ be the constant such that T contains no
theorem of the form ”C'(n) > ¢” for any n, this is the ¢ guaranteed to exist
by Chaitin’s theorem. As noted earlier we see by a simple counting argument
that there are 27! — 1 binary strings of length at most c. We now let m be
the number of natural numbers n such that 0 < n < 2°"' —1 and C(n) > ¢,
we also note that 1 < m < 2! follows from our counting argument above
and we assume this conclusion is provable in T.

22

Now assume m = 1. Since the statement "C'(n) < ¢” is a true ¥;-
statement for all except one n with 0 < n < 2°7! — 1 we can prove C'(n) < ¢
for all except one n in T. But we can also prove m > 1 in T and thus we can
prove C'(n) > c¢ for one concrete n. By Chaitin’s theorem this contradicts
the consistency of T. Hence we must have m > 2 and what is done then in
the formal proof is to show that by assuming the consistency sentence of T
in T we can prove m > 2 in T. Thus we can repeat the steps above to prove
m > 3 in T and so on, this eventually yields a contradiction since we could
also prove m < 2¢t! in T. We omit the formal proof which is an exercise
in using the Hilbert-Bernays-Lob provability conditions and the following
formal version of Chaitin’s theorem from Kikuchi (1997)

Fr Con(T) — Va(=Prp("C(z) > ¢))
]

Finally let us also mention that there are other alternative proofs of
Godel’s theorems which also utilize Berry’s paradox. Extending work in
Boolos (1989), Kikuchi et al. (2012) proves Godel’s two theorems for recur-
sively enumerable extensions of PA. To do this Kikuchi et al. (2012) defines
the notion of formulas naming natural numbers. One can then talk about
the least natural number not named by any formula of at most a certain
length. It is interesting to note that Kikuchi et al. (2012) also require an as-
sumption of w-consistency to prove incompleteness. Under an assumption of
consistency Kikuchi et al. (2012) can prove the existence of a true unprovable
sentence, so we see that this is a similar situation to that we had when using
Chaitin’s result to prove incompleteness. Kikuchi et al. (2012) tries to make
the comparison between the two approaches more concrete by defining the
concept of a Kolmogorov complexity based on provability to show that the
approach in Kikuchi et al. (2012) to proving Godel’s second incompleteness
theorem is a special case of Chaitin’s result that we can not prove C(n) > ¢
for arbitrarily large c¢. We refer to Kikuchi et al. (2012) for a full discussion
with the necessary definitions.

23

4 Recent developments

In this section we look at some recent results that have a connection to
Chaitin’s theorem.

4.1 Calude and Jiirgensen (2005)

Let us take a look at Calude and Jiirgensen (2005). The main purpose of
the paper is to prove that for a certain complexity measure the previously
discussed principle

The theorems of a finitely specified? theory can not be signifi-
cantly more complex than the theory itself

holds, Calude and Jiirgensen (2005) refer to this as Chaitin’s heuristic prin-
ciple. We will mainly follow Grenet (2010) here as one of it’s purposes is to
prove the same thing, but with some corrections. To start with we need to
define prefix Kolmogorov complexity. Let an alphabet X; of i symbols be
given and let X; denote the set of all finite strings on this alphabet.

Definition 4.1.1. Suppose z, 2z are strings in X, then we say that z is a
prefix of z if 2 = xy for some non empty y in X/

Definition 4.1.2. We say a subset S of X is prefiz free if there are no two
elements z and y in S such that x is a prefix of y.

Definition 4.1.3. We say a Turing machine M on an alphabet X, is prefix
free if the set S = {z € X : M(z) |} is prefix free.

Definition 4.1.4. Given a universal prefix free Turing machine U with do-
main S C X}, we define the prefiz Kolmogorov complexity K;(.) with respect
to U for z in X} as
K:(z) = mi :
i) = min ful;
U(u)lx

|z|; is simply the length of a string z on an alphabet of i symbols, we
add an index 7 as this notation is used in Grenet (2010). For a proof of the
existence of the above mentioned prefix free universal Turing machine U and
more information about prefix Kolmogorov complexity we refer to Li and
Vitényi (2008).

