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Abstract

The thesis investigates how Dynamic Programming can be applied to Eco-
nomics. Theory of time discrete Dynamic Programming is described and some
example problems are examined. Applications to economic theory are there-
after studied, with focus on three di↵erent problems with relevance to micro-,
macro- and financial economics. Finally, the general validity of mathematics in
economic theory is discussed.
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Chapter 1

Background

The process of Dynamic Programming was established in the 1950’s by the
American scientist Richard Bellman. He was interested in developing a general
model for producing optimal solutions to problems involving some sequence of
controls. At the time, though, Bellman worked at a government institution
which head, the Secretary of Defence Charles Erwin Wilson, despised research
and particularly mathematical research [1]. He therefore struggled with the idea
that somehow find a way to disguise the actual intentions of his work. He thus
chose to name the project in a way that would stay clear of Wilson’s suspicion
and at the same time capture the essence of what the project involved. The
result was Dynamic Programming. Dynamic, for the focus on time as an es-
sential component and Programming, a term that was mainly recognized as the
process of finding an optimal program for the scheduling of military training
and industrial production.

Dynamic Programming presents a powerful tool for finding an optimal solution
to problems that involve repeated controls. Since Bellman, it has gained success
in a broad spectrum of applications, among them bioinformatics, computer pro-
gramming and economics. This thesis will focus on the last one of these, namely
- Economical applications of the Dynamic Programming algorithm. With the
division of large problems into a sequence of sub-problems, Dynamic Program-
ming gives an intuitive tool to guide economic choices, like what quantities a
firm should keep in its stock at the end of each day or how much of the salary
one should save versus consume each month, in order to maximize some utility
function over a given time period.

Aims of the Present Thesis

The present work aims to (1) give an expository study to the theory of Dynamic
Programming and (2) analyze its applications to economics. A delimitation,
with regard to the scope of the thisis has been made, such that the content
focus on discrete-time problems. As a complement to the theoretical overview,
some example problems will be examined. The main purpose of this is however
to lay a foundation that enables the thesis to derive a number of economic
applications. Finally, a general discussion of how mathematics in economical
analysis should be regarded will be presented.
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Chapter 2

Introduction to Dynamic
Programming

Life must be lived forward and
understood backwards

Soren Kierkegaard

Dynamic programming (DP) is an optimization technique, captured in the words
of the Danish philosopher Kierkegaard; we investigate a problem by examining
it backwards. DP utilizes that a basic problem with discrete time periods can
be divided into N subsequent subproblems and has an additive cost function in
the form of

GN (xN ) +

N�1X

t=0

gt(xt, ut, wt),

where GN (xN ) describes the terminal cost at the end of the time period and
gt(xt, ut, wt) is the cost function for each subproblem. xt is defined as the state
variable which summarizes past information relevant for future optimization.
Further, the state variables interdependency is expressed as

xt+1 = ft(xt, ut, wt), t = 0, 1..., N � 1 (1)

where t indexes discrete time,
ut is the control or decision variable to be selected at time t,
wt is a random parameter or disturbance/noise variable,
N is the horizon or number of times control is applied, and lastly
ft is a function that describes the system and in particuar the mechanism by
which the state is updated.

However, from the randomness of the disturbance variable wk the basic problem
generally is in the form of optimizing an expected cost function. Hence, we have
the following objective function:
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E

⇢
GN (xN ) +

N�1X

t=0

gt(xt, ut, wt)

�
. (2)

The aim of the DP algorithm is to find an optimal set of controls, uk, in order to
minimize or maximize the cost function, although in the case of a maximization
problem the cost function is usually regarded as a reward function. In general,
the controls are determined in two di↵erent ways; in a closed loop form, where
each control is chosen to enable the interpretation of additional information
from earlier controls, or in an open loop form, where all the controls are chosen
at time t = 0. However, the DP algorithm has the advantage of producing a
closed-loop control mapping for all problems applied. We denote this as follows:

Let
⇡ = (µ0, µ1...µN�1),

be a policy for the basic problem. Then µt is the chosen policy function at time
t which maps the state xt into controls ut = µt(xt), thus a feedback control.
The objective is thus to find an optimal control function µ⇤

t for all times t.

2.1 Principle of Optimality

Bellman stated that an optimal solution has the property of being optimal from
any point forth on the trajectory course. This is a vital part of the DP algorithm
and may be demonstrated as following: We assume that we are interested in
finding the optimal travel route across Sweden, from Stockholm to Gothenburg.
Then if the optimal path is through Jönköping then the chosen trajectory be-
tween Jönköping and Gothenburg is also the optimal choice for this particular
subproblem and so forth for every given point on the optimal trajectory. The
sum of the optimal solutions to the subproblems defines an optimal policy and
hence we formulate the Bellman Principle of Optimality [2]:

Let ⇡t = (µ0, µ1...µN�1) be a policy for the basic problem. From (1) and (2) we
can write that this policy leads to the following cost-to-go function from time
s � 0 onward:

J⇡(xs) = E

⇢
GN (xN ) +

N�1X

t=s

gt(xt,⇡t, wt)

�
, s � 0. (2.1)

Denote
J⇡⇤(xs) = inf

⇡2⇧
J⇡(x0),

where ⇧ is the set of all allowable policies. Then an optimal policy leads to

J⇤(x0)
def
== J⇡⇤(x0), (2.2)

which contain a truncated policy from any point i 2 [0, N � 1] such that ⇡i =
{µ⇤

i , µ
⇤
i+1, ..., µ

⇤
N�1}.
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Example I: Shortest path

We demonstrate the principle of optimality by using the above to solve a basic
problem. A widely used application of DP is as an algorithm for solving so
called shortest path (SP) problems, which revolves around question like the al-
ready mentioned task of choosing an optimal travelling path from Stockholm to
Gothenburg. More formally expressed, SP problems are on the form of finding
a path between nodes in a graph, such that the sum of the constituent edges
are of minimal weight (cost).

