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Abstract

In this thesis we will consider a particular probability measure, the
Circular Unitary Ensemble, which is a famous model within Random
Matrix theory.

We will give new proofs of two central limit theorem’s associated to
this measure. The proofs are based on the fact that the moment gen-
erating function of a linear statistic can be written as a Fredholm de-
terminant of an integrable operator. With a Riemann-Hilbert problem
approach, it is possible to evaluate the determinant, at least asymp-
totically.
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1 Introduction
Consider n points €1, ..., e where the arguments are chosen randomly
with respect to the probability measure

1

0, 02
TGmE I 1€ — e ?do ... do, (1)

1<k<t<n

on [—m,m)". In this thesis we are interested in the behavior of these points
as n tends to infinity.

From the measure we can tell that the probability that two points are
close to each other is small, that is, the points appear to repel each other.
A sample with respect to this measure is shown in Fig la. One can see
that the points are random, but there is no clustering, they are more or less
equidistant. In the sample from a uniform distributed measure, Fig 1b, at
the other hand, there are clustering and the points are more chaotic. We
know, however, that there is some kind of structure as the number of points
tends to infinity, for example the classical Central Limit Theorem (CLT)
for independent and identically distributed (i.i.d.) points. In our case, the
classical CLT does not apply, since we do not have independent distributed
points, in fact, they are strongly correlated. A natural question is, do we
have a replacement of the classical CLT? The answer is yes, but significantly
different. These type of questions we want to understand.

We will see that (1) has a nice structure, which allows us to compute the
behavior for large n, and by that we can find new laws that are different from
the laws about independent random variable. These laws are believed to be
universal. They appear very often when it comes to big complex systems
with some repulsion, for example the energy levels of heavy nuclei and the
zeros of the Riemann-Zeta function (see [4] and [9]). Often these systems are
too complicated to analyze in detail. The purpose of Random Matrix theory
is to analyze models that generate the same behavior but are simple enough
to analyze (toy models). The measure (1) is one of the famouse examples of
such model. The e can be obtained as the eigenvalues of a random unitary
matrix. This model is called the Circular Unitary Ensemble, CUE, in the
literature. The measure (1) has also interesting mathematical properties,
Lemma 3.3 gives a simple relation to Toeplitz matrices. This will be used in
this thesis.

As indicated above, we want to understand the asymptotic of (1). One
natural object in the study of a probability measure of this type is linear
statistics.

Definition 1.1. Let f be a function on [—7,7) and (61,...,0,) € [-m,7)",
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(a) A sample from (1) for n = 100. (b) Samples from independent uni-
formly distributed points.
Figure 1
then
n
k=1

is the linear statistic of f.

One of the key feature of (1) is that the moment generating function of

a linear statistic can be expressed as a Fredholm determinant. Namely

E [e)‘X”(f)] = det (I + K, (e)‘f - 1)) , (2)

where K, is defined by (16), see Lemma 3.3 and Lemma 3.4. This translates

the problem of understanding the linear statistic into studying Fredholm

determinants which are a part of analysis. The main proofs in this thesis are
analytic in nature.

In this introduction we will mention some known results about (1) and

then state the main results which we will prove. For further discussion about

topics closely related to Theorem 1.1, Theorem 1.2 and Theorem 1.3 we refer

to [4] and the reference therein.
A first result is given in the following theorem.

Theorem 1.1. For a continuous function f ,

BIX.(N] = [ s

1
n

Proof. This follows from Lemma 3.9 and (17) O



This is basically the weak law of large numbers, which we know is true
for i.i.d. random variables. We recall that the fluctuation for i.i.d. random
variables are given by the CLT. For (1) we also have a CLT, but it is of a
different nature.

Theorem 1.2. Assume that f is a function on [—m, ) such that
o A
D EIf(R)P < oo
k=1

Then the random variable

Xn(f) - ]E[Xn(f)] - N(Ov 02)

in distribution, where N(0,02) is the normal distribution with variance o® =

230, k|f (k)% and f(k) is the Fourier coefficient.

Remark. From Lemma 3.3 this is the Strong Szeg6 Limit for Toeplitz deter-
minants.

This is, as mentioned, a Central Limit Theorem, but note that we do not
divide by a normalizing factor. This is a remarkable fact. Recall that the
normalizing factor is \/n for i.i.d. random variables. That the sum actually
converges is not clear at all. This tells us that the repulsion is powerful.

Theorem 1.1 and Theorem 1.2 are examples of results on the macroscopic
scale, that is, the distribution when viewing all points at the same time.
Another important result is on the microscopic scale. For the microscopic
scale, one consider a part of order %, that is, the distance, between the
eigenvalues, are of order one. To zoom in at #y one can consider a function
f with compact support and define f,,(0) = 27 f(2mn(6 — 6p)) , the constant
27 are included for simplicity. The following theorem give us a way to
understand an infinite point process. Of course, to give a proper definition,
more work is needed (see [7]).

Theorem 1.3. For functions with sufficiently fast decay,
E [eAXan)} S det(I + K(eM — 1))

as n — 0o. Here K is the operator defined by the sine kernel K : R?> — R,
with
sin(m(x — y))

Klmy) = m(z —y)

It is natural to ask what happens in between the macroscopic and mi-
croscopic scale. This is called the mesoscopic scale. This is the main topic
for this thesis. The main result will tell us about the distribution when it
comes to the mesoscopic scale. We will prove the following theorem.



Theorem 1.4. Let G € L*(R) be a continuous real valued function with
compact support such that

Amgfwx@&x<m

= / G(x)e % dx

is the Fourier Transform. Fiz o € (0,1), 6y € [—m,7) and let G,(0) =
G(n*(0 —6p)). Then

where

X,(Gn) — E[X,,(Gn)] = N0, c?)

i distribution, where

= GG

Here we are interested in a part of the unit circle of order n~%. So the
number of eigenvalues in the part we are looking at, tends to infinity, that
is, the expectation value of X, (G,,) tends to infinity, see (31). This is also a
remarkable CLT, since we do not divide by a normalizing factor. Moreover,
we can see that the limit does not depend on neither 6y nor a.

The functions that we consider in this theorem is a subset of a subspace
of L?(R) equipped with a Sobolev type of seminorm,

([ erc Idf)

It is easy to see that this is a seminorm by the observation that

([ a7 Idf) = o) VEF (@) 22

We will not go any deeper into this, but we will use that this defines a
seminorm in the proof of Theorem 1.4, to be able to extend our proof to all
functions stated in the theorem.

The other main theorem in this thesis concerns going from the micro-
scopic scale to the macroscopic scale. For this we start with the right hand
side in Theorem 1.3 and zoom out.

Theorem 1.5. Let f : R — R be a Schwartz function such that F(f)(§) <
Ae 8l for some positive constants a, A. Assume also that the first and
second derivative of the Fourier transform of f satisfies the same condition.

Further let .



Then there exists a disc around the origin such that if A belongs to this disk,
then

det <I —+ K (eAfn — ]_)) — en)‘f]R f({)df+4);r722 f()oo £|]:(f)(£)‘2df(1 + O(n6727rnp))

for some p > 0.

With this theorem in hand, we have the crucial part of the proof of a
similar theorem as Theorem 1.4, for the sine kernel. What is left is to extend
the result as mentioned in the remark after Theorem 1.4. But to do that
one need a proper definition of an infinite point process, as mentioned before
Theorem 1.3. We will not include this in the thesis. The limit in Theorem
1.5 can be compared with the limit in Theorem 1.4. That we get the same
limit if we start from the macroscopic scale and zoom in as if we start at the
microscopic scale and zoom out is remarkable.

Theorem 1.4 has been proved by Soshnikov and he mentioned that the
same approach would work for Theorem 1.5, see [12|. Related work has
recently been done by Johansson and Lambert, see [8]. What we will do
in this thesis is a new proof, an analytic proof, using modern techniques.
The proofs are inspired by [2]. Hopefully this approach will help us to get
a deeper understanding about the problem. The equality (2) is true for all
determinantal point process (for more on determinantal point process see
[7]) for some operator. That makes it interesting to investigate if this proof
apply in other situation when the operator in (2) is an integrable operator.

The outline of this thesis is the following; We will first give the necessary
tools to be able to attack the two main theorems stated above. The tools
we consider are the Cauchy operator, Riemann-Hilbert problem technique
and Integrable operators. In section 3 and 4 we will prove the main results.
Especially Theorem 3.6 and Theorem 4.5 are the crucial parts of these proofs.
The proofs of these two theorem are based on a Riemann-Hilbert Problem
approach and are postponed to section 5.1 and section 5.2.

2 Preliminaries

2.1 Analysis of the Cauchy operator

Here we will do analysis of the Cauchy operator for the unit circle and for
the real line. It is possible to do this for more arbitrary contours (see [10]),
but for the purpose of this project this will suffice.

Definition 2.1. Let I' be a contour in C. For h € L?(T") the Cauchy trans-
form on T is defined as

cne = | hw) dw

as long as the right hand side make sense.



This transform depends on the contour, but what contour we consider
will be clear from the context. We will do analysis of the Cauchy transform
for the unit circle and for the real line.

Definition 2.2. Let A : C\T — C and hy : T — C. We say that h — hy in
L?(T) sense from the +-side if

. 2 .
lim /T|h(rz)—h+(z)| 1dz] = 0.

r—1,r<1

In the same way we say that h — h_ from the —-side if the same is true for
r> 1.

Lemma 2.1. If h € L?(T) then Ch is a well defined analytic function away
from the circle. There exists bounded linear operators, Cy. and C_, on L*(T)
such that Ch — Cyh and Ch — C_h in L*(T) sense from the +-side and
—-side respectively for all h € L*(T). Moreover

and

(Ch)() == 3 hl)*

k=—0o0
which implies the relation
Cih—C_h=h
for all h € L*(T).
Proof. Let |z| < 1, then
h(w) dw
h = —
(Ch)(z) /Tw—z2m
_ / 1 h{w) dw
CJrwl— = 2mi
h(w) o= / 2\ dw
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Since h € L?(T) the last series converges absolutely, hence it is an analytic
function on the open unit disk. This suggests us to make the definition of
Cy as

We note that C, and C_ are projections on L?(T) and we can therefore see
that they are well defined linear operators.

Now, we want to show that C' converges to Cy and C_ in the correct
sense. Consider h € L%(T). Given € > 0 find an N € N such that

> Ih(k)P <3
k=N+1
and find an 7 < 1 such that |[rV — 1] < W Then, from the above
calculations
00 2
/\Ch rz) — Cyh(2)|?|dz| = / Z (r* —1)2%| |dz|
k=0

8

=D k)Pt — 1P
k=1

o

N*1!Z|ﬁ(k)l2+ > k)
k=1

k=N+1

2

<€,

where the second equality is by Parseval’s identity. Hence Ch — Cih in
L?(T) sense from the +-side. In the same way we can see that Ch — C_h
in L?(T) sense from the —-side O

Lemma 2.2. If h € C*(T) then C+h and C_h are differentiable and we can
differentiate termuwise.



Proof. To justify that we can differentiate C';h and C_h we use that h €
C?(T) and therefore h” € L*(T). Then

S (k)] < (z (kjl)z) (zu«k— 1>A<k>2)
k=2 k=2 k=2
< HiLHHLQ(T) (Z (k:—ll)2> <00
k=2

where we have used Cauchy-Schwarz inequality, Bessel’s inequality and that
k(k —1)h(k) = h'(k — 2). Hence

(C+h)'(2) = Y Kh(k)2"! (4)
k=0
and . o
(C_h)'(2) == > kh(k)z""" = kh(-k)z""". (5)
k=—o00 k=0
L]

We will now continue and consider the case with the real line as contour.

