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Abstract

This thesis is divided into two parts. In the first part we will study some
properties of the Gamma function, Γ(z), which can be viewed as an extension
of the factorial function (n+ 1) 7→ n! to a subset of the complex plane (more
precisely to CrZ≤0). The Gamma function has several representations and
we will represent some of them.

The second part of this thesis is about Pick functions and mainly follows
the paper Pick Functions Related to the Gamma Function by C. Berg and
H.L. Pedersen (see [BP]). Pick functions are holomorphic functions from the
open upper complex half plane to the closed upper complex half plane. We
will prove that a special class of maps are Pick functions. We end up with
proving that Log(Γ(z+1))

z
is a Pick function which connects the two subjects of

my thesis.
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Chapter 1

Introduction

The aim of this thesis is to give a brief introduction to the Gamma func-
tion and Pick functions and prove some of the relations between the Gamma
function and Pick functions.

In the second chapter, the definition of the Gamma function is recalled.
Some properties of the Gamma function are shown and several representa-
tions of the Gamma function are presented.

In the third chapter we deal with Pick functions and prove that a certain
class of functions are Pick functions. We end the chapter with proving that
Log Γ(z+1)

z
is a Pick function, which connects one of the relations between the

Gamma function and Pick functions.

The Gamma function was first introduced by the famous mathematician
Leonhard Euler (1707-1783) in 1729, as a natural extension of the factorial
function n 7→ (n− 1)! on positive integers n ∈ N to Cr Z≤0.

Later on, the Gamma function was studied by other famous mathemati-
cians such as Adrien-Marie Legendre, Carl Friedrich Gauss, Karl Weierstrass,
Charles Hermite and many others mathematicians.

The Gamma function appears in various mathematical areas and has con-
nections to special transcendental functions, asymptotic series, definite inte-
gration, number theory, Riemann zeta function and has also applications in
other sciences such as physics and programming.

In this thesis we also follow [BP] and introduce Pick functions which are holo-
morphic functions from the open upper half-plane H = {z ∈ C : Im(z) > 0}
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to the closed upper half-plane H∪R = {z ∈ C : Im(z) ≥ 0}. Pick functions
have been studied for a long time and under various names like Nevanlinna
functions, Herglotz functions and R-functions.

We will show that functions on the form

F (z) = α + βz +

∫ ∞

−∞

(
1

t− z −
1

1 + t2

)
h(t)dt

where α ∈ R, β ≥ 0, h(t) ≥ 0 and
∫∞
−∞

h(t)
1+t2

dt <∞, are Pick functions.

At the end we prove that Log(Γ(z + 1))/z is a Pick function, which con-
nects the two subjects of this thesis.
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Chapter 2

The Gamma function

2.1 Introduction to the Gamma function

In this chapter the definition of the Gamma function is recalled and some
of its properties is proven. The author’s main references for this chapter is
[An],[Ca],[PB1],[Ra].

The Gamma function is a function Γ : C r Z≤0 → C which can be de-
fined in many ways. One way of expressing it is by means of an improper
integral

Γ(z) =

∫ ∞

0

e−ttz−1dt (2.1)

for z ∈ C with Re(z) > 0. This defintion may be extended it to Cr Z≤0 by
methods we will present later. In the first two subsections we will show that
(2.1) is well-defined and extends the factorial function n 7→ (n−1)!. The last
two subsections will give alternative representations of the Gamma function.

Lemma 2.1.1 Let 0 < a <∞. Then

I. The integral
∫∞
a
x−pdx is equal to a1−p

p−1
if p > 1 and is divergent if p ≤ 1.

II. The integral
∫ a

0
x−pdx is equal to a1−p

1−p if p < 1 and is divergent if p ≥ 1.

Proof. We only prove II, because the proof of I is similar.

If p < 1, we have that

∫ a

0

x−pdx = lim
c→0+

∫ a

c

x−p = lim
c→0+

x1−p

1− p

∣∣∣∣
a

c

= lim
c→0+

a1−p − c1−p

1− p =
a1−p

1− p.
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If p > 1, we have that

∫ a

0

x−pdx = lim
c→0+

∫ a

c

x−p = lim
c→0+

x1−p

1− p

∣∣∣∣
a

c

= lim
c→0+

a1−p − c1−p

1− p =∞.

If p = 1,
∫ a

0

x−pdx = lim
c→0+

∫ a

c

x−1 = lim
c→0+

Log(x)|ac = lim
c→0+

(Log(a)− Log(c)) =∞.