We define a graph as a set of nodes I = {A, B, C, D, E, F, G, H} and a set of
corresponding Edges E = (i, j), where i, j 2 I, that define connections between
two nodes from i to j. Let us assume the following graph, where each arrow
define an edge:

A C

D

B

F

E

G

H

6

8

4

3

4

5

4

2

3

4
10

1

4

6

8

The objective is to find the best possible route from A to H, with respect taken
to the costs associated with each edge and we may formulate this in the DP
form. Our objective is to minimize the deterministic cost function

min J(x0) = G3(x3) +

2X

t=0

gt(xt, ut),

from the starting state x0 = A to the end state x3 = H, with terminating cost
G3(x3) = 0 and where the function gt represents the cost moving from xt to an
adjacent node according to the decision ut. Hence the system is subject to the
following state evolution:

xt+1 = ut(xt),

where ut 2 ⇧ and ⇧ is the subset of edges (i, j) such that i = xt. The control
ut then represents the decision to go from the present node xt to an adjacent
node xt+1.

We may apply the principle of optimality as stated in the above, by using
a backward recursive approach. If an optimal cost function J⇤(X) is set to
represent the minimal cost when moving from X to H, we instantly find that
J⇤(H) = 0, J⇤(E) = 4, J⇤(F ) = 6 and J⇤(G) = 8. Keeping this in memory, we
continue with the problem recursively for each time t toward t = 0 and get
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J⇤(B) = min
�
3 + J⇤(E), 4 + J(F ), 5 + J⇤(G)

�

J⇤(C) = min
�
4 + J⇤(E), 2 + J(F ), 3 + J⇤(G)

�

J⇤(D) = min
�
10 + J⇤(E), 4 + J(F ), 1 + J⇤(G)

�
.

Optimizing this we find that

J⇤(B) = 3 + J⇤(E) = 7

J⇤(C) = 4 + J⇤(E) = 2 + J ⇤ (F ) = 8

J⇤(D) = 1 + J⇤(G) = 9,

which lead us to the final step

J⇤(A) = min
�
8 + J⇤(B), 4 + J⇤(C), 6 + J⇤(D)

�

which, finally, is optimized by

J⇤(A) = 4 + J⇤(C) = 12.

Hence, we have found the shortest path from A to H and it goes through the
nodes C and either E or F.

2.2 The Dynamic Programming Algorithm

With the fundamentals of DP, the principle of optimality and the Shortest Path
example we are now ready to formulate a formal description of the DP Algo-
rithm. For every initial state x0, the optimal cost J⇤(x0), as seen in (2.2), of
the basic problem is equal to V (x, t), where x is the state at time t, given by
the final step of the following algorithm.

From the optimality criteria, we thus have that

V (xt, t) = inf
ut,...,uN�1

Jut
(xt)

and the terminal cost GN (xN ) is defined as

JuN
(xN ) = GN (xN ).

Thereafter, as examplified in the shortest path problem, the algorithm uses the
information from previous states (1) and proceeds backward in time from period
t = N � 1 to period 0. For t = 0, 1, ..., N � 1 it calculates

V (xt, t) = inf
u

E

⇢
gt(xt, ut, wt) + V

�
ft(xt, ut, wt), t + 1

��
, (2.3)

where gt(xt, ut, wt) is the cost function for the present subproblem at time t
and where the expectation is taken with respect to the distribution of wt, which
depends on xt and ut. In the previous shortest path problem though, there were
no stochastic variable. This makes for a special case where the final answer is
not a minimized expectancy but an absolute value. For problem as such, we
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can exclude the stochastic disturbance variable wt from the algorithm and get
a deterministic cost function

V (xt, t) = inf
u


g(x, u, t) + V

�
f(x, u, t), t + 1

��
. (2.4)

And, of course, the minimizing could analogously be changed to maximizing,
if that is desired of the basic problem. For t = N , we have that V (x, N) =
J⇤

N (N) = GN (xN ) and from induction we then have that the optimal cost func-
tion J⇤

⇡(xt) are equal to the functions V (x, t) generated by the DP algorithm.
Specifically we have that

V (xt, 0) = J⇤
⇡(x0),

and hence, this algorithm will lead to an optimal policy as stated in (2.2).

Example II: Knapsack

The DP algorithm may now be used to demonstrate another common example
- The knapsack problem. This can be applied to, for example, questions that
regard the distribution of limited resources, a problem of significant importance
in economics. From its name it is possible to derive the intuitive explanation:
How much can be placed inside the constraints of a knapsack?

Let us imagine that a burglar breaks into a house. With him he has a knapsack
and inside the house he finds three particularly valuable items, a statue, a bowl
and a plate. He is now faced with the problem of choosing which of these to
fill his bag with. The items weigh three, two and one units each and are valued
at five, three and four units respectively. The bag can carry a maximum of
five units and for explanatory reasons he may not carry anything outside the
knapsack.

This problem is also called a 0/1-Knapsack problem, as it can be broken down
to the binary question of going through the items one by one and for each decide
whether to take it or not. Hence this particular problem can be formulated as
three questions given to the burglar, which he may answer either by putting
the object into the knapsack or not, e↵ecting both the value contained in the
knapsack and the remaining capacity.

To formalize this problem as a optimal control problem, which we may ap-
ply the DP algorithm upon, we state the objective function as a deterministic
maximization of the reward function:

max J(x0) =

3X

t=1

gt(xt, ut),

subject to the state evolution

xt+1 = xt + vtut
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and the knapsack capacity constraint

3X

t=1

utwt  5.

The decision ut at each time t = 1, 2, 3 represent the decision to either place
the item in the bag ut = 1 or not ut = 0. The reward function gt is the value
change in the knapsack, based on the total value of the items chosen thus far xt

and the decision regarding the item at hand ut. Lastly, wt and vt represent the
weight and value of each item respectively.