Definition 2.3. Let h: C\R — C and hy : R — C. We say that h — hy in
L?(R) sense from the +-side if

lim / \h(x +i€) — hy (z)|*dz = 0.
R

€e—0,e>0

In the same way we say that h — h_ from the —-side if the same is true
with —e instead of e.

Lemma 2.3. If h € L?(R) then Ch is a well defined analytic function away
from the real line. There exists bounded linear operators, Cy and C_, on
L*(R) such that Ch — C+h and Ch — C_h in L*(R) sense from the +-side
and —-side respectively for all h € L?(R). Moreover the relation

Cih—C_h=h
holds.

Proof. Let Im(z) > 0 and let h be a Schwartz function. For any A > 0 we
have the relation

—iA(y—=z)

A
1 _ Z/ e i€W=2)ge 4 €
0

y—=z y—z

10



If we use that in the definition of the Cauchy transform we get

) 1 Ah 7i£(y72)d p eiAz h e—iAyd
(O0)) = 5= [ [ b= agay+ G [ hnS—ay

1 A i zﬁzd eiAz , e—iAy 4
— 5 | @i+ S [ n

where the change of order of integration is valid since h is a Schwartz func-
tion. The right term above converges to zero as A growth since Im(z) > 0.
Let A go to infinity, then

1 [ 4
(W) = 5= [T Fheas (©
A similar calculation leads to the relation
1 © .
(ON)(:) = —3= [ Fo e e

if Im(z) < 0. Since

| 1F©eas < ( I |f<h><g>|2da) v ( s re—ﬂm@)ﬁdg) "

by Cauchy-Schwartz inequality, and since the Schwartz functions are dense in
L?(R) it is not difficult to see that the above equalities hold for all h € L?(R).
We can also see that C'h defines an analytic function.

We want to find the limiting operators as we did for the circle. For that,
recall that F can be extended to a unitary linear operator on L?(R) (see e.g.
[14]). Now define C; and C_ on L*(R) as

Crh = F (L0 F(h))

and
C_h=—F (1o oF(h)).

These are clearly bounded linear operators with ||C4|| < 1 and ||C_|| < 1.
We want to see that C' converges to C; and C_ in the correct sense. First
note that if € > 0, then

Ch(x +ie) = f_l(l[o,oo)e_xef(h))(:n).
Hence
/R Ch(z +i€) — Cy h(z)2de
= | F " (1o, " F(m)) (@) = F~ (110,000 F (M) (@) 172 gy

< o0y (€77 = 1) F(R) |72
— 0

11



as € — 0 by Lebesgue Dominant Convergence Theorem. The same argument
holds to see that C' converges to C_ in the right sense.

The linearity of the Fourier transform and the Fourier Inversion Formula
implies the relation

(Ch)(x) — (C-h)(x) = h(z).
O

Lemma 2.4. If h is an Schwartz function, then CLh and C_h are differen-
tiable and

-1 > ] —ix
(Cah) (@) + (ChY () = oo [ € (F© + F) (- ) de.
™ Jo
Proof. This is direct by differentiating the relation
1 o ) 1 > —i€x
(Ca)(a) + (Coh)@) = 5 [ Fa©cEd — o [T Fm)(-geierag
m™Jo 2T 0
which we can do since F(h) is a Schwartz function. O

Remark. To define Ct and C_ for more arbitrary curves one can use The
Plemelj Formula (see [10]).

2.2 Riemann-Hilbert problem

For the proof of the main results we will use a Riemann-Hilbert problem,
RHP, approach. We will give a brief introduction with some important
results. The introduction is based on [3] but adjusted to our settings.

Given a contour I' with an orientation, let the +-side be to the left and
the —-side to the right of the contour, and a jump matrix J : I — CV*V|
we have the following definition.

Definition 2.4. A solution to the RHP (I',J) is a function m : C\I' —
CN*N that fulfills the conditions

(i) m is analytic in C\T',
(ii)) my(z) =m_(2)J(z) for z € T,
(iii)) m — I as |z| = oo.

Here my and m_ are functions living on the contour such that m — m_
as z converges to the contour from the +-side and m — m_ as z converges
to the contour from the —-side. Of course one need to specify in what sense
the limit is taken, as well as in what sense m — I. This can be done in
different ways.

12



Definition 2.5. Let I' be a finite disjoint union of oriented smooth contours
with no endpoints and no self intersections. Let h: C\I' = C and hy : T' —
C. We say that h — hy in locally L?(T) sense from the +-side if

t1

lim |h () + ey (t)) — by (v(1)|* dt = 0

€>0,e—0 to

for all z € I'. Here «v is a regular parametrization of the contour of unit
speed defined in [tg,?;], for some ty and ¢;, and such that ~([tg,t1]) is a
neighborhood of z in I'. In the same way we say that h — h_ from the
—-side if the same is true with the natural change of € to —e.

For this project we will consider RHP:s where the limit is taken in locally
L*(T") sense. We will also say that m — I if m(z) is bounded as |z| — oo
away from I' and if

m(z) = 1

as |z| — oo for some sequence. We will assume I" to be a finite disjoint union
of oriented smooth curves with no endpoints and no self intersections, that
is, so we can use the definition of convergence in locally L?(T") sense. This
is stronger than necessary but since we will basically consider the unit circle
and the real line this is no restriction for us. But it is actually possible to
do this for more complicated curves, even for self intersecting curves. We
will view the unit circle as a contour oriented counter clockwise and the real
line oriented from —oco to co. We will also assume that J is smooth and
bounded and that det(J(z)) = 1, assume further that J — I € L?(T"). These
assumptions are also extra strong, but will be fulfilled in all cases within this
thesis.

The solution to Riemann-Hilbert Problems turns out to be related to
solutions of other type of problems. For example in the analysis of orthogonal
polynomials and in differential equations. For more theory and examples see
[3] and [5].

When it comes to RHP it is often the case that the existence of a solution
is more problematic then the uniqueness. Especially for 2 x 2 RHP:s, which
will be the case in this thesis, we have the following theorem.

Theorem 2.5. Consider the RHP (I, J) where J is a 2 x 2 matriz. If there
exists a solution, then this solution is unique.

Proof. This is a proof that can be found in e.g. Theorem 7.18 in [3] but
adjusted to our settings.

Let m be a solution to the RHP (I',J). First of all, we want to prove
that m™! exists. since m is a solution to the RHP, det(m(z)) is an analytic
function away from I'. Since det(J(z)) = 1,

det(my(z)) = det(m_(z)) det(J(z)) = det(m_(z)).

13



We want to use this equality to see that we can extend det(m(z)) to an entire
function. Let 2’ € T', and let v : [t1,t2] — T" be the parametrization in the
definition of locally L?(I") convergence. Since m is a 2 x 2 matrix we get
from the convergence of m to m4 that

t1
/t |det (m (v(t) +iey'(t))) — det (my(v(2)))| dt — 0 (7)
0

as € — 0. Let {5 < sg < s1 < t1 and let C. be the contour on the +-side
of T that consists of the contour v. = ~v([so,s1]) + iey'([s0, 51]) and with
part of a half circle connecting v(so) +iey/(so) and y(s1) + i€y (s1), oriented
counterclockwise. Let € > 0 be so small that the intersection of the interior
of all C, 0 < € < € contains an accumulation point. Let z be in that
intersection. Then

det(m(w)) dw

w—z 2mi

det(m(2)) = / (8)

Let s = sup;cq,.5,) 7" (0] and s, = infyc(y 61 [7(E) — 2], from (7),

/ det(m(w)) dw / det(m. (w)) dw
€ Yo

w—z 27 w— z 21

< i:r_ei /51 [det (m (v(t) + iey' (1)) — det (m ((1))) ;L;
2] - dt
e [ et G5

—0

as € — 0 since det(my) € L'([s.s1]) which can be seen from (7). From the
above calculations and from Fubini’s Theorem,

/ / det(m(w) dw .,
0 Jy, w—z 2mi

and from Chebyshev’s inequality we can conclude that

“det(m(y() + €7 (0) Ly 4 i €
/0 ~(t) + iy (t) — 2 (' (t) +iey"(t)=— — 0 ()

27
for almost every t € (to,t1) as € — 0. Hence, by letting ¢ — 0 in (8),

det(m(2)) = / detlm(w)) dw

o WwW—=z 2mi
with det(m(w)) = det(m4(w)) for w € I'. By the same argument,

B det(m(w)) dw
0= /C B

w—z 2m

14



where Cc _ is the correspondent to Cc on the —-side of I'. Hence, if C =
Co UCo,—\"Y([s0-51]), where sp and s; are such that (9) is true, then

det(m(2)) = /C (WSZ.

Of course the same argument is true if z is on the —-side of I'. Hence
det d
det(m(z)) = / det(m(w)) dw
C

w—z 2w

for all z in the interior of C away from I' by the Uniqueness Theorem of
analytic functions. Since the right hand side defines an analytic function in
the interior of C, we can extend det(m(z)) over I close to z’. This is possible
to do for all 2z’ € T', hence we can extend det(m(z)) to an entire function.
But since det(m(z)) is bounded and det(m(z)) — 1 as |z| — oo, for some z,
we can conclude that det(m(z)) is constant and equal to one. Hence m(z)~*
exists for all z € C.

Assume now that m; and mg are solutions to (T', J) and let m = mlmz_l,
which is well defined since ms 1 exists. Then

my = (mi_J)(ma_J) ' =mi_mo_ =m_.

With the same argument as used above, we can extend m to an entire func-
tion. Moreover m(z) — I as |z| — oo. Hence m(z) = I for all z € C which
implies that

mi(z) = ma(2)

for all z € C\I'. O

For a solution to the RHP (T", J) we can, in some circumstances, use an
operator on L2(I")?*2 defined as

th = C_(hw+) + C+(hw_) (10)
where w = w_ + w4 and wy and w_ are defined as
J=T—w )" (I +wy).

for some factorization. In this factorization we have a lot of freedom, but the
factorization needs to be done in such a way that w, and w_ are bounded
and in L?(T"). The following theorem is true under certain condition on I'
and J.

Theorem 2.6. Consider the operator defined in (10). Assume that (I —
Cy)~ ! emists as a bounded operator. Then with

p=- Cw)_ll

and
m =1+ (Cluw)(2),
m solves the RHP (I", J).

15



Remark. We need to be a bit careful what we mean with (I —C,,) I if T is
unbounded. What we mean is that u—1I € L?(T) such that (I —Cy)(u—1) =
Cywl. Not that m still is well defined due to the condition on wy and w-_.

Proof. We will only prove this for the circle and for the real line, with extra
assumptions on the real line. These are the cases that will be used later in
this thesis. For the more general proof and the exact assumptions on I' and
J see Theorem 7.103 in [3].

We start with the proof for the circle. First of all, since w is bounded,
pw € L2(T), so m is a well defined analytic function on C\T from Lemma
2.1. From the same lemma we know that C converges to Cy and C_ in the
proper way. Hence

my =1+ Cy (pw)
=1+ 4 (pw-) + C—(pwy) + C4 (pwy) — C—(pwy)
=1+ Cu(p) + pws
— I+ wy). (11)

In the same way
m_ = p(l —w_).

Hence
my = p(l —w_)(I —w_ )Y I +wy)=m_J.

From (3) it is direct that
m=1I+0(z")

as |z| — oo.

For the case of the real line, the same calculations of the first part is still
valid. What we need to prove, is that m — I. The extra assumptions that
we will add are that p and w are analytic in some strip containing the real
line, pw € L'(R) and that there exists an € > 0 such that pw is bounded for
|Im(2)| < e. Then if Im(z) > 0, we can deform the integration contour to I
such that the distance from z to I is greater then €. Then

[ Hw,,
Ie

—Jl =
m(z) =1 e

]‘ ! ! ! ! !
< ( /R n(w()d + 7 sup (= >w<z>l)-

[Im(=/)|<e

If Im(z) < 0, we can deform the contour in the other direction. Hence m(z)
is bounded as |z| — oo and it is no problem to see that m(z) — I is z — oo
along the imaginary axes. O
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Corollary 2.7. If
1

1T =1l < 77—
IC-I >

then the RHP (I', J) has a solution.