For our regular Kolmogorov complexity it is the case that there exists a
constant e such that for all n we have C(n) < |n| + e. It is very important

9By this is meant that the axioms of the theory are recursively enumerable.

24

for what follows to know that this no longer holds for prefix Kolmogorov
complexity.
Grenet (2010) now makes the following definition

Definition 4.1.5. For any string « in X; we define the complexity measure
0i(x) = Ki(x) — |xf;

Actually another complexity measure é,(z), for any Goédel numbering g
of X7, is also introduced. The authors of Calude and Jirgensen (2005) and
Grenet (2010) state that the second complexity measure is introduced in
order to prove that the results obtained does not depend on any specific way
of encoding theorems. However, for our discussion here it will be enough
to work with d;(x). Note that this is also how many of the arguments in
Grenet (2010) go, they are carried out for ¢;(x) and then translated to an
arbitrary complexity measure d,(x). The key to this translation is Theorem
2 of Grenet (2010), or more precisely the remark after Theorem 2 that for
any g there exists a constant ¢ such that

|0g(x) — [logy 2] - di(x)| < ¢ (1)

for all z in X7. Also note that any such Godel numbering g has nothing
to do with the Godel numbering used by our universal Turing machine by
which we measure K.

The main (in the part which is a correction of Calude and Jiirgensen
(2005)) result of Grenet (2010) is stated as

Theorem 4.1.6. Suppose T is a finitely specified and arithmetically sound™
theory expressed in the alphabet X;. Then there exists a constant N such that
for any theorem x in T we have

Proof. Follows directly from Lemma 4.1.7 below. O

Note that this theorem (Theorem 3 of Grenet (2010)) is expressed for
d,4(x) for an arbitrary Goédel numbering g in Grenet (2010), however as pre-
viously noted an argument about d; is at the core of the proof and then (1) is
used to transfer the result to d,(z). It is not clear how the assumption that
the theory is arithmetically sound is used in the proof in Grenet (2010). The
following lemma is the upper bound of Lemma 1 in Grenet (2010).

0By this is meant that any arithmetical sentence proved by T is true.

25

Lemma 4.1.7. Suppose T is a finitely specified and arithmetically sound
theory expressed in the alphabet X;. Then there exists a constant N such
that for any theorem x of T we have

Proof. This is claimed without proof in Calude and Jiirgensen (2005) by
appealing to syntactical constraints. The argument in Grenet (2010) is the
following: note that a theorem is a special case of a well formed formula
expressed in the alphabet Xj, as is noted in Grenet (2010) this also means
that the lemma applies to any well formed formula. We create the following
prefix free Turing machine M. Given an input xy, where y is a fixed non well
formed formula expressed in X; (Grenet (2010) suggests using for instance
"++47) and z is a well formed formula in X, M halts with output z. For
input of any other form M does not halt. Note that it is adding y to the
end of x which makes the domain of M prefix free, this is because y can not
be contained in any well formed formula. Since we can run M at a constant
cost ¢pr on our fixed universal prefix free Turing machine U we have proved
that there exists a constant N (independent of z) such that

]

Grenet (2010) says Theorem 4.1.6 is the formal version of Chaitin’s prin-
ciple

The theorems of a finitely specified theory can not be significantly
more complex than the theory itself

First of all I think it is a bit misleading since we have not defined what
the complexity of a theory means, note that finitely specified does not imply
finitely axiomatizable so it is not clear how we would determine the com-
plexity of our theory. Even if the complexity of our theory was well defined,
we would still not have used it in any way to determine the constant N of
Lemma 4.1.7. In fact our remark in Lemma 4.1.7 shows that the following
alternative principle holds for the complexity measure ¢;

The well formed formulas of a finitely specified theory can not be
significantly more complex than the theory itself

From an incompleteness and provability perspective a complexity measure
that satisfies Chaitin’s principle as a result of satisfying the alternative prin-
ciple is not interesting. To stress our point: our theory T can not prove