We solve this problem by first introducing a new variable dij , where i 2 [0, 3]
is the time step, representing the burglars decision regarding each item, and
j 2 [0, 5] is a weight restriction. Using the DP algorithm, we recursively solve
for the decision that maximizes the value in the knapsack for each time step i
and weight restriction j. This give us the following function:

dij = max{d(i � 1, j), vi + d(i � 1, j � wi)},

which describes the recursion relation of maximization of the value for d(i, j)
with respect to the two possible controls of keeping the knapsack as it is (left
term in the right hand side) or adding the current item i (right term). We also
define initial values for dij = 0 when either i = 0 or j = 0.

A commonly used way to present the computations of this kind of problem is
by a table set up. In this particular case, the columns represent choices at each
time step t and the rows represent the used capacity of the knapsack. We begin
in the top left box, work our way down each column whilst solving for the best
possible value according to the system set up above. After doing so, we get the
following value table:

Weight/Item Statue (5) Bowl (3) Plate (4)
1 Unit: 0 0 4
2 Units: 0 3 4
3 Units: 5 5 7
4 Units: 5 5 9
5 Units: 5 8 9

.

As stated, we’ve begun with the top left box and gone down the column be-
fore continuing with the next and so forth. In the first column the question is
whether to take the statue, weighing three units with the value of five. Using
only one or two weight units in the knapsack the burgler cannot place the statue
in it, hence the zeros on row one and two, but using three, four or five units he
can choose it, hence the fives. Continuing with the bowl, the burgler now have
the information from the statue column in mind which makes each row contain
the question of choosing a new combination, with the bowl, or an old one, with
only the statue. In the first row he still cannot choose any combination, in the
second he can choose the bowl and does so, in the third he can choose either
the bowl or a better combination from earlier and does so by still choosing the
statue, the same goes for row four but when he has five units to use he can make
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a new best combination with both the bowl and the statue.

Summarizing this problem, we have an optimal value of J⇤(x0) = 9 as seen in
the plate column row four and five where the knapsack contain the plate and
the statue. We have therefore found an optimal set of controls for the current
problem; u1 = 0, u2 = 1 and u3 = 1.

2.3 Formulating a Dynamic Programming Model

The tableau described in the knapsack problem above, is a typical representation
of computations done with the DP algorithm. We now formulate a general step-
by-step method for the formulation of a general DP model, where we assume a
minimization problem and an additive objective function.

1. Define the Stages
t=1..., T.

2. Define the Control Variables
ut. t= 1...,T.

3. Define the States
xt, t=1...,T.

4. Define the State Evolution
xt+1 = ft(xt, ut, wt), t= 1..., N-1, where fk represent the transformation
of the current state xt into the new state xt+1 with respect to a control
ut and some random disturbance wt.

5. Define Recursive Value Function
Expressing the optimal objective function value from time t = i and on-
ward:

J⇤(xi) = GN (xN ) + inf

N�1X

t=0

gt(xt, ut, wt),

where gt is the cost function for time t = 1, ..N�1. and GN is the terminal
cost function for state xt.

6. Define Initial Conditions
xN for backward recursion and x0 in the case of forward recursion.

7. Specify Restrictions
For the control and state variables, by defining their space: ut 2 U and
xt 2 X

8. Make Recursive Computations
As specified in the earlier steps, compute the value function; either for
T, ..., 1 in the backward recursion case or 1, ..., T in the forward recursive
case.

9. Backtrack
As exemplified in the DP tableu of the Knapsack example, make a back-
tracking table through the computed values in order to find the optimal
solution path.
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2.4 Linear Quadratic Stochastic Control

A common category of problems for DP examines a linear system with a quadratic
cost function, a combination of properties that defines the Linear Quadratic
(LQ) regulator. Further, these systems can either be stochastic, as will be des-
cribed below, or deterministic, where the disturbance variable is excluded.

Systems in this form may, for example, contain an objective to minimize the
distance of the state of the system from the origin, i.e. min

PN
t=1 x2

t , or from

a specific trajectory path, i.e. min
PN

t=1(xt � x̄t)
2. Further, the system have a

linear state evolution described on the form of

xt+1 = Atxt + Btut + wt, t = 0, ..., N � 1,

where Atand Bt are nxn-matrices and xt, ut and wt are vectors representing
the state, control and disturbance variables over a given time horizon, finite or
infinite. Further, wk has a zero mean and a finite second moment. The objective
function is in the following form:

J⇡(xt) = E

✓
xT

NQfxN +
N�1X

t=0

(xT
t Qtxt + uT

t Rtut)

◆
, (2.5)

where Qt and Rt are symmetric nxn-matrices, with Qt being positively semidefi-
nite and Rt positively definite. The value of Jt(xt) is understood as the expected
cost from time t and state xt until time N and, as in the previous cases, the
objective is to find an optimal mapping policy function � : xt ! ut that mini-
mizes (or maximizes) the given objective function.

Using the DP algorithm, we have that

J⇤
⇡(xt) = min E

✓
(xT

t Qtxt + uT
t Rkut) + Jt+1(Atxt + Btut + wt)

◆
(2.6)

and
JN (xN ) = xT

NQNxN .

It is possible to solve this problem with the DP algorithm, t = N, ..., 1, and by
doing so there exists an optimal control law for every t in the form:

u⇤
t = Ltxt,

where the matrices Lt are given by the equation

Lt = �(B0
tKt+1Bk + Rk)�1B0

tKt+1At.