Proof. To find an explicit solution we can use Theorem 2.6 with the factor-
ization

J=11J.

Then w_ =0 and wy = J — I, hence
Cywh = C_(hwy).
Since C_ is a bounded operator

1Cwhl[L2 = [[C—(hw)] 2
< C-iz2llA(J = D) 2
<NCl 21T = IlloollAll 2
<[l

S0
[Cwll < 1. (12)

And since this is less than one we can use the Neumann series to see that
(I —Cu)™
exists as a bounded operator. ]
To prevent this thesis from becoming to long, we will not go any deeper
in the theory of RHP.
2.3 Integrable operators

An important object in the proof of the main results is integrable operators.
We will give the definition and some properties of integrable operators and a
connection to RHP. The material here are based on 2], except Lemma 2.11
which is included to give a tool to see if we can use the theory.

Recall that an integral operator K is an operator of the form

Kf(z) = / K(z, ) f()d!

for some kernel K(z,2’).

17



Definition 2.6. Let I' C C be an oriented contour. An integral operator
K : L*(T') — L*(T) is integrable if it has a kernel of the form

n_ (1) )
K(Z,Z/):ka (Z) k (Z)

!/
Z—Z
k=1

for z, 2’ € T for some functions f,gl), f,§2) cL*D),k=1,...,n.

A kernel of this type has possible singularities at z = 2z’. One way to
interpret this in quite general settings is with the Principle value integral
(see [2]). In this thesis the functions and I" will be especially nice, which
makes it to an removable singularity. Moreover, it is possible to do the
analysis with the Cauchy operators already introduced and therefore we do
not need any knowledge about the Principle value integral. But the reader
with understanding about it, can make these calculations more general.

First of all we will establish some general facts. Consider the Hilbert
space H = L?(I") and the operator A on H which is the multiplication with
z, that is,

Ah(z) = zh(z).

Let £ be the space of operators whose commutator with A is of finite rank,
that is, all operators K on H such that

[A, K] = AK — KA

is of finite rank.
Remark. For us I' will be the unit circle or the real line.
Lemma 2.8. Assume that K is an integrable operator and that (I — K)~*

exists as a bounded operator. Assume further that R = (I — K)"'K is an
integral operator. Then R is an integrable operator.

Proof. For the proof, we will first show that R € £ if K € £ and then that
the integral operators in &£ are precisely the integrable operators on H.
For the first assertion we consider the equality

[A,R]=AI-K)' - (I-K)'4
= - KA K- K)™ (13)
where the right hand side is of finite rank as long as [A, K] is of finite rank.

For the second assertion, assume that K is an integrable operator with the
kernel

n_ (1) ()1
K(Z,Z,):Z k (Z)fk (Z)

z— 2z
k=1

18



Then

(2 — 2K (z, 2 )h(')d2

=
il
>
©
I
3»1\

(h, £ 19 (2),

1

el
Il

hence K € £. Assume now that R is an integral operator in &, that is

Rh(z) :/FR(Z, 2h(z")dz' .

Then

A, Rlh(z) = / (2 — VR(z, 2 )h()d2,
r

but since [A, R] is of finite rank, there exists functions Fél),Féz) € L*(T)

such that

n

A Rlh(z) = Y (h F)EV(2).
k=1

This implies that

and let BT be the operator B". Then

/Bg(z)h(z)dz:/g(z)BTh(z)dz.
r

r

Theorem 2.9. Assume that K is an integrable operator with kernel

Koy =3 f;il)(;) ,;(z')_
k=1

19



Assume further that (I — K)™! exists and that R = (I — K)~ 'K is an integral
operator. Then R is an integrable operator with kernel

n_ (1) (2)
F, F,

R(Z, Z/) § k (Z) k (Z )
k=1

z— 2z
where F\V) = (I — K)~ Y and ) = (1 — KT)~1 &)
Proof. By Lemma 2.8 we know that R is an integrable operator with
n (1) 2) 1
Fy(2) B (2)
R N — k k
(Z7 z ) Z 2 — Z/

k=1

(1)

for some functions Fy,"’, (2) . We want to find a relation between the kernel
of K and the kernel of R. Let h € L*(T'), then

A, RJh(z) = /F (2 = #)R(z, #)h()d=
and
(I — K)7'A, K|(I — K)"'h(2)
— (- K)! /F (2 — VK (2, )1 — K)~" h()d?’

=3 U-K)"'1@) / (I - K)h()de!
k=1
= / S U - E) D - K) TP (h()d
k=1

Since this is true for all h € L?(T") we get from (13) that
1 1,0
B = (- k) !

and

D = (1= K) P = (1= KT P

The last equality can be seen e.g. since the equalities

/(((I— K)Y YT — KTYhy(2)ho(2)dz = / hi(z)ha(2)dz
r r

and

/ (I — KTY((I - K)"YThy(2)ha(2)d — / hi () ha(2)d=
T T

hold for all hy, hy € L*(T). 0
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Given an integrable operator together with the functions in Definition
2.6, we will denote the vector f() and f as the vectors formed by these
functions,

and

FO =P, oy

Theorem 2.10. Let I' be an oriented contour in C such that Cy and C_
are bounded operators on L*(T'). Let K and R be as in Theorem 2.9 and let
m be the unique solution to the RHP (T, J) where

J =1 2mifM(fONHT,

Assume further that f,gl),fg) € L>®(I") and that they are analytic in some
neighborhood of T'. We will also assume that f ()T f3)(2) =0 forallz € T
and that J~1 exists. Then

FO =y 0

and

F® = (m) "1
where =T denotes the inverse of the transpose.

Proof. Fist of all we want to express K in terms of the Cauchy operator.
Note that since f)(2)T ) (2) = 0 can we see that

S SO0 (PR ka L (FPh)(2).
k=1

We can therefore extend

3

VU n)(2)

k=1

to an analytic function in some neighborhood of I'. We can write

f fk zz z’
/F\B; o dz' + ZK (14)

B =1

for some ball around z. But it is clear from the definition of the Cauchy
transform that the right hand side is equal to

—2mzf“> 'h)(2)
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for z € B, where this is the extended function over I'. Let the size of B tend
to zero, then, since 2’ = z is a removable singularity, the last term tends to
zero and therefore, the first term tends to

—2mi Y fP )P R)(2).
k=1

Hence

Kh=—21iy_ fNO_(1Pn).
k=1

Let D : L3(T')"*" — L?(I")" be defined as

and let £ : L*(I")* — L?(I")™*" be defined as
Eh(z) = =2miC_(h(f®)T)(2).
If we let K act componentwise on a column vector h € L?(I')" then
Kh(z) = DEh(z).
Now consider the operator ED,

EDh(z) = C_(h(=2mifM(f®)7)(2)
= Cy(h)(2)

where C,, is defined by (10) with w_ = 0 and wy = J — I, that is
Cywh = C_(hwy).
From the commutation formula,
(I-DE)'=I+D(I-ED)'E,
and from Theorem 2.9

FO =1 - K)~tfM
=W 4 DI - Cy) 'CuI

=D(I - Cy,) '

= Mf(l)

= m (I —2mi fO(f&)T) =1V
=my fO.
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In the fourth equality we have used the definition of p in Theorem 2.9 and
in the fifth equality we have used (11). To see the last equation note that

(5 — 2mi fO (7T O = fO.
In similar way, we can see that
F® =, @
where 7 is a solution to
J =1+ 2mif@ (T,

Note that J = J~T and we can therefore observe that m~7 solves the RHP
(T, J). By the assumption on uniqueness for the RHP (T', J) we can conclude
that m =m~71. O

We will end this section with a lemma that is not related to Integrable
operators, but that gives a family of operators that fulfills the assumption
in Theorem 2.9. Our operators will be in this family.

Lemma 2.11. Let K¢ be a bounded operator on L*(T') where T is a contour
in C such that L*(T) is a Hilbert space. Assume that K is an integral operator
on L?(T") with kernel in L*>(T' x T') and ¢ € L>(T). If

[pllooll K[} < 1

then
(I-Kg¢)™

exists as a bounded operator and
(I—-K¢) K¢
s an integral operator.

Proof. A stronger result follows from general theory (see e.g. [11] Theorem
VI.23). For completeness we will include another proof.
For the first assertion we can use the Neumann series, since

1K@l < [[pllooll K < 1.

For the second assertion we need to work a bit more. We will prove that
(I — K¢)" 1K ¢ is equal to the operator defined by the kernel

> (Ee)(z )

k=1

for all h € L?(T"). The first step is to show that this series makes sense.
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By Fubini’s Theorem and (62) we can see that (K¢)¥ is an integral
operator for all £ € N with kernel

(K6)(z, ) = /F (K @)*(2,w) K (w, /)"
= $( KT (K8 (=) ().

Note that by Fubini’s Theorem and recursively, the last term makes sense
with
KTh / K(#,2)

This implies that for almost every z € I,

(K@) (2 )2y < NblloolIETIIE D) (2, )2y
< (el KT MK S) (2, )l 2 ry- (15)

From the definition of K7 we can see that ||K”|| = | K||. Now, let h € L*(T)
and let

Hy(z) =) (K¢)"h(z)

M= 11

/(qu)k(z, 2Vh(Z)dZ' .
r

B
Il
—

Then from (15)

N
|(K6)* (2, 2 )h(2")||d='|
>

N
< 1K) ) 2 IPllzzwy Y- (IDlloo K1) oy
k=1

where the right hand side converges by the assumption ||¢|~| K| < 1.
Hence, by the Monotone Convergence Theorem and Chebyshev’s Inequal-

ity,
Z(Kqﬁ)k(% Z)h(2")

k=1

converges absolutely for almost every z, 2z’ € I'. Moreover, since

1K D) (2, M2y l2 @y = 1K) L2rxry
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and by Lebesgue Dominated Convergence Theorem,

—0

Hy — Z(K¢)k(~,z')h(z')dz’

Fk:l L2(T)
<NES) I 2wxrylPlliaay D (1@llool K[l L2ry)
k=N+1

as N — oco. But from the Neumann series

Hy =Y (K¢)*h=(I—-K¢) 'K¢
k=1

in L?(T'). Since this is true for all h € L?(T") we get that (I — K¢) 1 K¢ is
an integral operator. O

3 Proof of Theorem 1.4

In this section we will prove Theorem 1.4. First we give a relation between
the moment generating function and a Fredholm determinant. We will later
relate the Fredholm determinant to an integral that we can understand for
large n.

To prove Theorem 1.4 we will consider the moment generating function
of X,,(Gy) — E[X,,(Gp)],

E eA(Xn(Gm—E[Xn(Gn)D] :

and prove that it converges to a Gaussian for all A in some disc around zero
(see Section 30 in [1]). To choose the disc, let 0 < § < 1, let € > 0 be such
that |1 —e®| < d if |z| < ¢ and let ¢ = sup,cp |G(z)|. Let € = ﬁ and
assume for what follows, that |A| < e.

Lemma 3.1 (Vandermonde determinant).

det(zy Dim = ] (ak—=0).

1<k<t<n
Proof. Denote
Dp(x1,...,xy) = det(wi_l)z,ezl.
Note that D, (z1,...,x,) is a polynomial of degree n — 1 in the variable x,,
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with zeros x1,...,2z,—1. By comparing the leading term, we can see that

Dn(xly"'7$n> :Dn—l(xla"'axn—l) H (ffn—xe)

1<0<n—1

= Il @-=) ] @-20)
1<k<f<n—1 1<0<n—1

= II @-=)
1<k<tl<n

where the second equality is by induction. For n = 2, the relation is obvious.