�

The integrals in Lemma 2.1.1 are called p-integrals, and the theorem above
can be used in order to prove that some improper integrals are convergent.

Lemma 2.1.2 Assume 0 ≤ f(x) ≤ g(x) for all x ∈ (a, b) where −∞ ≤ a <

b ≤ ∞. If
∫ b
a
g(x)dx is convergent, then

∫ b
a
f(x)dx is also convergent. If∫ b

a
f(x)dx is divergent, then

∫ b
a
g(x)dx is also divergent.

Proof. See Theorem 11, p.306 in [PB1].

Remark. The improper integral
∫∞
−∞ f(x)dx is defined as the sum

lim
R→∞

∫ a

−R
f(x)dx+ lim

R→∞

∫ R

a

f(x)dx

where a is any real number. We say that the improper integral converges
when both limR→∞

∫ a
−R f(x)dx and limR→∞

∫ R
a
f(x)dx converge.

2.2 Gamma function on the real line

Recall that the Gamma function restricted to {z ∈ C | Re(z) > 0} is given
by the improper integral

Γ(z) =

∫ ∞

0

e−ttz−1dt.

This is of course well-defined only if the integral above is convergent for all
points in {z ∈ C | Re(z) > 0}. In this section we just prove that the integral
is convergent for all z ∈ (0,∞). Thereafter we prove some of the properties
of Γ on the real line.
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Proposition 2.2.1 The improper integral

Γ(x) =

∫ ∞

0

e−ttx−1dt

is convergent for x > 0.

Proof. We split the integral as follows;

Γ(x) =

∫ ∞

0

e−ttx−1dt =

∫ 1

0

e−ttx−1dt+

∫ ∞

1

e−ttx−1dt .

In order to show that whole integral converges we show each integral in the
right hand side is convergent (as both are generalized).

We have that max
t∈[0,1]

e−t = 1, implying that 0 ≤ e−ttx−1 ≤ tx−1 for all t ∈ [0, 1].

Hence

0 ≤
∫ 1

0

e−ttx−1dt ≤
∫ 1

0

tx−1dt = lim
a→0

∫ 1

a

tx−1dt = lim
a→0

tx

x

∣∣∣∣
1

t=a

=
1

x
<∞

From Lemma 2.1.2 it follows that
∫ 1

0
e−ttx−1dt is convergent.

Now we prove that
∫∞

1
e−ttx−1dt is convergent. Since the et/2 grows faster

than tx−1 for any x > 0, given a fixed x > 0 there is some kx ∈ R+ such that
for every t > kx it holds that

et/2 > tx−1.

This gives that

0 ≤
∫ ∞

1

e−ttx−1dt =

∫ kx

1

e−ttx−1dt+

∫ ∞

kx

e−t tx−1
︸︷︷︸
≤et/2

dt

≤
∫ kx

1

e−ttx−1dt+

∫ ∞

kx

e−tet/2dt

Obviously
∫ kx

1
e−ttx−1dt is finite. If we can show that

∫∞
kx
e−tet/2dt is con-

vergent, then the inequality above together with Lemma 2.1.2 will give that∫∞
1
e−ttx−1dt is convergent. We have

∫ ∞

kx

e−tet/2dt = lim
b→∞
−2e−t/2|bkx = 2e−kx/2 <∞
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This completes the proof. �

Next we prove some properties of the Gamma function which show how
it is related to the factorial map (n+ 1) 7→ n!.

Proposition 2.2.2 Γ(x+ 1) = xΓ(x) for all x > 0.

Proof. Integrating by parts gives

Γ(x+ 1) =

∫ ∞

0

e−ttxdt = lim
R→∞
c→0

(−e−ttx|Rt=c)
︸ ︷︷ ︸

=0

+x

∫ ∞

0

e−ttx−1dt = xΓ(x)

�

Proposition 2.2.3 For any non-negative integer n, Γ(n+ 1) = n!

Proof. We prove the assertion by induction on n. For n = 0 we have that

Γ(0 + 1) =

∫ ∞

0

e−tt1−1 =

∫ ∞

0

e−tdt = lim
R→∞

−e−t
∣∣R
t=0

= 1.

Assuming that the assertion is true for n− 1, Proposition 2.2.2 yields

Γ(n+ 1) = nΓ(n) = n · (n− 1)! = n! .

�

Proposition 2.2.4 The improper integral
∫ ∞

0

e−ttx−1dt

diverges for x < 0.