Here, we have that the matrix Kt is the solution to the Riccati equation (2.8)
[3], which is given recursively by the following:

KN = QN , (2.7)

Kt = A0
t(Kt+1 � Kt+1Bt(B

0
tKt+1Bt + Rt)

�1B0
tKt+1)At + Qt. (2.8)
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The Riccati Equation and infinite horizon problems The Riccati equa-
tion stated in (2.8) has a very important property when applied to mathematical
control problems: The solution Kt to the Riccati equation converges as t ! �1,
given the following conditions: The matrices At, Bt, Qt and Rt are constant and
thus equal to A, B, Q and R, the pair (A,B) is controllable and Q may be writ-
ten as C’C, where the pair (A,C) is observable.

Controllable and observable pairs are defined as the following [3]: A pair (A,B)
where A is a nxn-matrix and B a nxm-matrix, is said to be controllable if the
nxnm-matrix

[A, AB, A2B, ..., An�1B]

has full rank (i.e. the rows are linearly independent). Further, a pair (A,C),
where A is a nxn-matrix and C is a mxn-matrix, is said to be observable if the
pair (A’,C’) is controllable with A’ and C’ denoting the transposes of matrices
A and C.

This transforms the solution of the Riccati equation into a steady-state K sat-
isfying

K = A0(K � KB(B0KB + R)�1B0K)A + Q, (2.9)

which is the algebraic Riccati equation. This indicates that a control mapping
Ltxt = u⇤

t for a system

xt+1 = Atxt + Btut + wt, t = 0, ..., N � 1,

and a large number of stages, N, may be approximated through

�⇤(x) = Lx,

where
L = �(B0KB + R)�1B0KA.

This is a very useful property when solving LQ-regulator problems with an
infinite horizon problem, i.e. N = 1. Later, we examine a problem in this form
as we turn to macroeconomics and how a central bank may find an optimal
monetary policy using the DP algorithm for the LQ- regulator and the Algebraic
Riccati equation.
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2.5 An Intriguing Application to Bioinformatics

DP has, as mentioned before, proven to be useful in many applications. How-
ever, before focus is turned specifically to the one application of primary interest
for the present thesis, we give a brief overview of another important application.

In the field of bioinformatics the DP algorithm is extensively used in di↵erent
applications and has been the most popular method in computational molecular
biology [4]. Particularly in sequencing problems that involve the assembly of
DNA or RNA fragments in order to determine the degree of similarity between
two di↵erent strings, the DP algorithm represents an e�cient tool. Through
this analysis it is possible to examine, for example, the degree of kinship be-
tween two species which led Needleman and Wunsch [5] to derive a particular
DP algorithm to solve for an optimal alignment when determining the sequences
of nucleotides or protein. Without any deeper review of the bioinformatics in-
volved, we briefly examine the Needleman-Wunsch algorithm, which is solved
in the same manner as in the knapsack problem.

We will examine two small DNA-strings, AATCGG and ATTCG, and the prob-
lem of aligning these two can be broken down into a sequence of subproblems
of either keeping each string as they are or inserting a gap between adjacent
nucleotides in one of them. This is somewhat similar to the possible controls of
the knapsack problem, where for each item there was a binary set of possible
controls; to place the current item in the bag or to skip it. In this example, the
possible controls are three; (1) inserting a gap to string A, (2) inserting a gap
to string B or (3) keeping both strings as they are.

The basic problem consists of a cost function, which will be dependent upon
the particular biological context. However, for the convenience of this example,
we consider a cost/reward function with �1 when inserting a gap, �1 for a
mismatch and +1 for a match between the two strings. Thus, we have an
objective function that we wish to maximize:

max

NX

t=0

gt(xt, ut),

where gt represents the alignment value change of the system with respect to the
state variable xt representing the alignment of both strings at time t, depending
on the choice at time t = 1, .., t � 1 to either insert a gap to one of the strings
or to let them be as they are. The policy ⇡ is therefore the set of these controls
for each place in each string. We thus have the cost function

(
gt(xt, ut) = 1 if inserting no gap and strings match

gt(xt, ut) = �1 otherwise.

As in the knapsack problem, we introduce a variable d(i,j) to recursively solve
for an optimal alignment using the DP algorithm. In this case we have

dij = max{d(i � 1, j � 1) + gt, (i � 1, j) � 1, (i, j � 1) � 1},

13



which describes the recursion relation of maximization of the value for d(i, j)
with respect to the possible controls; keeping the strings as they are (left term in
right hand side), insert a gap to the column-string (middle term) or insert a gap
to the row-string (right term). As described in the definition of this variable,
a reward from a string match is only possible when inserting no gap. We also
define initial values dij = 0 for i = 0, j = 0 or i = j = 1. In the following, we
describe the computations of this variable d(i,j).

As in the knapsack, we present these computations using a table. We place the
shorter string ATTCG in the top row, defining this as the row string, and the
AATCGG in the first column, defining this as the column string. This gives us
the following table for values of d(i,j):

A T T C G
0 -1 -2 -3 -4 -5

A -1
A -2
T -3
C -4
G -5
G -6

.

The second row and column can instantly be determined as above, because they
represent only adding gaps. We then move to the box at row three and column
three. Moving here has three possible origins; the top left box (0), the one
above (-1) and the one to the left (-1). The box above represents starting with
a gap in the column string and keeping the row string, resulting in a �1 penalty.
Moving from here and downward, represents inserting a gap in the row string
while keeping the column string as it is, hence resulting in another �1 penalty.
This gives a possible score of �2 in this box, which is analogously true for the
move from left. Originating in the top left box, though, represents keeping the
first element in both strings as they are, generating a reward of +1. Therefore
we assign 1 to the present box, since this is the best value possible. While doing
this we also memorize from where we came to this box, in this case by adding
an arrow

A
0 -1

A -1 1
.