O]

An important relation is Andreief’s identity, which can be found e.g. in
7]

Lemma 3.2. Let ¢, Y be measurable functions such that ¢ripy € L*(T) for
all k, £ =1,...,n, then

/n det(qﬁk(zg))z’f det(¢k(zg))’,;edz1 ... dzy,

= nldet < /T qﬁk(z)W(x)dz) ;Zl .

Proof. This is an exercise of using the definition of determinants,
[ detton(eoiedet(onteoden . e
T
n

= Z Sign(o H Zo(ey) det(@r(2¢0) )k od21 - - - dzn

oSy Y I" —1
=nl / H ¢f ze det(¢k(zf))k74d2’1 ce dZn
T =1

= nl/ Z Slgn ) H (l)g(Zg)qﬁU(g)(Zg)le coodzy

oESh /=1

= n!det < /T m(z)gbk(z));:l dz.

In the third equality we have swapped the columns according to ¢ and then
changed the order of integration. The other equalities are by the definition
of determinants. O

Given a function ¢ € L?(T) let T}, () denote the n x n Toeplitz matrix
given by

¢(0) o(=1) - @(1—n)
5(1 5(0 o P(2-n

T(e) = <p(. ) w(z ) o( | )
o(n—1) @(n—2) $(0)



where

o) = o= [ el ap

:% .

is the k:th Fourier coefficient. The Toeplitz matrix has an interesting relation
to the characteristic function. Next lemma shows this relation.

Lemma 3.3. Let o, (e?) = 260 Then
E [e)‘X"(G”)} = det(T},(pn)).

Proof. Let ¢p(0) = €D and ,(0) = e k=1 Use the probability
measure (1) to see that

n

E 2G| —F

6Acn(ek)]
k=1
1

= AGn(ek) n n
Timy /[_M]n [ 209 det(6u 00k (0 ..,

1

~ nl2n)n /[_m]n det (X gy, (6,))7: o det (i (00))F. 01 . . . db,

= det (/_W 0 i ()1, (6) d9>n

- 2T oot

= det(T},(pn)).

The second equality is the definition of expectation value together with
Lemma 3.1, the forth equality is Andreief’s identity and in the last equality
we have used that ¢ (0) = e/*=D? and 1), (9) = e~ # k=19 O

We will now relate the moment generating function with the determinant
of an integral operator. Let K, : C x C\{(0,0)} — C be defined as

1 2")y™ -1
Ky(z,7)= —"1—— 16
(2,%) 27 z—2z (16)
if 2/ # z and
1 n
K,(z,2) = ——. 17
(2.2) = 5=~ (17)

Lemma 3.4. Let, ¢, and G, be as before, then
det(Tp(n)) = det (I + K, (e)‘G" - 1)) .

Remark. The right hand side is the determinant of an operator on L?(T),

h— h+ /TKn(‘,z’) (n(z") = 1) h(2")d7".

For this we need to consider the Fredholm determinant, see Appendix.
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Proof. To prove this, we will compare the eigenvalues of the matrix on the
left hand side with the eigenvalues of the operator on the right hand side.
First of all, we can use the fact that K, is a projection to see that

n—1
I+ Ku(pn—1)2F =Y 4,0 —k)2*
=0
if0<k<mnand
n—1
(I + Kn(pn — 1) =25+ gl — k)2*
=0

if K < 0 or k> n. Assume that h € L*(T),

h(z)= > h(k)z*,

k=—00

is an eigenvector to the operator I+ K, (¢, —1) with eigenvalue . If h(k) # 0
for some k < 0 or k > n, then, since {z¥} is a basis for L?(T), the above
shows that = 1. Assume h € L?(T) with

i
D)

hz) = h(k)z".
0

b
Il

Then a straight forward calculation shows that h is an eigenvector to I +
Kn(p, — 1) with eigenvalue p if and only if (h(0),...,h(n — 1))T is an
eigenvector to T, (p,) with eigenvalue p. Hence

det(Th (pn)) = det (1 + K, (&Gn - 1)) .
O

What we have done so far is to translate the problem from a probability
problem to an analysis problem. What we will do now is to understand the
right hand side of previous lemma. Compare with Theorem 1.5. In that
theorem this is the starting point.

We will do the proof with some simplifications and then extend the result.
For what follows assume that G € C* and that 6y = 0. Let

where N, will be chosen later. This is an analytic function in C\{0}. If n
is big then G, has support in [—m, 7] and G (%) approximates G, (6). Let
@n(2) = eX67() then both ¢, (2) and B, (2)~" are analytic in C\{0}.
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Figure 2: The contour and jump matrix for the RHP in Theorem 3.5.

The following theorem is where we will use the theory about integrable
operators from the preliminaries. It expresses the Fredholm determinant in

terms of integrals. Let

and

Then

. (1) (2) 1
K, (1 . e/\G"> (z,z') _ fn (Z>Tfn (')

z— 2z

that is K, (1 — e)‘é”> is an integrable operator.

Theorem 3.5. If m is a solution to the RHP (T, J,,) where Jp,
is the jump matrix

(@) —(@ale) -1
Jm(z)‘(@n(z)—l)z—" 2~ Gul(2) )

and
FY = g

and
F) = (my) " 12,
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Then
log det (I + K, (e)‘,é" — 1))
An(zn 2 (Z) "1 )T =1y T @) , dz.
///G c— 77 F. () Fy?(2)dz 27rz'd>\
+/Tr (éneAG”Kn> d\ (20)
gl

where v is a straight line from 0 to \.

Proof. In this proof we will use theory about determinants and traces for
operators (see Appendix) and the theory about integrable operators.
Since K, is of finite rank and since the space of trace class operators is an

ideal in the space of bounded operators, we can see that K, (eAé” - 1) and

K,,Gre*Cn are trace class operators, moreover, since || K,|| = 1 and |e*¢n(2) —

- -1
1] < 1 we can use the Neumann series to see that <I + K, <e)‘G" — 1>>
exists, for all A € v. Moreover
ehén(z)fl

jo= 4 I

zeT

as h — 0 and by (50)

K, (e@%)Gn - 1) ~ K, (eAé" . 1) o
— KnGneAG"

0
. —

1

as h — 0. Hence, we can use Lemma A.10 to differentiate the left hand side
with respect to A for A € . For the following calculations, we will also use
(56) and (57),

ai log det (I LK, (e)‘én _ ))

(o) ()
_Tr<<<I+Kn( ) ) >

+ Tr (Knéne/\é")
Ty (Knéne’\én Rn)
T Tr (Knéne’\é")

where

Ry = (I + Kn(eX0n — 1)) K, (X9 — 1),
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From Theorem 2.9, Theorem 2.10 and Lemma 2.11,

()R ()

z— 2z

Rn(za Z,) = -

Hence, by (62) and Theorem A.6,
Tr (Knéne)‘é”Rn)

:// Kn(z,z')éneAé”Rn(z’,zD dz'dz

Gz ()" =1y T 2 dz
/ /G B P o @) EA @i o
Use (18) and (19) and that f(l)( )Tf,sz)(z) = 0 to see that F,(Ll)(z)TFT(LQ)(z) =
0. From (18) we can see that F7(L ) is a restriction of an analytic function, in

particular it tells us that the integral is well defined in the usual sense. Put
these calculations together and integrate over v to get the result. O

We will now introduce some explicit functions that will help us to be able
to evaluate the integral in the previous theorem for large n. Let

T

n

HWD(z) = <6A<C+én>(z>¢n(z)—1zn, €—A<C+én><z>)

= (OGO, 6—A<C+én><z>)T

and
1—¢n(z) 1 _ ~ _ ANy B
(2) () — $n MCLG)(2) ,—n ACLG)(2) 1
() = L) (oo 1 71
_1-&n(2) (e—A(CJrén)(z)Z—n eA(CLG‘)(z)) (21)
211

We can extend HT(ll) to an analytic function away from zero by

H(l)(z) _ (eA(CGn)(z)(’En(z)—lzn’e—A(C@n)(z))T (22)

n

for p, < |z| < 1, where p,, is chosen in the following theorem, and

~ ~ T
HWD(2) = (eA(CGn)(z)zn’ e*A(CG”)(z)gan(z)*l)

for 1 < |z| < p,'. From (18) we can see that we can do a similar extension
of F,(ll). As mentioned above, the idea to introduce Hle) and H,(f) is that

they are close to Fél) and F1§2) respectively as n tends to infinity. The exact
statement is done in the following theorem.
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Theorem 3.6. Let 8 and «y be such that o < 8 < v <1 and
B-—a<l-—r. (23)
Recall that o is the rate of scaling. Let
pn=(1=n"") (24)

and N, € N be the biggest integer smaller than n®. Let r, =1 — % and let
C,, be the circle with radius r,,. Then
d

W E) T =1 Ly T ) , dz
o n ()" 7 (2)dz' o

n2MEZ) T =1 dz
/ / 0 ke

21

<d,e~ Sw.

where d,, = 3 - 2173 [, G (s)|dsenP—at3ve w en ™,

Remark. The constants introduced in Theorem 3.6 are chosen in a very
specific way to make the proof work. When necessary we will point back to
the specific choice.

The proof is rather long and technical, therefore it is 1postponed to section
5.1. By the choice of the constants we can see that e~ e | is the dominated
factor, so the right hand side tends to zero when n tends to infinity. Hence,
we can consider the integral in Theorem 3.5 with HT(LI) and H7(12) instead of
FT(LU and F7S2). To summarize, Theorem 3.5, that uses the theory of integrable
operators, gives us a way to understand the Fredholm determinant in terms
of an integral, and Theorem 3.6, that uses the theory of RHP, gives us a way
to evaluate these integrals as n tends to infinity.

Lemma 3.7. With én, HT(LI) and H deﬁned earlier, the equality

5 A 2 E) T = Ly g @) gy B
[ [ e e O (P e
Ny, . . _ B
= <20 kGa(k)Gu(—k) — nGn(0) + T <G ’\G”Kn>
k=1

holds.

Proof. The following is a lot of tedious calculations. The first equality comes
from (22), (21) and a change of order of integration, which can be done since
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everything is analytic away from zero.

J R

Cn
27rz/ /G

x((

Expand (z — 2/) 72

1 N
— [ G

27 Je,

1A 2 E) " ) o ) () g, 92
(Z_Z)Q (¢)H,"(2) —
An(2)) 2N -1
B e e
~Gn()~CGn(2) )nzfn_e)\(C_én(z)fCén(z’))> dz (25)
271

into a power series to see that (25) is equal to

—

For the following step we will use that et C+Gn(k) = 0 if k < 0 and

—

e C-Gn(k) = 0 if k > 0. We will also deform the curve of integration,
which is possible to do since all the power series converges. So (26) is equal

27rz/G

to

211

T

27rz/G
2m/G

)\C+Gn(z Z ]{16_>‘C/+\G (k)(zl)kfldzl
k=1

—

én( )e)\CJrC;'n(z') Z (ﬂ—n)ef)‘CJrén(ﬁ)(z')g_ldz'

{=n+1
~ 0 —_—
—AC,Gn(z') Z gekc_én(g)(zl)ﬂ—ldz/
{=1-n
~ [ee]
oG S (0 - 50T ) (a2 (o)
z
(=1-n
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A / > ~ ~ dz
N ACCn () ACLGn(2) _ —AC_Gn(2)) —k N =W,
2e g k:/ (e e ) z 27m'z(z )i dz
)eACCnz Zk/ ( “AC1Gn(2) _ ef)\C_C;‘n(z)) Z*k*ﬂﬂ(zl)lwrnfldz/
2miz
’ e dz
“A(CCn () —Cn (=) AC_Gn(2) _ AC1Gn(2)) —k+n Nk—n—1 71
Gn(Z)e g k:/( e )z 27riz(z) dz
~ dz
ACCn () —Cn(2)) AC_Cn(2) _ AC+Gn(2)) —k N,
Gn(2')e E k/ ( e ) z 2772'2(2 ) T hde
(26)



In the next step we will use that

1 > —

5 ; én(zl)eAC+G’n(z/) Z = n)€_>‘c+én (ﬂ)(z’)z_ldz’ —0,
" l=n+1
1 5 (o~ AC—Gn(2) < 00 NO—1 s B
% Cn Gn(z )e é;oo e n(g)(z ) dz =0,
1 ~ e ’ — = - =
% . Gn(zl)ef)\C_Gn(z ) ZZ_:OO <e/\CGn _ €>\C+Gn> (E)(Z/)Zdzl —0.

