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Abstract

In this thesis we will consider a particular probability measure, the
Circular Unitary Ensemble, which is a famous model within Random
Matrix theory.

We will give new proofs of two central limit theorem’s associated to
this measure. The proofs are based on the fact that the moment gen-
erating function of a linear statistic can be written as a Fredholm de-
terminant of an integrable operator. With a Riemann-Hilbert problem
approach, it is possible to evaluate the determinant, at least asymp-
totically.
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1 Introduction

Consider n points eiθ1 , . . . , eiθn where the arguments are chosen randomly
with respect to the probability measure

1

n!(2π)n

∏

1≤k<`≤n
|eiθk − eiθ` |2dθ1 . . . dθn (1)

on [−π, π)n. In this thesis we are interested in the behavior of these points
as n tends to infinity.

From the measure we can tell that the probability that two points are
close to each other is small, that is, the points appear to repel each other.
A sample with respect to this measure is shown in Fig 1a. One can see
that the points are random, but there is no clustering, they are more or less
equidistant. In the sample from a uniform distributed measure, Fig 1b, at
the other hand, there are clustering and the points are more chaotic. We
know, however, that there is some kind of structure as the number of points
tends to infinity, for example the classical Central Limit Theorem (CLT)
for independent and identically distributed (i.i.d.) points. In our case, the
classical CLT does not apply, since we do not have independent distributed
points, in fact, they are strongly correlated. A natural question is, do we
have a replacement of the classical CLT? The answer is yes, but significantly
different. These type of questions we want to understand.

We will see that (1) has a nice structure, which allows us to compute the
behavior for large n, and by that we can find new laws that are different from
the laws about independent random variable. These laws are believed to be
universal. They appear very often when it comes to big complex systems
with some repulsion, for example the energy levels of heavy nuclei and the
zeros of the Riemann-Zeta function (see [4] and [9]). Often these systems are
too complicated to analyze in detail. The purpose of Random Matrix theory
is to analyze models that generate the same behavior but are simple enough
to analyze (toy models). The measure (1) is one of the famouse examples of
such model. The eiθ can be obtained as the eigenvalues of a random unitary
matrix. This model is called the Circular Unitary Ensemble, CUE, in the
literature. The measure (1) has also interesting mathematical properties,
Lemma 3.3 gives a simple relation to Toeplitz matrices. This will be used in
this thesis.

As indicated above, we want to understand the asymptotic of (1). One
natural object in the study of a probability measure of this type is linear
statistics.

Definition 1.1. Let f be a function on [−π, π) and (θ1, . . . , θn) ∈ [−π, π)n,

3



+

+

+

+

+

+

+

++

+ +

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

(a) A sample from (1) for n = 100.
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(b) Samples from independent uni-
formly distributed points.

Figure 1

then

Xn(f) =
n∑

k=1

f(θk)

is the linear statistic of f .

One of the key feature of (1) is that the moment generating function of
a linear statistic can be expressed as a Fredholm determinant. Namely

E
[
eλXn(f)

]
= det

(
I +Kn

(
eλf − 1

))
, (2)

where Kn is defined by (16), see Lemma 3.3 and Lemma 3.4. This translates
the problem of understanding the linear statistic into studying Fredholm
determinants which are a part of analysis. The main proofs in this thesis are
analytic in nature.

In this introduction we will mention some known results about (1) and
then state the main results which we will prove. For further discussion about
topics closely related to Theorem 1.1, Theorem 1.2 and Theorem 1.3 we refer
to [4] and the reference therein.

A first result is given in the following theorem.

Theorem 1.1. For a continuous function f ,

1

n
E[Xn(f)] =

∫ π

−π
f(θ)dθ.

Proof. This follows from Lemma 3.9 and (17)
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This is basically the weak law of large numbers, which we know is true
for i.i.d. random variables. We recall that the fluctuation for i.i.d. random
variables are given by the CLT. For (1) we also have a CLT, but it is of a
different nature.

Theorem 1.2. Assume that f is a function on [−π, π) such that

∞∑

k=1

k|f̂(k)|2 <∞.

Then the random variable

Xn(f)− E[Xn(f)]→ N(0, σ2)

in distribution, where N(0, σ2) is the normal distribution with variance σ2 =
2
∑∞

k=1 k|f̂(k)|2 and f̂(k) is the Fourier coefficient.

Remark. From Lemma 3.3 this is the Strong Szegő Limit for Toeplitz deter-
minants.

This is, as mentioned, a Central Limit Theorem, but note that we do not
divide by a normalizing factor. This is a remarkable fact. Recall that the
normalizing factor is

√
n for i.i.d. random variables. That the sum actually

converges is not clear at all. This tells us that the repulsion is powerful.
Theorem 1.1 and Theorem 1.2 are examples of results on the macroscopic

scale, that is, the distribution when viewing all points at the same time.
Another important result is on the microscopic scale. For the microscopic
scale, one consider a part of order 1

n , that is, the distance, between the
eigenvalues, are of order one. To zoom in at θ0 one can consider a function
f with compact support and define fn(θ) = 2πf(2πn(θ− θ0)) , the constant
2π are included for simplicity. The following theorem give us a way to
understand an infinite point process. Of course, to give a proper definition,
more work is needed (see [7]).

Theorem 1.3. For functions with sufficiently fast decay,

E
[
eλXn(fn)

]
→ det(I +K(eλf − 1))

as n → ∞. Here K is the operator defined by the sine kernel K : R2 → R,
with

K(x, y) =
sin(π(x− y))

π(x− y)
.

It is natural to ask what happens in between the macroscopic and mi-
croscopic scale. This is called the mesoscopic scale. This is the main topic
for this thesis. The main result will tell us about the distribution when it
comes to the mesoscopic scale. We will prove the following theorem.
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Theorem 1.4. Let G ∈ L2(R) be a continuous real valued function with
compact support such that

∫ ∞

0
ξ|F(G)(ξ)|2dξ <∞

where
F(G)(ξ) =

∫ ∞

−∞
G(x)e−iξxdx

is the Fourier Transform. Fix α ∈ (0, 1), θ0 ∈ [−π, π) and let Gn(θ) =
G(nα(θ − θ0)). Then

Xn(Gn)− E[Xn(Gn)]→ N(0, σ2)

in distribution, where

σ2 =
1

2π2

∫ ∞

0
ξ|F(G)(ξ)|2dξ.

Here we are interested in a part of the unit circle of order n−α. So the
number of eigenvalues in the part we are looking at, tends to infinity, that
is, the expectation value of Xn(Gn) tends to infinity, see (31). This is also a
remarkable CLT, since we do not divide by a normalizing factor. Moreover,
we can see that the limit does not depend on neither θ0 nor α.

The functions that we consider in this theorem is a subset of a subspace
of L2(R) equipped with a Sobolev type of seminorm,

(∫ ∞

0
ξ|F(G)(ξ)|2dξ

) 1
2

.

It is easy to see that this is a seminorm by the observation that

(∫ ∞

0
ξ|F(G)(ξ)|2dξ

) 1
2

= ‖1[0,∞)

√
ξF(G)‖L2(R).

We will not go any deeper into this, but we will use that this defines a
seminorm in the proof of Theorem 1.4, to be able to extend our proof to all
functions stated in the theorem.

The other main theorem in this thesis concerns going from the micro-
scopic scale to the macroscopic scale. For this we start with the right hand
side in Theorem 1.3 and zoom out.

Theorem 1.5. Let f : R → R be a Schwartz function such that F(f)(ξ) ≤
Ae−a|ξ| for some positive constants a,A. Assume also that the first and
second derivative of the Fourier transform of f satisfies the same condition.
Further let

fn(z) = f
( z
n

)
.
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Then there exists a disc around the origin such that if λ belongs to this disk,
then

det
(
I +K

(
eλfn − 1

))
= enλ

∫
R f(ξ)dξ+ λ2

4π2

∫∞
0 ξ|F(f)(ξ)|2dξ(1 +O(ne−2πnρ))

for some ρ > 0.

With this theorem in hand, we have the crucial part of the proof of a
similar theorem as Theorem 1.4, for the sine kernel. What is left is to extend
the result as mentioned in the remark after Theorem 1.4. But to do that
one need a proper definition of an infinite point process, as mentioned before
Theorem 1.3. We will not include this in the thesis. The limit in Theorem
1.5 can be compared with the limit in Theorem 1.4. That we get the same
limit if we start from the macroscopic scale and zoom in as if we start at the
microscopic scale and zoom out is remarkable.

Theorem 1.4 has been proved by Soshnikov and he mentioned that the
same approach would work for Theorem 1.5, see [12]. Related work has
recently been done by Johansson and Lambert, see [8]. What we will do
in this thesis is a new proof, an analytic proof, using modern techniques.
The proofs are inspired by [2]. Hopefully this approach will help us to get
a deeper understanding about the problem. The equality (2) is true for all
determinantal point process (for more on determinantal point process see
[7]) for some operator. That makes it interesting to investigate if this proof
apply in other situation when the operator in (2) is an integrable operator.

The outline of this thesis is the following; We will first give the necessary
tools to be able to attack the two main theorems stated above. The tools
we consider are the Cauchy operator, Riemann-Hilbert problem technique
and Integrable operators. In section 3 and 4 we will prove the main results.
Especially Theorem 3.6 and Theorem 4.5 are the crucial parts of these proofs.
The proofs of these two theorem are based on a Riemann-Hilbert Problem
approach and are postponed to section 5.1 and section 5.2.

2 Preliminaries

2.1 Analysis of the Cauchy operator

Here we will do analysis of the Cauchy operator for the unit circle and for
the real line. It is possible to do this for more arbitrary contours (see [10]),
but for the purpose of this project this will suffice.

Definition 2.1. Let Γ be a contour in C. For h ∈ L2(Γ) the Cauchy trans-
form on Γ is defined as

(Ch)(z) =

∫

Γ

h(w)

w − z
dw

2πi

as long as the right hand side make sense.

7



This transform depends on the contour, but what contour we consider
will be clear from the context. We will do analysis of the Cauchy transform
for the unit circle and for the real line.

Definition 2.2. Let h : C\T→ C and h+ : T→ C. We say that h→ h+ in
L2(T) sense from the +-side if

lim
r→1,r<1

∫

T
|h(rz)− h+(z)|2|dz| = 0.

In the same way we say that h→ h− from the −-side if the same is true for
r > 1.

Lemma 2.1. If h ∈ L2(T) then Ch is a well defined analytic function away
from the circle. There exists bounded linear operators, C+ and C−, on L2(T)
such that Ch → C+h and Ch → C−h in L2(T) sense from the +-side and
−-side respectively for all h ∈ L2(T). Moreover

(C+h)(z) =

∞∑

k=0

ĥ(k)zk

and

(C−h)(z) = −
−1∑

k=−∞
ĥ(k)zk

which implies the relation

C+h− C−h = h

for all h ∈ L2(T).

Proof. Let |z| < 1, then

(Ch)(z) =

∫

T

h(w)

w − z
dw

2πi

=

∫

T

1

w

h(w)

1− z
w

dw

2πi

=

∫

T

h(w)

w

∞∑

k=0

( z
w

)k dw
2πi

=

∞∑

k=0

zk
∫

T
h(w)w−k

dw

2πiw

=
∞∑

k=0

ĥ(k)zk.

8



Since h ∈ L2(T) the last series converges absolutely, hence it is an analytic
function on the open unit disk. This suggests us to make the definition of
C+ as

(C+h)(z) =

∞∑

k=0

ĥ(k)zk.

With a similar calculation

(Ch)(z) = −
−1∑

k=−∞
ĥ(k)zk. (3)

for |z| > 1. Therefore we define C− as

(C−h)(z) = −
−1∑

k=−∞
ĥ(k)zk.

We note that C+ and C− are projections on L2(T) and we can therefore see
that they are well defined linear operators.

Now, we want to show that C converges to C+ and C− in the correct
sense. Consider h ∈ L2(T). Given ε > 0 find an N ∈ N such that

∞∑

k=N+1

|ĥ(k)|2 < ε

2

and find an r < 1 such that |rN − 1| < ε
2‖h‖2

L2
. Then, from the above

calculations

∫

T
|Ch(rz)− C+h(z)|2|dz| =

∫

T

∣∣∣∣∣
∞∑

k=0

ĥ(k)(rk − 1)zk

∣∣∣∣∣

2

|dz|

=
∞∑

k=1

|ĥ(k)|2|rk − 1|2

≤ |rN − 1|
N∑

k=1

|ĥ(k)|2 +

∞∑

k=N+1

|ĥ(k)|2

< ε,

where the second equality is by Parseval’s identity. Hence Ch → C+h in
L2(T) sense from the +-side. In the same way we can see that Ch → C−h
in L2(T) sense from the −-side

Lemma 2.2. If h ∈ C2(T) then C+h and C−h are differentiable and we can
differentiate termwise.

9



Proof. To justify that we can differentiate C+h and C−h we use that h ∈
C2(T) and therefore h′′ ∈ L2(T). Then

∞∑

k=2

|kĥ(k)| ≤
( ∞∑

k=2

1

(k − 1)2

) 1
2
( ∞∑

k=2

|k(k − 1)ĥ(k)|2
) 1

2

≤ ‖ĥ′′‖L2(T)

( ∞∑

k=2

1

(k − 1)2

) 1
2

<∞

where we have used Cauchy-Schwarz inequality, Bessel’s inequality and that
k(k − 1)ĥ(k) = ĥ′′(k − 2). Hence

(C+h)′(z) =
∞∑

k=0

kĥ(k)zk−1 (4)

and

(C−h)′(z) = −
−1∑

k=−∞
kĥ(k)zk−1 =

∞∑

k=0

kĥ(−k)z−k−1. (5)

We will now continue and consider the case with the real line as contour.

Definition 2.3. Let h : C\R→ C and h+ : R→ C. We say that h→ h+ in
L2(R) sense from the +-side if

lim
ε→0,ε>0

∫

R
|h(x+ iε)− h+(x)|2dx = 0.

In the same way we say that h → h− from the −-side if the same is true
with −ε instead of ε.

Lemma 2.3. If h ∈ L2(R) then Ch is a well defined analytic function away
from the real line. There exists bounded linear operators, C+ and C−, on
L2(R) such that Ch→ C+h and Ch→ C−h in L2(R) sense from the +-side
and −-side respectively for all h ∈ L2(R). Moreover the relation

C+h− C−h = h

holds.

Proof. Let Im(z) > 0 and let h be a Schwartz function. For any A > 0 we
have the relation

1

y − z = i

∫ A

0
e−iξ(y−z)dξ +

e−iA(y−z)

y − z .