26

sentences of arbitrarily high d;-complexity simply because all well formed
formulas have complexity below a finite constant N by Lemma 4.1.7. It
should be noted that in the original paper Calude and Jirgensen (2005) on
p. 9 claims (the claim is for §,(x) since they have used (1) to translate it,
however by this same translation the claim here is equivalent) that there
exist true sentences x expressible in X; which have §;(x) > N, where N is
the constant from Theorem 4.1.6. Calude and Jirgensen (2005) does not
justify why these sentences have sufficiently large §;-complexity, the claim
also appears to be false since these true sentences of course are well formed
formulas and Calude and Jiirgensen (2005) at the bottom of p. 6 explicitly
(just as noted by Grenet (2010)) says that Lemma 4.1.7 is true for any z
in T just because x is a well formed formula. There is no mention of these
sentences in Grenet (2010). Another claim in Calude and Jiirgensen (2005)
which supports that there in fact are true well formed formulas of arbitrarily
large d;-complexity is the following limits (L is any integer)

lim ™ - {zeX/: |z[;=n,d0(x)<L}=0 (2)
n—oo

lim ¢ ™" - {zeX/: |z =n,xistrue}| >0 (3)
n—oo

Let us first note that these limits contradict each other by Lemma 4.1.7 since
for sufficiently large L the set of true sentences is a subset of the set of well
formed formulas which have bounded d;-complexity by Lemma 4.1.7. That
being said the argument proving the first limit can be found in the proof of
Proposition 5.1 of Calude and Jiirgensen (2005). The argument proving the
second limit is found in Theorem 5.2 of Calude and Jiirgensen (2005) and is
the following: Consider true sentences of the form ” K;(z) > 1”7 with x in X},
then there exists an M such that for all x in X} with |x|; > M it is true that
K;(xz) > 1. Thus for n > M + ¢, where ¢ is the length of encoding K;(.) > 1
in X;, we have

i Hre Xr o |zl =mn, zistrue}| > i {r e X7 Jzli=n—c}| =i¢

The problem is that if we accept statements of the form " K;(x) > 1”7 for
any = in X/ as well formed formulas, then the argument in the proof Lemma
4.1.7 no longer holds. In the proof we used a fixed ill formed formula y as
delimiter to ensure the domain of M is prefix free. However if we can put
any string x in the parenthesis of the expression ”K;(.) > 17, then with
the knowledge how K;(.) > 1 is expressed in X; (i.e. we need the exact
expression for K;(.)) we can for any z in X} choose x so that qy is a prefix
of py where ¢ is K;(z) > 1, pis K;(z) > 1 and y is our fixed ill formed
formula. The rough idea would be to let x be the string z)>1y (how this

27

would be done exactly depends once again on how K;(.) > 1 is expressed
in X;). Thus M is no longer prefix free and our argument no longer works.
Another way to put this is: we can not put any arbitrary string z from X7
in the parenthesis of the expression ” K;(.) > 1”7 and still necessarily have a
well formed formula. This explains how the limits (2) and (3) can contradict
cach other, limit (2) only counts well formed formulas while limit (3) also
counts non well formed formulas as true sentences. One solution to this
problem would be to express x using a proper subset of the alphabet X, this
restriction corresponds to the ordinary situation in logic where we do not
allow terms to contain for instance the symbol A, however note that then the
argument above for proving inequality (3) no longer holds. It is inequality
(3) which justifies the claim that the probability that a sentence of length n
is true is strictly positive'’ in Theorem 5.2 of Calude and Jiirgensen (2005).
It should also be noted that I am not the first to ask questions about Calude
and Jiirgensen (2005), in the comments of http://mathoverflow.net/a/7902
we find similar concerns raised.

We have seen that ¢; satisfies Chaitin’s principle as a result of satisfying
the alternative principle

The well formed formulas of a recursively enumerable theory can
not be significantly more complex than the theory itself

thus unfortunately making it an uninteresting example of a complexity mea-
sure satisfying Chaitin’s principle. This makes the, in the introduction and
Section 4 of Grenet (2010), described use of d; as a model for finding other
complexity measures which satisfy Chaitin’s principle questionable, since it
appears that additional constraints are desirable.