This is true since N,, < n and since e¥AC+Gn (k) = 0if k < 0 and e C-GCn (k) =
7

0 if £ > 0, which implies that there is no power of z equal to —1. Then (27)
is equal to
/ Cn(#)(-ACL G ()d! — [ Guene-Geae
2 * 27 o
el AGn(2) 1 g0 2
2m/G d+m G() " iz (28)

For the last steps (4) and (5) will be used, also the relation between the
Fourier coefficients of G,, and the Fourier coefficients of G,,. Hence (28) is
equal to

~ A [ Gul) Yk (CuR) () + Ga(—h)() ) dz

211

= =20 kG (k)Gn(—k) =G (0) + Tr (Gre O K, )
k=1

— _QAZn kG (k)Gr(—k) — nGyp(0) + Tr (é AGWK”)
k=1

Lemma 3.8. If we consider Gy, as a function on [—m, ), that is,
0 — Gp(e?),
then
E [exxn(ém} = " B FOON gz [TAF@OEOPE () 4 0 ()

as n — 0.
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Proof. By (20), Theorem 3.6 and Lemma 3.7 we can see that

log det (1 VK, (exén - 1)) N Gn(0)

= (NS kG (k) Gl k) + O (d)
k=1
- (27;)22 ni kNZ:O nﬁaf (G) (f) F(G) <— :) +0 <dne—"2;”>
12 G)(=€)d¢ (29)

as n — 00. In the second equality we have used the calculations

Gu(k)= [ G (n"0) e—ik"gﬁ
- ™
= i G(s)e™" < ds

/ (s —znas ds

= - F(G) <TZ‘;> . (30)

17
To see the limit, remember the remark after Theorem 3.6 that d,e™ 3= — 0

as n — 00, because of the specific choice of 8 and . Note also that the sum
is a Riemann sum. To find the rate of convergence we need to find the rate
of convergence of the Riemann sum.

To find the convergence of the Riemann sum, let

h(€) = EF(G)(E)F(G) (=€)

then h is continuously differentiable. Consider

Nn k ©  (k+1)/n>
‘/ =3 n () <2 [
k=0 F/m

G
k=0
< kf [U Lwetenias
=0

/n®
1 Ry
=— | [W(x(§))]d¢
n=Jo
where we have used the Mean Value Theorem, so z(§) € [k/n%,€]. Note
that h/(z(§)) — h'(§) as n — oo and both F(G) and F(G)' is bounded by
some C' and g% away from zero. This implies that |A’| is bounded by some
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D and 523 away from zero. Hence |h/(z(€))| is dominated by D for 0 < ¢ < 2

and ﬁ if £ > 2. We can now use the Lebesgue’s Dominated Convergence
Theorem to conclude

Nn

yes Nn k oo
JRRICIES ()‘ ses [T <o
0 LC— n 0

Since G is smooth and h is defined by the Fourier transform of G, we can
find an £ such that (3 —«)¢ > 1, remember (23), and h is of order £€~¢, hence

0o 1 /+1 1
/Nn |h(§)]d€ < ¢ <n5n°‘> < Cg

no

nOé

for some constant ¢. Hence the limit in (29) is of order n™°.

By using the fact that

n*Oé

and that F(G)(—=¢§) = F(G)(§), since G is real valued, and by Lemma 3.3

and Lemma 3.4 we can conclude that

E [M0(@)] = ' 5T @O 12 7 IFHOORE ) 1 0 (n))

as n — 0o. O

Before proceeding, note that the right hand side barely depends on a.
It is only the first term in the exponent, which will turn out to be the
expectation value of X,,(G,,), and the rate of convergence that depends on «.
We can also note that the condition G € C*° is unnecessarily strong, it would
suffice that G € C* and we would still have the same rate of convergence.
But ¢ depends on «, so « gives some kind of contribution when it comes to
rate of convergence and how smooth a function needs to be in order not to
lose the convergence rate.

Lemma 3.8 tells us that we understand the moment generating function
for the function we approximated G with. We will now show that we un-
derstand the limit for all functions in Theorem 1.4. This will be done by
using some probabilistic results that makes it possible to extend this result
to a wider class of functions. We will now state the facts we need. These are
standard and can be found in e.g. |7].

Lemma 3.9. Let h be a bounded function on [—m, ), then
E[X,(h)] = Tr(K,h)
and

Var(X,(h)) = Tr(K,h?*) — Tr ((K,h)?) .
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Proof. Consider the logarithm of the moment generating function
logE {eAX"(h)} .

Expend this into a power series in A, that is

X(E[Xn(h)ﬂ — E[Xn(h)]?) + O(N?),

logE [&Xﬂh)} = AE[X, (h)] + 5

where

E[Xn(h)?] = EXn(R)]* = Var(X,(h)).
Now use Lemma 3.3, Lemma 3.4, (61) and expand the right hand side,

log £ [6)‘X”(h)} log det (I + K, (e)‘h ))

— Trlog <I+Kn (e _ 1))
= ATr(K,h) + A; (Tr(K,h?) — Tr (Knh)?)) + O(N?)

where the logarithm is defined by a power series for small A. Compare the
two series to get the relation. O

Lemma 3.10. Let hy and hy be bounded real valued functions on [—m, )
such that

[e.e]

> k[h(k)? < oo

k=0
and such that the expectation values of X, (h1) and X, (h2) are zero. Then

1
‘E [ei/\Xn(m) _ emxnwz)} ’ < V2| (Z k:y(hl/—\hz)(k)\2> B

k=0

Proof. First we bound the left hand side with the square root of the variance,

‘]E |:€i)\Xn(h1) _ eiAXn(h2):| ‘ < E

oA (1)~ X (h2)) _ 1‘

< AE|Xn(h1) = Xn(he)]

< |\ Var(X, (hy — hs))2.
In the first inequality, we have used that hj and hy are real, in the second,
that e — 1] < |t| for t € R and in the last we have used Cauchy-Swartz
inequality and that the E[X,(h1)] = E[X,(h2)] = 0. Now, let h(e?) =

h1(0) — ha(0), that is we are viewing the difference as a function on the unit
circle. Then, from Lemma 3.9 and Theorem A.6 together with (62),

Var(X,(h)) = n / 2 & / / Koz, ) Kon(+, 2)d2 dz.

2z
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Note that

n—1

K (2,2 ) Ky (7, 2) :ii Z (n — [k]) ( )k7

2miz 271'12
=—(n-1)

with this it is easy to see that the right most term is equal to

—QS kh(k)h(—k) + 2nn§ h(k)h(—k) + nh(0)2,
k=1 k=1

Write

to see that

Hence, since h is real valued,

Var(X,h) = 2 i min(n, k)|h(k)[?
k=1

<2 klh(k)?
k=0

O

We are now ready to extend our result. The next lemma states that the
statement is true for the function we started with, that is a smooth functions
with compact support.

Lemma 3.11. Let G be as before. Then

E eiA(Xn(Gn)fE[xn(Gn)}] o Nz J5TEFG)©)1Pdg

as n — 0.

Proof. From Lemma 3.9 and Theorem A.6,

EMX,(Gn)] = Tr(AK,G) = nl_o‘%}'(G)(O) (31)
and \
EAX,(G)] = nl‘ag (G)(0)
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Note that this is exactly the first term in the exponent of the moment gen-
erating function. From Lemma 3.10 and since G, (k) = G (k) for |k| < N,

’E [emxn(c:n)—mxnmnm _ eiA(Xn@n)—E[xn(@nm} ‘

=

< V2)| i k|G ()2

k=Np,+1
1Sk kN2
VI s X |7 ()
k=Npn+1

1
2

<V (;T e |f<G><s>|2)

Where the last term converges to zero as n tends to infinity. Hence
E ei)\(Xn(Gn)fE[Xn(Gn)]} -K [eu(xn(én)fﬁ[xn(én)q
+E [ei/\(Xn(Gn)—E[Xn(Gn)D _ MXn(Gn)~E[Xn(Gn)])

NS N M (GG

as n — oo. O

Unfortunately we lose the rate of convergence here. It is because we have
to consider the characteristic function instead of the moment generating
function, which we have worked with before, to be able to use the estimation
in Lemma 3.10.

So far we have proved Theorem 1.4 for smooth functions with compact
support and with 8y = 0. We will now extend it to all functions in Theorem
1.4 and for arbitrary 8y, which will complete the proof.

Proof of Theorem 1.4. Let G € L?(R) be a continuous real valued function,
such that

/0 TG (©)Pde < oo

Remember that this defines a seminorm. Let H be a smooth real valued
function with compact support. Without loss of generality we can assume
that both X,,(G,) and X, (H,) has expectation value zero. Consider the
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estimation

‘IE [ez‘/\Xn(Gn)] _ oMo o EF @) Pde

- ‘E [euxn(Hn)} N fowf\f(H))(ﬁ)IQdé“‘ (32)
. ‘IE [eixxn(cn) _ ei/\Xn(Hn)} ‘ (33)
. ‘e_ﬁﬁ [P R ©FRPd _ X 1y [5° 6F(G)©)Pdg ) . (34)

We will choose H and n such that (32), (33) and (34) are small.
Let H such that

o0

EIF(G — H)(€)|*dg

is so small such that (33) is small by a similar argument as in Lemma 3.11.
We can assume that

/ () €2 < / T FG)©) e
0 0

and hence,

og/ooaf( £)[2de - /5|f £)[2d

<([Tearur - aopa)’ ((/ §F Pd&) +([Tere \df))

This implies that (34) is less than

’1 _ o V([ eF @) ©)1Pde- [T E\F(G)(E)Pd&)‘

which is small by the choice of H. From Lemma 3.11 we can choose n such
that (32) is small. Hence the result follows for 6y = 0.

For the case if 6y # 0 we use a little trick. Let ¢, be as before and let
o = CMO=0)) et n be so big that —nm, n®m, —n® (1 —0p), n® (7 —6)
are not in the support of G. Then

. L[ oo
B 2T

_ ikt 1 /7T DG (0)) k0’ g
2 J_,

= ¢'kfo (Pn(k)

5 ]. 7'('790 [e% / ; /
_ gikoo L / MG (@) ikt g

—m—0p
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Especially ¢,,(0) = ¢5,0(0). Consider the determinant,

det(T'(¢n0)) =
2n(0) e Ppa(=1) e TG (1 )
€% (1) ¢n(0) e el (2 — n)
D (n —1) DN, (n—2) - 2n(0)

Multiply the k:th row with e~#%% and the k:th column with e**?. Doing this
in the above equality the left hand side does not change and the right hand

side becomes det(T'(y,)). Hence from Lemma 3.3 the result follows for all
0o. O

4 Proof of Theorem 1.5

In this section we will prove Theorem 1.5. The main ideas in this proof are
the same as in the proof of Theorem 1.4. But, as mentioned before, in this
proof we will not go into the relation with moment generating functions.