From here we move down the rows, which represent the inserting additional gaps
to the row string while keeping the column string. Analogously moving along
the third row and down the columns, we keep the row string while inserting
additional gaps to the column one. Thereafter we continue to determine the
optimal value for each box, by comparing possible scores when arriving from
the box above, left or top left. Doing this we get the following table

14



A T T C G
0 -1 -2 -3 -4 -5

A -1 1 0 -1 -2 -3
A -2 0 0 -1 -2 -3
T -3 -1 1 1 0 -1
C -4 -2 0 0 2 1
G -5 -3 -1 -1 1 3
G -6 -4 -2 -2 0 2

,

from which we get that the optimal score after aligning the two strings is 2,
interpreted as some value defining, for example, the degree of kinship between
the strings. We also get that there are two di↵erent alignments that both sum
up to that optimal score. Starting at the last, bottom right, box we find the
ways to sequence optimal by continuing along the path back to the origin, we
find the two following sequences:

I II
ATTC-G ATTCG-
AATCGG AATCGG

,

which hence are optimal solutions to the basic sequencing problem.
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Chapter 3

Economical Applications of
Dynamic Programming

From now on, we turn to the main topic of this thesis - applications in economics.
To cover this subject the thesis will present three areas of economic theory and
supplement these with example problems for DP. With regard to the scope
of the present thesis, economic theory will only be covered briefly and focus
will be held on the DP example. We begin with microeconomics, the study of
how actors and firms behave on markets, and then turn to financial economics,
which covers theory of the allocation of resources, e.g. investment theory, and
finally we discuss DP applications to macroeconomics, the study of behaviour of
the aggreregate economy which cover topics such as monetary and fiscal policy,
inflation, unemployment and growth.
In general, the management of an asset or decisions regarding the allocation of
resources highlights an intuitive advantage of DP in economics: What policy
should be used in order to maximize some utility function over a given time
period? Accordingly, DP has been much appreciated in economic theoryand
play a central part of a theoretical field known as recursive macroeconomics [6].
This is a relatively young field of growing importance, in which Lars Ljungqvist
together with Nobel laureate Thomas Sargent might be the most prominent
researchers [7].

3.1 Microeconomics: Asset Management

As mentioned, microeconomics is the study of how actors behave inside an
economy. This is also the intuitive reason for covering this application first,
microeconomics from the aggregate perspective also have direct bearing for the
financial and macroeconomic cases. Therefore, we begin with what can be re-
garded as the smallest unit and continue on from there.

In demonstrating the applications of DP in this particular field of economics,
we focus on an optimal stopping problem [3]. The optimal stopping problem
consists of one specific control at each state, that breaks the evolution of a cer-
tain process. This can be exemplified by a factory manager that each month
is required to decide whether to give service to a machine or not; taking it out
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will stop the production for some time, with inevitable loss of profit, but not
maintaining the machine will decrease production and risk serious damage. The
evolution of this system defines the function for the state variable, as seen in (1),
where the noise variable, w, may represent a variation in the e�ciency decrease
and/or a possible break down damage.

The example above represents one interpretation of an optimal stopping problem
in microeconomics, which could be solved by using DP. Another problem of
basically the same kind, is when a private house owner decides whether to sell
at a given price or keep it and hope for a better price at a later time. This
section will formulate and solve this particular problem.

3.1.1 Problem formulation

Suppose that a person, let us call him Johan, owns a house which he is inter-
ested in managing in the best possible way, such that at the time of retirement
he gets as much value out of it as possible. He therefore wants to figure out an
optimal strategy for decisions regarding whether to accept or reject o↵ers given
on the house during this time. If he chooses to sell he will put all the money into
a bank account, which will earn him a fixed rate of interest for the remaining
years to his retirement.

We assume, in order to delimit the mathematics, that he is given one o↵er each
year and that they are random and independent, i.e. no influence from house
improvements or earlier o↵ers). We also assume that there is no inflation in the
economy, value of money stays the same throughout, and that the last o↵er, at
time N � 1, must be accepted. We thus have the following:

N The total number of years (controls) until retirement,
t Current time,
r > 0 The fixed rate of interest,
ut 2 {ua, ur} Control variable at time t in the set of the two possiblities,

accept, ua, or reject, ur, the o↵er,
vt O↵er given at time t.

We can define the function for the state variable as

xt+1 =

(
T if ut = ua (sell) or xt = T,

vt otherwise,

where the state T is a terminal state, which means that an o↵er has been
accepted and no more controls are possible. As stated, when this happens
Johan will take the money and put it into a bank account which will provide
him with a safe return each year until retirement, summing up to the total value
xt(1+r)N�t at that time t = N . From the above, we formulate a reward function
(2) as demonstrated in the introduction, which our objective is to maximize

E

⇢
gN (xN ) +

N�1X

t=0

gt(xt, ut, vt)

�
,
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where we define

gN =

(
xN if xN 6= T

0 ifxN = T,

gt(xt, ut, vt) =

8
><
>:

xt(1 + r)N�t if ut = ua

0 if xt = T

0 otherwise.

3.1.2 Solution

The decision that Johan is faced at each time t is hence whether to accept
the o↵er given or not. The intuitive solution is easy: if Johan expects to earn
more from selling to a later o↵er he should reject the current one, otherwise
he should accept. From the cost function above, we may therefore formulate
a recursive algorithm that solve for a reward function when using an optimal
policy ⇡. Starting with the last period t = N , the DP algorithm gives the
following formulation:

J⇡(xN ) =

(
xN if xN 6= T,

0 if xN = T.
(3.1)

With the recursion

J⇡(xt) =

8
<
:

max


xt(1 + r)N�t, E{J⇡(vt)}

�
if xt 6= T,

0 if xt = T.
(3.2)

From this formulation, we discount the expected future revenue to the present
time t and from this introduce the new variable et

et =
E{J⇡(vt}
(1 + r)N�t

.

This variable et can thus be interpreted as the expected value today of a later
accepted o↵er. Hence we have that the optimal value of the objective function
J⇤
⇡ imply that Johan

accept the o↵er xt if xt > et

reject the o↵er xt if xt < et.

