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Abstract

This thesis investigates how the Axiom of Choice (AC) is used in mathemat-
ics. Some weaker forms of AC are presented and proved to follow from AC.
The Well-Ordering Theorem, Zorns Lemma and the Fundamental Theorem of
Linear Algebra are proven to be equivalent to AC. Two consequences of AC
are shown; the useful Boolean Prime Ideal Theorem and the counter-intuitive
Banach-Tarski Paradox.
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1 Introduction

The Axiom of Choice states that for any collection of sets we can choose
exactly one element from every set. This might seem obvious and almost
self-evident at first glance. However, in the case of an infinite collection of
sets, where there is no rule for how to pick the elements, the statement is
far from trivial. Through history many mathematicians have rejected the
axiom and there is still those who look at it with distrust. Despite this, the
axiom is used in many different fields of mathematics. In this thesis we will
look at some of the implications and equivalents of the axiom, hopefully to
shed some light over this usage.

The source of the historical remarks made below is [Moo1982].

The Axiom of Choice grew out of the problem to prove the Well-Ordering
Theorem, the statement that every set can be well-ordered (see Defini-
tion 2.2.6). This was proposed as a valid ”law of thought” by George
Cantor in 1883. Many contemporary mathematicians did not agree with
Cantor, and it was in the context of proving the Well-Ordering Theorem
that Ernst Zermelo first stated the Axiom of Choice in 1904. We will see
in section 4.1 that the Well-Ordering Theorem is actually equivalent to the
Axiom of Choice.

In section 2 we define some concepts and prove some results that will be
used later in the thesis. In section 3 we give some different formulations of
the Axiom of choice and some weaker versions of it. We prove equivalence
between the Axiom of Choice, the Well-Ordering Theorem, Zorn’s Lemma
and the Fundamental Theorem of Linear Algebra in section 4. The Boolean
Prime Ideal Theorem and the counter-intuitive Banach-Tarski Paradox is
proved to follow from the Axiom of Choice in section 5.

The text requires some basic knowledge of set theory and first-order logic.
Some understanding of linear algebra and group theory will be helpful when
reading section 4.3, 5.1 and 5.2.

The results in this thesis are well known and I do not claim originality. My
intention with this thesis is to gather interesting results which in different
ways relate to the Axiom of Choice. By this I hope to give an understanding
of how the axiom is used in mathematics, why it is useful and how it is
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sometimes the cause of unwanted consequences. From this, the reader may
be able get her own intuition about the nature of the axiom. Many of the
proofs in this text are highly inspired by proofs made by other authors, it
is clear where this is the case. I hope that by understanding the proofs
and reformulating them with my own words, I have also made them more
accessible to the reader.

Now some notational remarks. Upper case letters will be used for sets,
except in some cases when we want to emphasize that a set is an element
of another set, where lower case letters will be used. In some cases we call
a set a family when we want to emphasize that its elements are sets.
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2 Preliminaries

2.1 Zermelo-Fraenkel Axioms

The formulations of the Axioms in this section are inspired by Section 1 in
[Jec2006].

2.1.1. Axiom of Extensionality: Two sets are equal if they have the
same elements:

∀Y ∀Z(∀X (X ∈ Y ↔ X ∈ Z)→ Y = Z).

By the axiom of extensionality a set is defined by its elements.

2.1.2. Axiom of Pairing: For any X and Y there is a set with X and Y
as its only members:

∀X ∀Y ∃Z ∀U (U ∈ Z ↔ U = X ∨ U = Y ).

2.1.3. Axiom Schema of Separation: Let ϕ(X,P ) be a formula. For all
Y and P , there is a set Z = {X ∈ Y : ϕ(X,P )}:

∀Y ∀P ∃Z ∀X (X ∈ Y ∧ ϕ(X,P )↔ X ∈ Z).

Note that the Schema of Separation can only be used to construct subsets
of a given set and not sets of the more general form {X : ϕ(X,P )}. Also
note that the Axiom Schema of Separation is not one axiom but infinitely
many axioms, one axiom for every formula ϕ.

2.1.4. Axiom of Union: For any family of sets X, there exists a set
Y =

⋃
X:

∀X ∃Y ∀Z (Z ∈ Y ↔ ∃U (U ∈ X ∧ Z ∈ U)).

2.1.5. Axiom of Power Set: For any set X there exists a set Y = P(X)
of all subsets of X:

∀X ∃Y ∀Z (Z ∈ Y ↔ ∀U (U ∈ Z → U ∈ X)).

The set Y = P(X) is called the power set of X.

2.1.6. Axiom of Infinity: There exists an infinite set:

∃X(∅ ∈ X ∧ ∀Y (Y ∈ X → Y ∪ {Y } ∈ X)).
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2.1.7. Axiom Schema of Replacement: For any function F , if the do-
main of F is a set then the range of F is a set:

∀X ∀Y ∀Z (ϕ(X,Y, P ) ∧ ϕ(X,Z, P )→ Y = Z)→

∀X ∃Y ∀Z (Z ∈ Y ↔ ∃U (U ∈ X ∧ ϕ(U,Z, P )),

for each formula ϕ(X,Y, P ).

2.1.8. Axiom of Regularity: Every set X 6= ∅ has an element Y such
that X and Y are disjoint:

∀X (∃Y (Y ∈ X)→ ∃Z (Z ∈ X ∧ ¬∃U (U ∈ X ∧ U ∈ Z))).

The Axiom of Regularity implies that no set is an element of itself.

2.1.9. Axiom of Choice: See section 3.

2.2 Basic set theory

Many of the definitions in this section are taken more or less literally from
[Jec2006].

The notion of a class is introduced on page 5 in [Jec2006].

Definition 2.2.1. If ϕ(X, p1, ..., pn) is a formula , we call C = {X |
ϕ(X, p1, ..., pn)} a class. The members of C are all those sets X that satis-
fies ϕ(X, p1, ..., pn). Not all classes are sets, and we call a class that is not a
set a proper class.

Definition 2.2.2. A set X is said to be countable if there is a bijection
between X and the set N of natural numbers.

A set that is either finite or countable is said to be at most countable.

The following definition corresponds to Definition 2.1 in [Jec2006].

Definition 2.2.3. A partial order on a set X is a binary relation, denoted
by < , with the following properties:

(i) for all x ∈ X, x ≮ x;
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(ii) for all x, y, z ∈ X, if x < y and y < z, then x < z.

A partial order is a total order if moreover

(iii) for all x, y ∈ X one and only one of the statements

x < y, x = y, y < x

is true.

If < is a partial (total) order then the relation ≤, where x ≤ y if either x < y
or x = y, is also called a partial (total) order.

The following two definitions corresponds to Definition 2.2 in [Jec2006].

Definition 2.2.4. If (X,<) is a partially ordered set, Y is a subset of X
and a ∈ X, then:

(i) a is a maximal element of Y if a ∈ Y and for all x ∈ Y , a 6< x;

(ii) a is a minimal element of Y if a ∈ Y and for all x ∈ Y , x 6< a;

(iii) a is the greatest element of Y if a ∈ Y and for all x ∈ Y , x ≤ a;

(iv) a is the least element of Y if a ∈ Y and for all x ∈ Y , a ≤ x;

(v) a is an upper bound of Y if for all x ∈ Y , x ≤ a;

(vi) a is a lower bound of Y if for all x ∈ Y , a ≤ x;

(vii) a is the supremum of Y if a is the least upper bound of Y ;

(viii) a is the infimum of Y if a is the greatest lower bound of Y .

Definition 2.2.5. A bijection f between two partially ordered sets X1 and
X2 is an isomorphism if f and f−1 are order-preserving. If there is an
isomorphism between two sets X1 and X2 we say that X1 and X2 are iso-
morphic.

The following definition corresponds to Definition 2.3 in [Jec2006].
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Definition 2.2.6. A well-ordering on a set X is a total order on X with
the property that every non-empty subset of X has a least element in this
ordering. The setX together with the well-ordering is called a well-ordered
set.

Definition 2.2.7. A choice function f on a set X is a function from X
into

⋃
X such that f(x) ∈ x for every x ∈ X. That is, a choice f function

on a set X selects one element from every element in X.

Definition 2.2.8. A filter F over a set S is a non-empty proper subset of
the power set P(S) such that

(i) if X ∈ F and X ⊆ Y , then Y ∈ F ,

(ii) if X ∈ F and Y ∈ F , then X ∩ Y ∈ F .

A set is an ultrafilter if

(iii) for each X ⊆ S, either X ∈ F or S\X ∈ F .