The assumptions in Theorem 1.5 are made in such a way that a specific
choice of properties will be fulfilled. These properties are stated below,
although most of them are not needed before we solve the RHP.

Lemma 4.1. Assume the same assumptions as in Theorem 1.5. Then there
exists a strip S containing the real line such that f can be extended to an
analytic function in this strip such that

f(z)=0("%)

as |z| = oo. Moreover, there exists an € > 0 and a 6, 0 < 6 < 1, such that
if |A] < € then |1 — @n+(2)| < § where

Oni(x) =1 —t(1 — M@y,

m
Sp ={nz;z € S}

-1

and hence @y, 1(2)™" exists as an analytic function.

Proof. Without loss of generality we can assume that the first and second
derivative of the Fourier transform has the same bound as the Fourier trans-
form. Let 0 < b < aand S = {z € C;|Im(z)| < b}. To see that f can be
extended, define

1) = [ Fp©s (3)
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for z € S. This is well defined since
ez 48 _ d¢
= €z 75 ~ |€la ,1€[b
/R‘ (£)()e |27T - A/Re ¢ 2 < 0o (36)

We want to show that this defines an analytic function. For that, define

) = [P

this defines an analytic function such that fy — f as N — oo uniformly on
any compact subset of S. Hence f is analytic. This is basically a part of a
weaker version of the Paley-Wiener Theorem.

By integration by part twice, which is possible by the assumption on the
first and second derivative, (35) shows that

f(z) = 0("2).

Let 0 <6 <1 and let € > 0 be such that |1 —e*| < J if |2| < €. Let
€ = < where |f(z)| < cin S, which exists by (36). If X € C,|A| < € then by
the triangle inequality

[1—pni(2)] <6
for z € S,,. Hence ¢, +(2) is non-zero and gom(z)_l is therefore analytic in
Sh. O

Note that this lemma implies that 1—¢,, ; and 1 — cp;% belongs to L?(R+
int’) and LY(R + inb') for any [b'| < b.
Let log denote the principle branch of logarithm and define g,; : R — C
as
Int(z) = log(pni(z)).
Lemma 4.2. With g, defined above it is a well defined Schwartz function.
If z € C\R then

n
< g

where d 1s a constant not depending on z, t or n.

Proof. First of all, in the proof of Lemma 4.1, we saw that ¢, ; attains values
close to one. Therefore we can write

RS () — 1))
gualw) = (-1

k=1

and it is a well defined smooth function. Since the function Lz_l is continuous
close to zero and since |Af(z)| < €, we can assume that € is small enough to

make sure that
eM@) _q

Af (@)
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for all real . Then, since |[e*(®) — 1| < § < 1, we have the estimate

e |<Z'e

S‘B/\fnx _1’

(@) _ 1|k

1-— 6
< (@) —
— n 1 _ 5'
From this and the fact that
Qpn t( )
gnt( ) (Pn,t

we can conclude that g, ; is a Schwartz function. Moreover

Flgan) (©)] < / (gt ()]
o
cr %

If Im(2z) > 0 we can see from (6) that

Cgu2)] < - 'A‘ / f

)
O

We have now a sufficient understanding of the functions we will work
with. Before proceeding to integrable operators, we need to show that
K(1 — ¢n) actually is a trace class operator, that is, that the left hand
side in Theorem 1.5 makes sense. For theory about trace class operators see
Appendix.

Lemma 4.3. Let ¢ € L*(R) be such that

/R (1+ 4?)|6(y) dy < 0.

Then the operator

(Kohiz) = [ ST = 9)) o h(y)dy

defines a trace class operator.
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Proof. The first step is to show that it actually is a bounded linear operator.

Let
sin(mz)

g(w) = —

Then the operator K can be expressed as a convolution,
Kh=g=xh.
A straight forward calculation shows that

sin(rz) = ]:_1(1[—1,1})(55)-

T
Hence, by using the Fourier transform,
Kh=F"'(F(g)F(h))
= -7:71(1[—1,1}-7:(}1))-
This tells us that it is a linear bounded operator. Moreover we can see that

it is a projection, that is
K? =K. (37)

We will now prove that it is a trace class operator. Let ¢(z) = (i +z)~*
Consider the kernel of the commutator [K, ],

(K, 9], y) = K(z,9) (¥ (y) — ¢(2))

11
=K -
(x,y)Hny(w y)

which defines a finite rank operator. Let K act from the left and ¢~'¢ from
the right on the left hand side, and use (37), to see that

K¢ — KYKy~'¢

is of finite rank. We want to show that the second term is a trace class
operator to see the K¢ is a trace class operator. By the calculations

[ [ ikewtota= [ (20 0 [ 1y
/ / oty = [ (DY e [ aioay < oo

we can use the estimate (52) and Theorem A.7, to see that

KK olly < || K2l Ky~ ¢ll2 < oo

Hence K¢ is a trace class operator. O
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( Son,t(if) ‘ 7(<Pn,t(2)*1)627”m )
(¢ (@) =1)em2m 2—pn.t(x)

_l’_

Figure 3: The contour and jump matrix for the RHP in Theorem 4.4.

We will now proceed to use the theory about integrable operators, as in
the first problem. Let

f7(:t) (.%') — (eimc76—i7m:)T

and ) (@)
— Pn,t\T —aT i
Fally) = —— =5 (e, )T

Then the kernel of the operator K (1 — ¢, +) is given by
fad @) £ (9)
T —y '

The following theorem gives a relation between the Fredholm determinant
and an integral, which we can evaluate asymptotically.

Theorem 4.4. Let the contour I' coincide with the real line oriented from
—00 to +00 and let J,, : T — C?*2 be the jump matric

_ Ont(x) ~(nt(x) — 1™
R R S |

If m is the solution to the RHP (T, Jy,),

Fr(L,lt) = m+f1§1t) (38)
and ) )
FP) = (m) T3 (39)
then

1
log det (I + K (e)‘f" = 1)) = —/ 1/ Félt)/(fc)TFft)(af)dxdt. (40)
o tJr 7 ’

Proof. From Lemma 4.3 we get that tK (e)‘f" —1) and K(eMr — 1) are
trace class for all ¢ € [0,1]. Since |K|| = 1 and tK (e —1) < 1, if we
choose § wisely in Lemma 4.1, we can use the Neumann series to see that
(1 +tK (e/\f" — 1))_1 exists for all ¢. Hence, we can use Lemma A.10 to
differentiate the left hand side of the function

h(t) =logdet(I + K (pns — 1))
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with respect to ¢, the limit we need to check is trivial. For the following
calculations, we will also use (56),

W) =1 (14 ek (V0 1))

1
t

-1

K(eMm — 1))

Tr(Rp,t) (41)

i

where

-1
Ry = (1 +tK (eAfn — 1)) tK (eMn —1).
From Theorem 2.9, Theorem 2.10 and Lemma 2.11,

B @R ()

Rn,t(x>y) = z—y

and since F,(L}t)

is differentiable we can let x — y to see that
Roy(z,2) = —FV ()T E@ ().

FT(L’lt) can actually be extended to an analytic function in a neighborhood of

the real line, see the beginning of the proof of Theorem 4.5. By the decay
of f,, Lemma 4.3 implies that K (e — 1)(2% + 1) is trace class. By using
(50) we can see that

| K (eMm —1) — 1[7N,N]K(€/\f" - Dl—n

< Mewne KN = D1yl + 1K (@M = D1y vgels

< 2| K (M = D@ + D)l (@® + )7 - wvjelloo

—0

as N — oo. Since Bi(L?(R)) forms an ideal, we can use Theorem A.6,

Tr(Rny) = — / FMV' ()" FP) (x)da.
R
Use this in (41) and integrate from 0 to 1 to get the result. O

The next step is to understand the integral in the previous theorem for
large n. This is done by approximate Fél) and F,(LQ) with explicit functions.

Theorem 4.5. Let

n,

a 12(:6) _ (B(C,gn,t)(m)eiﬂ’m7 e-(c+gn,t)(m)6_im>T
and

a®

@)y = L= Pntl®) (e Coan 0 emimy, _(C-angims)

21
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Then

[ (P 0F2@ - 6 06w e < e

where d' does not depend on n ort.

The proof of this theorem is rather long and technical, as in the other
problem, it is postponed to section 5.2. By the previous lemma, we can
calculate (40) with GS% and ng instead of F t) and F, (2). The calculation
is done in the following lemma.

Lemma 4.6. With Gg) and Gg) defined in Theorem 4.5,

1
- [ 4 [ 6@ 6wz (12)
o tJr 7 ’

1 oo
=z [ SFORIOFOLIOE+ [ (e

Proof. A straightforward differentiation of G 12( ), which can be done due

)

to Lemma 2.4 and a simplification yields that (42) can be written as

2771/ /R oni(@ R ((Cgn) () + (C_gny) (x) + 27i) dadt. (43)

By Fubini’s Theorem and some calculations

1 [ on(z)—1
27”]R (Pnt)

/ atg"t /0 § (J:(gn,t)(f)eigx + f(gn,t)(_,f)e—iﬁx> dédz
T 2/ £<f(g"t)(€)§t/9“( ) i£$d$+f(9n,t)(—£)§t/gm( Ye~ 5"”) drdg
4772 ot / EF(9n,0) () F (gne) (=€) dE.

((C+9nt)( ) + (C*gn,t)/(l')) dx

Since
9n,0 (x) =0
and

gn,l(x) = )\fn(x)v

(43) can be written as

1 [o.¢]
| FOROFORI O+ [ Ao
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At this point, we can express the determinant with an integral which we
can approximately evaluate for big n. Hence, we have all pieces to prove
Theorem 1.5.

Proof of Theorem 1.5. Note first that

F(fn)(&) = nF(f)(nf)

and

F(H(=8) = F()©),

since f is real valued. By Theorem 4.4, Theorem 4.5 and Lemma 4.6,
log det (I YK (e)‘f” _ 1))
1 > —2min
< [ )i+ g [T neFONOF) (ne)nds -+ O(ne27)
1 > —2min
= [ O+ 50 [ AFROP + Onem),
R T 0
Hence
det ([ + K <e>\fn _ 1)) _ e)\nfR F(E)de+A? [ §|-7:(f)(5)|24dT§2(1 + O(e—anp))'

O]

5 Solution to Riemann-Hilbert problem and asymp-
totics

In this section we will solve the Riemann-Hilbert problems which we post-
poned. To solve the RHP, in both problems, we will do transformations from
one Riemann-Hilbert problem to another, where every transformation is not
to difficult and such that it is possible to go back. But every step will make
us come closer to a problem we can solve. This is called Deift - Zhou steepest
descent technique (see [3]).

In both these cases there will appear a lot of constants. The actually
value of these constants is not of importance but we will still keep track of
them to be able to have control of the dependence on different parameters.

5.1 Proof of Theorem 3.6

The Deift / Zhou steepest descent technique will be done by the transfor-
mations
m—=S—>R

and R will be a solution to a problem we can solve explicitly for big n.
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Figure 4: The contour and jump matrix for the RHP in Lemma 5.1.

The first step is called the opening of the lens. This is a technique where
one pushes some part of the jump matrix away from the previous contour in
such a way that the part of the jump matrix that one has pushed converges
to the identity matrix.

Lemma 5.1. If m solves the RHP (T, Jp,), define S : C\I' = C as

S :m7 ‘Z‘ < pn
(1 _ > —1y,n\ —L
S =m <1 (1= &n(2)7)z > pn < 2] <1
0 1
_ 1 0 1
S=m <(1_¢n(z)—1)z—n 1) 1< ‘Z| < Pn
S =m 1 <|z|.