If we, however, want to solve this numerically there is a need for additional
information. We therefore assume that the interest rate given at all time t is
0.03. The disturbance variable, vt, represent the probability distribution by
which the o↵ers are given and if we assume that the o↵ers given are randomly
distributed inside a specific range, we can use this to extract a recursive function
that will solve this problem numerical. Let us therefore assume that o↵ers can
take values in the range [0, 1], where the 0 is regarded as no o↵er at all and 1
represent some arbitrary roof value. Within this range, the o↵ers are randomly
distributed. This information give us that the expected value at time t = N , if
no earlier o↵er has been accepted, is xN = 1

2 . Hence,

E{g(xN )} =

(
1
2 if xN 6= T,

0 if xN = T.
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Therefore at time t = N �1, according to the recursive function (3.2), he should
only accept an o↵er given that exceeds the expected value, E{g(xN )}, for the
subsequent time t = N . O↵ers accepted at t = N �1 will therefore have a lower
bound aN�1 given by the following

aN�1(1.03)N�(N�1) =
1

2
,

which give us that

aN�1 =
1

2.06
.

This lower bound represents an o↵er that is equally well to accept as to reject,
expected value is equal for both controls. Accordingly, the expected value at
time t = N � 1, if no earlier o↵er has been accepted, is the mean of its range
and because the upper bound bt is

bt = (1.03)N�(N�1) () bt = (1.03)

we have

E{g(xN�1)} =
1

2.06 + (1 � 1
2.06 )( 1

2 + 1.03)

2
⇡ 0.636.

In the same manner, we can continue and solve for which o↵ers to accept at
each time t = N � 2, .., 1.

3.1.3 Further applications of this kind

We have thus described a way to optimally guide Johan’s choices toward retire-
ment with the DP algorithm. Problems in the form of optimal stopping is found
in many other kinds of microeconomic issues [8]. The house in the above ex-
ample, could just as well be interpreted as some investment opportunity where
the investor decides whether to take the opportunity or hope for a better one
later. The Optimal stopping frame work has also been used for interpreting job
searching choices [9]. When an available job is found, salary and other condi-
tions are announced. Accordingly, a decision then has to be made whether to
accept the job or to hope that a later opportunity will be even better.

3.2 Financial Economics: Utility Maximization

Financial economics could in some sense be seen as a link between what is tradi-
tionally seen as the sphere of microeconomics, behaviour of actors in a market,
and macroeconomics, development and policy governing markets. Therefore,
the chapter structure of this thesis is somewhat arbitrarily chosen. However,
when we now turn toward an application to finance the primary focus will be
on how scarce resources can be optimally allocated with the help of DP. Many
problems in economics [7] regard maximizations in the form of

max
TX

t=0

�tU(xt, ut),
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where

T scope of time,
t current time,
� 2 (0, 1) time discount factor,
U function of Utility for concerned actor,
ut control variable, i.e. changes in allocation,
xt state variable, i.e. portfolio wealth.

The time discount factor captures impatience of an actor and the Utility func-
tion is strictly increasing and concave, i.e. u0 > 0 and u00 < 0, capturing the
phenomena of diminishing marginal utility. We see that it resembles the stan-
dard form (2) of DP and use this in an example.

3.2.1 Problem formulation

Suppose that a person want to optimize the allocation of assets between invest-
ing and consumption in order to maximize utility over a given time period T .
In an example of this kind we need to assume some utility function and psycho-
logical discount factor to fit the model above. However, to simplify the example
and delimit the mathematics, we assume a constant utility and no impatience.
This turns the problem into the form of

J⇡ = sup
TX

t=0

ut,

where 0  ut  xt is the amount consumed at every time t and ⇡ hence denotes
the chosen sequence of consumption ⇡ = u0, u1, ..., uT . Further, at each time t
he receives a salary of xt which he may place in n di↵erent forms of investments,
each with the rate of return defined as ✓ti, his capital therefore increases by the
state evolution

xt+1 = xt � ut +
nX

j=0

✓ticti.

However, Johan decides that he will only save his money in a bank account with
a constant rate of return such that he does not expose himself to any financial
risk. Hence we rewrite the state evolution to

xt+1 = xt + ✓(xt � ut),

where ✓ is the rate of return and 0  ut  xt. Since there is no concave utility
function or factor of impatience to discount for, the problem is time invariant.
We may therefore write the recursive value function for each state s = N � t,
transforming backward induction into forward, as

Vs(x) = max
0ux

[x + Vs�1(x + ✓(x � u)],

with the terminal condition V0(x) = 0 since no more can be consumed after time
N is reached. We now maximize the consumption for each time s = 1, 2...N and
thus have
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V1(x) = max
0ux

[x + Vs�1(x + ✓(x � u)] = max
0ux

[u + 0] = x,

V2(x) = max
0ux

[x + Vs�1(x + ✓(x � u)] = max
0ux

[u + x + ✓(x � u)]

and so forth. Since both the value function and state evolution are linear we
have that maximum will be obtained at either u = 0 or u = x and of this
property problems like this are sometimes called Bang Bang control. We have
that

V2(x) = max[(1 + ✓)x, 2x] = max[1 + ✓, 2]x = cx,

where c is a constant. We may therefore guess that the maximized reward
function is on the form of Vs(x) = csx. Proving this by induction, we use that
this is valid for V2(x) and control if it is valid also for Vs+1(x). We have that

Vs+1(x) = max
0ux

[u + cs(x + ✓(x � u))] = max[(1 + ✓)cs+1, 1 + cs]x = csx,

thus it is possible to conclude that Vs(x) = csx. Further we have that

cs = cs�1 + max[1, ✓cs�1]

which lead us to the conclusion that at a certain point s⇤ on the trajectory path
we have that ✓cs⇤+m < 1, for all m = 1, .., N � s⇤ and thus

cs =

(
s s  s⇤

(1 + ✓)s�s⇤
s⇤ s⇤  s.

s⇤ should be understood as the least integer where s⇤ > 1
✓ and the optimal

consumption policy as building up a capital by saving all of the income in the
years s  s⇤ and thereafter consuming the whole income.