10



If we use that in the definition of the Cauchy transform we get

(Ch)(z) =
1

2π

∫

R

∫ A

0
h(y)e−iξ(y−z)dξdy +

eiAz

2πi

∫

R
h(y)

e−iAy

y − z dy

=
1

2π

∫ A

0
F(h)(ξ)eiξzdξ +

eiAz

2πi

∫

R
h(y)

e−iAy

y − z dy

where the change of order of integration is valid since h is a Schwartz func-
tion. The right term above converges to zero as A growth since Im(z) > 0.
Let A go to infinity, then

(Ch)(z) =
1

2π

∫ ∞

0
F(h)(ξ)eiξzdξ. (6)

A similar calculation leads to the relation

(Ch)(z) = − 1

2π

∫ ∞

0
F(h)(−ξ)e−iξzdξ

if Im(z) < 0. Since
∫ ∞

0
|F(h)(ξ)eiξz|dξ ≤

(∫ ∞

0
|F(h)(ξ)|2dξ

)1/2(∫ ∞

0
|e−ξIm(z)|2dξ

)1/2

,

by Cauchy-Schwartz inequality, and since the Schwartz functions are dense in
L2(R) it is not difficult to see that the above equalities hold for all h ∈ L2(R).
We can also see that Ch defines an analytic function.

We want to find the limiting operators as we did for the circle. For that,
recall that F can be extended to a unitary linear operator on L2(R) (see e.g.
[14]). Now define C+ and C− on L2(R) as

C+h = F−1(1[0,∞)F(h))

and
C−h = −F−1(1(−∞,0]F(h)).

These are clearly bounded linear operators with ‖C+‖ ≤ 1 and ‖C−‖ ≤ 1.
We want to see that C converges to C+ and C− in the correct sense. First
note that if ε > 0, then

Ch(x+ iε) = F−1(1[0,∞)e
−xεF(h))(x).

Hence
∫

R
|Ch(x+ iε)− C+h(x)|2dx

= ‖F−1(1[0,∞)e
−xεF(h))(x)−F−1(1[0,∞)F(h))(x)‖2L2(R)

≤ ‖1[0,∞)

(
e−xε − 1

)
F(h))‖2L2(R)

→ 0

11



as ε→ 0 by Lebesgue Dominant Convergence Theorem. The same argument
holds to see that C converges to C− in the right sense.

The linearity of the Fourier transform and the Fourier Inversion Formula
implies the relation

(C+h)(x)− (C−h)(x) = h(x).

Lemma 2.4. If h is an Schwartz function, then C+h and C−h are differen-
tiable and

(C+h)′(x) + (C−h)′(x) =
−1

2πi

∫ ∞

0
ξ
(
F(h)(ξ)eiξx + F(h)(−ξ)e−iξx

)
dξ.

Proof. This is direct by differentiating the relation

(C+h)(x) + (C−h)(x) =
1

2π

∫ ∞

0
F(h)(ξ)eiξxdξ − 1

2π

∫ ∞

0
F(h)(−ξ)e−iξxdξ

which we can do since F(h) is a Schwartz function.

Remark. To define C+ and C− for more arbitrary curves one can use The
Plemelj Formula (see [10]).

2.2 Riemann-Hilbert problem

For the proof of the main results we will use a Riemann-Hilbert problem,
RHP, approach. We will give a brief introduction with some important
results. The introduction is based on [3] but adjusted to our settings.

Given a contour Γ with an orientation, let the +-side be to the left and
the −-side to the right of the contour, and a jump matrix J : Γ → CN×N ,
we have the following definition.

Definition 2.4. A solution to the RHP (Γ, J) is a function m : C\Γ →
CN×N that fulfills the conditions

(i) m is analytic in C\Γ,

(ii) m+(z) = m−(z)J(z) for z ∈ Γ,

(iii) m→ I as |z| → ∞.

Here m+ and m− are functions living on the contour such that m→ m+

as z converges to the contour from the +-side and m → m− as z converges
to the contour from the −-side. Of course one need to specify in what sense
the limit is taken, as well as in what sense m → I. This can be done in
different ways.

12



Definition 2.5. Let Γ be a finite disjoint union of oriented smooth contours
with no endpoints and no self intersections. Let h : C\Γ→ C and h+ : Γ→
C. We say that h→ h+ in locally L2(Γ) sense from the +-side if

lim
ε>0,ε→0

∫ t1

t0

∣∣h
(
γ(t) + iεγ′(t)

)
− h+(γ(t))

∣∣2 dt = 0

for all z ∈ Γ. Here γ is a regular parametrization of the contour of unit
speed defined in [t0, t1], for some t0 and t1, and such that γ([t0, t1]) is a
neighborhood of z in Γ. In the same way we say that h → h− from the
−-side if the same is true with the natural change of ε to −ε.

For this project we will consider RHP:s where the limit is taken in locally
L2(Γ) sense. We will also say that m → I if m(z) is bounded as |z| → ∞
away from Γ and if

m(z)→ I

as |z| → ∞ for some sequence. We will assume Γ to be a finite disjoint union
of oriented smooth curves with no endpoints and no self intersections, that
is, so we can use the definition of convergence in locally L2(Γ) sense. This
is stronger than necessary but since we will basically consider the unit circle
and the real line this is no restriction for us. But it is actually possible to
do this for more complicated curves, even for self intersecting curves. We
will view the unit circle as a contour oriented counter clockwise and the real
line oriented from −∞ to ∞. We will also assume that J is smooth and
bounded and that det(J(z)) = 1, assume further that J − I ∈ L2(Γ). These
assumptions are also extra strong, but will be fulfilled in all cases within this
thesis.

The solution to Riemann-Hilbert Problems turns out to be related to
solutions of other type of problems. For example in the analysis of orthogonal
polynomials and in differential equations. For more theory and examples see
[3] and [5].

When it comes to RHP it is often the case that the existence of a solution
is more problematic then the uniqueness. Especially for 2× 2 RHP:s, which
will be the case in this thesis, we have the following theorem.

Theorem 2.5. Consider the RHP (Γ, J) where J is a 2× 2 matrix. If there
exists a solution, then this solution is unique.

Proof. This is a proof that can be found in e.g. Theorem 7.18 in [3] but
adjusted to our settings.

Let m be a solution to the RHP (Γ, J). First of all, we want to prove
that m−1 exists. since m is a solution to the RHP, det(m(z)) is an analytic
function away from Γ. Since det(J(z)) = 1,

det(m+(z)) = det(m−(z)) det(J(z)) = det(m−(z)).

13



We want to use this equality to see that we can extend det(m(z)) to an entire
function. Let z′ ∈ Γ, and let γ : [t1, t2] → Γ be the parametrization in the
definition of locally L2(Γ) convergence. Since m is a 2 × 2 matrix we get
from the convergence of m to m+ that

∫ t1

t0

∣∣det
(
m
(
γ(t) + iεγ′(t)

))
− det (m+(γ(t)))

∣∣ dt→ 0 (7)

as ε → 0. Let t0 ≤ s0 < s1 ≤ t1 and let Cε be the contour on the +-side
of Γ that consists of the contour γε = γ([s0, s1]) + iεγ′([s0, s1]) and with
part of a half circle connecting γ(s0) + iεγ′(s0) and γ(s1) + iεγ′(s1), oriented
counterclockwise. Let ε > 0 be so small that the intersection of the interior
of all Cε′ , 0 ≤ ε′ < ε contains an accumulation point. Let z be in that
intersection. Then

det(m(z)) =

∫

Cε

det(m(w))

w − z
dw

2πi
. (8)

Let s = supt∈[s0,s1] |γ′′(t)| and sz = inft∈[s0,s1] |γ(t)− z|, from (7),
∣∣∣∣
∫

γε

det(m(w))

w − z
dw

2πi
−
∫

γ0

det(m+(w))

w − z
dw

2πi

∣∣∣∣

≤ 1 + εs

sz − ε

∫ s1

s0

∣∣det
(
m
(
γ(t) + iεγ′(t)

))
− det (m+(γ(t)))

∣∣ dt
2π

+
|z|ε

(sz − ε)sz

∫ s1

s0

| det(m+(γ(t)))| dt
2π

→ 0

as ε→ 0 since det(m+) ∈ L1([s0.s1]) which can be seen from (7). From the
above calculations and from Fubini’s Theorem,

∫ ε

0

∫

γε′

det(m(w))

w − z
dw

2πi
dε′ → 0

and from Chebyshev’s inequality we can conclude that
∫ ε

0

det(m(γ(t) + iε′γ′(t)))
γ(t) + iε′γ′(t)− z (γ′(t) + iεγ′′(t))

dε′

2π
→ 0 (9)

for almost every t ∈ (t0, t1) as ε→ 0. Hence, by letting ε→ 0 in (8),

det(m(z)) =

∫

C0

det(m(w))

w − z
dw

2πi

with det(m(w)) = det(m+(w)) for w ∈ Γ. By the same argument,

0 =

∫

C0,−

det(m(w))

w − z
dw

2πi

14



where Cε,− is the correspondent to Cε on the −-side of Γ. Hence, if C =
C0 ∪ C0,−\γ([s0.s1]), where s0 and s1 are such that (9) is true, then

det(m(z)) =

∫

C

det(m(w))

w − z
dw

2πi
.

Of course the same argument is true if z is on the −-side of Γ. Hence

det(m(z)) =

∫

C

det(m(w))

w − z
dw

2πi

for all z in the interior of C away from Γ by the Uniqueness Theorem of
analytic functions. Since the right hand side defines an analytic function in
the interior of C, we can extend det(m(z)) over Γ close to z′. This is possible
to do for all z′ ∈ Γ, hence we can extend det(m(z)) to an entire function.
But since det(m(z)) is bounded and det(m(z))→ 1 as |z| → ∞, for some z,
we can conclude that det(m(z)) is constant and equal to one. Hence m(z)−1

exists for all z ∈ C.
Assume now that m1 and m2 are solutions to (Γ, J) and let m = m1m

−1
2 ,

which is well defined since m−1
2 exists. Then

m+ = (m1−J)(m2−J)−1 = m1−m2− = m−.

With the same argument as used above, we can extend m to an entire func-
tion. Moreover m(z) → I as |z| → ∞. Hence m(z) = I for all z ∈ C which
implies that

m1(z) = m2(z)

for all z ∈ C\Γ.

For a solution to the RHP (Γ, J) we can, in some circumstances, use an
operator on L2(Γ)2×2 defined as

Cwh = C−(hw+) + C+(hw−) (10)

where w = w− + w+ and w+ and w− are defined as

J = (I − w−)−1(I + w+).

for some factorization. In this factorization we have a lot of freedom, but the
factorization needs to be done in such a way that w+ and w− are bounded
and in L2(Γ). The following theorem is true under certain condition on Γ
and J .

Theorem 2.6. Consider the operator defined in (10). Assume that (I −
Cw)−1 exists as a bounded operator. Then with

µ = (I − Cw)−1I

and
m = I + (C(µw))(z),

m solves the RHP (Γ, J).
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Remark. We need to be a bit careful what we mean with (I −Cw)−1I if Γ is
unbounded. What we mean is that µ−I ∈ L2(Γ) such that (I−Cw)(µ−I) =
CwI. Not that m still is well defined due to the condition on w+ and w−.

Proof. We will only prove this for the circle and for the real line, with extra
assumptions on the real line. These are the cases that will be used later in
this thesis. For the more general proof and the exact assumptions on Γ and
J see Theorem 7.103 in [3].

We start with the proof for the circle. First of all, since w is bounded,
µw ∈ L2(T), so m is a well defined analytic function on C\T from Lemma
2.1. From the same lemma we know that C converges to C+ and C− in the
proper way. Hence

m+ = I + C+(µw)

= I + C+(µw−) + C−(µw+) + C+(µw+)− C−(µw+)

= I + Cw(µ) + µw+

= µ(I + w+). (11)

In the same way
m− = µ(I − w−).

Hence
m+ = µ(I − w−)(I − w−)−1(I + w+) = m−J.

From (3) it is direct that
m = I +O(z−1)

as |z| → ∞.
For the case of the real line, the same calculations of the first part is still

valid. What we need to prove, is that m → I. The extra assumptions that
we will add are that µ and w are analytic in some strip containing the real
line, µw ∈ L1(R) and that there exists an ε > 0 such that µw is bounded for
|Im(z)| ≤ ε. Then if Im(z) > 0, we can deform the integration contour to Γε
such that the distance from z to Γε is greater then ε. Then

|m(z)− I| =
∣∣∣∣
∫

Γε

µ(z′)w(z′)
z′ − z dz′

∣∣∣∣

≤
(

1

ε

∫

R
|µ(z′)w(z′)|dz′ + π sup

|Im(z′)|≤ε
|µ(z′)w(z′)|

)
.

If Im(z) < 0, we can deform the contour in the other direction. Hence m(z)
is bounded as |z| → ∞ and it is no problem to see that m(z)→ I is z →∞
along the imaginary axes.
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Corollary 2.7. If

‖J − I‖∞ <
1

‖C−‖L2

then the RHP (Γ, J) has a solution.

Proof. To find an explicit solution we can use Theorem 2.6 with the factor-
ization

J = I−1J.

Then w− = 0 and w+ = J − I, hence

Cwh = C−(hw+).

Since C− is a bounded operator

‖Cwh‖L2 = ‖C−(hw+)‖L2

≤ ‖C−‖L2‖h(J − I)‖L2

≤ ‖C−‖L2‖J − I‖∞‖h‖L2

< ‖h‖L2 ,

so
‖Cw‖ < 1. (12)

And since this is less than one we can use the Neumann series to see that

(I − Cw)−1

exists as a bounded operator.

To prevent this thesis from becoming to long, we will not go any deeper
in the theory of RHP.

2.3 Integrable operators

An important object in the proof of the main results is integrable operators.
We will give the definition and some properties of integrable operators and a
connection to RHP. The material here are based on [2], except Lemma 2.11
which is included to give a tool to see if we can use the theory.

Recall that an integral operator K is an operator of the form

Kf(z) =

∫
K(z, z′)f(z′)dz′

for some kernel K(z, z′).
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Definition 2.6. Let Γ ⊂ C be an oriented contour. An integral operator
K : L2(Γ)→ L2(Γ) is integrable if it has a kernel of the form

K(z, z′) =
n∑

k=1

f
(1)
k (z)f

(2)
k (z′)

z − z′

for z, z′ ∈ Γ for some functions f (1)
k , f

(2)
k ∈ L2(Γ), k = 1, . . . , n.

A kernel of this type has possible singularities at z = z′. One way to
interpret this in quite general settings is with the Principle value integral
(see [2]). In this thesis the functions and Γ will be especially nice, which
makes it to an removable singularity. Moreover, it is possible to do the
analysis with the Cauchy operators already introduced and therefore we do
not need any knowledge about the Principle value integral. But the reader
with understanding about it, can make these calculations more general.

First of all we will establish some general facts. Consider the Hilbert
space H = L2(Γ) and the operator A on H which is the multiplication with
z, that is,

Ah(z) = zh(z).

Let E be the space of operators whose commutator with A is of finite rank,
that is, all operators K on H such that

[A,K] = AK −KA

is of finite rank.

Remark. For us Γ will be the unit circle or the real line.

Lemma 2.8. Assume that K is an integrable operator and that (I −K)−1

exists as a bounded operator. Assume further that R = (I − K)−1K is an
integral operator. Then R is an integrable operator.

Proof. For the proof, we will first show that R ∈ E if K ∈ E and then that
the integral operators in E are precisely the integrable operators on H.

For the first assertion we consider the equality

[A,R] = A(I −K)−1 − (I −K)−1A

= (I −K)−1[A,K](I −K)−1 (13)

where the right hand side is of finite rank as long as [A,K] is of finite rank.
For the second assertion, assume that K is an integrable operator with the
kernel

K(z, z′) =
n∑

k=1

f
(1)
k (z)f

(2)
k (z′)

z − z′ .