2.3 Ordinal numbers

In this section we give a definition of the ordinal numbers and show some
properties of them. Not all results will be used in the text but they give
a good understanding of how the ordinals numbers works. Many of the
definitions and results in this section are taken more or less literally from
[Jec2006].

We want to define the ordinal numbers so that

α < β if and only if α ∈ β, and α = {β | β < α}

The following two definitions corresponds to Definition 2.9 and 2.10 in
[Jec2006].

Definition 2.3.1. A set X is transitive if every element of X is a subset
of X.
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Definition 2.3.2. A set α is an ordinal number (an ordinal) if α is
transitive and well-ordered by ∈.

We will denote ordinal numbers with lowercase Greek letters α, β, γ... and
the class of all ordinal numbers with Ord. We define

α < β if and only if α ∈ β.

The following lemma and proof corresponds to Lemma 2.11 in [Jec2006]

Lemma 2.3.3.

(i) 0 = ∅ ∈ Ord

(ii) If α is an ordinal and β ∈ α, then β is an ordinal.

(iii) If α and β are ordinals, α 6= β and α ⊂ β, then α ∈ β.

(iv) If α and β are ordinals, then either α ⊆ β or β ⊆ α.

Proof. (i) and (ii) by definition.

(iii) Suppose α ⊂ β and consider the set β\α = {ξ ∈ β | ξ 6∈ α}. Since β
is totally ordered by ∈, we have that β\α = {ξ ∈ β | α ∈ ξ or α = ξ}
and since β is well-ordered, β\α has a least element γ. It follows that
γ = α and thus α ∈ β.

(iv) Suppose α and β are ordinals, then γ = α ∩ β is clearly an ordinal. It
follows that either γ = α or γ = β for otherwise γ ∈ α and γ ∈ β by
(iii) and thus γ ∈ γ which contradicts the definition of an ordinal.

The following proposition corresponds to Proposition 2.12 in [Jec2006], where
it is given without a proof.

Proposition 2.3.4.

(i) Ord is totally ordered by <.
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(ii) For each α, α = {β | β < α}.

(iii) If C is a non-empty class of ordinals, then
⋂
C is an ordinal,

⋂
C ∈ C

and
⋂
C = inf C.

(iv) If X is a non-empty set of ordinals, then
⋃
X is an ordinal and

⋃
X =

supX.

(v) For each α, α ∪ {α} is an ordinal and α ∪ {α} = inf {β | α < β}.

Proof. (i) and (ii) Follows from definition and Lemma 2.3.3.

(iii) For every α ∈ C, α is a set and
⋂
C ⊂ α, hence

⋂
C is a set by the

Axiom Schema of Separation 2.1.3.

Let α ∈ ⋂C, then for every β ∈ C, α ∈ β and since β is an ordinal,
α ⊂ β. It follows that α ⊂ ⋂C. Thus

⋂
C is transitive.

Let α, β ∈ ⋂C, then α, β ∈ Ord by Lemma 2.3.3. It follows from (i)
that either α ∈ β, α = β or β ∈ α. Thus

⋂
C is totally ordered.

Let B be a non-empty subset of
⋂
C and let α ∈ C, then B ⊆ α. Since

α ∈ Ord it is well-ordered and thus B has a least element. So
⋂
C is

well-ordered and transitive and thus an ordinal.

We need to show that
⋂
C is the infimum if C. It is a lower bound of C

since for all α ∈ C,
⋂
C ⊆ α and thus for all α ∈ C, either

⋂
C = α or⋂

C ∈ α by Lemma 2.3.3. It remains to show that
⋂
C is the greatest

lower bound of C. Assume, aiming at a contradiction that there is a
lower bound β of C such that

⋂
C ∈ β. Then since β is a lower bound

of C, β ∈ α for all α ∈ C. Thus β ∈ ⋂C which contradicts the fact
that

⋂
C ∈ β. So

⋂
C = inf C.

(iv)
⋃
X is a set by the Axiom of Union 2.1.4. Let α ∈ ⋃X, then for some

β ∈ X, α ∈ β and, since β is an ordinal, α ⊂ β ⊆ ⋃X. Thus
⋃
X is

transitive.

For every α ∈ ⋃X, there is a β ∈ X such that α ∈ β and since
β ∈ Ord, α ∈ Ord by Lemma 2.3.3. Let α, β ∈ ⋃X such that α 6= β,
then α, β ∈ Ord. By Lemma 2.3.3, either α ⊆ β or β ⊆ α. Without
loss of generality let α ⊆ β, then α ∈ β by Lemma 2.3.3. Thus

⋃
X is

totally ordered.

Let B be a non-empty subset of
⋃
X and let α ∈ B. Consider the set

C = {β ∈ B | β < α} ⊆ α. If C is empty α is the least element of C
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and we are done. Otherwise C has a least element γ since C ⊆ α and
α is well-ordered. It follows that γ is the least element of B. So

⋃
X

is well-ordered and transitive and thus an ordinal.

For all α ∈ X, α ⊆ ⋃X. Hence, for all α ∈ X, either α =
⋃
X or

α ∈ ⋃X by Lemma 2.3.3 and thus
⋃
X is an upper bound of X. It

remains to show that
⋃
X is the least upper bound of X. Assume,

aiming at a contradiction, that β is an upper bound of X such that
β ∈ ⋃X. Then β is on ordinal by Lemma 2.3.3. Let α ∈ ⋃X, then
there is some γ ∈ X such that α ∈ γ. Since β is an upper bound of X,
either γ = β or γ ∈ β and hence γ ⊆ β by definition. It follows that
α ∈ β and thus that

⋃
X ⊆ β which contradicts the assumption that

β ∈ ⋃X. So
⋃
X = supX.

(v) α ∪ {α} is a set by the Axiom of Union 2.1.4. Let β ∈ α ∪ {α}, then
either β ∈ α or β = α. If β ∈ α, then β ⊂ α ⊂ α ∪ {α}, but if β = α
clearly β ⊂ α ∪ {α}. Thus α ∪ {α} is transitive.

For every β ∈ α ∪ {α}, β ∈ Ord. Hence if β, γ ∈ α ∪ {α} and β 6= γ,
then either β ∈ γ or γ ∈ β by Lemma 2.3.3. Thus α ∪ {α} is totally
ordered.

Let B be a non-empty subset of α ∪ {α} and let β ∈ B. Consider the
set C = {γ ∈ B | γ ∈ β} ⊆ β. If C is empty, then β is the least element
if B. Otherwise C has a least element δ since β is an ordinal and thus
well-ordered. This element δ is clearly the least element of B. Thus
α ∪ {α} is well-ordered and transitive, i.e α ∪ {α} is an ordinal.

It remains to show that α ∪ {α} = inf {β | α ∈ β}. If β ∈ {β | α ∈ β},
then α ∈ β and by definition α ⊂ β, i.e. for all γ ∈ α, γ ∈ β. Hence
α∪ {α} ⊆ β, and it follows from Lemma 2.3.3 that either α∪ {α} = β
or α ∪ {α} ∈ β. Thus α ∪ {α} is a lower bound of {β | α ∈ β}. Since
α ∈ α ∪ {α}, we have that α ∪ {α} ∈ {β | α ∈ β}. Thus, if b is any
lower bound of {β | α ∈ β} different from α ∪ {α}, then b ∈ α ∪ {α},
i.e α ∪ {α} = inf {β | α ∈ β} and the proof is done.

In view of this we define the successor of an ordinal α as α+ 1 = α ∪ {α}.

An important property of the class of ordinals Ord is that it does not form
a set, i.e Ord is a proper set. We prove this below.
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Proposition 2.3.5. The class of ordinals Ord is a proper class.

Proof. Assume, aiming at a contradiction that Ord is a set. Let α ∈ Ord,
then for every β ∈ α, β ∈ Ord by Lemma 2.3.3. Thus α ⊂ Ord, i.e Ord
is transitive. Ord is totally ordered by Proposition 2.3.4. Let B be a non-
empty subset of Ord and let α ∈ B. Consider the set C = {β ∈ B | β ∈
α} ⊆ α. If C is empty, α is the least element of B. Otherwise C has a least
element, γ since α is well-ordered. It follows that γ is the least element of
B. So Ord is a transitive and well-ordered set and thus Ord ∈ Ord, which
contradicts a consequence of the Axiom of Regularity 2.1.8. Hence Ord is a
proper class.
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3 The Axiom of Choice and weaker versions

3.1 Axiom of Choice

The Axiom of Choice can be expressed in many different ways. A common
form of the axiom, based on the concept of choice functions, can be expressed
as follows:

3.1.1. Axiom of Choice (AC): Let X be a family of non-empty sets.
Then there is a choice function f on X.

Unless stated otherwise, this is the form of the axiom that will be used
throughout this text.