4.2 Ibuka et al. (2011)

We now look at some more details of the extension of the ideas in Raatikainen
(1998) given in Ibuka et al. (2011). In this paper, as previously mentioned,
we work in a setting of Turing machines that accept no input. Note that the
definition given below for rr does not make sense as it stands for a Godel
numbering of Turing machines that do accept input. The results we state
for ¢t on the other hand, can in fact be translated in an obvious manner to

UThis is in fact true by the simple argument illustrated in
http://mathoverflow.net/a/7902 when we instead look at the ratio between true
statements and well formed formulas (not between true statements and all strings
expressible in the alphabet as in Calude and Jiirgensen (2005)), however as shown there
we then see that the ratio between provable statements and well formed formulas is also
strictly positive, thus we do not get inequalities such as (2) and (3).

28

a Godel numbering of Turing machines that accept input, to see this note
that even if we work with a Godel numbering of Turing machines that accept
input, we are of course always free to create Turing machines that ignore any
input given to them.

Given any Turing machine M we make the following definitions

Definition 4.2.1. Define M" as a Turing machine such that
M t— M" 1

and

Ml— M"|n

We see that M™ is a Turing machine that loops if M loops and halts with
output n if M halts, regardless of the output of M.

Definition 4.2.2. Define M as a Turing machine such that for any m # n
M = M™ 1,

Min—M®™ | n+1

and
M |lm— M™ | m, m#n

We see here that M is a Turing machine that loops if M loops and halts
with output n + 1 if M halts with output n, if M on the other hand halts
with output m for m # n, then M™ halts with unaltered output m. Also
note that M™ [n for any Turing machine M and any number n, in what
follows we will tacitly assume such simple facts like this and for instance
M 14 M™ 1 are provable in PA, see Tbuka et al. (2011) for a detailed
argument.

We will take the following lemma from Ibuka et al. (2011) as an assump-
tion, a way to prove it is to develop theory on the arithmetical hierarchy and
Kleene’s T predicate.

Lemma 4.2.3. Assume 7 is a Il sentence, then there exists a Turing ma-
chine D, such that PA& (1 <> D; 1) A (=7 <> D, | 0).

Given theories S and T extending PA and an acceptable Godel number-
ing ® of Turing machines that accept no input we define the Kolmogorov
complexity of a string n as the least e such that ®. | n. We now remind the
reader of the following definition and lemma from 3.2.

29

Definition. Define ¢} as the least ¢ such that T proves no statements of the
form C(n) > ¢ for any string n.

Lemma. There exists a Turing machine Agt such that

S VAS,T ¥n
and
T |71145,1* yn

for any n.
We also make the following definition
Definition 4.2.4. Define 73 as the least r such that T does not prove ®, 1

Note that it follows from the above lemma that neither S nor T can prove
Agr 1T and thus the lemma implies that both rr and rg exist.

Theorem 4.2.5. The following statements are equivalent

a. There exists a Ily-sentence T which is provable in T, but not in S.

b. & =13 and c§ < ¢ under some Gidel numbering ® of Turing machines

c. rg <1y and cg < cy under some Gidel numbering U of Turing machines

d. r§ < ri and ¢ = ¢ under some Gdidel numbering Q of Turing machines

Proof. (a) = (b):

Put ¢, = A(SO’)T and ®; = D?. Neither S nor T can prove Agt T by the
lemma above, thus rg = ro = 0 since ¢ = A(s(?r and Agrt T4 A(S% T is
provable in both S and T.

Since

T+ AGy 40
TFD, ¢t
TF D, 1t D% 1

we can prove C'(0) > 1 in T and therefore cx > 1.

Now we want to show cg < 1. Note that this is equivalent to that S
proves no statements of the form ”C(n) > 17 for any string n. Now assume
towards a contradiction that S - C(n) > 1 for some n. Suppose n = 0,
then we must have S + D? 1, but that means S D, 1 and thus S - 7, a
contradiction. Suppose instead n # 0, then by the assumption S - C'(n) > 1

we must have S A(s(iz_r ¥ n. Since n # 0, this means S - Agr J n for

30

some n which contradicts the lemma above. We conclude that S proves no
statements of the form "C'(n) > 1”7 for any string n, i.e. ¢s < 1, and thus
cs < Ct.
L 0
Similar arguments to the one above show that (¥, V) = (DQ,A(S’ZF)

proves (a) = (c) and (€, Q) = (D@,AS,T) proves (a) = (d), see Ibuka
et al. (2011) for details.