Let T = {z € C;|z| € {1, pn, py'}}. Then S solves the RHP (T, Jg) where
_ 5 -1\ .n
Js = (1 (1= @n(z)7)2 ) 2l = pu

0 1
5= ("7 ) A=
5= (0 pulyen 1) e



Figure 5: The contour and jump matrix for the RHP in Lemma 5.2.

Proof. This is a check of Definition 2.4. (i) follows since ¢, ! is analytic for
pn < |2| < p~!. To see (ii), factorize J,, to the form

(a-amne )3 o) 6 7).

With this factorization the jumps for |z| = p, and |z| = p,! follows by
definition. For the jump on the unit circle, use the jump of m,

o sbq(z)—l)zn)l

- <<1 e 2) (@éz) %(2)_1)
=S (%o(z) «ﬁn(g)‘l) '

Finally (iii) is true since it is true for m. O

The idea here is that this RHP is close to a RHP that we can solve. That
is, the jumps on I'\T tends to the identity matrix as n tends to infinity. If
@1 did not depend on n we would pretty much be done by general theory.
But since it do depend on n we have to be careful. But by the specific choice
of B, v and p,,, remember (23) and (24), we can make sure that the jumps
tends to the identity matrix anyway.

Consider the part of the problem that is on the unit circle, this is a
problem we can solve.
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Lemma 5.2. Let Jp be the jump matrix

Jp= (“5”0@ @n(g)_1> :

and P : C\T — C?*2 pe

Then P solves the RHP (T, Jp).

Proof. This is also a check of Definition 2.4. From Lemma 2.1 we get (i) and
that C. — C_ = I. Hence

MNC+G)(2) 0
Pi(z) = 0 e~ MC1Gn)(2)

I CEAE 0 Pulz) 0
= . o NC—Ga)(2) 0 @ul2)7!

=P_(z)Jp(2).
For (iii) we can use (3). O

The following lemma makes it precise what we mean by saying that S
and P are close.

Lemma 5.3. Define R:T — C?*2 as
R=s5p7!

and let Jp = P_JSPJ:1 then R solves the RHP (T, Jg). Moreover

87| ll 2y _nlzy

=) < o el i =

as n — 0.

Remark. The absolute value on a matrix is meant as the absolute value of
each entry.

Proof. That R solves the RHP (T, Jg) is again just a check of Definition 2.4.
We can directly see that (i) and (iii) are true, since they are true for S and
P~!. For (ii) note that P~ = P, = P on I'\T. Hence
R+ - S+P_:1
=S PP JsP!
=R_Jgr

o1



Figure 6: The contour and jump matrix for the RHP in Lemma 5.3.

on I For the second assertion remember that p, = (1 —n~7) and that
B < 7. By (30) we can get a bound on G,,. If |z| = p, or |z| = p,,;! then, by
the specific choice of 5 and ~,

~ c _
|Gn(2)| < W(2Nn +1)p, M
< ﬁnﬁ_a(l — n_w)_”ﬁ
2
3
< 3 (44)

for big enough n where ¢ = [ |G(s)|ds. From the calculations of the Cauchy
operator on the circle we can get the same bound for |Gy (2)|. Let n be so
big such that i < ln(:igw), then

pp=(L—=n"")"
_pl=
<e am . (45)
Let |z| = 1, then
Jr=P_JsP;'=P_JpP' = I

If |z| = pp, let

E(z) = (8 -(1 —sé%(z)—l)zn)
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and if |z| = p; !, let

2= (Lo g o)

Jp=PJsP'=P(I+E)P'=1+PEP

then

From the above and (44) we can conclude the estimation
175 = I||oo(ry < 62|)‘|HCGTL”00(F\T)(1 + eMlllGnHmr\m)pZ
< 26%(696011/3_“—711_”)

nl”Y

< 2e” an
as n — 00. Theorem 2.6 and Corollary 2.7 implies that
R =1+ (C(pw))(z)

solves (I', Jg) for big enough n. Before proceeding, we should note that this
is not the Cauchy operator on the unit circle, but the Cauchy operator on
I'. But since I' is a disjoint union of three circles, and since hy € L*(T) if
and only if the function ho(z) = hy (£) belongs to L*({|z| = r}) for some
positive r, it is easy to use the Cauchy operator on the circle to understand
the Cauchy operator on I'.

Since Jr — I = 0 on the real line and p € L?(T'), we can see that for any

z € C with p, < |2| < p;;! that

(R—1)(2)| < /F\T |M(w)||’EUJJi;|I)(w)| du|
87| pll L2 (r) ol

4m

D — €
min{p, — [z}, pu" — |2[}

In the second inequality we have used that u is diagonal, which can bee seen
from the definition of u. O

We have now found a solution of R and we have a relation between R
and m. By tracing back from R to m and and from (18) we get the relation

F{V(z) = HV(2) + (R(z) = DHV(2). (46)

Proof of Theorem 3.6. From the estimate (44) and from the Maximum Mod-
ulus Principle, we can see that if p, < [2| < pp! then |G,(z)] < 3<pf-2

A 3ece, B—a . . . .
and [eX¢CGn(2)| < e2= """ By the choice of 7, and similar calculations as

(45),
nl—Y

r, "t < e Ter .
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Hence for r, < |z| <1,

1—v

HPE) < (50 )

and from (46) and from the previous lemma,

FO() - B ()| < T e (e 2.

|pn —Tn

For z € T,
HEE)] < 5 (eFa e,
T

Since det(Jgr) = 1 we get from the the proof of Theorem 2.5 that det(R) = 1
and then from the inverse formula for 2 x 2 matrices, that is

-1
(Rn Rm) _ 1 ( Rao —312>
Ro1 Rao det(R) \—R21 Ru1 )’
it is clear that R~ has the same kind of asymptotic as R as n — co. Hence
in a similar way,
7P — B < W@ e <e‘"1¥w,e‘ni‘;w> .
‘pn - 1|

By the definition of p and with the Neumann series, it is not difficult to see
that p < 87 for big enough n. This implies that

[FP ()] < 21 HP (2)-

Now consider

// ‘(F’(Ll)('z/)FE)(Z)_HT(LU(Z/)H,(?)(Z))‘]dz’|\dz|

/ FED () — B (= \dz\/]F J|dz|
+ [ EOENE [ D) - 1 @)l
Cn T

Gec . f—a _3nl77
< 7rindew M e o .

Since the integrand in the first term in the estimate in Lemma 3.6 is analytic
in some open annulus containing T and C,, we can see that

//G )erCn NHENE) ((Z z Z,); 1F,§ )(2 ')TF7§2>(z)dz’d—Z.

271

(z — ) 2772
3 N 2 ec a n
< BT o [ / (ED ) ER () — BO ) HP (2))| 2/ 1dz]
< 3.2 73ecen®~ at3y Leen™ aein
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This concludes the proof of Theorem 1.4.

5.2 Proof of Theorem 4.5

The Deift - Zhou steepest descent technique will be done by the transforma-
tions
m—=T—S5S—R

and R will be a problem we can solve explicitly for big n. Since we have seen
similar transformations between different RHP in the proof of Theorem 3.6,
we will not go into all details. Denote ¢; = ¢1; and g; = g1

The first step is to do a transformation so that the function will not vary
with n.

Lemma 5.4. Define T : C\I' — C?*2 gs
T(z) = m(nz).
Then T solves the Riemann-Hilbert Problem (I', Jy) where

pi(x) —(pu(x) - 1)&“%)
J = Jm = —2mwin ’
R (G 2 ()
Proof. This is just a direct check of Definition 2.4. O

It is now possible to open the lens as we did in the first problem.

Lemma 5.5. Let 0 < p < b and let T's = {z € C;|z| € {—p,0,p}} oriented
from left to right. Define S : C\I's — C?*2 as

S(z) =T(z) p <Im(z)

— minz\ 1
S(2) =T(2) (é —(1- “Dt(i) et ) 0 <Im(z) < p
SG)=TG) () _ pyoyyesmmns 1) —p<Int) <0
S(z) =T(z) Im(z) < —p

Then S solves the RHP (I'g, Jg) where

Js(z) = <(1) —(1— (pt(i)l)e2ﬂinz) o) — »
5= (70 0) fnz) = 0
JS(Z) = <(1 — o )1—1)6—2m‘nz (1)> [m(z) =P



Proof. This is also e check of Definition 2.4. By Lemma 4.1 we get (i). To
see (ii) is straight forward with the factorization

Tz = <(1 - ‘Pt(z)l_l)e_zmm g) (%(()Z) ‘Pt(g)_1> (é - SOt(i)_l)eQm”Z

For (iii) we note that 1 — ¢;(2z)~! has the same asymptotic as f(z) hence
from Lemma 4.1

(1 _ @t(z)_l) e:i:27rnz — 0(2_2)
as |z| = 00, —p < Im(z) < p. O

The idea of this transformation is that the parts on p and —p converges
to the identity matrix. Therefore this solution is close to the solution to the
problem with the jump only on the real line. Since ¢; does not depend on n
this is clear from general theory, but of course we will do this properly.

Lemma 5.6. Let g; be the function defined in Lemma 4.2 and Jp : C\I' —

C2*2 be defined as
_(eilz) 0O
Jp(z) — ( t() (pt(z)_1> .

Calz) g
P(Z) = < 0 €Cgt(z)> :

solves the RHP (T, Jp).

Then

Proof. This is a consequence of Lemma 4.2, Lemma 2.3 together with the
observation

(Car)(z) = O(="") (47)

as |z| — oo which can be seen by integration by part. O

In this last transformation we will make it precise in what sense S and
P are close.

Lemma 5.7. Define the function R : C\I'r — C?*2 as
R=SP

Then R solves the RHP (I'r,Jr) where T'r =T'g, Jg =1 on T and Jg =
PJsP~! on Tr\I'. Moreover

for some constant c.

o6

).



Proof. From Lemma 4.1 and Lemma 4.2 we can see

1R = Tllso(rr) < €299 (1 = o7 D loor e 2"
2d

er _
< m\le” - 1Hoo(FR\F)€ 2mpn
on FR,
2d
er _
[Jr = IllLr(ry) < . 5H€Af — Ulprrpye 2"
and
2d
er _
[Jr = IllL2(rp) < . 5H€Af — Ulp2rpye 2"

From the remark under Lemma 4.1 all the norms above are bounded. As in
the first problem, we want to use Theorem 2.6 and Corollary 2.7 to see that

R =1+ (C(u))(2)

solves (I'gr, Jg) for big enough n. Note that this is the Cauchy operator
on I'r but as in the circle case, this does not give us any problem. We
will therefore show that u is analytic in the strip 5, defined in the proof of
Lemma 4.1. For that, note first, that if h is analytic in S then Cyh is the
restriction of an analytic function in S. This can be seen by deforming the
contour which is possible since w = Jr — I is analytic in S. That is

Ot (2) = C(CL(Dw)(2) = Cy(Dw(z), p <Im(z),

CELI(2) = C(Ch(I)(2), —p <Im(2) < p,

CHLI(2) = C(CE(Dw)(z) + CF (Nw(z), Im(z) < —p.
Therefore

N
> chI
k=1

is analytic for all N. For any z € S we can deform the contour in the integral
slightly, if needed, so by similar estimations as above, we can see that

‘C{ZI(Z) | < (66_2”(0—6)71) k

for some constant ¢ and some 0 < € < p that compensates for the de-
formations. Hence for big enough n the sequence S5, C¥I(z) converges
uniformly on any compact subset of S. Hence

p=TI+(I—Cy) 'CWI

is analytic in S. From the above calculations and the remark under Lemma
4.1, there is no problem to see that yw € L'(I'g) and are bounded close to
I'r. Hence we can use Theorem 2.6 and Corollary 2.7.
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Since Jr — I = 0 on the real line and p — I € L?(I'g), for any z € C with
[Im(z)| < p we can see that

I'r\l lw — 2|
1
S (e (IR = Tl Lrrg) + 2l = Il 2@ )l TR — Il L2(rg))

2d
2 e’ (leM = 1l prrpy + 2l = Iz lle™ = Ul zzrp) o—2mpn
- (1 =10)(p — [Im(z)])

Note that with the absolute value on a matrix we mean the absolute value

on each entry. O

Proof of Theorem 4.5. Remember the definition of F}:t), (38). We can ex-
tend that to an analytic function in the strip S,, by

Ful(2) = m(2)1,) (2) 0 < Tm(z) < np
Fd (2) = m(2)Jm(2) 11 (2) —np < Tm(2) < 0.
This is possible since everything is analytic in this strip. We can do the same

for G with

n,t

. . T
a 12(2) _ (e(an’t)(z) Spn,t(z)ile”ra ei(Cg"’t)(z)eimz> (48)

n,

for 0 < Im(z) < np and

GW(z) = (ewgn,t)(z)em, e—(c%,t)(z)@nyt(z)—le—m)T

for —np < Im(z) < 0. Then, by tracing back from R to m, we get that
F(z) =G+ (R(2) - 1) 6z (19)

n
for —np < Im(z) < np.
From Lemma 4.2, Lemma 4.1 and (48) we can found the bound
G < (gemton =m0 e ).