18



Then

[A,K]h(z) =

∫

Γ
(z − z′)K(z, z′)h(z′)dz′

=

n∑

k=1

(h, f
(2)
k )f

(1)
k (z),

hence K ∈ E . Assume now that R is an integral operator in E , that is

Rh(z) =

∫

Γ
R(z, z′)h(z′)dz′.

Then
[A,R]h(z) =

∫

Γ
(z − z′)R(z, z′)h(z′)dz′,

but since [A,R] is of finite rank, there exists functions F (1)
k , F

(2)
k ∈ L2(Γ)

such that

[A,R]h(z) =
n∑

k=1

(h, F
(2)
k )F

(1)
k (z).

This implies that

∫

Γ

(
(z − z′)R(z, z′)−

n∑

k=1

F
(1)
k (z)F

(2)
k (z′)

)
h(z′)dz′ = 0

for all h ∈ L2(Γ). Hence

R(z, z′) =

n∑

k=1

F
(1)
k (z)F

(2)
k (z′)

z − z′ .

For an operator B let B be the operator defined as

Bh(z) = Bh(z)

and let BT be the operator B∗. Then
∫

Γ
Bg(z)h(z)dz =

∫

Γ
g(z)BTh(z)dz.

Theorem 2.9. Assume that K is an integrable operator with kernel

K(z, z′) =

n∑

k=1

f
(1)
k (z)f

(2)
k (z′)

z − z′ .
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Assume further that (I−K)−1 exists and that R = (I−K)−1K is an integral
operator. Then R is an integrable operator with kernel

R(z, z′) =
n∑

k=1

F
(1)
k (z)F

(2)
k (z′)

z − z′

where F (1)
k = (I −K)−1f

(1)
k and F (2)

k = (I −KT )−1f
(2)
k .

Proof. By Lemma 2.8 we know that R is an integrable operator with

R(z, z′) =
n∑

k=1

F
(1)
k (z)F

(2)
k (z′)

z − z′

for some functions F (1)
k , F (2)

k . We want to find a relation between the kernel
of K and the kernel of R. Let h ∈ L2(Γ), then

[A,R]h(z) =

∫

Γ
(z − z′)R(z, z′)h(z′)dz′

and

(I −K)−1[A,K](I −K)−1h(z)

= (I −K)−1

∫

Γ
(z − z′)K(z, z′)(I −K)−1h(z′)dz′

=

n∑

k=1

(I −K)−1f
(1)
k (z)

∫

Γ
f

(2)
k (z′)(I −K)−1h(z′)dz′

=

∫

Γ

n∑

k=1

(I −K)−1f
(1)
k (z)((I −K)−1)T f

(2)
k (z′)h(z′)dz′

Since this is true for all h ∈ L2(Γ) we get from (13) that

F
(1)
k = (I −K)−1f

(1)
k

and
F

(2)
k = ((I −K)−1)T f

(2)
k = (I −KT )−1f

(2)
k .

The last equality can be seen e.g. since the equalities
∫

Γ
(((I −K)−1)T (I −KT )h1(z)h2(z)dz =

∫

Γ
h1(z)h2(z)dz

and ∫

Γ
(I −KT )(((I −K)−1)Th1(z)h2(z)dz =

∫

Γ
h1(z)h2(z)dz

hold for all h1, h2 ∈ L2(Γ).
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Given an integrable operator together with the functions in Definition
2.6, we will denote the vector f (1) and f (2) as the vectors formed by these
functions,

f (1) = (f
(1)
1 , . . . , f (1)

n )T

and
f (2) = (f

(2)
1 , . . . , f (2)

n )T .

Theorem 2.10. Let Γ be an oriented contour in C such that C+ and C−
are bounded operators on L2(Γ). Let K and R be as in Theorem 2.9 and let
m be the unique solution to the RHP (Γ, J) where

J = I − 2πif (1)(f (2))T .

Assume further that f (1)
k , f

(2)
k ∈ L∞(Γ) and that they are analytic in some

neighborhood of Γ. We will also assume that f (1)(z)T f (2)(z) = 0 for all z ∈ Γ
and that J−1 exists. Then

F (1) = m+f
(1)

and
F (2) = (m+)−T f (2)

where −T denotes the inverse of the transpose.

Proof. Fist of all we want to express K in terms of the Cauchy operator.
Note that since f (1)(z)T f (2)(z) = 0 can we see that

n∑

k=1

f
(1)
k (z)C−(f

(2)
k h)(z) =

n∑

k=1

f
(1)
k (z)C+(f

(2)
k h)(z).

We can therefore extend
n∑

k=1

f
(1)
k (z)C(f

(2)
k h)(z)

to an analytic function in some neighborhood of Γ. We can write

Kh(z) =

∫

Γ\B

n∑

k=1

f
(1)
k (z)f

(2)
k (z′)

z − z′ h(z′)dz′ +
∫

B

n∑

k=1

K(z, z′)h(z′)dz′ (14)

for some ball around z. But it is clear from the definition of the Cauchy
transform that the right hand side is equal to

−2πi

n∑

k=1

f
(1)
k (z)C(f

(2)
k h)(z)
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for z ∈ B, where this is the extended function over Γ. Let the size of B tend
to zero, then, since z′ = z is a removable singularity, the last term tends to
zero and therefore, the first term tends to

−2πi

n∑

k=1

f
(1)
k (z)C(f

(2)
k h)(z).

Hence

Kh = −2πi
n∑

k=1

f
(1)
k C−(f

(2)
k h).

Let D : L2(Γ)n×n → L2(Γ)n be defined as

Dh(z) = h(z)f (1)(z)

and let E : L2(Γ)n → L2(Γ)n×n be defined as

Eh(z) = −2πiC−(h(f (2))T )(z).

If we let K act componentwise on a column vector h ∈ L2(Γ)n then

Kh(z) = DEh(z).

Now consider the operator ED,

EDh(z) = C−(h(−2πif (1)(f (2))T )(z)

= Cw(h)(z)

where Cw is defined by (10) with w− = 0 and w+ = J − I, that is

Cwh = C−(hw+).

From the commutation formula,

(I −DE)−1 = I +D(I − ED)−1E,

and from Theorem 2.9

F (1) = (I −K)−1f (1)

= f (1) +D(I − Cw)−1CwI

= D(I − Cw)−1I

= µf (1)

= m+(I − 2πif (1)(f (2))T )−1f (1)

= m+f
(1).
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In the fourth equality we have used the definition of µ in Theorem 2.9 and
in the fifth equality we have used (11). To see the last equation note that

(I − 2πif (1)(f (2))T )f (1) = f (1).

In similar way, we can see that

F (2) = m̃+f
(2)

where m̃ is a solution to

J̃ = I + 2πif (2)(f (1))T .

Note that J̃ = J−T and we can therefore observe that m−T solves the RHP
(Γ, J̃). By the assumption on uniqueness for the RHP (Γ, J) we can conclude
that m̃ = m−T .

We will end this section with a lemma that is not related to Integrable
operators, but that gives a family of operators that fulfills the assumption
in Theorem 2.9. Our operators will be in this family.

Lemma 2.11. Let Kφ be a bounded operator on L2(Γ) where Γ is a contour
in C such that L2(Γ) is a Hilbert space. Assume that K is an integral operator
on L2(Γ) with kernel in L2(Γ× Γ) and φ ∈ L∞(Γ). If

‖φ‖∞‖K‖ < 1

then
(I −Kφ)−1

exists as a bounded operator and

(I −Kφ)−1Kφ

is an integral operator.

Proof. A stronger result follows from general theory (see e.g. [11] Theorem
VI.23). For completeness we will include another proof.

For the first assertion we can use the Neumann series, since

‖Kφ‖ ≤ ‖φ‖∞‖K‖ < 1.

For the second assertion we need to work a bit more. We will prove that
(I −Kφ)−1Kφ is equal to the operator defined by the kernel

∞∑

k=1

(Kφ)k(z, z′)

for all h ∈ L2(Γ). The first step is to show that this series makes sense.
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By Fubini’s Theorem and (62) we can see that (Kφ)k is an integral
operator for all k ∈ N with kernel

(Kφ)k(z, z′) =

∫

Γ
(Kφ)k−1(z, w)K(w, z′)φ(z′)dw

= φ(z′)KT ((Kφ)k−1(z, ·))(z′).

Note that by Fubini’s Theorem and recursively, the last term makes sense
with

KTh(z) =

∫

Γ
K(z′, z)h(z′)dz′.

This implies that for almost every z ∈ Γ,

‖(Kφ)k(z, ·)‖L2(Γ) ≤ ‖φ‖∞‖KT ‖‖(Kφ)k−1(z, ·)‖L2(Γ)

≤ (‖φ‖∞‖KT ‖)k−1‖(Kφ)(z, ·)‖L2(Γ). (15)

From the definition of KT we can see that ‖KT ‖ = ‖K‖. Now, let h ∈ L2(Γ)
and let

HN (z) =

N∑

k=1

(Kφ)kh(z)

=
N∑

k=1

∫

Γ
(Kφ)k(z, z′)h(z′)dz′.

Then from (15)

N∑

k=1

∫

Γ
|(Kφ)k(z, z′)h(z′)||dz′|

≤ ‖(Kφ)(z, ·)‖L2(Γ)‖h‖L2(Γ)

N∑

k=1

(‖φ‖∞‖K‖)k−1
L2(Γ)

where the right hand side converges by the assumption ‖φ‖∞‖K‖ < 1.
Hence, by the Monotone Convergence Theorem and Chebyshev’s Inequal-
ity,

∞∑

k=1

(Kφ)k(z, z′)h(z′)

converges absolutely for almost every z, z′ ∈ Γ. Moreover, since

‖‖(Kφ)(z, ·)‖L2(Γ)‖L2(Γ) = ‖(Kφ)‖L2(Γ×Γ)
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and by Lebesgue Dominated Convergence Theorem,
∥∥∥∥∥HN −

∫

Γ

∞∑

k=1

(Kφ)k(·, z′)h(z′)dz′
∥∥∥∥∥
L2(Γ)

≤ ‖(Kφ)‖L2(Γ×Γ)‖h‖L2(Γ)

∞∑

k=N+1

(‖φ‖∞‖K‖L2(Γ))
k−1

→ 0

as N →∞. But from the Neumann series

HN →
∞∑

k=1

(Kφ)kh = (I −Kφ)−1Kφ

in L2(Γ). Since this is true for all h ∈ L2(Γ) we get that (I −Kφ)−1Kφ is
an integral operator.

3 Proof of Theorem 1.4

In this section we will prove Theorem 1.4. First we give a relation between
the moment generating function and a Fredholm determinant. We will later
relate the Fredholm determinant to an integral that we can understand for
large n.

To prove Theorem 1.4 we will consider the moment generating function
of Xn(Gn)− E[Xn(Gn)],

E
[
eλ(Xn(Gn)−E[Xn(Gn)])

]
,

and prove that it converges to a Gaussian for all λ in some disc around zero
(see Section 30 in [1]). To choose the disc, let 0 < δ < 1, let ε′ > 0 be such
that |1 − ez| < δ if |z| < ε′ and let c′ = supx∈R |G(x)|. Let ε = ε′

c′+1 and
assume for what follows, that |λ| < ε.

Lemma 3.1 (Vandermonde determinant).

det(x`−1
k )nk,`=1 =

∏

1≤k<`≤n
(xk − x`).

Proof. Denote
Dn(x1, . . . , xn) = det(x`−1

k )nk,`=1.

Note that Dn(x1, . . . , xn) is a polynomial of degree n− 1 in the variable xn
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with zeros x1, . . . , xn−1. By comparing the leading term, we can see that

Dn(x1, . . . , xn) = Dn−1(x1, . . . , xn−1)
∏

1≤`≤n−1

(xn − x`)

=
∏

1≤k<`≤n−1

(xk − x`)
∏

1≤`≤n−1

(xn − x`)

=
∏

1≤k<`≤n
(xk − x`)

where the second equality is by induction. For n = 2, the relation is obvious.

An important relation is Andreief’s identity, which can be found e.g. in
[7]

Lemma 3.2. Let φk, ψk be measurable functions such that φkψ` ∈ L1(T) for
all k, ` = 1, . . . , n, then

∫

Tn
det(φk(z`))

n
k,` det(φk(z`))

n
k,`dz1 . . . dzn

= n! det

(∫

T
φk(z)ψ`(x)dz

)n

k,`=1

.

Proof. This is an exercise of using the definition of determinants,
∫

Tn
det(φk(z`))

n
k,` det(φk(z`))

n
k,`dz1 . . . dzn

=
∑

σ∈Sn

∫

Tn
Sign(σ)

n∏

`=1

φ`(zσ(`)) det(φk(z`))
n
k,`dz1 . . . dzn

= n!

∫

Tn

n∏

`=1

φ`(z`) det(φk(z`))
n
k,`dz1 . . . dzn

= n!

∫

Tn

∑

σ∈Sn
Sign(σ)

n∏

`=1

φ`(z`)φσ(`)(z`)dz1 . . . dzn

= n! det

(∫

T
φ`(z)φk(z)

)n

k,`=1

dz.

In the third equality we have swapped the columns according to σ and then
changed the order of integration. The other equalities are by the definition
of determinants.

Given a function ϕ ∈ L2(T) let Tn(ϕ) denote the n× n Toeplitz matrix
given by

Tn(ϕ) =




ϕ̂(0) ϕ̂(−1) · · · ϕ̂(1− n)
ϕ̂(1) ϕ̂(0) · · · ϕ̂(2− n))
...

...
...

ϕ̂(n− 1) ϕ̂(n− 2) · · · ϕ̂(0)
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where
ϕ̂(k) =

1

2π

∫ π

−π
ϕ(eiθ)e−ikθdθ

is the k:th Fourier coefficient. The Toeplitz matrix has an interesting relation
to the characteristic function. Next lemma shows this relation.

Lemma 3.3. Let ϕn(eiθ) = eλGn(θ). Then

E
[
eλXn(Gn)

]
= det(Tn(ϕn)).

Proof. Let φk(θ) = ei(k−1)θ and ψk(θ) = e−i(k−1)θ. Use the probability
measure (1) to see that

E
[
eλXn(Gn)

]
= E

[
n∏

k=1

eλGn(θk)

]

=
1

n!(2π)n

∫

[−π,π]n

n∏

k=1

eλGn(θk) det(φk(θ`))
n
k,` det(ψk(θ`))

n
k,`dθ1 . . . dθn

=
1

n!(2π)n

∫

[−π,π]n
det(eλGn(θ`)φk(θ`))

n
k,` det(ψk(θ`))

n
k,`dθ1 . . . dθn

= det

(∫ π

−π
eλGn(θ)φk(θ)ψ`(θ)

dθ

2π

)n

k,`

= det(Tn(ϕn)).

The second equality is the definition of expectation value together with
Lemma 3.1, the forth equality is Andreief’s identity and in the last equality
we have used that φk(θ) = ei(k−1)θ and ψk(θ) = e−i(k−1)θ.