The Axiom of Choice is different from the other axioms in ZF in the sense
that it postulates the existence of a set without defining it. This makes AC
questionable from a constructive point of view. It can be proved that AC
is independent of the other axioms of ZF (for a proof of this see [Jec1973])
and that many mathematical theorems are unprovable in ZF without it.

The question about the existence of a choice function from a family of finitely
many non-empty sets is unproblematic, you can just manually pick one
element from every set in the family. Even in some cases where we have a
family of infinitely many non-empty sets, the existence of a choice function
follows from ZF alone. For example, consider the power set P(N) of the
natural numbers. Since the natural numbers are well-ordered by the usual
ordering we can define a choice function f on P(N)\{∅} by letting it choose
the smallest member from every subset:

f : P(N)\{∅} → N,

f(X) = minX.

The problem arises when it is unclear how, or even impossible to formulate
a rule that decides which elements to pick. Consider the problem of defining
a choice function from every non-empty subset of the real numbers. The
real numbers are not well-ordered by the usual ordering so we cannot just
let the function pick the smallest member from every subset. Actually no
one has yet found any such rule and there are reasons to believe that no
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one ever will. It is in cases like this that we need the Axiom of Choice. As
Bertrand Russel so elegantly put it;

The Axiom of Choice is necessary to select one sock from each
of infinitely many pairs of socks, but not to select one shoe from
each of infinitely many pairs of shoes.

Here, Russel points to the fact that for shoes we can define a rule for which
shoe to pick from every pair, since we can just choose the left show from
every pair. This rule cannot not be applied for socks since the left and right
sock are identical in every pair.

Another formulation of the axiom, equivalent to AC, which instead of the
existence of a choice function states the existence of a choice set, can be
expressed as follows:

3.1.2. AC’: Let X = {Xi | i ∈ I} be a family of non-empty sets indexed
by some set I. Then there is a set Y such that |Xi ∩ Y | = 1 for all i ∈ I.
The set Y is called a choice set on X.

We will not show the equivalence between AC and AC’, but it is easily seen
by letting f(Xi) be the unique element in Xi ∩Y and the other way around
by letting Y be the image of the choice function f .

The following choice principle that states the existence of a function that
selects a non-empty and finite subset of every set in a family of non-empty
set is also equivalent to AC.

3.1.3. Axiom of Multiple Choice (AMC): Let X = {Xi | i ∈ I be a
family of non-empty sets indexed by some set I. Then there is a function f
such that for all i ∈ I, f(Xi) is a non-empty and finite subset if Xi.

The implication from AC to AMC is trivial but the other direction is less
well-known. A proof of this can be found in [Jec1973] and will be omitted
in this text.
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3.2 Weaker versions

In this section some weaker versions of AC will be presented. To prove
many of the important consequences of AC, a weaker form of the axiom is
sufficient.

3.2.1 Axiom of Dependent Choice

3.2.1. Axiom of Dependent Choice (ADC): Suppose X is a set with
a binary relation R such that for every x ∈ X there is a y ∈ X such that
x R y. Then there is a sequence in x0, x1, ..., xn, ... in X such that xn R xn+1

for all n ∈ N.

The following theorem and proof is inspired by the first part of Theorem
2.12 in [Her2006].

Theorem 3.2.2. AC ⇒ ADC.

Proof. Let X be a non-empty set and let R be an entire binary relation on
X. Then for every x ∈ X, the set Sx = {y ∈ X | xRy} is non-empty. By
AC, there is a choice function f from the set {Sx | x ∈ X} into X such that
f(Sx) ∈ Sx for every x ∈ X. We can define a sequence in X by letting x0
be an arbitrary element in X and xn+1 = f(xn). Then the sequence (xn)
has the desired property.

3.2.2 Axiom of Countable Choice

3.2.3. Axiom of Countable Choice (ACC): Any countable family of
non-empty sets has a choice function.

The following theorem and proof is inspired by the second part of Theorem
2.12 in [Her2006].

Theorem 3.2.4. ADC ⇒ ACC.
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Proof. Let X = {An | n ∈ N} be a countable family of non-empty sets. For
every n ∈ N let Fn be the set of all choice functions on Xn = {Ai | i ≤ n}
(Fn is non-empty since Xn is finite) and let F =

⋃
n∈N Fn.

We define a relation R on F as follows: Let fn ∈ Fn and fm ∈ Fm. Then
fnRfm if and only if m = n + 1 and for all i ≤ n, fm(Ai) = fn(Ai). The
relation R is obviously entire and hence, by DC, there exists a sequence (fn)
in F with fnRfn+1 for all n ∈ N.

Let f =
⋃
n∈N fn (if we view the functions fn as sets of ordered pairs, this

definition makes sense), then f is a choice function on X.

The implications in Theorem 3.2.2 and 3.2.4 can not be reversed, that is
ACC does not imply ADC and ADC does not imply AC. For proof of this,
see Chapter 8 in [Jec1973].

Next we show an example of a result where the full strength of AC is not
necessary but ACC is sufficient.

Theorem 3.2.5. A countable union of countable sets is countable.

Proof. For every n ∈ N, let Xn be a countable set,

X =
⋃

n∈N
Xn,

and let Fn be the set of all bijections from Xn into N. It follows from the
definition of countable sets that Fn is non-empty.

By ACC we can choose one function fn from each of the sets Fn.

Now, let φ : X → N × N be defined as φ(x) = (n, fn(x)), where n is the
smallest number such that x ∈ Xn. This number n exists and is unique
since N is well-ordered by the usual ordering.

Suppose x 6= y, and φ(x) = (n, fn(x)) and φ(y) = (m, fm(y)). If m = n then
φ(x) 6= φ(y) since fn is injective by assumption. If m 6= n, then obviously
φ(x) 6= φ(y). So φ is injective and it follows that X is at most countable
and since Xn ⊆ X is infinite, X is countable.
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4 Equivalent statements

4.1 The Well-Ordering Theorem

4.1.1. The Well-Ordering Theorem (WOT): Every set can be well-
ordered.

Theorem 4.1.2. AC ⇒ WOT.

The following proof is inspired by the proof of Theorem 5.1 in [Jec2006].

Proof. Let X be an arbitrary set and let P(X) be the power set of X. By
the Axiom of Choice, there is a choice function f defined on P(X)\{∅}.
We can use f to enumerate X with a sequence of ordinals, this we do by
transfinite induction:

for α = 0, let x0 := f(X).

Suppose xβ has been defined for all β < α. If X\{xβ : β < α} is empty , we
stop. Otherwise

xα := f(X\{xβ : β < α}).
Let θ be the least ordinal such that X = {xα : α < θ}. This θ exists since,
if it did not we would have constructed an isomorphism between the set X
and Ord contradicts the Axiom of Schema of Replacement 2.1.7 since Ord is
a proper class. Hence we have constructed an isomorphism between X and
the ordinal θ, and we can use the well-ordering of θ to define a well-ordering
on X.

Theorem 4.1.3. WOT ⇒ AC.

Proof. Assume that every set can be well-ordered. Let X = {Xi | i ∈ I},
where I is some set, be a family of non-empty sets, and consider Y =⋃
i∈I Xi. By assumption Y can be well-ordered. It follows that there is a

ordering of Y such that every element in X has a least member. Now we
can define a function f on X such that for all Xi ∈ X, f(Xi) = xi, where xi
is the least member in Xi. This f is a choice function and the implication
is shown.
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4.2 Zorn’s lemma

4.2.1. Zorn’s Lemma (ZL): Suppose a partial ordered set X has the
property that every totally ordered subset has an upper bound in X. Then
the set X has at least one maximal element.

Theorem 4.2.2. AC ⇒ ZL.

The following proof is inspired by the proof of Theorem 5.4 in [Jec2006].