(a) <= (b) and (a) < (¢):

cs < cp implies T F C(n) > cg for some string n while by definition
St/ C(n) > cg for any n. This proves the implication since C'(n) > cg is a
I1;-statement.

(a) < (d):

r$ < r implies that the least r such that S does not prove €, 1 is
strictly less than the least r such that T does not prove €2, . This proves
the implication since this means that for some r we have T F €2, 1T while
S Q. 1 and €2, 1 is a [I;-statement.

]

4.3 Bienvenu et al. (2014)

In Bienvenu et al. (2014) the authors study the strength of the theory one
gets by adding all true statements of the form ”C'(n) > w” to PA and they
prove among other things the following result

Theorem 4.3.1. Suppose T is the theory obtained by adding all true state-
ments of the form "C'(n) > w” to PA, then T proves the halting or non
halting of any program.

Proof. Define C*(n) as the complexity measure obtained by limiting our fixed
universal Turing machine Ug to only running each program for ¢ steps. We
see that by making ¢ sufficiently large we get C'(n) = C*(n) for every string
n in W, where W is any finite set of strings. Let Wy be the set of all strings
of length L and denote the minimal ¢ such that C(n) = C*(n) for every n in
WL by t L-

We now claim that for any halting program p with

pl < L—e—1-=2|L|—1 (4)

we must have halt(p) < ¢, here L is assumed to be taken sufficiently large
for the expression to make sense and e is such that ®, is the Turing machine
which when given the concatenated string 11*/0Lp performs the following
steps:

31

1. Measure the number of steps t needed for U(p) to halt. To see why
this is possible note that we can modify a universal Turing machine to
as it simulates another Turing machine M also measure the number of
steps needed for M to halt, remember that we assume p is a halting
program.

2. Run ¢ steps of U(l) for every string [of length strictly less than L.

3. Output the least string n of length L such that C*(n) > L, i.e. a string
that was not a result of a run in step 2, as noted earlier such a string
always exists by a simple counting argument.

Assume towards a contradiction that halt(p) > ¢, then in step 3 C(n) =
C'(n) and thus C(n) > L, however by (4) we also have

C(n) <e+1+4Cyp,(n) <e+ 1+ [1H0Lp| <

e+1+|L|+1+|L|+L—e—1-2|L|—-1=1L

We therefore see that halt(p) < t; for any halting p.

A true statement of the form "C(n) < w” is a true ¥;-statement and is
thus provable in T, but since also all true statements of the form ”C'(n) > w”
are axioms of T we have proofs in T of the complexity of any string n. We
can then prove the value of t;, for any L in T.

From the argument above, which is formalizable in T, we can prove in T
that we only need to run a program p for at most ¢, steps, where L depends
on |p|, to know if p will ever halt and it is also provable in T whether a
program halts within ¢, steps or not. Finally let us just note that we only
need the new axioms to prove non halting of programs, this is because if U(p)
halts, then this as previously noted is a true ¥;-statement.

m

It should be noted that in the corresponding theorem of Bienvenu et al.
(2014), Theorem 5 to be exact, the authors go further and use the provable
non halting of programs to prove true Il;-statements. We also see that the
theory T obtained is not recursively enumerable, otherwise it would contra-
dict Remark (iii) Theorem 3.1.1. Let us also explain what we hinted at in the
introduction, that since for any Turing machine M and input n we can find
a program p such that M(n) ~ U(p) we see that T in fact proves whether
any given Turing machine on any given input halts or not.