Proof. We have that e−t ≥ e−1 for any t ∈ [0, 1]. Hence
∫ 1

0

e−ttx−1dt ≥
∫ 1

0

e−1tx−1dt =∞

(last equality holds by Lemma 2.1.1). By Lemma 2.1.2,
∫∞

0
e−ttx−1dt

diverges. �

Proposition (2.2.4) shows that Γ(x) cannot be defined as the improper inte-
gral

∫∞
0
e−ttx−1dt for x < 0. However we can extend the relation Γ(x+ 1) =

xΓ(x) (see Proposition 2.2.2) for negative numbers which makes Γ defined
for Rr Z≤0.
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2.3 The Gamma function on the complex plane

In this section we extend the domain of Γ to CrZ≤0. By the previous section
we had that Γ is given by the improper integral

∫∞
0
e−ttx−1dt on the positive

half line. We will show that this integral is convergent even for complex
number with strictly positive realparts.

Proposition 2.3.1
∫∞

0
e−ttz−1dt converges for all complex numbers z with

Re(z) > 0.

Proof. Let z = x+ iy where x > 0 and let t ≥ 0. We have that

|e−ttz−1| = |e−ttx+iy−1| = |e−ttx−1tiy| = e−ttx−1|tiy|

= e−ttx−1|ei·ln(t)y| = e−ttx−1

Since x = Re(z) > 0, it follows from Proposition 2.2.1 that
∫∞

0
e−ttx−1 is

convergent. This means that
∫∞

0
e−ttz−1dt is absolute convergent, implying

the convergence of the integral itself. �

Now we give a more general version of Proposition 2.2.2. Its proof is similar
to that of Proposition 2.2.2 and is therfore omitted.

Proposition 2.3.2 For any z ∈ C with Re(z) > 0, it holds that Γ(z + 1) =
zΓ(z). �

So far we have a function Γ(z) whose domain is {z ∈ C | Re(z) > 0},
and which has the property that Γ(z + 1) = zΓ(z). If we want to extend
this function so that the property Γ(z + 1) = zΓ(z) still holds on a larger
domain, there is only one possible way of doing that. Given any z ∈ C with
−n < Re(z) < −(n− 1), we define Γ(z) by

Γ(z) =
Γ(z + 1)

z
=

Γ(z + 2)

(z + 1)z
= · · · = Γ(z + n)

(z + n)(z + n− 1) · · · z

=

∫∞
0
e−ttz+n−1dt

(z + n)(z + n− 1) · · · z . (2.2)

Note that if z ∈ Zn≤0, it is impossible to define Γ(z) as above, since we will
have zero in the denominator in the last equality.
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Now we are ready to define the Gamma function as a function on Cr Z≤0.

Definition 2.3.3 The Gamma function Γ : C r Z≤0 → C is the function
whose restriction to {z ∈ C | Re(z) > 0} is given by

∫∞
0
e−ttz−1dt, and which

is extended to the rest of its domain by the relation Γ(z) = Γ(z+1)
z

as in (2.2).

2.4 The Gauss representation

In this section we will present another representation of the Gamma func-
tion, which is called the Gauss representation of the Gamma function. This
representation is needed in order to introduce a third representation of the
Gamma function, called the Weierstrass representation.

Recall that et = limn→∞
(
1 + t

n

)n
.

Lemma 2.4.1 The following holds

Γ(z) = lim
n→∞

∫ n

0

(
1− t

n

)n
tz−1dt

for z ∈ C with Re(z) > 0.

Proof. See last paragraf in p.17 in [Ra]. �

Integrating
∫ n

0
tz−1(1− t/n)ndt by parts repeatedly gives

∫ n

0

tz−1(1− t/n)ndt =
tz

z

(
1− t

n

) ∣∣∣∣
n

t=0︸ ︷︷ ︸
=0

+

∫ n

0

n

nz
tz
(

1− t

n

)n−1

dt

=
n

zn

n− 1

(z + 1)n

∫ n

0

tz+1

(
1− t

n

)n−2

dt

...