Proof. Let X be a set satisfying the conditions in the lemma. We use a
choice function f , defined on P(X)\{∅} where P(X) is the power set of X,
to form a totally ordered subset of X that leads to a maximal element in
X. We do this by induction:

for α = 0 let x0 = f(X),

and if the set {y ∈ X | xβ < y for all β < α} is non-empty (otherwise xβ
is a maximal element and we are done), let

xα = f({y ∈ X | xβ < y for all β < α}).
This forms a sequence where xβ < xα if β < α. If α is a limit ordinal,
then {xβ | β < α} is a totally ordered set, and xα exists by the assumption
that every totally ordered subset of X is bounded above in X. There is an
ordinal θ such that there is no xθ+1 ∈ S such that xθ < xθ+1. If there was
no such θ we would have defined a bijection between Ord and a subset of
X, which contradicts the Axiom of Schema of Replacement 2.1.7 since Ord
is a proper class. Thus xθ is a maximal element of S.

Theorem 4.2.3. ZL ⇒ AC.

Proof. Let X be a family of non-empty sets and let

F = {f | f is a choice function on some A ⊆ X}.
F is non-empty, since if A contains a finite number of sets we can define a
choice function by manually choosing one element from each set in A. We
define an order ≤ on F as

f1 ≤ f2 if and only if A1 ⊆ A2 and f2|A1 = f1.

First we show that (F,≤) is a partial ordered set. We have that
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(i) f1 ≤ f1 since A1 ⊆ A1 and f1|A1 = f1,

(ii) if f1 ≤ f2 and f2 ≤ f1, then A1 = A2, f2|A1 = f1 and f1|A2 = f2, so
f1 = f2,

(iii) if f1 ≤ f2 and f2 ≤ f3, then A1 ⊆ A2, A2 ⊆ A3, f2|A1 = f1 and
f3|A2 = f2, so A1 ⊆ A3 and f3|A1 = f1, i.e. f1 ≤ f3.

Thus F is partially ordered by ≤.

We now show that every totally ordered subset of F has an upper bound in
F . Consider a totally ordered subset G = {fi ∈ P | i ∈ I for some set I}
of F . We can define a function f on A =

⋃
i∈I Ai such that for all i ∈ I,

f |Ai = fi, by f =
⋃
i∈I fi. This function f is an upper bound of G and

f ∈ F since A ⊆ X. So every totally ordered set in F has an upper bound
in F and we can apply Zorn’s lemma to say that F has a maximal element
g.

We claim that g is a choice function on X. Assume not, then there is a set
A ∈ X such that g is not defined on A. Let a be an element in A (A is not
empty by assumption) and define h as

h(B) =

{
a, if B = A

g(B), if B 6= A and B is in the domain of g.

Then g < h, contradicting the fact that g is a maximal element in F . Thus
g is a choice function on X and since X was chosen arbitrarily every family
of non-empty sets has a choice function.

4.3 The Fundamental Theorem of Linear Algebra

The following four definitions are taken more or less literally from Appendix
A.7 in [BeBl2006].

Definition 4.3.1. A vector space over a field F is a set V with a binary
operation + defined for all u, v ∈ V and a scalar multiplication a · v ∈ V
defined for all a ∈ F and v ∈ V such that the following conditions hold:

(i) u+ v ∈ V , for all u, v ∈ V ;
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(ii) u+ (v + w) = (u+ v) + w, for all u, v, w ∈ V ;

(iii) V contains an element 0 such that 0 + v = v for all v ∈ V ;

(iv) for each v ∈ V there exists and element −v such that −v + v = 0;

(v) u+ v = v + u, for all u, v ∈ V ;

(vi) a · v ∈ V , for all a ∈ F and all v ∈ V ;

(vii) a(b · v) = (ab) · v, for all a, b ∈ F and all v ∈ V ;

(viii) (a+ b) · v = a · v + b · v, for all a, b ∈ F and all v ∈ V ;

(ix) a · (u+ v) = a · u+ a · v, for all a ∈ F and all u, v ∈ V ;

(x) 1 · v = v, for all v ∈ V .

Definition 4.3.2. Let V be a vector space over the field F , and let S be a
set {v1, v2, ..., vn} of vectors in V . Any vector of the form v =

∑n
i=1 ai · vi,

for scalars ai ∈ F , is called a linear combination of the vectors in S. The
set of all linear combinations of vectors in S is called the span of S, denoted
by span(S). The set S is said to span V if span(S) = V .

Definition 4.3.3. Let V be a vector space over the field F , and let S be a
set of vectors in V . The vectors in S are said to be linearly dependent if
one of the vectors can be expressed as a linear combination of the others. If
not, then S is said to be a linearly independent set.

Definition 4.3.4. A subset S of a vector space V is said to be a basis of
V if S spans V and S is linearly independent.

4.3.5. The Fundamental Theorem of Linear Algebra (FTLA): Ev-
ery vector space has a basis.

Theorem 4.3.6. AC ⇒ FTLA.

We will prove that ZL implies FTLA, but since ZL is equivalent to AC (as
shown in previous section) this is equivalent the fact that AC implies FTLA.

The following proof is inspired by the proof in [I-PW1].

Proof. Let V be a vector space over a field F and let L be the set of all
linear independent subsets of V . The set L is partially ordered by inclusion.
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Let K be a totally ordered subset of L and let K =
⋃K. Assume, aiming at a

contradiction, that K is linearly dependent. Then there exists v1, v2, ..., vn ∈
K and r1, r2, ..., rn ∈ F such that r1 6= 0 and

∑n
k=1 rkvk = 0. For each such

vi there is some set Ki ∈ K such that vi ∈ Ki. Since K is totally ordered
by inclusion, K1 ∪K2 ∪ ... ∪Kn must equal Km for some m ∈ {1, 2, ..., n}.
But then Km = K1 ∪K2 ∪ ... ∪Kn ∈ K and so Km is linearly independent,
a contradiction. Thus K is linearly independent and by the construction of
K, it is an upper bound of K in L. Since K was chosen arbitrarily it follows
that every totally ordered subset of L has an upper bound in L.

By ZL, L has a maximal element, call it M . We claim that M spans V .
Suppose the contrary that there exists an element v of V such that v 6∈
span(M). Then M∪{v} is linearly independent and thus M ⊂M∪{v} ∈ L,
contradicting the maximality of M . Thus M is a basis for V .

Theorem 4.3.7. FTLA ⇒ AC.

We will use that AC is equivalent to AMC, and prove that FTLA implies
AMC.

We need to introduce some notation before we begin with the proof.

The following notational remarks and proof is inspired by the proof in [I-FL]

Let F be a field and X a set and let F (X) be the field of rational functions
over F with the elements of X as indeterminates. Then F is a subfield of
F (X) and X is a subset of F (X).

Consider a monomial

y = axr11 ...x
rn
n with a ∈ F , x1, ..., xn ∈ X and r1, ..., rn ∈ N.

If A is a subset of X then the A-degree of y is the sum of all the exponents
ri for which xi ∈ A. If y is an arbitrary element in F (X), then we say that
y is A-homogeneous of degree d if y is the quotient

y =
f(x1, ...xn)

g(x1, ..., xn)

of two polynomials such that every monomial of f has the same A-degree d1
and such that every monomial of g has the same A-degree d2 with d1−d2 = d.
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If {Xi | i ∈ I} is a family of subsets of X indexed by some index set I,
then for i ∈ I we understand by the i-degree of a monomial its Xi-degree.
Similarly we say that an element y ∈ F (X) is of i-homogeneous degree d if
it is of Xi-homogeneous degree d.

Note that the elements of i-homogeneous degree 0 for all i ∈ I form a subfield
of F (X) which we denote by FI(X).

We are now ready to begin with the proof.

Proof. Let {Xi | i ∈ I} be a family of non-empty sets indexed by some set I.
We want to show that we can construct a family {Fi | i ∈ I} of non-empty
and finite sets such that Fi ⊂ Xi for all i ∈ I.

Without loss of generality we may assume that the sets Xi are pairwise
disjoint. We set X =

⋃
i∈I Xi.

Let F be any field and F (X) the field of rational functions over F with the
elements in X as indeterminants. F (X) is a vector space over the subfield
K = FI(X) and X ⊂ F (X). Let V be the K-vector space generated by X.
By FTLA V has a basis B.

For every i ∈ I and x ∈ Xi , x 6= 0 and thus by the property of a basis there
exists a unique non-empty and finite subset B(x) of B such that

x =
∑

b∈B(x)

ab(x)b

with ab(x) being unique non-zero elements of K. If x, y ∈ Xi, then y/x is
j-homogeneous of degree 0 for every j ∈ I and thus y/x ∈ K. Thus we can
multiply x by y/x and obtain

y =
∑

b∈B(x)

(y/x)ab(x)b =
∑

b∈B(y)

ab(y)b.