Bienvenu et al. (2014) goes on to prove something similar to the following
result, in which we as usual assume we have fixed a universal Turing machine

32

Theorem 4.3.2. Suppose T is the theory obtained by adding C(ny) > L
to PA, where ny, is the least string n with |n| = L such that C(n) > L is
true. Then there exists a constant ¢ (independent of L) such that T proves
the halting or non halting of any program of length less than L — 2|L| — c.

Proof. (Proof idea) The argument is similar to the one in the proof of The-
orem 4.3.1. Note in that proof that in the description of &, we only really
need t to be so large that for all strings n of length L preceding n; we have
C'(n) < L in order to get a contradiction. Also note the minimal value of
such a t is provable from the axiom C(ny) > L and the previously mentioned
fact that for any string n of length L preceding n; we have that C(n) < L
is a true X;-statement. From the proof of Theorem 4.3.1 we see that setting
¢ = e + 2 completes the proof. O

The two theorems above are a strong testament to the axiomatic strength
of statements of the form ”C'(n) > w”, however as commented by Christopher
P. Porter!? we should keep in mind that our use of them above lay in the
fact that they contained information about the halting of Turing machines
and are thus no more powerful than axioms of that form in this regard.

2http: / /www.cpporter.com/wp-content /uploads/2013/08/PorterCambridge2013.pdf

33

5 Conclusions

We have seen that Chaitin’s theorem is an alternative to Godel’s first the-
orem for proving incompleteness in a theory T, where T is a recursively
enumerable extension of Q. In Section 3.4 we saw that Chaitin’s theorem is
as strong as the original version of Godel’s first incompleteness theorem in
the sense that we can use it to show that consistency implies the existence of
true unprovable sentences in T. We noted however that, unlike the version
of Godel’s first incompleteness theorem due to Rosser, Chaitin’s result needs
a stronger assumption such as w-consistency to prove incompleteness in the
strict sense of the word. We then looked at Kritchman and Raz (2010) that
showed us how to prove a statement equivalent to Godel’s second incomplete-
ness theorem from Chaitin’s result. The proof used among other things our
elementary observation that by Chaitin’s theorem we can not prove state-
ments of the form ”"C(n) > w for arbitrarily large w, yet we can easily see
that n such that those statements are true exist. We also noted that the
proof of Chaitin’s theorem is, unlike that of Godel’s first incompleteness the-
orem, not constructive in the sense that it does not supply us with an explicit
unprovable sentence, it merely guarantees it’s existence.

In Section 3.2 we gave an overview of the discussion surrounding the
proposed principle

A set of axioms of complexity N cannot yield a theorem of com-
plexity substantially greater than N

After contributions from van Lambalgen, Raatikainen, Chaitin himself and
others the matter is resolved with the conclusion that Chaitin’s theorem does
not motivate such a principle. In fact there are even some trivial counter ex-
amples to the principle when using the standard Kolmogorov complexity
as complexity measure. The discussion did however lead Raatikainen and
Ibuka et al. (2011) to show more precisely how we can manipulate our uni-
versal Turing machine to in a sense control when statements of the form
"K(n) > w” are unprovable in our theory. Key to this argument was that
for a recursively enumerable theory we can always create a Turing machine
M that searches the theory for proofs about the Turing machine’s own out-
put and if such a proof is found then outputs something which contradicts
the proof. The conclusion was that our theory could not prove any theorem
about the output of M and thus could not prove any theorem of the form
"K(n) > €”, where e is the cost of running M on our fixed universal Turing
machine, which would imply that the output of M is not n. One conclusion
from this was that the connection between any property of T and the least
¢ such that T does not prove any statements of the form ”C(n) > ¢” is more

34

or less accidental and depends on what acceptable Gédel numbering we use
for our Turing machines.

Calude and Jiirgensen (2005) proposed a complexity measure d; that sat-
isfies the principle discussed in Section 3.2. We criticized this approach since
0; violates an implicit assumption when discussing the principle, namely that
there should also exist well formed formulas that have substantially greater
complexity than that of the axioms. As far as this author knows, there is
no known interesting complexity measure that satisfies the mentioned prin-
ciple. Finally we saw in Bienvenu et al. (2014) that true statements of the
form 7 K(n) > w” encodes halting information about general programs of a
universal Turing machine.