=
n

zn

n− 1

(z + 1)n
· · · 1

(z + n− 1)n

∫ n

0

tz+n−1dt

=
n

zn

n− 1

(z + 1)n
· · · 1

(z + n− 1)n

tz+n

z + n

∣∣∣∣
n

t=0

=
n!

nn
nz+n

n∏

k=0

1

z + k

=
nz

z

n∏

k=1

k

z + k
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By letting n go to infintity, we get Γ(z) for z ∈ C with Re(z) > 0. Of
course, this representation is defined on CrZ≤0, but we have not shown that
it will agree with Γ on {z ∈ C | Re(z) ≤ 0}. Let

Γ̃(z) = lim
n→∞

nz

z

n∏

k=1

k

z + k
. (2.3)

If we can show that Γ̃(z + 1) = zΓ̃(z), then Γ and Γ̃ will agree on all of
Cr Z≤0 We have that

Γ̃(z + 1) = lim
n→∞

nz+1

z + 1

n∏

k=1

k

z + 1 + k
= lim

n→∞
n

z + 1

znz

z

n∏

k=1

k

z + 1 + k

= lim
n→∞

n

z + 1

znz

z
· n!∏n+1

k=2 z + k
= lim

n→∞
z + 1

z + n+ 1

n

z + 1︸ ︷︷ ︸
n→∞−→ 1

znz

z

n∏

k=1

k

z + k

= z lim
n→∞

nz

z

n∏

k=1

k

z + k
= zΓ̃(z)

Hence, Γ = Γ̃. The product representation (2.3) of the Gamma function is
called the Gauss representation.
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2.5 The Weierstrass representation

In this section we present another representation of the Gamma function,
which will be used in the next chapter. We start by following lemma and
definition.

Definition/Lemma 2.5.1 The limit

γ = − lim
n→∞

(
ln(n)−

n∑

k=0

1

k

)

exists and is finite. The constant γ is called the Euler–Mascheroni constant.

Proof. See §7.9 in [PB1] �

Now we manipulate the Gauss representation of the Gamma function un-
til it attains the desired form, which is called the Weierstrass representation
of the Gamma function.

Recall the Gauss representation

Γ(z) = lim
n→∞

nz

z

n∏

k=1

k

z + k

defined for z ∈ CrZ≤0. For z ∈ CrZ≤0, we rewrite nz as exp(z Log n) and
we rewrite k/(z + k) as (1 + z/k)−1, giving that

Γ(z) = lim
n→∞

exp(z Log n)

z

n∏

k=1

(
1 +

z

k

)−1

.

We add 0 =
∑n

k=1 z/k −
∑n

k=1 z/k to the argument of exp gives

Γ(z) = lim
n→∞

exp(
∑n

k=1
z
k
−∑n

k=1
z
k

+ z Log n)

z

n∏

k=1

(
1 +

z

k

)−1

= lim
n→∞

exp(
∑n

k=1
z
k
) · exp(z Log n−∑n

k=0
z
k
)

z

n∏

k=1

(
1 +

z

k

)−1

We know that exp(
∑n

k=1
z
k
) =

∏n
k=1 e

z/k and that lim
n→∞

z Log n −∑n
k=0

z
k

=

−γz. Hence the expression above becomes

Γ(z) = lim
n→∞

e−γz

z

n∏

k=1

e
z
k

(
1 +

z

k

)−1

.

The last expression is called the Weierstrass representation of the Gamma
function.
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Chapter 3

Relations of the Gamma
function to Pick functions

In this section we mainly follow [BP] where some relations between Pick
functions and the Gamma function are shown.

We start by defining Pick functions.

Definition 3.0.2 A Pick function is a holomorphic function F from the
open upper half-plane H = {z ∈ C : Im(z) > 0} to the closed upper
half-plane H ∪ R = {z ∈ C : Im(z) ≥ 0}.

In the first section we prove that functions on the form

F (z) = α + βz +

∫ ∞

−∞

(
1

t− z −
t

1 + t2

)
h(t)dt

where α ∈ R, β ≥ 0, h(t) ≥ 0 and
∫∞
−∞

h(t)
1+t2

dt <∞.
In the second and the third section, we prove that −Log(1 + z)/z and
−Log(Γ(1 + z))/z are Pick functions on the form above.

3.1 A class of Pick functions

The goal of this section is to prove that functions on the form

F (z) = α + βz +

∫ ∞

−∞

(
1

t− z −
t

1 + t2

)
h(t)dt (3.1)

where α ∈ R, β ≥ 0, h(t) ≥ 0 and
∫∞
−∞

h(t)
1+t2

dt <∞, are Pick functions.
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In order to do that we need following lemma

Lemma 3.1.1 Let f : Ω × R → C, where Ω ⊆ C. Assume that f(z, t) and
f ′z(z, t) are continuous for all z ∈ C and all t > t0 for some t0 ∈ R. Moreover
assume that the integral

F (z) =

∫ ∞

t0

f(z, t)dt

is convergent for all z ∈ C and such that there is a real valued function
g : R→ R such that

(a) |f ′z(z, t)| < g(t) for all t > t0,
(b)

∫∞
t0
g(t)dt is convergent.