We will now relate the moment generating function with the determinant
of an integral operator. Let Kn : C× C\{(0, 0)} → C be defined as

Kn(z, z′) =
1

2πi

zn(z′)−n − 1

z − z′ (16)

if z′ 6= z and

Kn(z, z) =
1

2πi

n

z
. (17)

Lemma 3.4. Let, ϕn and Gn be as before, then

det(Tn(ϕn)) = det
(
I +Kn

(
eλGn − 1

))
.

Remark. The right hand side is the determinant of an operator on L2(T),

h 7→ h+

∫

T
Kn(·, z′)

(
ϕn(z′)− 1

)
h(z′)dz′.

For this we need to consider the Fredholm determinant, see Appendix.
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Proof. To prove this, we will compare the eigenvalues of the matrix on the
left hand side with the eigenvalues of the operator on the right hand side.

First of all, we can use the fact that Kn is a projection to see that

(I +Kn(ϕn − 1))zk =

n−1∑

`=0

ϕ̂n(`− k)z`

if 0 ≤ k < n and

(I +Kn(ϕn − 1))zk = zk +

n−1∑

`=0

ϕ̂n(`− k)z`

if k < 0 or k ≥ n. Assume that h ∈ L2(T),

h(z) =
∞∑

k=−∞
ĥ(k)zk,

is an eigenvector to the operator I+Kn(ϕn−1) with eigenvalue µ. If ĥ(k) 6= 0
for some k < 0 or k ≥ n, then, since {zk} is a basis for L2(T), the above
shows that µ = 1. Assume h ∈ L2(T) with

h(z) =

n−1∑

k=0

ĥ(k)zk.

Then a straight forward calculation shows that h is an eigenvector to I +
Kn(ϕn − 1) with eigenvalue µ if and only if (ĥ(0), . . . , ĥ(n − 1))T is an
eigenvector to Tn(ϕn) with eigenvalue µ. Hence

det(Tn(ϕn)) = det
(

1 +Kn

(
eλGn − 1

))
.

What we have done so far is to translate the problem from a probability
problem to an analysis problem. What we will do now is to understand the
right hand side of previous lemma. Compare with Theorem 1.5. In that
theorem this is the starting point.

We will do the proof with some simplifications and then extend the result.
For what follows assume that G ∈ C∞ and that θ0 = 0. Let

G̃n(z) =

Nn∑

k=−Nn
Ĝn(k)zk,

where Nn will be chosen later. This is an analytic function in C\{0}. If n
is big then Gn has support in [−π, π] and G̃n(eiθ) approximates Gn(θ). Let
ϕ̃n(z) = eλG̃n(z), then both ϕ̃n(z) and ϕ̃n(z)−1 are analytic in C\{0}.
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+−

(
ϕ̃n(z) −(ϕ̃n(z)−1)zn

(ϕ̃n(z)−1)z−n 2−ϕ̃n(z)

)

Figure 2: The contour and jump matrix for the RHP in Theorem 3.5.

The following theorem is where we will use the theory about integrable
operators from the preliminaries. It expresses the Fredholm determinant in
terms of integrals. Let

f (1)
n (z) = (zn, 1)T

and

f (2)
n (z) =

1− eλG̃n(z)

2πi
(z−n,−1)T .

Then

Kn

(
1− eλG̃n

)
(z, z′) =

f
(1)
n (z)T f

(2)
n (z′)

z − z′

that is Kn

(
1− eλG̃n

)
is an integrable operator.

Theorem 3.5. If m is a solution to the RHP (T, Jm) where Jm : T→ C2×2

is the jump matrix

Jm(z) =

(
ϕ̃n(z) −(ϕ̃n(z)− 1)zn

(ϕ̃n(z)− 1)z−n 2− ϕ̃n(z)

)
,

and
F (1)
n = m+f

(1)
n (18)

and
F (2)
n = (m+)−T f (2)

n . (19)
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Then

log det
(
I +Kn

(
eλ
′G̃n − 1

))

= −
∫

γ

∫

T

∫

T
G̃n(z′)eλG̃n(z′) z

n(z′)−n − 1

(z − z′)2
F (1)
n (z′)TF (2)

n (z)dz′
dz

2πi
dλ

+

∫

γ
Tr
(
G̃ne

λG̃nKn

)
dλ (20)

where γ is a straight line from 0 to λ′.

Proof. In this proof we will use theory about determinants and traces for
operators (see Appendix) and the theory about integrable operators.

Since Kn is of finite rank and since the space of trace class operators is an
ideal in the space of bounded operators, we can see that Kn

(
eλG̃n − 1

)
and

KnG̃ne
λG̃n are trace class operators, moreover, since ‖Kn‖ = 1 and |eλG̃n(z)−

1| < 1 we can use the Neumann series to see that
(
I +Kn

(
eλG̃n − 1

))−1

exists, for all λ ∈ γ. Moreover

sup
z∈T

∣∣∣∣∣
ehG̃n(z)−1

h
− G̃n

∣∣∣∣∣→ 0

as h→ 0 and by (50)
∥∥∥∥∥∥

Kn

(
e(λ+h)G̃n − 1

)
−Kn

(
eλG̃n − 1

)

h
−KnG̃ne

λG̃n

∥∥∥∥∥∥
1

→ 0

as h→ 0. Hence, we can use Lemma A.10 to differentiate the left hand side
with respect to λ for λ ∈ γ. For the following calculations, we will also use
(56) and (57),

∂

∂λ
log det

(
I +Kn

(
eλG̃n − 1

))

= Tr

((
I +Kn

(
eλG̃n − 1

))−1 (
KnG̃ne

λG̃n
))

= Tr

(((
I +Kn

(
eλG̃n − 1

))−1
− I
)(

KnG̃ne
λG̃n
))

+ Tr
(
KnG̃ne

λG̃n
)

= −Tr
(
KnG̃ne

λG̃nRn

)

+ Tr
(
KnG̃ne

λG̃n
)

where
Rn = (I +Kn(eλG̃n − 1))−1Kn(eλG̃n − 1).
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From Theorem 2.9, Theorem 2.10 and Lemma 2.11,

Rn(z, z′) = −F
(1)
n (z)TF

(2)
n (z′)

z − z′ .

Hence, by (62) and Theorem A.6,

Tr
(
KnG̃ne

λG̃nRn

)

=

∫

T

∫

T

(
Kn(z, z′)G̃neλG̃nRn(z′, z)

)
dz′dz

=

∫

T

∫

T
G̃n(z′)eλG̃n(z′) z

n(z′)−n − 1

(z − z′)2
F (1)
n (z′)TF (2)

n (z)dz′
dz

2πi
.

Use (18) and (19) and that f (1)
n (z)T f

(2)
n (z) = 0 to see that F (1)

n (z)TF
(2)
n (z) =

0. From (18) we can see that F (1)
n is a restriction of an analytic function, in

particular it tells us that the integral is well defined in the usual sense. Put
these calculations together and integrate over γ to get the result.

We will now introduce some explicit functions that will help us to be able
to evaluate the integral in the previous theorem for large n. Let

H(1)
n (z) =

(
eλ(C+G̃n)(z)ϕ̃n(z)−1zn, e−λ(C+G̃n)(z)

)T

=
(
eλ(C−G̃n)(z)zn, e−λ(C+G̃n)(z)

)T

and

H(2)
n (z) =

1− ϕ̃n(z)

2πi

(
e−λ(C+G̃n)(z)z−n, eλ(C+G̃)(z)ϕ̃n(z)−1

)

=
1− ϕ̃n(z)

2πi

(
e−λ(C+G̃n)(z)z−n, eλ(C−G̃)(z)

)
(21)

We can extend H(1)
n to an analytic function away from zero by

H(1)
n (z) =

(
eλ(CG̃n)(z)ϕ̃n(z)−1zn, e−λ(CG̃n)(z)

)T
(22)

for ρn < |z| < 1, where ρn is chosen in the following theorem, and

H(1)
n (z) =

(
eλ(CG̃n)(z)zn, e−λ(CG̃n)(z)ϕ̃n(z)−1

)T

for 1 < |z| < ρ−1
n . From (18) we can see that we can do a similar extension

of F (1)
n . As mentioned above, the idea to introduce H(1)

n and H
(2)
n is that

they are close to F (1)
n and F (2)

n respectively as n tends to infinity. The exact
statement is done in the following theorem.
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Theorem 3.6. Let β and γ be such that α < β < γ < 1 and

β − α < 1− γ. (23)

Recall that α is the rate of scaling. Let

ρn = (1− n−γ) (24)

and Nn ∈ N be the biggest integer smaller than nβ. Let rn = 1− n−γ
8 and let

Cn be the circle with radius rn. Then
∣∣∣∣
∫

T

∫

T
G̃n(z′)eλG̃n(z′) z

n(z′)−n − 1

(z − z′)2
F (1)
n (z′)TF (2)

n (z)dz′
dz

2πi

−
∫

T

∫

Cn
G̃n(z′)eλG̃n(z′) z

n(z′)−n − 1

(z − z′)2
H(1)
n (z′)TH(2)

n (z)dz′
dz

2πi

∣∣∣∣

≤ dne−
n1−γ

8π .

where dn = 3 · 216π3e
∫
R |G(s)|dsεnβ−α+3γe

9ec
π
εnβ−α .

Remark. The constants introduced in Theorem 3.6 are chosen in a very
specific way to make the proof work. When necessary we will point back to
the specific choice.

The proof is rather long and technical, therefore it is postponed to section
5.1. By the choice of the constants we can see that e−

n1−γ
8π is the dominated

factor, so the right hand side tends to zero when n tends to infinity. Hence,
we can consider the integral in Theorem 3.5 with H(1)

n and H(2)
n instead of

F
(1)
n and F (2)

n . To summarize, Theorem 3.5, that uses the theory of integrable
operators, gives us a way to understand the Fredholm determinant in terms
of an integral, and Theorem 3.6, that uses the theory of RHP, gives us a way
to evaluate these integrals as n tends to infinity.

Lemma 3.7. With G̃n, H
(1)
n and H(2)

n defined earlier, the equality
∫

T

∫

Cn
G̃n(z′)eλG̃n(z′) z

n(z′)−n − 1

(z − z′)2
H(1)
n (z′)H(2)

n (z)dz′
dz

2πi

= −2λ

Nn∑

k=1

kĜn(k)Ĝn(−k)− nĜn(0) + Tr
(
G̃ne

λG̃nKn

)

holds.

Proof. The following is a lot of tedious calculations. The first equality comes
from (22), (21) and a change of order of integration, which can be done since

32



everything is analytic away from zero.
∫

T

∫

Cn
G̃n(z′)eλG̃n(z′) z

n(z′)−n − 1

(z − z′)2
H(1)
n (z′)H(2)

n (z)dz′
dz

2πi

=
1

2πi

∫

Cn

∫

T
G̃n(z′)eλG̃n(z′)

(
1− eλG̃n(z)

) zn(z′)−n − 1

(z − z′)2

×
(
eλ(CG̃n(z′)−G̃n(z′)−C+G̃n(z))(z′)nz−n − eλ(C−G̃n(z)−CG̃n(z′))

) dz

2πi
dz′ (25)

Expand (z − z′)−2 into a power series to see that (25) is equal to

1

2πi

∫

Cn
G̃n(z′)eλCG̃n(z′)

∞∑

k=1

k

∫

T

(
e−λC+G̃n(z) − e−λC−G̃n(z)

)
z−k

dz

2πiz
(z′)k−1dz′

− 1

2πi

∫

Cn
G̃n(z′)eλCG̃n(z′)

∞∑

k=1

k

∫

T

(
e−λC+G̃n(z) − e−λC−G̃n(z)

)
z−k−n

dz

2πiz
(z′)k+n−1dz′

− 1

2πi

∫

Cn
G̃n(z′)e−λ(CG̃n(z′)−G̃n(z′))

∞∑

k=1

k

∫

T

(
eλC−G̃n(z) − eλC+G̃n(z)

)
z−k+n dz

2πiz
(z′)k−n−1dz′

+
1

2πi

∫

Cn
G̃n(z′)e−λ(CG̃n(z′)−G̃n(z′))

∞∑

k=1

k

∫

T

(
eλC−G̃n(z) − eλC+G̃n(z)

)
z−k

dz

2πiz
(z′)k−1dz′.

(26)

For the following step we will use that ̂
e±λC+G̃n(k) = 0 if k < 0 and

̂
e±λC−G̃n(k) = 0 if k > 0. We will also deform the curve of integration,
which is possible to do since all the power series converges. So (26) is equal
to

1

2πi

∫

T
G̃n(z′)eλC+G̃n(z′)

∞∑

k=1

k
̂

e−λC+G̃n(k)(z′)k−1dz′

− 1

2πi

∫

T
G̃n(z′)eλC+G̃n(z′)

∞∑

`=n+1

(`− n)
̂

e−λC+G̃n(`)(z′)`−1dz′

− 1

2πi

∫

T
G̃n(z′)e−λC−G̃n(z′)

0∑

`=1−n
`
̂
eλC−G̃n(`)(z′)`−1dz′

− 1

2πi

∫

T
G̃n(z′)e−λC−G̃n(z′)n

z

∞∑

`=1−n

(
̂
eλC−G̃n − ̂

eλC+G̃n

)
(z′)`dz′ (27)
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In the next step we will use that

1

2πi

∫

Cn
G̃n(z′)eλC+G̃n(z′)

∞∑

`=n+1

(`− n)
̂

e−λC+G̃n(`)(z′)`−1dz′ = 0,

1

2πi

∫

Cn
G̃n(z′)e−λC−G̃n(z′)

−n∑

`=−∞
`
̂
eλC−G̃n(`)(z′)`−1dz′ = 0,

1

2πi

∫

Cn
G̃n(z′)e−λC−G̃n(z′)

−n∑

`=−∞

(
̂
eλC−G̃n − ̂

eλC+G̃n

)
(`)(z′)`dz′ = 0.

This is true sinceNn < n and since ̂
e±λC+G̃n(k) = 0 if k < 0 and ̂

e±λC−G̃n(k) =
0 if k > 0, which implies that there is no power of z equal to −1. Then (27)
is equal to

1

2πi

∫

T
G̃n(z′)(−λC+G̃

′
n(z′)dz′ − 1

2πi

∫

T
G̃n(z′)λC−G̃′n(z′)dz′

− 1

2πi

∫

Cn
G̃n(z′)

n

z
dz′ +

1

2πi

∫

T
G̃n(z′)eλG̃n(z′) n

z′
dz′ (28)

For the last steps (4) and (5) will be used, also the relation between the
Fourier coefficients of Gn and the Fourier coefficients of G̃n. Hence (28) is
equal to

− λ
∫

T
G̃n(z′)

∞∑

k=1

k
(

ˆ̃Gn(k)(z′)k−1 + ˆ̃Gn(−k)(z′)−k−1
) dz′

2πi

− n ˆ̃Gn(0) + Tr
(
G̃ne

λG̃nKn

)

= −2λ

∞∑

k=1

k ˆ̃Gn(k) ˆ̃Gn(−k)− n ˆ̃Gn(0) + Tr
(
G̃ne

λG̃nKn

)

= −2λ

Nn∑

k=1

kĜn(k)Ĝn(−k)− nĜn(0) + Tr
(
G̃ne

λG̃nKn

)
.