35

References

Bienvenu, Laurent, Andrei Romashchenko, Alexander Shen, Antoine Tave-
neaux, and Stijn Vermeeren (2014), “The axiomatic power of Kolmogorov
complexity.” Ann. Pure Appl. Logic, 165, 1380-1402, URL http://dx.
doi.org/10.1016/3.apal.2014.04.009.

Boolos, George (1989), “A new proof of the gddel incompleteness theorem.”
Notices of the American Mathematical Society, 36, 388-390.

Boolos, George S., John P. Burgess, and Richard C. Jeffrey (2007), Com-
putability and logic, fifth edition. Cambridge University Press, Cambridge,
URL http://dx.doi.org/10.1017/CB09780511804076.

Calude, Cristian S. and Helmut Jiirgensen (2005), “Is complexity a source
of incompleteness?” Adv. in Appl. Math., 35, 1-15, URL http://dx.doi.
org/10.1016/j.aam.2004.10.003.

Chaitin, G. J. (1992a), “Information-theoretic incompleteness.” Appl. Math.
Comput., 52, 83-101, URL http://dx.doi.org/10.1016/0096-3003(92)
90099-M.

Chaitin, G. J. (1992b), “LISP program-size complexity. 11, III, IV.” Appl.
Math. Comput., 52, 103-126, 127-139, 141147, URL http://dx.doi.
org/10.1016/0096-3003(92)90100-F.

Chaitin, Gregory J. (1974), “Information-theoretic limitations of formal sys-
tems.” J. Assoc. Comput. Mach., 21, 403-424.

Chaitin, Gregory J. (1982), “Godel’s theorem and information.” Inter-
nat. J. Theoret. Phys., 21, 941-954, URL http://dx.doi.org/10.1007/
BF02084159.

Fallis, Don (1996), “The source of Chaitin’s incorrectness.” Philos. Math.
(3), 4, 261269, URL http://dx.doi.org/10.1093/philmat/4.3.261.

Grenet, Bruno (2010), “Acceptable complexity measures of theorems.” Com-
plex Systems, 18, 403-425.

Ibuka, Shingo, Makoto Kikuchi, and Hirotaka Kikyo (2011), “Kolmogorov
complexity and characteristic constants of formal theories of arithmetic.”
MLQ Math. Log. Q., 57, 470-473, URL http://dx.doi.org/10.1002/
malq.201010017.

36

Kikuchi, Makoto (1997), “Kolmogorov complexity and the second incom-
pleteness theorem.” Arch. Math. Logic, 36, 437-443, URL http://dx.
doi.org/10.1007/s001530050074.

Kikuchi, Makoto, Taishi Kurahashi, and Hiroshi Sakai (2012), “On proofs
of the incompleteness theorems based on Berry’s paradox by Vopénka,
Chaitin, and Boolos.” ML) Math. Log. Q., 58, 307-316, URL http://dx.
doi.org/10.1002/malq.201110067.

Kritchman, Shira and Ran Raz (2010), “The surprise examination paradox
and the second incompleteness theorem.” Notices Amer. Math. Soc., 57,
1454-1458.

Li, Ming and Paul Vitanyi (2008), An introduction to Kolmogorov complezity
and its applications, third edition. Texts in Computer Science, Springer,
New York, URL http://dx.doi.org/10.1007/978-0-387-49820-1.

Raatikainen, Panu (1998), “On interpreting Chaitin’s incompleteness theo-
rem.” J. Philos. Logic, 27, 569-586, URL http://dx.doi.org/10.1023/
A:1004305315546.

Rogers, Hartley, Jr. (1987), Theory of recursive functions and effective com-
putability, second edition. MIT Press, Cambridge, MA.

Svozil, Karl (1993), Randomness € undecidability in physics. World Scientific
Publishing Co., Inc., River Edge, NJ, URL http://dx.doi.org/10.1142/
1524.

van Lambalgen, Michiel (1989), “Algorithmic information theory.” J. Sym-
bolic Logic, 54, 1389-1400, URL http://dx.doi.org/10.2307/2274821.

37