Then F (z) is differentiable and the derivative is given by

F ′(z) =

∫ ∞

t0

f ′z(z, t)dt

Proof. See Theorem 3, p.189 in [PB2]. �

Now we prove the main theorem of this section.

Theorem 3.1.2 Functions on the form

F (z) = α + βz +

∫ ∞

−∞

(
1

t− z −
t

1 + t2

)
h(t)dt

where α ∈ R, β ≥ 0, h(t) ≥ 0 and
∫∞
−∞

h(t)
1+t2

dt <∞, are Pick functions.

Proof. We need to prove for all z ∈ H that i)
∫∞
−∞
(

1
t−z − t

1+t2

)
h(t)dt is

convergent, ii) F (z) is holomorphic, and iii) Im F (z) ≥ 0. In order to do
that we fix an arbitrary compact set K in the open upper half plane. If we
can show that i),ii),iii) holds on K then this holds on the open upper half
plane (since every point in the upper half plane is a member of the interior
of some compact set K in the open upper half plane).

i) We prove that each of
∫ 0

−∞
(

1
t−z − t

1+t2

)
h(t)dt and

∫∞
0

(
1
t−z − t

1+t2

)
h(t)dt

are convergent for each z ∈ K (in order to prove that their sum, i.e.∫∞
−∞
(

1
t−z − t

1+t2

)
h(t)dt is convergent). We start by rewriting the integrand

as follows; (
1

t− z −
t

1 + t2

)
h(t) =

1 + tz

t− z ·
h(t)

1 + t2
.
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Since K is compact set in the upper half plane, we have that d(K,R) = ε > 0.
Hence for each t ∈ R and z ∈ K we have that |t− z| ≥ ε. In particular that

means
∫ b
a

1+tz
t−z ·

h(t)
1+t2

dt is convergent for all z ∈ K and all finite intervals (a, b).

Now we investigate the nature of the integrand as t gets big. Taking ab-
solute value of the integrand and writing z on the form x+ iy gives

∣∣∣∣
1 + tz

t− z ·
h(t)

1 + t2

∣∣∣∣ =

∣∣∣∣
1 + t(x+ iy)

t− (x+ iy)

∣∣∣∣
h(t)

1 + t2
=

√
(1 + tx)2 + (ty)2

(t− x)2 + y2

h(t)

1 + t2

We have

lim
t→∞

√
(1 + tx)2 + (ty)2

(t− x)2 + y2
= lim

t→∞

√
t2( 1

t2
+ 2x

t
+ x2 + y2)

t2(1− 2x
t

+ x2

t2
+ y2

t2
)

=
√
x2 + y2

In particular this means that there exsits some t0 > 0 such that for any t > t0
we have that

√
(1 + tx)2 + (ty)2

(t− x)2 + y2
≤ 1 +

√
x2 + y2 = 1 + |z|

This inequality can be used in order to prove that
∫∞

0

(
1
t−z − t

1+t2

)
h(t)dt is

absolute convergent:

∫ ∞

0

∣∣∣∣
1

t− z −
1

1 + t2

∣∣∣∣h(t)dt =

∫ ∞

0

√
(1 + tx)2 + (ty)2

(t− x)2 + y2
· h(t)

1 + t2
dt

=

∫ t0

0

√
(1 + tx)2 + (ty)2

(t− x)2 + y2
· h(t)

1 + t2
dt +

∫ ∞

t0

√
(1 + tx)2 + (ty)2

(t− x)2 + y2
· h(t)

1 + t2
dt

≤
∫ t0

0

√
1 + 2tx+ t2x2 + t2y2

t2 − 2tx+ x2 + y2
· h(t)

1 + t2
dt+

∫ ∞

t0

(1 + |z|) h(t)

1 + t2
dt

=

∫ t0

0

√
1 + 2tx+ t2x2 + t2y2

t2 − 2tx+ x2 + y2
· h(t)

1 + t2
dt+ (1 + |z|)

∫ ∞

t0

h(t)

1 + t2
dt

The last expression is finite as
∫ t0

0

√
(1+tx)2+(ty)2

(t−x)2+y2
· h(t)

1+t2
dt is a proper integral,

and (1+|z|)
∫∞
t0

h(t)
1+t2

dt is convergent. This implies the (absolute) convergence

of
∫∞

0

(
1
t−z − t

1+t2

)
h(t)dt.