3.2.2 Further applications of this kind

The model used in the problem above may, if desired, be revised to include
additional variables, such as more investment alternatives. Doing so complicates
the economics and mathematics, dependening on the properties of the additional
alternatives. In the cases of microeconomics and finance, problems of this kind
often go under the title ”cake eating problem” [10] as they comprise the optimal
usage of a scarce resource. As in the above, the model

max
TX

t=0

�tU(xt, ut),

is the standard one and if we aggregate it, i.e. to the level of households in a
market, we can understand this as an optimal growth model [7], providing a
tool for analysis of optimal consumption patterns at the macro level.

21



3.3 Macroeconomics: Monetary Policy

At the level of macroeconomics, recursive methods such as DP has gained a
lot of influence (Ljungqvist and Sargent, 2004). As mentioned in the previous
section, theory regarding optimal growth can be translated into a DP problem
in the form of the cake eating problem. The formulation would in this case be
in the form of:

max
TX

t=0

�tL(xt, ut),

where L captures some cost function for a government and � is a time discount
factor. The cost function could in this case be understood as some undesired
outcome that a government faces when implementing a policy ⇡ that leads to the
decisions ut. This could, for example, be a question regarding how to stabilize
the economy during di↵erent times in a business cycle. If the cost function then
is set to some penalty dependent on the employment rate xt which in turn is
dependent on stimulations ut�1, this could provide an interesting tool in policy
development of governments.

3.3.1 Problem formulation

In a manner like this, Kato and Nishiyama [11] uses DP when examining mone-
tary policy in the low inflation economy of Japan during the early 1990’s. Their
primary concern was with evaluating a zero-bound on the nominal interest rate,
the main tool for central banks control mechanism of inflation rates. In the
section below, the basic DP model that they used for deriving an optimal policy
for the control of the interest rate is described.

With regard to the most common goals assigned to a central bank, low and
steady inflation and a low unemployment rate, we suppose that a cost function
can be written in the form of

Lt =
1

2

✓
(yt � y⇤)2 + �(zt � z⇤)2

◆
,

where the first factor denotes the output gap between current, yt, and potential,
y⇤, GDP; caused either by an unemployment rate too high, causing a lower than
potential growth, or too low, leading to an over heated market. The second
factor denotes the inflationary goal z⇤ set by the central bank subtracted from
the inflation zt present at the current time t. Further, � 2 < is some weighting
factor which represents a preference of the central bank. The model thus contain
two state variables which the cost function depend upon and the economy that
govern the evolution of these can be described as

yt+1 = p(yt � y⇤) � �(it � E{zt+1}) + vt+1 (3.3)

zt+1 = zt + ↵(yt � y⇤) + ✏t+1, (3.4)

where v and ✏ are assumed to be disturbance variables, p, � and ↵ constants
and it are the nominal interest rate set by the central bank at time t, thus the
control variable. In (3.3) we find a variable that is forward-looking, in the sense
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that it is concerned with a development that is not directly available at time
t; E{zt+1} represents the expected rate of inflation for time t + 1 at time t.
This can, however, be substituted as a function of the relationship between the
expected inflation rate and the current inflation rate and output gap, which is
given by (3.4) when we exclude the disturbance variable,

E{zt+1} = zt + ↵(yt � y⇤).

The objective function, which a policy for the central bank wishes to minimize
over some time period, can thus be formulated as

min
it

E
NX

t=0

1

2

✓
(yt � y⇤)2 + �(zt � z⇤)2

◆
(3.5)

subject to
zt+1 = zt + ↵(yt � y⇤)2 + ✏t+1.

yt+1 = (p + ↵�)(yt � y⇤)2 � �(it � zt) + vt+1,

From the above, we recognize that this monetary optimization system contains
a quadratic output function and a linear input. It thus fulfil the properties of a
Linear Quadratic regulator (LQ) problem, which we therefore introduce to our
analysis.

Monetary policy example as a LQ regulator The system described in
the above, governing an optimal monetary policy, can be rewritten as a LQ
regulator problem, described in section 2.4, and we thus have the following:

E

✓
(xN � x̄N )T QN (xN � x̄N ) +

N�1X

t=0

(xk � x̄k)T Q(xk � x̄k) + uT
t Rut)

◆
, (3.6)

where xk = (yt, zt), contain the state variables and x̄k = (y⇤
t , z⇤t ) are the de-

sired values for the state variables at each time t. We assume that there is no
cost associated with the decision to alter the nominal interest rate and there-
fore the matrix R is the null matrix R = 0. Furthermore, if the priority be-
tween the target for inflation and output is equal (i.e. � = 1), we have that
Qt = I, t = 1, .., N .

The state evolution system is rewritten as

xt+1 = Atxt + Btut + wt,

where

At =

✓
1 ↵
0 p + �(1 + ↵)

◆
, Bt =

✓
0 0
0 ��

◆
, wt =

✓
✏
v

◆
.

The system is thus time-invariant because At, Bt and wt consist only of con-
stants. We know from the introduction of the LQ-regulator problem in section
2.4 that a problem of this kind has a solution on the form of

u⇤
t = �⇤

t (xt) = Ltxt,
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where the matrices Lt are given by

Lt = �(B0
t)Kt+1Bk + Rk)�1B0

tKt+1At

and where Kt solves the corresponding Riccati equation, described in (2.6).

However, from the description of the problem, we have that the matrices At, Bt, Qt

and Rt have constant coe�cients and thus independent of time. Therefore they
may be transformed into the constant matrices A, B, Q and R. Further, ana-
lyzing the problem formulation in the above, it is a highly plausible assumption
that the objective of a central bank to control the inflation and output gap
should be regarded as an infinite horizon problem, i.e. N = 1 in the equations
above. Thus we may apply the algebraic Riccati euqation (2.7) to solve for the
optimal policy mapping Lt above.