So, we have that B(x) = B(y) and (y/x)ab(x) = ab(y) for all b ∈ B(x) =
B(y). Thus B(x) is independent of the choice of x in Xi and the elements
ab(x)/x depend only on b ∈ B(x). For every i ∈ I we set Bi = B(x) for
some element x ∈ Xi and for every b ∈ Bi we set βib = ab(x)/x which are
then elements in the field F (X).
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Since the elements ab(x) have i-homogeneous degree 0 we have that βib has
i-homogeneous degree −1. Thus, whenever we write βibas a quotient

βib =
f ib(x1, x2, ..., xn)

gib(x1, x2, ..., xn)

of two polynomials, then some of the finitely many variables x1, x2, ..., xn ∈
X that are elements in Xi, must appear in the polynomial gib. This is in
particular true if we write βib in reduced form. Since the reduced form of an
element in F (X) is unique we obtain well defined subsets Fi ⊂ Xi when we
set

Fi = {x ∈ Xi | x appears in gib in reduced form for some b ∈ Bi}.

These sets are clearly non-empty and finite and the proof is done.
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5 Consequences

5.1 The Boolean Prime Ideal Theorem

The definitions in this section are taken more or less literally from Chapter
7 in [Jec2006].

Definition 5.1.1. A Boolean algebra is a set B with binary operations
+ and ·, an unary operation − and two constants 0 and 1. The Boolean
operators satisfies the following axioms:

(i) u+ v = v + u, u · v = v · u, (commutativity)

(ii) u+ (v + w) = (u+ v) + w, u · (v · w) = (u · v) · w, (associativity)

(iii) u · (v + w) = (u · v) + (u · w), u+ (v · w) = (u+ v) · (u+ w),
(distributivity)

(iv) u · (u+ v) = u, u+ (u · v) = u, (absorption)

(v) u+ (−u) = 1, u · (−u) = 0, (complementation)

From the axioms of Boolean algebras we can derive additional algebraic
rules. Among others we have

u+ u = u, u · u = u, u+ 0 = u, u · 0 = 0, u+ 1 = 1, u · 1 = u, −(−u) = u,

and De Morgan’s laws

−(u+ v) = (−u) · (−v) − (u · v) = (−u) + (−v).

We define an ordering ≤ on a Boolean algebra as:

u ≤ v if and only if u · (−v) = 0.

Definition 5.1.2. An ideal on a Boolean algebra B is a non-empty subset
I of B such that

(i) if u ∈ I and v ≤ u, then v ∈ I,
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(ii) if u ∈ I and v ∈ I, then u+ v ∈ I.

If I is a proper subset of B we say that I is a proper ideal. A proper ideal
I is called a prime ideal if moreover

(iii) for all u ∈ B, either u ∈ I or −u ∈ I.

Definition 5.1.3. A proper ideal I on B is called a maximal ideal if for all
ideals J such that I ⊆ J ⊆ B, either J = I or J = B.

Definition 5.1.4. A filter F on a Boolean algebra B is a non-empty proper
subset of B such that

(i) if u ∈ F and u ≤ v, then v ∈ F ,

(ii) if u ∈ F and v ∈ F , then u · v ∈ F .

F is an ultrafilter if

(iii) for all u ∈ B, either u ∈ F or −u ∈ F .

Theorem 5.1.5 (The Boolean Prime Ideal Theorem). Every proper ideal I
on a Boolean algebra B can be extended to a prime ideal.

Proof. Let B be a Boolean algebra, I a proper ideal on B and let S be the
set of all proper ideals on B that contains I. Since I ∈ S, S is non-empty.
S is partially ordered by inclusion. Let T be a totally ordered subset of S
and let U =

⋃
T . Then U contains I.

Let u ∈ U and v ≤ u, then there is some ideal J ∈ T such that u ∈ J which
implies that v ∈ J . Hence v ∈ U .

Let u, v ∈ U , then there is some ideals J1, J2 ∈ T such that u ∈ J1 and
v ∈ J2, and since T is totally ordered by inclusion either J1 ⊆ J2 or J2 ⊆ J1,
thus u, v ∈ Ji for some i ∈ {1, 2}, which gives that u + v ∈ Ji. Hence
u+ v ∈ U .

It follows that U is a proper ideal on B and U is an upper bound of T in S.
By ZL, T has a maximal element, call it M .
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We need to show that M is a prime ideal on B (This part of the proof is
inspired by the proof of Proposition 1.4.1 in [Gon1997]). Assume that M
is not a prime ideal, aiming at a contradiction, then there is some element
u ∈ B such that u 6∈M and −u 6∈M . Consider the sets

Mu = {x ∈ B | x ≤ u+m for some m ∈M}

and
M−u = {x ∈ B | x ≤ (−u) +m for some m ∈M}.

We claim that Mu and M−u are ideals, to see this we show that Mu and
M−u satisfies the conditions in Def. 5.2.2.;

(i) If x ∈Mu, y ∈ B and y ≤ x, then there exists some m ∈M such that
x+ (u+m) = u+m and y + x = x. Thus

y + (u+m) = y + (x+ (u+m)) = x+ (u+m) = u+m,

i.e. y ≤ u+m which implies that y ∈Mu

(ii) If x, y ∈ Mu, then there exists some m1,m2 ∈ M such that x + (u +
m1) = u+m1 and y + (u+m2) = u+m2. Thus

x+y+(u+(m1+m2)) = x+(u+m1)+y+(u+m2) = (u+m1)+(u+m2) =

= u+ (m1 +m2),

i.e. x+ y ≤ u+ (m1 +m2) which implies that x+ y ∈Mu

Hence, Mu is an ideal and we can prove in a similar way that M−u is an
ideal. Clearly, M ( Mu and M ( M−u and since M is maximal we have
that Mu = M−u = B. Hence, there exists a, b ∈M such that a+ u = 1 and
b+ (−u) = 1 and therefore

a+ b = (a+ b) + 0 = (a+ b) + (u · (−u)) =

= ((a+ b) + u) · ((a+ b) + (−u)) = (b+ 1) · (a+ 1) = 1 · 1 = 1.

This implies that 1 ∈ M but M is proper, i.e. 1 6∈ M . A contradiction!
Thus M is prime and the proof is done.
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The Boolean Prime Ideal Theorem is equivalent to the statement that every
filter on a Boolean algebra can be extended to an ultrafilter, since filters and
ultrafilters is the dual notion of ideals and prime ideals. Note that if S is a
non-empty set, the power set P(S) together with the set theoretical opera-
tions ∪, ∩ and S\ is a Boolean algebra with 0 = ∅ and 1 = S. In this special
case, the notion of filters and ultrafilters coincide with Definition 2.2.8. Thus
we have:

Theorem 5.1.6 (The Ultrafilter Theorem). Every proper filter over a set
S can be extended to an ultrafilter.

The Ultrafilter Theorem is equivalent to the Boolean Prime Ideal Theorem,
this is proved without use of AC in Theorem 2.2 in [Jec1973].

The Boolean Prime Ideal Theorem does not imply AC, for a proof of this
see Theorem 7.1 in [Jec1973]. However it has a lot of interesting equivalents
and implications. For example it is equivalent to The Compactness Theorem
which is the following statement:

Theorem 5.1.7 (The Compactness Theorem). A set of sentences Σ in
first-order logic has a model if and only if every finite subset of Σ has a
model.

The equivalence between the Boolean Prime Ideal Theorem and the Com-
pactness Theorem is proved in Theorem 2.2 in [Jec1973].

An example of an implication of the Boolean Prime Ideal Theorem is

Theorem 5.1.8 (The Order Extension Principle). Every partial ordering
of a set X can be extended to a total ordering of X.

A proof of the Order Extension Principle from the Boolean Prime Ideal
Theorem can be found in section 2.3 in [Jec1973].

5.2 The Banach-Tarski Paradox

The method of proving the Banach-Tarski Paradox that is used in this sec-
tion is inspired by Appendix G in [Coh2013] and many definitions and for-
mulations are taken more or less literally from it.
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The Banach-Tarski Paradox is usually stated informally as:

A three-dimensional ball can be decomposed into a finite number
of pieces which can be reassembled into two copies of the original
ball.

First we need to define some concepts and prove some statements that are
used in the proof of the paradox.

5.2.1 Equidecomposability and Paradoxical Sets

Definition 5.2.1. Let G be a group and let X be a set. A multiplication
of elements of X by elements of G, defined by a function from G×X → X,
is called a group action of G on X provided that for each x ∈ X:

(i) g1(g2x) = (g1g2)x for all g1, g2 ∈ G, and

(ii) ex = x where e is the identity element of G.