Similar arguments shows that
∫ 0

−∞
(

1
t−z − t

1+t2

)
h(t)dt is convergent.
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ii) We will prove that F (z) is analytic in the interior of K, which is equiva-
lent to prove that F (z) is differentiable there. Let f(z, t) =

(
1
t−z − t

1+t2

)
h(t).

Then f ′z(z, t) = h(t)
(t−z)2 and

|f ′z(z, t)| =
∣∣∣∣
h(t)

(t− z)2

∣∣∣∣ =
h(t)

(t− x)2 + y2

Now it is easily seen that

lim
t→∞

h(t)
(t−x)2+y2

h(t)
1+t2

= 1

Hence there exists some tz > 0 such that for any t > tz we have that

h(t)
(t−x)2+y2

h(t)
1+t2

< 2 ⇐⇒ h(t)

(t− x)2 + y2
< 2

h(t)

1 + t2

⇐⇒
∣∣∣∣
h(t)

(t− z)2

∣∣∣∣ < 2
h(t)

1 + t2
.

Now let t0 := maxz∈K tz (this value exists as K is compact).

Now we prove that G(z) =
∫∞

0

(
1
t−z − t

1+t2

)
h(t)dt is differentiable by proving

that each ofG1(z) =
∫ t0

0

(
1
t−z − t

1+t2

)
h(t)dt andG2(z) =

∫∞
t0

(
1
t−z − t

1+t2

)
h(t)dt

are differentiable.
From Lemma 3.1.1 it follows directly that G1(z) is differentiable.

Since
∣∣∣ h(t)

(t−z)2

∣∣∣ < 2 h(t)
1+t2

for all t > t0, and since
∫∞
t0

2 h(t)
1+t2

is convergent, it follows

from Lemma 3.1.1 that G2(z) is differentiable. Hence G(z) = G1(z) +G2(z)
is differentiable, and also F (z) = α + βz + G(z) is differentiable. Thus con-
dition ii) is satisfied.

iii) One can easily compute that the imaginary part of the integrand is given
by

y

(t− x)2 + y2
h(t)

(where x+ iy = z) and hence the imaginary part of F (z) is given by

βy +

∫ ∞

−∞

y

(t− x)2 + y2
h(t)dt

which is positive (as y = Im(z) > 0, h(t) ≥ 0, and β ≥ 0). Now it follows
that Im(F (z)) ≥ 0. �
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3.2 The function −Log(1 + z)/z

Let Log denote the principal logarithm function, which is analytic on C r
(−∞, 0] (readers who are unfamiliar with complex logarthims are refered to
the appendix). We want to show that

−Log(1 + z)

z
= −π

4
+

∫ −1

−∞

(
1

t− z −
t

1 + t2

)
dt

−t .

The results from the previous section yields that −Log(1 + z)/z is a Pick
function.

Theorem 3.2.1 The function −Log(1 + z)/z restricted to the open upper
half plane is a Pick function whose integral representation is given by

−Log(1 + z)

z
= −π

4
+

∫ −1

−∞

(
1

t− z −
t

1 + t2

)
dt

−t (3.2)

Proof. The right-hand side of (3.2) is a Pick function by Theorem 3.1.2, so
we only need to prove the equality (3.2). By differentiating

F (t) = arctan(t) +
1

z
Log

(
t

t− z

)

one can easily check that F (t) is a primitive function to the integrand of the
integral in (3.2). Note that F (t) is analytic for t ∈ (−∞, 1) and z ∈ H (since
t/(t− z) 6∈ (−∞, 0]). Hence

−π
4

+

∫ −1

−∞

(
1

t− z −
t

1 + t2

)
dt

−t = −π
4

+ lim
a→−∞

(F (−1)− F (a))

= −π
4

+ lim
a→−∞

(
arctan(−1) +

1

z
Log

( −1

−1− z

)
− arctan(a)− Log

(
a

a− z

))

= −Log(1 + z)

z
.