Lemma 3.8. If we consider G̃n as a function on [−π, π), that is,

θ 7→ G̃n(eiθ),

then

E
[
eλXn(G̃n)

]
= en

1−α λ
2π
F(G)(0)eλ

2 1
4π2

∫∞
0 ξ|F(G)(ξ)|2dξ(1 +O

(
n−α

)
)

as n→∞.
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Proof. By (20), Theorem 3.6 and Lemma 3.7 we can see that

log det
(
I +Kn

(
eλ
′G̃n − 1

))
− nλ′Ĝn(0)

= (λ′)2
Nn∑

k=1

kĜn(k)Ĝn(−k) +O
(
dne
−n1−γ

8π

)

=
(λ′)2

4π2

1

nα

Nn∑

k=0

k

nα
F(G)

(
k

nα

)
F(G)

(
− k

nα

)
+O

(
dne
−n1−γ

8π

)

→ (λ′)2

4π2

∫ ∞

0
ξF(G)(ξ)F(G)(−ξ)dξ (29)

as n→∞. In the second equality we have used the calculations

Ĝn(k) =

∫ π

−π
G (nαθ) e−ikθ

dθ

2π

=
1

2π

∫ nαπ

−nαπ
G(s)e−i

k
nα

s ds

nα

=
1

2π

∫ ∞

−∞
G(s)e−i

k
nα

s ds

nα

=
1

2πnα
F(G)

(
k

nα

)
. (30)

To see the limit, remember the remark after Theorem 3.6 that dne−
n1−γ

8π → 0
as n→∞, because of the specific choice of β and γ. Note also that the sum
is a Riemann sum. To find the rate of convergence we need to find the rate
of convergence of the Riemann sum.

To find the convergence of the Riemann sum, let

h(ξ) = ξF(G)(ξ)F(G)(−ξ)

then h is continuously differentiable. Consider
∣∣∣∣∣

∫ Nn
nα

0
h(ξ)dξ − 1

nα

Nn∑

k=0

h

(
k

nα

)∣∣∣∣∣ ≤
∞∑

k=0

∫ (k+1)/nα

k/nα

∣∣∣∣h(ξ)− h
(
k

nα

)∣∣∣∣ dξ

≤
∞∑

k=0

∫ (k+1)/nα

k/nα

1

nα
|h′(x(ξ))|dξ

=
1

nα

∫ ∞

0
|h′(x(ξ))|dξ

where we have used the Mean Value Theorem, so x(ξ) ∈ [k/nα, ξ]. Note
that h′(x(ξ)) → h′(ξ) as n → ∞ and both F(G) and F(G)′ is bounded by
some C and C

ξ2 away from zero. This implies that |h′| is bounded by some
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D and D
ξ3 away from zero. Hence |h′(x(ξ))| is dominated by D for 0 ≤ ξ ≤ 2

and D
(ξ−1)3 if ξ > 2. We can now use the Lebesgue’s Dominated Convergence

Theorem to conclude

nα

∣∣∣∣∣

∫ Nn
nα

0
h(ξ)dξ − 1

nα

Nn∑

k=0

h

(
k

nα

)∣∣∣∣∣→ c ≤
∫ ∞

0
|h′(ξ)|dξ <∞.

Since G is smooth and h is defined by the Fourier transform of G, we can
find an ` such that (β−α)` ≥ 1, remember (23), and h is of order ξ−`, hence

∫ ∞
Nn
nα

|h(ξ)|dξ ≤ c
(

1

nβn−α

)`+1

≤ c 1

n

for some constant c. Hence the limit in (29) is of order n−α.
By using the fact that

en
−α

= 1 +
en
−α − 1

n−α
n−α

and that F(G)(−ξ) = F(G)(ξ), since G is real valued, and by Lemma 3.3
and Lemma 3.4 we can conclude that

E
[
eλXn(G̃n)

]
= en

1−α λ
2π
F(G)(0)eλ

2 1
4π2

∫∞
0 ξ|F(G)(ξ)|2dξ(1 +O

(
n−α

)
)

as n→∞.

Before proceeding, note that the right hand side barely depends on α.
It is only the first term in the exponent, which will turn out to be the
expectation value of Xn(Gn), and the rate of convergence that depends on α.
We can also note that the condition G ∈ C∞ is unnecessarily strong, it would
suffice that G ∈ C` and we would still have the same rate of convergence.
But ` depends on α, so α gives some kind of contribution when it comes to
rate of convergence and how smooth a function needs to be in order not to
lose the convergence rate.

Lemma 3.8 tells us that we understand the moment generating function
for the function we approximated G with. We will now show that we un-
derstand the limit for all functions in Theorem 1.4. This will be done by
using some probabilistic results that makes it possible to extend this result
to a wider class of functions. We will now state the facts we need. These are
standard and can be found in e.g. [7].

Lemma 3.9. Let h be a bounded function on [−π, π), then

E[Xn(h)] = Tr(Knh)

and
Var(Xn(h)) = Tr(Knh

2)− Tr
(
(Knh)2

)
.
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Proof. Consider the logarithm of the moment generating function

logE
[
eλXn(h)

]
.

Expend this into a power series in λ, that is

logE
[
eλXn(h)

]
= λE[Xn(h)] +

λ2

2
(E[Xn(h)2]− E[Xn(h)]2) +O(λ3),

where
E[Xn(h)2]− E[Xn(h)]2 = Var(Xn(h)).

Now use Lemma 3.3, Lemma 3.4, (61) and expand the right hand side,

logE
[
eλXn(h)

]
= log det

(
I +Kn

(
eλh − 1

))

= Tr log
(
I +Kn

(
eλh − 1

))

= λTr(Knh) +
λ2

2

(
Tr(Knh

2)− Tr
(
(Knh)2

))
+O(λ3)

where the logarithm is defined by a power series for small λ. Compare the
two series to get the relation.

Lemma 3.10. Let h1 and h2 be bounded real valued functions on [−π, π)
such that ∞∑

k=0

k|ĥ(k)|2 <∞

and such that the expectation values of Xn(h1) and Xn(h2) are zero. Then

∣∣∣E
[
eiλXn(h1) − eiλXn(h2)

]∣∣∣ ≤
√

2|λ|
( ∞∑

k=0

k| ̂(h1 − h2)(k)|2
) 1

2

.

Proof. First we bound the left hand side with the square root of the variance,
∣∣∣E
[
eiλXn(h1) − eiλXn(h2)

]∣∣∣ ≤ E
∣∣∣eiλ(Xn(h1)−Xn(h2)) − 1

∣∣∣
≤ |λ|E|Xn(h1)−Xn(h2)|
≤ |λ|Var(Xn(h1 − h2))

1
2 .

In the first inequality, we have used that h1 and h2 are real, in the second,
that |eit − 1| ≤ |t| for t ∈ R and in the last we have used Cauchy-Swartz
inequality and that the E[Xn(h1)] = E[Xn(h2)] = 0. Now, let h

(
eiθ
)

=
h1(θ)− h2(θ), that is we are viewing the difference as a function on the unit
circle. Then, from Lemma 3.9 and Theorem A.6 together with (62),

Var(Xn(h)) = n

∫

T
h(z)2 dz

2πiz
−
∫

T

∫

T
h(z′)h(z)Kn(z, z′)Kn(z′, z)dz′dz.
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Note that

Kn(z, z′)Kn(z′, z) =
1

2πiz

1

2πiz′

n−1∑

k=−(n−1)

(n− |k|)
( z
z′

)k
,

with this it is easy to see that the right most term is equal to

−2

n−1∑

k=1

kĥ(k)ĥ(−k) + 2n

n−1∑

k=1

ĥ(k)ĥ(−k) + nĥ(0)2.

Write

h(z) =
∞∑

k=−∞
ĥ(k)zk

to see that

n

∫

T
h(z)2 dz

2πiz
= 2n

∞∑

k=1

ĥ(k)ĥ(−k) + nĥ(0)2.

Hence, since h is real valued,

Var(Xnh) = 2
∞∑

k=1

min(n, k)|ĥ(k)|2

≤ 2
∞∑

k=0

k|ĥ(k)|2.

We are now ready to extend our result. The next lemma states that the
statement is true for the function we started with, that is a smooth functions
with compact support.

Lemma 3.11. Let G be as before. Then

E
[
eiλ(Xn(Gn)−E[Xn(Gn)]

]
→ e−λ

2 1
4π2

∫∞
0 ξ|F(G)(ξ)|2dξ

as n→∞.

Proof. From Lemma 3.9 and Theorem A.6,

E[λXn(Gn)] = Tr(λKnGn) = n1−α λ
2π
F(G)(0) (31)

and
E[λXn(G̃n)] = n1−α λ

2π
F(G)(0).
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Note that this is exactly the first term in the exponent of the moment gen-
erating function. From Lemma 3.10 and since Ĝn(k) = ˆ̃Gn(k) for |k| ≤ Nn,

∣∣∣E
[
eiλ(Xn(Gn)−E[Xn(Gn)]) − eiλ(Xn(G̃n)−E[Xn(G̃n)])

]∣∣∣

≤
√

2|λ|




∞∑

k=Nn+1

k|Ĝn(k)|2



1
2

≤
√

2|λ|


 1

4π2nα

∞∑

k=Nn+1

k

nα

∣∣∣∣F(G)

(
k

nα

)∣∣∣∣
2



1
2

≤
√

2|λ|
(

1

4π2

∫ ∞
Nn
nα

ξ |F(G)(ξ)|2
) 1

2

Where the last term converges to zero as n tends to infinity. Hence

E
[
eiλ(Xn(Gn)−E[Xn(Gn)]

]
= E

[
eiλ(Xn(G̃n)−E[Xn(G̃n)]

]

+ E
[
eiλ(Xn(Gn)−E[Xn(Gn)]) − eiλ(Xn(G̃n)−E[Xn(G̃n)])

]

→ e−λ
2 1

4π2

∫∞
0 ξ|F(G)(ξ)|2dξ

as n→∞.

Unfortunately we lose the rate of convergence here. It is because we have
to consider the characteristic function instead of the moment generating
function, which we have worked with before, to be able to use the estimation
in Lemma 3.10.

So far we have proved Theorem 1.4 for smooth functions with compact
support and with θ0 = 0. We will now extend it to all functions in Theorem
1.4 and for arbitrary θ0, which will complete the proof.

Proof of Theorem 1.4. Let G ∈ L2(R) be a continuous real valued function,
such that ∫ ∞

0
ξ|F(G)(ξ)|2dξ <∞.

Remember that this defines a seminorm. Let H be a smooth real valued
function with compact support. Without loss of generality we can assume
that both Xn(Gn) and Xn(Hn) has expectation value zero. Consider the
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estimation
∣∣∣E
[
eiλXn(Gn)

]
− e−λ2 1

4π2

∫∞
0 ξ|F(G))(ξ)|2dξ

∣∣∣

≤
∣∣∣E
[
eiλXn(Hn)

]
− e−λ2 1

4π2

∫∞
0 ξ|F(H))(ξ)|2dξ

∣∣∣ (32)

+
∣∣∣E
[
eiλXn(Gn) − eiλXn(Hn)

]∣∣∣ (33)

+
∣∣∣e−λ

2 1
4π2

∫∞
0 ξ|F(H)(ξ)|2dξ − e−λ2 1

4π2

∫∞
0 ξ|F(G)(ξ)|2dξ

∣∣∣ . (34)

We will choose H and n such that (32), (33) and (34) are small.
Let H such that ∫ ∞

0
ξ|F(G−H)(ξ)|2dξ

is so small such that (33) is small by a similar argument as in Lemma 3.11.
We can assume that

∫ ∞

0
ξ|F(H)(ξ)|2dξ ≤

∫ ∞

0
ξ|F(G)(ξ)|2dξ

and hence,

0 ≤
∫ ∞

0
ξ|F(H)(ξ)|2dξ −

∫ ∞

0
ξ|F(G)(ξ)|2dξ

≤
(∫ ∞

0
ξ|F(H −G)(ξ)|2dξ

) 1
2

((∫ ∞

0
ξ|F(H)(ξ)|2dξ

) 1
2

+

(∫ ∞

0
ξ|F(G)(ξ)|2dξ

) 1
2

)
.

This implies that (34) is less than
∣∣∣1− e−λ

2 1
4π2 (

∫∞
0 ξ|F(G)(ξ)|2dξ−

∫∞
0 ξ|F(G)(ξ)|2dξ)

∣∣∣

which is small by the choice of H. From Lemma 3.11 we can choose n such
that (32) is small. Hence the result follows for θ0 = 0.

For the case if θ0 6= 0 we use a little trick. Let ϕn be as before and let
ϕn,0 = eλG(nα(θ−θ0)). Let n be so big that −nαπ, nαπ,−nα(π−θ0), nα(π−θ0)
are not in the support of G. Then

ϕ̂n,0(k) =
1

2π

∫ π

−π
eλG(nα(θ−θ0))e−ikθdθ

= eikθ0
1

2π

∫ π−θ0

−π−θ0
eλG(nα(θ′))e−ikθ

′
dθ′

= eikθ0
1

2π

∫ π

−π
eλG(nα(θ′))e−ikθ

′
dθ′

= eikθ0ϕ̂n(k).
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Especially ϕ̂n(0) = ϕ̂n,0(0). Consider the determinant,

det(T (ϕn,0)) =

∣∣∣∣∣∣∣∣∣

ϕ̂n(0) e−iθ0ϕ̂n(−1) · · · ei(1−n)θ0ϕ̂n(1− n)

eiθ0ϕ̂n(1) ϕ̂n(0) · · · ei(2−n)θ0ϕ̂n(2− n)
...

...
...

ei(n−1)θ0ϕ̂n(n− 1) ei(n−2)θ0ϕ̂n(n− 2) · · · ϕ̂n(0)

∣∣∣∣∣∣∣∣∣

Multiply the k:th row with e−ikθ0 and the k:th column with eikθ. Doing this
in the above equality the left hand side does not change and the right hand
side becomes det(T (ϕn)). Hence from Lemma 3.3 the result follows for all
θ0.

4 Proof of Theorem 1.5

In this section we will prove Theorem 1.5. The main ideas in this proof are
the same as in the proof of Theorem 1.4. But, as mentioned before, in this
proof we will not go into the relation with moment generating functions.

The assumptions in Theorem 1.5 are made in such a way that a specific
choice of properties will be fulfilled. These properties are stated below,
although most of them are not needed before we solve the RHP.

Lemma 4.1. Assume the same assumptions as in Theorem 1.5. Then there
exists a strip S containing the real line such that f can be extended to an
analytic function in this strip such that

f(z) = O(z−2)

as |z| → ∞. Moreover, there exists an ε > 0 and a δ, 0 < δ < 1, such that
if |λ| < ε then |1− ϕn,t(z)| < δ where

ϕn,t(x) = 1− t(1− eλfn(x)),

in
Sn = {nz; z ∈ S}

and hence ϕn,t(z)−1 exists as an analytic function.