If G acts on X, g ∈ G and A ⊆ X, then gA is the set {ga | a ∈ A}.

The following definition corresponds to Definition 7.3.3 in [BeBl2006].

Definition 5.2.2. Let G be a group acting on a set X. For each element
x ∈ X, the set

Gx = {gx | g ∈ G}
is called the orbit of x under G, and the set

Gx = {g ∈ G | gx = x}

is called the stabilizer of x in G.

Definition 5.2.3. Let G be a group acting on a set X and let A and B be
subsets of X. Then A and B are called G-equidecomposable if there exists
a positive integer n, partitions {A1, A2, ..., An} of A and {B1, B2, ..., Bn} of
B and elements g1, g2, ..., gn of G such that Bi = giAi, for i = 1, 2, ..., n.

If the sets A and B are G-equidecomposable we write A ∼G B
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Note that A and B are G-equidecomposable if and only if there are partitions
of A and B and elements of G ,defined as in the definition, and a bijection
f : A→ B defined piecewise as f(x) = gix if x ∈ Ai for i = 1, 2, ..., n.

The following proposition corresponds to Proposition G.2 in [Coh2013].

Proposition 5.2.4. Suppose that the group G acts on the set X and that
A and B are subsets of X. If A is G-equidecomposable with a subset of B
and if B is G-equidecomposable with a subset of A, then A ∼G B.

Proof. LetA beG-equidecomposable withB′ ⊆ B and letB beG-equidecomposable
withA′ ⊆ A. Then there exists bijections f : A→ B′ and g : B → A′ defined
piecewise by the action of G on X.

Consider the function h : A→ B defined as:

h(x) =

{
f(x), if x ∈ A\A′ or g−1(x) ∈ B′
g−1(x), if x ∈ A′ and g−1(x) ∈ B\B′.

The function h is well defined since it is defined for all x ∈ A and the
conditions for which function to use never coincide. It is surjective since if
y ∈ B′ then there is an element x in A such that f(x) = y and if y ∈ B\B′
then there is an element x in A′ ⊆ A such that g−1(x) = y. Finally, h is
injective since if h(x) = h(y) then either f(x) = f(y) which implies that
x = y since f is bijective, g−1(x) = g−1(y) which also implies that x = y
since g is bijective or f(x) = g−1(y) which cannot be the case since if it
were, then h(x) = f(x) ∈ B\B′ which contradicts the definition of f . So h
is a bijection and since f and g are bijective and defined piecewise by the
action of G on X, so is h. It follows that A ∼G B.

Definition 5.2.5. Let G be a group acting on a set X. A subset A of X is
called G-paradoxical if it can be partitioned into two disjoint subsets A1

and A2 such that both A1 and A2 are G-equidecomposable with A.

The following corollary to Proposition 5.2.4 provides an easier way to show
that a set A is paradoxical, we only have to look at disjoint subsets of A with-
out the condition that the subsets partitions A. The corollary corresponds
to Corollary G.4. in [Coh2013].

Corollary 5.2.6. Let G be a group acting on a set X. Then a subset A of
X is G-paradoxical if it has two disjoint subsets A1 and A2, each of which
is G-equidecomposable with A.
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Proof. Suppose A,A1 and A2 are as in the statement of the corollary. Then
the set A\A1 is G-equidecomposable with a subset of A, namely it is G-
equidecomposable with itself, and A is G-equidecomposable to a subset of
A\A1, namely A2. So, by Proposition 5.3.4., A is G-equidecomposable with
A\A1 and since A1 and A\A1 are disjoint and partitions A, it follows that
A is paradoxical.

5.2.2 The Free Group of two Generators and the Special Orthog-
onal Group

Definition 5.2.7. The free group F2 of two generators a and b is the set of
all finite words with the letters a, a−1, b and b−1 such that a and a−1 are
never adjacent and neither are b and b−1.

If x = x0x1...xn and y = y0y1...ym are elements of F2, then we get the
product xy by joining the two words together and removing all adjacent
pairs of letters of the form {a, a−1} or {b, b−1} until we have achieved a
reduced word.

The empty word is the identity element of F2.

The following proposition corresponds the Proposition G.5. in [Coh2013].

Proposition 5.2.8. The free group F2 of two generators is paradoxical un-
der the action of F2.

Proof. We can define a paradoxical decomposition of F2 as follows: let S(a)
be the set of all elements of F2 starting with a, and let S(a−1), S(b) and
S(b−1) be defined similarly. Then the two sets A1 = S(a) ∪ S(a−1) and
A2 = S(b) ∪ S(b−1) are disjoint. We have that S(a) ∪ aS(a−1) = F2 and
that S(b)∪ bS(b−1) = F2. Thus A1 ∼F2 F2 and A2 ∼F2 F2. So, by Corollary
5.1.5., F2 is F2-paradoxical .

Definition 5.2.9. For some positive integer n, the set of all n×n matrices
whose rows and columns are orthogonal unit vectors (i.e. orthogonal ma-
trices) with determinant 1 is called the special orthogonal group and is
denoted SO(n).
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Every element of SO(3), when interpreted as an action on R3, is a rotation
around a line through the origin and every such rotation is represented by
an element in SO(3).

The following proposition corresponds to Proposition G.6. in [Coh2013].

Proposition 5.2.10. The special orthogonal group SO(3) has a subgroup
that is free on two generators.

Proof. To prove that two elements a and b of SO(3) freely generates a sub-
group of SO(3), it is sufficient to show that any two distinct reduced words x
and y in the letters a, a−1, b and b−1 represents different elements of SO(3).
Assume that x and y are two distinct such words, but that they represents
the same element of SO(3). We can assume that the first letter (from the
left) of x is different from the first letter of y, since if the x and y begins
with the same letter we can, by the cancellation property of groups, remove
elements from the left until the words begins with different letters. So, we
want to find two elements a and b of SO(3) such that the elements of SO(3)
represented by two distinct reduced words x and y in the letters a, a−1, b
and b−1 with different first letters (from the left) are always distinct.

If we can find two elements a, b ∈ SO(3), one element u ∈ R3 and four
disjoint subsets A+, A−, B+ and B− of R3 such that the following conditions
holds:

u 6∈ A+ ∪A− ∪B+ ∪B−
a · (A+ ∪A− ∪B+ ∪B− ∪ {u}) ⊆ A+

a−1 · (A+ ∪A− ∪B+ ∪B− ∪ {u}) ⊆ A−
b · (A+ ∪A− ∪B+ ∪B− ∪ {u}) ⊆ B+

b−1 · (A+ ∪A− ∪B+ ∪B− ∪ {u}) ⊆ B−,

then the proof is done, since operating on u with elements of SO(3) repre-
sented by distinct reduced words with different first letter will give elements
in different disjoint subsets of R3.

Let a, b ∈ SO(3), u ∈ R3 and the subsets A+, A−, B+, B− of R3 be defined
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as follows:

a =




3/5 4/5 0
−4/5 3/5 0

0 0 1


 and b =




1 0 0
0 3/5 −4/5
0 4/5 3/5


 ,

u = (0, 1, 0)t,

A+ =

{
1

5k
(x, y, z)t

∣∣ k ≥ 1, x ≡ 3y mod 5, x 6≡ 0 mod 5, z ≡ 0 mod 5

}
,

A− =

{
1

5k
(x, y, z)t

∣∣ k ≥ 1, x ≡ −3y mod 5, x 6≡ 0 mod 5, z ≡ 0 mod 5

}
,

B+ =

{
1

5k
(x, y, z)t

∣∣ k ≥ 1, z ≡ 3y mod 5, z 6≡ 0 mod 5, x ≡ 0 mod 5

}
,

B− =

{
1

5k
(x, y, z)t

∣∣ k ≥ 1, z ≡ −3y mod 5, z 6≡ 0 mod 5, x ≡ 0 mod 5

}
,

where k, x, y and z are integers.

First we show that the subsets A+, A−, B+ and B− are disjoint. To simplify
the notation we omit mod5 in the rest of the proof. Assume1/5k(x, y, z) ∈
A+ ∩A−, then we have that

x ≡ 3y ≡ −3y ⇒ 6y ≡ 0⇒ y ≡ 0⇒ x ≡ 0,

contradicting x 6≡ 0, so A+ ∩A− = ∅. By the same argument B+ ∩B− = ∅,
and finally A+ ∩B+ = A+ ∩B− = A− ∩B+ = A− ∩B− = ∅ since otherwise
x ≡ 0 and x 6≡ 0.