An optimal interest rate policy for the central bank may therefore be approxi-
mated through solving for L in the system of equations

(
L = �(B0KB + R)�1B0KA

K = A0(K � KB(B0KB + R)�1B0K)A + Q.

3.3.2 Further applications of this kind

This approach by Kato and Nishiyama [11] represents an intriguing example of
determining and evaluating monetary policies. Macroeconomics in general has
been a major field of DP applications [7] but even though most examples of these
are outside the mathematical boundaries of this thesis, it is probably a necessity
to mention Nobel laureates Finn E. Kydland and Edward C. Prescott. In 2004
they received the Swedish central banks economic price in memory of Alfred
Nobel ”for their contributions to dynamic macroeconomics: the time consistency
of economic policy and the driving forces behind business cycles” [12]. Studying
the ability of government to implement desirable economic policies and how
business cycles fluctuate from technological development they used recursive
models of optimal monetary policy, similar to the one exemplified in the above,
and utility maximization of individual households, much like the examples above
[12].
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Chapter 4

Summary and Analysis

In the thesis, we have examined how the algorithm of dynamic programming
may be applied to economics. After a review of the theory and the example
of the Needleman-Wunsch algorithm, the focus were shifted toward economical
applications. A couple of examples were investigated and some numerical re-
sults were presented, our focus was however to supply a broad interpretation of
possible applications of dynamic programming in economics. Therefore, micro-
and macroeconomics as well as financial economics each received a section of
brief analysis. In general, it seems reasonable to conclude that the dynamic
programming algorithm represents a powerful tool in the interpretation of a
broad range of economic phenomena: From the asset management and utility
maximization of an individual actor to the possible guidance of a central banks’
monetary policy.

However, the above can only be assumed to represent a rather simplified inter-
pretation of the di↵erent topics covered. For one, with regard to the expository
aim of the thesis and the resources available to the author, the above should be
considered to lack the necessary depth of mathematical analysis to make justice
to the subject. Further, the lack of validity analysis of the economic models
above may e↵ectively disqualify any conclusion made. Therefore, the remainder
of this thesis will be devoted to the general topic of mathematics in economics,
with the purpose of complementing the previous sections with a discussion of
its general validity.

4.1 The Validity of Mathematical Economics

Mathematical theory and modelling has since the middle of the twentieth cen-
tury been at the very center of theoretical advances of the science of economics
[13]. Further, some remark that the advances of mathematical economics has
been to such an extent that it more or less has transformed economics into a
field of mathematics [14]. This raises some important questions however: What
kind of problems do arise when we draw economic inferences from mathematical
deduction? And how may the validity of a mathematical model be understood,
such that its consequences can be interpreted accordingly? These are, of obvi-
ous reasons, too grand questions for a proper examination here but, with this
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reservation made, we will briefly discuss the question of how mathematics in
economic theory should be interpreted.

In an article of Beed and Kane [13] seven points of critique against the ”math-
ematization of economics” are raised and analyzed, among them:

• The axioms of mathematical economics do not correspond to real world
behaviour.
• Some/much of economics is not naturally quantitative and therefore does
not lend itself to mathematical exposition.
• The number of empirically testable hypotheses generated by mathematical
economics is small compared with the volume of mathematical analysis.

The first two is somewhat similar to each other; both pinpoint the question
of whether it is reasonable to assume that reality may be captured in a math-
ematical model. In this regard however, it might be necessary to distinguish
economics that involve solely deterministic processes, for example the main-
tenance scheduling of a machine, from economics of a stochastic nature, for
example involving human behaviour. It is a plausible assumption that the mod-
elling of a phenomena of the latter kind is more problematic than the modelling
of a phenomena of the first, therefore the discussion will focus accordingly.

One example of how axioms may diverge from reality is the concept of utility;
it is often regarded as a strictly concave and continuous function (u0 > 0 and
u00 < 0), i.e. capturing the concept of diminishing marginal utility and the idea
that more is always better. Much of economic theory, including the examples
of finance and microeconomics examined in the above, take this concept for
granted. Furhter, the foundation for this formulation is the assumption that
economic decision making is based on a rational analysis of the information
at hand and, accordingly, the dominating paradigm in microeconomics is the
theory of rational choice [15]. However, the correctness of this assumption has
for example been challenged by prospect theory [16, 17] which promote a more
psychological perspective on decision making. Regardless of the conflicting de-
tails of these theories, they highlight the critical point of the first and second
critique of Beed and Kane [13] described above. Every mathematical model
is dependent of the set of axioms which it is built upon, which consequently
determines how well the theory fits with reality. Further, Beed and Kane[13]
argues that no set of axioms may capture the reality in a completely accurate
way. This is intuitively a rather reasonable assumption, which ultimately leads
to the conclusion that mathematical economics are per definition incomplete.

The third critique by Beed and Kane is presumably even worse; if the gap
between theory and reality is extended to include the hypothesis, the theory
will not be possible to confirm. And if the mathematical analysis produce con-
clusions that are impossible to validate, it is also impossible to confirm the
correctness of the set of assumptions that govern the analysis. This is e↵ec-
tively described by the scientific philosopher Karl Popper who said that good
science should make bold conjectures, meaning that a theory must comprise
conditions for how it would be falsified and thereafter be tested accordingly.
Therefore, if mathematical economics fail to present testable predictions, the
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consequence might be that we get deluded into interpreting the simplicity of its
mathematical deduction as an accurate analysis of reality.

In future research of mathematical applications to economics, it should there-
fore be considered as fundamental that theories state criteria for falsification
explicitly and that experimental economics test and challenge these criteria re-
peatedly. In this way it might be possible to ensure that theories do not gain
influence solely from mathematical rigour but from proved applicability.
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