Proof. Without loss of generality we can assume that the first and second
derivative of the Fourier transform has the same bound as the Fourier trans-
form. Let 0 < b < a and S = {z ∈ C; |Im(z)| < b}. To see that f can be
extended, define

f(z) =

∫

R
F(f)(ξ)eiξz

dξ

2π
(35)
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for z ∈ S. This is well defined since
∫

R
|F(f)(ξ)eiξz| dξ

2π
≤ A

∫

R
e−|ξ|ae|ξ|b

dξ

2π
<∞. (36)

We want to show that this defines an analytic function. For that, define

fN (z) =

∫

R
1[−N,N ]F(f)(ξ)eiξz

dξ

2π
,

this defines an analytic function such that fN → f as N →∞ uniformly on
any compact subset of S. Hence f is analytic. This is basically a part of a
weaker version of the Paley-Wiener Theorem.

By integration by part twice, which is possible by the assumption on the
first and second derivative, (35) shows that

f(z) = O(z−2).

Let 0 < δ < 1 and let ε′ > 0 be such that |1 − ez| < δ if |z| < ε′. Let
ε = ε′

c where |f(z)| ≤ c in S, which exists by (36). If λ ∈ C, |λ| < ε then by
the triangle inequality

|1− ϕn,t(z)| < δ

for z ∈ Sn. Hence ϕn,t(z) is non-zero and ϕn,t(z)−1 is therefore analytic in
Sn.

Note that this lemma implies that 1−ϕn,t and 1−ϕ−1
n,t belongs to L2(R+

inb′) and L1(R + inb′) for any |b′| < b.
Let log denote the principle branch of logarithm and define gn,t : R→ C

as
gn,t(x) = log(ϕn,t(x)).

Lemma 4.2. With gn,t defined above it is a well defined Schwartz function.
If z ∈ C\R then

|Cgn,t(z)| ≤ d
n

|Im(z)|
where d is a constant not depending on z, t or n.

Proof. First of all, in the proof of Lemma 4.1, we saw that ϕn,t attains values
close to one. Therefore we can write

gn,t(x) =

∞∑

k=1

(−1)k+1 (t(eλfn(x) − 1))k

k

and it is a well defined smooth function. Since the function ez−1
z is continuous

close to zero and since |λf(x)| < ε, we can assume that ε is small enough to
make sure that ∣∣∣∣∣

eλf(x) − 1

λf(x)

∣∣∣∣∣ ≤ 2
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for all real x. Then, since |eλf(x) − 1| < δ < 1, we have the estimate

|gn,t(x)| ≤
∞∑

k=1

|eλfn(x) − 1|k
k

≤ |eλfn(x) − 1| 1

1− δ
≤ |λfn(x)| 2

1− δ .

From this and the fact that

g′n,t(x) =
ϕ′n,t(x)

ϕn,t

we can conclude that gn,t is a Schwartz function. Moreover

|F(gn,t)(ξ)| ≤
∫

R
|gn,t(x)|dx

≤ n 2|λ|
1− δ

∫

R
|f(x)|dx

<∞.

If Im(z) > 0 we can see from (6) that

|Cgn,t(z)| ≤
|λ|

π(1− δ)

∫

R
|f(x)|dx n

Im(z)
.

We have now a sufficient understanding of the functions we will work
with. Before proceeding to integrable operators, we need to show that
K(1 − ϕn,t) actually is a trace class operator, that is, that the left hand
side in Theorem 1.5 makes sense. For theory about trace class operators see
Appendix.

Lemma 4.3. Let φ ∈ L2(R) be such that
∫

R
(1 + y2)|φ(y)|2dy <∞.

Then the operator

(Kφ)h(x) =

∫

R

sin(π(x− y))

π(x− y)
φ(y)h(y)dy

defines a trace class operator.
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Proof. The first step is to show that it actually is a bounded linear operator.
Let

g(x) =
sin(πx)

πx
.

Then the operator K can be expressed as a convolution,

Kh = g ∗ h.

A straight forward calculation shows that

sin(πx)

πx
= F−1(1[−1,1])(x).

Hence, by using the Fourier transform,

Kh = F−1(F(g)F(h))

= F−1(1[−1,1]F(h)).

This tells us that it is a linear bounded operator. Moreover we can see that
it is a projection, that is

K2 = K. (37)

We will now prove that it is a trace class operator. Let ψ(x) = (i+x)−1.
Consider the kernel of the commutator [K,ψ],

[K,ψ](x, y) = K(x, y)(ψ(y)− ψ(x))

= K(x, y)
1

i+ y

1

i+ x
(x− y)

which defines a finite rank operator. Let K act from the left and ψ−1φ from
the right on the left hand side, and use (37), to see that

Kφ−KψKψ−1φ

is of finite rank. We want to show that the second term is a trace class
operator to see the Kφ is a trace class operator. By the calculations

∫

R

∫

R
|K(x, y)ψ(y)|2dxdy =

∫

R

(
sin(πx)

πx

)2

dx

∫

R

1

1 + y2
dy <∞

and
∫

R

∫

R
|K(x, y)φ(y)ψ(y)|2dxdy =

∫

R

(
sin(πx)

πx

)2

dx

∫

R
(1+y2)|φ(y)|2dy <∞,

we can use the estimate (52) and Theorem A.7, to see that

‖KψKψ−1φ‖1 ≤ ‖Kψ‖2‖Kψ−1φ‖2 <∞.

Hence Kφ is a trace class operator.
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+

−

(
ϕn,t(x) −(ϕn,t(x)−1)e2πix

(ϕn,t(x)−1)e−2πix 2−ϕn,t(x)

)

Figure 3: The contour and jump matrix for the RHP in Theorem 4.4.

We will now proceed to use the theory about integrable operators, as in
the first problem. Let

f
(1)
n,t (x) = (eiπx, e−iπx)T

and
f

(2)
n,t (y) =

1− ϕn,t(x)

2πi
(e−iπy,−eiπy)T .

Then the kernel of the operator K(1− ϕn,t) is given by

f
(1)
n,t (x)T f

(2)
n,t (y)

x− y .

The following theorem gives a relation between the Fredholm determinant
and an integral, which we can evaluate asymptotically.

Theorem 4.4. Let the contour Γ coincide with the real line oriented from
−∞ to +∞ and let Jm : Γ→ C2×2 be the jump matrix

Jm(x) =

(
ϕn,t(x) −(ϕn,t(x)− 1)e2πix

(ϕn,t(x)− 1)e−2πix 2− ϕn,t(x)

)
.

If m is the solution to the RHP (Γ, Jm),

F
(1)
n,t = m+f

(1)
n,t (38)

and
F

(2)
n,t = (m+)−T f (2)

n,t , (39)

then

log det
(
I +K

(
eλfn − 1

))
= −

∫ 1

0

1

t

∫

R
F

(1)′
n,t (x)TF

(2)
n,t (x)dxdt. (40)

Proof. From Lemma 4.3 we get that tK
(
eλfn − 1

)
and K(eλfn − 1) are

trace class for all t ∈ [0, 1]. Since ‖K‖ = 1 and tK
(
eλfn − 1

)
< 1, if we

choose δ wisely in Lemma 4.1, we can use the Neumann series to see that(
1 + tK

(
eλfn − 1

))−1 exists for all t. Hence, we can use Lemma A.10 to
differentiate the left hand side of the function

h(t) = log det(I +K (ϕn,t − 1))
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with respect to t, the limit we need to check is trivial. For the following
calculations, we will also use (56),

h′(t) = Tr

((
1 + tK

(
eλfn − 1

))−1
K(eλfn − 1)

)

=
1

t
Tr(Rn,t) (41)

where
Rn,t =

(
1 + tK

(
eλfn − 1

))−1
tK(eλfn − 1).

From Theorem 2.9, Theorem 2.10 and Lemma 2.11,

Rn,t(x, y) = −F
(1)
n (x)TF

(2)
n (y)

x− y

and since F (1)
n,t is differentiable we can let x→ y to see that

Rn,t(x, x) = −F (1)′
n (x)TF (2)

n (x).

F
(1)
n,t can actually be extended to an analytic function in a neighborhood of

the real line, see the beginning of the proof of Theorem 4.5. By the decay
of fn, Lemma 4.3 implies that K(eλfn − 1)(x2 + 1) is trace class. By using
(50) we can see that

‖K(eλfn − 1)− 1[−N,N ]K(eλfn − 1)1[−N,N ]‖1
≤ ‖1[−N,Nc]K(eλfn − 1)1[−N,N ]‖1 + ‖K(eλfn − 1)1[−N,N ]c‖1
≤ 2‖K(eλfn − 1)(x2 + 1)‖1‖(x2 + 1)−11[−N,N ]c‖∞
→ 0

as N →∞. Since B1(L2(R)) forms an ideal, we can use Theorem A.6,

Tr(Rn,t) = −
∫

R
F (1)′
n (x)TF (2)

n (x)dx.

Use this in (41) and integrate from 0 to 1 to get the result.

The next step is to understand the integral in the previous theorem for
large n. This is done by approximate F (1)

n and F (2)
n with explicit functions.

Theorem 4.5. Let

G
(1)
n,t(x) =

(
e(C−gn,t)(x)eiπx, e−(C+gn,t)(x)e−iπx

)T

and

G
(2)
n,t(y) =

1− ϕn,t(x)

2πi

(
e−(C+gn,t)(y)e−iπy,−e(C−gn,t)(y)eiπy

)
.
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Then
∣∣∣∣
∫

R

(
F

(1)′
n,t (x)F

(2)
n,t (x)−G(1)′

n,t (x)G
(2)
n,t(x)

)
dx

∣∣∣∣ ≤ d′nte−2πnρ

where d′ does not depend on n or t.

The proof of this theorem is rather long and technical, as in the other
problem, it is postponed to section 5.2. By the previous lemma, we can
calculate (40) with G(1)

n,t and G
(2)
n,t instead of F (1)

n,t and F (2)
n,t . The calculation

is done in the following lemma.

Lemma 4.6. With G(1)
n and G(2)

n defined in Theorem 4.5,

−
∫ 1

0

1

t

∫

R
G

(1)′
n,t (x)TG

(2)
n,t(x)dxdt (42)

=
1

4π2

∫ ∞

0
ξF(λfn)(ξ)F(λfn)(−ξ)dξ +

∫

R
λfn(ξ)dξ.

Proof. A straightforward differentiation of G(1)
n,t(x), which can be done due

to Lemma 2.4 and a simplification yields that (42) can be written as

1

2πi

∫ 1

0

∫

R

ϕn(x)− 1

ϕn,t(x)

(
(C+gn,t)

′(x) + (C−gn,t)′(x) + 2πi
)
dxdt. (43)

By Fubini’s Theorem and some calculations

1

2πi

∫

R

ϕn(x)− 1

ϕn,t(x)

(
(C+gn,t)

′(x) + (C−gn,t)′(x)
)
dx

=
1

4π2

∫

R

∂

∂t
gn,t(x)

∫ ∞

0
ξ
(
F(gn,t)(ξ)e

iξx + F(gn,t)(−ξ)e−iξx
)
dξdx

=
1

4π2

∫ ∞

0
ξ

(
F(gn,t)(ξ)

∂

∂t

∫

R
gn,t(x)eiξxdx+ F(gn,t)(−ξ)

∂

∂t

∫

R
gn,t(x)e−iξx

)
dxdξ

=
1

4π2

∂

∂t

∫ ∞

0
ξF(gn,t)(ξ)F(gn,t)(−ξ)dξ.

Since
gn,0(x) = 0

and
gn,1(x) = λfn(x),

(43) can be written as

1

4π2

∫ ∞

0
ξF(λfn)(ξ)F(λfn)(−ξ)dξ +

∫

R
λfn(ξ)dξ.
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At this point, we can express the determinant with an integral which we
can approximately evaluate for big n. Hence, we have all pieces to prove
Theorem 1.5.

Proof of Theorem 1.5. Note first that

F(fn)(ξ) = nF(f)(nξ)

and
F(f)(−ξ) = F(f)(ξ),

since f is real valued. By Theorem 4.4, Theorem 4.5 and Lemma 4.6,

log det
(
I +K

(
eλfn − 1

))

= λ

∫

R
fn(ξ)dξ +

1

4π2

∫ ∞

0
nξF(λf)(nξ)F(λf)(−nξ)ndξ +O(ne−2πinρ)

= λn

∫

R
f(ξ)dξ +

1

4π2
λ2

∫ ∞

0
ξ|F(f)(ξ)|2dξ +O(ne−2πinρ).

Hence

det
(
I +K

(
eλfn − 1

))
= eλn

∫
R f(ξ)dξ+λ2

∫∞
0 ξ|F(f)(ξ)|2 dξ

4π2 (1 +O(e−2πnρ)).

5 Solution to Riemann-Hilbert problem and asymp-
totics

In this section we will solve the Riemann-Hilbert problems which we post-
poned. To solve the RHP, in both problems, we will do transformations from
one Riemann-Hilbert problem to another, where every transformation is not
to difficult and such that it is possible to go back. But every step will make
us come closer to a problem we can solve. This is called Deift - Zhou steepest
descent technique (see [3]).

In both these cases there will appear a lot of constants. The actually
value of these constants is not of importance but we will still keep track of
them to be able to have control of the dependence on different parameters.

5.1 Proof of Theorem 3.6

The Deift / Zhou steepest descent technique will be done by the transfor-
mations

m→ S → R

and R will be a solution to a problem we can solve explicitly for big n.
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+− +−+−

(
1 −(1−ϕ̃n(z)−1)zn

0 1

) (
ϕ̃n(z) 0

0 ϕ̃n(z)−1

) (
1 0

(1−ϕ̃n(z)−1)z−n 1

)

Figure 4: The contour and jump matrix for the RHP in Lemma 5.1.

The first step is called the opening of the lens. This is a technique where
one pushes some part of the jump matrix away from the previous contour in
such a way that the part of the jump matrix that one has pushed converges
to the identity matrix.

Lemma 5.1. If m solves the RHP (T, Jm), define S : C\Γ→ C as

S =m, |z| < ρn

S =m

(
1 −(1− ϕ̃n(z)−1)zn

0 1

)−1

ρn < |z| < 1

S =m

(
1 0

(1− ϕ̃n(z)−1)z−n 1

)
1 < |z| < ρ−1

n

S =m 1 < |z|.

Let Γ = {z ∈ C; |z| ∈ {1, ρn, ρ−1
n }}. Then S solves the RHP (Γ, JS) where

JS =

(
1 −(1− ϕ̃n(z)−1)zn

0 1

)
|z| = ρn

JS =

(
ϕ̃n(z) 0

0 ϕ̃n(z)−1

)
|z| = 1

JS =

(
1 0

(1− ϕ̃n(z)−1)z−n 1

)−1

|z| = ρ−1
n .
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+−

(
ϕ̃n(z) 0

0 ϕ̃n(z)−1

)

Figure 5: The contour and jump matrix for the RHP in Lemma 5.2.

Proof. This is a check of Definition 2.4. (i) follows since ϕ̃−1
n is analytic for

ρn < |z| < ρ−1. To see (ii), factorize Jm to the form
(

1 0
(1− ϕ̃n(z)−1)z−n 1

)(
ϕ̃n(z) 0

0 ϕ̃n(z)−1

)(
1 −(1− ϕ̃n(z)−1)zn

0 1

)
.