Since u = (0, 1, 0)t = 1/5k(0, 5k, 0)t and 0 ≡ 0 mod 5, u is not in any of the
subsets A+, A−, B+, B−, i.e. u 6∈ A+ ∪A− ∪B+ ∪B−.

To prove a · (A+ ∪A− ∪B+ ∪B− ∪ {u}) ⊆ A+, consider a operating on the
element v = 1/5k(x, y, z)

a · 1

5k
(x, y, z)t =

1

5k+1
(3x+ 4y,−4x+ 3y, 5z).

If v ∈ A+, then




x ≡ 3y

x 6≡ 0

z ≡ 0

⇒





3x+ 4y ≡ 3x+ 9y ≡ 3x+ 3x = 3 · 2x
−4x+ 3y ≡ x+ x = 2x 6≡ 0

5z ≡ 0

⇒ a · v ∈ A+.
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We can use similar arguments to prove that a · v ∈ A+ for v ∈ A−, v ∈ B+

and v ∈ B− or v = u. Showing the rest of the required conditions can be
done in a similar manner and the proposition is proved.

5.2.3 Paradoxicality of the Unit-Ball

The following proposition corresponds to Proposition G.7. in [Coh2013].

Proposition 5.2.11. Let G be a group for which the action of G on itself
is paradoxical, let (g, x) 7→ g · x be an action on a set X, and suppose that
the stabilizer Gx of every x ∈ X in G is trivial. Then the action of G on X
is paradoxical.

Proof. Define a relation ∼̇ on X by x∼̇y if y = g · x for some g ∈ G. Then
we have that for all x, y, z ∈ X

(i) x = e · x,

(ii) if y = g · x, then x = g−1 · y,

(iii) if y = g1 · x and z = g2 · y, then z = g2g1 · x,

showing that ∼̇ is reflexive, symmetric and transitive and thus an equivalence
relation. The equivalence class of each element x ∈ X is the orbit of x under
G. We can now use the Axiom of Choice to form a set C containing one
element from each orbit in X.

Since G is G-paradoxical there is a partition of G into two sets A and B
such that A ∼G G and B ∼G G. Then A ·C∪B ·C = X since G ·C = X and
A ·C ∩B ·C = ∅, since if u ∈ A ·C ∩B ·C then u = ac = bc for some a ∈ A,
b ∈ B and c ∈ C which implies that a = b, since the stabilizer of c is trivial
by assumption, but that is impossible since A and B are disjoint. Thus A ·C
and B · C partitions X. Since G ∼G A we must have that G · C ∼G A · C
and hence X ∼G A ·C. A similar argument shows that X ∼G B ·C and the
proof is done.

Lemma 5.2.12. The free group F2 of two generators is countable.
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Proof. For every n ∈ N there are finitely many different words of length n
in four letters and since F2 is the union of such words over N it follows from
Theorem 3.2.5 that F2 is countable.

The following proposition corresponds to Proposition G.8. in [Coh2013].

Proposition 5.2.13. Let F be a subgroup of SO(3) that is free on two
generators. Then there is a countable subset D of the unit-sphere S such
that S\D is F -paradoxical and hence SO(3)-paradoxical.

Proof. Since the elements of SO(3) are distance preserving as operators on
R3, so are the elements of F , and hence we can view them as acting on S.
All elements of F but the identity element is a non-trivial rotation about
a line through the origin and so has exactly two fixed points on S. Let D
be the collection of all fixed points on S of elements of F other than the
identity element. Since F is countable by Lemma 5.2.12, so is D.

The elements of F have no fixed points in S\D. S\D is closed under action
of elements of F , since if f ∈ F , x ∈ S\D and fx ∈ D then there would exist
some non-trivial element f ′ ∈ F such that f ′fx = fx from which it follows
that f−1f ′fx = x and hence that f−1f ′f = e which implies that f ′ = e
contrary to our assumption that f ′ 6= e. It follows from Proposition 5.2.11.
that S\D is F -paradoxical and since F ⊆ SO(3), S\D is SO(3)-paradoxical.

The following proposition corresponds to Proposition G.9. in [Coh2013].

Proposition 5.2.14. The unit-sphere S is SO(3)-paradoxical.

Proof. Let F be a subgroup of SO(3) that is free on two generators, and let
D be a countable subset of S such that S\D is F -paradoxical.

There is a line L that goes through the origin but not through any of the
points in D. This line L exists since D is countable, and hence there are
only countably many lines that go through the origin and a point of D, but
S is uncountable and so L must exist. All non-trivial rotations about L can
be described in terms of values in the interval (0, 2π). For each pair of points
x, y ∈ S there is at most one rotation that takes x to y. Thus there are only
countable many rotations ρ about L such that D ∩ ρ(D) 6= ∅. By the same
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argument we can show that for any n ∈ N there are only countably many
rotations ρ about L such that D ∩ ρn(D) 6= ∅. Since there are uncountably
many rotations about L we can choose one, say ρ0, such that for every
positive integer n, D∩ρn(D) = ∅. It follows that for any positive integers n
and k, ρn(D)∩ρn+k(D) = ∅, and hence that the sequence D, ρ(D), ρ2(D), ...
consists of disjoint sets.

Let D1,∞ =
⋃∞
i=1 ρ

i(D) and let D0,∞ =
⋃∞
i=0 ρ

i(D). Then S = (S\D0,∞) ∪
D0,∞ and S\D = (S\D0,∞) ∪ D1,∞. Since D1,∞ = ρD0,∞, it follows that
S and S\D are SO(3)-equidecomposable. Since S\D is F -paradoxical it
follows from Corollary 5.2.6. that S is F -paradoxical and hence SO(3)-
paradoxical.

The following proposition corresponds to Proposition G.10. in [Coh2013].

Proposition 5.2.15. The unit-ball B with its center removed,
{x ∈ R | 0 < |x| ≤ 1} is SO(3)-paradoxical.

Proof. Let S be the unit-sphere and for each subset E ⊆ S let c(E) be the
conical piece of the unit-ball B defined by

c(E) = {ts ∈ R3 | t ∈ (0, 1] and s ∈ E}.
Then c(S) is B with its center removed. Let A and B be subsets of S such
that A and B partitions S, S ∼SO(3) A and S ∼SO(3) B (such subsets exists
since S is SO(3)-paradoxical by Proposition 5.1.14). Then c(A) and c(B)
partitions c(S), c(S) ∼SO(3) c(A) and c(s) ∼SO(3) c(B). We can show that
c(S) ∼SO(3) c(A) by considering a bijection f : S → A that is piecewise
defined by the action of SO(3) on S, and note that g : c(S)→ c(A) defined
by tx 7→ tf(x) is also a bijection defined piecewise by the same group action.
Thus c(S) ∼SO(3) c(A), and by the same argument we can show that
c(S) ∼SO(3) c(B). Since c(S) is the unit-ball B with its center removed, the
proof is done.

Definition 5.2.16. The group of rigid motions G3 is the set consisting
of all functions T : R3 → R3 defined by T (x) = Sx + b, where S ∈ SO(3)
and b ∈ R3.

The set G3 is a group under function compositions, every element in G3,
when viewed as an action on R3, represents a rigid motion in R3 and con-
versely every rigid motion in R3 can be represented by an element in G3
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The following proposition corresponds to Proposition G.11. in [Coh2013].

Proposition 5.2.17. The unit-ball B is G3-paradoxical.

Proof. Let L be a line that does not pass through the origin but is close
enough so that every rotation about L maps 0 to a point in B. Note that
the rotations about L are elements of G3 but not SO(3). Now, let ρ be a
rotation about L through an angle θ ∈ (0, 2π) such that θ

2π is irrational,
in which case the elements in the sequence 0, ρ(0), ρ2(0), ... are distinct.
This can be shown by assuming the contrary, that is for some non-negative
integers i and j such that j < i, ρi(0) = ρj(0). Then ρi−j(0) = 0 and hence
ρi−j is a rotation about L through an angle 2nπ, for some positive integer
n. So we have that ρ is a rotation through an angle θ = 2nπ

i−j , but then
θ
2π = n

i−j ∈ Q which contradicts that θ
2π is irrational.

Let D0 = {0} ∪ {ρn(0) | n ≥ 1} and D1 = {ρn(0) | n ≥ 1}, then B =
(B\D0) ∪ D0 and B\{0} = (B\D0) ∪ D1. Since D1 = ρD0, it follows
that B ∼g3 B\{0} and so, by Proposition 5.1.15 and Corollary 5.1.6., B is
G3-paradoxical.