The equality Log(1/(1 + z)) = −Log(1 + z) may need a justification. We
have that Im(z) > 0 and hence Arg(1 + z) ∈ (0, π) and we have that
1/(1 + z) = (1 − z)/|1 + z|2 giving that Arg(1/(1 + z)) ∈ (−π, 0). More-
over, we have that Arg(1/(1 + z)) = −Arg(1 + z) + ik2π for some k ∈ Z,
but since both Arg(1/(1 + z)) and −Arg(1 + z) are in (−π, 0) the equality
Log(1/(1 + z)) = −Log(1 + z) follows. This completes the proof. �

This result will be used in next section where we connect the subject of
the Gamma function with the subject of Pick functions.
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3.3 The function Logα Γ(1+z)
z

We prove the main theorem of this thesis.

Theorem 3.3.1 There is some branch Logα of the multivalued logarithmic
function log such that Logα(Γ(1 + z))/z is a Pick function and is of the form

α +

∫ ∞

−∞

(
1

t− z −
t

1 + t2

)
h(t)dt (3.3)

where α ∈ R, h(t) ≥ 0 and
∫∞
−∞

h(t)
1+t2

dt <∞,

Proof. Let log denote the multivalued logarithmic function. Recall that
Γ(z+1) = zΓ(z) (see Lemma 2.3.2) and recall the Weierstrass representation
of the Gamma function (see section 2.5). That gives

log(Γ(z + 1))

z
=

log(z) + log(Γ(z))

z
=

log(z) + log
(
e−γz
z

∏∞
k=1 e

z/k
(
1 + z

k

)−1
)

z

=
log(z)− γz − log(z) +

∑∞
k=1

(
z
k
− log(1 + z

k
)
)

z

= −γ +
∞∑

k=1

(
1

k
− log(1 + z

k
)

z

)

If we can show that
∑∞

k=1

(
1
k
− Log(1+ z

k
)

z

)
is convergent for all z ∈ H (where

Log is the principal logarithm), it follows from the equalities above that there
is some branch Logα of log such that

Logα(Γ(1 + z))

z
= −γ +

∞∑

k=1

(
1

k
− Log(1 + z

k
)

z

)
(3.4)

for all z ∈ H.
We have that

∑∞
k=1

(
1
k
− Log(1+ z

k
)

z

)
is convergent if and only if

∫∞
1

(
1
t
− Log(1+ z

t
)

z

)
dt

is convergent.
Basic computations show that

∫ ∞

1

(
1

t
− Log(1 + z

t
)

z

)
dt =

[
−tLog

(
t+z
t

)

z
+ Log

(
t

t+ z

)]∞

t=1

=

(
1

z
+ 1

)
Log(z + 1)− 1

18



which has a finite value for all z ∈ H. Hence, there is some branch Logα
such that equality (3.4) holds. If we rewrite Logα(Γ(z + 1))/z as follows

Logα(Γ(1 + z))

z
= −γ +

∞∑

k=1

(
1

k
− Log(1 + z

k
)

z

)
(3.5)

= −γ +
∞∑

k=1

(
1

k

(
1− Log(1 + z

k
)

z
k

))

By the previous section we have that 1− Log(1+ z
k

)

z/k
is a Pick function for all k.

Hence it follows that Logα(Γ(z + 1))/z is a sum of Pick functions, and will
therefore be a Pick function.

Now we want show that Logα(Γ(z+1))/z can be expressed on the form (3.3).

If we can show that
∑∞

k=1

(
1
k
− Log(1+ z

k
)

z

)
is a Pick function of the form (3.1),

it will follow from equality (3.5) that Logα(Γ(z + 1))/z is a Pick function of
the form (3.3).

By the previous section we had that

−Log(1 + z
k
)

z/k
= −π

4
+

∫ −1

−∞

(
1

t− z/k −
t

1 + t2

)
dt

−t

Multiplying both sides with 1/k and doing the change of variables t = s/k
gives

− Log(1 + z
k
)

z
= − π

4k
+

∫ −k

−∞

(
1

s− z −
s

s2 + k2

)
ds

−s

= − π

4k
+

∫ −k

−∞

(
1

s− z −
s

s2 + 1
+

s

s2 + 1
− s

s2 + k2

)
ds

−s

= − π

4k
+

∫ −k

−∞

(
s

s2 + 1
− s

s2 + k2

)
ds

−s +

∫ −k

−∞

(
1

s− z −
s

s2 + 1

)
ds

−s

= − π

4k
+

(
− arctan(s) +

1

k
arctan(s/k)