With this factorization the jumps for |z| = ρn and |z| = ρ−1
n follows by

definition. For the jump on the unit circle, use the jump of m,

S+ = m+

(
1 −(1− ϕ̃n(z)−1)zn

0 1

)−1

= m−

(
1 0

(1− ϕ̃n(z)−1)z−n 1

)(
ϕ̃n(z) 0

0 ϕ̃n(z)−1

)

= S−

(
ϕ̃n(z) 0

0 ϕ̃n(z)−1

)
.

Finally (iii) is true since it is true for m.

The idea here is that this RHP is close to a RHP that we can solve. That
is, the jumps on Γ\T tends to the identity matrix as n tends to infinity. If
ϕ̃−1
n did not depend on n we would pretty much be done by general theory.

But since it do depend on n we have to be careful. But by the specific choice
of β, γ and ρn, remember (23) and (24), we can make sure that the jumps
tends to the identity matrix anyway.

Consider the part of the problem that is on the unit circle, this is a
problem we can solve.

50



Lemma 5.2. Let JP be the jump matrix

JP =

(
ϕ̃n(z) 0

0 ϕ̃n(z)−1

)
,

and P : C\T→ C2×2 be

P (z) =

(
eλ(CG̃n)(z) 0

0 e−λ(CG̃n)(z)

)
.

Then P solves the RHP (T, JP ).

Proof. This is also a check of Definition 2.4. From Lemma 2.1 we get (i) and
that C+ − C− = I. Hence

P+(z) =

(
eλ(C+G̃n)(z) 0

0 e−λ(C+G̃n)(z)

)

=

(
eλ(C−G̃n)(z) 0

0 e−λ(C−G̃n)(z)

)(
ϕ̃n(z) 0

0 ϕ̃n(z)−1

)

= P−(z)JP (z).

For (iii) we can use (3).

The following lemma makes it precise what we mean by saying that S
and P are close.

Lemma 5.3. Define R : Γ→ C2×2 as

R = SP−1

and let JR = P−JSP
−1
+ then R solves the RHP (Γ, JR). Moreover

|(R− I)(z)| ≤
8π‖µ‖L2(Γ)

min{ρn − |z|, ρ−1
n − |z|}

e−
n1−γ

4π

as n→∞.

Remark. The absolute value on a matrix is meant as the absolute value of
each entry.

Proof. That R solves the RHP (Γ, JR) is again just a check of Definition 2.4.
We can directly see that (i) and (iii) are true, since they are true for S and
P−1. For (ii) note that P− = P+ = P on Γ\T. Hence

R+ = S+P
−1
+

= S−P
−1
− P−JSP

−1
+

= R−JR
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+− +−+−

P (z)
(

1 −(1−ϕ̃n(z)−1)zn

0 1

)
P (z)−1 ( 1 0

0 1 ) P (z)
(

1 0
(1−ϕ̃n(z)−1)z−n 1

)
P (z)−1

Figure 6: The contour and jump matrix for the RHP in Lemma 5.3.

on Γ. For the second assertion remember that ρn = (1 − n−γ) and that
β < γ. By (30) we can get a bound on G̃n. If |z| = ρn or |z| = ρ−1

n then, by
the specific choice of β and γ,

|G̃n(z)| ≤ c

2πnα
(2Nn + 1)ρ−Nnn

≤ 3c

2π
nβ−α(1− n−γ)−n

β

≤ 3ec

2π
nβ−α (44)

for big enough n where c =
∫
R |G(s)|ds. From the calculations of the Cauchy

operator on the circle we can get the same bound for |CG̃n(z)|. Let n be so
big such that 1

2π ≤
ln(1−n−γ)
−n−γ , then

ρnn = (1− n−γ)n

≤ e−n
1−γ

2π . (45)

Let |z| = 1, then

JR = P−JSP
−1
+ = P−JPP

−1
+ = I.

If |z| = ρn, let

E(z) =

(
0 −(1− ϕ̃n(z)−1)zn

0 0

)
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and if |z| = ρ−1
n , let

E(z) =

(
0 0

−(1− ϕ̃n(z)−1)z−n 0

)
,

then
JR = PJSP

−1 = P (I + E)P−1 = I + PEP−1.

From the above and (44) we can conclude the estimation

‖JR − I‖∞(Γ) ≤ e2|λ|‖CG̃n‖∞(Γ\T)(1 + e|λ|‖G̃n‖∞(Γ\T))ρnn

≤ 2e
1

2π
(ε9ecnβ−α−n1−γ)

≤ 2e−
n1−γ

4π

as n→∞. Theorem 2.6 and Corollary 2.7 implies that

R = I + (C(µw))(z)

solves (Γ, JR) for big enough n. Before proceeding, we should note that this
is not the Cauchy operator on the unit circle, but the Cauchy operator on
Γ. But since Γ is a disjoint union of three circles, and since h1 ∈ L2(T) if
and only if the function h2(z) = h1

(
z
r

)
belongs to L2({|z| = r}) for some

positive r, it is easy to use the Cauchy operator on the circle to understand
the Cauchy operator on Γ.

Since JR − I = 0 on the real line and µ ∈ L2(Γ), we can see that for any
z ∈ C with ρn < |z| < ρ−1

n that

|(R− I)(z)| ≤
∫

Γ\T

|µ(w)||(JR − I)(w)|
|w − z| |dw|

≤
8π‖µ‖L2(Γ)

min{ρn − |z|, ρ−1
n − |z|}

e−
n1−γ

4π

In the second inequality we have used that µ is diagonal, which can bee seen
from the definition of µ.

We have now found a solution of R and we have a relation between R
and m. By tracing back from R to m and and from (18) we get the relation

F (1)
n (z) = H(1)

n (z) + (R(z)− I)H(1)
n (z). (46)

Proof of Theorem 3.6. From the estimate (44) and from the Maximum Mod-
ulus Principle, we can see that if ρn < |z| < ρ−1

n then |G̃n(z)| ≤ 3ec
2π n

β−α

and |eλCG̃n(z)| ≤ e
3ecε
2π

nβ−α . By the choice of rn and similar calculations as
(45),

r−nn ≤ en
1−γ
16π .
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Hence for rn ≤ |z| ≤ 1,

|H(1)
n (z)| ≤

(
e

3ec
π
εnβ−αe

n1−γ
16π , e

3ec
π
εnβ−α

)

and from (46) and from the previous lemma,

|F (1)
n (z)−H(1)

n (z)| ≤
8π‖µ‖L2(Γ)

|ρn − rn|
e

3ec
π
εnβ−α

(
e−

3n1−γ
16π , e−

n1−γ
4π

)
.

For z ∈ T,
|H(2)

n (z)| ≤ 1

2π

(
e

3ec
π
εnβ−α , e

3ec
π
εnβ−α

)
.

Since det(JR) = 1 we get from the the proof of Theorem 2.5 that det(R) = 1
and then from the inverse formula for 2× 2 matrices, that is

(
R11 R12

R21 R22

)−1

=
1

det(R)

(
R22 −R12

−R21 R11

)
,

it is clear that R−T has the same kind of asymptotic as R as n→∞. Hence
in a similar way,

|F (2)
n −H(2)

n | ≤
8‖µ‖L2(Γ)

|ρn − 1| e
3ec
π
εnβ−α

(
e−

n1−γ
4π , e−

n1−γ
4π

)
.

By the definition of µ and with the Neumann series, it is not difficult to see
that µ ≤ 8π for big enough n. This implies that

|F (2)
n (z)| ≤ 2|H(2)

n (z)|.
Now consider∫

T

∫

Cn

∣∣∣(F (1)
n (z′)F (2)

n (z)−H(1)
n (z′)H(2)

n (z))
∣∣∣ |dz′||dz|

≤
∫

Cn
|F (1)
n (z′)−H(1)

n (z′)||dz′|
∫

T
|F (2)
n (z)||dz|

+

∫

Cn
|H(1)

n (z′)||dz′|
∫

T
|F (2)
n (z)−H(2)

n (z)||dz|

≤ 29π4nγe
6ec
π
εnβ−αe−

3n1−γ
16π .

Since the integrand in the first term in the estimate in Lemma 3.6 is analytic
in some open annulus containing T and Cn we can see that
∣∣∣∣
∫

T

∫

T
G̃n(z′)eλG̃n(z′) z

n(z′)−n − 1

(z − z′)2
F (1)
n (z′)TF (2)

n (z)dz′
dz

2πi

−
∫

T

∫

Cn
G̃n(z′)eλG̃n(z′) z

n(z′)−n − 1

(z − z′)2
H(1)
n (z′)TH(2)

n (z)dz′
dz

2πi

∣∣∣∣

≤ 3 · 27ec

π
εnβ−α+2γe

3ec
π
εnβ−αe

n1−γ
16π

∫

T

∫

Cn

∣∣∣(F (1)
n (z′)F (2)

n (z)−H(1)
n (z′)H(2)

n (z))
∣∣∣ |dz′||dz|

≤ 3 · 216π3ecεnβ−α+3γe
9ec
π
εnβ−αe

−n1−γ
8π .

54



This concludes the proof of Theorem 1.4.

5.2 Proof of Theorem 4.5

The Deift - Zhou steepest descent technique will be done by the transforma-
tions

m→ T → S → R

and R will be a problem we can solve explicitly for big n. Since we have seen
similar transformations between different RHP in the proof of Theorem 3.6,
we will not go into all details. Denote ϕt = ϕ1,t and gt = g1,t.

The first step is to do a transformation so that the function will not vary
with n.

Lemma 5.4. Define T : C\Γ→ C2×2 as

T (z) = m(nz).

Then T solves the Riemann-Hilbert Problem (Γ, JT ) where

JT (x) = Jm(nx) =

(
ϕt(x) −(ϕt(x)− 1)e2πinx

(ϕt(x)− 1)e−2πinx 2− ϕt(x)

)
.

Proof. This is just a direct check of Definition 2.4.

It is now possible to open the lens as we did in the first problem.

Lemma 5.5. Let 0 < ρ < b and let ΓS = {z ∈ C; |z| ∈ {−ρ, 0, ρ}} oriented
from left to right. Define S : C\ΓS → C2×2 as

S(z) =T (z) ρ <Im(z)

S(z) =T (z)

(
1 −(1− ϕt(z)−1)e2πinz

0 1

)−1

0 <Im(z) < ρ

S(z) =T (z)

(
1 0

(1− ϕt(z)−1)e−2πinz 1

)
−ρ <Im(z) < 0

S(z) =T (z) Im(z) < −ρ

Then S solves the RHP (ΓS , JS) where

JS(z) =

(
1 −(1− ϕt(z)−1)e2πinz

0 1

)
Im(z) = ρ

JS(z) =

(
ϕt(z) 0

0 ϕt(z)
−1

)
Im(z) = 0

JS(z) =

(
1 0

(1− ϕt(z)−1)e−2πinz 1

)
Im(z) = −ρ.
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Proof. This is also e check of Definition 2.4. By Lemma 4.1 we get (i). To
see (ii) is straight forward with the factorization

JT (z) =

(
1 0

(1− ϕt(z)−1)e−2πinz 1

)(
ϕt(z) 0

0 ϕt(z)
−1

)(
1 −(1− ϕt(z)−1)e2πinz

0 1

)
.

For (iii) we note that 1 − ϕt(z)−1 has the same asymptotic as f(z) hence
from Lemma 4.1 (

1− ϕt(z)−1
)
e±2πnz = O(z−2)

as |z| → ∞, −ρ < Im(z) < ρ.

The idea of this transformation is that the parts on ρ and −ρ converges
to the identity matrix. Therefore this solution is close to the solution to the
problem with the jump only on the real line. Since ϕt does not depend on n
this is clear from general theory, but of course we will do this properly.

Lemma 5.6. Let gt be the function defined in Lemma 4.2 and JP : C\Γ→
C2×2 be defined as

JP (z) =

(
ϕt(z) 0

0 ϕt(z)
−1

)
.

Then

P (z) =

(
eCgt(z) 0

0 e−Cgt(z)

)
.

solves the RHP (Γ, JP ).

Proof. This is a consequence of Lemma 4.2, Lemma 2.3 together with the
observation

(Cgt)(z) = O(z−1) (47)

as |z| → ∞ which can be seen by integration by part.

In this last transformation we will make it precise in what sense S and
P are close.

Lemma 5.7. Define the function R : C\ΓR → C2×2 as

R = SP−1.

Then R solves the RHP (ΓR, JR) where ΓR = ΓS, JR = I on Γ and JR =
PJSP

−1 on ΓR\Γ. Moreover

|R(z)− I| ≤ c

|ρ− Im(z)|e
2πnρ

for some constant c.
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Proof. From Lemma 4.1 and Lemma 4.2 we can see

‖JR − I‖∞(ΓR) ≤ ‖e±2Cgt(1− ϕ−1
t )‖∞(ΓR\Γ)e

−2πρn

≤ e
2d
ρ

1− δ‖e
λf − 1‖∞(ΓR\Γ)e

−2πρn

on ΓR,

‖JR − I‖L1(ΓR) ≤
e

2d
ρ

1− δ‖e
λf − 1‖L1(ΓR)e

−2πρn.

and

‖JR − I‖L2(ΓR) ≤
e

2d
ρ

1− δ‖e
λf − 1‖L2(ΓR)e

−2πρn.

From the remark under Lemma 4.1 all the norms above are bounded. As in
the first problem, we want to use Theorem 2.6 and Corollary 2.7 to see that

R = I + (C(µw))(z)

solves (ΓR, JR) for big enough n. Note that this is the Cauchy operator
on ΓR but as in the circle case, this does not give us any problem. We
will therefore show that µ is analytic in the strip S, defined in the proof of
Lemma 4.1. For that, note first, that if h is analytic in S then Cwh is the
restriction of an analytic function in S. This can be seen by deforming the
contour which is possible since w = JR − I is analytic in S. That is

Ck+1
w I(z) = C(Ckw(I)w)(z)− Ckw(I)w(z), ρ <Im(z),

Ck+1
w I(z) = C(Ckw(I)(z), −ρ <Im(z) < ρ,

Ck+1
w I(z) = C(Ckw(I)w)(z) + Ckw(I)w(z), Im(z) < −ρ.

Therefore
N∑

k=1

CkwI

is analytic for all N . For any z ∈ S we can deform the contour in the integral
slightly, if needed, so by similar estimations as above, we can see that

|CkwI(z)| ≤
(
ce−2π(ρ−ε)n

)k

for some constant c and some 0 < ε < ρ that compensates for the de-
formations. Hence for big enough n the sequence

∑N
k=1C

k
wI(z) converges

uniformly on any compact subset of S. Hence

µ = I + (I − Cw)−1CwI

is analytic in S. From the above calculations and the remark under Lemma
4.1, there is no problem to see that µw ∈ L1(ΓR) and are bounded close to
ΓR. Hence we can use Theorem 2.6 and Corollary 2.7.
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Since JR− I = 0 on the real line and µ− I ∈ L2(ΓR), for any z ∈ C with
|Im(z)| < ρ we can see that

|(R− I)(z)| ≤
∫

ΓR\Γ

|µ(w)||(JR − I)(w)|
|w − z| |dw|

≤ 1

ρ− |Im(z)|
(
‖JR − I‖L1(ΓR) + 2‖µ− I‖L2(ΓR)‖JR − I‖L2(ΓR)

)

≤
e

2d
ρ
(
‖eλf − 1‖L1(ΓR) + 2‖µ− I‖L2(ΓR)‖eλf − 1‖L2(ΓR)

)

(1− δ)(ρ− |Im(z)|) e−2πρn.