Let 'y, = {z € C;Im(2) = F} and let 0 <7 < § and v, = {w € C; [w— 2| <
r}. Let z € T, by Cauchy integral formula and (49),

/ F (w) - &) (w)

@ @
F — =
| n,t (Z) Gn,t (Z)| (w _ 2)2 dw
R Z—;ir) -7 1
<PEED DL 6wl
Yz
2dn_ _ 7 (hp—2p
< ce~2mmp (enp—?r 5 : enf,‘i%ﬁ’;(pnwr))
- 1-96 ’ ’
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where
2d
_ 2Zmev (leM = Ulprrp + 20 = iz lle™ = Ulzze,))
r(1—06)(5—7)

In the same way

2d_w
e p 2P
/ 1G2)(2)]|dz| < T O
T 2’/T i 1—6

and
2d %np

[ 1B - 6216 de) <t ( e S )

r, ' 1—96
where

2d
/ — er ( A My — T A q )/ 1_eM ()
Tp(1=0) e 21 (rg) + 2l 2oy lle lz2(rp) Fl| e ||dz]

and the integral converges by the decay of 1 —e*. With the same technique
as in Lemma 4.1 and Lemma 4.2 we can verify that

Ca, < mas [ 1@dop s
()l

2d
|G(1 ( )| < (C///(B?ffnp C//€7+ np)

and

[Afe€

|om,i(2)] <

Hence for z € ',

where N
/!
= )|d
e np“_(s/\f dz + 7
and N
no_ .y e 1 (L B)’
el (g
Finally

. /F FO(2)]/dz]

4 2 2
16 ooty /F F2(2) - G2(2)\|dz]

< d'tne” 2",
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where we can choose d’ such that it does not depend on ¢, n or z. This is
not difficult to see by just looking at all the constants and note, from the
definition, that ||u — I||z2(p,) is uniformly bounded. O

This concludes the proof of Theorem 1.5.

A Appendix

In this appendix we will give a brief introduction to trace class operators and
the Fredholm determinant. We will not prove all results, especially not all
deep results, but we will prove some, which gives some insight how to work
within this space. For a rigorous treatment, see [6].

On what follows let H be a separable Hilbert space.

Definition A.1. Let A be a compact operator on H and let 02(A) be the
eigenvalues of A*A with the ordering

o2(A) > g2(A)--- > 0.
Then oy, (A) > 0 is called the singular values of A.

Recall that the eigenvalues of a self adjoint compact operator converges
to zero and that the eigenvalues are real. Moreover if A is compact then A* A

is a self adjoint compact operator. If x is an eigenvector to the eigenvalue
02(A) then
(Az, Az) = oj(A) (2, )

which implies that o2(A4) > 0.

Definition A.2. Let A be a compact operator on H. Then A is trace class
if

Z or(A) < 0.
k=1

The space of trace class operators form a Banach space, with the norm

[e.e]
1Al = ox(A),
k=1
denoted by B1(#H) (see [6], Theorem IV.5.1). Before proceeding we will state
some properties of this space. Let Boo(H) denote the space of operators with
Ao = 01(A) < 0.

This is the space of bounded operators on H (see [6] (IV.2.2)). We can can
also define a closely related space, Ba(H), it consists of all compact operators
A with

> ok(A)? <o
k=1
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with the norm

[All2 = (Z%(A)Q) -
k=1

An operator in this space is called Hilbert-Schmidt operator.

Lemma A.1. Let A € B{(H), B € Boo(H) and C, D € By(H). Then

1Al < 1411

[AB][r < [[All1]Blloo (50)
I1BA[lr < [|A][1]|Blloo (51)
ICD[l < [[Cll2]|Dll2- (52)

For the proof, see Proposition IV.5.4 and Lemma IV.7.2 in [6]. In par-
ticular this lemma tells us that if A, B € By(#) then

IAB|1 < [|A[l1[ Bl (53)

and hence By (H) is a Banach algebra. Moreover, since the space of compact
operators form an ideal in By (), so do the space of trace class operators.

Lemma A.2. If A and B are operators of finite rank, then
|det(I + A) — det(I + B)| < ||A — B|elAh+IBl+1 (54)

and
| Tr(A)] < [|Allr (55)

For the proof, see Theorem IV.5.2 and Corollary IV.3.4 in [6]

Lemma A.3. For a bounded operator A, it is trace class if and only if there
exists a sequence of finite rank operators { Ay} such that

|A—A,ll1 =0
as n — oo.

For the proof, see Theorem IV.5.1 in [6].
With these two lemmas in hand it is possible to extend the notion of
determinant and traces to the space of trace class operators.

Corollary A.4. If A is a finite rank operator, then the functions
A — det(I + A)

and
A — Tr(A)

can be continuous extended from the finite rank operators to the trace class
operators. That is det(I + A) and Tr(A) are well defined for all trace class
operators.
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Proof. This is an ordinary continuation procedure. Let {A,} be a sequence
as in Lemma A.3. Then {A,} is a Cauchy sequence in B;(H). From (54)
we can see that {det( + A,)} is a Cauchy sequence in C. Therefore, the

definition
det(I + A) = lim det(! + Ay)

n—o0

makes sense as long as it does not matter which sequence {A,, } is chosen. The
independence of sequence follows from (54). Assume {A] } also converges to

A, let d =limdet(I + A,) and d’ = limdet(I + A]). Then
jd—d| < |d—det(T+ A,)| + | Ay — A el A4l 4 det(T4 A7) — .

For the trace, we can use the same procedure with (55) and the additivity
of traces for finite rank operators. O

We will now state some properties, that we needed, that is known for
matrices, that is, finite rank operators, and can be extended to all trace
class operators.

Lemma A.5. If A and B are trace class operators, C is a bounded operator
and o and B are complex numbers, then

Tr(aA + B) =aTr(A) + 8 Tr(B) (56)

Tr(AC) =Tr(CA) (57)

det(I + A)det(I + B) =det(I + A+ B+ AB) (58)
det(I + AC) =det(I + CA) (59)
m —det(I — A( + A)Y) (60)

det(I + (e — I)) =™ (61)

where (60) is true if (I + A)~! ezists in Boo(H).

Proof. We will only prove the last equality and leave the others as an exercise.
The idea is the same for all equalities but the last requires most effort.
Consider the bounded operator

-y g
k!
k=1
by (53) the series defines a trace class operator. Let {A,} be a sequence that

converges to A as in Lemma A.3. We want to show that {e4" — I'} converges
in the same way to e — I. If that is true, then

det (I + (¢! = 1)) = lim det (I + (e — 1))



by the definition of determinants and traces for trace class operators and
since the equality holds for finite rank operators.
From (50) and (51) we can see that

1A% = Al < 1 An = Al AT oo + 14" = A1 Alloo
and, by induction, the right hand side converges to zero as n tends to infinity.
Now given an € > 0 find an N € N such that
oo

1 €
E=N+1

for all n, which is possible since ||A,||1 — [|A]|1. Let n be so big such that

N €
S IlAL - Af < £
k=1

Then

1
(e = 1) = (e =D < ZEHAZ — A <e
k=1
O

For some operators on L?([a,b]), it is possible to express the trace as an
integral.

Theorem A.6. Let A be an integral trace class operator on L?*([a,b]) with
continuous kernel A(x,y) on |a,b] X [a,b]. Then

b
Tr(A):/ Az, x)dx.

This is Theorem IV.8.1. in [6].

If R and K are integral operators with kernels R(z, z’) and K (z,z’) then
if we can change order of integration, we can see that the kernel of RK is
given by

RK(z,7) = /R(z,w)K(w,z’)dw. (62)

With this observation we can find the trace for products of operators.

A motivation why we introduced By(H), is because it can be easier to
work with then Bj(#). One reason why it is easier is the following lemma
(see [6] Theorem IV.7.7).

Theorem A.7. Let K(x,y) be a measurable function on R x R. Then the
integral operator defined by K is a Hilbert-Schmidt operator in L?>(R) if and

only if
/ |K (,y)|?dedy < oo.
R
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Next theorem will not be used but has a nice result, so we will include
it for completeness of this introduction. It tells us that the relation between
eigenvalues and traces and determinants are still valid. This can seems as a
obvious result, but require a lot of work to prove. See [6] Theorem IV.6.1.

Theorem A.8 (Lidskii’s Theorem). Let A be a trace class operator and let
Ai:(A) be the eigenvalues to A. Then

T(A) = 3 ()
k=1

and
o0

det(I + A) = [ (1 + Ae(A)).
k=1
Lemma A.9. Assume that ||Al|1 < 1, then

(=pktt

det(I + A) = eZi Y mah)

Proof. Since ||Alloco < ||AJl1 < 1 we can define log(I 4+ A) as
Sy

Ak’
k

log(I + A) =
k=1
and from (53) this series also converges in By (#). Moreover
(I+ A) = eloel+A4),
Hence
det(I + A) = det elo8U+4)
_ eTrlog([—&—A)

R+l
_ X S Tr(ak)

where the second equality is (61) and the last equality is by continuity of
traces. O

Next lemma will be of great importance for us.

Lemma A.10. Assume that the function t — A(t) defines a function from
some open set or line segment v in C to Bi(H). Assume further that there
exists an operator A'(t) € B1(H) such that

HA(t+ h) — A(t)

0

—0
1

ash — 0 ift+h €~ and that (I — A(t))™! exists in Bo(H). Then

%log det(I + A(t)) = Tr (A'(t)(I + A(t))™1).
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Proof. Consider the quotient

det(I + A(t + h))
det(I + A(t))

= det(I + A(t + h))det(I — A(t)(I + A(t))™Y)
= det(I + (A(t+h) — A®) (T + At))™)

where the first equality is (60) and the second equality is (58) and some
algebraic manipulations. From the assumption, we can see that for small A
the difference A(t + h) — A(t) is small. Hence, with (50) we can make

I(A(t +R) = AT + A() "Ml < 1.

From Lemma A.9 we can conclude that

det(T+ AL+ N)) _ oo COT q(((Ath) - A@)U+AD))*)
det(I + A(1)) ‘

Now
d
log det(I + A(t))

dt
1 det(I + A(t + h))
Og( det(I + A(1)) )
L= (—1)kt
h—0 h k

=Tr (A'(t)(I+ A(t) ™).

T (At +h) = A@B)(T + ) ™")

The last equality is due to linearity and continuity of traces and since
Tr (((A(t +h) — A(t))(I + A(t))~1)¥) is of order hF. O
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