)∣∣∣∣
−k

−∞
+

∫ −k

−∞

(
1

s− z −
s

s2 + 1

)
ds

−s

= arctan(k)− π

2
+

∫ −k

−∞

(
1

s− z −
s

s2 + 1

)
ds

−s

= − arctan(1/k) +

∫ −k

−∞

(
1

s− z −
s

s2 + 1

)
ds

−s
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Hence

n∑

k=1

(
1

k
− Log(1 + z

k
)

z

)
=

n∑

k=1

(
1

k
− arctan(1/k) +

∫ −k

−∞

(
1

s− z −
s

s2 + 1

)
ds

−s

)

=
n∑

k=1

(
1

k
− arctan(1/k)

)
+

n∑

k=1

(∫ −k

−∞

(
1

s− z −
s

s2 + 1

)
ds

−s

)

=
n∑

k=1

(
1

k
− arctan(1/k)

)
+

∫ −1

−∞

(
1

s− z −
s

s2 + 1

)
ϕn(s)ds (3.6)

where

ϕn(s) =

{
−(k − 1)/s for s ∈ [−k,−k + 1[, k = 2, ..., n,
−n/s for s < −n.

Note that 0 < ϕn(s) ≤ 1 for all n ∈ Z≥2 and all s ∈ (−∞,−1), so it follows

that
∫ −1

−∞
ϕn(s)
1+s2

ds is convergent and hence
∫ −1

−∞
(

1
s−z − s

s2+1

)
ϕn(s)ds is a Pick

function. Thus,
∑n

k=1

(
1
k
− arctan(1/k)

)
converges to some real number as

n→∞ (since the limit of the expression in (3.6) is equal
∑∞

k=1

(
1
k
− Log(1+ z

k
)

z

)
,

which we have shown is convergent). In other words,
∑∞

k=1

(
1
k
− Log(1+ z

k
)

z

)

is a Pick function of the form (3.3), and hence Logα(Γ(1 + z))/z is a Pick
function of the form (3.3). This completes the proof.
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Appendix A

Logarthmic functions

In this appendix we recall the notion of logarithms and arguments of complex
numbers. We mainly follow [SS].

A.1 Arguments of complex numbers

An argument of a non-zero complex number z, is a real number θ that equals
one of the angles between the line joining the point z to the origin and the
positive real axis. Arguments of complex numbers are not unique, and any
two possible values for the argument differs by an integer multiple of 2π. We
define arg(z) to be the set of all possible arguments of z.

It is convenient to have a notation for some definite value of arg(z). No-
tice that any half-open interval of length 2π will contain just one value of
the argument of z. By choosing such an interval for possible values on the
argument, we say that we have selected a particular branch of arg(z).

The branch of arg(z) specified from the interval (−π, π] is called the princi-
pal value of the argument and is denoted by Arg(z). The relation between
arg(z) and Arg(z) is given by arg(z) = Arg(z) + 2kπ, where k ∈ Z. Note
that Arg(z) is discontinuous as z crosses the negative real line. The line of
discontinuities is called the branch cut.

A.2 Logarithms of complex numbers

Recall that the logarithm of a non-zero complex number z, is a number w
such that ew = z. Note that there are infinitely many such numbers since
ew = z if and only if ew+ik2π = z.
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In particular we must have that Re(w) = ln(|z|) (where ln is the real loga-
rithmic function) and Im(w) = Argα(z) for some branch Argα of arg. For
any non-zero complex number z let log(z) be the set of all logarithms of z.
Sometimes one is refering to log(z) as a multiple-valued function;

log(z) = ln |z|+ i arg(z) = ln |z|+ iArg(z) + i2kπ .

In particular this multiple-valued function inherits the familiar properties of
the real logarithmic function, namely

log(z1z2) = log(z1) + log(z2)

and

log

(
z1

z2

)
= log(z1)− log(z2) .

It is convenient to have a notation for some definite value of log(z). Notice
that for any half-open interval of length 2π, say (a− π, a + π] we have that
log(z) ∩ {w ∈ C | Im(w) ∈ (a− π, a+ π]} contains exactly one element. By
choosing such an interval for possible values on the imaginary part of the
logarithm, we say that we have selected a particular branch of log(z).

The branch of log(z) specified from the interval (−π, π] is called the principal
value of the logarithm and is denoted by Log(z) and is given by

Log(z) = ln(|z|) + iArg(z) .

The relation between log(z) and Log(z) is given by

log(z) = Log(z) + i2kπ = ln(|z|) + iArg(z) + i2kπ ,

where k ∈ Z. It is discontinuous and as z crosses the negative real line. The
line of discontinuities is called the branch cut.
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