Note that with the absolute value on a matrix we mean the absolute value
on each entry.

Proof of Theorem 4.5. Remember the definition of F (1)
n,t , (38). We can ex-

tend that to an analytic function in the strip Sn by

F
(1)
n,t (z) = m(z)f

(1)
n,t (z) 0 < Im(z) < nρ

F
(1)
n,t (z) = m(z)Jm(z)f

(1)
n,t (z) −nρ < Im(z) < 0.

This is possible since everything is analytic in this strip. We can do the same
for G(1)

n,t with

G
(1)
n,t(z) =

(
e(Cgn,t)(z)ϕn,t(z)

−1eiπz, e−(Cgn,t)(z)e−iπz
)T

(48)

for 0 < Im(z) < nρ and

G
(1)
n,t(z) =

(
e(Cgn,t)(z)eiπz, e−(Cgn,t)(z)ϕn,t(z)

−1e−iπz
)T

for −nρ < Im(z) < 0. Then, by tracing back from R to m, we get that

F
(1)
n,t (z) = G

(1)
n,t(z) +

(
R
( z
n

)
− I
)
G

(1)
n,t(z) (49)

for −nρ < Im(z) < nρ.
From Lemma 4.2, Lemma 4.1 and (48) we can found the bound

|G(1)
n,t(z)| ≤

(
1

1− δ e
dn
|Im(z)|−πIm(z)

, e
dn
|Im(z)|+πIm(z)

)
.

Let Γn = {z ∈ C; Im(z) = nρ
2 } and let 0 < r < ρ

2 and γz = {w ∈ C; |w− z| <
r}. Let z ∈ Γn, by Cauchy integral formula and (49),

|F (1)′
n,t (z)−G(1)′

n,t (z)| =
∣∣∣∣∣

∫

γz

F
(1)
n,t (w)−G(1)

n,t(w)

(w − z)2
dw

∣∣∣∣∣

≤
∣∣R
(
z+ir
n )− I

)∣∣
r2

∫

γz

|G(1)
n,t(w)|2|dw|

≤ ce−2πnρ

(
e

2dn
nρ−2r

−π
2

(ρn−2r)

1− δ , e
2dn
nρ−2r

+π
2

(ρn+2r)

)
.
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where

c =
2πe

2d
ρ
(
‖eλf − 1‖L1(ΓR) + 2‖µ− I‖L2(ΓR)‖eλf − 1‖L2(ΓR)

)

r(1− δ)(ρ2 − r
n)

.

In the same way
∫

Γn

|G(2)
n,t(z)||dz| ≤

nt

2π

∫

Γ1

|1− eλf(z)||dz|
(
e

2d
ρ

+π
2
nρ
,
e

2d
ρ
−π

2
nρ

1− δ

)

and
∫

Γn

|F (2)
n,t (z)−G(2)

n,t(z)||dz| ≤ c′nte−2πnρ

(
e

2d
ρ

+π
2
nρ
,
e

2d
ρ
−π

2
nρ

1− δ

)

where

c′ =
e

2d
ρ

πρ(1− δ)
(
‖eλf − 1‖L1(ΓR) + 2‖µ− I‖L2(ΓR)‖eλf − 1‖L2(ΓR)

)∫

Γ1

|1−eλf(z)||dz|

and the integral converges by the decay of 1− eλf . With the same technique
as in Lemma 4.1 and Lemma 4.2 we can verify that

|Cg′n,t(z)| <
|λ|

π(1− δ)

∫

R
|f(x)|dx n

Im(z)2

and
|ϕ′n,t(z)| <

|λ|eε
n

∣∣∣f ′
( z
n

)∣∣∣
Hence for z ∈ Γn,

|G(1)′
n,t (z)| <

(
c′′′e

2d
ρ
−π

2
nρ
, c′′e

2d
ρ

+π
2
nρ
)

where
c′′ =

|λ|
nρπ(1− δ)

∫

R
|f(x)|dx+ π

and
c′′′ = c′′ +

|λ|eε
n(1− δ)2

sup
x∈R

∣∣∣f ′
(x
n

+ i
ρ

2

)∣∣∣ .

Finally
∣∣∣∣
∫

R

(
F

(1)′
n,t (x)F

(2)
n,t (x)−G(1)′

n,t (x)G
(2)
n,t(x)

)
dx

∣∣∣∣

=

∣∣∣∣
∫

Γn

(
F

(1)′
n,t (z)F

(2)
n,t (z)−G(1)′

n,t (z)G
(2)
n,t(z)

)
dz

∣∣∣∣

≤ ‖F (1)′
n,t −G

(1)′
n,t ‖∞(Γn)

∫

Γn

|F (2)
n,t (z)||dz|

+ ‖G(1)′
n,t ‖∞(Γn)

∫

Γn

|F (2)
n,t (z)−G(2)

n,t(z)||dz|

≤ d′tne−2πnρ.
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where we can choose d′ such that it does not depend on t, n or z. This is
not difficult to see by just looking at all the constants and note, from the
definition, that ‖µ− I‖L2(ΓR) is uniformly bounded.

This concludes the proof of Theorem 1.5.

A Appendix

In this appendix we will give a brief introduction to trace class operators and
the Fredholm determinant. We will not prove all results, especially not all
deep results, but we will prove some, which gives some insight how to work
within this space. For a rigorous treatment, see [6].

On what follows let H be a separable Hilbert space.

Definition A.1. Let A be a compact operator on H and let σ2
k(A) be the

eigenvalues of A∗A with the ordering

σ2
1(A) ≥ σ2

2(A) · · · > 0.

Then σk(A) > 0 is called the singular values of A.

Recall that the eigenvalues of a self adjoint compact operator converges
to zero and that the eigenvalues are real. Moreover if A is compact then A∗A
is a self adjoint compact operator. If x is an eigenvector to the eigenvalue
σ2
k(A) then

(Ax,Ax) = σ2
k(A)(x, x)

which implies that σ2
k(A) > 0.

Definition A.2. Let A be a compact operator on H. Then A is trace class
if ∞∑

k=1

σk(A) <∞.

The space of trace class operators form a Banach space, with the norm

‖A‖1 =
∞∑

k=1

σk(A),

denoted by B1(H) (see [6], Theorem IV.5.1). Before proceeding we will state
some properties of this space. Let B∞(H) denote the space of operators with

‖A‖∞ = σ1(A) <∞.

This is the space of bounded operators on H (see [6] (IV.2.2)). We can can
also define a closely related space, B2(H), it consists of all compact operators
A with ∞∑

k=1

σk(A)2 <∞
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with the norm

‖A‖2 =

( ∞∑

k=1

σk(A)2

) 1
2

.

An operator in this space is called Hilbert-Schmidt operator.

Lemma A.1. Let A ∈ B1(H), B ∈ B∞(H) and C,D ∈ B2(H). Then

‖A‖∞ ≤ ‖A‖1
‖AB‖1 ≤ ‖A‖1‖B‖∞ (50)
‖BA‖1 ≤ ‖A‖1‖B‖∞ (51)
‖CD‖1 ≤ ‖C‖2‖D‖2. (52)

For the proof, see Proposition IV.5.4 and Lemma IV.7.2 in [6]. In par-
ticular this lemma tells us that if A,B ∈ B1(H) then

‖AB‖1 ≤ ‖A‖1‖B‖1 (53)

and hence B1(H) is a Banach algebra. Moreover, since the space of compact
operators form an ideal in B∞(H), so do the space of trace class operators.

Lemma A.2. If A and B are operators of finite rank, then

| det(I +A)− det(I +B)| ≤ ‖A−B‖1e‖A‖1+‖B‖1+1 (54)

and
|Tr(A)| ≤ ‖A‖1. (55)

For the proof, see Theorem IV.5.2 and Corollary IV.3.4 in [6]

Lemma A.3. For a bounded operator A, it is trace class if and only if there
exists a sequence of finite rank operators {An} such that

‖A−An‖1 → 0

as n→∞.

For the proof, see Theorem IV.5.1 in [6].
With these two lemmas in hand it is possible to extend the notion of

determinant and traces to the space of trace class operators.

Corollary A.4. If A is a finite rank operator, then the functions

A→ det(I +A)

and
A→ Tr(A)

can be continuous extended from the finite rank operators to the trace class
operators. That is det(I + A) and Tr(A) are well defined for all trace class
operators.
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Proof. This is an ordinary continuation procedure. Let {An} be a sequence
as in Lemma A.3. Then {An} is a Cauchy sequence in B1(H). From (54)
we can see that {det(I + An)} is a Cauchy sequence in C. Therefore, the
definition

det(I +A) = lim
n→∞

det(I +An)

makes sense as long as it does not matter which sequence {An} is chosen. The
independence of sequence follows from (54). Assume {A′n} also converges to
A, let d = lim det(I +An) and d′ = lim det(I +A′n). Then

|d−d′| ≤ |d−det(I+An)|+‖An−A′n‖1e‖An‖1+‖A′n‖1+1 + | det(I+A′n)−d′|.
For the trace, we can use the same procedure with (55) and the additivity

of traces for finite rank operators.

We will now state some properties, that we needed, that is known for
matrices, that is, finite rank operators, and can be extended to all trace
class operators.

Lemma A.5. If A and B are trace class operators, C is a bounded operator
and α and β are complex numbers, then

Tr(αA+ βB) =αTr(A) + β Tr(B) (56)
Tr(AC) = Tr(CA) (57)

det(I +A) det(I +B) = det(I +A+B +AB) (58)
det(I +AC) = det(I + CA) (59)

1

det(I +A)
= det(I −A(I +A)−1) (60)

det(I + (eA − I)) =eTr(A) (61)

where (60) is true if (I +A)−1 exists in B∞(H).

Proof. We will only prove the last equality and leave the others as an exercise.
The idea is the same for all equalities but the last requires most effort.

Consider the bounded operator

eA − I =
∞∑

k=1

1

k!
Ak,

by (53) the series defines a trace class operator. Let {An} be a sequence that
converges to A as in Lemma A.3. We want to show that {eAn−I} converges
in the same way to eA − I. If that is true, then

det
(
I +

(
eA − I

))
= lim

n→∞
det
(
I +

(
eAn − I

))

= lim
n→∞

eTr(An)

= eTr(A),
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by the definition of determinants and traces for trace class operators and
since the equality holds for finite rank operators.

From (50) and (51) we can see that

‖Akn −Ak‖1 ≤ ‖An −A‖1‖Ak−1
n ‖∞ + ‖Ak−1

n −Ak−1‖1‖A‖∞
and, by induction, the right hand side converges to zero as n tends to infinity.
Now given an ε > 0 find an N ∈ N such that

∞∑

k=N+1

1

k!
‖An‖k1 <

ε

3
,

for all n, which is possible since ‖An‖1 → ‖A‖1. Let n be so big such that

N∑

k=1

‖Akn −Ak‖1 <
ε

3
.

Then

‖(eAn − I)− (eA − I)‖1 ≤
∞∑

k=1

1

k!
‖Akn −Ak‖1 < ε.

For some operators on L2([a, b]), it is possible to express the trace as an
integral.

Theorem A.6. Let A be an integral trace class operator on L2([a, b]) with
continuous kernel A(x, y) on [a, b]× [a, b]. Then

Tr(A) =

∫ b

a
A(x, x)dx.

This is Theorem IV.8.1. in [6].
If R and K are integral operators with kernels R(z, z′) and K(z, z′) then

if we can change order of integration, we can see that the kernel of RK is
given by

RK(z, z′) =

∫
R(z, w)K(w, z′)dw. (62)

With this observation we can find the trace for products of operators.
A motivation why we introduced B2(H), is because it can be easier to

work with then B1(H). One reason why it is easier is the following lemma
(see [6] Theorem IV.7.7).

Theorem A.7. Let K(x, y) be a measurable function on R × R. Then the
integral operator defined by K is a Hilbert-Schmidt operator in L2(R) if and
only if ∫

R
|K(x, y)|2dxdy <∞.
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Next theorem will not be used but has a nice result, so we will include
it for completeness of this introduction. It tells us that the relation between
eigenvalues and traces and determinants are still valid. This can seems as a
obvious result, but require a lot of work to prove. See [6] Theorem IV.6.1.

Theorem A.8 (Lidskii’s Theorem). Let A be a trace class operator and let
λk(A) be the eigenvalues to A. Then

Tr(A) =
∞∑

k=1

λk(A)

and

det(I +A) =
∞∏

k=1

(1 + λk(A)).

Lemma A.9. Assume that ‖A‖1 < 1, then

det(I +A) = e
∑∞
k=1

(−1)k+1

k
Tr(Ak).

Proof. Since ‖A‖∞ ≤ ‖A‖1 < 1 we can define log(I +A) as

log(I +A) =
∞∑

k=1

(−1)k+1

k
Ak

and from (53) this series also converges in B1(H). Moreover

(I +A) = elog(I+A).

Hence

det(I +A) = det elog(I+A)

= eTr log(I+A)

= e
∑∞
k=1

(−1)k+1

k
Tr(Ak)

where the second equality is (61) and the last equality is by continuity of
traces.

Next lemma will be of great importance for us.

Lemma A.10. Assume that the function t 7→ A(t) defines a function from
some open set or line segment γ in C to B1(H). Assume further that there
exists an operator A′(t) ∈ B1(H) such that

∥∥∥∥
A(t+ h)−A(t)

h
−A′(t)

∥∥∥∥
1

→ 0

as h→ 0 if t+ h ∈ γ and that (I −A(t))−1 exists in B∞(H). Then

d

dt
log det(I +A(t)) = Tr

(
A′(t)(I +A(t))−1

)
.
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Proof. Consider the quotient

det(I +A(t+ h))

det(I +A(t))
= det(I +A(t+ h)) det(I −A(t)(I +A(t))−1)

= det(I + (A(t+ h)−A(t))(I +A(t))−1)

where the first equality is (60) and the second equality is (58) and some
algebraic manipulations. From the assumption, we can see that for small h
the difference A(t+ h)−A(t) is small. Hence, with (50) we can make

‖(A(t+ h)−A(t))(I +A(t))−1‖1 < 1.

From Lemma A.9 we can conclude that

det(I +A(t+ h))

det(I +A(t))
= e

∑∞
k=1

(−1)k+1

k
Tr(((A(t+h)−A(t))(I+A(t))−1)k).

Now
d

dt
log det(I +A(t))

= lim
h→0

1

h
log

(
det(I +A(t+ h))

det(I +A(t))

)

= lim
h→0

1

h

∞∑

k=1

(−1)k+1

k
Tr
(

((A(t+ h)−A(t))(I +A(t))−1)k
)

= Tr
(
A′(t)(I +A(t))−1

)
.

The last equality is due to linearity and continuity of traces and since
Tr
(
((A(t+ h)−A(t))(I +A(t))−1)k

)
is of order hk.
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