5.2.4 Proof of the Paradox

We can now formulate and prove the precise version of the Banach-Tarski
Paradox. The theorem corresponds to Theorem G.3. in [Coh2013].

Theorem 5.2.18 (The Banach-Tarski Paradox). Let A and B be subsets
of R3 that are bounded and have non-empty interiors. Then A and B are
G3-equidecomposable.

Note that this version of the paradox is much more general than the informal
statement, but that the informal statement clearly follows.

Proof. Since the unit-ball B is G3-paradoxical it follows that any ball in R3

is G3-paradoxical. This is intuitively clear but to prove it, for each subset
E of B let c(E) be the set

c(E) = {rx+ c | x ∈ E , r ∈ R and c ∈ R3}.
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Then the ball Br,c with radius r and center in c is equal to c(B). Now, let X
and Y be subsets of B such that X and Y partitions B and such that both
X and Y are G3-equidecomposable with B. Then c(B) = c(X) ∪ c(Y ) and
c(X)∪c(Y ) = ∅ and both c(X) and c(Y ) is G3-equidecomposable with c(B).
We can show that c(B) ∼G3 c(X) by considering a bijection f : B → X that
is piecewise defined by the action of G3 on B, and note that g : c(B)→ c(X)
defined by rx + c 7→ rf(x) + c is also a bijection defined piecewise by the
same group action. Thus c(B) ∼G3 c(X), and by the same argument we can
show that c(B) ∼G3 c(Y ). Since c(B) = Bc,r for arbitrary c and r, every
ball in R3 is paradoxical.

Let A and B be bounded subsets of R3 with non-empty interiors and let B0

be a ball with radius r that is contained in A. Let B1, B2, ... be disjoint balls
each with radius r. SinceB0 is paradoxical, by the argument above, it follows
that B0 is G3-equidecomposable with B1 ∪B2. By repeating this argument
we can conclude that B0 is G3-equidecomposable with B1 ∪ B2 ∪ ... ∪ Bn,
for some positive integer n. Since B is bounded there is an positive integer
n such that B can be covered by n balls of radius r. It follows that B is
G3-equidecomposable with a subset of B1 ∪B2 ∪ ...∪Bn and hence with B0

which is a subset of A. So B is G3-equidecomposable with a subset of A
and with a similar argument we can show that A is G3-equidecomposable
with a subset of B. This implies, by Proposition 5.1.6., that A ∼G3 B and
the proof is complete.

5.2.5 Summary of the Proof

We now summarize the proof of the Banach-Tarski Paradox.

What the paradox is really saying is that any two bounded subsets A and
B of R3 with non-empty interior are G3-equidecomposable. That is, A and
B can be partitioned into a finite number of subsets A = A1 ∪A2 ∪ ... ∪An
and B = B1 ∪ B2 ∪ ... ∪ Bn, and for each i there is an element gi ∈ G3

such that giAi = Bi. Here G3 is the group of rigid motions acting on R3 by
taking an element x to rx+ t, where r ∈ SO(3) and t ∈ R3. SO(3) is, when
interpreted as a group acting on R3, the group of rotations about lines that
goes through the origin. So the action of G3 on R3 takes an object, rotates
it and translates it.

We started by showing that a free group F2 on two generators is F2-paradoxical
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(Proposition 5.2.8), that is F2 can be partitioned into two disjoints subsets,
both of which are F2-equidecomposable to F2. Then we showed that SO(3)
has a subgroup that is free on two generators (Proposition 5.2.10), and thus
the subgroup is paradoxical. This was used to prove, in the given order,
that, S\D, where S is the unit-sphere and D is a countable subset of S,
the unit-sphere S itself and the unit-ball B with its center removed are all
SO(3)-paradoxical (Proposition 5.2.13, 5.2.14 and 5.2.15).

By showing that B\{0} is G3-equidecomposable to B, and by the previous
results we concluded that B is G3-paradoxical (Proposition 5.2.17). It fol-
lows that any ball in R3 is G3-paradoxical and furthermore that any bounded
subsets A and B of R3 with non-empty interior are G3-equidecomposable.

A consequence of the Banach-Tarski Paradox is that not every bounded
subset of R is Lebesgue-measurable.

36



6 Outroduction

6.1 A Stronger Statement

An example of a statement that is stronger than AC, is the Generalized
Continuum hypothesis.

The Continuum Hypothesis states that there is no set with cardinality
strictly between the cardinality of N and the cardinality of R. A cardi-
nal is the generalized concept of ”the number of elements” in a finite set
and can be seen as the ”size” of a set. The Continuum Hypothesis can be
expressed as follows:

6.1.1. The Continuum Hypothesis: If ℵ0 ≤ b < 2ℵ0 , then b = ℵ0, where
ℵ0 is the cardinality of N.

The Generalized Continuum Hypothesis is the following statement:

6.1.2. The Generalized Continuum Hypothesis: For any two infinite
cardinals a and b, if a ≤ b < 2a, then a = b.

The definitions of the Continuum Hypothesis and the Generalized Contin-
uum Hypothesis are inspired by Definition 2.19 in [Her2006].

The following theorem we state without proof, a proof of the theorem can
be found in [Jec1973].

Theorem 6.1.3. The Generalized Continuum Hypothesis implies AC.

The implication does not go the other way around, AC does not even imply
the weaker Continuum Hypothesis, this was proved be Paul J. Cohen in
[Coh1963].

6.2 An Alternative to the Axiom of Choice

This section is inspired by Section 7.2 in [Her2006].
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An alternative to AC is the Axiom of Determinateness. The Axiom of
Determinateness states that a special type of infinite games of two players
is determined, that is one of the players has a winning strategy.

For a set A ⊆ NN, imagine a game where two players I and II successively
choose natural numbers:

I: x0 x1 x3 ...

II: y0 y1 y3 ...

At the end of the game, player I wins if the resulting sequence
(x0, y0, x1, y1, x2, y2, ...) is in A, otherwise player II wins. We call this game
GA and we say that it is determined if one of the players has a winning
strategy. A strategy is a rule for how to choose every element, depending
of which elements have been chosen before by both players and a winning
strategy is strategy which ensures that the player wins, regardless of how
the other player plays.

The Axiom of Determinateness is the following statement:

6.2.1. The Axiom of Determinateness (AD): For every A ∈ NN, GA
is determined.

AC and AD are inconsistent, this is proved in Theorem 7.15 in [Her2006].
Thus WOT, ZL and FTLA are all false under AD. However, AD and ADC
are consistent. This is proven in [Kec1984].

The following theorem corresponds to Theorem 7.13 in [Her2006].

Theorem 6.2.2. AD implies that every subset of R is Lebesgue-measurable.

This is not case for AC, which is proved in Disaster 5.6 in [Her2006].

Another consequence of AD is:

Theorem 6.2.3. AD implies the Continuum Hypothesis.

This is proved in [Myc1964].
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6.3 Discussion

In section 3 we looked at how AC can be expressed in different forms and
at some weaker versions of it and how the full strength of AC is not always
necessary. This together with the counter-intuitive consequences of AC mo-
tivates us the consider rejecting AC but accept one of the weaker versions
of the axiom. However, we saw in section 4 how WOT, ZL and FTLA are
equivalent to AC, and thus by rejecting AC we would have to accept the
negation of those.

In section 5.1 the Boolean Prime Ideal theorem was proven to follow from
AC, and we saw how it in turn has interesting and useful results in mathe-
matics.

Maybe the most interesting result of the thesis is that the highly counter-
intuitive Banach-Tarski Paradox follows from AC, which was proven in sec-
tion 5.2. Even though, one could say, it loses some of its counter-intuitiveness
by going through the proof, this alone gives us a reason to be hesitant about
AC.

One alternative would be to, instead of AC, accept AD. Then we would get
the desired result that every subset of R is Lebesgue-measurable. This is
also not unproblematic, since if every subset of R is Lebesgue-measurable,
then there is a partition of R into strictly more parts than elements (for a
proof of this, see [Kom2006] and [Sie1947]).

So, from where comes this feeling that everywhere we turn, seemingly para-
doxical results emerges? Is the axiom that we choose to use the culprit?
Or might it be that we overestimate our capacity to have intuition about
something as far away from our everyday lives as infinity? Or even worse;
uncountable infinity? And if so, how could we decide whether or not to
accept the axioms?
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